8. Разум

Жан-Мари Шове родился в старинной французской провинции Овернь. Когда ему было пять, его родители переехали на юго-восток, в Ардеш, живописный край рек, ущелий и каньонов, врезавшийся в известняковые скалы. В 12 лет Жан-Мари обнаружил увлечение всей своей жизни — вместе с друзьями в касках времен Второй мировой войны отправившись изучать многочисленные полости и пещеры в долине большой реки Ардеша. Он бросил школу в 14 лет; работал сначала каменщиком, потом клерком в хозяйственном магазине и, наконец, смотрителем. Вдохновленный книгой Норбера Кастере «Моя жизнь под землей», Жан-Мари посвящал по возможности каждые выходные своему детскому увлечению, взбираясь по отвесным скалам или копаясь в темных пещерах, мечтая однажды первым найти клад в неизвестной пещере. «Неизведанное всегда влечет. Когда вы идете по пещере, вы не знаете, что найдете. Закончится все за следующим поворотом, или вы откроете нечто фантастическое?»[144]

В субботу 18 декабря 1994 года начинались обычные выходные для 42-летнего Жана-Мари и двух его друзей-спелеологов, Элиет Брюнель и Кристиана Иллэра, бродивших по ущельям в поисках чего-нибудь нового. Минул полдень, воздух становился холоднее, и они решили исследовать область, известную как Cirque d’Estre, незначительно освещенную полуденным солнцем и, как правило, чуть более теплую в холодный зимний день, чем теневые участки долины.

Друзья шли протоптанной мулами тропинкой вдоль скалы между порослей вечнозеленого дуба, самшита и вереска, с прекрасным видом на Понт Д’Арк у входа в ущелье. Пробираясь через мелколесье, они заметили небольшую полость в горной породе, примерно 25 сантиметров в ширину и 75 в высоту.

Это было в буквальном смысле открытое приглашение для спелеологов, и вскоре они, протиснувшись через пролом, попали в небольшую камеру несколько метров в длину и по высоте едва позволявшую стоять в полный рост. Почти сразу они заметили слабое дуновение из дальнего конца камеры. Любой, кто исследовал пещеры, знаком с ощущением теплого ветерка из невидимого туннеля. Большинство скрытых проходов хорошо известны опытным спелеологам; они просто лежат за пределами узкого участка, освещенного фонариком. Но движение воздуха в этой крошечной камере не исходило из какой-либо известной пещеры. Команда по очереди убирала камни из конца камеры, пока не обнаружила источник воздуха: воздуховод уходил вертикально вниз. Элиет, самую миниатюрную из команды, первой опустили на веревке в темноту, в узкую шахту, куда она могла пролезть. Ход сначала вел вниз, затем повернул обратно вверх и раскрылся — в этот момент Элиет увидела, что она висит в десяти метрах над глиняным полом. Ее фонарь светил слабо, не освещал дальнюю стену, но эхо от ее крика в темноте дало понять, что она была в большой пещере.

Команда была заинтригована, но им пришлось вернуться в свой фургон, припаркованный у подножия скалы, чтобы принести лестницу. Придя обратно в пещеру, они развернули лестницу, и Жан-Мари первым достиг пола. Это была действительно большая пещера, по крайней мере 50 метров в высоту и столько же в ширину, с великолепными колоннами белого кальцита. Троица осторожно продвигалась сквозь темноту, ступая след в след, не нарушая первозданной среды, мимо огромных сводов и занавесей перламутра и среди костей и зубов давно вымерших медведей, разбросанных в древней спячке по ячейкам в глиняном полу.

Осветив стену, Элиет расплакалась. Ей открылись рисунки красной охрой, изображавшие силуэт мамонтенка. Молча друзья прошли вдоль стены, освещая один за другим очертания медведя, льва, хищных птиц, еще одного мамонта, даже носорога и обрисованных рук человека. «Я все думал: „Это сон. Это сон“», — вспоминал ШовеChauvet J.-M., Brunel-Deschamps E., Hillaire C. and Clottes J. Dawn of Art. The Chauvet Cave: The Oldest Known Paintings in the World. — N.Y.: Harry N. Abrams, 1996..

В фонарях садились батарейки, поэтому команда повернула обратно, они выбрались из пещеры и поехали обратно к дому Элиет, чтобы поужинать с ее с дочерью Кэрол. Но их эмоциональные, несвязные и во многом неясные рассказы об увиденном так заинтриговали Кэрол, что она настояла, чтобы они взяли ее с собой в пещеру — увидеть чудеса собственными глазами.

Уже стемнело, когда они снова вошли в пещеру, уже с более мощными фонарями, свет которых показал все великолепие их открытия. Несколько пещер, украшенных чудесным набором животных: лошади, утки, сова, львы, гиены, пантеры, олени, мамонты, горные козы и бизон. Большинство выполнены в прекрасном натуралистическом стиле, с нарисованными углем тенями, перекрывающимися в перспективе головами, и в позах, имеющих реальную эмоциональную окраску. Там был ряд спокойных, задумчивых лошадей, милый мамонтенок с большими круглыми ногами, а также пара дерущихся носорогов. Был даже носорог, чьи семь ног предположительно изображали бег.

Пещера Шове, как она теперь называется, сегодня признана одним из самых важных мест в мире первобытного искусства. Сохраненная в первозданном виде — там даже есть следы древних жителей, — она опечатана и охраняется для безопасности ее хрупкой среды. Доступ строго контролируется, и лишь немногим счастливчикам было позволено войти в пещеру. Один из них — немецкий режиссер Вернер Херцог, чей фильм 2011 года «Пещера забытых снов» является для большинства из нас наилучшей возможностью насладиться замечательным наскальным искусством охотников ледникового периода, которые укрывались в этих пещерах 30 тысяч лет назад.

Цель этой главы — исследовать не наскальные изображения сами по себе, а загадку, вероятно лучше, чем где-либо, поставленную названием фильма Херцога. Как видно из любого обзора тех рисунков, они не просто плоские, одномерные представления о том, что видит глаз. Они подчас абстрагированы и дают ощущение движения, они используют изгибы и закругления в скалах, наделяя изображенных животных почти трехмерным видом[145]. Художник(и) не просто рисовал(и) объекты — это были идеи. Те, кто расписывал стены пещеры Шове, были, как и мы, людьми, думавшими о мире и своем месте в нем; они обладали сознанием.

Но что есть сознание? Это, конечно, вопрос, который волновал философов, художников, нейробиологов, да и всех нас, возможно, все время, которое мы были в сознании. В этой главе мы пойдем легким путем, не пытаясь давать каких-либо строгих определений. В самом деле, мы считаем, что стремление понять это чрезвычайно странное биологическое явление часто сдерживается придирчивостью в его определении. Биологи не могут даже договориться о едином определении самой жизни; но это не остановило их от исследования вопросов клетки, двойной спирали ДНК, фотосинтеза, ферментов и множества других явлений живой природы, в том числе тех, что подчиняются квантовой механике, толкующей сейчас многое из того, что значит быть живым.

Мы исследовали многие из этих открытий в предыдущих главах, но все то, что мы до сих пор обсуждали — от магнитных компасов до действия ферментов, от фотосинтеза до наследственности и обоняния, — может обсуждаться с точки зрения обычной химии и физики. Хотя квантовая механика может быть нам незнакома, но, в частности, в ракурсах многих биологов она все равно полностью вписывается в рамки современной науки. И хотя мы не можем иметь интуитивного или осмысленного понимания того, что происходит в эксперименте с двумя щелями или квантовой запутанности, математика, как фундамент квантовой механики, является точной, логичной и невероятно мощной.

Но сознание — это другое. Никто не знает, где и как оно вписывается в ту науку, которую мы обсуждали до сих пор. Нет (авторитетных) математических формул, которые включают в себя термин «сознание», и в отличие, скажем, от катализа или переноса энергии оно до сих пор не было обнаружено в чем-либо неживом. Свойство ли это всего живого?

