Гаусс — отец теории чисел в ее современном понимании. Среди других его достижений — решительный импульс в использовании комплексных чисел, благодаря чему он оставил нам инструмент, с помощью которого можно подойти к решению полиномиальных уравнений любого типа. Этой теме посвящена работа «Арифметические исследования», в которой Гаусс собрал свои многочисленные исследования, совершенные в молодые годы.
Гаусс привел математику XIX века к целям, о которых до него и не подозревали. Первым огромным вкладом ученого в алгебру была докторская диссертация, которую, как мы уже знаем, он защитил заочно в 1799 году в Хельмштедтском университете. Руководителем работы был Иоганн Фридрих Пфафф (1765-1825), один из великих математиков того времени, и он всегда относился с особым вниманием к своему подопечному. Пфафф считал своим долгом заботиться о том, чтобы его молодой друг больше двигался, и они часто гуляли днем, разговаривая о математике. Поскольку Гаусс отличался не только скромностью, но и некоторой замкнутостью, возможно, Пфафф не смог разглядеть все черты его натуры, однако известно, что сам молодой диссертант восхищался своим преподавателем, которого считал лучшим математиком Германии — благодаря не только отличным научным работам, но и простому и открытому характеру. Со временем ученик превзойдет учителя. Барон Александр фон Гумбольдт (1769-1859), знаменитый путешественник и любитель наук, с которым Гаусс сотрудничал, изучая геомагнетизм, спросил Пьера-Симона Лапласа (1749-1827), одного из выдающихся французских математиков, кого тот считает самым великим математиком в Германии. Лаплас ответил: «Пфаффа». «А Гаусс?» — удивился фон Гумбольдт, который поддерживал кандидатуру Карла Фридриха на пост директора Гёттингенской обсерватории. «О, — сказал Лаплас, — Гаусс — самый великий в мире».
Название докторской диссертации Гаусса звучит так: Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse («Новое доказательство теоремы, в которой говорится, что любая алгебраическая рациональная функция может быть разложена на множители первой или второй степени с действительными коэффициентами»). В этом заголовке содержится небольшая ошибка, которая принесла молодому Гауссу еще больше величия: это доказательство было не «новым», а первым в истории полным доказательством основной теоремы алгебры.
Математика — царица наук, а арифметика — царица математики.
Карл Фридрих Гаусс
В этой теореме, в том виде, в каком ее формулировал Гаусс (затем она была обобщена), утверждается, что любой многочлен от одной переменной имеет столько корней, сколько показывает его степень, допуская, что эти корни могут быть множественными. Многочлен Р — это выражение вида Р(x) = anxn + an-1xn-1 + ... + а1х + a0, где коэффициенты аn, аn-1, ... , a1, a0 — действительные числа. Степень Р — это наибольший показатель степени, в которую нужно возвести переменную х, то есть n. Корни многочлена — это точки, в которых он равен нулю, то есть такие точки х, в которых Р(х) = 0. В качестве естественного следствия из теоремы можно сделать вывод, что любой многочлен степени n с n корнями, необязательно разными, которые мы обозначим r1, r2,..., rn, можно разложить как произведение одночленов вида:
Р(х) = (x-r1) · (x - r2) · ... · (x - rn).
Задачи такого типа часто встречаются в повседневной жизни, и их решение заботило математиков с самого начала развития этой науки. Очевидно, что задачи типа x - 3 = 0 имеют единственный корень, то есть 3. Если мы возьмем многочлен x + 3 = 0, то для его решения нам придется учитывать отрицательные числа, поскольку решение — это -3. Именно по этой причине потребовалось расширить множество натуральных чисел до множества целых чисел, которое включает в себя и отрицательные числа. Вавилоняне и египтяне осознали, что для решения простых уравнений первой степени нужно новое расширение, в данном случае это дроби, поскольку решением уравнения 3x — 2 = 0 является величина 2/3. Множество, которое включало в себя дроби, назвали множеством рациональных чисел.
С увеличением показателя степени многочлена все усложняется, и такое простое уравнение, как х²-2 = 0, привело греков к великому открытию, поскольку решение нельзя было выразить в виде дроби. Действительно, методом от противного было найдено аналитическое доказательство того, что sqrt(2) не является рациональным числом.
Находчивые древнегреческие математики предложили доказательство нерациональности sqrt(2), пользуясь методом от противного, который состоит в том, чтобы предположить противоположное тому, что мы хотим доказать, и прийти к логическому противоречию. Предположим, что sqrt(2) рационально, то есть его можно выразить с помощью некоторой дроби p/q. Теперь предположим, что дробь невозможно сократить, то есть что р и q — взаимно простые. Иначе было бы достаточноразделить оба элемента дроби на наибольший общий делитель. Так как sqrt(2) = p/q, получается, что, если возвести в квадрат оба члена, то 2 = p²/q², значит, 2q² = p², то есть р² — это четное число, и, следовательно, таким же является р. Так как р — четное число, то существует натуральное число k, такое, что р = 2k. Если подставить новое значение р в наше уравнение, получится, что 2q² = 4k². Это предполагает, что q² = 2k², то есть q -— также четное. Но это означает, что нашу исходную дробь можно сократить, а это противоречит условиям, следовательно, предположение, что sqrt(2) — рациональное число, ложно.
