Часть I. Происхождение Вселенной

Глава 1. В начале всех начал

В начале всех начал была физика. Физика описывает поведение вещества, энергии, пространства и времени и то, как они взаимодействуют друг с другом. В нашем театральном представлении космических масштабов эти взаимодействия лежат в основе всех биологических и химических явлений. По этой причине все фундаментальное и знакомое нам, землянам, начинается с законов физики и именно благодаря им возможно. Применяя эти законы к астрономическим декорациям, мы имеем дело с физикой астрономического масштаба и потому называем ее астрофизикой.

Практически в любой области научных изысканий, но особенно в физике, передовая научных открытий — словно линия на графике, которая соединяет точки экстремальных значений событий и ситуаций, отражающих наши возможности для их измерения. Для вещества такое экстремальное значение представляет собой район черной дыры, где гравитация серьезно искажает окружающий пространственно-временной континуум. На пике энергии при температуре 15 миллионов градусов в ядрах звезд протекает термоядерный синтез. Какое экстремальное значение ни возьми, оно всегда будет связано со умопомрачительно высокой температурой и очень высокой плотностью, характерными для самых первых мгновений жизни нашей Вселенной. Чтобы понять, что происходит в каждом из таких случаев, необходимо вооружиться законами физики, открытыми после 1900 года, в так называемую физиками современную эпоху (это позволяет отделить ее от классической эпохи, куда мы относим всю прочую физику с ее открытиями и теориями).

Одна из ключевых особенностей классической физики заключается в том, что описанные ею события, законы и прогнозы вполне разумны. Все они были открыты и проверены в обычных лабораториях в стенах обычных зданий. Законы тяготения и движения, электричества и магнетизма, природы и поведения тепловой энергии — обо всем этом до сих пор можно узнать на занятиях по физике в старших классах школы. Эти разоблачения тайн природы легли в основу индустриальной революции, изменив культуру и общество так, как предыдущие поколения не могли себе и вообразить, а также по сей день остаются в центре всего происходящего в мире, являются первопричиной всех событий.

В то же время в современной физике ничего разумным не кажется, ведь все события происходят в условиях, лежащих далеко за пределами восприятия доступными человеку чувствами. Это, кстати, даже хорошо. Мы можем радостно заключить, что наша повседневная жизнь протекает совершенно отдельно от физики экстремальных состояний и значений. Вообразите свое самое обычное утро: вы просыпаетесь, бродите по дому, что-нибудь едите и уходите по делам. В конце дня ваши близкие рассчитывают увидеть вас таким же, каким вы были с утра, более того, они уверены, что вы вернетесь домой целым. Теперь представьте себе: вы приезжаете в офис, заходите в перегретый конференц-зал, где в десять утра должно состояться важное собрание, — и вдруг теряете все до одного свои электроны. Или еще хуже — ваше тело рассыпается на миллионы отдельных атомов. Так себе, правда? Ладно, а теперь представим, что вы сидите у себя в кабинете и пытаетесь закончить работу при свете настольной лампы. Вдруг кто-то включает целых 1000 ватт основного освещения — и в результате ваше тело начинает беспорядочно отскакивать от стены к стене, пока вас наконец не выкидывает прямо из окна. А что, если вы пойдете на матч по сумо сразу после работы, где два почти шарообразных джентльмена столкнутся, исчезнут и тут же превратятся в два столпа света, после чего покинут помещение в противоположных направлениях? Или, предположим, по дороге домой вы выбираете непривычный маршрут, и темное здание у обочины сначала затягивает ваши ноги, неимоверно растягивая ваше тело с головы до ног и сжимая ваши плечи, а потом протаскивает вас сквозь узкое длинное отверстие в стене — и вас больше никто не увидит и не услышит…

Если бы подобные вещи происходили с нами в повседневной жизни, современная физика казалась бы нам гораздо менее странной. Наши знания основ теории относительности и квантовой механики были бы естественным отражением нашего жизненного опыта, а наши близкие, скорее всего, ни за что не отпускали бы нас на работу. Но в первые минуты существования Вселенной такие штуки происходили сплошь и рядом! Чтобы представить себе это и хотя бы приблизительно осознать, у нас нет иного выбора, кроме как поставить во главу угла новую форму здравого смысла — этакую адаптированную интуицию, подсказывающую, как именно ведет себя вещество и как законы физики описывают его поведение при экстремальных значениях температуры, плотности и давления.

Добро пожаловать в мир, где E = mc2.

Впервые Альберт Эйнштейн опубликовал свое знаменитое уравнение в 1905 году в фундаментальной научной статье «К электродинамике движущихся тел», которая вышла в ведущем немецком научном журнале «Анналы физики»2. Она гораздо более известна как специальная теория относительности Эйнштейна: в ней были сформулированы понятия, навсегда изменившие наши представления о времени и пространстве. А ведь в 1905 году сотруднику патентного бюро в швейцарском городе Берне Эйнштейну было всего 26 лет. Позднее в этом же году он внес ряд дополнений в трактовку самого известного своего уравнения в новой выдающейся статье, уместившейся на двух с половиной страницах того же журнала, она называлась «Зависит ли инерция тела от содержащейся в нем энергии?» Не тратьте время на поиски оригинала статьи, эксперименты и проверку теории Эйнштейна: ответ на этот вопрос — «да». Как писал Эйнштейн, используя L там, где ныне мы используем E, и V для обозначения скорости света, которая в настоящее время обозначается как c:

«Если тело отдает в виде излучения энергию L, его масса уменьшается на величину L / V[2]. <..> Масса тела является мерой энергии, которая в нем содержится; если изменить энергию на L, масса изменится соответственно на L /9 х 1020».

Не до конца убежденный в собственной правоте, он затем предполагает:

«Вполне вероятно, что данную теорию можно проверить на практике, изучив тела, энергия которых способна значительно изменяться (например, соли радия)».

Вот он — алгебраический рецепт на случай, если вам захочется преобразовать вещество в энергию или энергию в вещество. E = mc2: энергия равняется массе, умноженной на скорость света в квадрате. Эта формула — эффективный вычислительный инструмент, дарящий нам широкие возможности для познания и осознания Вселенной: от ее сегодняшнего состояния и до ничтожных долей секунды после зарождения космоса. Она позволяет определить, сколько энергии может излучать звезда или сколько вы выгадаете, переведя монеты из своего кармана в полезную форму энергии.

Наиболее знакомая всем форма энергии освещает все вокруг, хотя многие даже не догадываются о ее энергетической сути и не задумываются о ее названии. Речь о фотоне — невесомой неделимой частице видимого света или любой другой формы электромагнитного излучения. Мы живем, постоянно купаясь в море из фотонов: они исходят от Солнца, Луны и звезд; духовок, люстр и ночников; сотен теле— и радиостанций; бесчисленных сигналов сотовых телефонов и радаров. Почему же мы не наблюдаем, как день за днем, каждый день энергия превращается в вещество, или наоборот? Дело в том, что энергия обычных фотонов слишком мала, много меньше выраженной через формулу E = mc2 массы самых крохотных элементарных частиц. Такие фотоны производят слишком мало энергии, чтобы превратиться во что-либо еще, поэтому их удел — весьма незатейливое существование.

Хотите наглядный пример работы формулы E = mc2? Обратитесь к фотонам гамма-излучения — в них как минимум в 200 000 раз больше энергии, чем в видимых фотонах. Вы очень быстро заболеете раком и умрете, но перед этим вам удастся разглядеть пары электронов: один из вещества, а другой из антивещества (физики называют их электроном и позитроном соответственно). Как и множество подобных динамичных пар в нашей Вселенной, они будут появляться там, где раньше были фотоны. Вы также увидите, как эти пары электронов, сталкиваясь, аннигилируют и вновь превращаются в фотоны гамма-излучения.

Увеличим энергию фотонов еще в 2000 раз и получим гамма-лучи, энергии которых хватит на то, чтобы превратить предрасположенных к этому людей в зеленых монстров наподобие Халка. Пары таких фотонов обладают энергией, описанной уравнением E = mc2 и достаточной для того, чтобы создавать такие частицы, как нейтроны, протоны и их «антиверсии» — античастицы, каждая из которых имеет массу почти в 2000 раз больше массы обычного электрона. Фотоны с высокой энергией существуют во многих космических горнилах мироздания. Для гамма-излучения подходит практически любая среда, температурой выше нескольких миллиардов градусов.

Трудно переоценить космологическую важность наличия частиц и квантовой энергии, превращающихся друг в друга. В данный момент температура нашей расширяющейся Вселенной, которую можно вычислить, измерив все микроволновые фотоны во всем мировом пространстве, составляет смешные 2,73 градуса по шкале Кельвина. В ней нет отрицательных температур: частицы с наименьшей энергией располагаются на нулевой отметке; комнатная температура составляет 295 градусов; вода кипит при 373 градусах. Как и фотоны видимого света, микроволновые фотоны выше любых суетных попыток превратиться в какие-то частицы под диктовку формулы E = mc2. Проще говоря, нам неизвестны частицы со столь малой массой, что в них мог бы превратиться микроволновый фотон. То же самое можно сказать и о фотонах, которые составляют радиоволны, инфракрасный и видимый свет, а также ультрафиолетовые и рентгеновские лучи. Еще проще говоря, для преобразований частиц необходимо гамма-излучение. Однако вчера Вселенная была чуть меньше и чуть горячее, чем сегодня, а позавчера — еще чуть меньше и горячее. Теперь откатимся назад, скажем на 13,8 миллиарда лет, и окажемся в самой гуще первичного бульона, образовавшегося после Большого взрыва. Тогда температура космоса была достаточно высокой для того, чтобы представлять собой астрофизический интерес, а гамма-излучение постепенно наполняло Вселенную.

Расшифровка поведения пространства, времени, вещества и энергии от Большого взрыва до сегодняшнего дня — одна из величайших побед человеческого разума. Если вам требуется развернутое объяснение всего, что происходило еще раньше, когда Вселенная была меньше и горячее, чем когда-либо потом, вам нужно найти способ заставить четыре фундаментальных взаимодействия — гравитационное, электромагнитное, сильное и слабое ядерные — снова объединиться в одно целое и превратиться в единое метавзаимодействие. Вам также будет необходимо найти способ примирить между собой две физические дисциплины, которые в данный момент несовместимы друг с другом: квантовую механику (науку о малом) и общую теорию относительности (науку о большом).

Воодушевленные объединением квантовой механики и электромагнетизма в середине XX века, которое прошло столь же успешно, как объединение электричества и магнетизма столетием ранее, физики занялись слиянием квантовой механики и общей теории относительности в единую стройную теорию квантовой гравитации. Хотя ничего путного у них пока не вышло, мы уже знаем, когда произошло все самое интересное: во время так называемой планковской эпохи. Она описывает стадию развития космоса вплоть до 10–43 секунд (это одна десятимиллионо-миллиардно-миллиардно-миллиардная доля секунды) от начала времен. Так как информация никогда не путешествует быстрее скорости света (3 х 108 м/с), гипотетический наблюдатель, расположившийся где угодно во Вселенной во время планковской эпохи, смог бы увидеть не далее чем на 3 х 10–35 м вокруг себя (это три стомиллиардно-миллиардо-миллиардных метра). Немецкий физик Макс Планк, в честь которого и были названы эти с трудом вообразимые времена и расстояния, выдвинул гипотезу о квантовой энергии в 1900 году. Сегодня Планк — главный кандидат в общепризнанные отцы квантовой механики.

Однако с точки зрения повседневной жизни волноваться совершенно не о чем. Разногласия квантовой механики и силы тяготения не представляют практических проблем для современной Вселенной. Астрофизики используют принципы и инструменты общей теории относительности и квантовой механики в работе над совершенно разными категориями задач. Однако в самом начале, в планковскую эпоху, большое было одновременно и малым, значит, должен существовать какой-то способ, пусть даже поневоле, реабилитировать отношения этой семейной пары. Да, как ни печально, клятвы, произнесенные тогда у космического алтаря, нам пока узнать не удается, и потому ни один из известных нам законов физики не описывает достаточно убедительно, что же происходило во время краткого медового месяца Вселенной — до того, как ее расширение заставило большое и малое разойтись навсегда.

В конце планковской эпохи гравитация умудрилась отделиться от остальных, все еще объединенных сил природы и обрести независимые характеристики, которые замечательно описаны в наших сегодняшних теориях. Когда Вселенной исполнилось 10–35 секунд, она продолжила расширяться и остывать, и то, что оставалось от когда-то единой силы, постепенно разделилось на электрослабое и сильное ядерное взаимодействия. Еще чуть позже электрослабое взаимодействие поделилось на электромагнитное и слабое ядерное. Вот вам и четыре фундаментальных, хорошо знакомых взаимодействия: слабое управляет ядерным распадом, сильное удерживает вместе частицы атомного ядра, электромагнитное связывает отдельные атомы в целые молекулы, а гравитация помогает веществу образовывать крупные формы и структуры. К тому моменту, как Вселенной исполнилась одна миллиардная доля секунды, ее таинственно эволюционировавшие взаимодействия (а также еще несколько ключевых элементов) уже успели наделить космос своими фундаментальными свойствами, каждое из которых заслуживает отдельной книги.

Пока тянулась та бесконечная, первая в истории Вселенной одна миллиардная доля секунды, взаимодействие вещества и энергии не прекращалось. Незадолго до того, как сильное и электрослабое взаимодействия разделились (а также во время этого деления и после него), Вселенная состояла из кипящего океана кварков, лептонов и их сестер-античастиц, а также бозонов — частиц, которые помогали всем им взаимодействовать друг с другом. Исходя из данных, которыми мы обладаем сегодня, ни одно из этих семейств частиц не делится на что-либо еще меньшее по размеру (или «более базовое»). Однако при всей их фундаментальности в каждое из семейств в свою очередь входят несколько видов частиц. Фотоны — включая те, что образуют видимый свет, — относятся к семейству бозонов. Наиболее известные обывателю (но не физику!) лептоны — это электроны и, пожалуй, нейтрино, а самые общеизвестные кварки… на самом деле таких нет, потому что в повседневных условиях вы не встретите кварков самих по себе, они всегда составляют какие-то другие частицы, например протоны и нейтроны. Каждому виду кварков было дано абстрактное название, не имеющее никакой филологической, философской или педагогической подоплеки. Единственная цель этих названий — помочь различать отдельные виды кварков: верхний кварк (u-кварк) и нижний кварк (d-кварк), странный (s-кварк) и очарованный (c-кварк), истинный (t-кварк) и прелестный (b-кварк)[3].

Кстати, бозоны называются именно так в честь индийского физика Шатьендраната Бозе. Название «лептон» происходит от греческого leptos — «легкий», «малый». А название «кварк» имеет гораздо более художественное происхождение и даже литературный характер. Американский физик Мюррей Гелл-Ман, выдвинувший гипотезу о существовании кварков в 1964 году и в том числе предположивший, что в семействе кварков есть только три члена, выбрал для них имя из одной довольно туманной строки романа «Поминки по Финнегану» писателя Джеймса Джойса, где герой восклицает: «Три кварка для Мастера Марка!»[4]. У кварков есть одно преимущество — у всех очень простые названия; химикам, биологам и геологам следовало бы поучиться умению физиков давать изучаемому простые и удобные названия, а то они вечно мудрят с терминологией.

Кварки — довольно ловкие ребята. В отличие от протонов, каждый из которых обладает электрическим зарядом +1, и электронов с зарядом –1 каждый, кварки наделены дробными зарядами, кратными одной третьей. За исключением самых экстремальных условий вам никогда не встретить кварк, который гуляет сам по себе: он всегда крепко держит за руку еще кварк-другой. Более того, сила, которая удерживает кварки рядом, только растет, когда вы пытаетесь разделить их, — словно они заключены в какое-то субъядерное эластичное кольцо, не дающее им расстаться. Правда, если все же развести их достаточно далеко, это «кольцо» лопнет. Энергия, высвобожденная при его разрыве, вспоминает о формуле E = mc2 и приводит к созданию нового кварка на конце каждой половинки «кольца», за которые вы тянули… И все можно начинать сначала.