Большинство людей так не думают и наделяют сознанием те существа, которые обладают нервной системой; но тогда насколько развитая нервная система необходима? Скучает ли рыба-клоун по родному рифу? Неужели наш европейский дрозд действительно так хочет лететь на юг зимой; или он действует на автомате, как беспилотный летательный аппарат? Большинство владельцев собак, котов или лошадей убеждены, что их питомцы обладают сознанием; значит, сознание возникает у млекопитающих? Многие владельцы волнистых попугайчиков и канареек в равной степени уверены, что их любимцы также обладают индивидуальностью и столь же сознательны, как кошки, их караулящие. Но если сознание является общим для птиц и млекопитающих, то и те и другие, вероятно, унаследовали его от общего сознательного предка, возможно, кого-то вроде примитивной рептилии — амниота, который жил более 300 миллионов лет назад и представляется предком птиц, млекопитающих и динозавров. Ну а чувствовал ли тираннозавр из главы 3 страх, погружаясь в болото триасового периода? А более примитивные животные на самом деле не обладают сознанием? Многие владельцы аквариумов будут настаивать на том, что рыбы или моллюски вроде осьминогов имеют сознание; но, чтобы найти предка для всех этих групп, мы должны вернуться к возникновению позвоночных в кембрийский период 500 миллионов лет назад. Неужели сознание действительно такое древнее?

Конечно, мы не знаем точно. Даже владельцы домашних животных высказывают только догадки, ведь никто не знает, как отличить поведение, подобное человеческому, от истинного сознания. Не зная, что такое сознание, мы никогда не узнаем, какие формы жизни им обладают. И при таком наивном подходе мы будем избегать всех споров и дискуссий и оставаться полностью в неведении о том, когда же возникло сознание на нашей планете или кто из наших родственников в животном царстве обладает самосознанием. Мы принимаем в качестве отправной точки утверждение, что те из наших предков, кто рисовал медведей, бизонов или диких лошадей на стенах древних пещер, были определенно сознательными. Так, в период между приблизительно тремя миллиардами лет назад, когда микробы возникли из первобытной грязи, и десятками тысяч лет назад, когда первые современного вида люди украшали пещеры изображениями животных, в живой материи появилось необычное свойство: эта материя осознала себя. Наша цель в этой главе — рассмотреть, как и почему это получилось, а также рассмотреть спорное предположение, что квантовая механика играет ключевую роль в возникновении сознания.

Во-первых, в свете наших предыдущих глав зададимся вопросом, нужно ли нам прибегать к квантовой механике, чтобы объяснить этот самый загадочный из человеческих феноменов. Конечно же, недостаточно принять распространенную точку зрения, что сознание загадочно и трудноопределимо и квантовая механика загадочна и трудноопределима, поэтому наверняка они должны быть как-то связаны.

Насколько необычно сознание

Пожалуй, самое необычное, что мы знаем о Вселенной, — то, что мы знаем очень много о ней благодаря удивительному ее свойству, заключенному в наших собственных черепах: нашим сознательным умам. Это действительно весьма необычно, и не в последнюю очередь потому, что функция данного странного свойства не совсем ясна.

Философы часто исследуют этот вопрос, представляя существование зомби. Они функционируют как человеческие существа, выполняют какие-то действия вроде росписи стен пещер или чтения книг, но все это без какой-либо внутренней жизни; ничего не происходит у них в головах, кроме механических расчетов, которые управляют движением конечностей или двигательными функциями, приводят в действие язык. Зомби — автоматоны, не имеющие осознания или ощущения того, что они делают. То, что такие существа по крайней мере теоретически возможны, подтверждается фактом, что многие наши действия — ходьба, езда на велосипеде, движения во время игры на музыкальном инструменте и т. д. — могут быть выполнены бессознательно (в том смысле, что наше сознание может быть в другом месте при выполнении этих задач), без осознания или воспоминания о проделанном. Действительно: когда мы начинаем думать об этом, нам, как ни парадоксально, становится труднее проделывать эти действия. Казалось бы, они несущественны для сознания. Но если существуют действия, которые могут быть выполнены без участия сознания, то возможно ли представить себе создание, осуществляющее все виды человеческой деятельности на автопилоте?

Казалось бы, нельзя; есть виды деятельности, где без сознания, как представляется, не обойтись, например естественный язык. Очень трудно представить себе общение на автопилоте. Так же трудно было бы на автомате произвести хитрый расчет или решить кроссворд. Мы не можем представить себе нашу первобытную художницу (будем условно считать ее женщиной) в состоянии нарисовать бизона, если она имеет только стену пещеры перед собой, без участия сознания. Все эти непременно сознательные действия объединяет то, что ими движут идеи, такие как идея, стоящая за словом, решение для проблемы или понимание того, чем является бизон и что он значит для первобытных людей. Действительно, стены пещеры Шове дают много доказательств самого мощного применения идей: соединения их вместе для формирования нового понятия. На нависающем камне, например, нарисована выдуманная фигура, обладающая верхней частью тела бизона, но нижней человеческой половиной. Такой объект мог быть создан только в сознании.

Тогда чем являются идеи? Учитывая наши цели, допустим, что идеи представляют собой сложную информацию, которая соединяется в нашем сознании, чтобы сформировать понятия, которые имеют смысл для нас, например, что бы мог значить образ получеловека-полубизона на стене пещеры Шове для людей, населявших эти пещеры. Такое сжатие сложной информации в особую идею упоминалось применительно к Моцарту, описывавшему, как целостная музыкальная композиция может быть «закончена в моей голове, хотя она и долгая. Тогда мой ум захватывает ее, как будто я ее вижу… Процесс идет непоследовательно, с детальной доработкой различных частей до того вида, в каком они будут потом, уже в целостном произведении»[146]. Сознательный ум способен «захватить» сложную информацию «в различных частях» так, что ее значение воспринимается как «целостное произведение». Сознание позволяет нашему уму работать на идеях и понятиях, а не просто на раздражителях.

Но как сложная нейронная информация соединяется в нашем сознании, формируя идею? Этот вопрос является одним из аспектов первой головоломки сознания — тем, что часто называют проблемой связи: как информация, закодированная в разрозненных областях нашего мозга, связывается в нашем сознании? Проблема связи обычно формулируется в терминах визуальной или иной сенсорной информации. Вспомним, например, как Лука Турин описывал по памяти аромат духов Shiseido Nombre Noir: «Это было нечто между розой и фиалкой, но без следов их сладости — скорее, доведенные до строгости, с тонкой кедровой основой, как у коробки с сигарами». Турин воспринимал аромат не как смесь разных запахов, каждый из которых связан с раздражением конкретного обонятельного рецептора, но как единый аромат с диапазоном основных запоминающихся нот и тонов, в том числе целого ряда вспомогательных понятий, таких как сигары и фиалки. Точно так же виды и звуки воспринимаются не как отдельные пропорции цветов, текстур или нот, а в качестве интегрированных сенсорных впечатлений, воспоминаний и понятий, как, например, бизон, дерево или человек.

Представьте себе нашу художницу из палеолита, наблюдающую за настоящим бизоном. Ее глаза, нос, уши и, если бы это был убитый бизон, тактильные рецепторы в пальцах захватили бы множество сенсорных впечатлений от животного, в том числе его запах, очертания, цвет, текстуру, движение и звук. В главе 5 мы обсуждали, как запахи улавливаются нашим обонянием. Вспомните, что молекулы пахучих веществ, которые связываются с каждым обонятельным нейроном, заставляют клетку «сработать», то есть послать электрический сигнал вдоль аксона (пучкообразный отросток клетки) от обонятельного эпителия в задней части носа до обонятельной луковицы в головном мозге. Мы изучим детали этого возбудительного процесса далее в этой главе, поскольку это ключ к пониманию возможного участия квантовой механики в наших мыслях. Сейчас, однако, мы представим себе молекулу запаха, доносящегося от нашего бизона до носа нашей художницы, где он связывается с обонятельным рецептором и запускает цепь электрических импульсов, чтобы двигаться по проводящему аксону, подобно телеграфному сигналу, содержащему только точки, или импульсы, а не точки и тире, как в телеграмме.

