Грануляция на Солнце. Яркие пятна — восходящие потоки газа в солнечной фотосфере, темные «щели» между ними — нисходящие. Фото: DDBJORN ENGVOLD ET. AL., ROYAL SWEDISH ACADEMY OF SCIENCES
Астрофизика достигла впечатляющих успехов в объяснении жизни и смерти звезд. Однако продолжаются проверка и уточнение теории звездной эволюции. Самое многообещающее научное направление в этой области — астросейсмология. Она исследует внутреннее строение звезд по дрожанию газа на поверхности этих гигантских плазменных шаров, иногда довольно сильному, но чаще едва уловимому.
Теорию звездной эволюции можно считать вершиной развития современной астрофизики. Опираясь на предположение о термоядерном источнике энергии звезд, она уверенно описывает тончайшие нюансы их судеб. И все же червь сомнения точит некоторых исследователей. Ведь мы видим только тонкий поверхностный слой звезды, и никто никогда непосредственно не наблюдал, как в сердце звезды водород превращается в гелий.
Шанс заглянуть в звездные недра дала возникшая в 1960-х годах нейтринная астрономия. Благодаря высочайшей проникающей способности рождающиеся в термоядерных реакциях нейтрино беспрепятственно покидают солнечное ядро, неся информацию о протекающих там процессах. Открывался путь подтверждения термоядерной гипотезы прямыми наблюдениями. Однако регистрируемый поток нейтрино оказался в несколько раз ниже, чем предсказывала «стандартная» модель Солнца. На решение «проблемы солнечных нейтрино» ушло больше 30 лет. И только в начале XXI века было экспериментально доказано, что на пути к Земле нейтрино постоянно перескакивают между тремя состояниями, а первые нейтринные телескопы регистрировали только одно из них. Проблема успешно разрешилась, но получилось так, что вместо уточнения представлений об источниках звездной энергии, нейтринные телескопы уточнили свойства самих нейтрино.
Все это лишь усилило желание астрономов проникнуть в тайну звездных недр. Тем более что там помимо термоядерных реакций идут и другие интересные процессы, например вращение и конвективное перемешивание огромных масс вещества. Эти глубинные движения тесно связаны с генерацией магнитного поля, которое на Солнце служит главным источником поверхностной активности: вспышек, протуберанцев, корональных выбросов, непосредственно затрагивающих наши земные интересы. Но как проникнуть внутрь раскаленного плазменного шара и узнать, что происходит пусть даже не в ядре, а хотя бы на относительно небольшой глубине?
Дыхание цефеид
На первый взгляд эта задача кажется неразрешимой. Между тем методику исследования недоступных недр ученые применяют уже более столетия. Правда, ученые эти не астрономы, а геологи. Они наблюдают за сейсмическими волнами — колебаниями, которые распространяются в теле нашей планеты после естественных или искусственных встрясок. Скорость волн зависит от параметров среды. Систематически наблюдая за ними, можно построить карту распределения различных пород в земных недрах, которые, несмотря на относительную близость, столь же недоступны для непосредственного исследования, как и недра Солнца. Но раз уж твердая Земля буквально шевелится у нас под ногами, не может ли что-то подобное происходить с плазменными шарами — звездами?
В 1894 году российский астроном Аристарх Белопольский изучал знаменитую звезду дельту Цефея, ту самую, по которой назван целый класс переменных звезд — цефеид. Оказалось, что синхронно с изменениями блеска меняется и положение линий в спектре звезды. Этот сдвиг естественно было объяснить эффектом Доплера: когда источник излучения приближается к нам, линии в его спектре «съезжают» в синюю сторону, а когда удаляется — в красную. Белопольский предположил, что цефеиды — это двойные звезды, у которых переменность блеска связана с периодическими взаимными затмениями, а переменность скорости вдоль луча зрения — с орбитальным движением звезд пары. Однако физик Николай Умов, который был оппонентом Белопольского на защите его диссертации, тогда же высказал мысль, что на самом деле движется не вся звезда, а только ее внешние слои.
