7. Квантовые гены

Самое холодное место на Земле располагается не на Южном полюсе, как вы могли бы подумать, а в центре восточной части Антарктического ледяного щита, примерно в 1300 километрах от полюса. Здесь зимние температуры обычно падают на несколько десятков градусов ниже нуля по шкале Цельсия. Самая низкая температура на Земле, –89,2 °C[115], была зарегистрирована 21 июля 1983 года в Восточной Антарктиде. Это место получило название «Южный полюс холода». При таких низких температурах крошится сталь, а дизельное топливо замерзает так, что его можно резать цепной пилой.

При таких морозах в воздухе практически не остается влажности. Кроме того, здесь, на оледенелых равнинах, постоянно дуют сильные ветры, что превращает Восточную Антарктиду в самое суровое место на нашей планете.

Но эти места не всегда были такими враждебными. Суша Антарктического материка была частью древнего суперконтинента Гондваны и располагалась в районе экватора. Эта часть Гондваны была покрыта обильной растительностью, среди которой преобладали семенные папоротники, гинкговые деревья и саговники. В этих зарослях паслись динозавры и травоядные рептилии, например листрозавры, напоминавшие носорогов. Однако около 80 миллионов лет назад огромный материк стал распадаться на части и один из фрагментов постепенно отдалялся на юг, со временем достигнув Южного полюса. Так образовалась Антарктида. Около 65 миллионов лет назад на Землю упал астероид. В результате падения небесного тела все динозавры и гигантские рептилии вымерли, освободив экологическое пространство для теплокровных млекопитающих. Несмотря на значительную удаленность Антарктиды от места удара, ее фауна и флора подверглись серьезным изменениям: папоротники и саговники уступили место лиственным лесам, которые населяли вымершие виды сумчатых, рептилий и птиц, в том числе гигантские пингвины. Реки с быстрым течением и глубокие озера, кишащие костными рыбами и членистоногими, разливались по долинам материка.

Постепенно уровень парниковых газов в атмосфере снижался, что привело к падению средней температуры воздуха в Антарктиде. Циркулирующие вокруг материка океанические течения также становились холоднее, и около 34 миллионов лет назад поверхность рек и озер южного материка стала замерзать зимой. Примерно 15 лет назад зимний лед покрывал континент круглый год, надежно спрятав реки и озера под свой плотный покров. Постепенно планета продолжала охлаждаться, и на Антарктиду надвинулись массивные ледники, уничтожив ее обитателей — млекопитающих, рептилий и земноводных — и похоронив землю, озера и реки под гигантскими слоями льда шириной несколько километров. С тех пор Антарктида находится в ледяном и морозном плену.

Первым человеком, ступившим на континентальную Антарктиду, стал американский охотник на тюленей капитан Джон Дейвис. Это случилось в XIX веке, а в XX веке на замерзшем материке появились первые постоянные поселения: сразу несколько стран заявили о своих территориальных правах на материк и стали строить здесь исследовательские станции. Первая советская антарктическая станция «Мирный» была открыта на побережье 13 февраля 1956 года. Именно отсюда два года спустя участники экспедиции отправились в глубь материка с целью основать станцию вблизи геомагнитного полюса. Полярников преследовали снежные бури, они увязали в рыхлом снегу, переносили лютый мороз (–55 °C) и нехватку кислорода. Наконец 16 декабря 1957 года, в разгар южнополушарного лета, они достигли геомагнитного полюса и основали станцию «Восток».

С тех пор на научно-исследовательской станции «Восток» практически непрерывно работают ученые. В команду исследователей в разное время входили от 20 до 25 ученых и инженеров, производящих геомагнитные и атмосферные измерения. Одна из основных научных задач команды «Востока» — изучение по ледяному покрову под станцией изменений климата в прошлом. В 1970-е инженеры-полярники пробурили во льду несколько скважин глубиной до 952 метров и достигли слоя льда, относящегося к последнему ледниковому периоду Земли. Возраст этого слоя — десятки тысяч лет. В 1980-х годах на станцию было доставлено новое буровое оборудование, с помощью которого исследователи достигли глубины 2202 метра. К 1996 году инженерам-полярникам удалось пробурить скважину глубиной 3623 метра и достигнуть слоя возрастом 420 тысяч лет.

Однако вскоре бурение было приостановлено. Под дном скважины было обнаружено нечто странное. К слову, еще в 1974 году, за 20 лет до находки, стало известно, что глубоко под станцией «Восток» располагается что-то очень необычное: британские сейсмологи выявили аномальные показатели для области площадью десять тысяч квадратных километров под слоем льда примерно четыре километра шириной. Российский географ Андрей Петрович Капица предположил, что радиолокационная аномалия свидетельствует о существовании огромного подледного озера, находящегося в изоляции от биосферы Земли и не замерзшего благодаря огромному давлению льда и теплым геотермальным источникам. Гипотеза Капицы подтвердилась в 1996 году, когда были получены снимки со спутника: подводное озеро глубиной до 500 метров (от поверхности воды до дна), площадью, равной примерно площади озера Онтарио, действительно существовало. Команда ученых назвала этот подледный водоем озером Восток.

После обнаружения подо льдом древнего озера буровые работы на станции «Восток» приобрели новое значение: скважина, становясь все глубже, приближалась к уникальной биологической среде. Озеро Восток было изолировано от поверхности и биосферы Земли сотни тысяч (если не миллионов) лет[116] — настоящий затерянный мир. Что произошло с животными, растениями, водорослями и микробами, населявшими озеро, пока оно не попало в ледниковый плен, обрекая живые организмы на абсолютный мрак и холод? Вымерла ли жизнь в озере, или каким-нибудь существам удалось выжить и приспособиться к условиям жизни под слоем льда шириной несколько километров? Если в озере сохранилась жизнь, то это должны быть очень стойкие организмы, столкнувшиеся с экстремальными, суровыми условиями: ужасный холод, кромешный мрак, давление на воду ледяной глыбы, более чем в 300 раз превышающее давление, которое испытывает поверхность любого другого земного озера. И все же известны удивительно разнообразные формы жизни, которые чудом приспосабливаются к другим экстремальным условиям, например на раскаленных краях вулканических кратеров, в кислотных озерах, даже в темных подводных туннелях на глубине несколько тысяч метров. Возможно, в озере Восток также сохранилась уникальная экосистема экстремофилов[117].

Открытие озера под толстым слоем льда приобрело еще большее значение благодаря другому открытию, совершенному в 1980 году. За полмиллиарда миль от Земли космический аппарат «Вояджер-2» сфотографировал поверхность Европы, спутника Юпитера. Снимки позволили ученым выдвинуть правдоподобную гипотезу о существовании под ледяной поверхностью Европы жидкого океана. Если жизнь могла сохраниться на протяжении сотен тысяч лет в воде под километрами антарктического льда, возможно, и на Европе в океане, накрытом льдом, существуют некие формы жизни. Поиски живых организмов в озере Восток стали репетицией еще более захватывающих поисков внеземных форм жизни.

Бурение было приостановлено в 1996 году, когда до поверхности озера оставалось около 100 метров льда: нельзя было допустить контакта древней подледной воды с пропитанной керосином буровой головкой, на которой могли находиться микроорганизмы и вещества с поверхности Земли. Тем не менее был изучен состав озерного льда, взятого из других скважин. Термальные источники влияют на озеро таким образом, что его вода под покровом ледника то замерзает, то оттаивает. Этот процесс продолжается с тех пор, как озеро навсегда покрылось льдом, так что самый нижний слой льда — это не ледниковый лед, а замерзшая озерная вода, или аккреционный лед. Слой аккреционного льда над водой озера Восток достигает нескольких десятков метров. Несколько скважин, пробуренных ранее, достигли глубины, на которой залегал аккреционный лед, и в 2013 году впервые были опубликованы результаты подробного исследования образцов замерзшей воды озера Восток[118]. Основной вывод статьи заключался в следующем: скрытое подо льдом озеро является средой обитания сложной системы организмов — как одноклеточных бактерий, грибов и простейших, так и более сложных животных — моллюсков, червей, анемонов и даже членистоногих. Ученым даже удалось определить особенности метаболизма этих существ, а также их вероятные места и условия обитания.

Однако в данной главе мы хотим подробнее поговорить не об удивительной экосистеме озера Восток, а о том, как любая экосистема может сохраниться в изоляции на протяжении тысяч и даже миллионов лет. Озеро Восток и правда представляет собой модель всей нашей планеты, которая, по сути, оказалась изолированной от внешних воздействий, за исключением солнечных фотонов, на четыре миллиарда лет и все же сохранила богатую и многообразную экосистему, несмотря на угрозы извержений крупных вулканов, столкновений с астероидами и изменений климата. Как же удается жизни — невероятно сложной и многообразной — выносить все испытания, уготованные окружающей средой, и сохраняться на протяжении тысяч и даже миллионов лет?

Ключ к пониманию этой тайны кроется в образце вещества, которое было изучено командой биологов, работающих на станции и озере Восток, — в нескольких микрограммах химического соединения, извлеченного из замерзшей озерной воды. Это вещество играет главную роль в непрерывности и многообразии жизни на нашей планете и состоит из самых необычных молекул, известных во Вселенной. Мы называем это вещество ДНК.

