(mozgovik@front.ru)
Физик — это не профессия, физик — это диагноз.
Ультразвук — не слышимые человеческим ухом упругие волны, частота которых превышает 20 kHz.
Ультразвук содержится в шуме ветра и моря, издается и воспринимается рядом животных (летучие мыши, рыбы, насекомые и др.), присутствует в шуме машин. Применяется в практике физических, физико-химических и биологических исследований, а также в технике для целей дефектоскопии, навигации, подводной сварки, для ускорения некоторых химико-технологических процессов, получения эмульсий, сушки, очистки, сварки и других процессов, и в медицине — для диагностики и лечения.
Явление магнитострикции впервые было обнаружено ученым Джоулем в 1847 году.
Проведем небольшой опыт:
Рис. 1.
1 — деревянная палочка; 2 — ферритовый стержень
Намотаем на ферритовый стержень диаметром 8 мм и длиной 50-160 мм обмотку (можно в навал), содержащую 200–300 витков провода ПЭЛ 0.2. Выводы обмотки подключим к входу любого чувствительного усилителя низкой частоты (я использовал свой усилитель для компьютера). Придерживая один конец стержня 2, по другому слегка ударим деревянной палочкой 1: при этом в динамике должен произойти довольно громкий щелчок, что свидетельствует о том, что по катушке прошел импульсный ток, вызванный изменением (появлением) магнитного поля вокруг нее во время удара (т. е. деформации) стержня.
Появление магнитного поля при деформации ферромагнетика называется обратным магнитострикционным эффектом.
Прямой магнитострикционный эффект — изменение размеров ферромагнетика под действием внешнего магнитного поля (именно это свойство позволяет применять для получения ультразвука
Так как механическая прочность феррита невысока, максимальная интенсивность ультразвука, которую можно будет получить от излучателя, не превысит 2–4 Вт/см2, но и эта интенсивность позволяет поставить многие интересные опыты.
Как же устроен магнитострикционный излучатель?
1 — трубка из неметаллического материала; 2 — каркас обмотки возбуждения; 3 — обмотка возбуждения; 4 — ферритовый стержень; 5 — резиновое колечко; 6 — кольцевые керамические магниты
Обмотка возбуждения содержит около 100 витков провода ПЭЛ-1.0, намотанных виток к витку (два слоя).
Обмотку следует заизолировать.
Магниты - кольцевые керамические, диаметром 35 мм и толщиной 7 мм (можно и другие — их количество необходимо подбирать по максимуму интенсивности ультразвука).
Подавая на обмотку переменное напряжение произвольной частоты, мы не получим нужной интенсивности ультразвука (магнитострикционный эффект очень невелик: относительное удлинение стержня — величина порядка 10-5).
Выручает явление резонанса: при совпадении частоты переменного тока в катушке с собственной частотой излучателя амплитуда колебаний значительно увеличивается (если положить на торец стержня безопасную бритву, то она начнет громко дребезжать — хороший индикатор настройки излучателя в резонанс).
Зачем нужны магниты?
За период колебания тока синусоида проходит точку с нулевым отклонением 2 раза, т. е. магнитное поле вокруг катушки появляется и исчезает 2 раза. Изменение ферритовым стержнем размеров не зависит от направления поля, а зависит только от его величины, следовательно совершать колебания стержень будет в 2 раза чаще (с двойной частотой входного тока). Чтобы этого не произошло, рядом со стержнем располагают постоянные магниты. При совпадении направления магнитного поля катушки с направлением поля магнитов суммарное поле (при правильном подборе магнитов) усилится в 2 раза, а при смене направления на противоположное — уменьшится до 0, т. е. за период колебания тока поле будет появляться и исчезать 1 раз: частота колебаний стержня станет равной частоте тока в катушке, при этом амплитуда колебаний возрастет почти вдвое.
Принципиальная схема генератора изображена на рисунке:
Радиодетали: диод Д1 типа Д247, транзистор Т1 типа МП41 (МП42), транзистор Т2 типа П4 (П210); конденсаторы: С1 (500 мкФх30 В), С2 (0,047 мкФ), С3 = С5 = С6 (0,1 мкФ), С4 (5 мкФх20 В); резисторы: R1 (5,1 кОм), R2 = R4 (2,7 кОм), R3 (64 Ом), R5 (270 Ом).