В эпоху кварков и лептонов, длившуюся первую триллионную долю секунды в жизни космоса, Вселенная была достаточно плотной, и среднее расстояние между связанными и несвязанными кварками было практически одинаковым. В данных условиях между соседними кварками не могли установиться однозначные связи, поэтому они просто свободно перемещались. Экспериментальное обнаружение такого состояния вещества, которое по понятным причинам было названо кварковым бульоном, впервые было объявлено в 2002 году командой физиков Брукхейвенской национальной лаборатории (Лонг-Айленд, Нью-Йорк).

Наблюдения и теория вкупе позволяют предположить, что некое происшествие в самом начале после рождения Вселенной (возможно, в момент выделения из единого силового поля каких-то типов взаимодействия) наградило космос примечательной асимметрией: на одну частицу антивещества приходился примерно миллиард частиц вещества. Сегодня все мы существуем именно по этой причине. Эту крошечную разницу никто бы с ходу и не заметил в период бесконечного создания, аннигиляции и воссоздания кварков и антикварков, электронов и антиэлектронов (помните, они называются позитронами?), нейтрино и антинейтрино. В ту эпоху столь незначительного, казалось бы, преобладания вещества над антивеществом у этого самого «третьего лишнего» (а точнее, у «миллиард первого» лишнего) было множество возможностей встретиться еще с какой-нибудь частицей и аннигилировать. Да что там — все так и делали!

Но этому пришел конец. Вселенная продолжала расширяться и остывать, ее температура быстро упала ниже одного миллиарда градусов по шкале Кельвина. С начала всех начал прошла одна миллионная доля секунды, но в этой умеренно теплой Вселенной температуры и плотности вещества было уже недостаточно для того, чтобы изготавливать новые кварки. Все кварки быстренько нашли себе по партнеру и создали новое семейство тяжелых частиц, которые называются адронами (от греческого hadros — «плотный»). В результате перехода от просто кварков к адронам произошли протоны и нейтроны, а также другие, менее известные виды тяжелых частиц, представляющие собой различные комбинации кварков. Некоторая асимметрия в объеме вещества и антивещества в этом кварколептоновом бульоне передалась адронам… и последствия этого просто невероятны.

Вселенная продолжала охлаждаться, и количество энергии, доступное для спонтанного зарождения частиц, продолжало падать. Во время адронной эпохи фотонам уже не хватало сил на то, чтобы создавать пары «кварк — антикварк» по предписанию формулы E = mc2: величина их энергии E была ниже, чем значение mc2. Вдобавок ко всему те фотоны, что остались в живых после всех многочисленных аннигиляций, продолжали терять энергию, отдавая ее расширяющейся Вселенной. Их энергия упала ниже уровня, необходимого для создания пар «адрон — антиадрон». После каждого миллиарда аннигиляций на поминках оставались пировать миллиард фотонов и лишь один-единственный адрон — немое свидетельство былой асимметрии между веществом и антивеществом. Рано или поздно этим одиноким адронам доведется, образно выражаясь, оторваться на полную катушку: они станут сырьем для формирования галактик, звезд, планет и человечества.

Если бы не эта асимметрия, когда на миллиард части вещества приходится одна-единственная частица антивещества, вся масса Вселенной за исключением темной материи, чья форма до сих пор неизвестна, аннигилировала бы в течение первой же секунды своего существования: остался бы космос, в котором не было бы ничего, кроме фотонов. По сути, это самый близкий к историческому «Да будет свет!» сценарий, какой только можно себе вообразить.

С начала всех начал прошла уже целая секунда.

Для Вселенной температура в невообразимый один миллиард градусов — все еще «достаточно не холодно», чтобы производить электроны, которые наряду со своими напарниками-позитронами продолжают появляться и исчезать. Однако их дни (а на самом деле секунды) в этой постоянно расширяющейся и остывающей Вселенной уже сочтены. Что раньше было характерно для адронов, теперь сбывается и для электронов и позитронов: сталкиваясь, они аннигилируют, и в итоге остается один электрон из миллиарда — последний уцелевший герой после взаимного пакта о самоубийстве между частицами вещества и антивещества. Остальным же электронам и позитронам было суждено погибнуть, чтобы заполнить Вселенную еще большим количеством фотонов.

Подошла к концу эпоха электронно-позитронных аннигиляций, и космос «замирает» в состоянии, в котором на каждый электрон приходился один протон. Охлаждение продолжается, температура уже упала ниже 100 миллионов градусов, протоны сливаются с другими протонами и нейтронами, формируя собой атомные ядра и приводя к рождению Вселенной, в которой 90 % таких ядер — это водород, еще почти 10 % — гелий и крошечную долю составляют дейтерий, тритий и литий.

С начала всех начал прошло две минуты.

С нашим весьма аппетитным бульоном из атомных ядер водорода и гелия, электронов и позитронов в следующие 380 тысяч лет ничего особого не происходит. Все эти сотни тысячелетий температура Вселенной все еще остается достаточно высокой, чтобы позволить электронам свободно перемещаться между фотонами, толкаясь и подпихивая их.

В главе 3 мы подробнее расскажем, как это свободное перемещение резко закончилось, стоило температуре Вселенной упасть ниже 3000 градусов по шкале Кельвина (это примерно в два раза холоднее поверхности Солнца). Ну а пока электроны понемногу начинают вращаться вокруг отдельных атомных ядер, один за другим создавая атомы. Этот процесс соединения приводит к формированию Вселенной, в которой новенькие атомы купаются в едином море из фотонов видимого света. На этом и заканчивается история о том, как в первичной Вселенной были сформированы частицы и атомы.

Вселенная продолжает расширяться, а значит, ее фотоны все еще теряют энергию. Сегодня, куда бы астрофизики ни кинули взгляд, они обнаруживают космические следы микроволновых фотонов с температурой 2,73 градуса по шкале Кельвина, оставшиеся после тысячекратной потери фотонами энергии с тех пор, как в мире сформировался самый первый атом. Траектории движения фотонов в небе — то конкретное количество энергии, поступающей из самых разных направлений, — содержат в себе следы распространения вещества во Вселенной тех самых времен, когда атомы еще не начали формироваться. По этим траекториям астрофизики могут судить о многих вещах, включая предполагаемые возраст и форму Вселенной. Несмотря на то что сегодня атомы являются неотъемлемой составляющей существования Вселенной, уравнение Эйнштейна отнюдь не следует сбрасывать со счетов. Оно актуально для ускорителей частиц, в которых каждая пара вещества и антивещества создается из энергетических полей; для ядра Солнца, где 4,4 миллиона тонн вещества ежесекундно превращаются в энергию; для ядер всех остальных звезд.

Формула E = mc2 умудряется напомнить о себе даже вблизи черных дыр, буквально сразу за их горизонтом событий: здесь пары частиц и их античастиц рождаются за счет феноменальной гравитационной энергии черной дыры. Британский космолог Стивен Хокинг впервые описал подобные выходки в 1975 году, показав, что вся масса черной дыры целиком может медленно испаряться благодаря данному механизму. Другими словами, черные дыры оказались не совсем черными. Это явление называют излучением Хокинга, и оно служит напоминанием о том, сколь плодотворно самое знаменитое уравнение Эйнштейна.

Но что же произошло до всей этой вселенской суматохи? Что произошло до того, как все началось?

Астрофизики не имеют ни малейшего понятия. Точнее говоря, наши самые творческие идеи ничем или почти ничем не обоснованы в рамках экспериментальной науки. При этом верующие люди любят утверждать, причем нередко с легким оттенком самодовольства, что все же что-то конкретное должно было все это «начать», некая сила, превосходящая все остальные силы, исток у истоков мира. Некая первопричина. В голове такого человека это самое «что-то», конечно же, Бог, природа которого может различаться в глазах разных верующих, но который всегда оказывается в ответе за то, что «все началось».

Но что, если Вселенная была всегда? В таком состоянии или при таких условиях, которые нам еще предстоит понять и описать, например в виде Мультивселенной, где все, что мы называем своей Вселенной, — лишь крошечный пузырек в пене океанического прибоя? А может, Вселенная «начала существовать» подобно частицам, просто появившись совершенно из ниоткуда и вообще без причины?

Подобные отповеди обычно никого не убеждают. Тем не менее они напоминают нам о том, что осведомленное невежество — это естественное состояние ума ученых-исследователей, которые стоят во главе движения за улучшение качества и количества знаний, доступных человеку. Люди, которые считают себя всезнающими, никогда не пытались обнаружить да и никогда не забредали случайно за границу знаний о космосе между известным нам и неизвестным. «Вселенная была всегда» — такой ответ не вызовет уважения в ответ на вопрос о том, «что же было до начала всех начал». При этом для верующих людей ответ «Господь был всегда» является очевидным и очень приятным ответом на вопрос «Что было до того, как появился Господь?»

Кем бы вы ни были, пускаясь навстречу открытиям, раскрывающим тайну о том, где и как все когда-то начиналось, вы почувствуете мощный эмоциональный подъем, как если бы знание о происхождении человечества каким-то образом делало вас более приспособленным к тому, чему еще предстоит случиться в будущем. Жизнь и Вселенная преподают нам один и тот же урок: знать, откуда ты пришел, не менее важно, чем знать, куда ты направляешься.


Глава 2. О важности антивещества

Физике элементарных частиц принадлежит пальма первенства за самый необычный и одновременно с этим игривый профессиональный жаргон среди всех физических дисциплин. В предыдущей главе мы познакомились не только с протонами, нейтронами и электронами, но также с фотонами, адронами, бозонами и кварками. Но этого недостаточно, чтобы почувствовать всю глубину бездны, в которой существуют названия, имеющие отношение к физике элементарных частиц. Где еще вы найдете отрицательный мюон и мюонное нейтрино, обменивающиеся нейтральным векторным бозоном? Или станете свидетелем глюонного обмена, благодаря которому соединяются странный и очарованный кварки? Где еще вам удалось бы встретить гравитино, фотино и скварки? А ведь помимо этих, казалось бы, бесчисленных частиц со странными названиями, физикам приходится также иметь дело с параллельной Вселенной из их античастиц, которые образуют собой антивещество. Несмотря на то что вы встречаетесь с антивеществом преимущественно в научной фантастике, оно существует на самом деле. Вы, наверное, уже догадываетесь, что оно склонно аннигилировать при контакте с обычным веществом?

Между частицами и античастицами в нашей Вселенной уже давно развивается нежный роман. Они могут вместе родиться из чистой энергии и аннигилировать, обращая свою обретенную при рождении массу обратно в энергию. Антиматерия может возникнуть из ничего или, точнее, из тонкого пространства. Гамма-фотоны с достаточно высокой энергией могут трансформироваться в пары «электрон — позитрон», преобразуя тем самым свою огромную энергию в небольшое количество материи, энергетический баланс которой удовлетворяет формуле E = mc2. Энергия, заключенная в паре «электрон — позитрон», эквивалентна энергии движения фотона гамма-излучения.

В 1932 году американский физик Карл Дэвид Андерсон открыл позитрон — положительно заряженную частицу антивещества, аналог отрицательно заряженного электрона. С той поры физики, занимающиеся элементарными частицами, регулярно изготавливают самые разные античастицы в ускорителях частиц по всему миру, но лишь совсем недавно им удалось собрать античастицы в полноценные атомы. С 1996 года международная группа ученых под руководством Вальтера Улерта при Институте ядерной физики исследовательского центра в немецком городе Юлихе создает атомы антиводорода, в которых антиэлектрон благосклонно вращается вокруг антипротона. Чтобы сделать несколько первых подобных антиатомов, физики воспользовались огромным ускорителем частиц, принадлежащим Европейской организации ядерных исследований (гораздо более широко известной как ЦЕРН[5]), расположенной в Женеве, Швейцария. Благодаря ему свершилось множество важных открытий и событий в области мировой физики элементарных частиц.

Физики применяют довольно простую методику для создания антиатомов: сначала они изготавливают антиэлектроны и антипротоны, потом подталкивают их друг к другу при подходящей для этого температуре, а затем ждут, пока они не соединятся в атомы (то есть антиатомы). Во время первого раунда экспериментов команда Улерта смогла создать девять атомов антиводорода. Но в мире, в котором преобладает вещество, атому антивещества живется довольно туго. Эти атомы антиводорода просуществовали менее 40 наносекунд (40 миллиардных долей секунды), прежде чем аннигилировали один за другим вместе с атомами обычного вещества.

Открытие антиэлектрона стало одним из величайших триумфов теоретической физики, ведь его существование было предсказано родившимся в Великобритании физиком Полем Андриеном Морисом Дираком буквально за несколько лет до этого. Чтобы описать вещество на уровне атомных и субатомных частиц, в 1920-е годы физики разработали новую отрасль науки, которая занималась бы разъяснением результатов их экспериментов с этими частицами. Используя новый установленный свод правил, сегодня известный как квантовая теория, Дирак вывел из второго решения своего уравнения постулат о том, что некий электрон-призрак с «другой стороны» Вселенной может иногда залетать в наш мир в качестве обычного электрона, оставляя за собой пробел — недоимку — в море отрицательной энергии. Дирак надеялся, что это поможет ему лучше понять и описать природу протонов, но другие физики предположили, что подобный энергетический пробел, или «дырка», заявит о себе как антиэлектрон с положительным зарядом. В итоге его назвали позитроном, что отражает приписанный ему положительный электрический заряд. Обнаружение реально существующих позитронов подтвердило базовые предположения Дирака и окончательно возвело антивещество в ранг явлений, достойных не меньшего внимания, чем обычное вещество.

Уравнения, имеющие два решения, довольно распространены. Один из самых простых примеров здесь, безусловно, — это ответ на вопрос: «Какое число нужно умножить само на себя, чтобы получить девять?» 3 или –3? Конечно, оба ответа верны, потому что 3 х 3 = 9, но и (–3) х (— 3) = 9. Физики не могут гарантировать, что все решения конкретного уравнения будут соответствовать событиям в — реальном мире, но если у нас есть состоятельная математическая модель физического явления, то манипуляции с ней могут быть не менее полезны (и при этом в разы проще), чем манипуляции с целой Вселенной как таковой. Как и в случае с Дираком и антивеществом, подобные шаги часто приводят к предсказаниям, которые со временем удается проверить. Если предсказания оказываются неверными, теорию отвергают. Но каким бы ни был физический — материальный — результат, математическая модель позаботится о том, чтобы выводы, которые из нее можно сделать, одновременно были логичными и не содержали внутренних противоречий.

Субатомные частицы имеют множество измеримых свойств, среди которых масса и электрический заряд значатся как одни из самых важных. За исключением массы частицы, которая всегда одинакова для нее и ее античастицы, прочие свойства каждого типа античастицы всегда оказываются диаметрально противоположными тем, что мы наблюдаем у вещества. Так, например, масса позитрона всегда равна массе электрона, но у позитрона одна единица положительного заряда, в то время как электрон обладает ровно одной единицей отрицательного заряда. Сходным образом антипротон — это заряженная «наоборот» античастица протона.

У нейтрона с его нулевым зарядом тоже есть античастица — антинейтрон. У антинейтрона противоположный нулевой заряд по сравнению с обычным нейтроном. Это арифметическое волшебство возможно благодаря тому, что каждый нейтрон состоит из трех кварков, в свою очередь обладающих дробными зарядами. У трех кварков, которые образуют нейтрон, следующие заряды: –1/3, –1/3 и +2/3. В таком случае антинейтрон состоит из антикварков с зарядами +1/3, +1/3 и –2/3. Совокупный заряд каждой троицы равен нулю, но этот нуль образован тройками противоположно заряженных составных субатомных частиц — кварков и антикварков.