Образцы ДНК, полученные из замерзшей воды озера Восток, исследовали ученые из Университета Боулинг Грин, США. Для расшифровки последовательности из миллионов фрагментов молекул ДНК, извлеченных из воды озера Восток, ученые применили технологию секвенирования, которая ранее использовалась для расшифровки генома человека. Затем они сравнили ДНК из озера Восток с данными из базы, содержащей информацию о последовательности генов в геномах тысяч организмов, обитающих на нашей планете. Было обнаружено, что многие последовательности генов в образцах озера Восток идентичны или почти совпадают с генами бактерий, грибов, членистоногих и других существ, живущих и надо льдом, особенно в холодных озерах и глубоких и темных морских тоннелях, то есть в условиях, вероятно немного приближенных к среде озера Восток. Сходства генов позволили ученым выдвинуть вполне обоснованные предположения о природе и образе жизни существ, оставивших образцы ДНК глубоко подо льдом.

Однако не забывайте, что организмы, обитавшие в озере Восток, попали в ледовый плен на сотни тысяч лет. Сходства последовательностей ДНК этих организмов с последовательностями геномов существ, обитающих на поверхности Земли, объясняются наличием у них общих предков, которые населяли Антарктиду до того, как она превратилась в ледовый континент. Последовательности генов предков, таким образом, копировались организмами, обитающими подо льдом и на поверхности Земли на протяжении жизни тысяч поколений. И все же, несмотря на многочисленные случаи копирования на протяжении сотен тысяч лет, некоторые гены остались неизмененными. Каким-то удивительным образом сложная генетическая информация, которая определяет форму, отличительные признаки и функции организмов, живущих на Земле и в воде подо льдом, надежно, практически без ошибок передавалась из поколения в поколение на протяжении сотен тысяч лет.

Способность генетической информации надежно копировать себя и передаваться из поколения в поколение (эту способность мы и называем наследственностью), безусловно, играет главную роль в сохранении жизни. Гены — особые участки ДНК — кодируют белки и ферменты, которые в процессе метаболизма создают биомолекулы всех возможных живых клеток — от фотосинтетических пигментов растений и бактерий до обонятельных рецепторов животных и загадочных внутренних магнитных компасов птиц, одним словом, отвечают за любой признак живого организма. Многие биологи утверждают, что самокопирование является основной отличительной чертой жизни. Однако живые организмы не могли бы создавать копии самих себя, если бы они не были способны сперва копировать инструкции к самокопированию. Таким образом, жизнь возможна именно благодаря процессу наследственности — высококачественному копированию генетической информации. В главе 2 мы говорили о том, что тайна наследственности (то, каким образом генетическая информация может надежно передаваться из поколения в поколение) была той самой загадкой, которая убедила Эрвина Шредингера в том, что гены являются квантово-механическими сущностями. Но был ли он прав? Объясняет ли квантовая механика механизм наследственности? Поговорим об этом подробнее.

Надежность передачи информации

Мы принимаем как должное способность живых организмов копировать геномы с высокой точностью, однако на самом деле это один из удивительнейших и важнейших аспектов жизни. Ошибка в копировании ДНК (иными словами, мутация) случается в одном случае на миллиард. Чтобы представить себе уровень точности копирования информации, вообразите весь текст этой книги: приблизительно миллион букв, знаков препинания и пробелов. Теперь представьте тысячу книг такого же объема на библиотечных полках. Вы получаете задание точно скопировать тексты тысячи книг, каждую буковку и каждый пробел. Как вы думаете, сколько ошибок вы сделаете? Именно этим и занимались средневековые переписчики, вручную копировавшие тексты до изобретения печатного станка. Несмотря на старания, переписчики допускали (и это неудивительно) много ошибок, что видно из множества несходных копий одних и тех же средневековых текстов. Безусловно, компьютеры способны копировать информацию с высокой точностью, однако это возможно только благодаря современным электронным цифровым технологиям. Представьте, что копировальная машина создана из влажного, вязкого материала. Сколько, по-вашему, ошибок такая машина совершит при считывании и записи скопированной информации? Если этот влажный, вязкий материал представляет собой одну из клеток вашего организма, в которой информация кодируется с помощью ДНК, то вероятность ошибки — менее одной на миллиард.

Высокая точность копирования информации имеет огромное значение для живого организма: структура живой ткани настолько сложна, что для ее копирования требуется не менее сложный набор инструкций, в котором одна-единственная ошибка может привести к фатальным последствиям. Геном, хранящийся в наших клетках, содержит около трех миллиардов букв генетического алфавита, кодирующих около 15 тысяч наших генов. Даже геномы самых простых бактерий, способных к самокопированию, к примеру тех, что живут в подледном озере Восток, состоят из нескольких тысяч генов, записанных на миллионах генетических букв. Несмотря на то что большинство организмов приобретают небольшое количество мутаций в каждом поколении, незначительный их перебор при передаче следующему поколению может вызвать серьезные проблемы. У человека это проявляется в виде генетических заболеваний или нежизнеспособности рожденного потомства. Кроме того, в процессе копирования любые клетки организма (клетки крови, кожи и другие) должны передать их ДНК дочерней клетке. Сбои в этом процессе приводят к онкологическим заболеваниям[119].

Так каким же образом квантовая механика связана с наследственностью? Чтобы разобраться в этом вопросе, перенесемся с вами в 1953 год, в Кембридж, в тот февральский день, когда Фрэнсис Крик вошел в «Игл паб» и заявил, что они с Джеймсом Уотсоном «открыли секрет жизни». Позже в том же году они опубликовали статью, перевернувшую мир науки[120]. В статье была представлена структура ДНК и описан набор простых правил, с помощью которых были найдены ответы на два из самых важных и таинственных вопросов жизни: как кодируется и наследуется биологическая информация.

Мы хотели бы отдельно остановиться на одном из аспектов открытия генетического кода, который, по мнению многих, имеет второстепенное значение, — на форме двойной спирали молекулы ДНК. Эта изящная структура и правда удивительна. Форма молекулы ДНК по праву стала одним из самых культовых изображений науки. Ее печатают на майках, выбирают в качестве эмблемы сайта и даже воспроизводят в архитектурных сооружениях. Однако двойная спираль, в сущности, только каркас. Главный секрет ДНК кроется в том, от чего зависит целостность спирали.

В главе 2 мы кратко говорили о том, что спиральную структуру ДНК (рис. 7.1) образует сахарофосфатный остов, несущий основную информацию ДНК: цепи оснований — гуанина (G), цитозина (C), тимина (T) и аденина (A). Уотсон и Крик заметили, что линейная последовательность оснований складывается в код, который, как они предположили, и является генетическим кодом.

Рис. 7.1. Структура ДНК: а — двойная спираль Уотсона и Крика; б — схема связи между спаренными основаниями A и T; в — схема связи между спаренными основаниями G и T. На схемах водородные связи (общий протон), объединяющие два основания в пару, показаны пунктирными линиями. В этом стандартном (каноническом) представлении сплетения оснований, предложенном Уотсоном и Криком, основания изображаются в их обычной, нетаутомерной форме


В последнем предложении своей эпохальной статьи Уотсон и Крик высказали мысль о том, что структура ДНК помогает раскрыть вторую величайшую тайну жизни: «От нашего внимания не ускользнуло и то, что открытая нами специфически сплетенная структура молекулы представляет собой механизм копирования генетического материала». От внимания ученых не ускользнула важнейшая особенность двойной спирали: информация, записанная на одной цепи (последовательность оснований), присутствует на второй цепи в виде «обратной копии»: аденин на одной цепи всегда связывается тимином на другой цепи, а гуанин всегда образует связи только с цитозином. Уникальное сплетение оснований двух цепей (пары A — T и G — C) поддерживается слабыми химическими связями, а именно водородными. Этот «клей», связывающий две цепочки, в сущности, состоит из одного протона, который два основания делят между собой и который имеет большое значение для нашего дальнейшего повествования, поскольку мы подробно рассмотрим природу этой связи. Однако именно слабый характер связи между парными цепочками ДНК в молекуле предполагает наличие копирующего механизма: цепочки легко отделяются друг от друга, и каждая из них может стать образцом для построения новой, комплементарной цепи, в результате чего получаются две копии первоначальной двойной спирали. То же самое происходит, когда в процессе деления клетки копируются гены. Цепи двойной спирали с комплементарной информацией отделяются друг от друга. К каждой из них получает доступ фермент ДНК — полимераза. Затем фермент прикрепляется к одиночной цепочке и скользит вдоль последовательности нуклеотидов, считывая каждую букву и с высокой точностью помещая соответствующее основание в новую растущую цепь: если фермент распознает A, то помещает напротив T, а если видит G — помещает C, и так до конца, пока не получится целая комплементарная цепь. То же самое происходит со второй цепочкой, в результате чего образуются две копии изначальной двойной спирали — по одной на каждую дочернюю клетку.

Этот, казалось бы, простой процесс является основой продолжения жизни на нашей планете. Когда Шредингер в 1944 году высказал идею о том, что необычайно высокая степень надежности и точности наследственности не может быть обусловлена классическими законами (он настаивал на том, что гены слишком малы, чтобы подчиняться принципу «порядок из хаоса»), он предположил, что гены представляют собой нечто наподобие апериодических кристаллов. Так ли это?