Когда обонятельный нервный сигнал прибыл в мозг нашей художницы, это вызвало раздражение (усиление импульсов) еще большего числа нервов на его пути: импульсный сигнал прыгал от одного нерва к другому, и каждый из них действовал как своего рода ретранслятор. Другие сенсорные данные были также захвачены в импульсные сигналы. Например, палочки и колбочки (специализированные нейроны наподобие обонятельных, но реагирующие на свет, а не на запах), которыми выложена сетчатка глаза, послали потоки импульсных сигналов с помощью оптических нервов к зрительной коре мозга художницы. И точно так же, как обонятельные нейроны отреагировали на отдельные молекулы запаха, оптические нервы отреагировали лишь на некоторые черты образа, который попал на ее сетчатку: одни реагировали на определенный цвет или оттенок серого, другие — на контуры, линии или отдельные текстуры. Слуховые нервы в ее внутреннем ухе так же отреагировали на звук — возможно, тяжелое дыхание раненого бизона; а прикосновение к его меху было зафиксировано механочувствительными нервами в коже. Во всех этих случаях каждый сенсорный нейрон отозвался бы только на некоторые особенности сенсорного воздействия. Например, отдельный слуховой нейрон возбуждался бы только, если звук, дошедший до ушей художницы, включал определенную частоту. Но, независимо от источника, сигнал, создаваемый каждым нервом, был бы точно такой же: электрические импульсы, проходящие от органа чувств к соответствующим областям мозга художницы. Там эти сигналы могут вызвать сиюминутные двигательные реакции; но они могут также и модифицировать связь между нейронами, чтобы ее наблюдения запоминались по принципу «нейроны, которые срабатывают вместе, связываются вместе», что иллюстрирует, как воспоминания кодируются в головном мозге.

Важным моментом является то, что нигде среди примерно 100 миллиардов нейронов человеческого мозга не существует участка, где этот обширный сенсорный импульсный поток объединяется, формируя осознанное впечатление от бизона. На самом деле «поток» не совсем правильное слово здесь, потому что оно предполагает некоторое объединение информации внутри себя, чего не происходит в нейронах. Вместо этого каждый нервный сигнал остается блокированным в отдельно взятом нерве. Таким образом, вместо потока вы должны представлять информацию, проходящую через мозг в виде последовательности сигналов — импульс за импульсом, — проходящих вдоль отдельных нитей огромного клубка из триллионов нейронов. Проблема связи — это проблема понимания того, как вся эта информация, закодированная в неизмеримом числе импульсов, генерирует унифицированное восприятие бизона.

И связываются ведь не только чувственные впечатления. Сырьем для сознания являются не сенсорные данные, лишенные контекста, а значимые понятия — в случае с бизоном это «шерстистый», «пахнущий», «страшный» или «великолепный», — каждое из которых содержит множество сложной информации. Весь этот дополнительный багаж должен быть связан с чувственными впечатлениями, чтобы обеспечить впечатление шерстистого, пахнущего, страшного, но великолепного бизона, которого наша первобытная художница в дальнейшем вспомнит и нарисует[147].

Формулирование проблемы связи с точки зрения идей, а не чувственных впечатлений подводит нас к сути проблемы сознания — загадке того, как идеи могут двигать умы и тем самым тела. Мы никогда не узнаем, что именно было в сознании первобытной художницы, что побудило ее нанести рисунок на камень. Может быть, она думала, что изображение бизона украсило бы темный угол; или, может, она считала, что, нарисовав животное, она улучшает шансы своих друзей-охотников на успех. Но в чем мы можем быть уверены, так это в том, что художница могла верить, что решение рисовать бизона было ее идеей.

Но как идея может двигать материю? Мозг, рассматриваемый как вполне авторитетный объект, получает информацию через один из сенсорных входов, а затем обрабатывает эту информацию, генерируя выходные сигналы так же, как компьютер (или зомби). Но где же в том переплетении импульсов кроется наше сознание, то чувство «я», которое, по нашему убеждению, управляет нашими намеренными действиями? Чем именно это сознание является и как оно взаимодействует с материей нашего мозга, чтобы двигать наши руки, ноги или язык? Сознание, или свободная воля, даже не фигурирует в полностью детерминистской вселенной, потому что законы причинности допускают только поочередный порядок вещей в бесконечной цепи причин и следствий, простирающейся от той пещеры Шове обратно к Большому взрыву.

Жан-Мари описывает момент, когда он и его друзья впервые осмотрели картины в пещере Шове: «На нас давило чувство, что мы были не одни — нас окружали духи художников. Казалось, мы чувствовали их присутствие»[148]. Очевидно, что исследователи получили глубокий, как некоторые назвали бы, духовный опыт. Когда мы смотрим внутрь черепа человека или животного, все, что мы находим, — влажная мягкая плоть, не особенно отличающаяся по составу от бизоньего стейка. Но когда эта плоть находится внутри нашего собственного черепа, она осознает себя и усваивает опыт, понятия, которые, думается, не существуют в материальном мире. И каким-то образом этот неосязаемый материал осознания и опыта — наше сознание — движет нашим материальным мозгом, обусловливая наши действия (или по крайней мере мы так это воспринимаем). Эта головоломка, по-разному называемая то психофизической проблемой, то трудной проблемой сознания, безусловно, самая глубокая тайна всего нашего существования.

В этой главе мы зададимся вопросом, может ли квантовая механика дать какие-то разгадки этой глубокой тайны. Следует подчеркнуть прежде всего, что любые доводы о сознании остаются весьма спекулятивными по своей природе, так как никто не знает, что это такое и как это работает. Среди неврологов, психологов, компьютерщиков и исследователей искусственного интеллекта даже нет консенсуса по поводу необходимости чего-то еще, помимо очевидной сложности человеческого мозга, для объяснения сознания.

Нашей отправной точкой будут мозговые процессы, которые привели к тому, что на скале в Ардеше появился силуэт бизона.

Механика мышления

В этом разделе мы будем следовать причинно-следственной цепочке в обратном направлении от появления линии красной охры на стене пещеры 30 тысяч лет назад. Этот путь поведет нас от сокращений мышц в руке художника, рисовавшего ту линию, обратно к нервным импульсам, заставившим мышцы сокращаться, далее к импульсам в мозге, возбудившим эти нервы, и сенсорному воздействию, которое запускает цепь событий. Наша цель — установить, где сознание вносит свой вклад в эту причинно-следственную цепочку, чтобы исследовать роль квантовой механики в этом событии.

Мы можем представить себе картину, как тысячи лет тому назад неизвестная художница, одетая, возможно, в медвежьи шкуры, всматривалась в темноту пещеры Шове. Рисунки были обнаружены глубоко внутри пещеры, и у нее, наверное, кроме емкостей с красками, был с собой в пещере факел. Затем в какой-то момент художница обмакнула палец в плошку с окрашенным углем и нанесла краску на стену, изображая контур бизона.

Движение руки художницы по стене пещеры инициировал мышечный белок миозин. Миозин — фермент, который использует химическую энергию для подпитки мышечных сокращений, по сути заставляя мышечные волокна скользить друг по другу. Детали этого механизма сокращений вычислялись сотнями ученых в течение нескольких десятилетий, и это замечательный пример биологической инженерии и динамики на наноуровне. Но в этой главе мы опустим увлекательные молекулярные подробности сокращения мышц, сосредоточившись на том, как некая эфемерная идея может заставить мышцы сокращаться (рис. 8.1).

Рис. 8.1. Нервные сигналы идут от головного мозга по спинному, достигая мышечных волокон и заставляя мышцы сокращаться и двигать конечность — руку


Ответ в данном случае — никак. Сокращения мышечных волокон художницы фактически запустились, когда положительно заряженные ионы натрия направились в ее мышечные клетки. Мышечные клетки имеют больше ионов натрия на внешней стороне их мембраны, чем внутри, что приводит к разнице напряжения на их мембране, и это немного напоминает крошечную батарейку.

Однако в этих мембранах есть поры, называемые ионными каналами, которые, открываясь, впускают ионы натрия в клетку. Именно этот процесс электрической разрядки и вызвал сокращение мышц художницы.

Следующим шагом к началу нашей цепочки причинно-следственных связей будет вопрос: что заставило ионные каналы в мышцах открыться в тот момент? Ответ заключается в том, что двигательные нервы, присоединенные к мышцам руки художницы, высвободили химические вещества, называемые нейротрансмиттерами, которые и открыли ионные каналы. Но что же тогда заставило эти двигательные нервы выпустить дозу нейротрансмиттеров? Нервные окончания выпускают нейротрансмиттеры всякий раз, когда появляется электрический сигнал, называемый потенциалом действия (рис. 8.2). Потенциалы действия имеют основополагающее значение для всех сигналов нервной системы, поэтому нам нужно более внимательно взглянуть на то, как они работают.