Столкнувшись с невозможностью выразить такие числа, как sqrt(2), в виде дроби, математики назвали их иррациональными. Несмотря на сложности, связанные с их точной записью, иррациональные числа имеют реальное значение, поскольку их можно представить как точки на числовой прямой. Число sqrt(2) находится между 1,4 и 1,5, и если построить прямоугольный треугольник, катеты которого будут равны 1, мы знаем, что его гипотенуза равна sqrt(2) по теореме Пифагора. Множество чисел, в которое включались бы и рациональные, и иррациональные числа, назвали действительными числами, и они представлены на числовой прямой.
Проблема поиска корней многочлена усложнялась, когда речь шла о том, чтобы найти решения таких с виду простых уравнений, как х² + 1 = 0. Казалось очевидным, что ни одно число, возведенное в квадрат, не может дать в результате отрицательное число, каким бы ни было исходное число, положительным или отрицательным. Итак, пришлось создать новый тип чисел, которые позволили бы решить уравнения этого типа. Новое число, sqrt(-1), было названо мнимым числом и обозначено как г. Создание, казалось бы, из ничего, решения для этого уравнения кажется обманом: почему бы не признать, что у уравнения просто нет решения? Но ответ в том, что найденное решение вызвало большой прогресс арифметики и при этом оно не содержит логических противоречий. Самолеты никогда не поднялись бы в воздух, если бы инженеры не пользовались мнимыми числами. Итак, если мы будем использовать новое обозначение и решим уравнение х² +1=0 как квадратный многочлен вида aх² + bх + с = 0, с помощью известной формулы
что приводит к корням i и -i, то получается, что x² + 1 = (x + r) · (x - r), в соответствии с основной теоремой алгебры.
Первым, кто активно пользовался мнимыми числами, также называемыми комплексными, был итальянский математик Джироламо Кардано (1501-1576), который применил их в формуле решения кубических уравнений, но термин «комплексные числа» был введен Гауссом при доказательстве основной теоремы алгебры в своей докторской диссертации.
Числовая прямая сформирована из рациональных чисел, представимых в виде дробей, и иррациональных, для которых такое представление невозможно. Но как распределяются оба множества на прямой? Есть ли какое-то сбалансированное распределение, которое делает возможным соседство подмножеств на числовой прямой? Чтобы ответить на этот вопрос, сделаем несколько выводов, которые могут вас удивить. Если взять два любых числа множества рациональных чисел, которое обычно обозначают Q, всегда можно найди другое рациональное число, заключенное между ними. Это достаточно очевидно. Если q1, q2, то
а это число находится между двумя предыдущими по построению. Также существует рациональное число, которое находилось бы между только что вычисленным и каким-либо предыдущим, и этот процесс можно повторять бесконечно. Итак, между двумя любыми рациональными числами существует бесконечное количество рациональных чисел независимо оттого, как близко друг от друга располагаются исходные числа. Это приводит к мысли о том, что рациональные числа находятся так близко друг от друга, как мы этого захотим. Из-за этого свойства математики говорят, что Q является плотным множеством среди действительных чисел. То есть если х — действительное число и оно является центром отрезка числовой прямой, этот отрезок обязательно содержит рациональные числа, каким бы маленьким он ни был. Остаются ли на числовой прямой промежутки для иррациональных чисел? Ответ удивляет: множество рациональных чисел имеет нулевой размер. Это означает, что если мы выберем наугад точку на числовой прямой, то вероятность того, что эта точка будет рациональным числом, равна нулю. Математики оставляют нулевую вероятность только для невозможных случаев. Удивительно, что в школьной программе так много времени посвящено овладению арифметикой множества, исчезающе малого на числовой прямой.
Кроме того, именно Гаусс увидел самые широкие возможности для применения комплексных чисел в будущем. Также Гаусс ответил и на другой вопрос: понадобится ли математикам создавать новые числа для каждого нового уравнения? Если бы мы захотели решить такое уравнение, как х4 + 1 = 0, нужно ли искать новые числа? Гаусс доказал, что в этом нет необходимости: пользуясь числом i, математики могут решить любое полиномиальное уравнение. Его решением будет сочетание обычного действительного числа и нового числа i. Гаусс открыл, что мнимые числа — это просто добавление нового измерения к обычной числовой прямой, поэтому каждое мнимое число соответствует точке на плоскости — так же, как действительное число соответствует точке на прямой. Кроме того, ученый создал новый способ представления чисел с помощью координатной оси, как показано на рисунке.
Так, мнимое число z имело бы вид а + bi, как точка с координатами (a, b) на плоскости, что показано на рисунке. Ось R используется для действительной части, а ось I — для мнимой. Кроме того, Гаусс снабдил комплексные числа арифметикой, которая позволила бы проводить с ними все виды операций.
Несмотря на то что речь шла об очень эффективном представлении, Гаусс держал в секрете эту карту мира мнимых чисел. Как только доказательство было обнаружено, ученый убрал графические «леса», так что от них не осталось и следа. При этом он осознавал, что математики часто смотрят на графики с некоторым подозрением, отдавая предпочтение языку формул и уравнений, поскольку в то время существовало мнение, что графики могут быть ошибочными. Гаусс знал, что графическое представление мнимых чисел вызовет недоверие, поэтому исключил его из доказательства, которое сразу же стало довольно непонятным для современников. Непонятным настолько, что в некоторых книгах по истории науки говорится, что первое доказательство теоремы, предложенное математиком, было ошибочным, хотя вернее было бы сказать — неполным. И пробел находится в том варианте доказательства, которое было опубликовано, а не в том, которое Гаусс вывел для себя.