Прибор собран на низкочастотных транзисторах и состоит из двух каскадов: задающего генератора на маломощном транзисторе МП-41 или 42 и усилителя, собранного на транзисторе П4 или П210 (заменить его на более доступный кремниевый пока не удалось).
Задающий каскад представляет собой автогенератор с индуктивной обратной связью. Частота генератора определяется параметрами колебательного контура, состоящего из катушки индуктивности L1 (первичной обмотки высокочастотного трансформатора Тр2) и конденсатора С2.
Плавная настройка генератора на нужную частоту осуществляется перемещением внутри обмоток трансформатора ферритового сердечника (изменением индуктивности контурной катушки).
Обмотка L3 трансформатора является катушкой обратной связи, с которой переменное напряжение через ячейку R2, С3 подается на базу транзистора Т1. Для самовозбуждения генератора необходимо, чтобы обратная связь была положительной.
Режим работы транзисторов задается отрицательным автоматическим смещением на их базах, которое осуществляется делителями напряжения R1, R2 и R4, R5.
Температурная стабилизация транзистора Т1 осуществляется ячейкой R3, С4.
Напряжение высокой частоты, вырабатываемое автогенератором, посредством катушки L2 и конденсатора С5 подается на базу транзистора Т2. Нагрузкой этого транзистора служит первичная обмотка выходного трансформатора Тр3. Конденсатор С6 предназначен для оптимального согласования магнитострикционного излучателя МСИ с выходом генератора.
Генератор питается от выпрямителя, состоящего из силового трансформатора Тр1, диода D1 и электролитического конденсатора С1. Переключатель В2 служит для подачи на генератор напряжений 10 и 20 В.Силовой трансформатор через предохранитель Пр1, рассчитанный на ток 0,5 А, включается в осветительную сеть напряжением 220 В. Включателем В1 подается напряжение на генератор, при этом загорается сигнальная лампочка Л1.
Основными самодельными деталями генератора являются трансформаторы.
Высокочастотный трансформатор Тр2 намотан на круглом каркасе, изготовленном из подходящего изоляционного материала по чертежу, представленному на рисунке. Отверстия в одной из щек каркаса, в которых нарезана резьба под болты М4, предназначены для крепления трансформатора на шасси генератора.
Первичная обмотка L1 трансформатора содержит две одинаковые секции по 100 витков в каждой; обмотки L2 и L3 содержат 36 и 25 витков соответственно. Все обмотки намотаны в одну сторону проводом ПЭЛ 0,51 и должны быть надежно изолированы тонкой бумагой друг от друга
Выходной трансформатор Тр3 можно намотать на Ш-образном сердечнике сечением 2–3 см2 или на ферритовом стерженьке диаметром 8 мм и длиной 40 мм (смотри рис.). Первичная I и вторичная II обмотки трансформатора содержат по 100 витков провода ПЭЛ 0,51.Между обмотками необходимо проложить изолирующую бумажную прокладку.
Трансформатор Тр1 проще всего изготовить из фабричного силового трансформатора к ламповому приемнику, перемотав накальную обмотку.
Если не удалось достать мощный транзистор для ультразвукового генератора, можно на весьма доступном маломощном транзисторе собрать простую приставку, превращающую усилитель низкой частоты в ультразвуковой генератор:
Радиодетали: транзистор Т1 типа П401, диод D1 типа Д7Ж; резисторы: R1 (3,9 кОм), R2 (11 кОм), R3 (470 кОм), R4 (2,2 кОм), R5 (5600 м); конденсаторы: С1 (10,0 мкФх450 В), С2 (2400 нФ), СЗ (2000 нФ), С4 (0,1 мкФ).
Принципиальная схема установки для получения ультразвука изображена на рисунке. На резисторе R1, диоде D1 и конденсаторе С1 собран выпрямитель с фильтром.
В исходном состоянии при подаче напряжения питания транзистор Т1, работающий в лавинном режиме, заперт. От выпрямителя через резисторы R2 и R3 заряжается конденсатор С2. Когда напряжение на нем станет равно напряжению включения транзистора, конденсатор разряжается через резистор R5 и переход эмиттер — коллектор транзистора. Напряжение на конденсаторе уменьшается до напряжения запирания транзистора, и далее процесс повторяется вновь. При этом на конденсаторе появляется переменное пилообразное напряжение, частоту которого в определенных пределах можно регулировать переменным резистором R3.