Рис. 8.2. Нервы посылают электрические сигналы от тела клетки вдоль аксона к нервным окончаниям, где они вызывают высвобождение нейротрансмиттера в синапсах. Нейротрансмиттер попадает в тело следующего по цепочке нейрона, возбуждая его и тем самым передавая нервный сигнал от одного нейрона к другому


Нервная клетка, или нейрон, — чрезвычайно длинная, тонкая змеевидная клетка, состоящая из трех частей. На головном конце у нее паукообразное клеточное тело, где и берет начало потенциал действия. Затем он проходит вдоль тонкой средней части под названием «аксон» («пучкообразный отросток» обонятельного нейрона) к нервному окончанию, где молекулы нейротрансмиттеров высвобождаются (см. рис. 8.2). Хотя аксон напоминает маленький электрический кабель, способ передачи в нем электрического сигнала гораздо сложнее, чем процесс прохода потока отрицательно заряженных электронов через медный провод.

Нервная клетка так же, как мышечные клетки, как правило, имеет больше положительно заряженных ионов натрия снаружи, чем внутри. Эта разница поддерживается с помощью насосов, которые выталкивают положительно заряженные ионы натрия из нервной клетки через мембрану. Избыток внешних положительных зарядов обеспечивает разницу напряжения на клеточной мембране около одной сотой доли вольта. Хотя это с виду немного, вы должны помнить, что клеточные мембраны толщиной всего несколько нанометров, так что это напряжение возникает на очень коротком расстоянии. Это означает, что мы имеем разность потенциалов (чем и является напряжение на самом деле) на клеточной мембране в миллион вольт на метр. Это эквивалентно ошеломляющим десяти тысячам вольт на отрезке один сантиметр и почти достаточно, чтобы создать искру, какая, например, требуется свече зажигания вашего автомобиля для воспламенения топлива.

Головной отдел двигательного нерва художницы, или тело нервной клетки, соединяется со скоплением структур, называемых синапсами (см. рис. 8.2), которые являются своего рода распределительными коробками между нервами. Верхние нервы высвобождают молекулы нейротрансмиттера в эти распределители в таком количестве, в каком их высвобождается в нервно-мышечном соединении; это вызывает открытие ионных каналов в мембране тела нервной клетки и позволяет тем самым положительно заряженным ионам устремляться внутрь, вызывая резкое падение напряжения.

Большинство падений напряжения, вызванных открытием нескольких ионных каналов в синапсе, не будут иметь практически никакого эффекта. Но если поступает большое количество нейротрансмиттера, то и множество ионных каналов будет открываться. Последующее движение положительных ионов в клетку приводит к снижению напряжения ее мембраны ниже критического порога, около –0,04 В. Когда это происходит, вступает в дело другой набор ионных каналов. Это потенциалозависимые ионные каналы, то есть они чувствительны не к нейротрансмиттерам, а к разности напряжений на мембране. В примере нашей художницы, когда напряжение в теле клетки упало ниже критического порога, целое скопление этих каналов открылось, чтобы позволить большему количеству ионов устремиться в нерв, после чего их участок мембраны замкнулся. От последующего падения напряжения открылось еще больше потенциалозависимых каналов, позволяя еще большему числу ионов двинуться внутрь клетки, вызывая больше замыканий на мембране. Длинный проводящий элемент нерва, аксон, выстлан этими потенциалозависимыми каналами, и как только короткое замыкание произошло в теле клетки, это вызвало своего рода эффект домино в замыканиях на мембране — потенциал действия, — который быстро пошел вниз по нерву, пока не достиг нервного окончания (см. рис. 8.3). Там он стимулировал высвобождение нейротрансмиттера в нервно-мышечное соединение, в результате чего мышцы руки художницы сократились так, чтобы очертить контур бизона на стене пещеры (см. рис. 8.1).

Рис. 8.3. Потенциалы действия перемещаются по аксонам посредством работы потенциалозависимых ионных каналов в мембранах нервных клеток. В состоянии покоя мембрана имеет больше положительных ионов на внешней стороне, чем на внутренней. Тем не менее изменение напряжения, вызванное верхним потенциалом действия, вызовет открытие ионных каналов, и волна положительно заряженных ионов натрия — потенциал действия — устремится в клетку, временно изменяя напряжение мембраны. Этот электрический импульс откроет нижние ионные каналы эффектом домино, что обусловит всплеск электричества, идущий по нерву, до нервных окончаний, где он вызывает высвобождение нейротрансмиттера. После того как потенциал действия спадает, ионные насосы возвращают мембрану в обычное состояние покоя


Из описания видно, как отличаются нервные сигналы от электрического сигнала, перемещающегося по проводу. Скажем, ток, как движение зарядов, идет не по всей длине нервных проводов по направлению нервного сигнала, а перпендикулярно к направлению потенциала действия — извне внутрь, с помощью тех самых ионных каналов в клеточной мембране. Кроме того, когда потенциал действия инициируется открытием первых ионных каналов, они немедленно снова захлопываются и ионные насосы начинают работать на восстановление исходного напряжения по всей мембране. Так что еще один способ исследования нервного сигнала состоит в волнообразном открытии и закрытии ионных дверей мембран с перемещением от тела клетки к нервным окончаниям: движущийся электрический импульс.

Нерв-нервные соединения большинства двигательных клеток располагаются в спинном мозге, где они получают нейротрансмиттерные сигналы от сотен или даже тысяч верхних нервов (см. рис. 8.1). Некоторые верхние нервы выбрасывают нейротрансмиттеры в распределительную коробку (синапс), открывающую ионные каналы в теле клетки, для увеличения вероятности возбуждения двигательного нерва, в то время как другие, как правило, каналы закрывают. Таким образом, тело каждой нервной клетки действует подобно логическому элементу компьютера, генерируя выход — срабатывающий или нет — на основании входов. И если нейрон похож на логический элемент, то мозг, состоящий из миллиардов нейронов, может рассматриваться как своего рода компьютер; по крайней мере это предположение большинства когнитивных нейробиологов, присоединившихся к так называемой вычислительной теории разума.

Но мы забегаем слишком далеко вперед — мы еще не достигли мозга. Двигательный нерв нашей художницы должен был получить множество нейротрансмиттеров в его нерв-нервных распределительных коробках, чтобы возбудиться. Эти входящие сигналы пришли из верхних нервов, которые в основном возникали в ее мозге. Если вернуться по причинно-следственной связи назад, головные отделы этих нервов могли принять свои решения о том, возбуждаться ли им, на основании многочисленных входных сигналов, а также входов для этих входных сигналов и так далее все дальше и дальше в обратном направлении через причинно-следственную цепь, пока мы не достигнем нервов, получивших входные сигналы от глаз, ушей, носа и тактильных рецепторов художницы, а также центров памяти, которые получили бы сенсорные сигналы от предыдущих наблюдений за живым и мертвым бизоном. Между сенсорными входами и двигательным выходом стоит нейронная сеть мозга, которая выполняла вычисления, определяющие решение о генерировании на выходе точного движения для рисования контуров бизона.

И вот что мы имеем: полная цепочка событий, приведших к сокращению мышц, двигавшему руку художницы вдоль стены. Мы что-нибудь пропустили? То, что мы описали, является полностью механистической причинно-следственной цепью от сенсорного входа к двигательному выходу, с некоторой информацией, поступающей через центры памяти. Это своего рода механизм, о котором Декарт говорил, когда заявил (обсуждено в главе 2), что животные суть просто машины; все, что мы сделали, — это заменили его блоки и рычаги нервами, мышцами и логическими элементами.

Но помните, что Декарт отвел роль и духовной сущности, душе, как первоочередному двигателю человеческих поступков. Где находится душа среди входов и выходов в этой цепи событий? До сих пор мы описывали художницу только как зомби. Где же ее сознание, ее идея о том, что она должна изобразить что-то значащего бизона на стене пещеры, вошли в цепь событий между входом и выходом? Это остается самой большой загадкой науки о мозге.