Комплексные числа имеют алгебраическую структуру поля с операциями суммы и произведения. Сначала дадим им определения и покажем, что это внутренние операции, то есть что мы получаем комплексные числа, когда оперируем ими.
— Сумма:
(a + bi) + {c + di) = a + c + (b + d) i.
— Произведение:
(a + bi) · (c + di) = ac + adi + bci + bdi² = ac-bd + (be + + ad) i.
При таком определении операций у чисел есть необходимые свойства для того, чтобы иметь алгебраическую структуру поля:
— ассоциативность обеих операций;
— коммутативность обеих операций;
— существование нейтрального элемента (0 для суммы и 1 для произведения);
— существование результата, противоположного сумме, и результата, обратного произведению;
— дистрибутивность.
Доказательство этих свойств следует непосредственно из определений. Наличие структуры поля позволяет работать с комплексными числами, используя все возможности, которые предоставляет алгебра.
Эйлер (1707-1783) — швейцарский математик и физик. Речь идет о главном математике XVIII века и одном из самых великих математиков всех времен. Эйлер долгие годы жил в России, где был почетным гостем Екатерины I и ее придворных (в то время в России существовала традиция приглашать наиболее крупных ученых в Академию наук). Эйлер осуществил важные открытия в таких областях, как вычисления, или теория графов (графы — это математическая модель множества узлов и их соединений с помощью ребер, ориентированных либо нет; они имеют широкое применение для представления сети дорог или планов городов). Эйлер также ввел значительную часть современной терминологии и математических обозначений, например понятие математической функции. Он определил число е, одну из самых используемых констант, породившую натуральные логарифмы. Также Эйлер известен своими работами в области механики, оптики и астрономии. Он входит в число наиболее плодовитых ученых: полное собрание его сочинений могло бы занять от 60 до 80 томов. И действительно, даже через 50 лет после смерти математика Петербургская академия наук все еще публиковала статьи Эйлера, хранящиеся в ее архивах. Лаплас, говоря о влиянии ученого на последующих математиков, заметил: «Читайте Эйлера, читайте Эйлера, он учитель всех нас».
В ту эпоху превалировала мысль о том, что числа -- это объекты, которые можно складывать и умножать, но не изображать. И потребовалось 50 лет для того, чтобы Гаусс решился открыть коллегам графические леса, которыми он воспользовался в диссертации. Эта теорема так захватила Гаусса, что он нашел еще три ее доказательства. Второе возникло через год после защиты, и оно дополняло некоторые пропуски первоначального варианта. Третье доказательство, выдвинутое в 1815 году, было основано на идеях Эйлера, в нем не применяются геометрические положения, и это первая серьезная попытка чисто алгебраического доказательства с открытым использованием комплексных чисел. Тут же Гаусс критикует попытки других математиков, основанные на аналитических методах. Последнее доказательство было получено в 1849 году, в связи с 50-летием докторской диссертации. Оно очень похоже на первое, но в этот раз Гаусс приводит все геометрические рассуждения. Чтобы понять важность диссертации Гаусса, достаточно отметить, что доказательство теоремы повергло в прах Эйлера, Лагранжа и Лапласа — трех величайших математиков в истории.
На основе работ Гаусса можно было подступиться к поиску корней многочлена любой степени. Для уравнений до пятой степени (n = 5) были найдены формулы нахождения корней с помощью коэффициентов самого многочлена, что называется решением в радикалах. Формулы были того же типа, что мы использовали для решения уравнений второй степени, однако для уравнений пятой степени их никак не могли найти. Решение нашлось у очень молодого французского математика Эвариста Галуа (1811-1832), который погиб в результате дуэли, едва ему исполнился 21 год. Галуа доказал, что невозможно решить уравнения пятой степени с помощью коэффициентов самого многочлена, и нашел альтернативные методы нахождения корней, пользуясь результатами Гаусса.
Галуа представил свои математические результаты, известные как теория Галуа, в Парижскую академию наук в 1830 году, чтобы получить премию по математике. Эта работа так и не была оценена, поскольку попала в руки Огюстена Луи Коши (1789-1857); тот признал себя недостаточно компетентным для ее разбора и передал заметки Жозефу Фурье (1768— 1830), который, как секретарь академии, должен был найти нового специалиста для анализа. Смерть Фурье оставила эти поиски незавершенными, статья Галуа затерялась и так и не была опубликована. Однако за ночь до дуэли Галуа, который понимал, что его шансы выжить в поединке невысоки, и в то же время осознавал важность своих открытий, торопливым почерком написал заметки, в которых обобщалось то, что известно как теория Галуа о решении уравнений. Именно это его письменное завещание вошло в историю и позволило последующим математикам восстановить результаты молодого гения. Известно, что в том году премию академии получили Нильс Хенрик Абель (1802-1829) и Карл Густав Якоб Якоби (1804-1851), двое из самых талантливых математиков своего времени. Однако вопрос, одержали бы они победу, если бы исходная работа Галуа не потерялась, так и останется без ответа. Можно лишь утверждать, что открытия молодого Галуа в математике можно сравнить лишь с открытиями самого Гаусса.