Кристаллы, например крупинки соли, обычно имеют характерную форму. Например, кристаллы хлорида натрия (обычной пищевой соли) имеют форму кубика, а молекулы воды в замерзшем состоянии представляют собой шестиугольные призмы, которые разрастаются в чудесные, бесконечно многообразные формы снежинок. Это удивительное многообразие форм возможно благодаря большому количеству способов сворачивания молекул внутри кристалла, которые управляются квантовыми законами, определяющими формы молекул. Однако обычные кристаллы, несмотря на высокую упорядоченность, не способны кодировать большое количество информации, поскольку в них, подобно узору на обоях, повторяется одна и та же единица кода. Таким образом, структура целого кристалла может быть описана одним простым правилом. Шредингер предположил, что гены являются так называемыми апериодическими кристаллами — с регулярно повторяющейся молекулярной структурой, как в обычном кристалле, но с некоторыми вариациями. Так, например, между повторяющимися структурами могут быть разные интервалы, или периоды (отсюда и название «апериодические»), или повторяющие структуры могут незначительно отличаться друг от друга, напоминая скорее сложный орнамент гобелена, нежели простые обои. Ученый предположил, что слегка измененные повторяющиеся структуры кодируют наследственную информацию и что их порядок, как в любом кристалле, кодируется на квантовом уровне. Не забывайте, что эти идеи были высказаны Шредингером за десятилетие до Уотсона и Крика — всего за несколько лет до того, как были открыты структура и материал генов.

Был ли прав Шредингер? Первый очевидный факт — код ДНК действительно состоит из повторяющихся участков, ДНК-оснований, и в этом смысле он является апериодическим, поскольку каждый повторяющийся участок может быть занят одним из четырех оснований. Гены и правда являются апериодическими кристаллами, как и предсказывал Шредингер. Но апериодические кристаллы не обязательно кодируют информацию на квантовом уровне: нерегулярные растры на фотографической пластинке образуются кристаллами соли серебра, в которых нет ничего квантово-механического. Чтобы понять, был ли прав Шредингер, предполагая, что гены являются квантовыми сущностями, мы должны подробнее рассмотреть структуру оснований ДНК и особенно природу связи комплементарных (парных) оснований — A с T и G с C.

Скрученная форма молекулы ДНК, хранящей генетический код, обусловлена химическими связями, благодаря которым комплементарные основания образуют пары. Как мы уже упоминали, эти связи (их называют водородными связями) формируются одиночными протонами, а точнее, ядрами атомов водорода. Протон является общим для двух атомов, каждый из которых относится к одному из комплементарных оснований, расположенных на разных цепочках напротив друг друга. Именно этот протон и связывает основания в пару (см. рис. 7.1). Основание A связывается с основанием T потому, что в каждой молекуле A протоны находятся в подходящих позициях для формирования водородных связей только с основанием T. A не может образовать пары с C, поскольку протоны расположены в молекулах так, что связи с C не образуются.

Регулируемое протонами спаривание азотистых оснований и есть генетический код, который копируется и передается следующему поколению. И это вовсе не разовая передача информации наподобие закодированного сообщения, написанного в одноразовом блокноте, который уничтожается сразу после использования. Генетический код должен постоянно считываться на протяжении жизни клетки, обеспечивая работу механизма по производству белков, которые, в свою очередь, отвечают за образование движущих сил жизни — ферментов, управляющих всеми остальными функциями клетки. Считывание кода осуществляется ферментом РНК-полимеразой, который, как и ДНК-полимераза, читает порядок кодирующих протонов вдоль цепи ДНК. Подобно тому как буквы на странице, расположенные в правильном порядке, складываются в значимое сообщение или в сюжет целой книги, порядок протонов на двойной спирали определяет историю жизни.

Шведский физик Пер-Улоф Левдин первым указывал на то, что сейчас, ретроспективно, кажется очевидным: порядок протонов регулируется не классическими, а квантовыми законами. Так, генетический код, благодаря которому возможно существование жизни, бесспорно, является квантовым кодом. Шредингер был прав: гены записаны квантовыми буквами, а надежность наследственности обеспечивается квантовыми, а не классическими законами. Подобно тому как форма кристалла регулируется в основном квантовыми законами, форма вашего носа, цвет глаз и черты характера подчиняются квантовым законам, действующим внутри структуры молекулы ДНК, которую вы наследуете от матери или отца. Как и предсказывал Шредингер, жизнь поддерживается порядком, который пронизывает весь организм — от его структуры и поведения до распределения протонов вдоль цепей ДНК. Это и есть «порядок из порядка», обеспечивающий надежность передачи наследственной информации.

Но даже квантовые репликаторы, способные создавать собственные копии, иногда ошибаются.

Ненадежность

Жизнь вряд ли бы могла сохраниться на нашей планете и выдержать многие испытания, уготованные ей окружающей средой, если бы процесс копирования генетического кода всегда протекал идеально, без единой ошибки. Например, бактерии, обитавшие в умеренных водах антарктических озер несколько тысячелетий назад, лучше и быстрее приспособились бы к жизни в относительно теплой и светлой среде. Когда над их миром сомкнулся ледяной купол, бактерии, чьи геномы на протяжении поколений копировались со стопроцентной точностью, скорее всего, вымерли. Однако многие бактерии допускали небольшое количество ошибок в процессе копирования генетической информации, в результате чего на свет появлялись особи-мутанты, слегка отличавшиеся от родителей. Эти отличия способствовали более успешному приспособлению к холодной и темной среде обитания, поэтому именно бактерии-мутанты стали размножаться активнее. Постепенно, спустя несколько тысяч поколений и многочисленных неточных копий наследственной информации, потомки бактерий, попавших в ледовый плен, приспособились к жизни в подледном озере.

Повторимся: процесс адаптации к новым условиям жизни посредством мутации (ошибок репликации ДНК) в среде озера Восток — это модель процесса, протекающего в каждом уголке нашей планеты на протяжении миллиардов лет. За долгое время своего существования Земле пришлось пережить множество глобальных катастроф: извержения крупных вулканов, ледниковые периоды, столкновения с небесными телами. Жизнь не смогла бы сохраниться, не приспособившись к изменениям через копирование ошибок. Не менее важен и тот факт, что мутации привели к генетическим изменениям, которые создали из простейших бактерий — первых живых организмов нашей планеты — удивительное многообразие современной биосферы. Небольшая неточность в копировании проходит длинный и интересный путь развития, особенно на долгом временном отрезке.

Кроме идеи о том, что квантовая механика объясняет надежность передачи наследственной информации, Эврин Шредингер высказал еще одно смелое предположение в своей книге «Что такое жизнь?», опубликованной в 1944 году. Он рассуждал о том, что мутации представляют собой своего рода квантовый скачок внутри гена. Насколько это правдоподобно? Чтобы ответить на этот вопрос, нам с вами необходимо разобраться в одном противоречии, которое уходит своими корнями в теорию эволюции.

Жираф, боб и дрозофила

Мы привыкли к утверждению о том, что эволюция была «открыта» Чарльзом Дарвином. Тем не менее по крайней мере за 100 лет до Дарвина ученым-натуралистам, изучавшим окаменелости, было известно, что организмы меняются на протяжении геологических эпох. Так, еще дед Чарльза Эразм Дарвин был настоящим эволюционистом. Однако самая известная протоэволюционистская теория, предвосхитившая теорию Дарвина, была создана французским ученым, дворянином по происхождению, носившим красивое имя Жан-Батист Пьер Антуан де Моне Шевалье Ламарк.

Ламарк родился в 1744 году. Он учился в иезуитском колледже, где его готовили к духовному сану, однако после смерти отца он получил деньги, которых хватило на покупку лошади. На этой лошади он и уехал воевать в Семилетней войне против Пруссии. Он был ранен, и его военная служба прервалась. Он вернулся в Париж, где стал работать клерком, а все свободное время посвящал изучению ботаники и медицины. Вскоре он получил место помощника ботаника в Королевском ботаническом саду и проработал там до тех пор, пока директора сада не казнили во время революции. Ламарк пережил кровавые события. После революции он получил кафедру в Парижском университете. В это время он переключил свое внимание с ботаники на зоологию и стал с увлечением изучать беспозвоночных.

Ламарк является одним из величайших ученых, вклад которых в науку недооценивается современниками, по крайней мере в англосаксонском мире. Помимо того что он ввел в обращение термин «биология» (от греческого корня bios — «земля»), Ламарк создал теорию эволюции, которая по крайней мере давала правдоподобное объяснение механизму эволюционных изменений. Это было сделано за полвека до теории Дарвина. Ламарк указал на то, что организмы способны изменять некоторые признаки, приспосабливаясь к окружающей среде. Так, например, у фермеров, привыкших к тяжелому физическому труду, развиваются гораздо более крепкие мышцы, чем у банковских клерков. Ламарк утверждал, что подобные приобретенные признаки могут наследоваться потомками, а следовательно, привести к эволюционным изменениям. Наиболее известен пример с жирафами, который чаще других подвергался насмешкам и критике современников. Ламарк полагал, что неким антилопам часто приходилось вытягивать шею, чтобы дотянуться до листьев, растущих на верхних ветвях деревьев. Постепенно их шеи вытягивались, и этот приобретенный признак унаследовали их потомки, которые также продолжали тянуться за верхними листьями и передавать признак вытянутой шеи по наследству, в результате чего антилопы данного вида эволюционировали и постепенно превратились в жирафов.