Колебания внутри Солнца. Черные линии — акустические волны сжатия и расширения газа (p-моды). Изменение параметров вещества с глубиной заставляет их многократно возвращаться к поверхности, отражаясь от нее. Серые линии — гравитационные колебания, волны поднятия и опускания газа в собственном гравитационном поле (g-моды). На поверхности они почти не проявляются
Догадка Умова блестяще подтвердилась благодаря исследованиям английского астрофизика Артура Эддингтона, а в 1958 году советский физик Сергей Жевакин построил теорию пульсации цефеид. Они действительно «дышат»: расширяются и сжимаются со скоростями, достигающими десятков километров в секунду. Так что дельту Цефея можно считать самым первым объектом, исследованным методами астросейсмологии. Самым первым, но не самым интересным. Дело в том, что пульсации цефеидного типа охватывают лишь незначительную часть массы звезды и для детального ее изучения не годятся. Да и возникают они только в звездах с подходящими параметрами (температурой, плотностью, химическим составом), в которых из любого случайного возмущения развиваются устойчивые автоколебания. Но к чему приведет такое же случайное возмущение в звезде с «неподходящими» параметрами, не способной к пульсации цефеидного типа?
По такой звезде от места возмущения побежит во все стороны волна, часть которой уйдет вглубь звезды, часть пойдет наружу, отразится от поверхности звезды и снова устремится внутрь, пересечет звезду насквозь, опять отразится, смешается с волнами от других возмущений. А возмущений таких много: от конвективных течений, от вспышек на поверхности... В результате вся звезда гудит, подрагивает и становится желанным объектом для сейсмического исследования!
Моды солнечной ряби
На некоторое подрагивание спектральных линий Солнца еще в 1913 году обратил внимание канадский астроном Джон Пласкетт. Однако настоящая история сейсмических исследований дневного светила началась в 1962 году, когда выяснилось, что линии не просто подрагивают, а испытывают колебания с периодом около пяти минут и амплитудой, соответствующей разбросу скоростей в несколько сотен метров в секунду. То есть по поверхности Солнца постоянно гуляют волны высотой в десятки километров. Некоторое время им не придавали большого значения, считая локальным явлением, сопровождающим выход к поверхности конвективных потоков. Но к началу 1970-х годов появились детальные модели внутреннего строения Солнца, благодаря которым удалось увидеть (или услышать?) в этих колебаниях отзвуки глобальной вибрации солнечного вещества. Точнее, пятиминутные осцилляции оказались результатом сложения отдельных волн, или колебательных мод, полное число которых в спектре солнечных пульсаций составляет порядка 10 миллионов. Это акустические колебания, то есть обычные звуковые волны, представляющие собой уплотнения газовой среды. Амплитуды отдельных мод крайне малы, но, складываясь, они могут взаимно значительно усиливать друг друга.
Акустические пульсации разделяются на радиальные, при которых меняется объем Солнца, и нерадиальные, порождающие волны на его поверхности. Радиальные пульсации родственны колебаниям цефеид. Они вызываются волнами, которые уходят вертикально вниз, проходят через центр Солнца, доходят до другой его стороны, отражаются от нее, снова проходят через центр и так далее. Тонкость, однако, в том, что цефеиды (да и то не все) колеблются в так называемой фундаментальной моде, то есть раздуваются и сжимаются как целое, а «спокойные» звезды вроде Солнца при таких же пульсациях разделяются по радиусу на множество слоев, в которых сжатие и расширение чередуются: колебания происходят в обертонах.
Сложнее обстоит дело с нерадиальными пульсациями — тут уже речь идет о движении отдельных «пятен» на поверхности Солнца. Они связаны с волнами, которые ушли вниз не вертикально, а под углом. Из-за того что в недрах меняется скорость звука, такие волны, достигнув некоторой глубины, разворачиваются и возвращаются к поверхности звезды недалеко от исходной точки. Там волна снова отражается и описывает внутри Солнца очередную дугу. Чем сильнее исходная волна отклонилась от вертикали, тем меньше глубина ее погружения, чаще возвраты к поверхности и мельче вызываемая ею «рябь» на поверхности Солнца.