Гаусс начал свои исследования по теории чисел во время пребывания в Коллегии Карла в 1795 году, но к работе над своим основным трудом, Disquisitiones arithmeticae («Арифметические исследования»), он приступил во время пребывания в Гёттингенском университете с 1795 по 1798 год. Мы это знаем благодаря его научному дневнику, в котором уже в 1796 году появляются два блестящих результата: разложение любого целого числа на три треугольных и построение правильного 17-угольника, о которых мы уже говорили в главе 1. Они оба включены в «Исследования», увидевшие свет в Лейпциге летом 1801 года, через три года после возвращения Гаусса в его родной город Брауншвейг. Ученый снова отложил публикацию своих результатов до тех пор, пока не смог сделать этого в формате книги.
В «Исследованиях» Гаусс придал новое направление теории чисел, которая перестала быть набором разрозненных результатов и превратилась в такую же важную математическую дисциплину, как анализ или геометрия.
Работа разделена на семь глав, или разделов. Первые три раздела вводные, разделы с IV по VI образуют центральную часть работы, а раздел VII — это маленькая монография, посвященная отдельной теме, но связанная с остальными главами.
Молодому Гауссу повезло, что он мог рассчитывать на материальную помощь герцога Брауншвейгского (сверху), который оплачивал его образование и покровительствовал ученому до своей смерти в 1806 году. Благодаря влиянию герцога Гаусс в 1791 году поступил в Коллегию Карла (внизу), где начал работу над некоторыми своими важнейшими математическими результатами, отраженными в «Арифметических исследованиях», обложка которых представлена на среднем фото.
В разделе I, состоящем всего из пяти страниц, вводятся элементарные понятия, такие как признаки делимости на 3, 9 и 11. Кроме того, Гаусс дает определение сравнения по модулю; это понятие будет раскрыто в разделе II: если заданы целые числа а и b и их разница (а - b или b - а) делится без остатка на число m, мы говорим, что a, b сравнимы по модулю m, и это записывается следующим образом: a = b (mod m). Так, 56 = 6 (mod 5) или 47 = 14 (mod 11).
Сравнения по модулю — очень важное открытие в математике, они помогают выполнять вычисления любого типа. Их идея близка к тому, как работают с обычным циферблатом часов, поэтому сравнения также называют вычислителями часов. Если обычные часы со стрелками показывают 9, и проходит 4 часа, стрелки будут показывать 1. То есть 13=1 (mod 12). Такое вычисление, как 7² = 7 · 7, в итоге дает 1 по модулю 12, поскольку 49, разделенное на 12, в остатке дает 1. Результат сравнения по модулю — это всегда остаток от деления числа на определенный модуль.
Значимость этой системы проявляется, когда речь идет о более сложных вычислениях. Если нужно вычислить 7³ = 7 · 7 · 7, вместо того, чтобы умножать 49 на 7, Гаусс мог ограничиться тем, чтобы умножить 7 на результат последнего сравнения по модулю, то есть 1, произведение будет равно, без сомнения, 7. Так, Гаусс знал, что произведение — это число, которое при делении на 12 в остатке дает 7. Этот метод может быть применен на больших числах, которые превышают возможность вычисления. Не имея ни малейшего понятия о значении 799, с помощью сравнений по модулю ученый знал, что если разделить это число на 12, в остатке получится 7. Исследования Гаусса в этой области арифметики были революционными для математики начала XIX века и позволили ученым обнаруживать структуры, до этого скрытые. Сегодня арифметика сравнений по модулю, также называемая модульной арифметикой, является фундаментальной для безопасности в интернете, где сравнения используются для величин, превышающих количество атомов во Вселенной.
Также преимущество этой записи состоит в том, что она напоминает форму, в которой мы записываем алгебраические выражения. Вместо арифметической делимости, описание которой может быть громоздким, она дает краткую запись, благодаря которой можно складывать, вычитать и умножать сравнения, если их модуль одинаков, а также решать уравнения вида: ах + b == c (mod m).
В заключении к двум первым разделам Гаусс применил эти методы к историческим проблемам, таким как вычисление знаменитой функции φ Эйлера. Функция φ(N) определяется как количество целых положительных чисел, меньших или равных N и взаимно простых с Ν. В математике два числа называются взаимно простыми, если у них нет общих делителей, то есть их наибольший общий делитель — 1. Например, 9 = З² является взаимно простым с 10 = 5 · 2, и его нужно было бы найти при вычислении φ( 10). Множество φ( 10) состоит, следовательно, из четырех элементов (1, 3, 7 и 9), и значит, φ( 10) = 4.
Гаусс вывел общую формулу для вычисления φ(Ν). Если мы разложим N на простые множители ρ1,ρ2, ...,рn, то получим N = р1m1, p2m2 · ... · pnmn, где pi простые числа, a mi — кратность их повторения. Формула имеет вид:
Если применить формулу к N= 10, то
чего и следовало ожидать.
Формула зависит от простых чисел, на которые раскладывается N, а не от кратности их повторения. В случае с N = 180 получается, что 180 = 2² · З² · 5, следовательно,
Раздел заканчивается доказательством основной теоремы о многочленных сравнениях. Так, сравнение степени m,
amxm + am-1xm-1 + ··· +а1x + b == 0 (mod р),
модуль которой р — простое число, не являющееся делителем аm, может быть решена не более чем m различными способами или не может иметь больше m корней, не сравнимых по модулю р.
