CHAPTER 1 THOUGHT EXPERIMENTS ON THE WORLD

Darwin’s theory of natural selection came very late in the history of thought.

Was it delayed because it opposed revealed truth, because it was an entirely new subject in the history of science, because it was characteristic only of living things, or because it dealt with purpose and final causes without postulating an act of creation? I think not. Darwin simply discovered the role of selection, a kind of causality very different from the push-pull mechanisms of science up to that time. The origin of a fantastic variety of living things could be explained by the contribution of which novel features, possibly of random provenance, made it to survival. There was little or nothing in physical or biological science that foreshadowed selection as a causal principle.

B. F. Skinner

Nothing is at last sacred but the integrity of your own mind.

Ralph Waldo Emerson

A Metaphor from Geology

In the early nineteenth century geologists pondered a fundamental question. Great caverns and canyons such as the Grand Canyon in the United States and Vikos Gorge in Greece (reportedly the deepest canyon in the world) existed all across the globe. How did these majestic formations get there?

Invariably there was a stream of water that appeared to take advantage of the opportunity to course through these natural structures, but prior to the mid-nineteenth century, it had seemed absurd that these gentle flows could be the creator of such huge valleys and cliffs. British geologist Charles Lyell (1797–1875), however, proposed that it was indeed the movement of water that had carved out these major geological modifications over great periods of time, essentially one grain of rock at a time. This proposal was initially met with ridicule, but within two decades Lyell’s thesis achieved mainstream acceptance.

One person who was carefully watching the response of the scientific community to Lyell’s radical thesis was English naturalist Charles Darwin (1809–1882). Consider the situation in biology around 1850. The field was endlessly complex, faced with countless species of animals and plants, any one of which presented great intricacy. If anything, most scientists resisted any attempt to provide a unifying theory of nature’s dazzling variation. This diversity served as a testament to the glory of God’s creation, not to mention to the intelligence of the scientists who were capable of mastering it.

Darwin approached the problem of devising a general theory of species by making an analogy with Lyell’s thesis to account for the gradual changes in the features of species over many generations. He combined this insight with his own thought experiments and observations in his famous Voyage of the Beagle. Darwin argued that in each generation the individuals that could best survive in their ecological niche would be the individuals to create the next generation.

On November 22, 1859, Darwin’s book On the Origin of Species went on sale, and in it he made clear his debt to Lyell:

I am well aware that this doctrine of natural selection, exemplified in the above imaginary instances, is open to the same objections which were at first urged against Sir Charles Lyell’s noble views on “the modern changes of the earth, as illustrative of geology”; but we now very seldom hear the action, for instance, of the coast-waves called a trifling and insignificant cause, when applied to the excavation of gigantic valleys or to the formation of the longest lines of inland cliffs. Natural selection can act only by the preservation and accumulation of infinitesimally small inherited modifications, each profitable to the preserved being; and as modern geology has almost banished such views as the excavation of a great valley by a single diluvial wave, so will natural selection, if it be a true principle, banish the belief of the continued creation of new organic beings, or of any great and sudden modification in their structure.1


Charles Darwin, author of On the Origin of Species, which established the idea of biological evolution.


There are always multiple reasons why big new ideas are resisted, and it is not hard to identify them in Darwin’s case. That we were descended not from God but from monkeys, and before that, worms, did not sit well with many commentators. The implication that our pet dog was our cousin, as was the caterpillar, not to mention the plant it walked on (a millionth or billionth cousin, perhaps, but still related), seemed a blasphemy to many.

