: Опять Нобелевка


Нобелевский комитет в сто четвертый раз назвал имена лауреатов самой престижной премии за выдающиеся интеллектуальные достижения в области физики, химии и медицины. Денежное вознаграждение в каждой дисциплине составило 10 млн. шведских крон (около 1,3 млн. долларов).

Наука точности

В этом году Нобелевская премия по физике разделена пополам и присуждена за разные работы в области оптики, теоретическую и экспериментальную. Однако оба отмеченных исследования объединяет то, что они устанавливают предельные возможности многих физических измерений, которые, в свою очередь, определяют потенциал новейших технологий.

Половина премии отдана профессору Рою Глауберу (Roy Glauber) «за вклад в квантовую теорию оптической когерентности». Вторая половина поделена между американским ученым Джоном Холлом (John Hall) и немецким исследователем Теодором Хеншем (Theodor Ha..nsch) «за вклад в развитие точной лазерной спектроскопии, включая метод гребенки оптических частот».

Восьмидесятилетний патриарх Рой Глаубер [1] отмечен за свои достижения еще шестидесятых годов прошлого века, когда ему удалось применить квантование электромагнитного поля для корректного описания процессов поглощения и испускания света. Эти работы дали теоретический базис новым оптическим наблюдениям и легли в основу квантовой оптики.

В начале прошлого века благодаря работам Макса Планка и Альберта Эйнштейна стало понятно, что свет в ряде случаев нужно описывать как поток частиц - фотонов или квантов энергии. Долгое время эти представления противоречили классической волновой электродинамике Джеймса Максвелла, что получило известность как корпускулярно-волновой дуализм.

Это глубокое противоречие было разрешено лишь после Второй мировой войны в результате создания квантовой электродинамики, легшей в основу физики элементарных частиц. Однако для описания оптических явлений квантовая электродинамика долго оставалась невостребованной. Лишь с появлением чувствительных фотодетекторов, способных регистрировать отдельные фотоны, и лазеров, генерирующих когерентный свет, статистические свойства которого резко отличаются от свойств света традиционных тепловых источников, в оптике возникли проблемы. В конце пятидесятых были проведены первые эксперименты, которые уже нельзя было объяснить при классическом понимании электромагнитного поля (хотя даже для описания работы лазера его вполне достаточно).

Проблемы были решены вместе с созданием квантовой оптики, объяснившей статистические закономерности оптических измерений, которые носят квантовую природу. В числе прочего законы квантовой оптики устанавливают предел точности экспериментов, ограниченный принципиально непреодолимыми квантовыми шумами электромагнитного поля.

Начиная с семидесятых годов квантовая оптика лежит в основе большинства работ, позволяющих прикоснуться к фундаментальным основам самой квантовой теории. А в последние годы именно благодаря успехам квантовой оптики появилась квантовая криптография, которая кодирует секретную информацию в состояниях отдельных фотонов, передаваемых по обычному оптоволокну.

Два других лауреата - Джон Холл [2] и Теодор Хенш [3] - много лет успешно работали над созданием лазеров с предельно высокой стабильностью частоты. Их детища послужили технической основой для многих сверхточных физических измерений. Например, в 1983 году был введен новый эталон метра, который определили, постулировав точное значение скорости света и тем самым жестко привязав эталон длины к эталонному времени цезиевых атомных часов. Благодаря усилиям этих ученых точность измерения частоты удалось довести до пятнадцати знаков.

Выдающееся достижение Холла и Хенша последних лет - метод гребенки оптических частот - позволил «привязать» оптические частоты излучения лазеров порядка 1015 Гц к цезиевому эталону времени, работающему с частотой 9,2 ГГц (разница в пять порядков по частоте создавала огромные технические проблемы). Линейчатый спектр лазерных импульсов похож на частую и острую гребенку, которая покрывает весь видимый спектр (что и дало название методу). Хитрый трюк позволяет получить из гребенки биения радиочастоты и сравнить их с цезиевым эталоном. Благодаря этому, точно вычисляется частота каждого из ее зубьев. Этот элегантный метод уже позволяет выпускать коммерчески доступные эталонные излучатели, умещающиеся на лабораторном столе. Дальнейшее развитие метода и переход к аттосекундным импульсам обещает в ближайшие годы повышение точности еще на три порядка и достижение рентгеновского диапазона энергий.

История учит, что рост точности измерений часто ведет к новым физическим открытиям и технологическим прорывам. Работы Холла и Хенша заложили основу для новой проверки фундаментальных физических законов. Теперь стал возможен немыслимый ранее поиск анизотропии пространства, отличий в свойствах вещества и антивещества, возможных вариаций фундаментальных физических постоянных.

Обмен как двигатель прогресса

Премия по химии разделена между французским ученым Ивом Шовеном (Yves Chauvin) и американцами Робертом Груббсом (Robert Grubbs) и Ричардом Шроком (Richard Schrock) - «за развитие метода метатезиса в органическом синтезе».