В разделе III, озаглавленном De residuis Potestatum («О степенных вычетах»), говорится о квадратичных вычетах и вычетах большей степени. Если заданы целые числа тип, где m не является делителем n, и если существует такое число x, что х² = m (mod n), говорят, что m — квадратичный вычет по модулю n; в противном случае говорят, что m — квадратичный невычет по модулю n. Например: 13 — квадратичный вычет по модулю 17, поскольку уравнение х² == 13 (mod 17) имеет в качестве решений х = 8, 25, 42, поскольку 8² = 64, что при делении на 17 дает 13 в остатке, 25² = 625, что при делении на 17 вновь дает 13 в остатке, и то же самое происходит с 42² = 1764.
В разделе доказывается малая теорема Ферма: np-1 == 1 (mod p), где р — простое число, не являющееся делителем n. То есть если р — простое число, которое не является делителем n, то np-1 всегда делится на р. Для случая n = 8 np = 5 получается, что 84-1 = 4095, а это делится на 5. Для получения этого результата Гаусс воспользовался формулой бинома Ньютона, сформулированной для сравнений. Следствием является теорема Вильсона, в которой говорится, что если задано простое число р, то
1·2·3·...·(p-1) = (p-1)! == -1 (mod p).
Произведение всех чисел, меньших заданного простого, при добавлении единицы всегда делится на это число. Если, например, мы выберем 7, то 6! = 720, а 721 делится на 7.
Три первых раздела представляют собой системное введение в теорию чисел и готовят почву для разделов IV и V.
Главный итог раздела IV — это знаменитый квадратичный закон взаимности. Теорема (в виде гипотезы) была сформулирована Эйлером в 1742 году в его письме Гольдбаху. Полвека спустя, в 1798 году, Лежандр опубликовал доказательство, основанное на недоказанных аргументах, так что первое правильное доказательство теоремы принадлежало Гауссу, который называл ее золотой теоремой. В книге Гаусса она сформулирована в следующем виде:
Если р — простое число вида 4n + 1, то +p — вычет (или невычет) по модулю любого простого числа, которое, взятое в положительной форме, является вычетом (или невычетом) по модулю p. Если р имеет вид 4n + 3, то -р обладает тем же свойством.
Скобки в теореме указывают на то, что результат может быть прочитан при исключении содержимого скобок или при включении их при замене непосредственно предшествующего выражения. Проще говоря, существует взаимность между парой сравнений х² == q (mod р) и х² == р (mod q), где р и q — простые числа. То есть если мы можем проверить первое сравнение (х² == q (mod p)), то автоматически проверяется и второе (х² == р (mod q)); и если первое неверно, то неверно и второе. Есть одно исключение, которое состоит в том, что как p, так и q в остатке дают 3, когда делятся на 4; в этом случае одно и только одно из сравнений верно.
Доказательство Гаусса начинается с эвристических соображений, результатом чего является закон для определенных простых чисел. Затем ученый переходит, по индукции, к доказательству общего случая. Это доказательство очень обширное, в нем отдельно рассматриваются восемь различных случаев. Петер Густав Дирихле, который был учеником немецкого математика и одним из главных читателей его книги, упростил доказательство, сократив число случаев до двух. Гаусс заканчивает раздел другими результатами, выводимыми из его теоремы. Только за это доказательство он достоин звания одного из самых талантливых математиков своего времени, но в этой работе будут и другие, не менее важные идеи.
Раздел V — центральная часть книги. Он посвящен выражениям типа F = ах² + 2bху + су², где а,b,с — целые числа; эти выражения были названы Эйлером квадратичными формами. Существенная часть этого раздела не является оригинальной — в ней собраны и унифицированы результаты Лагранжа по этой теме.
Проблема, которую решает Гаусс, — это определение того, какие целые числа М могут быть представлены в виде выражения ах² + 2 bху + су² = М, где x и y — целые числа. Обратная, и более интересная, проблема, которую он также решил, заключается в том, чтобы при заданных М и а, b и с найти значения x и y, которые определяют значение М в квадратичной форме. Для этого Гауссу потребовалось классифицировать квадратичные формы и подойти к ним дифференцированно. С этой целью он использовал два базовых алгебраических свойства квадратичной формы. Гаусс установил классификацию квадратичных форм и их свойств на основе дискриминантов.
В этот раздел также включено доказательство теоремы, относящейся к треугольным числам, о которой мы уже говорили.
В разделе VI представлены многочисленные примеры применения понятий, разработанных в предыдущем разделе. Основные затрагиваемые вопросы — это разложение на простые дроби; то есть разложение дроби на сумму дробей со знаменателями, образованными от знаменателя исходной дроби. Эта техника имеет широкое применение в интегралах рациональных функций, то есть тех, которые могут быть представлены в виде частного многочленов. Также речь идет о периодических десятичных дробях и решении сравнений собственными методами Гаусса. Другая интересная тема — это поиск критериев, которые позволили бы выделять простые числа без трудоемких вычислений. Как мы увидим, изучение простых чисел сопровождало ученого всю его жизнь, но мы рассмотрим это отдельно.
В алгебре дискриминант многочлена — это некое выражение из коэффициентов данного многочлена, которое равно нулю тогда и только тогда, когда у многочлена множественные корни. Например, дискриминант квадратного многочлена ах² + bх + с равен b²-4ac, поскольку формула корня данного многочлена следующая:
то есть достаточно, чтобы дискриминант в том виде, в каком мы его определили, был равен нулю, чтобы получить единое двойное решение. В случае с многочленом х²-4х + 4, поскольку у него нулевой дискриминант, мы получаем один двойной корень (2), так что, применив основную теорему алгебры, получаем х²-4х + 4 = (х - 2)².
