The picture’s pretty bleak, gentlemen…The world’s climates are changing, the mammals are taking over, and we all have a brain about the size of a walnut.
Intelligence may be defined as the ability to solve problems with limited resources, in which a key such resource is time. Thus the ability to more quickly solve a problem like finding food or avoiding a predator reflects greater power of intellect. Intelligence evolved because it was useful for survival—a fact that may seem obvious, but one with which not everyone agrees. As practiced by our species, it has enabled us not only to dominate the planet but to steadily improve the quality of our lives. This latter point, too, is not apparent to everyone, given that there is a widespread perception today that life is only getting worse. For example, a Gallup poll released on May 4, 2011, revealed that only “44 percent of Americans believed that today’s youth will have a better life than their parents.”1
If we look at the broad trends, not only has human life expectancy quadrupled over the last millennium (and more than doubled in the last two centuries),2 but per capita GDP (in constant current dollars) has gone from hundreds of dollars in 1800 to thousands of dollars today, with even more pronounced trends in the developed world.3 Only a handful of democracies existed a century ago, whereas they are the norm today. For a historical perspective on how far we have advanced, I suggest people read Thomas Hobbes’s Leviathan (1651), in which he describes the “life of man” as “solitary, poor, nasty, brutish, and short.” For a modern perspective, the recent book Abundance (2012), by X-Prize Foundation founder (and cofounder with me of Singularity University) Peter Diamandis and science writer Steven Kotler, documents the extraordinary ways in which life today has steadily improved in every dimension. Steven Pinker’s recent The Better Angels of Our Nature: Why Violence Has Declined (2011) painstakingly documents the steady rise of peaceful relations between people and peoples. American lawyer, entrepreneur, and author Martine Rothblatt (born in 1954) documents the steady improvement in civil rights, noting, for example, how in a couple of decades same-sex marriage went from being legally recognized nowhere in the world to being legally accepted in a rapidly growing number of jurisdictions.4
A primary reason that people believe that life is getting worse is because our information about the problems of the world has steadily improved. If there is a battle today somewhere on the planet, we experience it almost as if we were there. During World War II, tens of thousands of people might perish in a battle, and if the public could see it at all it was in a grainy newsreel in a movie theater weeks later. During World War I a small elite could read about the progress of the conflict in the newspaper (without pictures). During the nineteenth century there was almost no access to news in a timely fashion for anyone.
The advancement we have made as a species due to our intelligence is reflected in the evolution of our knowledge, which includes our technology and our culture. Our various technologies are increasingly becoming information technologies, which inherently continue to progress in an exponential manner. It is through such technologies that we are able to address the grand challenges of humanity, such as maintaining a healthy environment, providing the resources for a growing population (including energy, food, and water), overcoming disease, vastly extending human longevity, and eliminating poverty. It is only by extending ourselves with intelligent technology that we can deal with the scale of complexity needed to address these challenges.
These technologies are not the vanguard of an intelligent invasion that will compete with and ultimately displace us. Ever since we picked up a stick to reach a higher branch, we have used our tools to extend our reach, both physically and mentally. That we can take a device out of our pocket today and access much of human knowledge with a few keystrokes extends us beyond anything imaginable by most observers only a few decades ago. The “cell phone” (the term is placed in quotes because it is vastly more than a phone) in my pocket is a million times less expensive yet thousands of times more powerful than the computer all the students and professors at MIT shared when I was an undergraduate there. That’s a several billion-fold increase in price/performance over the last forty years, an escalation we will see again in the next twenty-five years, when what used to fit in a building, and now fits in your pocket, will fit inside a blood cell.
In this way we will merge with the intelligent technology we are creating. Intelligent nanobots in our bloodstream will keep our biological bodies healthy at the cellular and molecular levels. They will go into our brains noninvasively through the capillaries and interact with our biological neurons, directly extending our intelligence. This is not as futuristic as it may sound. There are already blood cell–sized devices that can cure type I diabetes in animals or detect and destroy cancer cells in the bloodstream. Based on the law of accelerating returns, these technologies will be a billion times more powerful within three decades than they are today.