Как разум движет материей

Так или иначе, большинство людей, вероятно, на стороне дуализма — убеждения, по которому ум/душа/сознание есть не что иное, нежели физическое тело. Но дуализм утратил уважение в научных кругах в XX веке, и большинство нейробиологов теперь предпочитают идею монизма — убеждение, что ум и тело суть одно и то же. Например, нейрофизиолог Марсель Кинсборн утверждает: «Осознавать — значит иметь нейронную схему для каждого интерактивного функционального состояния»[149]. Но логические элементы компьютера, как мы уже отмечали, весьма похожи на нейроны, и непонятно, почему множество связанных компьютеров, как во Всемирной сети, где около миллиарда интернет-хостов (хотя это все равно меньше по сравнению с 100 миллиардами нейронов мозга), не проявляют никаких признаков сознания. Почему кремниевые компьютеры — зомби, тогда как компьютеры из плоти — сознательны? В сложности ли дело и полной «взаимоподключенности» наших клеток мозга при непохожести этого на Всемирную паутину[150] или же в том, что сознание — это совершенно иного рода вычисления?

Конечно, есть множество толкований сознания, которые изложены в целом ряде книг по этой теме. Но в нашем случае мы сосредоточим внимание на весьма спорном, но увлекательном утверждении, которое имеет самое непосредственное отношение к нашей теме, а именно, что сознание является феноменом квантовой механики. В этом отношении наиболее известен пример оксфордского математика Роджера Пенроуза, который в своей книге 1989 года «Новый ум короля» утверждал, что человеческий разум — это квантовый компьютер.

Вы, наверное, помните разговор о квантовых компьютерах в главе 4, где мы вспоминали статью из New York Times 2007 года, в которой утверждалось, что растения — это квантовые компьютеры. Исследователи Массачусетского технологического института в конце концов пришли к мысли, что системы фотосинтеза у микробов и растений действительно могут выполнять своего рода квантовые вычисления. Но могут ли их собственные умы так же работать в квантовой сфере? Для того чтобы изучить этот вопрос, мы сначала должны более внимательно взглянуть на то, что такое квантовые компьютеры и как они работают.

Расчеты с квантовыми битами

Когда мы думаем о компьютере сегодня, мы имеем в виду электронное устройство, способное выполнять инструкции по манипулированию и обработке информации при помощи совокупности электрических переключателей во включенном или выключенном состоянии, каждый из которых способен кодировать двоичное число (или бит) как 1 или 0. Совокупность таких переключателей может организовываться для построения схем, выполняющих логические инструкции, которые могут быть объединены и использованы для выполнения арифметических операций, таких как сложение и вычитание, или в действительности для открытия и закрытия каналов, описанных нами применительно к нейронам. Большим преимуществом этого электронного цифрового компьютера является то, что такие расчеты намного быстрее, чем любой ручной способ выполнения такой же задачи, будь то подсчет на пальцах, в уме или на бумаге.

Но в то время, как электронные компьютеры могут чрезвычайно быстро высчитывать суммы, даже они не могут уследить за сложностью квантового мира с множеством пересекающихся вероятностей. Чтобы преодолеть эту проблему, лауреат Нобелевской премии физик Ричард Фейнман придумал возможное решение. Он предложил выполнять вычисления в квантовом мире с помощью квантового компьютера.

Чтобы увидеть, как квантовые компьютеры могли бы работать, полезно будет в первую очередь представить бит классического компьютера в виде сферического компаса, стрелка которого может указывать либо на 1 (северный полюс), либо на 0 (южный полюс) и может вращаться на 180°, переключаясь между этими двумя состояниями (рис. 8.4, а). Центральный процессор (ЦПУ) компьютера состоит из многих миллионов этих однобитовых переключателей, поэтому весь вычислительный процесс может быть представлен как применение сложного набора коммутационных правил (алгоритмов), которые могут поворачивать множество сфер на 180°.

Рис. 8.4. Бит классического компьютера в виде сферического компаса: а — классический бит, переключаемый с 1 на 0, представлен как вращение классической сферы на 180°; б — кубит (квантовый бит), переключаясь, может быть представлен как вращение сферы через любой произвольный угол. Тем не менее когерентный кубит может быть также в суперпозиции для множества вращений; в — три когерентных кубита в состоянии запутанности, как будто воображаемые нити соединяют поверхности каждой сферы. Натяжение этих нитей, следуя вращениям, иллюстрирует квантовые вычисления


Эквивалент бита из квантовых вычислений называется кубитом. Он похож на классическую сферу[151], но его движение не ограничивается 180°. Вместо этого он может поворачиваться на любой произвольный угол в пространстве и, будучи элементом квантовой механики, может ориентироваться на множество направлений одновременно в квантовой когерентной суперпозиции (см. рис. 8.4, б). Эта повышенная гибкость позволяет кубиту кодировать больше информации, чем классический бит. Но реальным толчком для наращивания вычислительной мощности будет помещение кубитов вместе.

В то время как состояние одного классического бита не влияет на состояние соседних, кубиты могут быть также в квантовой запутанности. Возможно, вы помните из главы 6, что запутанность является квантовым шагом от когерентности, где квантовые частицы теряют свою индивидуальность, и то, что происходит с одним, затрагивает их все мгновенно. С точки зрения квантовых вычислений запутанность можно визуализировать, как если бы каждая сфера-кубит была соединена эластичными нитями[152] с любой другой (см. рис. 8.4, в). Теперь давайте представим себе, что мы вращаем только одну из сфер. Без запутанности вращение не будет влиять на соседние кубиты. Но если наш кубит спутан с другими, то вращение изменяет натяжение во всех соединительных нитях между этими связанными кубитами. Вычислительный ресурс всех этих связующих нитей возрастает по экспоненте с увеличением числа кубитов, а это означает, что растет он в самом деле очень быстро.

Чтобы получить представление об экспоненциальном росте, вспомните наверняка известный сюжет о китайском императоре, который был настолько доволен изобретением шахмат, что обещал наградить изобретателя тем, что тот выберет. Смекалистый изобретатель попросил только одно зернышко риса для первого квадрата на шахматной доске, два зернышка — для второго, четыре — для третьего и т. д., удваивая количество зерен с каждым последующим квадратом до 64-го. Император, считая это скромной просьбой, охотно согласился и приказал своим слугам принести рис. Но когда рисовые зерна отсчитали, он тут же осознал свою ошибку. Первый ряд квадратов собрал только 128 зерен (27 плюс один — помните, первый квадрат имеет только одно зерно риса) и даже к концу второго ряда квадратов вышло только 32 768 зерен, чуть менее килограмма риса. Но когда килограммы стали множиться на последующих квадратах, император встревожился, обнаруживая, что к концу третьего ряда ему пришлось выдать более 200 тонн риса. Достижение конца четвертого ряда уже разорило бы королевство! На самом деле, чтобы дойти до конца шахматной доски, потребовалось бы 9 223 372 036 854 775 808 (263 плюс один) зерен риса, или 230 584 300 921 тонна, что примерно равно всему мировому урожаю риса на протяжении всей истории человечества.

Проблемой императора была его неспособность осознать, что удвоение числа снова и снова приводит к экспоненциальному росту — другими словами, увеличение числа от одного к другому пропорционально размеру предыдущего числа. Экспоненциальный рост является взрывным, как убедился император на собственном состоянии. И точно так же, как рисовые зерна в этой истории экспоненциально множились вслед за количеством квадратов шахматной доски, и мощность квантового компьютера растет по экспоненте вслед за количеством кубитов.

Это сильно отличается от классического компьютера, мощность которого возрастает только линейно с числом битов. Например, если добавить один бит в восьмибитном классическом компьютере, мощность увеличится на одну восьмую; чтобы мощность удвоить, нужно удвоить количество битов. А добавление просто одного кубита к квантовому компьютеру удвоит его мощность, приводя все к тому же экспоненциальному росту мощности, который наблюдал император в случае с рисовыми зернами. На самом деле если квантовый компьютер может поддерживать когерентность и запутанность в пределах всего 300 кубитов, которые потенциально могут привлечь только 300 атомов, то он в определенных заданиях может превзойти классический компьютер размером с целую вселенную!