But the idea quickly caught on because it brought coherence to what had previously been a plethora of apparently unrelated observations. By 1872, with the publication of the sixth edition of On the Origin of Species, Darwin added this passage: “As a record of a former state of things, I have retained in the foregoing paragraphs…several sentences which imply that naturalists believe in the separate creation of each species; and I have been much censured for having thus expressed myself. But undoubtedly this was the general belief when the first edition of the present work appeared…. Now things are wholly changed, and almost every naturalist admits the great principle of evolution.”2

Over the next century Darwin’s unifying idea deepened. In 1869, only a decade after the original publication of On the Origin of Species, Swiss physician Friedrich Miescher (1844–1895) discovered a substance he called “nuclein” in the cell nucleus, which turned out to be DNA.3 In 1927 Russian biologist Nikolai Koltsov (1872–1940) described what he called a “giant hereditary molecule,” which he said was composed of “two mirror strands that would replicate in a semi-conservative fashion using each strand as a template.” His finding was also condemned by many. The communists considered it to be fascist propaganda, and his sudden, unexpected death has been attributed to the secret police of the Soviet Union.4 In 1953, nearly a century after the publication of Darwin’s seminal book, American biologist James D. Watson (born in 1928) and English biologist Francis Crick (1916–2004) provided the first accurate characterization of the structure of DNA, describing it as a double helix of two long twisting molecules.5 It is worth pointing out that their finding was based on what is now known as “photo 51,” taken by their colleague Rosalind Franklin using X-ray crystallography, which was the first representation that showed the double helix. Given the insights derived from Franklin’s image, there have been suggestions that she should have shared in Watson and Crick’s Nobel Prize.6


Rosalind Franklin took the critical picture of DNA (using X-ray crystallography) that enabled Watson and Crick to accurately describe the structure of DNA for the first time.


With the description of a molecule that could code the program of biology, a unifying theory of biology was now firmly in place. It provided a simple and elegant foundation to all of life. Depending only on the values of the base pairs that make up the DNA strands in the nucleus (and to a lesser degree the mitochondria), an organism would mature into a blade of grass or a human being. This insight did not eliminate the delightful diversity of nature, but we now understand that the extraordinary diversity of nature stems from the great assortment of structures that can be coded on this universal molecule.

Riding on a Light Beam

At the beginning of the twentieth century the world of physics was upended through another series of thought experiments. In 1879 a boy was born to a German engineer and a housewife. He didn’t start to talk until the age of three and was reported to have had problems in school at the age of nine. At sixteen he was daydreaming about riding on a moonbeam.

This young boy was aware of English mathematician Thomas Young’s (1773–1829) experiment in 1803 that established that light is composed of waves. The conclusion at that time was that light waves must be traveling through some sort of medium; after all, ocean waves traveled through water and sound waves traveled through air and other materials. Scientists called the medium through which light waves travel the “ether.” The boy was also aware of the 1887 experiment by American scientists Albert Michelson (1852–1931) and Edward Morley (1838–1923) that attempted to confirm the existence of the ether. That experiment was based on the analogy of traveling in a rowboat up- and downstream in a river. If you are paddling at a fixed speed, then your speed as measured from the shore will be faster if you are paddling with the stream as opposed to going against it. Michelson and Morley assumed that light would travel through the ether at a constant speed (that is, at the speed of light). They reasoned that the speed of sunlight when Earth is traveling toward the sun in its orbit (as measured from our vantage point on Earth) versus its apparent speed when Earth is traveling away from the sun must be different (by twice the speed of Earth). Proving that would confirm the existence of the ether. However, what they discovered was that there was no difference in the speed of the sunlight passing Earth regardless of where Earth was in its orbit. Their findings disproved the idea of the “ether,” but what was really going on? This remained a mystery for almost two decades.

As this German teenager imagined riding alongside a light wave, he reasoned that he should be seeing the light waves frozen, in the same way that a train would appear not to be moving if you rode alongside it at the same speed as the train. Yet he realized that this was impossible, because the speed of light is supposed to be constant regardless of your own movement. So he imagined instead riding alongside the light beam but at a somewhat slower speed. What if he traveled at 90 percent of the speed of light? If light beams are like trains, he reasoned, then he should see the light beam traveling ahead of him at 10 percent of the speed of light. Indeed, that would have to be what observers on Earth would see. But we know that the speed of light is a constant, as the Michelson-Morley experiment had shown. Thus he would necessarily see the light beam traveling ahead of him at the full speed of light. This seemed like a contradiction—how could it be possible?