Теория Ламарка, особенно его идеи о наследовании приобретенных признаков, не получила поддержки современников и была подвержена жесткой критике, особенно в англосаксонском мире. Ученые располагали многочисленными доказательствами того, что характеристики, приобретенные особью на протяжении жизни, обычно не передаются по наследству потомству. Например, несколько сотен лет назад в Австралию хлынул поток светлокожих переселенцев из Северной Европы. Кожа людей, проводящих много времени под палящим солнцем, покрывается загаром. Тем не менее у потомков европейцев в Австралии рождаются такие же светлокожие дети, как и их предки. Очевидно, что кожный загар — приобретенный признак-реакция на постоянное воздействие солнечных лучей — не передается по наследству. Итак, эволюционная теория Ламарка окончательно ушла в тень теории естественного отбора Дарвина, изложившего основные ее положения в книге 1859 года «Происхождение видов»[121].

В наши дни особо подчеркивается следующий аспект теории Дарвина: выживает сильнейший, более приспособленный к жизни в неумолимой природе, не принимающей слабых, менее совершенных. Однако естественный отбор — это не полная история эволюции. Чтобы эволюция протекала успешно, естественный отбор нуждается в источнике изменений, на которых и оттачивается его «мастерство». Для Дарвина это была одна из величайших загадок, поскольку, как мы уже говорили, передача наследственной информации характеризуется высокой степенью надежности. Это не так уж и очевидно в случае эукариот — организмов, для которых характерно половое размножение, поскольку потомство данных организмов значительно отличается от родителей. Однако при половом размножении черты родителей всего лишь перемешиваются в особи-потомке. К слову, в начале XIX века повсеместно считалось, что смешение признаков родителей при половом размножении происходит примерно так же, как смешение красок. Если вы возьмете несколько сотен оттенков-образцов различных красок, смешаете половину образца одного цвета с половиной образца другого и повторите то же самое с другими образцами несколько тысяч раз, в результате получится несколько сотен оттенков серой краски: индивидуальные различия оттенков будут стираться и все образцы будут иметь схожие, усредненные признаки. Однако перед Дарвином стояла задача иного рода: объяснить постоянное сохранение индивидуальных различий у особей и, более того, приращение индивидуальных различий (в том случае, если в них кроется источник эволюционных изменений).

Дарвин был убежден в том, что эволюция происходила постепенно, медленно, поскольку естественный отбор «проверял» малейшее изменение признака, передававшееся по наследству: «Естественный отбор действует только путем сохранения и кумулирования малых наследственных модификаций, каждая из которых выгодна для сохраняемого существа; и как современная геология почти отбросила такие воззрения, как, например, прорытие глубокой долины одной делювиальной волной, так и естественный отбор изгонит веру в постоянное творение новых органических существ или в какую-либо большую и внезапную модификацию»[122]. Однако источник этого исходного материала для эволюции, а именно «малых наследственных модификаций», оставался необъяснимой загадкой. Странные сбои, а точнее, мутации наследуемых признаков были хорошо известны биологам века. Так, например, в конце XVIII века на одной из ферм Новой Англии (в штате Массачусетс) на свет появился ягненок с короткими кривыми ногами. Он вырос в здорового барана и принес потомство, похожее на него. Так было положено начало анконовой породе овец. Их было удобно и легко разводить, поскольку коротконогие овцы не могли перепрыгивать через короткие изгороди. Однако Дарвин считал, что подобные мутации не могут быть движущей силой эволюции, поскольку организм особи подвергается слишком значительным изменениям, в результате чего на свет появляются весьма странные существа, зачастую не способные выжить в дикой природе. Чтобы его теория заработала, Дарвину необходимо было найти источник менее значительных наследуемых изменений, вызывающих «малые наследственные модификации». Ученому так и не удалось решить эту задачу. К слову, в поздних изданиях «Происхождения видов» он даже обращался к некоторым аспектам эволюционной теории Ламарка, в частности, чтобы сформулировать идею о наследуемых малых модификациях.

Частично тайна загадки, которую никак не мог разгадать Дарвин, была раскрыта еще при его жизни. Это удалось австрийскому монаху и ботанику Грегору Менделю, о котором мы уже говорили в главе 2. Эксперименты Менделя, проведенные на горохе, показали, что незначительные модификации формы горошин или цвета лепестков растения наследовались стабильно и прочно. Это означает, что модифицированные признаки не смешивались, а, наоборот, передавались из поколения в поколение, иногда, правда, пропуская одно или два из них, если признак был рецессивным, а не доминантным. Мендель предположил, что дискретные наследственные «факторы», которые мы называем генами, кодируют биологические признаки и являются источниками биологических вариаций. Итак, половое размножение следует сравнивать скорее не со смешиванием различных оттенков, а со смешиванием бусин различных цветов и форм, наполняющих два горшочка. В каждом поколении перемешивается половина бусин из одного горшочка с половиной бусин из второго. Важно то, что даже через тысячи поколений каждая отдельная бусинка сохраняет свой изначальный цвет, то есть признаки могут передаваться без изменений на протяжении сотен или даже тысяч поколений. Таким образом, гены являются постоянным источником вариаций, опираясь на которые и действует механизм естественного отбора.

Научные результаты Менделя были проигнорированы его современниками, а после его смерти и вовсе забыты. Насколько известно, Дарвин не был знаком с теорией Менделя о «наследственных факторах» и скрывавшемся в данной теории ключом к разгадке тайны смешивания признаков. Проблема с поисками источника наследственных изменений, управляющих эволюцией, привела к тому, что к концу XIX века и теория эволюции Дарвина заметно сдала свои позиции в науке. Но в начале XX века об идеях Менделя вспомнили ученые-ботаники, занимавшиеся скрещиванием растений и открывшие законы, управляющие наследованием изменений. Как и подобает настоящим ученым в случае, когда они считают, что открыли что-то новое, они просмотрели имеющуюся литературу перед тем, как публиковать результаты своей работы. Каково же было их удивление, когда они обнаружили, что открытые ими законы наследственности были описаны Менделем за несколько десятилетий до этого.

Повторное открытие менделевских факторов, получивших название «гены»[123], подвело ученых и к разгадке тайны смешения признаков, которую так и не смог раскрыть Дарвин. И все же ученые не сразу решили проблему поиска источника генетических изменений, управляющих длительным процессом эволюции, поскольку предполагалось, что гены наследуются без изменений. Естественный отбор может перемешать бусинки-гены в каждом следующем поколении, однако не в силах создать новые бусинки. Выход из сложившейся тупиковой ситуации обнаружил один из ботаников, вернувших генетику Менделя из забвения. Хуго де Фриз шел по картофельному полю и заметил растения ослинника Ламарка (Oenothera lamarckiana) непривычной разновидности — выше обычного, с овальной формой лепестков (как правило, у ослинника лепестки имеют форму сердца). Он отметил, что данное растение является «мутантом», и, что еще важнее, показал, что мутация наблюдается и у следующего поколения растений, то есть наследуется.

Генетик Томас Хант Морган познакомился с работами де Фриза, посвященными мутациям, в начале 1900-х годов в Колумбийском университете, где проводил эксперименты с плодовыми дрозофилами. Команда ученых под его руководством подвергала дрозофил воздействию сильных кислот, рентгеновского излучения и токсинов с целью создать мушек-мутантов. Наконец в 1909 году из куколки появилась мушка с белыми глазами. Ученым удалось доказать, что, как и в случае со странной формой лепестков ослинника, которую заметил де Фриз, мутировавший признак мушки передавался по наследству, как и любой менделевский ген.

Синтез теории естественного отбора Дарвина, генетики Менделя и теории мутации привел к тому, что в науке сложилась новая синтетическая теория эволюции, или неодарвинизм. Мутация понималась как конечный источник наследуемых генетических изменений, которые в основном имели небольшое воздействие и иногда были абсолютно безвредными, а в некоторых случаях даже полезными — мутировавшее потомство оказывалось более приспособленным к условиям окружающей среды, чем родители. Затем в игру вступает естественный отбор, отсеивающий менее приспособленных мутантов из популяции, способствуя выживанию и размножению сильнейших. В конце концов, приспособленные к условиям жизни мутанты становятся нормой для данного вида, и эволюция идет «путем сохранения и кумулирования малых наследственных модификаций».

Одним из ключевых аспектов синтетической теории эволюции является принцип, согласно которому мутации случайны: вариация в геноме не возникает как ответ на эволюционные изменения. Так, при изменении условий окружающей среды вид не развивает мутационный признак — он должен дождаться необходимой мутации, которая возникает случайно и помогает последующим поколениям приспособиться к изменениям. Это противоречит представлениям Ламарка об эволюции, согласно которым наследуемая адаптация вида (например, длинная шея у жирафа) возникает как реакция на вызов со стороны изменяющейся окружающей среды и, соответственно, приобретается всеми последующими поколениями.