Но — и это очень большое НО — для работы квантового компьютера кубиты должны взаимодействовать только друг с другом для выполнения вычислений (с помощью своих невидимых запутанных нитей). Это означает, что они должны быть полностью изолированы от окружающей среды. Проблема в том, что любое взаимодействие с внешним миром заставит кубиты спутаться с окружающей их средой, которую мы можем рассмотреть как формацию гораздо большего числа нитей, которые тянули бы кубиты со всех сторон, конкурируя с нитями между ними и, следовательно, мешая расчетам, которые они выполняют. Это, по сути, представляет собой процесс декогеренции (рис. 8.5). Даже при очень слабом взаимодействии внешняя среда создает такой беспорядок в нитях кубитов, что они перестают вести себя слаженно относительно друг друга: их квантовые нити фактически разрываются и кубиты ведут себя как независимые классические биты.

Рис. 8.5. Декогерентность в квантовом компьютере, вызванная, как представляется, спутыванием нитей кубитов со скоплением нитей внешней среды. Это всячески сдвигает и растаскивает кубиты, и они больше не реагируют на связи в своей собственной запутанности


Квантовые физики делают все возможное, чтобы поддерживать когерентность в запутанных кубитах, работая с чрезвычайно разреженными и тщательно контролируемыми физическими системами, кодируя кубиты в небольшое количество атомов, охлаждая систему на грани абсолютного нуля и тщательно изолируя оборудование для недопущения влияния окружающей среды. При таких подходах они получили значимые результаты. В 2001 году ученым из IBM и Стэнфордского университета удалось построить семикубитный «пробирочный квантовый компьютер», который мог реализовать сложный код под названием «алгоритм Шора», названный в честь математика Питера Шора, разработавшего его в 1994 году специально для запуска на квантовом компьютере. Алгоритм Шора кодирует очень эффективный способ разложения чисел на множители (устанавливающий, какие простые числа должны быть перемножены для получения требуемого числа). Это был огромный прорыв, разошедшийся по заголовкам научных изданий всего мира; на начальном этапе работы этот квантовый компьютер-новичок смог лишь вычислить простые множители числа 15 (3 и 5, если вам интересно).

За последнее десятилетие некоторые из ведущих физиков, математиков и инженеров упорно трудились, чтобы построить более крупные и качественные квантовые компьютеры, но прогресс был скромным. В 2011 году китайские исследователи сумели факторизовать число 143 (13 × 11), используя только четыре кубита. Как и американцы до них, китайская команда использовала систему, в которой кубиты были закодированы в спиновых состояниях атомов. Совершенно иной подход был впервые предложен канадской компанией D-Wave — они кодируют кубиты в движении электронов в электрических цепях. В 2007 году компания заявила, что разработала первый коммерческий 16-кубитный квантовый компьютер, способный решить головоломку судоку и другие задачи по сличению с образцом и оптимизации. В 2013 году НАСА, Google и Ассоциация университетов по космическим исследованиям (USRA) сообща приобрели (за неизвестную сумму) 512-кубитную машину, построенную D-Wave, которую НАСА планирует использовать для поиска экзопланет, то есть вращающихся вокруг не нашего Солнца, а далеких звезд. Однако задачи, до сих пор решаемые компанией, все были в пределах досягаемости обычной компьютерной мощности, и многие эксперты по квантовым вычислениям не уверены, что технология D-Wave является действительно квантовым вычислением или — даже если это так — что этот проект будет работать быстрее, чем классический компьютер.

Какой бы подход экспериментаторы ни выбирали, задачи, стоящие перед ними в превращении нынешнего зарождающегося поколения квантовых компьютеров в нечто полезное, остаются тяжелыми. Самая большая проблема — наращивание. Удвоение кубитов удваивает мощность квантового вычисления, но также и удваивает сложность поддержания квантовой согласованности и запутанности. Атомы должны быть холоднее, экранирование должно быть более эффективным, и становится все труднее и труднее поддерживать когеренцию дольше, чем несколько триллионных долей секунды. Декогеренция происходит задолго до того, как компьютеру удается завершить даже простейший расчет. (Хотя на момент написания этой работы при комнатной температуре квантовая когерентность ядерных спиновых состояний достигла впечатляющих 39 минут[153].) Но, как мы обнаружили, живым клеткам действительно удается сдерживать декогеренцию достаточно долго, чтобы транспортировать экситоны в фотосинтетических комплексах, или электроны и протоны в ферментах. Можно ли подобным образом сдерживать декогеренцию в центральной нервной системе, позволяя осуществляться квантовым вычислениям в головном мозге?

Расчеты с микротрубочками?

Первоначальный аргумент Пенроуза о том, что мозг является квантовым компьютером, пришел с довольно неожиданного направления — из известного (по крайней мере в математических кругах) ряда теорем о неполноте, выдвинутых австрийским математиком Куртом Геделем. Эти теоремы вызвали сильное удивление у математиков 1930-х годов, которые уверенно приступили к программе определения действенного набора математических аксиом, способных доказать, что истинные утверждения истинны, а ложные заявления ложны — то есть вся арифметика внутренне согласованна и свободна от каких-либо внутренних противоречий. Звучит так, будто это положение волнует только математиков или философов, однако это было и остается большим вопросом для логики. Теоремы Геделя о неполноте показали, что такая попытка была обречена на провал.

Первая из его теорем показала, что логические системы, такие как естественный язык или математика, могут делать некоторые истинные утверждения, которые они не могут доказать. Это может показаться безобидным, но имеет очень далеко идущие последствия. Рассмотрим знакомую логическую систему, такую как язык, который способен рассуждать на основе утверждений, например, «Все люди смертны. Сократ есть человек», чтобы заключить, что «Сократ смертен». Легко увидеть и легко формально доказать, что последнее утверждение логически вытекает из первых двух, учитывая простой набор алгебраических правил (если A = B и B = C, то A = C). Но Гедель продемонстрировал, что любая логическая система достаточно сложна, чтобы доказать фундаментальное ограничение математических теорем: применение их правил может генерировать утверждения, которые являются истинными, но не могут быть доказаны с помощью тех же инструментов, которые первоначально использовались для их создания.

Это кажется довольно странным, и это действительно так. Тем не менее, что важно, теорема Геделя не означает, что некоторые истинные утверждения просто недоказуемы. Вместо этого один набор правил может доказать истинность утверждений, порожденных и, следовательно, недоказуемых с помощью другого набора правил. Например, истинные, но недоказуемые утверждения из языка могут быть доказуемы по правилам алгебры и наоборот.

Это, конечно, огромное упрощение, несправедливое по отношению к тонкостям темы. Заинтересованный читатель мог бы обратиться к книге 1979 года за авторством американского профессора когнитивной науки Дугласа Хофштадтера[154] и к близким к ней публикациям. Ключевым моментом здесь является то, что в своей книге «Новый ум короля» Пенроуз принимает теоремы Геделя о неполноте в качестве отправной точки для своего аргумента, указывая вначале на то, что классические компьютеры используют формальные логические системы (компьютерные алгоритмы) для формулировки утверждений. Из теоремы Геделя следует, что они также должны быть способны генерировать истинные утверждения, которые они не могут доказать. Но, как утверждает Пенроуз, люди (или по крайней мере те представители вида, которые являются математиками) могут доказать истинность этих недоказуемых, но правдивых компьютерных утверждений. Таким образом, он заявляет, что человеческий разум больше, чем просто классический компьютер, так как он способен на то, что называется невычислимыми процессами. Далее он допускает, что эта невычислимость требует чего-то большего, что может дать только квантовая механика. Сознание, как он утверждает, требует квантового компьютера.

Это, конечно, очень смелое утверждение, основанное на доказуемости или недоказуемости сложного математического утверждения, к которому мы вернемся. Но в своей более поздней книге «Тени разума» Пенроуз пошел еще дальше, предлагая физический механизм, с помощью которого мозг может вычислить свои суммы в квантовом мире[155]. Вместе со Стюартом Хамероффом[156], профессором анестезиологии и психологии Аризонского университета, он утверждает, что структуры под названием «микротрубочки», обнаруженные в нейронах, являются кубитами квантового мозга[157].