На самом деле антивещество можно получить буквально из ничего. Если у фотонов гамма-излучения будет достаточно энергии, они смогут превратиться в пары «электрон — позитрон», конвертируя всю свою немалую энергию в небольшое количество вещества. Этот процесс полностью соответствует знаменитому уравнению Эйнштейна E = mc2. Говоря языком оригинальной интерпретации Дирака, фотон гамма-излучения выталкивает электрон из среды отрицательной энергии, создавая обычный электрон и «дырку» в месте его отсутствия. Возможен и обратный процесс: если столкнутся частица и античастица, они аннигилируют, заполняя собой «дырку» и выделяя гамма-излучение. Надо отметить, что оно относится к тому типу излучения, которого следует сторониться.

Если вам удастся создать каплю из античастиц в домашних условиях, вы окажетесь в безвыходном положении. Встанет вопрос, как их хранить, ведь ваши античастицы немедленно аннигилируют при контакте с обычным веществом, то есть с любым пакетом, банкой или коробкой. Подходящая система хранения для антивещества — мощная магнитная ловушка, которая удерживала бы античастицы в одном месте, не давая им коснуться стен, дна или крышки «контейнера». Если вы создадите такое магнитное поле в вакууме, то сможете вздохнуть с облегчением: теперь ваши античастицы в безопасности и аннигиляция им не угрожает. Такой магнитный аналог пробирки подойдет и для обращения с другими материалами, которые плохо сочетаются с контейнерами любого типа, например для светящихся газов с температурой в сотни миллионов градусов, которые используют в экспериментах по ядерному синтезу (разумеется, под присмотром ученых). Однако еще более глобальная проблема хранения возникает, когда у вас на руках появляются целые антиатомы, ведь антиатомы, как и атомы, обычно не отскакивают от магнитных стенок. Лучше всего будет хранить позитроны и антипротоны в отдельных магнитных ловушках вплоть до ключевого момента, когда вы соберетесь их — соединить.

На создание антивещества уходит как минимум столько же энергии, сколько вы сможете получить, когда оно аннигилирует с веществом, чтобы вновь превратиться в энергию. То есть если перед запуском космического корабля у вас нет с собой полного бака антивещества, то работающий по принципу «автогенерации антивещества» двигатель будет просто постепенно отбирать у вашего корабля обычную энергию. Возможно, в первоначальной версии кино и телесериала «Звездный путь»[6] данный факт и был как-то принят к сведению сценаристами, однако капитан Кирк регулярно просил «прибавить ходу» за счет двигателей, работающих на веществе и антивеществе, на что главный инженер Скотти неизменно отвечал ему со своим чудесным шотландским акцентом: «Да больше некуда!»

Хотя физики считают, что атомы водорода и антиводорода должны вести себя одинаково, им пока не удалось подтвердить или опровергнуть это утверждение в экспериментальных условиях. Это связано в первую очередь с проблемой сохранения атомов антиводорода собственно в виде атомов — ведь они почти сразу же аннигилируют при контакте с протонами и электронами. Ученые хотели бы удостовериться, что поведение позитрона, связанного с антипротоном в атоме антиводорода, досконально следует всем законам квантовой теории и что сила гравитации, создаваемая антиатомами, работает точно так же, как создаваемая обычными атомами.

Может ли антиатом порождать антигравитацию, или отталкивающую силу, вместо обычной гравитации — силы притяжения? Вся теория указывает на то, что этот сценарий невозможен, но вдруг это не так? Если мы найдем антигравитацию в антиатомах, это станет источником новых удивительных открытий и знаний об устройстве окружающего мира. В масштабе отдельных атомов величина гравитации между двумя отдельными частицами ничтожно мала. Не гравитация, но электромагнитное и ядерное взаимодействия определяют поведение этих крохотных частиц, каждое из них в разы мощнее гравитации. Для проверки возможности существования антигравитации понадобится много антиатомов, чтобы собрать из них объекты достаточных размеров, позволяющих достоверно оценить и измерить их свойства, а затем сравнить со свойствами привычного нам вещества. Если сделать набор бильярдных шаров (стол и кии) из антивещества, будет ли игра в антибильярд неотличима от игры в бильярд? Будет ли антишар с нарисованной на нем антивосьмеркой падать в угловую лузу точно так же, как и обычный шар с восьмеркой? Вращаются ли антипланеты вокруг своих антизвезд так же, как и обычные планеты вокруг обычных звезд?

Предположение, что суммарные свойства антивещества окажутся равнозначными свойствам обычного вещества, демонстрируя привычную силу тяготения, привычные столкновения, свет и т. д., — разумно с философской точки зрения и не идет вразрез со всеми прогнозами и предписаниями современной физики. К сожалению, это означает, что, если бы в нашу сторону двигалась некая антигалактика, столкновение которой с Млечным Путем было бы неизбежным, мы не имели бы никакой возможности различить ее заранее, а потом уже было бы слишком поздно что-то предпринимать. Правда, столь плачевная судьба не может быть регулярным явлением в сегодняшней Вселенной: если бы, например, одна антизвезда аннигилировала с одной обычной звездой, превращение их вещества и антивещества в энергию гамма-излучения было бы мгновенным, яростным и тотальным. Если бы две звезды массой примерно с наше Солнце (в каждой из них тогда было бы 1057 частиц) столкнулись в нашей галактике, их аннигиляция создала бы такой яркий источник света, что он временно превысил бы по силе всю энергию всех звезд сотни миллионов галактик и изжарил бы нас в мгновение ока. У нас нет никаких убедительных доказательств того, что нечто подобное хоть раз произошло где-либо в нашей Вселенной. По этой причине, насколько мы можем судить, во Вселенной все же преобладает обычное вещество, более того, так оно и было с первых же минут ее существования после Большого взрыва. Так что не беспокойтесь: когда вы в следующий раз отправитесь в межгалактическое путешествие, мгновенную и немучительную смерть от тотальной аннигиляции из-за столкновения большой массы вещества и антивещества можно смело вычеркнуть из списка первоосновных вопросов безопасности.

Однако теперь получается, что Вселенная пребывает в пугающем неравновесии. Мы предполагаем, что частицы и античастицы должны создаваться в равном количестве, но во все стороны от нас простирается космос, где вещества существенно больше и ему нисколько не мешает недостаток антивещества. Может, где-то есть тайные космические пазухи, в которых прячется все антивещество, которого мы недосчитались? Может, какие-то законы физики были нарушены в первые мгновения существования Вселенной (или тогда всем руководил какой-то неизвестный нам сегодня закон), из-за чего было навсегда нарушено равновесие между веществом и антивеществом? Недавние результаты, полученные в ЦЕРН, дразнят намеками на то, что антивещество, если его оставить в покое на достаточно долгое время, может самопроизвольно превратиться в обычное вещество, что нарушает все известные законы физики элементарных частиц. Мы можем никогда не узнать ответов на эти вопросы, но вот вам один хороший совет: если над лужайкой у вашего дома в воздухе повиснет инопланетянин и протянет вам щупальце в знак приветствия, не торопитесь протягивать руку в ответ. Сперва киньте ему свой любимый бильярдный шар-восьмерку. Если щупальце и шар взорвутся, инопланетянин, скорее всего, состоит из антивещества. (Не будем останавливаться здесь на том, как он сам и его приятели отреагируют на взрыв, или на том, что будет с вами в результате такого взрыва.) Если же ничего плохого не случится, берите своего нового друга за космическую лапу и ведите его к лидеру человечества.


Глава 3. Да будет свет!

Одного взгляда на ночное небо в ясную, безоблачную погоду достаточно, чтобы убедиться: Вселенная наполнена светом. Ночью мы можем любоваться теми звездами, которые ближе всего расположены к Солнцу, но за ними скрываются сотни миллиардов других, невидимых невооруженному глазу, и все это наши соседки по Млечному Пути. А сколько их в других галактиках? Триллионы и триллионы — это очень трудно себе вообразить, однако современное развитие наших космологических знаний основано не только на наблюдениях в видимом диапазоне спектра. То, что скрыто от наших телескопов, тоже снабжает нас интереснейшей информацией.

Видимый свет занимает небольшую центральную часть всего спектра электромагнитного излучения, который простирается от гамма-лучей с самой короткой длиной волны на одном конце до радиоволн с самой большой длиной волны на другом. Каждый тип электромагнитного излучения состоит из фотонов, частиц без массы, которые движутся в пространстве с одинаковой скоростью, «скоростью света», преодолевая за секунду около 186 000 миль, или 300 000 километров. Фотоны различаются длиной волны, частотой вибрации и энергией, которую несет каждый из них. Однако знаменитая формула Эйнштейна описывает количество энергии, содержащейся в массе частицы, а именно ее у фотонов не имеется. Они несут энергию движения, и это позволяет им воздействовать на материю: например, фотоны видимого света могут вызывать химические изменения в сетчатке человеческого глаза. Гамма-лучи, обладающие наибольшей удельной энергией, представляют опасность для тканей человека; радиоволны, даже самые короткие, могут проходить сквозь стены (и нас), практически не оказывая никакого влияния.

В принципе все фотоны можно называть «светом», если помнить, что полный спектр «света» включает множество разновидностей. Эта терминология служит прекрасным напоминанием о фундаментальном сходстве всех типов фотонов и лежит в основе поэтического описания космоса, гласящего, что Вселенная родилась в яркой вспышке света, заполнившей все пространство, после чего она продолжила испускать свет и будет это делать всегда. С тех пор продолжающееся расширение Вселенной привело к — постепенному увеличению длины волн фотонов и уменьшению их энергии. А 14 миллиардов лет спустя сияние света стало — настолько скромным, что его удалось заметить только после 1964 года.

Сразу после Большого взрыва Вселенная представляла собой пенящийся океан частиц с чрезвычайно высокой энергией, чьи столкновения порождали другие типы частиц и античастиц, которые тут же уничтожали друг друга. Но по мере расширения Вселенной и создания новых пространств энергия частиц уменьшалась, и уже через полчаса рождения эпоха созидания и разрушения вселенских масштабов подошла к концу. К этому времени в космосе сформировалась базовая смесь, состоящая из «обычной» материи, то есть знакомой нам материи, которую можно противопоставить загадочной «темной материи», обсуждаемой в главе 4. Обычная материя существовала лишь в нескольких основных разновидностях: протоны, электроны, ядра гелия (состоящие из двух протонов и двух нейтронов), поток фотонов и поток частиц-«призраков», называемых нейтрино.

За следующие 3800 столетий, пока расширение Вселенной продолжало уменьшать энергию беспокойных частиц, мало что изменилось. Она оставалась непрозрачной для фотонов, которые могли преодолевать лишь крошечные расстояния, прежде чем встречали свободно движущиеся электроны и отскакивали в другом направлении. Даже если бы у вас была возможность увидеть всю Вселенную, вы и тогда бы не смогли этого сделать, поскольку фотоны, направляющиеся к сетчатке вашего глаза, за наносекунды или пикосекунды до того, как достигнуть ее, отражались бы от электронов прямо перед вашим лицом и создавали светящийся туман во всех направлениях. Электроны оставались свободными, потому что удары гигантского количества фотонов мешали их естественному стремлению создавать атомы, выходя на орбиты вокруг протонов или ядер гелия. Все вновь созданные атомы немедленно разрушались, когда в них попадали энергичные фотоны и выбивали из них электроны. Эти постоянные взаимодействия между фотонами и материей сгладили Вселенную, так что каждый кубический сантиметр стал иметь почти одинаковую плотность материи, одинаковое количество фотонов и одинаковую температуру на протяжении всего ее пространства.

Космологи характеризуют море фотонов, подобных тем, что наполняют Вселенную, исходя из понятия описательной температуры. Любой объект с температурой выше абсолютного нуля (скажем прямо, что ни один объект не имеет такой температуры) будет излучать фотоны различной энергии, но в основном с энергией, зависящей от его температуры. Ваше тело, например, имеющее температуру около 310 градусов выше абсолютного нуля, излучает преимущественно инфракрасные фотоны. Ученые определяют эту температуру как 310 К, где К обозначает абсолютную температуру по шкале Кельвина, которая начинается с 0 в точке абсолютного нуля и делится на те же температурные интервалы между градусами, что и шкала Цельсия. Гораздо более горячие объекты — например, звезды — излучают большую часть своих фотонов с энергиями, характерными для видимого света. Температура частиц, обладающих массой, изменяется прямо пропорционально средней кинетической энергии частицы, и наоборот. Пик энергии излучения, производимого частицами, определяется температурой этих частиц. Когда астрофизики говорят, например, что излучение Солнца имеет характерную температуру 6000 К, они подразумевают, что газ, испускающий это излучение, имеет такую же температуру.

Создание нового пространства гораздо легче описать, чем представить. Тем не менее этот процесс продолжается до сих пор, а значит, энергия всех частиц по-прежнему уменьшается. В конце концов, в настоящее время не осталось ни одного фотона, который обладал бы таким количеством энергии, чтобы с ее помощью освободить электроны из атома. Однако фотоны, хоть и лишенные энергии, могут свободно путешествовать по космосу со скоростью света. Начало «эпохи разделения», наступившей через 380 000 лет после Большого взрыва, считается одной из ключевых вех в космической истории, потому что знаменует переход от непрозрачной Вселенной к прозрачной. С тех пор фотоны, наполнявшие (и продолжающие наполнять) космос, беспрепятственно путешествуют по пространству, изменяясь только за счет постоянного уменьшения их энергии, вызванного расширением Вселенной. Появившись как гамма-излучение, фотоны постепенно превратились в ультрафиолетовые, видимые и инфракрасные фотоны, при этом они никогда не переставали быть фотонами, несмотря на то, что длина их волн увеличивается, а энергия, наоборот, уменьшается.

Астрофизики придумали термин «реликтовое излучение», чтобы описать вселенское множество фотонов, вырвавшихся на свободу после того, как атомы получили возможность формироваться и сохраняться по всей Вселенной. Сегодня, спустя 13,8 миллиарда лет после рождения Вселенной, фотоны реликтового излучения сместились вниз в рамках спектра, превратившись в микроволновое, или сверхвысокочастотное (СВЧ), излучение. Вот почему астрофизики называют его космическим микроволновым фоном, хотя термин «реликтовое излучение» все же пользуется большей популярностью. Пройдет еще сотня миллиардов лет, Вселенная станет еще огромней и прохладнее, и астрофизики будущего назовут наше реликтовое излучение космическим радиоволновым фоном.

Наблюдая реликтовое излучение, мы изучаем фотоны, путешествовавшие почти 14 миллиардов лет. А учитывая тот факт, что любые фотоны, возникшие до момента разделения, тоже путешествовали далеко от нас со скоростью света в течение того же периода времени, можно сделать вывод: раз реликтовое излучение поступает к нам почти в одинаковом количестве со всех сторон, значит, Вселенная была однородной почти повсюду.

Но почему нас должно волновать это излучение? Что интересного может сообщить нам космическое море фотонов? Ответ имеет огромную информационную ценность: эти фотоны несут отпечаток давно минувшего прошлого, самого давнего, которое только можно наблюдать (за исключением еще более отдаленного прошлого, которое человечество сможет наблюдать в XXII веке), и раскрывают важнейшие факты о молодой Вселенной, когда ее возраст был меньше одной сорокатысячной нынешнего возраста.

Особое удовлетворение астрофизикам доставляют крошечные различия в количестве и энергии фотонов реликтового излучения, которые приносит к нам из разных направлений. Эти вариации обусловлены неравномерным распределением вещества в эпоху разделения. В некоторых областях плотность материи была чуть выше средней, в некоторых — чуть ниже. Вся структура современной Вселенной отражает эти различия в плотности, потому что море фотонов накапливало их все это время. Области с более высокой плотностью имели больше шансов сформировать огромные скопления галактик; области с более низкой плотностью были лишены возможности концентрировать материю и превратились в пустоты.