Раздел VII — самая известная часть «Исследований», оказавшая огромное влияние на развитие науки. В этом разделе шла речь о делении круга с помощью линейки и циркуля — классической теме математики. Очевидно, что эта задача связана с построением правильных многоугольников, так что Гаусс включил сюда свое знаменитое построение многоугольника с 17 сторонами, найдя достаточное условие для построения правильного многоугольника с помощью линейки и циркуля.
В мире математики все признают, что «Арифметические исследования» — это не просто сборник замечаний о числах. Работа знаменует собой рождение теории чисел как независимой дисциплины. Ее публикация сделала теорию чисел царицей математики — это определение очень нравилось Гауссу. И все же, несмотря на это, труд был не слишком тепло принят Парижской академией наук, которая сочла его темным и неясным. Одна из причин такого впечатления состоит в том, что Гаусс старался сохранять тайну, исключая или скрывая пути, которые привели его к открытиям. Как и следовало ожидать, математики не до конца поняли новую работу и назвали труд «книгой за семью печатями». Ее сложно читать даже специалистам, но содержащиеся в ней сокровища, включая скрытые в лаконичных синтетических доказательствах, сегодня доступны каждому, кто захочет восхититься ими, в основном благодаря работам Дирихле, который первым разбил эти семь печатей.
Рассказывают, что Дирихле использовал книгу Гаусса как подушку, чтобы ночью некоторые знания перетекли в его голову.
Лагранж также безоговорочно хвалил книгу. В своем письме Гауссу от 31 мая 1804 года он признается:
«Ваши «Исследования» быстро возвели Вас до уровня первых математиков, и я считаю, что последний раздел содержит самое красивое аналитическое открытие, которое только было сделано за последнее время [...]. Я думаю, что никто более искренне не аплодирует Вашим достижениям, чем я».
Если вспомнить, что все изложенные в книге результаты были получены Гауссом в возрасте до 30 лет, остается только удивляться его таланту. Очень вероятно, что именно в память о Гауссе Филдсовская премия — важнейшая награда, которую может получить математик, — вручается только ученым до 40 лет. В отличие от Нобелевской премии, которая обычно вручается ученым, приближающимся к концу карьеры, медали Филдса оставлены для молодых.
В конце 1798 года ученый вернулся в Брауншвейг, где жил до 1807 года. Очевидно, что этот период был критическим для его карьеры. Сначала Гаусс, закончив обучение в Гёттингенском университете, боялся потерять расположение герцога, но в январе 1799 года математик рассказывал Вольфгангу Бойяи, что герцог продолжает выплачивать стипендию, и это позволяет ему жить, посвящая себя исследованиям. Очевидно, что в это время Гаусс был вполне удовлетворен своим математическим прогрессом и с избытком оправдывал ожидания, возложенные на него: он не только блестяще завершил обучение в Гёттингенском университете, но и решил проблему построения правильного многоугольника с 17 сторонами. Во время этого второго периода в Брауншвейге можно заметить расширение научных интересов Гаусса; он впервые посвятил себя вопросам математики, специфически применимым к теоретической и практической астрономии.
Дирихле (1805-1859) — немецкий математик XIX века. Он получил образование в Германии, а затем во Франции, где учился у многих самых известных математиков своего времени, таких как Фурье. После выпуска работал преподавателем в университетах Бреслау (1826-1828),
Берлина (1828-1855) и Гёттингена, где получил кафедру, оставленную Гауссом после его смерти. Многие свои работы Дирихле посвятил тому, чтобы дополнить труд Гаусса, приводя полные доказательства его результатов, чтобы они стали более доступными будущим поколениям математиков. Его самый значительный вклад сделан в теорию чисел, где он уделил особое внимание изучению рядов и развил теорию рядов Фурье. Первая публикация ученого включала в себя частичное доказательство теоремы Ферма для случая n = 5, которое также нашел Адриен Мари Лежандр, один из рецензентов. Дирихле нашел свое доказательство почти одновременно с Лежандром, а потом успешно продолжил его для п = 14. Математик применил аналитические функции к вычислению арифметических задач и установил критерии сходимости рядов. В области математического анализа он усовершенствовал определение и понятие функции. Дирихле приписывают современное понимание функции в математике.
Его личная жизнь в это время также изменилась, поскольку здесь Гаусс начал ухаживать за Иоганной Осггоф, на которой и женился в 1805 году. Дочь кожевника, Иоганна была на три года младше Гаусса, ее семья хорошо знала мать математика, которая работала на семью Остгофов. В детстве Карл Фридрих сам часто бывал в доме родственников своей будущей жены и после возвращения в Брауншвейг возобновил общение с ними. Так он познакомился с Иоганной.
Филдсовская премия — это высший знак отличия, который может получить математик. Она вручается Международным математическим союзом раз в четыре года и по значимости сопоставима с Нобелевской премией. Дело в том, что Нобелевской премии по математике не существует. Альфред Нобель исключил эту дисциплину из списка наук, за которые присуждается премия его имени. И хотя Нобелевский фонд имеет полномочия включать в список новые области (например, существует Нобелевская премия по экономике, учрежденная в 1969 году), он не может учредить премию по математике. Возможно, воля Нобеля связана с тем, что он не считал математику прикладной наукой. Однако существуют и другие объяснения: якобы это связано с обидой, которую учредитель премий испытывал к математическому сообществу, поскольку его супруга изменила ему со шведским математиком Густавом Миттаг-Леффлером (1846-1927). Эта версия очень распространена, но вряд ли она имеет под собой реальные основания, прежде всего потому, что Нобель никогда не был женат. Первая медаль Филдса была вручена в 1936 году, но из-за начала Второй мировой войны следующее награждение состоялось только в 1950 году. Официальное название премии — Международная медаль за выдающиеся открытия в математике (хотя она намного более известна как медаль Филдса). Награда названа так в честь математика Джона Чарльза Филдса (1863- 1932), который развил эту идею.