Микротрубочки — это длинные нити белка тубулина. Хамерофф и Пенроуз предположили, что эти тубулиновые частицы — бусины на нити — могут принимать по меньшей мере две различные формы: расширение и сжатие — и, самое главное, способны вести себя как квантовые объекты, существующие в суперпозиции обеих форм сразу, чтобы сформировать что-то похожее на кубиты. Более того, они предположили, что тубулиновые частицы в одном нейроне спутаны с тубулиновыми частицами белков во множестве других нейронов. Вы помните, что спутывание — это «странное действие на расстоянии», которое потенциально соединяет объекты, находящиеся очень далеко друг от друга. Если бы эти странные связи между всеми триллионами нейронов в человеческом мозге были возможны, то они вполне могли бы связать воедино всю информацию, закодированную в разделенных нервах, и таким образом решить проблему связи. Они могли бы также наделить сознательный ум неуловимыми, но необычайно мощными свойствами квантового компьютера.

Теория сознания Пенроуза — Хамероффа дополняется множеством положений, в том числе, возможно, еще более спорным моментом об участии гравитации[158]. Но насколько этому можно верить? Мы, как и почти все неврологи и исследователи квантовой физики, не уверены в этом. Одно из наиболее очевидных возражений вытекает из представленного выше описания того, как информация передается от мозга к нервам. Вы, возможно, заметили, что там мы не упоминали микротрубочки. Просто нет необходимости это делать, поскольку, как известно, они не играют ведущих ролей в обработке нервной информации.

Микротрубочки поддерживают архитектуру каждого нейрона и перемещают нейротрансмиттеры вверх и вниз по его длине; но не предполагается, что они участвуют в сетевой обработке информации и отвечают за расчеты в мозге. Вряд ли микротрубочки составляют субстрат для наших мыслей.

Но, возможно, еще более весомым является возражение, что микротрубочки мозга весьма маловероятные кандидаты на место когерентных квантовых кубитов просто потому, что они слишком большие и сложные. В предыдущих главах мы рассматривали случаи квантовой когерентности, запутанности и туннелирования в целом ряде биологических систем — от фотосинтезирующих систем до ферментов, обонятельных рецепторов, ДНК и неуловимых органов магниторецепции у птиц. Но ключевой особенностью всего этого является то, что «квантовая» часть системы (экситон, электрон, протон или свободный радикал) — проста. Она состоит либо из одной частицы, либо из небольшого числа частиц, которые делают то, что требуется, на расстояниях, исчисляемых в атомах. Это, конечно, соответствует взглядам Шредингера 70-летней давности о том, что виды живой системы, которые наверняка подпадают под квантовые правила, будут включать в себя небольшое число частиц.

Но теория Пенроуза — Хамероффа предполагает, что целые белковые молекулы, состоящие из миллионов частиц, находятся в квантовой суперпозиции и спутаны не только с молекулами в пределах одной микротрубочки, но и с микротрубочками, также состоящими из миллионов частиц, в миллиарды нервных клеток по всему объему головного мозга. Это очень далеко от истины. Хотя никто и не сумел измерить когерентность в микротрубочках мозга, расчеты показывают, что квантовая когерентность даже одиночных микротрубочек не может сохраняться дольше нескольких пикосекунд[159], что слишком скоротечно, чтобы иметь какое-либо влияние на вычисления в мозге[160].

Однако, возможно, еще более фундаментальной проблемой теории квантового сознания Пенроуза — Хамероффа является оригинальный тезис Пенроуза о мозге, являющемся квантовым компьютером. Как вы помните, здесь Пенроуз основывался на своем утверждении, что люди могут доказать утверждения по Геделю, тогда как компьютеры не могут. Но это подразумевает квантовые вычисления в мозге только тогда, когда квантовые компьютеры могут доказать геделевские утверждения лучше, чем классический компьютер; этому утверждению не только нет абсолютно никаких доказательств, но и большинство исследователей считают иначе[161].

Далее мы видим, что не обязательно человеческий мозг может работать лучше, чем классический компьютер, при доказательстве геделевских утверждений. Хотя люди могут быть в состоянии доказать истинность недоказуемых геделевских утверждений, генерируемых компьютером, в равной степени возможно, что и компьютеры могут доказать истинность недоказуемых геделевских утверждений, порожденных человеческим разумом. Теорема Геделя лишь ограничивает способность одной логической системы доказать свои собственные утверждения; и она не накладывает ограничений на способность одной логической системы доказать геделевские утверждения из другой системы.

Но означает ли это, что квантовая механика не играет никакой роли в головном мозге? Есть ли вероятность, что, при такой значительной квантовой активности в наших телах наши мысли приводятся в движение исключительно за счет классических процессов, напоминающих паровой двигатель? Может быть, и нет. Новейшие исследования показывают, что квантовая механика действительно может сыграть решающую роль в работе разума.

Квантовые ионные каналы?

Возможно, место для квантово-механических явлений в мозге отведено среди ионных каналов в клеточных мембранах нейронов. Как мы уже говорили, они выступают как посредники для потенциалов действия — нервных сигналов, — которые передают информацию в мозг и таким образом играют центральную роль в обработке нейронной информации. Длина каналов — всего одна миллиардная метра (1,2 нанометра), ширина — менее половины длины, поэтому ионы проходят через них по одному. Тем не менее они делают это на чрезвычайно высокой скорости, около 100 миллионов в секунду. Кроме того, каналы весьма избирательны. Например, канал, отвечающий за проникновение ионов калия в клетку, позволяет пройти примерно одному иону натрия на каждые десять тысяч ионов калия, несмотря на то что ион натрия немного меньше иона калия, а вы могли наивно полагать, что он легко проскользнет, ведь места достаточно для прохода крупного иона калия.

Такая высокая скорость движения в сочетании с особой избирательностью поддерживает скорость потенциалов действия и, таким образом, их способность передавать наши мысли в мозге. Но как ионы перемещаются так быстро и избирательно — остается загадкой. Может ли здесь помочь квантовая механика? Мы уже открыли для себя (в главе 4), что квантовая механика может усилить движение энергии в процессе фотосинтеза. Может ли она так же усилить движение ионов в головном мозге? В 2012 году нейробиолог Густав Бернроидер из Университета Зальцбурга совместно с Иоганном Суммхаммером из Института атома Венского технологического университета осуществили квантово-механическое моделирование прохождения иона через потенциалозависимый канал и обнаружили, что ион делокализуется (сбивается с курса), когда проходит через канал: волна более когерентна волне, чем частица. Также эта ионная волна колеблется на очень высоких частотах и передает энергию окружающему белку посредством своего рода резонансного процесса, так чтобы канал эффективно действовал в качестве ионного холодильника, который уменьшает кинетическую энергию иона примерно наполовину. Такое эффективное охлаждение иона помогает поддерживать делокализованное квантовое состояние, сдерживая декогеренцию и тем самым способствуя быстрому квантовому движению в канале. Это также благоприятствует избирательности, так как степень охлаждения будет сильно отличаться, если калий заменяется натрием: конструктивная интерференция даст иону калия двигаться, в то время как деструктивная интерференция может сдерживать перенос ионов натрия. Группа ученых пришла к выводу, что квантовая когерентность играет незаменимую роль в проводимости ионов через каналы нервов и, таким образом, так протекает существенная часть нашего мышления[162].

Следует подчеркнуть, что эти исследователи не показали способность квантовых когерентных ионов действовать как нейронные кубиты, а также не показали, что они могли бы играть определенную роль в сознании; и, на первый взгляд, трудно понять, как они могли бы способствовать решению проблем сознания, таких как проблема связи. Тем не менее, в отличие от микротрубочек в гипотезе Пенроуза — Хамероффа, ионные каналы по крайней мере играют четкую роль в нейронных вычислениях — они лежат в основе потенциалов действия. Поэтому их состояние будет отражать состояние нервной клетки: если нерв возбужден, то ионы будут двигаться (помните, что они движутся как квантовые волны) быстро через каналы, в то время как, если нерв спокоен, любые ионы в каналах будут неподвижны. И поскольку общая сумма возбужденных и спокойных нейронов в нашем мозге должна каким-то образом кодировать наши мысли, то эти мысли также отражены — закодированы — в сумме всего этого квантового потока ионов, входящих и выходящих из нервных клеток.