Через разделительный конденсатор С3 пилообразное напряжение поступает на вход усилителя. К выходу Гр усилителя подключен магнитострикционный излучатель МСИ.
Для лучшего согласования излучателя с выходом усилителя (т. е. для повышения интенсивности ультразвуковых колебаний вибратора) обмотку возбуждения можно зашунтировать конденсатором С4.
Порядок работы с приставкой достаточно прост. Соберите по приведенной выше схеме установку и подайте питание на приставку и усилитель. Далее переменным резистором изменяйте частоту колебании, настраивая приставку в резонанс с вибратором магнитострикционного излучателя. При этом, если на торце вибратора находится лезвие бритвы, должно наблюдаться его дребезжание.
Определение частоты ультразвука и калибровка генератора.
Резонансную частоту ультразвуковых колебаний излучателя можно рассчитать, зная длину ферритового стержня.
При резонансе в стержне устанавливается стоячая волна, при этом в длину стержня укладывается целое число полуволн, т. е. за время полного периода Т(с) колебаний волна в феррите проходит расстояние L(см), равное удвоенной длине стержня I(см): L = 2∙I.
Зная скорость распространения звука в феррите V ~ 5,32∙(105)(см/с) и длину I, можно рассчитать все собственные частоты стержня Fn(Гц) = n/Т =n∙V/L =n∙V/(2∙I)/ Fn(кГц) = (10-3)∙n∙V/(2∙I).
Пример расчета:
Если I = 10 см, то Fn(кГц) = (10-3)∙n∙5,32∙(105)/(2∙I) = n∙532/(9∙I) = n∙266/1 = n∙266/10 = n∙26,6(кГц) при n = 1, 2, 3…., т. е. резонансные частоты кратны 26,6 кГц.
Мы будем приводить стержень в состояние резонанса на основной собственной частоте (n = 1).
Имея набор ферритовых стержней разной длины с определенной резонансной частотой, мы легко можем проградуировать ультразвуковой генератор, делая пометки на выдвижном сердечнике трансформатора задающего генератора.
Опыты с ультразвуковым генератором
Начинать работу с прибором нужно с простейших опытов.
Несколько таких опытов описано ниже.
Опыт 1: Обнаружение колебаний излучателя
При совпадении частоты генератора с основной собственной частотой вибратора в последнем устанавливается стоячая ультразвуковая волна и на всей длине вибратора укладывается половина длины волны звука в феррите. Стоячая волна в свободном стержне образуется благодаря интерференции бегущих волн, отраженных от торцов стержня. Коэффициент отражения звуковой волны на границе твердое вещество — газ равно практически единице.
1 — Пальцами возьмитесь за конец вибратора, возбужденного на основной частоте. Вы почувствуете, что вибратор стал, «скользким». Сожмите пальцы (или прижмите один из них к торцу вибратора) и у вас возникнет ощущение легкого ожога. Выключите ультразвук. Все эти ощущения немедленно исчезают. Перемещайте пальцы к середине вибратора. Тогда ощущение «скользкости» вибратора уменьшится, а когда вы дойдете до его середины, оно вообще пропадет. Это говорит о том, что амплитуда колебаний вибратора постепенно уменьшается к его середине. Из опыта следует, что в середине вибратора действительно находится узел, а по краям — пучности смещений, т. е. в вибраторе устанавливается стоячая волна.
2 — Положите на торец вибратора лезвие безопасной бритвы — оно будет громко дребезжать.
3 — Капните каплю воды на торец ферритового вибратора. Настройте генератор на резонансную частоту ферритового вибратора. Капля мгновенно распылится.
Очевидно, наблюдаемые явления объясняются просто тем, что конец вибратора совершает колебания с большой частотой и заметной амплитудой.
Опыт 2: Подскакивающий шарик
Магнитострикционный излучатель с ферритовым вибратором поставьте вертикально на стол и подключите его обмотку возбуждения к выходу ультразвукового генератора. Над вибратором в лапке штатива закрепите стеклянную трубку внутренним диаметром 5–6 мм и длиной примерно 30 см, нижний конец трубки должен находиться на расстоянии 0,5–1 мм от торца вибратора. В трубку на вибратор поместите стальной шарик диаметром около 3 мм.