Работы лауреатов нынешнего года внесли ключевой вклад в превращение метатезиса, то есть химических реакций обмена, в одно из важнейших направлений современной органической химии. Эти реакции позволяют легко синтезировать огромное количество новых органических веществ - от лекарств и гербицидов до сверхпрочного пластика.

Органические вещества, составляющие основу всего живого, так разнообразны благодаря уникальным свойствам атомов углерода, которые способны образовывать длинные цепочки и кольца с одинарными и двойными связями, а также соединяться с атомами других элементов. В обменных реакциях две органические молекулы разделяются на части путем разрыва двойной углеродной связи и обмениваются своими частями, образуя новые соединения. Такой обмен становится возможным благодаря помощи молекул-катализаторов, играющих роль посредников.

Первые обменные реакции были случайно найдены и запатентованы еще в пятидесятые годы прошлого века. Но лишь в 1971 году Ив Шовен [4] впервые детально описал их механизм и объяснил, какие соединения могут играть роль катализаторов. Ричард Шрок [5] был первым, кто в 1990 году применил эффективный катализатор на основе тантала для обменных реакций. Два года спустя Роберт Груббс [6] разработал еще более эффективный, стабильный и дешевый рутениевый катализатор, который нашел широчайшее применение в промышленности.

Не все болезни от нервов

Премию по физиологии и медицине получили австралийцы Барри Маршалл (Barry Marshall) и Робин Уоррен (Robin Warren) за открытие роли микроорганизма Helicobacter pylori [7] в развитии гастрита, язвы желудка и двенадцатиперстной кишки. Помимо распространенности заболевания, поражающего, по последним данным, до десяти и более процентов взрослого населения в развитых странах, впечатляет неожиданность открытия.

С позапрошлого века выдвигались самые разные гипотезы о причинах возникновения болезни - тромбоз или другое поражение сосудов, травмирование нежной слизистой желудка грубой пищей, воспаление, разрушительное действие соляной кислоты… Не было недостатка и в теориях, отдававших первенство психоэмоциональному перенапряжению, особенно - разрушительной роли отрицательных эмоций. Оказалось, однако, что эта болезнь не столько от нервов, сколько от «заразы».

В начале 80-х австралийский патологоанатом Уоррен, изучавший кусочки ткани желудка больных гастритом, обнаружил в них спиралевидные бактерии. Этими данными заинтересовался гастроэнтеролог Маршалл, позднее подтвердивший болезнетворность микроорганизмов по всем канонам самоотверженного научного поиска - выпив культуру бактерий и затем излечившись антибиотиками. Результаты совместных изысканий Уоррен и Маршалл в 1983 году опубликовали в авторитетном журнале Lancet, и эта дата считается точкой отсчета в новой эпохе исследования язвенной болезни. В 1989 году бактерия была окончательно идентифицирована и получила наименование Helicobacter pylori (греч. helix - спираль), в 1998 году расшифрован ее геном.

Считается, что носителями H. Pylori являются 50-60% людей. Но заболевают, понятное дело, не все, это зависит и от индивидуальной сопротивляемости организма, и от различий между отдельными штаммами H. pylori. С этой бактерией связывают 80-90% всех случаев язвенной болезни. Передается H. pylori через желудочно-кишечный тракт, так что старые добрые рекомендации тщательно мыть руки перед едой и не пить некипяченой воды по-прежнему актуальны.

А что же стресс и грубая пища - не имеют отношения к язве? Еще как имеют. Однако есть разница между причинным (этиологическим) фактором, условиями его реализации и механизмами развития нарушений (патогенезом). Установка или неустановка файрвола может иметь решающее значение как условие для заражения (или незаражения) компьютерным вирусом. Действия вируса в компьютере, его своевременное (или несвоевременное) обнаружение и уничтожение - факторы патогенеза. Но этиологический-то фактор, вокруг которого все закручивается, - сам вирус.

Диагностика наличия в организме H. pylori не всегда требует проведения биопсии. В ряде случаев бывает достаточно теста, основанного на наличии у H. pylori уреазы - фермента, разлагающего мочевину на углекислый газ и аммиак. Используется мочевина, содержащая изотопы углерода 13С или, реже, 14С (радиоактивен), а анализ выдыхаемого воздуха на меченную углекислоту проводится масс-спектрометрическим способом. Не требуют эндоскопического вмешательства также иммунологические методы и определение ДНК возбудителя в фекалиях. Сейчас уже отточены стандартные схемы полного уничтожения (эрадикации) H. pylori в организме, всегда включающие препараты нескольких групп (блокаторы протоновой помпы, препараты висмута и антибактериальные средства).

Проблема хронического гастрита и язвы, конечно, не сводится лишь к H. pylori. Но и роль обнаруженного возбудителя, похоже, не ограничивается этими болезнями. Речь идет не только о раке желудка, который может развиваться как результат длительной вялотекущей язвенной болезни, и значение H. pylori здесь доказано. Есть данные о связи этого инфекционного агента с атеросклерозом, ишемической болезнью сердца и инсультом. В общем, Нобелевку зазря не дадут.


Загрузка...