В начале XX века ученым еще не было известно, происходят наследуемые мутации случайно, как предполагали неодарвинисты, или возникают как ответ на изменения окружающей среды, как утверждали сторонники идей Ламарка. Напомним, что Морган подвергал дрозофил воздействию токсичных веществ и излучения, чтобы добиться мутаций. Возможно, в ответ на этот «вызов» окружающей среды у дрозофил возникли новые мутации, которые помогли им справиться с тяжелыми испытаниями. Как и жирафы Ламарка, они, метафорично выражаясь, вытянули свои шеи, а затем передали этот адаптивный признак своим потомкам в виде наследуемой мутации.

В 1943 году Сальвадор Лурия, научный руководитель Джеймса Уотсона, и Макс Дельбрюк поставили серию экспериментов, ставших классикой генетики. Одной из целей экспериментов была проверка конкурирующих теорий. К тому времени дрозофилы уступили место бактериям, которые наилучшим образом подходили на роль подопытных организмов в эволюционных исследованиях благодаря легкости их выведения в лаборатории и краткой продолжительности генерации. Ученым было известно, что бактерии можно поражать вирусами, однако, если это делать регулярно, бактерии довольно быстро вырабатывают устойчивость к вирусам благодаря мутациям. Эти условия идеально подходили для проверки конкурирующих теорий — неодарвинизма и теории мутаций Ламарка. Лурия и Дельбрюк хотели проверить, способны бактерии-мутанты противостоять вирусной инфекции, уже существовавшей в популяции (согласно идеям неодарвинизма), или они возникают как ответ на вызов окружающей среды, в данном случае на воздействие вируса (согласно идеям ламаркизма). Ученые обнаружили, что мутации в популяции возникают одинаково регулярно независимо от наличия вируса или его отсутствия. Иными словами, регулярность мутаций не зависела от селективного давления окружающей среды. Именно за эти эксперименты Лурия и Дельбрюк были удостоены Нобелевской премии по физиологии и медицине за 1969 год, а сформулированный ими принцип случайного возникновения мутаций стал ключевым аспектом современной эволюционной биологии.

Но даже тогда, в 1943 году, когда Лурия и Дельбрюк проводили свои эксперименты, ученым все еще не было известно, из чего состоят гены-бусинки и благодаря каким физическим механизмам возникает мутация — превращение одной бусинки в другую. Ситуация прояснилась в 1953 году, когда Уотсон и Крик открыли двойную спираль. Было показано, что гены-бусины строятся на основе материала ДНК. Принцип случайного возникновения мутаций лишний раз подтвердился: излучение и мутагенные вещества повреждают молекулу ДНК на случайно выбранном участке цепи, вызывая мутации случайных генов, независимо от того, кодируют ли они признаки, важные для выживания вида в условиях конкретных изменений окружающей среды.

Во второй статье, посвященной структуре ДНК[124], Уотсон и Крик высказали предположение о том, что процесс таутомеризации, подразумевающей движение протонов внутри молекулы в определенном порядке, возможно, является причиной мутаций. Мы уверены, что, дойдя до этого места в книге, наши читатели прекрасно понимают, что любой процесс, подразумевающий движение элементарных частиц, например протонов, относится к квантово-механическим процессам. Значит ли это, что Шредингер был прав? Действительно ли мутации являются своего рода квантовым скачком?

Роль протонов в кодировании информации

Посмотрите еще раз на нижнюю часть рис. 7.1. Вы заметите, что мы изобразили водородную связь (которая, как вы помните, представляет собой общий для двух оснований протон) в виде пунктирной линии, соединяющей два атома (кислород (O) и азот (N)) спаренных оснований. Но ведь протон является частицей, не так ли? Почему же он изображен в виде линии, а не одиночной точки? Разумеется, потому, что протоны представляют собой квантовые сущности, обладающие свойствами частицы и волны. Так, внутри молекулы ДНК протон делокализован; он ведет себя как нечто размытое, как волна, накатывающая то на одно, то на другое основание. Водород (H) на рис. 7.1 (наиболее вероятное положение протона) во всех связях изображен не на одинаковом расстоянии от парных оснований, а ближе к одному из них, к одной из двух цепочек спирали. Такая асимметрия обусловливает одно из важнейших свойств ДНК.

Давайте рассмотрим одну из возможных пар оснований, а именно A — T. A находится на одной цепочке спирали, T — на другой. Основания держатся в паре благодаря двум водородным связям (протонам): один протон изображен ближе к атому азота основания A, а другой — ближе к атому кислорода основания T (рис. 7.2, а).

Рис. 7.2. Пары оснований A — T: а — стандартный вид связи пары оснований A — T с обычным расположением протонов; б — протоны поменяли положение на двойной спирали, образовав таутомерическую форму соединений A и T


Эти протоны и образуют водородную связь A — T. Однако не следует забывать, что для квантового мира понятие «ближе» является очень скользким: здесь частицы не имеют фиксированных положений, а характеризуются спектром возможностей пребывания одновременно в разных положениях, включая и те, что возможны только при условии эффекта туннелирования. Если бы протоны, связывающие две буквы генетического кода, вдруг совершили скачок к обратным концам соответствующих водородных связей, они оказались бы ближе к атомам противоположных оснований. Возможность протонов менять свое положение в связи обусловливает существование альтернативных форм соединений оснований — таутомеров (см. рис. 7.2, б). Так, каждое из оснований ДНК может существовать в обычной (канонической) форме, которая представлена в модели структуры двойной спирали ДНК Уотсона и Крика, и в редкой таутомерической форме, при которой связывающие основания протоны сдвигаются и меняют позицию в связи.

Напомним, что протоны, формирующие водородные связи в молекуле ДНК, обусловливают специфические свойства пары оснований, важные при репликации генетического кода. Так, если пара протонов движется (в противоположных направлениях), это означает, что они успешно переписывают генетический код. Например, если на одном из участков цепи ДНК находится генетическая буква T (тимин), то напротив будет стоять A (в канонической форме пары оснований). Однако при двойном скачке протонов T и A принимают таутомерические формы. Разумеется, протоны могут совершить и обратный скачок, если они оказываются в связи таутомерической формы[125] в тот момент, когда происходит копирование цепи ДНК. В этом случае в новую цепочку ДНК могут быть встроены неправильные основания. Таутомер T образует пару скорее с G, а не с A, поэтому в новую цепочку напротив T (туда, где в старой цепи стоит A) будет вставлено основание G. Подобным образом, если A приобретает таутомерическую форму в момент репликации ДНК, образуется пара A — C, а не A — T, поэтому в новой цепи напротив A (туда, где в старой цепи стоит T) будет вставлено основание C (рис. 7.3). В обоих случаях в новых цепочках ДНК будут наблюдаться мутации — изменения в последовательностях ДНК, которые будут переданы последующим поколениям.

Рис. 7.3. Таутомер T в енольной форме (на рисунке обозначается T*) ошибочно образует пару с G, а не со своим постоянным партнером A. Подобным образом таутомер A (на рисунке A*) ошибочно образует пару с C, а не с T. Если эти пары образуются в процессе репликации ДНК, возникает мутация


Несмотря на очевидную правдоподобность данной гипотезы, было очень сложно подтвердить ее прямыми доказательствами. Однако в 2011 году, почти через 60 лет после того, как Уотсон и Крик опубликовали статью о двойной спирали ДНК, команде ученых из Медицинского центра Университета Дьюка (США) удалось доказать, что неправильные пары оснований ДНК с таутомерическими положениями протонов в связях действительно могут встраиваться в активный центр ДНК-полимеразы (фермент, образующий новую ДНК), а точнее, в новые цепочки ДНК в процессе репликации и обусловливать мутации[126].

Таким образом, таутомеры с альтернативным расположением протонов являются причиной мутаций, а следовательно, и движущей силой эволюции. Однако что же заставляет протоны менять положение? Согласно одному из «классических» объяснений, протоны время от времени «встряхиваются» из-за постоянных молекулярных вибраций, окружающих их. Тем не менее это возможно только при условии достаточного количества тепловой энергии, которая дает толчок, «встряску» молекуле. Как и в реакциях, катализируемых ферментами, о которых мы говорили в главе 3, для смены положения протону необходимо преодолеть достаточно высокий энергетический барьер. К тому же протоны могут получать толчок после столкновений с соседними молекулами воды, однако вблизи протонов, формирующих водородные связи внутри молекулы ДНК, нет молекул воды, способных передать такой толчок другим частицам.

Однако есть еще один фактор — тот, который играет важную роль в переносе электронов и протонов ферментами. Благодаря волновой природе элементарные частицы, такие как электроны и протоны, могут участвовать в квантовом туннелировании. Нестабильность положения какой бы то ни было частицы позволяет ей просачиваться через энергетический барьер. В главе 3 мы говорили о том, как ферменты обеспечивают возможность туннелирования электронов и протонов, подводя молекулы ближе друг к другу. Спустя десятилетие после публикации фундаментальной статьи Уотсона и Крика шведский физик Пер-Улоф Левдин, которого мы уже упоминали в этой главе, предположил, что протоны внутри водородных связей перемещаются посредством квантового туннелирования, в результате чего образуются таутомерические — мутационные — формы нуклеотидов.