Включите генератор и выдвижением надстроечного сердечника из каркаса высокочастотного трансформатора постепенно повышайте частоту ультразвука. Как только частота генератора совпадет с основной собственной частотой вибратора, шарик на торце начнет подпрыгивать.
Это свидетельствует о значительном увеличении амплитуды колебаний вибратора при резонансе. Высота, на которую поднимется шарик после нескольких ударов его о торец вибратора, нередко превышает 30 см, так что шарик — если вы окажетесь невнимательны — может просто выскочить из трубки.
Магнитострикционный излучатель ультразвука работает только на резонансных частотах, поэтому имеет смысл немного потренироваться, чтобы в дальнейшем уверенно настраивать ультразвуковой генератор в резонанс с вибратором.
Только что поставленный вами опыт вполне аналогичен (разве лишь более эффектен) опыту с дребезжащим лезвием на вибраторе.
1 — штатив; 2 — стеклянная трубка; 3 — стальной шарик; 4 — излучатель
Опыт 3: Интерференция ультразвуковых волн на бумаге
На мягкую подкладку, состоящую из нескольких слоев тонкой бумаги, поместите плотный бумажный лист белого цвета. На лист через марлевое сито тонким слоем равномерно насыпьте мелкий песок. Расположив излучатель под углом примерно 45° к горизонту, прикоснитесь концом его вибратора к центру листа бумаги и настройте ультразвуковой генератор в резонанс с вибратором.
При этом песок на листе бумаги быстро перераспределится так, что станут видны круговые «волны» с центром в точке прикосновения вибратора. Для получения хорошей картины волн необходимо экспериментально подобрать подкладку и лист бумаги (его толщину и сорт). В опыте непосредственно видно, что ферритовый вибратор излучателя является источником ультразвуковой волны, распространяющейся по поверхности и внутри бумажного листа. Песок по поверхности бумаги перераспределяется так, что обозначает линии равных фаз ультразвуковой волны.
Попробуйте установить некоторые физические свойства ультразвуковой волны на бумаге. Передвигайте излучатель, не отрывая торца его вибратора от бумажного листа. Вы заметите, как вместе с источником перемещается по бумаге и система круговых волн.
Пододвиньте вибратор ближе к краю листа. При этом песок на бумаге обозначит еще одну систему волн, отраженных от края.
Прорежьте в листе бумаги небольшое отверстие и расположите вблизи него вибратор излучателя. Вы увидите, что ультразвуковая волна частично отражается от препятствия и огибает его. Отсюда следует существование дифракции ультразвука.
Опыт 4: Ультразвуковой ветер
При распространении ультразвуковой волны частицы среды колеблются около своих положений равновесия (если не учитывать беспорядочного теплового движения) и не перемещаются вместе с волной Это свойство является одним из признаков волнового движения, при котором происходит перенос энергии а не вещества.
Однако при включении мощного излучателя ультразвука частицы среды наряду с колебательным совершают и поступательное движение: в среде возникает течение, направленное от излучателя и имеющее скорость, много меньшую скорости звука. Такое движение частиц среды получило название ультразвукового ветра.
На расстоянии около 5 мм от пламени свечи расположите торец вибратора магнитострикционного излучателя. Включите ультразвуковой генератор и настройте его в резонанс с вибратором. При этом вы заметите отклонение пламени, обусловленное идущим от вибратора слабым потоком воздуха. Пламя свечи послужило здесь индикатором ультразвукового ветра. Ультразвуковой ветер можно наблюдать и в жидкости.
1 — торец ферритового стержня; 2 — свеча
Ультразвуковая кавитация
1 — ультразвуковой излучатель; 2 — кавитационное облачко 3 — кювета с жидкостью.
При распространении ультразвуковой волны даже сравнительно небольшой интенсивности (всего несколько ватт на квадратный сантиметр) в жидкости возникает переменное звуковое давление, амплитуда которого достигает порядка нескольких атмосфер. Под действием этого давления жидкость попеременно испытывает сжатие и растяжение. Жидкость без существенного изменения ее свойств можно сильно сжать. Иначе обстоит дело, если в жидкости создать разрежение: уже простое уменьшение давления над водой приводит к закипанию и парообразованию внутрь воды.