Главная особенность этой награды — требование, чтобы лауреат-математик был не старше 40 лет. Вручение происходит раз в четыре года. К медали прилагается денежная премия в размере около 10 тысяч евро, и это очень далеко от сумм Нобелевской премии. Лауреатов математической награды может быть до четырех, но так бывает очень редко. Медаль изготовлена из золота, ее эскиз был разработан Робертом Маккензи в 1933 году. На аверсе выгравирована голова древнегреческого математика Архимеда и надпись Transire suum pectus mundoque potiri («Превзойти человеческую ограниченность и покорить Вселенную»). На реверсе можно увидеть шар, вписанный в цилиндр, и надпись Congregati ex toto orbe mathematici ob scrita insignia tribuere («Математики, собравшиеся со всего света, вручили эту награду за выдающиеся труды»).
Нам мало что известно о жизни пары, поскольку Гаусс упоминает супругу только в письмах друзьям. Не осталось даже ее портрета, известно лишь, что дочь математика, Минна, была очень похожа на мать. В 1806 году в письме Вольфгангу Бойяи Гаусс описывает свою супругу как умную и нежную женщину, но получившую довольно скудное образование.
У четы Гауссов родилось двое детей: Иосиф и Минна, и ничто не нарушало их идиллию. Однако в конце 1809 года, менее чем через два года после переезда в Гёттинген, где Гаусс занял пост директора обсерватории, Иоганна родила третьего ребенка и через месяц после родов умерла. Мальчик — бедный Луи, как называл его отец, — через несколько месяцев последовал за своей матерью, и безутешный Гаусс погрузился в депрессию. Ученый был довольно счастлив в первом браке; за год до смерти Иоганны он так описывал свою семейную жизнь в письме к Бойяи:
«Дни счастливо бегут однообразным ходом нашей домашней жизни: когда у девочки вылезает новый зуб или мальчик выучивает новые слова, это важнее, чем открытие новой звезды или новой математической истины».
Гаусс был не очень практичным человеком и в положении вдовца столкнулся с рядом бытовых проблем. Так что через несколько месяцев после смерти Луи он заключил брак с Вильгельминой (Минной) Вальдек, дочерью преподавателя права в университете. Минна Вальдек была подругой Иоганны Гаусс, но насколько тесной была эта дружба, неизвестно. Гаусс сделал Минне предложение через некоторое время после того, как она по неизвестным причинам расторгла свой брак. Свадьба состоялась довольно быстро, но семейная жизнь не была безоблачной. Супруги не испытывали друг к другу особой привязанности, и этот союз скорее был продиктован желанием Гаусса забыть о смерти Иоганны и подыскать для детей новую мать. Этот скоропалительный второй брак не очень нравился самому математику, который чувствовал себя неловко. Дошедшие до нас письма, которыми обменивались супруги, довольно холодны и безэмоциональны.
Свою долю сложностей вносило и разное социальное положение супругов: семья невесты не была довольна тем, что Минна, дочь университетского преподавателя, выходит замуж за небогатого Гаусса. В послании, которое ученый пишет своей будущей супруге по поводу поездки в Брауншвейг, чтобы познакомиться с его матерью, он предупреждает Минну:
«И еще одно, причина, но которой я не написал моей матери, в том, что я хотел сделать ей сюрприз, а также потому что моя мать не может прочитать кое-что из того, что я ей пишу, а Вы, я думаю, не хотите, чтобы ей пришлось беспокоить чужих людей».
В августе 1910 года Гаусс стал зятем именитого преподавателя и члена Тайного государственного совета Иоганна Петера Вальдека, и у двоих его детей от первого брака появилась новая мать. В 1811 году у ученого родился сын Ойген, а в 1813-м — Вильгельм. В 1816 году на свет появилась младшая дочь Тереза, которая будет заботиться об отце до самой его смерти.
Благодаря второму браку Гаусс познакомился с Александром фон Гумбольдтом, одним из лидеров возрождения Пруссии после падения Наполеона.
Работая в Гёттингене, ученый получал приглашения из других университетов, в частности из России и Берлина. Однако от предложения поработать в России Гаусс отказался, потому что ему не нравился климат этой страны. Естественно, что на жизнь Гаусса очень повлиял период наполеоновских войн. В 1808 году, после разгрома Наполеоном Пруссии в битвах за Аустерлиц и Йену, французское правительство потребовало от противника огромную денежную компенсацию военных расходов, как это было принято делать после заключения мира. Гаусс также должен был внести 2 тысячи франков, а это было значительной суммой для молодого преподавателя, который еще не получал регулярного жалованья. При этом из-за своей гордости он не обращался ни к кому за помощью, и даже когда Лаплас из Парижа и Ольберс из Бремена предложили внести деньги за него, Гаусс отказался их принимать. В конце концов контрибуция была выплачена анонимно, и лишь через несколько лет стало известно, что за Гаусса заплатил епископ из Франкфурта — туда также дошла слава о великом математике. Уже в старости ученый рассказывал, что Наполеон воздержался от бомбардировки Гёттингена, чтобы не подвергать опасности его жизнь, однако это кажется некоторым преувеличением. Что действительно подтверждено документами, так это ходатайство французского математика Софи Жермен перед Наполеоном, которая просила обеспечить безопасность великого ученого в годы военных потрясений.