Важно отметить, что мутации ДНК могут быть обусловлены действием множества различных механизмов, в том числе воздействием химических веществ, ультрафиолетового излучения, частиц, выпускаемых в результате радиоактивного распада, и даже космического излучения. В результате воздействия этих факторов изменения происходят на молекулярном уровне, а значит, они неизбежно сопровождаются квантово-механическими процессами. Пока не получены доказательства того, что все эти источники мутаций связаны с таинственными аспектами квантовой механики. Тем не менее доказано, что квантовое туннелирование играет большую роль в образовании таутомерических форм ДНК-оснований. Значит, мистическая природа других квантовых процессов, возможно, играет определенную роль в возникновении мутаций, движущих эволюцией.

И все же таутомеры ДНК-оснований составляют лишь 0,01 % всех ДНК-оснований. Их образование приводит к ошибкам одного порядка. Такое соотношение гораздо выше, чем показатель всех мутаций в природе, — одна на миллиард случаев, поэтому, если таутомеры действительно присутствуют в двойной спирали, потенциальных сбоев легко избежать путем различных процессов исправления ошибок (проверочных процессов), призванных обеспечивать высокую надежность репликации ДНК. Однако ошибки, возникающие благодаря квантовому туннелированию, не поддаются корректировке проверочных механизмов и продолжают быть источником природных мутаций, которые обеспечивают эволюцию всех земных форм жизни.

Открытие механизмов, лежащих в основе мутации, важно не только для понимания эволюции. Оно может пролить свет на то, как возникают генетические заболевания, как здоровые клетки становятся раковыми (доказано, что генетические и онкологические заболевания обусловлены мутациями). Однако не так легко проверить, основан ли механизм конкретной мутации на эффекте туннелирования, поскольку, в отличие от некоторых других видов воздействия на клетку, например химических веществ или излучения, этот эффект нельзя просто «включить» и «выключить». Следовательно, пока мы не имеем возможности сравнить соотношение мутаций, обусловленных квантовым туннелированием и не обусловленных квантовым процессом, и посмотреть, чем они отличаются друг от друга.

Есть еще один способ подтвердить квантово-механический аспект генетических мутаций. Он основывается на различиях между информацией в классическом понимании и квантовой информацией. Классическая информация может считываться и перечитываться снова и снова, при этом не меняя своего содержания, в то время как информация квантовых систем искажается при попытке измерений. Когда фермент ДНК-полимераза изучает ДНК-основание и пытается определить положение протонов в водородной связи, он осуществляет квантовое измерение, ничем не отличающееся от измерений, проводимых над теми же протонами ученым-физиком в лаборатории. Оба этих процесса и их измерения влияют на квантовую систему: с точки зрения квантовой механики вовсе не важно, выполняется измерение ферментом ДНК-полимеразой внутри клетки или счетчиком Гейгера в лаборатории, — в любом случае положение измеряемой частицы изменится. Если состояние частицы соответствует определенной букве генетического кода, означает ли это, что измерения, особенно частые, регулярные, будут способствовать изменению кода и вызывать мутации? Есть ли тому доказательства?

Несмотря на то что весь геном человека копируется во время репликации ДНК, считывание большей части информации генома осуществляется в ходе двух процессов, при которых генетическая информация используется для обеспечения синтеза белков. Первый из этих процессов — транскрипция — подразумевает перенос генетической информации с ДНК в РНК. РНК химически родственна ДНК. Скопировав информацию ДНК, РНК отправляется к механизму синтеза белков и инициирует их производство, или второй из упомянутых процессов, известный также как трансляция. Чтобы отличать эти процессы от репликации ДНК (копирования генетической информации), мы будем называть их процессами считывания ДНК-кода.

Ключевая особенность процесса считывания ДНК-кода заключается в том, что некоторые гены считываются чаще, чем другие. Если считывание ДНК-кода во время транскрипции является квантовым измерением, можно предположить, что наиболее часто считываемые гены будут подвержены более серьезным изменениям, обусловленным измерениями, а следовательно, будут содержать большее количество мутаций. Некоторые исследователи утверждают, что их эксперименты доказывают это предположение. Так, например, Абхиджит Датта и Сью Джинкс-Робертсон из Университета Эмори (Атланта, США) воздействовали на один и тот же ген дрожжевой клетки таким образом: сначала ген был считан несколько раз для получения небольшого количества белка, а затем — множество раз для получения больших объемов белка. Ученые обнаружили, что количество мутаций гена возросло в 30 раз после того, как участились случаи считывания его информации[127]. В ходе эксперимента с клетками мыши были получены схожие результаты[128], а недавние исследования генов человека показали, что наиболее часто считываемые гены чаще подвергаются мутациям[129]. Такие результаты согласуются с наличием квантово-механического измерения, однако они не доказывают связи образования мутаций с квантовой механикой. Считывание ДНК-кода сопровождается биохимическими реакциями, которые могут изменить или даже разрушить молекулярную структуру генов различными способами, также вызывая мутации, к которым квантовая механика не имеет никакого отношения.

Чтобы проверить, связан ли биологический процесс с квантовой механикой, необходимы данные, которые очень трудно или вовсе невозможно интерпретировать, не прибегая к основам квантовой механики. К слову, именно этот парадокс пробудил в нас интерес к определению роли квантовой механики в биологии.

Совершают ли гены квантовые скачки

В сентябре 1988 года в журнале Nature была опубликована статья, посвященная генетике бактерий. Автором статьи был выдающийся генетик Джон Кейрнс, сотрудник Гарвардской школы общественного здоровья (Бостон)[130]. Идеи, высказанные в статье, противоречили фундаментальному принципу неодарвинистской эволюционной теории, согласно которому мутации, источники генетических вариаций, происходят случайно, а направление эволюции определяется естественным отбором — «выживанием сильнейших».

Кейрнс получил образование в Оксфорде, затем работал в Австралии и Уганде. В 1961 году он, будучи сотрудником лаборатории в Колд-Спринг-Харбор (штат Нью-Йорк), взял творческий отпуск. С 1963 по 1968 год Кейрнс возглавил лабораторию в Колд-Спринг-Харбор, которая в то время была местом, где зарождалась новая наука — молекулярная биология. В 1960-е и 1970-е годы лаборатория переживала настоящий золотой период, поскольку здесь работали такие выдающиеся ученые, как Сальвадор Лурия, Макс Дельбрюк и Джеймс Уотсон. Кейрнс, кстати, познакомился с Уотсоном за много лет до этого, когда молодой и немного неопрятный будущий нобелевский лауреат делал довольно бессвязный доклад на конференции в Оксфорде и не произвел на Кейрнса большого впечатления. По правде говоря, первое впечатление Кейрнса от одного из величайших ученых за всю историю человечества сводилось к следующему: «Я подумал, что он абсолютно ненормальный»[131].

В лаборатории Колд-Спринг-Харбор Кейрнс провел несколько эпохальных исследований. Так, например, он показал, как репликация ДНК начинается в одной конкретной точке и продвигается вдоль хромосомы подобно поезду, который движется по рельсам. Он наверняка стал намного лучше относиться к Уотсону, поскольку в 1966 году вышла их совместная книга о роли бактериальных вирусов в развитии молекулярной биологии. Позднее, в 1990-е годы, он заинтересовался ранним исследованием нобелевских лауреатов Лурии и Дельбрюка, которое, казалось, доказывало случайный порядок мутаций в организме, не подвергаемом воздействию мутагенных факторов. Кейрнс заметил, что в плане эксперимента Лурии и Дельбрюка был один слабый момент, который не был учтен и «помог» ученым доказать, что бактерии-мутанты, устойчивые к вирусу, существуют в популяции всегда, а не возникают в результате воздействия вируса на популяцию.

Кейрнс отметил, что бактериям, не имеющим устойчивости к вирусу, не хватило бы времени на развитие адаптивных мутаций в ответ на вызов окружающей среды, поскольку вирус, являющийся этим самым вызовом, уничтожил бы их. Он предложил альтернативный план эксперимента, в ходе которого бактериям предоставлялась более удобная возможность мутировать в ответ на вирус. Вместо того чтобы ожидать появления у бактерий мутаций, благодаря которым у них развивается устойчивость к вирусу, он подверг бактерии голоданию с целью выявить мутации, позволяющие бактерии выжить и расти в условиях нехватки питательных веществ. Кейрнс показал (как, впрочем, Лурия и Дельбрюк до него), что некоторые бактерии продолжили расти и нормально развиваться в условиях голода, что доказывало наличие у них изначальной устойчивости к нехватке питательных веществ. Однако, в отличие от исследования Лурии и Дельбрюка, в ходе эксперимента Кейрнса выявилось гораздо больше бактерий-мутантов, появившихся в популяции намного позже, а именно как ответ на воздействие голоданием.

Результаты эксперимента Кейрнса противоречили общепринятому принципу случайного возникновения мутаций; наоборот, они свидетельствовали о том, что мутации возникают тогда, когда для их возникновения создаются благоприятные условия. Открытие Кейрнса, казалось, доказывало поставленную под сомнение состоятельность теории эволюции Ламарка: голодающие бактерии не «отращивали длинные шеи» — они, подобно вымышленной антилопе Ламарка, реагировали на вызов, брошенный окружающей средой, развитием наследуемых модификаций организма — мутаций.