Нечто аналогичное происходит и при распространении ультразвуковой волны в жидкости: растягивающие усилия в области разрежения волны приводят к образованию в жидкости разрывов, т. е. мельчайших пузырьков, заполненных газом и паром. Эти пузырьки получили название кавитационных, а само явление стали называть ультразвуковой кавитацией.
Кавитационные пузырьки в некоторой области жидкости возникают всякий раз, когда до этой области доходит фаза разрежения ультразвуковой волны.
Как правило, кавитационные, пузырьки долго не живут: уже следующая за разрежением фаза сжатия приводит к захлопыванию, большей их части. Поэтому кавитационные пузырьки исчезают практически сразу вслед за прекращением облучения жидкости ультразвуком. При захлопывании кавитационного пузырька возникает ударная волна, развивающая громадные давления. Если ударная волна встречает на своем пути препятствие, то она слегка разрушает его поверхность.
Поскольку кавитационных пузырьков много и захлопывание их происходит много тысяч раз в секунду, кавитация может произвести значительные разрушения. Кавитация была впервые обнаружена при изучении быстрого движения твердых тел внутри жидкости. Огромную разрушающую силу этого явления почувствовали в первую очередь инженеры, испытывающие гребные винты судов. При большой скорости вращения лопастей винта происходит образование кавитационных пузырьков, аналогичное тому, которое имеет место при распространении ультразвуковой волны. Кавитация приводит к разрушению материала, из которого изготовлены гребные винты. В этом смысле кавитация — вредное явление. Однако создание ультразвуковых генераторов сделало возможным управление кавитационным процессом а значит, и полезное применение его на практике.
Для непосредственного наблюдения ультразвуковой кавитации соберите установку по схеме, изображенной на рисунке. Перед темным фоном расположите склеенную из оргстекла (или изготовленную иным способом) прямоугольную кювету размером 30x60x80 мм, осветите ее сбоку параллельным пучком света, выходящим из объектива проекционного аппарата. В кювету налейте, дистиллированную воду и погрузите в нее на глубину порядка 1 см вибратор магнитострикционного излучателя, обеспечивающего получение ультразвука низкой частоты. Наблюдения проводите в направлении, перпендикулярном к направлению распространения светового пучка.
Включите генератор и настройте его в резонанс с вибратором. При этом возникает резкий шипящий звук — кавитационный шум — и вблизи торца вибратора появляется небольшое белесоватое облачко, состоящее из кавитационных пузырьков. Выключите генератор; кавитационное облачко и шум немедленно пропадают. Из опыта следует, что появление шума при работе вибратора в жидкости непосредственно связано с появлением кавитационного облачка.
Белесоватое облачко, которое вы наблюдали на опыте, состоит из мельчайших, кавитационных пузырьков, видимых непосредственно глазом на темном фоне благодаря тому, что они сильно рассеивают свет. Характерный шум, появляющийся и исчезающий вместе с облачком, объясняется примерно тем же, что и шипение воды в чайнике перед ее закипанием: захлопываясь, кавитационные пузырьки порождают звуковые импульсы в большом диапазоне частот, т. е. шум. Мгновенное исчезновение навигационного облачка при выключении ультразвука свидетельствует о том, что в опыте наблюдается истинная кавитация. Существует явление ультразвуковой дегазации жидкости, при котором под воздействием ультразвука также появляются пузырьки, но не исчезающие сразу по выключении ультразвука и, следовательно не имеющие ничего общего с кавитационными.
Внимательно рассмотрите кавитационное облачко. Расположите вибратор излучателя в воде под углом около 45° к горизонту так, чтобы сбоку был виден его торец. Вы заметите, что кавитационное облачко неоднородно: вблизи центра торца оно имеет вид небольшой плотной области; по плоскости торца кавитационные пузырьки распределяются в виде своеобразной, похожей на много конечную звезду, фигуры. Удалите из каркаса обмотки возбуждения вибратор излучателя и мелкой шкуркой тщательно зачистите его торец. Погрузите вибратор зачищенным концом в воду и добейтесь появления ультразвуковой кавитации. После пятиминутной работы излучателя при максимальной интенсивности ультразвука выньте из каркаса вибратор и рассмотрите его торец. По всей поверхности торца вы обнаружите более или менее сильные разрушения: на торце оказывается как бы выгравированной та звездообразная фигура, которую вы наблюдали раньше в опыте с кавитационным облачком. Результат опыта свидетельствует об огромной разрушающей силе ультразвуковой кавитации.