Реликтовое излучение — прекрасный пример того, как появление результатов достаточно точных наблюдений приводит к победе одной из соперничающих теорий. Это открытие примечательно тем, что существование реликтового излучения было предсказано еще до того, как ученые получили возможность наблюдать его, и в данном случае предсказание было сделано за два десятилетия до появления технологии, позволившей доказать его верность. В 1927 году бельгийский католический священник Жорж Леметр, который также был космологом (в чем, конечно, есть определенный смысл), основываясь на общей теории относительности Альберта Эйнштейна, создал концепцию «первоначального атома» — по сути дела предтечи модели Большого взрыва. Двадцать лет спустя, следуя рассуждениям Леметра, физик украинского происхождения Георгий Гамов (к тому времени гражданин США) в сотрудничестве с Ральфом Алфером и Робертом Херманом пришел к выводу, что ранняя Вселенная должна была быть чрезвычайно горячей, а затем постепенно охлаждаться. Алфер и Херман использовали законы физики для описания расширения Вселенной после момента разделения, когда образовались первые атомы, а фотоны смогли свободно перемещаться в пространстве, и пришли к выводу, что теперь реликтовое излучение должно иметь температуру, близкую к 5 К.

Да, их подсчет оказался неверным — сегодня мы знаем, что фактическая температура реликтового излучения составляет 2,73 градуса по шкале Кельвина. Но это не умаляет того факта, что эти трое ученых пришли к верному выводу об устройстве мира в столь древнюю космическую эпоху — и это достижение не менее важно, чем любое другое в истории науки. Взять за основу базовые закономерности физики, сидя в уютной лаборатории, и выявить с их помощью крупнейший комплекс данных, когда-либо измеренных, — получить кривую температурной истории Вселенной, — если это не сногсшибательно, то тогда вообще неясно, что можно считать таковым. Профессор Джон Ричард Готт III, астрофизик Принстонского университета, дал следующую оценку этому успеху в своей книге «Путешествия во времени в эйнштейновской Вселенной»[7]:

«Предсказать существование излучения и затем предположить значение его температуры, ошибившись менее чем в два раза, — это замечательное достижение: это как если бы вы предсказали, что летающая тарелка диаметром 50 футов[8] приземлится на газон у Белого дома, и затем стали свидетелем того, как именно туда прилетает и садится 27-футовая[9] тарелка».

Когда Гамов, Алфер и Херман озвучили свои предположения, физики все еще не имели на руках точной истории зарождения Вселенной. В 1948 году, когда увидела свет работа Алфера и Германа, в Англии также вышли две научные статьи о теории «стационарной Вселенной». Одна из них была написана математиком Германом Бонди и астрофизиком Томасом Голдом, а другая — космологом Фредом Хойлом. Согласно теории стационарной Вселенной, последняя, хотя и расширяется, всегда выглядела и выглядит одинаково. Надо признать, эта гипотеза весьма привлекательна своей простотой. Но так как Вселенная все же расширяется, а стационарная Вселенная не могла бы вчера оказаться более горячей или более плотной, чем сегодня, сценарий Бонди, Голда и Хойла предполагает, что она постоянно «пополняется» новым веществом как раз с нужной скоростью для того, чтобы плотность бесконечно расширяющегося космоса не менялась. В противовес этому теория Большого взрыва (такой «кличкой» ее презрительно наградил Хойл, не зная, что она приживется) подразумевает, что все вещество, имеющееся сегодня во Вселенной, появилось разом. Некоторые находят в этой идее определенное утешение. Обратите внимание: теория стационарной Вселенной просто отодвигает в неопределенное прошлое сам вопрос о ее возникновении как таковом — уж очень удобная позиция для тех, кто предпочел бы вообще не касаться этой колючей темы.

Высказанное предположение о реликтовом излучении стало своеобразным предупредительным выстрелом в стан поклонников теории стационарной Вселенной. Его существование явно доказало бы, что когда-то Вселенная была совсем другой — гораздо плотнее и горячее, чем сегодня. Соответственно первые прямые улики, говорящие о реликтовом излучении, вогнали первые несколько гвоздей в крышку гроба стационарной теории (хотя Фред Хойл так никогда до конца и не принял факта существования реликтового излучения, подрывающего его элегантную теорию, и до самой смерти пытался найти ему альтернативное объяснение). В 1964 году реликтовое излучение было по счастливому стечению обстоятельств обнаружено радиофизиками Арно Пензиасом и Робертом Уилсоном в лабораториях компании Bell Telephone в Мюррей-Хилл, штат Нью-Джерси. Чуть более десятилетия спустя Пензиас и Уилсон получат Нобелевскую премию за свою невероятную удачу и кропотливую работу.

Что же привело Пензиаса и Уилсона в нобелевские лауреаты? В начале 1960-х все физики были знакомы с микроволновым излучением, но почти никому не удавалось обнаружить наиболее слабые сигналы в микроволновой части спектра. В те дни большинство беспроводных способов коммуникации (рации, детекторы и др.) работало на радиоволнах, а их длина превышает длину СВЧ-волн. Ученым требовалось устройство, способное обнаружить волну более короткой длины, то есть была нужна более чувствительная антенна, которая могла такой сигнал уловить. В лабораториях Bell Telephone имелась одна огромная антенна в форме рога (или воронки), которая могла улавливать микроволновые сигналы не хуже, чем любой аналогичный аппарат на Земле.

Если вы соберетесь отправить или получить какой бы то ни было сигнал, вам не захочется, чтобы его нарушали другие сигналы. Пензиас и Уилсон пытались создать для Bell Labs[10] новый коммуникационный канал, поэтому они хотели точно определить, какой объем фонового шума будет портить им сигнал — неважно, откуда бы он исходил: от Солнца, из центра галактики, от наземных источников. И они приступили к весьма стандартному, очень важному и совершенно невинному процессу измерения, по итогам которого должны были понять, насколько это вообще легко — улавливать микроволновое излучение. Да, Пензиас и Уилсон обладали определенными знаниями в области астрономии, но они не были космологами: эта пара физиков-техников просто хотела исследовать СВЧ-волны, понятия не имея о предсказаниях Гамова, Альфера и Германа. И уж чего они точно не собирались искать и обнаруживать, так это космическое микроволновое (оно же реликтовое) излучение.

Они провели запланированные исследования и скорректировали полученные данные, учтя все известные им источники помех. Однако в сигнале присутствовал фоновый шум, избавиться от которого не получалось, как бы они ни старались. Казалось, этот шум шел одновременно отовсюду, и его уровень оставался неизменным. Тогда они заглянули в свой огромный рог. Там гнездились голуби, из-за чего весь рупор и его ближайший радиус были покрыты «белым диэлектрическим веществом» (а попросту голубиным пометом). Видимо, Пензиас и Уилсон уже были на грани отчаяния, ибо они задались вопросом: может ли помет быть причиной непропадающего фонового шума? Они все тщательно очистили, и, надо признать, шум слегка уменьшился, но избавиться от него полностью так и не удалось. В 1965 году они опубликовали в «Астрофизическом журнале»[11] научную статью, в которой назвали эту неразрешимую загадку «повышенной температурой антенны»; назвать ее «астрономическим открытием века» им просто не пришло в голову.

Пока Пензиас и Уилсон выскребали из рупора антенны птичий помет, команда физиков Принстонского университета во главе с Робертом Генри Дикке строила детектор, предназначенный специально для того, чтобы обнаружить то самое реликтовое излучение, о котором говорили Гамов, Алфер и Херман. Правда, профессора не располагали такими ресурсами, как сотрудники Bell Labs, поэтому работа у них продвигалась медленнее. Стоило Дикке и его коллегам услышать о полученных Пензиасом и Уилсоном результатах, как стало ясно: их обогнали. Принстонская команда прекрасно знала, что это за «повышенная температура антенны». Все вписывалось в теорию: температура, тот факт, что сигнал приходил равномерно и со всех сторон и не менялся в зависимости от вращения Земли (времени суток) или ее расположения на орбите Солнца (времени года).

Принятию подобной трактовки способствовало несколько причин. Фотонам нужно время на то, чтобы добраться до нас с вами из далеких уголков космоса, поэтому получается, что, глядя в космос, мы на самом деле смотрим в далекое прошлое. Это значит, что, если бы некие разумные обитатели одной далекой-далекой галактики измерили бы для своих нужд температуру реликтового излучения задолго до того, как это удалось сделать нам, они получили бы значение выше 2,73 градуса по шкале Кельвина, потому что жили бы намного раньше, — когда Вселенная была моложе, компактнее и горячее, чем сегодня.

Проверить это смелое утверждение легко! Оказывается, соединение углерода и азота под названием «циан» (с ним особенно хорошо знакомы смертники американской судебной системы — это активный ингредиент ядовитого газа) приходит в возбуждение под воздействием СВЧ-излучения. Температура микроволнового излучения выше, чем реликтового, поэтому микроволновое излучение приводит молекулу циана в большее возбуждение. Таким образом, соединения циана можно использовать в качестве космического термометра. Обозреваемые нами с большого расстояния (а значит, передающие привет из более молодых галактик) молекулы циана купаются в более теплых реликтовых лучах, чем посчастливилось циану в галактике Млечный Путь. Другими словами, получается, что те, другие, галактики с точки зрения циана живут более насыщенной жизнью. И ведь так и есть! Обозримый спектр циана в далеких галактиках демонстрирует микроволновое излучение именно той температуры, какую ожидалось бы увидеть и в нашей Вселенной в более ранний период ее существования.

Поверьте, выдумать такое просто невозможно.

Реликтовое излучение — это не просто прямое свидетельство более молодой и горячей Вселенной, оно оказывает астрофизикам (а значит, и теории Большого взрыва) гораздо более важную услугу. Оказывается, те фотоны, что входят в состав реликтового излучения, достигают нас с вами с огромным багажом информации о состоянии космоса как до, так и после обретения им прозрачности. Мы уже отмечали, что, пока с момента Большого взрыва не прошло примерно 380 тысяч лет, Вселенная была непрозрачной, и увидеть, как вещество обретает форму, было невозможно — даже если усесться в первом ряду этого космического кинотеатра. Прежде чем кто-нибудь смог бы где-нибудь увидеть что-нибудь стоящее, фотонам предстояло обрести возможность перемещаться беспрепятственно, пересекая Вселенную в любом направлении. Когда настало подходящее время, каждый фотон начал свое путешествие сквозь космос и не останавливался, пока не столкнулся с «первым и последним» в его жизни электроном. Все больше и больше фотонов прорывалось к дальним уголкам Вселенной, не встречая на — своем пути ни одного электрона (потому что последние постепенно прикреплялись к атомным ядрам). Там им предстояло создать растущий щит из фотонов, астрофизики называют его «поверхностью последнего рассеивания». Этот щит, на формирование которого ушло примерно 100 тысяч лет, отмечает собой эпоху, в которую родились практически все атомы существующей сегодня Вселенной.

К тому времени вещество в крупных регионах Вселенной уже начинало понемногу объединяться. В местах его скопления возрастала и гравитация, вследствие чего вещества становилось еще больше. В таких регионах начали формироваться галактические суперкластеры, в то время как остальные регионы оставались относительно пустыми. Последние фотоны, оттолкнувшиеся от каких-либо электронов в пределах таких регионов скопления вещества, приобретали новый, чуть более холодный спектр по мере того, как покидали все увеличивающееся гравитационное силовое поле, которое частично забирало себе их энергию.

Реликтовое излучение действительно позволяет обнаружить регионы, температура которых чуть выше или чуть ниже среднего значения; разница, как правило, не составляет больше одной стотысячной градуса. Такие теплые и прохладные участки отмечают собой наиболее рано сформировавшиеся скопления вещества. Мы знаем, как вещество выглядит сегодня, потому что можем наблюдать за галактиками, их скоплениями и сверхскоплениями. Чтобы понять, как образовались эти космические системы, мы прощупываем реликтовое излучение — реликвию далекого прошлого, которая до сих пор наполняет собой Вселенную. Анализ распределения реликтового излучения — это что-то вроде космической френологии: мы считываем бугорки на «черепе» молодой Вселенной и по ним определяем поведение не только Вселенной-младенца, но и Вселенной-взрослого.

Дополняя общую картину другими наблюдениями локальных и удаленных уголков Вселенной, астрономы могут составить представление о самых разных фундаментальных свойствах реликтового излучения. Сравнивая распределение размеров и температур чуть более теплых или холодных его областей, к примеру, мы можем прикинуть силу гравитации в более ранние периоды существования Вселенной, а значит, и то, как быстро вещество скапливалось в тех или иных регионах. Отсюда мы можем вычислить, сколько именно обычного вещества, темной материи и темной энергии включает в себя Вселенная (5, 27 и 68 % соответственно). Тут уже становится совсем легко определить, будет ли Вселенная расширяться до бесконечности и будет ли это расширение ускоряться или замедляться с течением времени.

Обычное вещество — это то, из чего сделаны все мы. Оно является источником гравитации и может поглощать, выделять или другим образом взаимодействовать со светом. Темная материя, как мы увидим в главе 4, представляет собой субстанцию неизвестной нам природы, которая, будучи источником гравитации, не взаимодействует со светом каким-либо известным нам образом. А темная энергия, знакомство с которой ждет нас в главе 5, ускоряет расширение Вселенной, заставляя ее увеличиваться в размерах быстрее, чем в случае, если бы темной энергии в ней не было вовсе. Френологические исследования показывают: сегодняшние космологи понимают, как вела себя новорожденная и юная Вселенная, однако в ней гораздо больше того, о чем они не имеют ни малейшего понятия. И все же, невзирая на существенные пробелы в понимании устройства Вселенной, сегодня у науки о космосе есть якорь — и более увесистый, чем когда-либо. Ведь реликтовое излучение несет на себе отпечаток того самого портала, через который все мы когда-то прошли, чтобы стать частью этого мира.

Открытие реликтового излучения привнесло в космологию новый уровень точности: оно подтвердило собой заключение, изначально полученное путем наблюдений за далекими галактиками, о том, что Вселенная расширяется уже миллиарды лет. Четкая и подробная карта реликтового излучения, впервые созданная для маленьких участков неба с помощью инструментов и телескопов, увлекаемых запущенными с Южного полюса аэростатами вверх, а затем и для целого небосвода с помощью зонда микроволновой анизотропии Уилкинсона (или спутника WMAP[12]), закрепила за космологией отдельное место за столом экспериментальной науки. До того как мы с вами подойдем к концу нашего космологического повествования, мы еще не раз вернемся к спутнику WMAP, в 2003 году представившему первые результаты своих исследований.

Космологи — ребята с большим самомнением, иначе им вряд ли хватило бы наглости вычислять, с чего когда-то началась сама Вселенная. Правда, для новой эры наблюдательной космологии, возможно, будет характерна более скромная и менее раскованная позиция. Каждое новое наблюдение, каждая новая крупица данных могут пойти на пользу или оказаться во вред имеющимся теориям. С другой стороны, наблюдения обеспечивают базовый фундамент космологии, который учеными во многих других научных областях достается в разы проще, потому что им достаточно тех обширных результатов наблюдений, которые можно получить в лабораторных условиях. В то же время новые данные почти наверняка смогут развенчать некоторые небылицы, родившиеся когда-то за неимением возможности получить результаты наблюдений, позволивших бы их подтвердить или опровергнуть.

Нет такой науки, которая развивалась бы, не оперируя точными данными. И мы приветствуем космологию в рядах точных наук!


Глава 4. Да будет тьма!

Наиболее распространенная из известных сил природы — гравитация — одновременно наиболее и наименее изученное нами явление. Нужно было родиться Исааком Ньютоном, самым выдающимся и влиятельным мыслителем тысячелетия, чтобы осознать, что это таинственное «действие на расстоянии» силы притяжения — прямое следствие естественных, заложенных природой свойств каждой крупицы вещества и что силу притяжения между двумя объектами можно описать с помощью довольно простого алгебраического уравнения. Нужно было родиться Альбертом Эйнштейном, самым выдающимся и влиятельным мыслителем XX века, чтобы показать, что это «действие на расстоянии» можно определить еще более точно: как искажение канвы пространства и времени, возможное при любом сочетании вещества и энергии. Эйнштейн продемонстрировал, что теория Ньютона требует ряда корректировок, чтобы максимально точно описывать гравитацию, например, когда речь идет об определении степени преломления лучей света, огибающих крупное препятствие. Хотя уравнения Альберта Эйнштейна более замысловаты, чем ньютоновские, в этом мире они действительно весьма удачно пристраивают знакомое и столь любимое нами вещество. То самое вещество, которое можно увидеть, потрогать, ощутить и иногда попробовать на вкус.