The answer became evident to the German boy, whose name, incidentally, was Albert Einstein (1879–1955), by the time he turned twenty-six. Obviously—to young Master Einstein—time itself must have slowed down for him. He explains his reasoning in a paper published in 1905.7 If observers on Earth were to look at the young man’s watch they would see it ticking ten times slower. Indeed, when he got back to Earth, his watch would show that only 10 percent as much time had passed (ignoring, for the moment, acceleration and deceleration). From his perspective, however, his watch was ticking normally and the light beam next to him was traveling at the speed of light. The ten-times slowdown in the speed of time itself (relative to clocks on Earth) fully explains the apparent discrepancies in perspective. In the extreme, the slowdown in the passage of time would reach zero once the speed of travel reached the speed of light; hence it was impossible to ride along with the light beam. Although it was impossible to travel at the speed of light, it turned out not to be theoretically impossible to move faster than the light beam. Time would then move backward.

This resolution seemed absurd to many early critics. How could time itself slow down, based only on someone’s speed of movement? Indeed, for eighteen years (from the time of the Michelson-Morley experiment), other thinkers had been unable to see a conclusion that was so obvious to Master Einstein. The many others who had considered this problem through the latter part of the nineteenth century had essentially “fallen off the horse” in terms of following through on the implications of a principle, sticking instead to their preconceived notions of how reality must work. (I should probably change that metaphor to “fallen off the light beam.”)

Einstein’s second mind experiment was to consider himself and his brother flying through space. They are 186,000 miles apart. Einstein wants to move faster but he also desires to keep the distance between them the same. So he signals his brother with a flashlight each time he wants to accelerate. Since he knows that it will take one second for the signal to reach his brother, he waits a second (after sending the signal) to initiate his own acceleration. Each time the brother receives the signal he immediately accelerates. In this way the two brothers accelerate at exactly the same time and therefore remain a constant distance apart.

But now consider what we would see if we were standing on Earth. If the brothers were moving away from us (with Albert in the lead), it would appear to take less than a second for the light to reach the brother, because he is traveling toward the light. Also we would see Albert’s brother’s clock as slowing down (as his speed increases as he is closer to us). For both of these reasons we would see the two brothers getting closer and closer and eventually colliding. Yet from the perspective of the two brothers, they remain a constant 186,000 miles apart.

How can this be? The answer—obviously—is that distances contract parallel to the motion (but not perpendicular to it). So the two Einstein brothers are getting shorter (assuming they are flying headfirst) as they get faster. This bizarre conclusion probably lost Einstein more early fans than the difference in the passage of time.

During the same year, Einstein considered the relationship of matter and energy with yet another mind experiment. Scottish physicist James Clerk Maxwell had shown in the 1850s that particles of light called photons had no mass but nonetheless carried momentum. As a child I had a device called a Crookes radiometer,8 which consisted of an airtight glass bulb that contained a partial vacuum and a set of four vanes that rotated on a spindle. The vanes were white on one side and black on the other. The white side of each vane reflected light, and the black side absorbed light. (That’s why it is cooler to wear a white T-shirt on a hot day than a black one.) When a light was shined on the device, the vanes rotated, with the dark sides moving away from the light. This is a direct demonstration that photons carry enough momentum to actually cause the vanes of the radiometer to move.9

The issue that Einstein struggled with is that momentum is a function of mass: Momentum is equal to mass times velocity. Thus a locomotive traveling at 30 miles per hour has a lot more momentum than, say, an insect traveling at the same speed. How, then, could there be positive momentum for a particle with zero mass?

Einstein’s mind experiment consisted of a box floating in space. A photon is emitted inside the box from the left toward the right side. The total momentum of the system needs to be conserved, so the box would have to recoil to the left when the photon was emitted. After a certain amount of time, the photon collides with the right side of the box, transferring its momentum back to the box. The total momentum of the system is again conserved, so the box now stops moving.


A Crookes radiometer—the vane with four wings rotates when light shines on it.