В 1810 году, всего через два года, Гаусс получил награду Парижской академии наук, однако он отказался от прилагавшейся денежной премии, в том числе и потому, что испытывал неприязнь к французам, которые к тому времени покорили его родину и уже несколько лет вели войну. Впрочем, ученый принял астрономические часы, выбраные для него Софи Жермен, с которой он поддерживал переписку. В XIX веке женщины крайне редко посвящали себя математике. Из опасений столкнуться с предубежденным отношением Софи Жермен также вела переписку с Гауссом под мужским именем. Эта женщина открыла отдельный тип простых чисел, связанных с последней теоремой Ферма (на то время еще гипотезой), которые сегодня носят название простых чисел Жермен. Гаусс был очень впечатлен письмами, которые он получал от некоего месье Ле Блана, и крайне удивился, когда после долгой переписки узнал, что на самом деле это не месье, а мадемуазель. Ученый не только не выказал никакого предубеждения, но наоборот, оценил заслуги Жермен и написал ей:
«Редок вкус к загадкам чисел. Привлекательность этой возвышенной науки открывается во всей красоте только тем, кто имеет смелость углубиться в нее. Женщина из-за своего пола и наших предрассудков встречается со значительно более трудными препятствиями, чем мужчина, постигая сложные научные проблемы. Но когда она преодолевает эти барьеры и проникает в тайны мироздания, она несомненно проявляет благородную смелость, исключительный талант и высшую гениальность».
Математик даже пытался убедить Гёттингенский университет сделать Софи почетным доктором, но она умерла до того, как ученый достиг своей цели.
Больше всего об уважении к Гауссу со стороны его современников говорит тот факт, что правительство Вестфалии, находясь в руках французских захватчиков, пыталось выполнить свое обещание и построить для исследователя новую обсерваторию. Для этой цели были выделены огромные средства, и к 1814 году, когда королевство Вестфалия перестало существовать, работы находились в самом разгаре — и это несмотря на огромные экономические трудности, связанные с разгромом Пруссии. Гаусс всегда мог получать материал, необходимый ему для исследований. Работая в университете, ученый добился назначения стипендий наиболее талантливым студентам, среди которых были Христиан Людвиг Герлинг (1788-1864) и Август Мёбиус (1790-1868). Первый стал известным физиком, а второй — признанным астрономом и математиком, создателем знаменитой ленты Мёбиуса.
Однако коллеги Гаусса отмечали, что он был не слишком привержен преподавательской деятельности и направлял гораздо большие усилия на исследования. Но такое обобщение неверно. Следует учитывать, что в этот университет многие студенты поступали скорее благодаря родственным связям, чем интеллектуальным заслугам. Большинство из них сами были не слишком заинтересованы в учебе: им не хватало как мотивации, так и элементарных знаний. Гаусс в письме, адресованном в 1810 году своему близкому другу астроному и математику Фридриху Вильгельму Бесселю (1784-1846), утверждал:
Софи Жермен (1776-1831) — женщина-математик из Франции, внесшая значительный вклад в теорию чисел, в частности в изучение чисел, которые позже были названы простыми числами Жермен (простые числа, которые при увеличении вдвое и добавлении единицы также дают простое число), например 11 и 23. Жермен очень интересовалась учебой у Жозефа-Луи Лагранжа и под псевдонимом «месье Ле Блан» (это имя принадлежало одному из бывших студентов Лагранжа) посылала ему некоторые статьи.
Французский математик был под таким впечатлением от этих статей, что попросил у Ле Блана встречи, и Жермен пришлось открыть ему свою личность.
Лагранж смог победить свои предрассудки и признал математический талант Софи, решив стать ее наставником. Ту же стратегию Жермен использовала для переписки с Гауссом. Одно из наибольших ее достижений в теории чисел — математическое доказательство предложений, которые позволяли значительно сузить поле поиска доказательства знаменитой гипотезы Ферма. Некоторые из этих результатов были впервые представлены в письмах Гауссу.
«Этой зимой я читаю два курса лекций трем студентам, из которых один регулярно готов, другой — гораздо менее регулярно, а третьему не хватает подготовки и способностей. Таковы обязанности на кафедре математики».
Едва Гаусс нашел студентов, способных с пользой провести годы обучения, он очень ими заинтересовался. Его корреспонденция полна писем с советами, в которых он дает им подробные объяснения. Что касается неспособных или немотивированных студентов — что правда, то правда: Гаусс действительно проявлял в общении с ними мало терпения. Ученый всегда надеялся, что его ученики смогут работать и думать самостоятельно, так что гораздо важнее не объяснения преподавателей, а их собственные усилия. Однако подобное отношение вступало в конфликт с педагогическими идеями XIX века, и только по этой причине Гаусса часто описывают как плохого преподавателя, обеспокоенного только собственными исследованиями. Но тот факт, что Гаусс был наставником Бернхарда Римана (1826-1866) — возможно, самого известного математика второй половины XIX века, должен снять с него любые обвинения в нерадивом отношении к преподавательским обязанностям.