Мы уже почти столетие ждем, когда появится еще один выдающийся ученый, который наконец расскажет нам, как же так выходит, что главным источником измеренной нами гравитации во Вселенной является субстанция, которой никто не видел, не щупал, не осязал и не пробовал на вкус. Может, излишек гравитации вообще никак не связан с материей, может, ее источником является что-то принципиально иное.

Как бы то ни было, мы не имеем об «этом» ни малейшего понятия. Сегодня мы ничуть не ближе к разгадке, чем в 1933 году, когда проблема так называемой недостающей массы (или скрытой массы) была впервые озвучена астрономами, измерявшими скорость движения галактик, чья гравитация оказывала воздействие на ближайшие соседние галактики. Эта тема была подвергнута более глубокому анализу в 1937 году астрофизиком болгаро-швейцарско-американского происхождения Фрицем Цвикки. Он преподавал в Калифорнийском технологическом институте в США более сорока лет и был известен не только своими обширными познаниями о космосе, но и цветистой манерой выражать свои мысли и удивительной способностью настраивать против себя своих коллег.

Цвикки изучал перемещение галактик, принадлежащих к громадному галактическому кластеру, расположенному далеко за пределами местных звезд Млечного Пути и называемому Волосами Вероники (в честь древнеегипетской царицы). Этот кластер, он же скопление Кома, как называют его специалисты, представляет собой изолированный и «густонаселенный» ансамбль галактик примерно в 325 миллионах световых лет от Земли. Тысячи и тысячи галактик вращаются вокруг центра скопления, двигаясь в самых разных направлениях, словно пчелы вокруг улья. Используя движения нескольких десятков галактик в качестве маркеров гравитационного поля, охватывающего весь кластер целиком, Цвикки обнаружил, что они обладают потрясающе высокой средней скоростью. Так как большая сила притяжения соответствует большой скорости объектов под ее влиянием, Цвикки обнаружил, что масса скопления Комы намного больше расчетной. Если сложить предполагаемые массы всех галактик, Кома окажется одним из крупнейших и самых массивных кластеров во Вселенной. При этом в кластере нет достаточного количества видимого вещества, чтобы объяснить наблюдаемую скорость движения входящих в него галактик. Вещества просто слишком мало.

Если вооружиться законом земного притяжения Ньютона и взять за основу предположение, что кластер не пребывает в состоянии расширения или коллапса, можно будет вычислить характерную среднюю скорость составляющих его галактик. Нужно только знать размер кластера и примерную величину его массы: масса, действующая на расстояниях, заданных размером кластера, определяет то, как быстро должны двигаться галактики, чтобы избежать «падения» в самый центр кластера или, наоборот, никогда не покинуть кластер в принципе.

Как показал Ньютон, подобный расчет способен помочь определить и скорость, с которой каждая из планет, удаленных от Солнца на конкретное расстояние, должна двигаться вокруг него. Никакого волшебства: полученные таким образом значения скорости полностью удовлетворяют тем гравитационным обстоятельствам, в которых существует каждая из планет. Если бы масса Солнца неожиданно увеличилась, Земле и другим планетам в Солнечной системе пришлось бы ускориться для того, чтобы удержаться на своих орбитах. Однако если они разовьют слишком высокую скорость, силы притяжения Солнца будет недостаточно для того, чтобы сохранить эти небесные тела на их орбитах. Если бы мы увеличили орбитальную скорость[13] Земли, умножив ее на значение квадратного корня из двух или более, наша планета достигла бы так называемой третьей космической скорости (скорости преодоления силы притяжения Солнца) и покинула бы Солнечную систему. Эту же логику мышления можно применить и к более крупным объектам, таким как наша собственная галактика Млечный Путь, где звезды вращаются по орбитам в соответствии с гравитацией остальных окружающих их звезд, или таким, как галактические кластеры, в которых каждая отдельная галактика тоже ощущает на себе гравитацию своих соседок. Как написал когда-то Эйнштейн в честь Исаака Ньютона (на немецком звучит в разы лучше, чем на английском, хотя переводил эти строки сам Дональд Голдсмит):

Look unto the stars to teach us

How the master's thoughts can reach us

Each one follows Newton's math

Silently along its path[14].

Изучая скопление Кома, как и Цвикки в 1930-е годы, мы видим, что все входящие в его состав галактики движутся со скоростью, превышающей скорость, необходимую для покидания этого кластера. Это при условии, что мы определяем данную скорость на основании общей арифметической суммы масс всех галактик, которую, в свою очередь, мы можем определить, исходя из их яркости. Получается, что кластер должен был бы разлететься во все стороны, оставив едва различимые следы своего существования за какие-то несколько сотен миллионов, в крайнем случае за миллиард лет. Однако возраст этого кластера насчитывает более десяти миллиардов лет — он почти такой же древний, как и сама Вселенная. Так родилась та самая астрономическая загадка, которую мы не в силах разгадать и по сей день.

На протяжении десятилетий после оглашения результатов исследований Цвикки все новые и новые кластеры галактик обнаруживали те же загадочные свойства. Значит, скопление Кома не обвинишь в том, что оно — белая ворона космических масштабов. Кого же нам винить? Ньютона? Но его теории исправно проходили одну практическую проверку за другой в течение последних 250 лет. Эйнштейна? Нет. Удивительная гравитация галактических кластеров не настолько высока, чтобы со всей силы опустить на нее молот общей теории относительности Эйнштейна, которой и было-то всего 20 лет от роду, когда Цвикки проводил свои исследования. Возможно, «недостающая масса», помогающая удерживать скопление Кома вместе, действительно существует, но в какой-то неизвестной и невидимой нам форме. В течение некоторого времени астрономы предпочитали термин «недостающий свет», так как именно его нам не хватает для того, чтобы увидеть эту предположительно существующую массу, скрытую в каких-то космических сумерках и выдающую себя лишь по измеряемой гравитации. Сегодня же астрономы окончательно определились с выбором термина: они называют такую массу «темной материей», хотя название «темная гравитация» было бы еще более точным.

Вопрос темной материи был поднят и во второй раз. В 1976 году американский астрофизик Вера Рубин из Вашингтонского института Карнеги обнаружила аналогичную аномалию «недостающей массы» внутри отдельных спиральных галактик. Изучая скорость, с которой звезды вращаются вокруг центра своих галактик, Рубин сначала увидела ровно то, что и ожидала: в рамках видимого диска каждой галактики скорость вращения звезд тем выше, чем они дальше от центра этой галактики. Между центром и наиболее удаленной от него звездой помещается больше вещества (другие звезды и газ), из-за чего такой далекой звезде нужно вращаться с большей скоростью, чтобы удержаться на своей орбите. Однако за пределами сияющего галактического диска мы все еще можем обнаружить отдельные газовые облака и несколько ярких звезд. Рубин использовала данные объекты в качестве маркеров гравитационного поля «за пределами» галактики, где видимое нами вещество больше не участвует в поддержании внутренней гравитации. Она обнаружила, что орбитальные скорости таких отдельных объектов, которые должны были снижаться с увеличением расстояния до самой галактики — там, в космическом захолустье, — тем не менее оставались высокими.

Эти в основном «пустые» объемы пространства — этакие провинциальные регионы каждой галактики — содержат слишком мало видимого вещества для того, чтобы обосновать высокие орбитальные скорости объектов-маркеров. Рубин рационально (и верно) предположила, что темная материя в той или иной форме должна располагаться именно в этих удаленных регионах, далеко за пределом видимости каждой спиральной галактики. И в самом деле, темная материя формирует собой что-то вроде нимба вокруг галактической массы.

Такой же темный нимб (астрофизики называют его гало) есть и в нашей родной галактике Млечный Путь. От одной галактики к другой, от кластера к кластеру несоответствие между массой видимых объектов и общей массой системы составляет от двух— или трехкратной величины видимой массы и вплоть до разницы в сотни раз. Среднее значение данного фактора-множителя по всей Вселенной составляет около шести. То есть масса невидимой темной материи примерно в шесть раз больше, чем масса всего видимого вещества.

За последние 50 лет исследования показали, что большая часть темной материи не может просто состоять из обычного вещества, которое по некой причине не излучает свет. Данное заключение базируется на двух основных аргументах. Во-первых, мы как профессиональные сыщики можем исключить почти со стопроцентной уверенностью почти всех гипотетических подозреваемых. Может ли темная материя прятаться в черных дырах? Нет, иначе мы бы уже давно обнаружили это несметное количество черных дыр в нашей галактике по тому гравитационному влиянию, которое они оказывали бы на близлежащие звезды. Может, дело в темных облаках? Нет, они бы поглощали или любым другим образом взаимодействовали со светом, излучаемым расположенными за ними звездами, а настоящая темная материя так себя не ведет. Может, виной всему межзвездные (и даже межгалактические) планеты, астероиды и кометы, которые не производят своего собственного света? С трудом верится, что Вселенная могла бы наковать в шесть раз больше планет с точки зрения массы, чем звезд. Ведь тогда у нас было бы по шесть тысяч Юпитеров на каждую звезду в галактике или (что еще невероятнее) по два миллиона планет по имени Земля на каждую звезду. В нашей собственной Солнечной системе, например, все, что не есть Солнце, составляет смехотворные 0,2 % от его массы.

Итак, лучшее, что мы можем предположить, — это то, что темная материя не является обычным веществом, которое просто почему-то «темное». Выходит, это нечто совершенно иное. Темная материя создает гравитацию согласно тем же правилам, что и обычное вещество, но, помимо этого, больше ничего особо и не делает, ограничивая наши возможности по ее обнаружению. В итоге мы зависли в своем анализе из-за того, что не знаем точно, что же представляет собой темная материя. Трудности в ее обнаружении тесно связаны с трудностями определения, что же это такое. Отсюда возникает вопрос: если все вещество обладает массой, а вся масса обладает силой тяготения, значит ли это, что вся сила тяготения обладает веществом? Ответа мы пока не знаем. Сам термин «темная материя» заключает в себе предположение о том, что существует альтернативный тип вещества, которое создает гравитационный эффект, но оно до сих пор нами не понято.

Есть вероятность, что мы не понимаем именно суть самой гравитации, а не суть вещества.

Чтобы исследовать темную материю, не касаясь ее сути, астрофизики стремятся найти в космосе ее скопления. Например, если бы темная материя существовала только на внешнем периметре или в дальних уголках галактических кластеров, тогда скорость галактик не шла бы вразрез с присутствием темной материи, ведь скорость галактик и их траектории зависят только от источников гравитации, расположенных внутри их орбит. Если бы темная материя занимала собой только центральные регионы кластеров, тогда значения скорости галактик, измеренные от центра кластера в направлении его краев, были бы привязаны только к обычному веществу. Однако динамика движения в галактических кластерах демонстрирует нам, что темная материя наполняет собой весь объем вращающихся вокруг центра кластера галактик. По сути, месторасположение обычного вещества и темной материи приблизительно совпадают. Несколько лет назад команда исследователей во главе с американским астрофизиком Дж. Энтони Тайсоном, работавшим тогда в компании Bell Labs, а сегодня являющимся сотрудником Калифорнийского университета в Дэвисе (один из нас зовет его «кузеном Тони», хотя он не приходится нам родственником), получил первую подробную карту распределения гравитации, источником которой является темная материя, внутри одного огромного галактического кластера и за его пределами. При изучении больших галактик мы также обнаруживаем внутри соответствующего кластера более высокую концентрацию темной материи. Справедливо и обратное: регионы, в которых видимых галактик нет, демонстрируют и недостаток темной материи.

Несоответствие между массой темной материи и обычного вещества сильно разнится от одной астрофизической среды к другой, но в целом становится тем выше, чем крупнее объект — галактика или целый кластер. У маленьких объектов — лун и планет — такого несоответствия не наблюдается. Например, сила тяготения Земли полностью объясняется и описывается тем, что находится у нас под ногами. Так что, если вы на Земле слишком много весите, не надо обвинять в этом темную материю. Темная материя также никоим образом не влияет на орбиту, описываемую Луной вокруг Земли, не влияет она и на движение планет вокруг Солнца. Но без нее не обойтись, когда мы анализируем движение звезд вокруг центра галактики.

Возможно ли, что в галактических масштабах действует принципиально иная физика тяготения? Вряд ли. Гораздо более вероятной кажется идея, что темная материя состоит из вещества, природу которого нам еще только предстоит разгадать; из вещества, которое скапливается в одном месте гораздо менее охотно, чем это делает обычное вещество. В противном случае мы обнаружили бы себя в ситуации, когда на каждые шесть частей темной материи приходилась бы одна часть обычного вещества. Насколько мы можем судить сегодня, это совсем не так.

Рискуя вызвать всеобщую депрессию, астрофизики иногда предполагают, что все то вещество, которое мы знаем и любим уже столько лет, — все эти звезды, планеты и «жизнь», — представляет собой лишь одинокие поплавки в огромном космическом океане чего-то, что выглядит как «ничто».

Что, если эта мысль лишена смысла? Когда долгое время ничего не получается, некоторые ученые начинают (и их нельзя винить в этом) ставить под сомнение даже фундаментальные законы физики, лежащие в основе всех наших предположений об устройстве Вселенной.

В начале 1980-х годов израильский физик Мордехай Милгром из Научно-исследовательского института имени Вайцмана в израильском городе Реховоте предложил поправки к ньютоновской теории гравитации. Его теория известна как модифицированная ньютоновская динамика, сокращенно — МОНД[15]. Принимая сам факт, что стандартная ньютоновская динамика успешно выполняется в «более мелких» масштабах, то есть не галактических, Милгром предположил, что Ньютону необходима помощь в описании эффектов гравитации на расстояниях, существенно более значительных: в масштабах галактик и галактических кластеров, внутри которых отдельные звезды и звездные скопления находятся так далеко друг от друга, что почти не оказывают друг на друга гравитационного воздействия. Милгром добавил в формулу Ньютона дополнительный параметр, приводящий в равновесие всю гравитационную систему в астрономически огромных масштабах. Хотя МОНД создавалась как вычислительный инструмент, Милгром не исключал возможности, что она станет теоретическим объяснением нового природного явления.

Успех МОНД был весьма ограничен. Эта теория учитывает движение изолированных объектов на дальних перифериях многих спиральных галактик, но вызывает больше вопросов, чем дает ответов. Теория МОНД не способна достоверно предсказать динамику более сложных конфигураций, таких как движение галактик в бинарных и множественных системах. Более того, подробная карта реликтового излучения, полученная благодаря зонду WMAP в 2003 году, позволила ученым отдельно измерить влияние темной материи на раннюю Вселенную. Полученные результаты соответствуют модели эйнштейновской стабильной Вселенной, опирающейся на традиционные теории о гравитации, поэтому количество почитателей МОНД существенно упало.

В первые полмиллиона лет после Большого взрыва — а это одно краткое мгновение для 14-миллиардной истории космоса — вещество уже понемногу собиралось в сгустки, которым позднее предстояло сформировать собой кластеры и суперкластеры галактик. Но все это время Вселенная продолжала расширяться, и в следующие полмиллиона лет ей суждено было двукратно увеличиться в размерах. Итак, у нас есть Вселенная, пребывающая во власти двух противоборствующих воздействий: гравитация тянет отдельные части вещества друг к другу, а расширение стремится растащить их друг от друга подальше. Посчитав, вы быстро поймете, что гравитационной силы обычного вещества не хватило бы на то, чтобы победить в этой схватке. Здесь требовалась помощь темной материи, без которой мы бы с вами жили — точнее, не жили — во Вселенной без какой-либо структуры: ни кластеров, ни галактик, ни планет, ни людей. Так сколько же дополнительной гравитации пришлось «дополучить» у темной материи? Ответ вы уже знаете: в среднем в шесть раз больше, чем могло предоставить обычное вещество само по себе. Данный анализ не оставляет места для скромных поправок законов Ньютона от МОНД. Анализ не дает нам понять, что представляет собой темная материя, но утверждает, что ее влияние реально и, как бы вам ни хотелось считать иначе, обычному веществу в одиночку столько гравитации не создать.