Экспериментальные открытия Кейрнса очень скоро подтвердились в ходе исследований других ученых. И все же данному феномену не находилось приемлемого объяснения в рамках современной генетики и молекулярной биологии. Науке не было известно о механизме, который позволял бактерии (или любому другому живому организму) выбирать, какие гены должны подвергнуться мутации и в какой именно момент. Открытие Кейрнса, на первый взгляд, также противоречило центральной догме молекулярной биологии, согласно которой во время транскрипции информация передается только в одном направлении: от ДНК белкам и далее во внутреннюю среду клетки или организма. Если Кейрнс оказался прав, клетки должны обладать способностью менять направление передачи генетической информации, позволяя среде влиять на то, что записано в ДНК.

Публикация статьи Кейрнса вызвала массу споров и лавину писем в редакцию журнала Nature: научная общественность стремилась понять смысл открытия. Будучи специалистом в области бактериальной генетики, Джонджо заинтересовался явлением «адаптивных мутаций», как все их стали называть. В то время он как раз читал популярную работу Джона Гриббина о значении квантовой механики «В поисках кота Шредингера»[132] и не мог не задуматься над тем, не кроется ли объяснение результатов Кейрнса в этой таинственной области, а именно в загадочных процессах квантовых измерений. Джонджо был также знаком с утверждением Левдина о том, что генетический код записан квантовыми буквами. Итак, если Левдин был прав, геном бактерий, исследуемых Кейрнсом, должен рассматриваться как квантовая система. Если это так, то попытка узнать, произошла ли мутация, будет представлять собой квантовое измерение. Может ли эффект квантового измерения объяснить довольно странные результаты исследования Кейрнса? Чтобы ответить на этот вопрос, необходимо подробнее рассмотреть модель его эксперимента.

Кейрнс поместил миллионы бактерий кишечной палочки E. coli[133] на поверхность желе в емкости, где из питательных веществ бактериям была доступна лишь лактоза. У бактерий одного из штаммов E. coli, которые использовал Кейрнс, был генетический сбой, из-за которого бактерии не принимали лактозу, а следовательно, подвергались голоданию в ходе данного эксперимента. Однако они не погибли; они оставались на поверхности желе. Затем произошло нечто, что очень удивило Кейрнса и вызвало множество споров среди ученых впоследствии, когда результаты эксперимента были опубликованы. Через некоторое время после начала эксперимента Кейрнс исследовал новые колонии, появившиеся на поверхности желе. В каждой колонии были бактерии-мутанты — потомки одной-единственной клетки, в которой мутация исправила ошибку в ДНК-коде дефектного гена, отвечающего за усваивание лактозы. Колонии мутантов продолжали расти на протяжении нескольких дней, пока желе из лактозы полностью не исчезло с тарелок.

Согласно одному из принципов классической теории эволюции, подтвержденному экспериментами Лурии и Дельбрюка, для эволюции одноклеточных E. coli требовалось изначальное присутствие в популяции бактерий-мутантов. Некоторые из них действительно появились в колонии в самом начале эксперимента, однако их было недостаточно для возникновения новых колоний, способных усваивать лактозу, спустя лишь несколько дней после того, как дефективные бактерии были помещены в лактозную среду (в которой мутации могли стать адаптивным преимуществом клетки, отсюда и название «адаптивные мутации»).

Кейрнс отказался от тривиальных объяснений данного явления, как, например, общая тенденция повышения частотности мутаций. Кроме того, ученый продемонстрировал, что адаптивные мутации возникают лишь в той среде, где от данной мутации будет преимущество. И все же результаты эксперимента Кейрнса не находили объяснения в рамках классической молекулярной биологии: мутации возникали с одинаковой частотой в присутствии и отсутствии лактозы. Однако в том случае, если (как утверждал Левдин) гены представляют собой квантовые информационные системы, наличие лактозы подразумевает потенциальное квантовое измерение, поскольку благодаря ему выявляется, мутирует ДНК клетки или нет, — перед нами не что иное, как явление квантового уровня, зависящее от положения одиночных протонов. Объясняются ли различия в частотности мутаций, выявленные Кейрнсом, именно наличием квантовых измерений?

Джонджо решил высказать свои соображения на одной из открытых лекций на физическом факультете Университета Суррея. Джим был среди слушателей и, несмотря на скептическое отношение к высказываемым идеям, заинтересовался ими. Мы решили работать вместе и выяснить, есть ли у предположений Джонджо квантовая подоплека. В конце концов нам удалось разработать достаточно «шаткую»[134] модель, которая, как нам кажется, способна объяснить механизм адаптивных мутаций. Описание объяснительной модели было опубликовано нами в журнале Biosystems в 1999 году[135].

Описание модели начинается с допущения того, что протонам свойственно квантово-механическое поведение. Следовательно, протоны в ДНК голодающих бактерий E. coli могут время от времени совершать скачок в таутомерическое (мутагенное) положение путем квантового туннелирования и с такой же легкостью возвращаться в исходное положение. С точки зрения квантовой механики такая система считается находящейся в суперпозиции, или одновременно в двух состояниях — туннелированном и нетуннелированном. Протон описывается в терминах волновой функции, распространяющейся в обе стороны, однако асимметрично: вероятность того, что протон находится в обычной (не мутагенной) позиции, гораздо выше, чем вероятность его перемещения в таутомерическое положение. В этой ситуации у нас нет никакого экспериментального измерительного прибора, который зафиксировал бы положение протона; процесс измерения, о котором мы подробно говорили в главе 4, осуществляется окружающей средой. Этот процесс происходит непрерывно: например, считывание ДНК механизмом синтеза белков заставляет протон «определиться», с какой стороны водородной связи ему находиться — обычной или таутомерической. В большинстве случаев протон выбирает обычное положение.

Давайте представим себе тарелку Кейрнса с бактериями кишечной палочки в виде коробочки с монетами, где каждая монета будет символизировать протон одного из связанных оснований гена, отвечающего за усвоение лактозы[136]. Протон может существовать в двух положениях: положении «орла», соответствующего обычному, не таутомерическому положению частицы, и «решки», соответствующей более редкой таутомерической позиции. Представьте, что все наши монеты лежат вверх «орлами», что соответствует началу эксперимента, когда все протоны находятся в обычном положении. Однако с точки зрения квантовой механики протон постоянно находится в суперпозиции — в обычном и таутомерическом положении одновременно, поэтому наши воображаемые квантовые монеты тоже будут находиться в суперпозиции — одновременно и «орлами» и «решками» вверх, однако вероятность того, что они лежат вверх «орлами», будет выше. В то же время положение протона постоянно измеряется внутренней средой клетки, заставляя его выбирать, в каком месте находиться: представьте себе, что наши монетки постоянно подбрасываются вверх и в подавляющем большинстве случаев выпадает «орел». Иногда выбор протона осуществляется во время копирования ДНК[137], однако каждая новая цепочка будет кодировать только ту генетическую информацию, которая записана в изначальной цепи и в большинстве случае содержит код дефектного фермента. Это означает, что бактерия будет продолжать испытывать голод, не будучи способной усвоить лактозу.

Не забывайте, однако, что в нашей аналогии монета символизирует квантовую частицу — протон в водородной связи на цепочке ДНК. Квантовая частица способна вернуться в исходное положение и восстановить суперпозицию даже после измерения. Итак, после того, как монета была подброшена и легла «орлом» вверх, ее будут подбрасывать снова и снова. Рано или поздно выпадет «решка». В этом положении может повториться попытка копирования ДНК, и на этот раз в геноме будет закодирована информация об активном ферменте. В отсутствие лактозы это не будет иметь никакого значения, поскольку от гена, кодирующего активный фермент, не будет никакой пользы: бактерия по-прежнему будет испытывать голод.

Ситуация изменится, если бактерии будет доступна лактоза, поскольку исправленный ген позволит клетке усваивать это питательное вещество, а значит, расти и воспроизводиться путем деления. Возвращение в квантовую суперпозицию будет невозможным. Система клетки-мутанта навсегда станет частью мира, в котором действуют законы классической физики. Что же происходит с нашими воображаемыми монетами в присутствии фактора включения исправленного гена (для бактерий этот фактор — присутствие лактозы)? Переложим те немногочисленные монеты, что после подбрасываний легли вверх «решками», в другую коробочку и пометим их как «мутировавшие». В первой коробке оставшиеся монеты (бактерии кишечной палочки) будут подбрасываться снова и снова, и каждый раз монеты, на которых выпадут «решки», будут изыматься и перемещаться в коробку с «мутировавшими» экземплярами. Постепенно вторая коробочка будет заполняться монетами. Это означает, что в ходе эксперимента количество бактерий-мутантов, способных усваивать лактозу, будет расти, что и показал Кейрнс.

Мы опубликовали описание нашей модели в 1999 году, однако сторонников у нас едва ли прибавилось. Не остановившись перед неудачей, Джонджо написал книгу «Квантовая эволюция»[138], в которой говорится о значительной роли квантовой механики в биологии и эволюции. Однако книга вышла до того, как признание роли туннелирования протонов в реакциях с участием ферментов стало общепринятым, и до открытия квантовой когерентности при фотосинтезе. Неудивительно, что ученые скептически отнеслись к идее о причастности к мутациям каких-то странных квантовых явлений. К тому же мы упустили несколько важных тем[139]. Кроме того, поднялась неразбериха вокруг феномена адаптивных мутаций. Было обнаружено, что подвергавшиеся голоданию бактерии E. coli питались микроэлементами мертвых и умирающих клеток и иногда копировали ДНК и даже обменивались ими. Стали появляться результаты новых исследований адаптивных мутаций, согласно которым учащение мутаций было обусловлено совокупностью различных процессов: общего учащения мутаций всех генов, гибели клеток и высвобождения мутировавшей ДНК мертвых клеток и, наконец, выборочного поглощения и распространения мутировавшего гена, отвечающего за усвоение лактозы, выжившими клетками, которым удалось встроить ген в собственный геном[140].