Получите кавитационное облачко в кювете, заполненной глицерином. Выключите в комнате свет и, подождав несколько минут, чтобы глаза привыкли к темноте, посмотрите в направлении торца вибратора. Вы заметите небольшую светящуюся область синеватого оттенка. Из опыта следует, что некоторые жидкости люминесцируют под действием ультразвука. Обнаруженное вами явление так и называется: сонолюминесценция. Теория этого интересного явления разработана еще далеко не полностью. Согласно одной из гипотез сжатие кавитационных пузырьков при захлопывании приводит к сильному нагреванию и свечению содержащегося в них газа. По другой гипотезе свечение газа в кавитационных пузырьках обусловлено электрическими разрядами. Свечение глицерина под действием ультразвука незначительно по яркости, поэтому вначале вам его будет трудно обнаружить. Чтобы облегчить наблюдения, на свету перед кюветой расположите лупу, через которую будет виден торец вибратора. Далее, получив ультразвук максимальной интенсивности, в полной темноте приблизьте глаз к лупе. Если вы увидите люминесценцию глицерина в виде синеватого свечения, лупу можно будет убрать. После этого увидеть свечение не составит труда, так как теперь вы будете знать, куда смотреть.
Продольная звуковая волна представляет собой периодически чередующиеся области сжатий и разрежений, которые распространяются в среде с постоянной скоростью. Следовательно, в каждой точке звукового поля существует переменное звуковое давление.
Вместе с тем звуковая волна оказывает и постоянное давление на встречающиеся на ее пути препятствия. Это давление звука называется радиационным.
Радиационное давление свойственно всем волнам вообще, независимо от их природы: и волны на поверхности жидкости, и звук, и свет «давят» на препятствия.
Радиационное давление ультразвука ответственно еще за один акустический эффект: ультразвуковой фонтан на границе раздела двух жидкостей или жидкости и газа.
На рисунке Рис. 1 представлен возможный вариант установки, обеспечивающей введение ультразвука в жидкость.
1 — Пластмассовая чашечка с просверленным отверстием в донышке. 2 — Торец вибратора. 3 — Резиновый клей или пластилин. 4 — Стеклянная или пластмассовая трубочка. 5 — Резиновая прокладка. 6 — Каркас обмотки возбуждения.
В чашечку налейте воду так, чтобы вибратор был закрыт слоем воды толщиной 4–8 мм. Включите генератор и настройте его в резонанс с вибратором: поверхность воды должна вспучиться, одновременно Вы услышите характерный кавитационный шум. Чем тоньше слой жидкости над вибратором, тем сильнее вспучивается поверхность воды, даже могут быть небольшие брызги, на рисунке (Рис. 2) Вы можете посмотреть, как (приблизительно) это будет выглядеть.
Чтобы получить фонтан до 15 см высотой надо очень точно настроить уровень жидкости в чашечке. Удобно здесь пользоваться обычным медицинским шприцем. Уровень жидкости должен быть чуть-чуть ниже, чем торец вибратора.
Сначала следует налить воду на одном уровне с вибратором. Включите генератор, настройте в резонанс. Если фонтана не образовалось, а вода просто затекла на торец вибратора, выключите вибратор и заберите из чашечки шприцем немного воды. Повторите операцию.
Когда Вы подберете оптимальный уровень воды, при настройке в резонанс вода начнет интенсивно распыляться. Это очень красивое и интересное явление.
Получив ультразвуковой фонтан один раз, второй раз Вам, несомненно, будет его легче получить, т. к.
Вы уже будете знать, что следует увидеть, какие условия эксперимента необходимы для его наблюдения.
Вы наверняка заметите, что фонтан, появившись, довольно быстро ослабевает, это связано с расходом воды на аэрозоль. В принципе, организовав медленную подачу воды на торец вибратора, тоже можно получить ультразвуковой фонтан.