Темная материя играет еще одну ключевую роль во Вселенной. Чтобы оценить по достоинству все ее заслуги, давайте вернемся назад, в прошлое, когда с момента Большого взрыва прошла всего пара минут и Вселенная была столь обжигающе горячей и плотной, что ядра водорода (протоны) могли в процессе синтеза сплавляться друг с другом. В этом плавильном котле новорожденного космоса водород превратился в гелий, попутно создав также некоторое количество лития и еще меньше дейтерия, который представляет собой более тяжелую версию ядра водорода с нейтроном в довесок к протону. Этот состав атомных ядер — еще один космический отпечаток Большого взрыва, некая ценная реликвия, которая позволяет нам восстановить события, происходившие во Вселенной, когда ей было всего несколько минут от роду. В создании этого отпечатка первоосновную роль сыграло сильное ядерное взаимодействие — та сила, что объединяет протоны и нейтроны внутри ядра, но никак не гравитация: она слишком слаба для этого. Ее влияние становится актуальным лишь тогда, когда частицы скапливаются вместе в огромных количествах.

К тому времени, как температура Вселенной упала ниже определенного значения, термоядерный синтез произвел по одному гелиевому ядру на каждые десять водородных. Вселенная также успела превратить примерно одну тысячную долю всего своего вещества в ядра лития и около двух стотысячных долей вещества — в дейтерий. Представим, что темная материя состоит не из какой-то не взаимодействующей с окружением субстанции, а из обычного, пусть и темного, вещества (а значит, вещества, допускающего обычный синтез). Учитывая, что в ранней Вселенной было в шесть раз больше темной материи, чем обычного вещества, на каждую единицу объема, ее наличие должно было бы существенно увеличить скорость синтеза водорода. В результате мы получили бы заметный переизбыток гелия — в сравнении с наблюдаемым нами количеством, — и родилась бы Вселенная, совсем не похожая на наш с вами космический дом.

Ядра гелия довольно просто получить в лабораторных условиях, а вот соединить их с ядрами других элементов очень трудно. Так как звезды продолжали производить гелий из водорода в своих кипящих недрах и одновременно с этим понемногу разрушали литий в процессе еще более замысловатого термоядерного синтеза, мы вправе ожидать, что те области Вселенной, где мы находим меньше всего гелия, должны на самом деле содержать его ничуть не меньше, чем образовалось во Вселенной в первые несколько минут. Конечно, те галактики, чьи звезды пока еще переварили лишь минимум своего вещества, действительно на одну десятую состоят из атомов гелия. Собственно, именно такие пропорции мы и получаем из привычной нам картинки Большого взрыва (при условии, что темная материя, уже тогда существовавшая во Вселенной, не принимала никакого участия в термоядерном синтезе, из которого возникли атомные ядра).

Итак, темную материю можно назвать нашим другом. Однако астрофизики начинают испытывать неловкость, когда им приходится основывать свои расчеты на концепциях, которых они не понимают, хотя это и не первый раз, когда им приходилось так поступать. Например, астрофизики измерили энергию Солнца задолго до того, как стало известно, что за это отвечает термоядерный синтез. Тогда, в XIX веке, до рождения квантовой механики и обнаружения целого ряда полезных и важных закономерностей в поведении вещества в самом малом масштабе, концепции термоядерного синтеза не существовало в принципе.

Неутомимые скептики могут, конечно, сравнить сегодняшнюю теорию о темной материи с гипотетическим и теперь уже вышедшим из моды «эфиром», который несколько веков назад считался невесомым прозрачным посредником, позволявшим свету перемещаться в пространстве. Долгие годы, вплоть до знаменитого эксперимента 1887 года, который провели в Кливленде Альберт Михельсон и Эдвард Морли, физики считали, что эфир существует, хотя у них не было ни малейшего вещественного доказательства в поддержку этой гипотезы. Поскольку было известно, что свет — это волна, также считалось, что требуется среда, в которой эта волна должна распространяться, подобно тому, как для распространения звуковых волн необходим воздух. Оказалось, что свет способен путешествовать и сквозь вакуум, прекрасно обходясь без дополнительных средств передвижения: в отличие от звуковых волн, состоящих из колебаний воздуха, световые волны распространяются сами.

Однако возможное невежество в вопросах темной материи фундаментально отличается от незрелых теорий об эфире. Если эфир в свое время всего лишь заполнял пробелы в неполном понимании сути вещей, то идея существования темной материи взята не из воздуха — она основана на очевидных для нас эффектах: ее гравитационном влиянии на видимое вещество. Темная материя не высосана из пальца, ее наличие доказано фактами, полученными с помощью наблюдений. Темная материя не менее реальна, чем тысячи планет, обнаруженных на орбитах других звезд, помимо Солнца, — и почти все они были открыты исключительно за счет своего гравитационного воздействия на «свои» звезды. В худшем случае физики (или другие не менее умные люди) обнаружат, что темная материя не состоит из материи вовсе, а представляет собой что-то совсем иное, просто игнорировать ее категорически нельзя. Может ли темная материя оказаться проявлением каких-то сил или взаимодействий из другого измерения? Может ли быть так, что наша Вселенная пересекается с параллельной? В обоих случаях успешное и неотъемлемое участие гравитационного воздействия темной материи в уравнениях, которые помогают нам понять процесс формирования и развития Вселенной, останется неизменным.

Другие столь же неутомимые скептики могут заявить, что «лучше один раз увидеть, чем сто раз услышать». Что ж, этот подход прекрасно работает во многих сферах нашей жизни — начиная с инженерного дела и рыбалки и заканчивая, пожалуй, романтическими знакомствами. Судя по всему, жителей штата Миссури такой подход тоже вполне устраивает. Однако наука занимается не только разглядыванием. Наука измеряет — и не просто чьими-то глазами, которые воспринимают окружение в неразрывной связи со всем, что уже хранится в мозгу: заранее сформированными идеями, приобретенным убеждениями, воображением, не скорректированным отсылкой к дополнительным данным, и необъективностью.

Не давая обнаружить себя непосредственно на Земле на протяжении трех четвертей века, темная материя превратилась для исследователей нашего мироздания в что-то вроде теста Роршаха. Некоторые физики, изучающие частицы, утверждают, что темная материя должна состоять из какого-то призрачного класса еще не открытых нами частиц, которые взаимодействуют с веществом посредством гравитации, но во всех остальных «областях» взаимодействуют с веществом или светом очень слабо или никак. Да, это звучит неожиданно, но прецедент у такого предположения есть. Те же нейтрино: они существуют, хотя их взаимодействие с обычным светом и веществом минимально. Нейтрино, что летят к нам с Солнца — по два нейтрино на каждое ядро гелия прямо из сердца звезды, — движутся в космическом вакууме практически со скоростью света и проходят сквозь Землю так, словно она пустое место. Немного занимательной математики: денно и нощно 100 миллиардов нейтрино с Солнца ежесекундно проникают в каждый квадратный дюйм[16] вашего тела и покидают его без вашего на то ведома или разрешения.

Нейтрино можно остановить. Изредка они «замечают» вещество за счет слабого ядерного взаимодействия. Если частицу можно остановить, значит, ее можно обнаружить. Сравните «скользкое» поведение нейтрино с неуловимостью Человека-невидимки (в тот момент, когда он, собственно, невидим) — хороший кандидат на звание темной материи. Однако если Человек-невидимка мог проходить сквозь стены и двери, словно их там и не было, то почему же он тогда не проваливался сквозь пол до самого подвала дома?

Если мы построим достаточно чувствительные детекторы, может быть, частицы темной материи и будут пойманы врасплох за каким-то известным нам типом взаимодействия с окружением. Возможно и то, что они обнаружат свое присутствие с помощью какого-либо нового вида взаимодействия (не сильного ядерного, не слабого ядерного, не электромагнитного). Эти три силы (плюс гравитация) управляют всеми возможными типами взаимодействия между всеми известными нам видами частиц. Так что вариантов немного: либо частицам темной материи придется дождаться того, что мы их обнаружим и откроем для себя новый тип взаимодействия (или даже целый класс типов), благодаря которому частицы темной материи вступают в контакт друг с другом, либо выясним, что частицы темной материи все же взаимодействуют с окружением посредством знакомых нам сил, но делают это невероятно слабо.

Если предложить теоретикам — приверженцам МОНД — тест Роршаха, они не увидят в нем ничего экзотического. Они скажут, что новая трактовка нужна самой гравитации, а не частицам как таковым. Вот они и обрадовались в свое время появлению модифицированной ньютоновской динамики в смелой попытке что-то кому-то доказать. Кажется, эта попытка провалилась, но тем не менее она является предшественницей многих последующих попыток изменить наше видение гравитации, а не понимание элементарных частиц.

Есть физики, которые придерживаются так называемой теории великого объединения. Согласно одной из ее версий, наша Вселенная расположена в непосредственной близости с параллельной Вселенной, сообщаться с которой у нас получается только за счет силы тяготения. В жизни вы никогда не наткнетесь ни на что из той параллельной Вселенной, но вы можете почувствовать, как она немного тянет вас куда-то, когда входит в пространственное измерение нашей Вселенной. Представьте себе, что до еще одной Вселенной-призрака буквально рукой подать, но вы не видите ее, только знаете о существовании благодаря гравитационному воздействию. Звучит экзотично и малоубедительно, но, возможно, ничуть не в большей степени, чем первые заявления о том, что именно Земля вращается вокруг Солнца или что наша галактика — не единственная во Вселенной.

Воздействие темной материи игнорировать невозможно. Просто мы не знаем, что она собой представляет. Она вроде бы не демонстрирует сильного ядерного взаимодействия, а значит, не может создавать атомные ядра. Не похоже, чтобы она увлекалась слабым ядерным взаимодействием — хотя даже непостоянные нейтрино на это способны. Электромагнитного взаимодействия мы тоже не наблюдаем, а это значит, что темная материя не производит молекул, не поглощает, не излучает, не отражает и не рассеивает свет. А вот гравитационным эффектом она обладает, и обычное вещество на него отзывается. И всё. За все годы исследований астрофизикам так и не удалось обнаружить какой-либо еще тип взаимодействия темной материи с окружающим миром.

Подробные карты реликтового излучения показывают, что темная материя существовала и в первые 380 тысяч лет жизни Вселенной. Без темной материи мы и сегодня никуда — она нужна в каждой галактике, включая нашу, чтобы объяснить движение ее объектов. Но насколько мы можем судить, славный марш астрофизики пока еще не сбит с курса и не заведен в тупик нашим невежеством. Темная материя просто шагает в ногу с нами, как странный навязчивый приятель, и мы вспоминаем о ней каждый раз, когда во Вселенной необходимо ее участие.

Мы надеемся, что в не столь далеком будущем веселье продолжится и мы научимся использовать темную материю в своих целях. Это произойдет, как только мы определимся с тем, что же она собой представляет. Только вообразите: невидимые игрушки; машины, которые проезжают сквозь друг друга, не попадая в аварии; или самолеты-невидимки «Стелс» нового поколения. История неясных и даже на первый взгляд бессмысленных открытий в науке пестрит именами личностей, которые оказывались тут как тут после громких открытий и умудрялись сразу понять, как наилучшим образом конвертировать эти новые знания в свою собственную экономическую выгоду или же поставить на служение всей планете.


Глава 5. Да будет больше тьмы!

Мы с вами уже знаем, что у Вселенной есть две стороны: светлая и темная. На светлой стороне — все привычные и знакомые нам небесные тела: звезды, которые скапливаются миллиардами и образуют галактики, а также планеты и разнообразный космический мусор, который, хотя и не всегда излучает видимый свет, все же является источником других форм электромагнитного излучения, например инфракрасных или радиоволн.

Еще мы знаем, что на темной стороне Вселенной царит загадочная темная материя, обнаружить которую можно только за счет ее гравитационного воздействия на видимое вещество, но ни ее форма, ни состав нам совершенно не известны. Ограниченное количество этой темной материи может оказаться самым обычным веществом, невидимым потому, что у него отсутствует обнаружимое излучение. Но, как уже стало ясно из предыдущей главы, преобладающая масса темной материи должна состоять из чего-то необычного — такого, чью природу мы никак не постигнем, за исключением установленного гравитационного воздействия этого «чего-то» на видимое вещество.

Помимо всего, что связано с темной материей, на темной стороне Вселенной есть еще кое-что, интересное принципиально по другой причине. Данный интерес затрагивает не вещество как таковое, а само пространство Вселенной. Этой концепцией, а также теми замечательными выводами, к которым она подвела научный мир, мы обязаны отцу современной космологии (снимаем шляпы) Альберту Эйнштейну.

Более века тому назад усовершенствованные пулеметы Первой мировой войны косили солдат тысячами, а в это время в нескольких сотнях миль к западу Альберт Эйнштейн сидел в своем берлинском офисе и размышлял об устройстве Вселенной. В самом начале войны Эйнштейн и его коллега распространили антивоенную петицию в своих кругах общения, им удалось собрать в общей сложности четыре подписи — помимо них самих, под петицией свои имена поставили лишь еще два человека. Этот поступок выделил самого Альберта Эйнштейна на фоне других ученых и, среди прочего, погубил карьеру его коллеги: тогда многие предпочитали подписывать совсем другие бумаги, обязуясь во всем поддерживать Германию. Но увлекающаяся и страстная натура Эйнштейна и его научная слава позволили ему сохранить уважение и даже некоторое преклонение своих сверстников. Он продолжил работать над поиском таких уравнений, которые помогли бы ему точно описать нашу Вселенную.

Не успела окончиться война, а Эйнштейн уже добился успеха, вполне возможно, самого значительного в своей карьере. В ноябре 1915 года он сформулировал общую теорию относительности, которая описывает взаимодействие пространства и вещества: вещество задает кривизну пространства, а пространство задает направление движению вещества. Чтобы дать объяснение загадочному «действию на расстоянии» Исаака Ньютона, Эйнштейн решил рассматривать гравитацию как локальное искажение в канве пространства. Например, Солнце создает что-то вроде ямочки — углубления, и чем ближе к Солнцу, тем заметнее деформируется вокруг него пространство. Планеты «скатываются» в это углубление, но за счет своих инерционных свойств не могут скатиться в него окончательно. Вместо этого они движутся вокруг Солнца по своим орбитам на более или менее постоянном расстоянии от образовавшегося вокруг него углубления в пространстве. Через несколько недель после того, как Эйнштейн опубликовал свою теорию, физик Карл Шварцшильд, стремясь отвлечься от ужасов службы в рядах немецкой армии (где заболел неизлечимой болезнью), воспользовался теорией Эйнштейна для того, чтобы показать следующее: объект, обладающий достаточно большой силой тяжести, создает в пространстве «сингулярность». В этой точке пространство полностью обертывается вокруг объекта, не позволяя ничему, включая свет, покидать его ближайшие окрестности. Сегодня мы называем такие объекты черными дырами.

Общая теория относительности Эйнштейна привела его к той самой ключевой формуле, которую он искал, той, что помогает связать содержимое пространства с его поведением. Изучая эту формулу наедине с самим собой в кабинете и мысленно создавая одну модель Вселенной за другой, Эйнштейн оказался на пороге открытия расширяющейся Вселенной — на десяток с лишним лет раньше, чем ее обнаружил в своих исследованиях Эдвард Хаббл.

Базовое уравнение Эйнштейна подразумевает, что во Вселенной, в которой вещество распределено более или менее равномерно, пространство не может быть «статическим». Космос не может просто «лежать себе», как нам подсказывают наша интуиция и все имевшиеся на тот момент результаты астрономических наблюдений. Нет, все пространство вокруг нас должно постоянно пребывать в состоянии либо расширения, либо сжатия: пространство должно вести себя как надувающийся или сдувающийся воздушный шарик, но не как шарик, надутый раз и навсегда до определенного размера.