So far so good. But consider the perspective from the vantage point of Mr. Einstein, who is watching the box from the outside. He does not see any outside influence on the box: No particles—with or without mass—hit it, and nothing leaves it. Yet Mr. Einstein, according to the scenario above, sees the box move temporarily to the left and then stop. According to our analysis, each photon should permanently move the box to the left. Since there have been no external effects on the box or from the box, its center of mass must remain in the same place. Yet the photon inside the box, which moves from left to right, cannot change the center of mass, because it has no mass.

Or does it? Einstein’s conclusion was that since the photon clearly has energy, and has momentum, it must also have a mass equivalent. The energy of the moving photon is entirely equivalent to a moving mass. We can compute what that equivalence is by recognizing that the center of mass of the system must remain stationary during the movement of the photon. Working out the math, Einstein showed that mass and energy are equivalent and are related by a simple constant. However, there was a catch: The constant might be simple, but it turned out to be enormous; it was the speed of light squared (about 1.7 × 1017 meters2 per second2—that is, 17 followed by 16 zeroes). Hence we get Einstein’s famous E = mc2.10 Thus one ounce (28 grams) of mass is equivalent to 600,000 tons of TNT. Einstein’s letter of August 2, 1939, to President Roosevelt informing him of the potential for an atomic bomb based on this formula ushered in the atomic age.11

You might think that this should have been obvious earlier, given that experimenters had noticed that the mass of radioactive substances decreased as a result of radiation over time. It was assumed, however, that radioactive substances contained a special high-energy fuel of some sort that was burning off. That assumption is not all wrong; it’s just that the fuel that was being “burned off” was simply mass.

There are several reasons why I have opened this book with Darwin’s and Einstein’s mind experiments. First of all, they show the extraordinary power of the human brain. Without any equipment at all other than a pen and paper to draw the stick figures in these simple mind experiments and to write down the fairly simple equations that result from them, Einstein was able to overthrow the understanding of the physical world that dated back two centuries, deeply influence the course of history (including World War II), and usher in the nuclear age.

It is true that Einstein relied on a few experimental findings of the nineteenth century, although these experiments also did not use sophisticated equipment. It is also true that subsequent experimental validation of Einstein’s theories has used advanced technologies, and if these had not been developed we would not have the validation that we possess today that Einstein’s ideas are authentic and significant. However, such factors do not detract from the fact that these famous thought experiments reveal the power of human thinking at its finest.

Einstein is widely regarded as the leading scientist of the twentieth century (and Darwin would be a good contender for that honor in the nineteenth century), yet the mathematics underlying his theories is ultimately not very complicated. The thought experiments themselves were straightforward. We might wonder, then, in what respect could Einstein be considered particularly smart. We’ll discuss later exactly what it was that he was doing with his brain when he came up with his theories, and where that quality resides.

Conversely, this history also demonstrates the limitations of human thinking. Einstein was able to ride his light beam without falling off (albeit he concluded that it was impossible to actually ride a light beam), but how many thousands of other observers and thinkers were completely unable to think through these remarkably uncomplicated exercises? One common failure is the difficulty that most people have in discarding and transcending the ideas and perspectives of their peers. There are other inadequacies as well, which we will discuss in more detail after we have examined how the neocortex works.

A Unified Model of the Neocortex

The most important reason I am sharing what are perhaps the most famous thought experiments in history is as an introduction to using the same approach with respect to the brain. As you will see, we can get remarkably far in figuring out how human intelligence works through some simple mind experiments of our own. Considering the subject matter involved, mind experiments should be a very appropriate approach.

If a young man’s idle thoughts and the use of no equipment other than pen and paper were sufficient to revolutionize our understanding of physics, then we should be able to make reasonable progress with a phenomenon with which we are much more familiar. After all, we experience our thinking every moment of our waking lives—and our dreaming lives as well.

After we construct a model of how thinking works through this process of self-reflection, we’ll examine to what extent we can confirm it through the latest observations of actual brains and the state of the art in re-creating these processes in machines.

Загрузка...