Пока неясно, способны ли подобные «общепринятые» объяснения полностью описать механизм адаптивных мутаций. Спустя 25 лет после публикации результатов Кейрнса адаптивные мутации остаются во многом загадочным явлением. Об этом свидетельствует постоянное появление в научных изданиях статей, посвященных исследованию механизма адаптивных мутаций[141] на примере не только кишечной палочки, но и других бактерий. На данный момент ситуация обстоит так: мы не исключаем возможности того, что возникновение адаптивной мутации сопровождается квантовым туннелированием, однако не можем утверждать, что это единственное объяснение механизма таких мутаций.

В отсутствие первостепенной необходимости связывать квантовую механику с механизмом адаптивных мутаций мы решили вернуться на шаг назад и рассмотреть более фундаментальный вопрос: сопровождаются ли любые мутации, не только адаптивные, квантовым туннелированием. Как вы помните, первое теоретическое обоснование роли квантового туннелирования в возникновении адаптивных мутаций было предложено Левдином и с тех пор подтверждалось несколькими теоретическими исследованиями[142], а также экспериментами с «моделями пар оснований» — химическими соединениями, синтезированными специально для лабораторных опытов и характеризующимися свойствами оснований ДНК. Тем не менее никому еще не удалось доказать, что квантовое туннелирование обусловливает мутацию. Проблема в том, что квантовое туннелирование влияет на возникновение мутации только в совокупности с другими факторами, обусловливающими мутации и включение механизма их исправления, что усложняет задачу определения роли квантового явления (туннелирования) в биологическом процессе (мутации).

Чтобы разобраться в этой проблеме, Джонджо обратился к результатам экспериментов с ферментами, описанных в главе 3. Как вы помните, предположение о роли туннелирования протонов в реакциях с ферментами было высказано после того, как был обнаружен «кинетический изотопный эффект». Если ускорение реакции с участием фермента обусловлено квантовым туннелированием, то при замене ядра атома водорода (одиночного протона) на ядро дейтерия (содержащего протон и нейтрон) реакция замедлится, поскольку масса частицы, совершающей туннелирование, удвоится. В настоящий момент Джонджо пытается выяснить, действует ли тот же принцип при возникновении мутации, проверяя его на частоте мутаций в дейтерированной воде D2O. Пока мы писали эту книгу, эксперименты показали, что после замены обычного ядра водорода ядром дейтерия частота мутаций возросла. Однако следует проделать еще немало работы, чтобы подтвердить обусловленность данного эффекта квантовым туннелированием, поскольку замена обычного водорода дейтерием может воздействовать на многие другие биомолекулярные процессы, что, в свою очередь, может вызвать мутации, не обусловленные квантовомеханическими явлениями.

Джим сосредоточился на изучении того, насколько возможно, исходя из теоретических обоснований, квантовое туннелирование протонов в двойной спирали ДНК. Когда физик-теоретик берется за рассмотрение сложной проблемы, он обычно создает ее упрощенную модель, поддающуюся математическому описанию и сохраняющую основные свойства исследуемой системы или процесса. Такие модели могут со временем достигать высокой степени сложности, поскольку ученый постоянно дополняет их новыми данными, достраивает новые элементы с целью достичь максимального сходства с реальной моделируемой ситуацией.

В нашем случае модель, построенная для первоначального математического анализа, представляет собой шарик (символизирующий протон), подвешенный на пружинах, прикрепленных к стенам (рис. 7.4).

Рис. 7.4. Протон в водородной связи, соединяющей два парных основания ДНК, можно представить в виде шарика на двух пружинах, качающегося из стороны в сторону. Он имеет два возможных стабильных положения, смоделированных на основе явления двойной потенциальной ямы. Левая яма (соответствующая обычному положению протона при отсутствии мутации ДНК) немного глубже правой (соответствующей таутомерическому положению), поэтому протон предпочитает находиться в левой яме


Каждая из пружин тянет шарик на себя. Шарик пытается найти положение, в котором тянущая сила обеих пружин уравновешивается. Если одна из пружин натянута туже (менее упругая), то шарик будет находиться ближе к той стене, к которой закреплена эта тугая пружина. И все же в тугой пружине должен быть некий «задел упругости», необходимый для того, чтобы шарик мог оказаться в менее стабильном положении у другой стены. Это соответствует явлению, которое в квантовой физике известно как двойная потенциальная яма, и поведению протона в водородной связи на цепочке ДНК: яма, изображенная на диаграмме слева, соответствует обычному положению протона, а правая — его редкой таутомерической позиции. С точки зрения классической физики, несмотря на то что протон почти всегда будет находиться в левой яме, если он получит сильный энергетический заряд от внешнего источника, он может переместиться и на другую сторону цепи — в таумерическое положение. Однако в определенный момент времени он всегда будет находиться либо в одной яме, либо в другой. Согласно квантовой механике протон может в любой момент спонтанно туннелировать, даже если энергии для преодоления барьера будет не хватать — для этого протону вовсе не обязательно получать энергетический толчок извне. Кроме того, в этом случае протон будет находиться в состоянии суперпозиции, то есть в левой и правой яме одновременно.

Безусловно, нарисовать картинку гораздо проще, чем разработать математическую модель, которая точно описывала бы исследуемую ситуацию. Чтобы понять поведение протона, необходимо очень точно представлять форму потенциальной ямы, или карту энергетической поверхности. Это не такая простая задача, поскольку форма потенциальной ямы зависит от многих переменных. Дело не только в том, что водородная связь является элементом огромной, сложной структуры — молекулы ДНК, состоящей из сотен или даже тысяч атомов. Следует также учитывать и то, что протон погружен в теплую ванну — внутри клетки его окружают молекулы воды и другие жидкие химические соединения. Кроме того, молекулярные вибрации, тепловые флуктуации, химические реакции с участием ферментов, а также ультрафиолетовое и радиоактивное излучение могут напрямую и косвенно влиять на состояние и поведение водородных связей ДНК.

Аспирант Джима Аль-Халили Адам Годбир при изучении проблем такого уровня сложности придерживается подхода, который подразумевает использование мощного математического метода — теории функционала плотности. Этот метод широко используется современными физиками и химиками для моделирования сложных структур. Теория функционала плотности позволяет рассчитать форму энергетической ямы, в которую попадает водородная связь, настолько точно, насколько это возможно в вычислительном отношении, учитывая сложность структурной информации пар ДНК-оснований. Представьте себе, что этот метод создает карту всех воздействий на водородную связь, в том числе притягивающих и отталкивающих сил атомов ДНК, окружающих протон. Затем информация обо всех этих силах используется для просчитывания возможного квантового туннелирования и поведения протона на продолжительном отрезке времени. Дополнительную сложность для расчетов создает присутствие окружающих атомов ДНК, а также молекул воды, которые оказывают постоянное воздействие на поведение протона и на его способность совершать туннелирование из одной цепи ДНК в другую. Однако подобное воздействие внутренней среды может также учитываться в квантово-механических уравнениях. Сейчас, когда мы пишем эту книгу (лето 2014-го), предварительные результаты исследований Адама таковы: несмотря на то что оба протона водородной связи между основаниями A и T могут перемещаться в таутомерические положения посредством квантового туннелирования, вероятность такого скачка крайне мала. В то же время теоретические модели показывают, что воздействие внутриклеточной среды, окружающей протоны, вовсе не препятствует процессу туннелирования, а активно ему способствует.

Что же на данный момент мы можем сказать о связи квантовой механики с генетикой? Безусловно, квантовая механика играет важную роль в копировании и передаче наследственной информации, поскольку наш с вами генетический код записан квантовыми частицами. Как и предсказывал Эрвин Шредингер, квантовые гены кодируют структуру и функции всех бактерий, растений и животных, которые когда-либо жили на Земле. Это вовсе не случайность. Более того, это очень важная особенность живых организмов, поскольку процесс копирования генетической информации не характеризовался бы такой высокой степенью надежности, если бы гены представляли собой структуры, подчиняющиеся законам классической физики: они слишком малы, чтобы не подчиняться законам квантовой механики. Именно квантовая природа генов позволила бактериям, обитавшим в озере Восток, успешно копировать геном на протяжении нескольких тысяч лет, а нашим предкам — передавать генетический код на протяжении миллионов и даже миллиардов лет, а именно с тех самых пор, когда на нашей планете зародилась самая первая форма жизни. Жизнь не могла бы зародиться и сохраниться на Земле, если бы много миллионов лет назад не «обнаружила» способ кодировать информацию на квантовом уровне[143]. С другой стороны, науке только предстоит выяснить, имеет ли квантовая механика непосредственное отношение к генетическим мутациям — сбоям в копировании генетической информации, имеющей первостепенное значение для эволюции.

Загрузка...