Это беспокоило Эйнштейна. В кои-то веки этот смелый теоретик, не испытывавший доверия к авторитетам и никогда не боявшийся бросить вызов идеям традиционной физики, почувствовал, что зашел слишком далеко. Ни одно астрономическое наблюдение не предполагало расширяющейся модели Вселенной, потому что на тот момент астрономы располагали лишь информацией о движении ближайших к нам звезд и еще не могли определить расстояния до тех объектов, которые сегодня мы называем галактиками. Вместо того чтобы объявить всему миру, что Вселенная должна либо расширяться, либо сжиматься в объеме, Эйнштейн вновь засел за свое уравнение в поисках способа придать космосу статичность.

Вскоре он его нашел. Базовое уравнение Эйнштейна допускало присутствие члена с постоянным, но неизвестным значением, который отражал количество энергии, содержащейся в каждом кубическом сантиметре пустого пространства. Так как ничто не указывало на то, что этой постоянной величине следовало приписать то или иное значение, Эйнштейн изначально приравнял ее к нулю. Теперь же Эйнштейн опубликовал научную статью, в которой показывал: если бы у этой постоянной величины, которую ученые позднее назовут космологической постоянной, было определенное значение, тогда статическое пространство — в нашем случае не какое-нибудь, а космическое — возможно. Таким образом, противоречие теории Эйнштейна имеющимся на тот момент представлениям о Вселенной было исчерпано и уравнение можно было считать верным.

Однако предложенное Эйнштейном решение столкнулось с серьезными трудностями. В 1922 году российский математик Александр Фридман доказал, что статическая Вселенная Эйнштейна нестабильна, словно карандаш, стоящий на грифельном острие. Малейшее изменение — и пространство тут же начнет расширяться или сжиматься. Сначала Эйнштейн отверг написанное Фридманом, но позднее признал ошибочность своей оценки и опубликовал новую статью, отзывая критику и объявляя теорию Фридмана верной. В конце 1920-х годов Эйнштейн пришел в полный восторг, узнав об открытии Хабблом расширяющейся Вселенной. Как вспоминает Георгий Гамов, Эйнштейн назвал тогда космологическую постоянную своей грубейшей ошибкой. За исключением нескольких космологов, которые продолжали придерживаться ненулевого значения космологической постоянной (при этом отличного от того, которое когда-то предлагал сам Эйнштейн) в попытках объяснить свои некоторые загадочные наблюдения. Большинство из них затем оказались неверными, и ученые всего мира вздохнули с облегчением: оказывается, космическое пространство прекрасно обходится без этой самой постоянной.

Точнее, это они так думали. Главная и самая увлекательная космологическая история конца XX века — тот сюрприз, что схватил всех космологов мира за одно ухо, как непослушных мальчишек, и пропел им новую мелодию в другое, — заключается в удивительной находке. В 1998 году было объявлено, что для Вселенной действительно характерна ненулевая космологическая постоянная. В пустом пространстве действительно есть энергия, называемая темной энергией, и ее крайне необычные свойства и есть то самое, от чего зависит будущее всей Вселенной.

Прежде чем принять на веру такие серьезные утверждения, мы должны проследить за ключевыми этапами мышления космологов, которые пришлись на следующие 70 лет после открытия Хабблом расширяющейся Вселенной. Фундаментальное уравнение Эйнштейна допускает возможность того, что пространство обладает кривизной, которой математически можно придать положительное, нулевое или отрицательное значение. Нулевая кривизна характерна для «плоского пространства», того самого, которое нашему разуму кажется единственно возможным положением вещей. Это пространство бесконечно простирается во все стороны, словно поверхность школьной доски, у которой нет ни конца, ни края. Пространство с положительной кривизной — это аналог поверхности шара: двухмерное пространство, искривление которого можно обнаружить только при использовании третьего измерения. Обратите внимание: центр такого шара — точка, не меняющая своего расположения независимо от расширения или сжатия двухмерной поверхности, — находится в третьем измерении. Ее не найти на самой поверхности, которая в данном раскладе представляет собой все мировое пространство.

Все поверхности с положительной кривизной обладают не только некой конкретной ограниченной площадью, но и ограниченным объемом. Для положительно искривленного космоса характерна следующая особенность: если вы покинете Землю и отправитесь в путешествие, на которое отведено очень и очень много времени, вы рано или поздно вернетесь в пункт отправления, как Магеллан, путешествующий вокруг света. В отличие от сферических поверхностей с положительной кривизной отрицательно искривленные пространства простираются бесконечно, хотя и не являются плоскими. Двухмерная поверхность с отрицательной кривизной напоминает собой бесконечное конное седло: в одном направлении оно загибается «вверх» (сзади и спереди), а в другом — «вниз» (справа и слева).

Если космологическая постоянная равна нулю, нам хватит всего двух чисел для того, чтобы описать общие свойства Вселенной. Одно такое число — постоянная Хаббла — измеряет скорость, с которой Вселенная расширяется в данный момент; другое отражает кривизну пространства. Во второй половине XX века почти все космологи верили в то, что космологическая постоянная равна нулю, и считали своей приоритетной задачей изучение скорости расширения и кривизны космического пространства.

Оба значения можно найти с помощью точного измерения скоростей, с которыми объекты, расположенные от нас на разных расстояниях, удаляются еще дальше. Связь между расстоянием и скоростью удаления от нас галактик определяется постоянной Хаббла, а незначительные отклонения от общей тенденции, которые можно обнаружить только при изучении наиболее удаленных от нас объектов, помогают определить кривизну пространства. Когда астрономы наблюдают за объектами в миллиардах световых лет от Млечного Пути, они смотрят в столь далекое прошлое, что видят Вселенную не такой, какая она сейчас, но такой, какой она была спустя гораздо меньшее время с момента Большого взрыва. Наблюдения за галактиками в пяти и более миллиардах световых лет от Млечного Пути позволяют космологам восстановить картину огромной части истории расширяющейся Вселенной, в том числе выяснить, как менялась скорость расширения со временем, что и есть ключ к определению типа и значения кривизны пространства. Этот инструмент действителен хотя бы потому, что степень искривления пространства провоцирует малозаметные изменения в скорости, с которой Вселенная расширялась на протяжении последних нескольких миллиардов лет.

На практике астрофизики пока не могли реализовать эту заманчивую программу: у них не было возможности с достаточной точностью измерить расстояния до галактических кластеров в миллиардах световых лет от Земли. Правда, у них оставался один козырь: если бы им удалось измерить среднюю плотность всего вещества во Вселенной — среднее количество граммов вещества на один кубический сантиметр пространства, — они могли бы сравнить полученное число с «критической плотностью», значение которой было предсказано в описывающих расширяющуюся Вселенную уравнениях Эйнштейна. Критическая плотность определяет точную плотность вещества, соответствующую Вселенной с нулевой кривизной пространства. Если фактическая плотность оказывается выше этого значения — перед нами Вселенная с положительной кривизной. В таком случае (и при нулевой космологической постоянной) Вселенная в какой-то момент прекратит расширяться и начнет сжиматься. Если же фактическая плотность равняется критической или оказывается ниже ее значения, тогда Вселенная будет расширяться бесконечно. Полноценное равенство фактического и критического значения плотности возможно в космосе с нулевой кривизной, а во Вселенной с отрицательным искривлением фактическая плотность меньше критической.

К середине 1990-х годов космологи поняли, что, даже если учесть в расчетах всю темную материю, к тому моменту уже обнаруженную по ее гравитационному воздействию на обычное видимое вещество, суммарная плотность вещества в нашей Вселенной едва достигнет и четверти значения критической плотности. Результат не то чтобы удивительный — он всего лишь подразумевает, что Вселенная никогда не перестанет расширяться и мы живем в космическом пространстве с отрицательной кривизной. Но это, безусловно, огорчило тех, кто уже привык считать, что кривизна пространства равна нулю.

Данное убеждение было основано на так называемой инфляционной модели Вселенной, которая получила свое название в эпоху стремительно растущего индекса потребительских цен[17] (да, неизобретательно). В 1979 году Алан Гут, физик из Стэнфордского центра линейного ускорителя, который находится в Калифорнии, выдвинул гипотезу о том, что в первые мгновения своего существования Вселенная расширилась с невероятной скоростью — столь высокой, что отдельные частички вещества разлетелись прочь друг от друга со скоростью, существенно превышающей скорость света. Но разве, согласно специальной теории относительности Эйнштейна, скорость света не является максимально возможной для любого вида движения? Не совсем. Эйнштейновское ограничение применимо только к объектам, движущимся в пространстве, но не к расширению пространства как таковому. В эпоху инфляции, которая продолжалась с 10–37 до 10–33 секунды после Большого взрыва, Вселенная увеличилась примерно в 1050 раз.

Что же вызвало столь невообразимое расширение космоса? Гут предположил, что все космическое пространство, вероятно, прошло сквозь некое «фазовое превращение»: что-то вроде того, что происходит с водой, когда она очень быстро превращается в лед. После ряда существенных корректировок и дополнений от коллег Гута из Советского Союза, Объединенного Королевства и Соединенных Штатов идея ученого показалась столь заманчивой, что возглавила список теорий о зарождении Вселенной и оставалась на его первой строке в течение 20 лет.

Так почему же инфляция кажется столь заманчивой? Дело в том, что эпоха инфляции объясняет тот факт, что Вселенная со всеми ее общими свойствами выглядит одинаково, куда бы мы ни глядели: все, что мы видим (и на самом деле гораздо больше), появилось и раздулось из одной-единственной крошечной точки в пространстве, наделяя своими локальными свойствами целую огромную Вселенную. У теории есть и ряд других преимуществ, отметим только, что любители строить модели Вселенной в уме их признают. Но кое-что все же стоит упомянуть отдельно. Инфляционная модель дает один непосредственный и проверяемый прогноз: пространство нашей Вселенной должно быть плоским, без каких-либо положительных или отрицательных значений кривизны — таким же плоским, каким оно видится нам на уровне интуиции.

Согласно этой теории плоская форма пространства является следствием того самого гигантского расширения, что произошло в эпоху инфляции. В качестве художественного примера вообразите себя на поверхности воздушного шарика — а теперь пускай он увеличится во столько раз, что вы даже нули в множителе посчитать не сумеете. После такого расширения та часть шара, которую вы способны увидеть, будет казаться плоской, как блинчик, испеченный бабушкой. Именно таким и должен в итоге оказаться тот космос, который мы в принципе смеем надеяться когда-либо измерить, — если, конечно, инфляционная модель окажется достоверной картинкой реальной Вселенной.

Однако суммарная плотность вещества достигает лишь около одной четверти от значения, необходимого для придания пространству совершенной плоскости. В 1980-х и 1990-х годах многие убежденные теоретики среди космологов верили: так как инфляционная модель должна оказаться верной, новые данные когда-нибудь закроют этот космический пробел в массе, выраженный в несоответствии фактической суммарной плотности вещества, указывавшей на отрицательную кривизну пространства и ее критического значения, необходимого для плоского космоса. Их убежденная вера помогала им двигаться дальше, хотя убежденные наблюдатели среди космологов и насмехались над теоретиками за излишнее доверие к теоретическому анализу.

И тут насмешки прекратились.

В 1998 году две соперничавшие команды астрономов объявили о ряде новых открытий, которые подтверждали существование ненулевой космологической постоянной. Ее значение отличалось от того, что когда-то предложил Эйнштейн в целях сохранения статичности своей Вселенной. Была дана принципиально иная величина, и она показывала, что Вселенной предстоит расширяться бесконечно и все быстрее и быстрее.

Если бы теоретики просто заявили о том, что придумали еще одну модель Вселенной, мир вряд ли обратил бы на них серьезное внимание и недолго помнил бы об этом в принципе. В данном случае уважаемые эксперты по наблюдению за реальной Вселенной выказали друг к другу недоверие, проверили подозрительную активность своих соперников и обнаружили, что согласны и с данными, и с выводами друг друга. Результаты наблюдений не только подтверждали наличие космологической постоянной, не равной нулю, но и смогли приписать этой постоянной значение, делающее наше пространство плоским.

Простите, что-что? Как вы сказали? Космологическая постоянная, которая выравнивает пространство до плоского состояния? Вы намекаете, что мы все, как Королева из «Алисы в Зазеркалье», верим «в десяток невозможностей до завтрака»[18]? Однако при более зрелом размышлении вы убедитесь в том, что, если, как оказалось, в пустом пространстве все же имеется энергия (!), значит, эту энергию можно выразить в виде массы согласно знаменитому уравнению Эйнштейна, где E = mc2. При наличии энергии E вы можете вывести соответствующее ей значение массы m, равное E, разделенной на c2. Тогда вы получите суммарную плотность, составленную из двух отдельных величин: плотности вещества и плотности энергии.

И вот эту самую новую суммарную плотность и следует сравнивать с критической. Если их значения равны, значит, мы имеем дело с плоским пространством. Это соответствует прогнозам инфляционной модели о плоском пространстве, которой совершенно все равно, откуда берется значение суммарной фактической плотности вещества во Вселенной: составляйте из чего хотите — вещества, энергии или и того и другого, главное — конечный результат.

Важнейшие свидетельства ненулевой космологической постоянной, а значит, и существования темной энергии, были получены в процессе астрономических наблюдений за особым типом сверхновых звезд, которые, взрываясь с невероятной силой, гибнут в сопровождении ярчайшей вспышки света. Такие сверхновые звезды называются сверхновыми типа Ia[19] и отличаются от других типов, которые появляются после того, как ядра огромных звезд испытывают коллапс в конце своего жизненного цикла, исчерпав все свои возможности по производству энергии за счет термоядерного синтеза. В отличие от них сверхновые типа Ia обязаны своим происхождением так называемым белым карликам, принадлежащим к бинарным звездным системам. Две звезды, которым довелось образоваться рядом друг с другом, следуют своим жизненным циклам, одновременно вращаясь вокруг общего для них центра массы. Если одна из двух таких звезд обладает большей массой, ее жизненный цикл быстрее подойдет к концу, в большинстве случаев такие звезды теряют внешнюю газовую оболочку, обнажая перед космосом свое ядро в виде съежившегося, вырожденного белого карлика — объекта размером не больше Земли, но по массе сравнимого с Солнцем. Физики называют вещество в белых карликах вырожденным, потому что его плотность настолько высока (она превышает плотность железа или золота более чем в сотню тысяч раз), что законы квантовой механики преобладают над веществом в общем объеме, не давая ему схлопываться под воздействием невообразимо мощной гравитации, направленной на самого себя.

Белый карлик на взаимной орбите со стареющей звездой-компаньоном притягивает к себе газообразный материал, который она более не в силах удержать. Такое вещество, как правило, все еще достаточно богато водородом, и оно скапливается на поверхности белого карлика, становясь все более плотным и горячим. В конце концов, когда температура достигает десяти миллионов градусов, вся звезда целиком вспыхивает в термоядерном взрыве. Словно водородная бомба, но в миллиарды раз мощнее. Такой взрыв разрывает всего белого карлика на части… и становится сверхновой звездой типа Ia.

Такие сверхновые типа Ia представляют для астрономов особенный интерес благодаря двум уникальным свойствам. Во-первых, взрывы этих сверхновых становятся самыми яркими во Вселенной — их видно миллиарды световых лет спустя. Во-вторых, природа установила ограничение по массе для любого белого карлика: она не может превышать величину массы Солнца, умноженную примерно на 1,4. Вещество может накапливаться на поверхности белого карлика только до тех пор, пока его новая суммарная масса не достигнет значения примерно 1,4 массы Солнца. Как только это случится, термоядерные реакции разорвут белого карлика на части — взрыв всегда происходит с объектами одной и той же массы (ибо превысить ее невозможно) и одного и того же состава, раскиданными по всей Вселенной. Получается, что при рано или поздно наступающем взрыве такие сверхновые белые карлики достигают одного и того же максимального значения энергии взрыва, а их яростное сияние гаснет с примерно одинаковой скоростью после достижения своего пика.