Непрерывно следя за этой рябью, можно построить спектр акустических колебаний Солнца и сравнить его с предсказаниями различных теоретических моделей внутреннего строения нашего светила. Причем неглубокие моды «прочесывают» приповерхностные слои, а радиальные и близкие к ним колебания несут информацию не только об условиях в ядре Солнца, но и о событиях на его противоположной стороне. Благодаря этому удается фиксировать активные области до того, как они выйдут из-за края солнечного лимба, а также следить за ними уже после того, как они скроются из виду.
Модель одной из миллионов нерадиальных мод колебаний на поверхности Солнца. Смещения преувеличены более чем в 1000 раз (справа, фото: MSFC/NASA)
Резонансное акустическое колебание внутри Солнца. Разными цветами показаны области газа, смещенные в разных направлениях (слева, фото: EUROPEAN SOUTHERN OBSERVATORY)
Анатомия солнечного вихря
За последние 30 лет гелиосейсмологи смогли получить детальные сведения о распределении плотности, температуры и содержании гелия в солнечных недрах. Содержание гелия характеризует степень переработки водородного топлива солнечным термоядерным реактором. По нему можно оценить, что возраст нашего светила составляет 4,65 миллиарда лет. Это прекрасно согласуется с данными о возрасте Земли, которые получены совершенно независимым методом — по распаду радиоактивных элементов. Одним из первых результатов телескопических наблюдений, сделанных еще в XVII веке, стало определение скорости вращения Солнца по движению пятен на его поверхности. Экваториальные области делают оборот за 25 суток. С ростом широты период увеличивается, достигая у полюсов 38 суток. Но о том, как вращается Солнце внутри, до появления гелиосейсмологии можно было только догадываться. Теперь же все стало ясно: движение вещества в солнечных недрах сносит (икажает) проходящие по нему акустические волны, причем по-разному на различных расстояниях до центра. И в общей картине колебаний на поверхности Солнца появляются дополнительные частоты, по которым и определяется скорость вращения на глубине, куда проникает соответствующая мода.
Так, например, оказалось, что быстрее всего вращается вещество на глубине нескольких десятков тысяч километров под экватором. В конвективной зоне Солнца, где энергия выносится наверх за счет перемешивания газа, вращение носит сложный характер: с глубиной угловая скорость на экваторе убывает, а вблизи полюсов растет. Ядро Солнца вращается как твердое тело, то есть в нем угловая скорость от расстояния до центра уже не зависит. А на расстоянии в 500 тысяч километров от центра расположен узкий слой — тахоклин, исполняющий роль смазки между ядром и нижней границей конвективной зоны. Предполагается, что именно он отвечает за магнитную активность Солнца.
О вращении вещества в самом центре Солнца, в радиусе менее 200 тысяч километров, пока толком сказать нечего. Акустические моды здесь мало что могут подсказать, и потому большие надежды возлагаются на еще один вид колебаний — так называемые гравитационные моды. В них роль движущей силы играет не давление, как в акустических модах, а подъем и опускание вещества в поле тяготения ядра звезды. В отличие от акустических мод, сосредоточенных в основном у поверхности, гравитационные моды «играют» в центре. Именно в них зашифрованы тайны солнечного ядра. К сожалению, с приближением к поверхности они быстро затухают. На сегодня есть лишь одно наблюдение, в котором их как будто удалось зафиксировать, и из него следует, что внутреннее ядро Солнца вращается чуть ли не в пять раз быстрее внешнего ядра. Но эти результаты еще нуждаются в дополнительной проверке.