I already consider the devices I use and the cloud of computing resources to which they are virtually connected as extensions of myself, and feel less than complete if I am cut off from these brain extenders. That is why the one-day strike by Google, Wikipedia, and thousands of other Web sites against the SOPA (Stop Online Piracy Act) on January 18, 2012, was so remarkable: I felt as if part of my brain were going on strike (although I and others did find ways to access these online resources). It was also an impressive demonstration of the political power of these sites as the bill—which looked as if it was headed for ratification—was instantly killed. But more important, it showed how thoroughly we have already outsourced parts of our thinking to the cloud of computing. It is already part of who we are. Once we routinely have intelligent nonbiological intelligence in our brains, this augmentation—and the cloud it is connected to—will continue to grow in capability exponentially.
The intelligence we will create from the reverse-engineering of the brain will have access to its own source code and will be able to rapidly improve itself in an accelerating iterative design cycle. Although there is considerable plasticity in the biological human brain, as we have seen, it does have a relatively fixed architecture, which cannot be significantly modified, as well as a limited capacity. We are unable to increase its 300 million pattern recognizers to, say, 400 million unless we do so nonbiologically. Once we can achieve that, there will be no reason to stop at a particular level of capability. We can go on to make it a billion pattern recognizers, or a trillion.
From quantitative improvement comes qualitative advance. The most important evolutionary advance in Homo sapiens was quantitative: the development of a larger forehead to accommodate more neocortex. Greater neocortical capacity enabled this new species to create and contemplate thoughts at higher conceptual levels, resulting in the establishment of all the varied fields of art and science. As we add more neocortex in a nonbiological form, we can expect ever higher qualitative levels of abstraction.
British mathematician Irvin J. Good, a colleague of Alan Turing’s, wrote in 1965 that “the first ultraintelligent machine is the last invention that man need ever make.” He defined such a machine as one that could surpass the “intellectual activities of any man however clever” and concluded that “since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion.’”
The last invention that biological evolution needed to make—the neocortex—is inevitably leading to the last invention that humanity needs to make—truly intelligent machines—and the design of one is inspiring the other. Biological evolution is continuing but technological evolution is moving a million times faster than the former. According to the law of accelerating returns, by the end of this century we will be able to create computation at the limits of what is possible, based on the laws of physics as applied to computation.5 We call matter and energy organized in this way “computronium,” which is vastly more powerful pound per pound than the human brain. It will not just be raw computation but will be infused with intelligent algorithms constituting all of human-machine knowledge. Over time we will convert much of the mass and energy in our tiny corner of the galaxy that is suitable for this purpose to computronium. Then, to keep the law of accelerating returns going, we will need to spread out to the rest of the galaxy and universe.
If the speed of light indeed remains an inexorable limit, then colonizing the universe will take a long time, given that the nearest star system to Earth is four light-years away. If there are even subtle means to circumvent this limit, our intelligence and technology will be sufficiently powerful to exploit them. This is one reason why the recent suggestion that the muons that traversed the 730 kilometers from the CERN accelerator on the Swiss-French border to the Gran Sasso Laboratory in central Italy appeared to be moving faster than the speed of light was such potentially significant news. This particular observation appears to be a false alarm, but there are other possibilities to get around this limit. We do not even need to exceed the speed of light if we can find shortcuts to other apparently faraway places through spatial dimensions beyond the three with which we are familiar. Whether we are able to surpass or otherwise get around the speed of light as a limit will be the key strategic issue for the human-machine civilization at the beginning of the twenty-second century.
Cosmologists argue about whether the world will end in fire (a big crunch to match the big bang) or ice (the death of the stars as they spread out into an eternal expansion), but this does not take into account the power of intelligence, as if its emergence were just an entertaining sideshow to the grand celestial mechanics that now rule the universe. How long will it take for us to spread our intelligence in its nonbiological form throughout the universe? If we can transcend the speed of light—admittedly a big if—for example, by using wormholes through space (which are consistent with our current understanding of physics), it could be achieved within a few centuries. Otherwise, it will likely take much longer. In either scenario, waking up the universe, and then intelligently deciding its fate by infusing it with our human intelligence in its nonbiological form, is our destiny.