Но как можно было бы объединить отдельные процессы мышления для создания осознанных, связных мыслей? Один когерентный ионный канал — квантовый или классический — не может кодировать всю информацию, связанную в мыслительные процессы, которые достигают высшей точки в визуализации сложного объекта, такого как бизон. Чтобы играть свою роль в сознании, ионные каналы должны быть связаны каким-либо образом. Может ли квантовая механика помочь здесь? Возможно ли, например, что ионы в канале не только когерентны по всей его длине, но когерентны или даже перепутываются с ионами в соседних каналах или даже соседних нервных клеток? Почти наверняка нет. Ионные каналы и ионы в них столкнутся с той же проблемой, что и идея Пенроуза — Хамероффа о микротрубочках. Хоть это всего лишь вероятность, что один ионный канал может быть спутан с соседним в пределах одной нервной клетки, но запутанность ионных каналов в различных нервах, которая необходима для решения проблемы связи, совершенно неосуществима в теплой, влажной, очень динамичной и декогерентно-возбудимой среде живого мозга.

Таким образом, если запутанность не может связать информацию квантового уровня в ионных каналах, есть ли что-нибудь еще, способное на это? Возможно. Потенциалозависимые ионные каналы, конечно, чувствительны к напряжению: они открывают и закрывают каналы. Напряжение — это лишь показатель разности в электрическом поле. Но мозг по всему объему заполнен своим собственным электромагнитным (ЭМ) полем, которое генерируется с помощью электрической активности всех его нервов. Это поле обычно обнаруживается технологиями сканирования мозга, такими как электроэнцефалография (ЭЭГ) или магнитоэнцефалография (МЭГ), и простой взгляд на одно из этих сканирований расскажет вам только, насколько это поле сложное и информационно богатое. Большинство нейробиологов проигнорировали потенциальную роль, которую ЭМ-поле может играть в мозговых вычислениях, сравнивая ее с паровым гудком поезда: продукт деятельности мозга, но без влияния на эту деятельность. Тем не менее некоторые ученые, в том числе Джонджо, недавно ухватились за идею, что переход сознания из дискретных частиц мозгового вещества в единое ЭМ-поле вполне может решить проблему связи и предоставить место для сознания[163].

Чтобы понять, как это могло бы работать, мы, вероятно, должны сказать немного больше о том, что подразумеваем под полем. Термин происходит от его применения: нечто расширяющееся в пространстве, как кукурузное или футбольное поле. В физике термин «поле» имеет, по существу, то же значение, но, как правило, относится к энергетическим полям, которые способны перемещать объекты. Гравитационные поля перемещают все, что имеет массу, а электрические или магнитные поля перемещают электрически заряженные или магнитные частицы, такие как ионы в нервных каналах. В XIX веке Джеймс Клерк Максвелл обнаружил, что электричество и магнетизм являются двумя аспектами одного и того же явления, электромагнетизма, поэтому мы рассматриваем их как ЭМ-поля. Уравнение Эйнштейна E = mc2 с энергией по одну сторону и массой по другую лихо продемонстрировало, что энергия и материя являются взаимозаменяемыми. Поэтому электромагнитное энергетическое поле мозга — левая часть уравнения Эйнштейна — столь же реально, как и материя, связывающая свои нейроны; и поскольку оно происходит от возбуждения нейронов, то кодируется в точности такая же информация, как в моделях нейронных возбуждений мозга. Однако в то время, как нейронная информация остается в возбужденных нейронах, электрическая активность, порожденная ими, объединяет всю информацию в ЭМ-поле мозга. Это потенциально может решить проблему связи[164]. А открывая и закрывая потенциалозависимые ионные каналы, ЭМ-поле связывается с квантовыми когерентными ионами, проходящими через каналы.

Когда теории сознания, связанные с ЭМ-полем, были впервые предложены в самом начале нынешнего века, не было прямых доказательств того, что электромагнитное поле мозга может влиять на модели возбуждения нерва и двигать нашими мыслями и действиями. Однако эксперименты, проведенные в нескольких лабораториях, недавно продемонстрировали, что внешние ЭМ-поля, по прочности и структуре аналогичные тем, что создает сам мозг, действительно влияют на нервное возбуждение[165]. В самом деле, кажется, что поле координирует нервное возбуждение, то есть синхронизирует множество нейронов так, чтобы они все вместе возбуждались. Полученные данные свидетельствуют о том, что собственное ЭМ-поле мозга, порожденное нервным возбуждением, также влияет и на возбуждение, обеспечивая своего рода автореферентный цикл, являющийся, по утверждениям многих теоретиков, важным компонентом сознания[166].

Синхронизация нервного возбуждения, осуществляемая мозгом, имеет также очень важное значение в контексте разгадки головоломки сознания, потому что это одна из немногочисленных особенностей нервной активности, которые, как известно, коррелируют с сознанием. Например, все знакомы с явлением, когда мы ищем простой объект, который все время на виду, например наши очки, а затем теряем его среди множества других объектов. Пока мы смотрим на это множество, визуальная информация, кодирующая объект, проходит через наши глаза в мозг, но так или иначе мы не видим объект, который ищем: мы не осознаем его. Но потом мы его видим. Что меняется в нашем мозге между моментами, когда мы сначала не осознаем, а затем осознаем объект в пределах одного и того же поля зрения? Примечательно, что само нервное возбуждение, кажется, не меняется: одни и те же нейроны возбуждены независимо от того, видим мы очки или нет. Но когда мы не замечаем наши очки, нейроны возбуждаются асинхронно, а когда замечаем, они возбуждаются синхронно[167]. ЭМ-поле, собирающее вместе все когерентные ионные каналы в разрозненных частях мозга, чтобы они синхронно возбудились, может играть определенную роль в переходе от бессознательных к сознательным мыслям.

Подчеркнем, что мы ссылаемся на такие идеи, как идея ЭМ-полей мозга или идея квантовых когерентных ионных каналов, чтобы объяснить: сознание никоим образом не поддерживает так называемые «паранормальные явления» вроде телепатии, так как оба понятия способны только влиять на нервные процессы внутри одного мозга — они не допускают коммуникацию между различными мозгами! И, как мы уже отмечали при рассмотрении геделевского аргумента у Пенроуза, нет фактически никаких доказательств того, что квантовая механика вообще нужна для объяснения сознания — в отличие от других биологических явлений, которые мы рассмотрели в этой книге, как, например, действие фермента или фотосинтез. Но возможно ли, что странные особенности квантовой механики, которые, как мы обнаружили, участвуют в столь многих важных явлениях жизни, исключаются из самого таинственного продукта — из сознания? Мы предоставим читателю возможность решать. Представленная выше схема, включающая квантовые когерентные ионные каналы и электромагнитные поля, конечно, гипотетическая, но это по крайней мере обеспечит вероятную связь между квантовой и классической сферами в головном мозге.

Имея это в виду, осознавая это, давайте еще раз вернемся к той темной пещере на юге Франции, чтобы завершить цепочку событий, следующих от мозга к руке, когда наша художница замерла перед стеной, наблюдая за мерцанием факела над серыми контурами. Определенная игра света на камне приносит образ бизона в ее сознание. Этого вполне достаточно, чтобы создать в голове идею, возможно конкретизирующуюся вместе с колебаниями электромагнитного поля мозга, где открываются кластеры когерентных ионных каналов в множестве отдельных нейронов, заставляя их возбуждаться синхронно. Синхронные нервные сигналы пробуждают потенциалы действия по всему ее мозгу, а через синаптические связи инициируется движение сигналов, идущих по ее спинному мозгу и с помощью нерв-нервных соединений — к двигательным нервам, которые выделяют дозы нейротрансмиттеров в нервно-мышечные соединения, прикрепленные к мышцам ее руки. Эти мышцы сокращаются, осуществляя скоординированное движение ее руки, которая скользит вдоль стены пещеры, нанося угольные линии, изображающие бизона, на скалу. И, возможно, еще важнее то, что она чувствует: она инициировала действие благодаря идее в ее сознании. Она не зомби.

Тридцать тысяч лет спустя Жан-Мари Шове освещает ту же стену пещеры, и идея, воплощенная в жизнь в мозге той давно умершей художницы, в очередной раз вспыхивает в нейронах сознательного человеческого ума.

Загрузка...