Модель магнитных полей в конвективной зоне, определяющих активность Солнца. В синих областях поле направлено на восток, в красных — на запад (слева, фото: HAO/UCAR) и модель конвекции у поверхности Солнца в области глубиной 20 и шириной 48 мегаметров. Красные линии — восходящие потоки, синие — нисходящие (справа, фото: CHRIS HENZE/NASA)
Спасибо экзопланетчикам
Солнце, при всей его важности для нас, — лишь одна звезда, одна точка на графике. Для общей проверки теории звездной эволюции этого явно недостаточно. Однако изучение колебаний других звезд — очень сложная задача. На Солнце максимальная амплитуда колебаний скорости в одной моде составляет 15–20 см/с. Измерить столь крохотные сдвиги линий можно пока лишь в спектрах ближайших (и потому ярких) звезд, да и то при использовании лучших спектрографов. Впрочем, иногда можно обойтись и без спектров. Пульсации звезды сопровождаются не только «пляской» спектральных линий, но и небольшими вариациями блеска. Главенствующую роль в астросейсмологии играют частоты пульсаций, и порой не так важно, по какому именно наблюдаемому параметру звезды они определены. Поэтому вместо трудоемкой спектроскопии в некоторых случаях можно проводить более экономичную фотометрию, то есть вместо измерения отдельных линий в спектре контролировать лишь общую яркость звезды. Правда, и это нелегкая задача, так как колебания блеска очень малы — 0,1% и меньше, а значит, нужны очень чувствительные приемники излучения.
К счастью, таких чувствительных приборов в последнее время становится все больше — они требуются для бурно развивающихся исследований планет, находящихся вне Солнечной системы (их тоже обнаруживают по небольшим колебаниям спектральных линий и блеска звезд). И хотя «общественную» славу таким приборам, как спектрографы HARPS (Европейская южная обсерватория, Чили) и HIRES (Обсерватория им. Кека, Гавайские о-ва, США) или космические фотометрические телескопы COROT и «Кеплер», принесли обнаруженные с их помощью экзопланеты, для специалистов не менее, а может быть, и более важен вклад этих инструментов в астросейсмические исследования. Так что неслучайно пульсации солнечного типа у другой звезды (субгиганта эты Волопаса) были впервые достоверно зарегистрированы в 1995 году — почти одновременно с открытием первой экзопланеты. Сегодня подобные пульсации зафиксированы уже у двух десятков звезд. Особенно важны астросейсмические наблюдения для исследования конвекции в звездах. В теории этого процесса есть пробелы, и в компьютерных моделях звезд его приходится запускать, так сказать, «руками», искусственно задавая параметры конвекции. Это, конечно, не лучший способ учитывать действие механизма, который «управляет» магнитным полем солнцеподобных звезд, а на более поздних стадиях эволюции полностью меняет их физическую и химическую структуру. Астросейсмология уже позволила приблизительно определять характер конвекции для одной разновидности голубых гигантов, которые в 10 раз массивнее и в тысячи раз ярче Солнца. Физическая основа возбуждения колебаний у этих звезд не солнечная, а примерно такая же, как у цефеид. У этих звезд также удалось определить зависимость скорости вращения от радиуса. Как и у Солнца, ядро у них вращается в несколько раз быстрее слоев, лежащих ближе к поверхности.
Для обычных солнцеподобных звезд при помощи астросейсмологии удается пока измерить только базовые параметры — массу, радиус, возраст. Но в действительности и это очень много, ведь речь идет о характеристиках одиночных, то есть не входящих в двойные системы звезд, с которых прежде никакими способами нельзя было снять «мерку».
Астросейсмические наблюдения не ограничиваются солнцеподобными звездами. Очень интересными обещают стать исследования пульсаций в бывших звездных ядрах — центральных звездах планетарных туманностей и белых карликах. В этих объектах недра могут находиться не просто в твердом, но даже в кристаллическом состоянии. И здесь астросейсмология открывает возможности для тестирования не только теории звездной эволюции, но и более общих разделов физики, описывающих свойства вещества в экстремальных состояниях.
Космическая обсерватория SOHO работает с 1996 года. Благодаря ей прошлый, 23-й, цикл солнечной активности охвачен непрерывными гелиосейсмическими наблюдениями. Фото: NASA/SOHO SOLAR & HELIOSPHERIC OBSERVATORY
Дело о пропавших элементах
На сегодня большая часть наблюдений звездных осцилляций хорошо согласуется с теорией строения и эволюции звезд. Но это, конечно, не означает, что в будущем нас не поджидают сюрпризы. В качестве примера можно привести наблюдения Проциона — альфы Малого Пса. Эта звезда, одна из самых ярких на земном небе, стала в 1991 году первой, у которой обнаружились признаки пульсаций солнечного типа (хотя и не сами пульсации). На протяжении следующих 10 лет Процион неоднократно наблюдался, его пульсации были сначала просто подтверждены, а потом и подробно изучены. В 2003 году он стал первой звездой в списке целей для космического астросейсмологического телескопа MOST. Наблюдатели непрерывно следили за Проционом в течение месяца... и никаких пульсаций не обнаружили. Лишь после организации дополнительной наблюдательной кампании с участием многих наземных телескопов было окончательно доказано, что Процион действительно пульсирует, но по каким-то причинам колебания в нем затухают гораздо быстрее, чем на Солнце. В результате их спектр усложняется, и для его наблюдений требуется гораздо больше усилий.
Есть и еще одно темное облачко на чистом и ясном небосклоне гелиосейсмологии. Высококачественные спектры Солнца, полученные несколько лет назад, как будто бы указывают, что на Солнце гораздо меньше тяжелых элементов, чем принято думать. Если до 2005 года считалось, что суммарная масса углерода, азота, кислорода, неона и прочих более тяжелых элементов составляет примерно 2,7% от массы водорода, то теперь эта оценка сократилась до 1,6%. Казалось бы, какая разница, сколько там этих примесей: полтора процента или три? Однако в моделях Солнца с «новым» химическим составом нижняя граница конвективной зоны поднимается с 500 тысяч километров от центра звезды до 510 тысяч. Разница составляет около 1,5% от солнечного радиуса, но она приводит к полному рассогласованию с гелиосейсмическими данными. С 2005 года и по настоящее время не прекращаются попытки помирить гелиосейсмологию со спектроскопией, но результата они пока не принесли. Впрочем, сама величина этого рассогласования дает представление о том, на каком уровне точности происходит сейчас изучение строения Солнца.
Несмотря на эти проблемы, а в чем-то и благодаря им, астросейсмология сейчас находится на подъеме. Практически ни одна крупная астрономическая конференция не обходится без астросейсмологической секции. У астросейсмологов есть свой научный журнал (Communications in Asteroseismology), свои космические телескопы, свои наземные наблюдательные сети. В астросейсмологии особенно наглядным становится истинно глобальный характер современной астрономии. Для надежного определения частот звездных колебаний необходимы многочасовые и даже многодневные сеансы наблюдений, что невозможно без согласованного использования телескопов, разбросанных по всему земному шару. Сейчас такие наблюдения проводятся при помощи консорциума Всеземного телескопа (Whole Earth Telescope), объединяющего телескопы «общего пользования» двух десятков обсерваторий. В России в его работе принимают участие телескопы обсерватории на пике Терскол (Кавказ). В ходе тщательно спланированной кампании при любой возможности проводятся наблюдения одного и того же объекта, которые затем «сшиваются» в один наблюдательный ряд. В разработке находятся планы создания специализированной сети телескопов SONG, которая будет состоять из восьми инструментов, по четыре в каждом полушарии. Подобная сеть для наблюдений Солнца (GONG) уже создана и активно работает.
Чрезвычайно перспективна Антарктида, где наилучшие на Земле условия для длительных астрономических наблюдений. К ней давно уже присматриваются не только астросейсмологи, но и представители других отраслей астрономии. В Европе есть проект установки 40-сантиметрового астросейсмографа SIAMOIS на франко-итальянской станции Конкордия.
Так что перспективы у гелио- и астросейсмологии самые радужные. Первую вдохновляют практические нужды, связанные с интересом к природе солнечной активности, вторую — стремление осуществить мечту одного из основоположников теории звездной эволюции, Артура Эддингтона, и понять, наконец, «такую простую вещь, как звезда».
Дмитрий Вибе