Эти свойства позволяют астрономам использовать сверхновые типа Ia в качестве очень ярких и легко различимых «стандартных свечей» — объектов, дающих одинаковый выход энергии, где бы они ни находились. Конечно, расстояние от наблюдателя влияет на видимую яркость такой сверхновой звезды. Две звезды типа Ia в двух разных далеких галактиках будут излучать свет одинаковой степени яркости только в том случае, если они находятся на одинаковом расстоянии от нас. Соответственно, если одна находится в два раза дальше другой, ее сияние будет в четыре раза менее ярким (так как светимость любого объекта обратно пропорциональна квадрату расстояния от наблюдателя до такого объекта).

Когда астрономы научились распознавать сверхновые звезды типа Ia на основании подробного анализа светового спектра каждого из таких объектов, у них в руках оказался золотой ключик от двери, за которой прятался ответ на вопрос «Как точно измерить расстояние до небесных тел?» Измерив (другими способами) расстояние до нескольких ближайших сверхновых типа Ia, ученые смогли вычислить гораздо более существенные расстояния до других сверхновых типа Ia, просто сравнив светимость относительно близких и далеких объектов.

В 1990-е годы две команды специалистов по сверхновым звездам (одна — из Гарварда, а другая — из Калифорнийского университета в Беркли) усовершенствовали эту методику, найдя способ компенсировать в своих расчетах небольшие, но реальные различия между сверхновыми типа Ia, которые можно отследить по их спектрам. Чтобы воспользоваться новеньким блестящим ключом от расстояний до самых далеких сверхновых звезд, исследователям был нужен телескоп, способный наблюдать за далекими галактиками и записывать свои наблюдения с ювелирной точностью. Они обратились к телескопу Хаббла, который в 1993 году получил новое основное зеркало (старое было изготовлено с погрешностью). С помощью наземных телескопов эксперты по сверхновым звездам обнаружили десятки объектов типа Ia в галактиках в миллиардах световых лет от Млечного Пути и запросили необходимое время для работы с телескопом Хаббла, чтобы повнимательнее их изучить.

1990-е годы подходили к концу, две команды наблюдателей за сверхновыми звездами соревновались друг с другом за право первой представить новую и улучшенную версию «диаграммы Хаббла» — ключевого для космологии графика, на который расстояния удаленности от нас галактик наносятся в соответствии со скоростями, с которыми эти галактики удаляются от нас. Астрофизики вычисляют значения таких скоростей на основании эффекта Доплера (более подробно о нем — в главе 13), который изменяет цвет излучения галактик в зависимости от той скорости, с которой эти галактики от нас удаляются.

Соответствующие каждой галактике удаленность и скорость удаления отмечены на диаграмме Хаббла. В случае с относительно близкими галактиками кривая, соединяющая эти точки, вполне синхронно идет вверх, так как одна галактика, удаленная от нас в два раза больше, чем другая, демонстрирует и в два раза большую скорость удаления. Прямую пропорциональность между расстояниями до галактик и их скоростями удаления можно алгебраически выразить законом Хаббла — простым уравнением, описывающим базовые повадки Вселенной: v = H0 d. Здесь v — скорость удаления, d — расстояние, а H0 — универсальная постоянная (постоянная Хаббла), которая описывает всю Вселенную целиком в любой конкретный момент времени.

Сторонние наблюдатели со всей Вселенной, изучая ее через 14 миллиардов лет после Большого взрыва, обнаружат, что галактики удаляются согласно описанной законом Хаббла формуле, и каждый такой наблюдатель получит одно и то же значение постоянной Хаббла, хотя назовут ее все они, конечно, по-разному. Эта предполагаемая межкосмическая демократия лежит в основе всей современной космологии. Мы не можем доказать, что вся Вселенная без исключения следует принципам этой демократии. Возможно, далеко за пределами доступной нам видимости космос ведет себя совсем иначе, чем «здесь». Но космологи отвергают подобные идеи, по крайней мере для видимой и наблюдаемой нами Вселенной. Так что будем считать, что формула V = Н0 * d представляет собой универсальный — вселенский! — закон.

Надо отметить, что постоянная Хаббла меняется со временем. Новая и улучшенная диаграмма Хаббла, включающая в себя галактики в миллиардах световых лет от нас, когда-нибудь откроет не только значение сегодняшней постоянной Хаббла (выраженной в градиенте линии, соединяющей точки соответствия расстояния и скорости удаления каждой отдельной галактики), но и динамику скорости расширения Вселенной за последние миллиарды лет. Значение скорости расширения Вселенной в начале ее существования будет определено данными в верхних значениях графика, так как они соответствуют наиболее далеким из изученных галактик (а значит, предстающим перед нами в своем глубоко «прошлом» виде). Таким образом, диаграмма Хаббла, охватывающая расстояния вплоть до многих миллиардов световых лет, сможет дать нам историческую картину расширения Вселенной, описанную ее переменной скоростью расширения.

На пути к данной цели миру астрофизиков повезло: у них было две команды-соперницы и обе тщательно изучали сверхновые звезды. Результаты этих исследований были впервые обнародованы в феврале 1998 года, и их эффект превзошел все ожидания. Если бы гонцом космических новостей была только одна группа ученых, ей вряд ли удалось бы пробить естественный скептицизм своих многоуважаемых коллег, которые не сдали бы без боя свои давно признанные и выпестованные убеждения об устройстве Вселенной. Но в этом случае две команды скептически целились в первую очередь друг в друга и потому особо тщательно принялись искать ошибки в полученных соперниками данных или выводах на их основании. Когда и те и другие объявили, что их все устраивает (несмотря на изначальную предубежденность друг против друга) и что конкуренты справились с задачей, миру космологии не оставалось иного выбора, кроме как принять, хотя поначалу довольно сдержанно, новости с передовой космических исследований.

Новости заключались в том, что самая далекая сверхновая звезда типа Ia оказалась более бледной, чем ожидалось. Это означает, что сверхновые расположены чуть дальше, чем следовало бы, что, в свою очередь, означает, что что-то заставило Вселенную расширяться еще быстрее. Что же спровоцировало ускорение расширения? Единственный возможный обвиняемый, подходящий по всем параметрам, — это темная энергия, таящаяся в пустом пространстве, та самая энергия, чье существование соответствует ненулевой космологической постоянной. Определив расстояние, на которое та далекая сверхновая звезда оказалась дальше, чем ожидалось, две команды астрономов определили саму форму и судьбу Вселенной.

Когда две команды, изучавшие сверхновые звезды, достигли единодушия, оказалось, что космос… плоский. Для наглядности придется немного повозиться с греческим алфавитом. Чтобы описать Вселенную с ненулевой космологической постоянной, нам нужно еще одно число. К постоянной Хаббла, обозначаемой нами как Н0 (это ее значение в наше время), и к средней плотности вещества, которая сама по себе определяет кривизну пространства при нулевом значении космологической постоянной, мы должны добавить эквивалент плотности, которую обусловливает темная энергия. Она, согласно эйнштейновской формуле Е = тс 2, обладает выраженным в массе (т) эквивалентом энергии (Е).

Космологи записывают плотность вещества и темной энергии с помощью символов ΩM и ΩΛ, где Ω (греческая заглавная «омега») представляет собой отношение космической плотности к критической. ΩM — это отношение средней плотности всего вещества во Вселенной к критической плотности, а Ω — отношение эквивалентной плотности темной энергии к критической. В данном случае Λ (греческая заглавная «лямбда») представляет собой космологическую постоянную. В плоской Вселенной с нулевой кривизной пространства сумма ΩM и ΩΛ всегда равняется единице, потому что суммарная плотность (вещества и эквивалентной веществу темной энергии) должна строго равняться критической плотности.

Наблюдения за далекими сверхновыми типа Ia помогли измерить разницу между ΩM и ΩΛ. Вещество замедляет расширение Вселенной, так как гравитация притягивает все ко всему остальному, затрудняя отдаление друг от друга. Чем выше плотность вещества, тем больше гравитационное взаимодействие замедляет процесс. Однако темная энергия делает кое-что принципиально другое. В отличие от скоплений вещества, чье взаимное притяжение замедляет космическое расширение, темная энергия обладает странным свойством: она заставляет пространство расширяться, тем самым дополнительно ускоряя этот процесс. Чем шире пространство, тем больше в нем становится темной энергии, так что расширяющаяся Вселенная — самый что ни на есть настоящий бесплатный сыр сами знаете где. Новоявленная темная энергия заставляет космос расширяться еще быстрее, и бесплатного сыра становится все больше и больше — и так до бесконечности. Значение ΩΛ отражает собой размер космологической постоянной и позволяет нам оценить абсолютное значение тенденции темной энергии к расширению своего окружения.

Когда астрономам удалось измерить отношение удаленности галактик к их скоростям удаления, они обнаружили, во что выливается противостояние гравитации и темной энергии. Согласно их подсчетам, ΩΛ — ΩM = 0,46 (±0,03). Так как астрономы на тот момент уже определили, что значение ΩM составляет примерно 0,25, на основе этой формулы легко установить, что ΩΛ предположительно равняется 0,71. Тогда в сумме ΩΛ и ΩM дают 0,96 — а это почти полноценная единица, которую прочит нам инфляционная модель Вселенной. Более свежие данные внесли в эти цифры уточняющие дополнения, благодаря чему сумма ΩΛ + ΩM еще больше приблизилась к единице. В настоящее время вам будет трудно найти космолога, не согласного с выводом о том, что Вселенная плоская.

Несмотря на единодушие между двумя соперничающими группами экспертов по сверхновым звездам, некоторых космологов все же было трудно убедить до конца. Не каждый день ученым случается оставить многолетние убеждения, такие, скажем, как нулевое значение космологической постоянной, и заменить их принципиально новым выводом о том, что темная энергия заполняет собой каждый кубический сантиметр пустого пространства. Почти все скептики, которые внимательно следили за приключениями теорий об устройстве космоса, в конце концов присоединились к новой версии, после того как смогли переварить результаты новой серии отчетов спутника, созданного для того, чтобы с беспрецедентной точностью записывать свои наблюдения за реликтовым излучением. Этот спутник — всемогущий WMAP, уже упомянутый в главе 3, к началу 2003 года накопил для космологов достаточно данных для того, чтобы на их основании составить всеохватную небесную карту микроволнового излучения, несущего на себе бо́льшую часть космического фонового излучения. Хотя более ранние исследования уже позволили сделать несколько базовых выводов и без такой карты, они все же были сделаны на основании куда более скудных данных, собранных лишь с отдельных участков неба. Полноценная карта неба от WMAP стала кульминацией многолетних трудов множества специалистов, а также определила раз и навсегда самые важные особенности реликтового излучения.

Самый выдающийся и значительный аспект новой карты, как и в случае с наблюдениями с аэростатов и наблюдениями, сделанными с помощью предшественника WMAP — спутника COBE[20], заключается в ее почти полной безликости. Вы не найдете никаких заметных различий в интенсивности излучения, идущего со всех сторон, пока не доберетесь в своих измерениях примерно до одной тысячной доли значений. Но и тогда едва различимые отличия принимают форму лишь незначительного повышения интенсивности излучения в одном конкретном направлении и соответствующего незначительного понижения интенсивности излучения в противоположном направлении. Эти различия вызваны движением нашей галактики Млечный Путь среди соседних с ней галактик. Из-за эффекта Доплера мы принимаем чуть более явный сигнал в направлении такого движения не потому, что само реликтовое излучение сильнее, а потому, что наше движение навстречу ему слегка увеличивает энергетический след фотонов, которые мы можем обнаружить.

Скорректировав результат со скидкой на эффект Доплера, мы получаем ровное реликтовое излучение, но это только вплоть до уровня стотысячных долей его величины. На этом уровне обнаруживаются крошечные отклонения от всеобщего единообразия. Эти отклонения можно сопоставить с участками, из которых реликтовое излучение приходит чуть более или чуть менее ярким. Как уже отмечалось ранее, разница в интенсивности связана с направлениями, в которых вещество чуть горячее и плотнее (или прохладнее и разреженнее) среднестатистического вещества в районе 380 тысяч лет после Большого взрыва. Спутник COBE первым заметил эти различия. Инструментальные измерения с помощью аэростатов и исследования на Южном полюсе уточнили имеющиеся у нас данные, а затем спутники WMAP и Planck предоставили еще более детальные сведения о небесном своде, что дало космологам возможность создать подробную карту плотности реликтового излучения с невообразимой ранее точностью углового разрешения вплоть до одного градуса.

Незначительные отклонения в однообразии реликтового излучения, обнаруженные спутниками COBE, WMAP и Planck, представляют для космологов более чем просто мимолетный интерес. Так, они показывают нам зачатки структурного строения Вселенной в то время, когда фоновое излучение перестало взаимодействовать с веществом. Регионы, в которых вещество чуть плотнее среднего, в те далекие времена получили фору для дальнейшего сокращения и выиграли эти космические соревнования, собрав у себя большую часть вещества с помощью гравитации. Первым важным заключением, которое позволяет сделать новая карта распределения реликтового излучения, является следующее: подтверждаются космологические теории о том, что огромная разница в плотности вещества от региона к региону Вселенной, наблюдаемая сегодня, существует благодаря крошечным различиям в плотности вещества, которые сложились во Вселенной через несколько сотен лет после Большого взрыва.

Однако космологи могут использовать новые результаты своих наблюдений за реликтовым излучением еще и для того, чтобы разгадать другую, более фундаментальную особенность устройства Вселенной. Подробная карта распределения реликтового излучения показывает нам кривизну самого пространства. Это удивительное заключение основано на том факте, что кривизна пространства влияет на путешествующее сквозь него излучение. Если, например, пространство искривлено положительно, тогда при наблюдении за реликтовым излучением мы оказываемся примерно в позиции стороннего наблюдателя, стоящего на Северном полюсе и глядящего вдоль поверхности Земли в направлении источника излучения в районе экватора. Так как линии долготы сходятся на полюсе, источник излучения предстает перед таким наблюдателем более остроугольным, чем было бы при абсолютно плоском пространстве.

Чтобы понять, как кривизна пространства влияет на угловой размер составляющих реликтового излучения, представьте себе время, когда оно наконец-то перестало взаимодействовать с веществом. Тогда крупнейшие отклонения от однообразия, которые только могли существовать во Вселенной, обладали размером, который космологи могут подсчитать: возраст Вселенной, умноженный на скорость света, равняется примерно 380 тысячам световых лет в поперечнике. Это то самое максимальное расстояние, на котором частицы вещества еще могли иметь друг на друга какое-либо влияние и создавать какие-либо шероховатости. В случае с большими расстояниями «новости» от других частиц просто еще не успели бы добраться куда следовало, так что их нельзя винить в нарушениях распределения реликтового излучения.

Под каким углом эти максимальные отклонения расположились бы на небе сейчас, зависит от кривизны пространства, которую можно определить, сложив ΩM и ΩΛ. Чем ближе эта сумма к единице, тем ближе кривизна пространства к нулю (то есть тем более плоское пространство мы имеем) и тем больше угловой размер наблюдаемых нами максимальных отклонений от однообразия реликтового излучения. Данная кривизна пространства зависит только от суммы двух Ω, потому что оба типа плотности провоцируют кривизну пространства одинаковым образом. Получается, что наблюдения за реликтовым излучением предлагают нам прямое значение суммы ΩM и ΩΛ, а изучение сверхновых звезд — значение алгебраической разницы между Ом и ОЛ.

Данные спутника WMAP показывают, что для самых заметных отклонений от однообразия реликтового излучения характерен угол 1 градус, и это означает, что сумма ΩM + ΩΛ равняется 1,02 (±0,02). Так, в рамках границ экспериментально допустимой точности мы можем сделать вывод, что Ом + ОЛ = 1. Значит, пространство плоское. Результаты наблюдений за далекими сверхновыми типа Ia можно резюмировать строчкой □л — Ом = 0,46. Если мы совместим этот результат с утверждением о том, что Ом + ОЛ = 1, то получим следующие значения: Ом = 0,27, а ОЛ = 0,73; погрешность каждого из них составляет несколько процентов. Более точные данные, полученные с помощью спутника Planck, дают значения QM = 0,31 и ОЛ = 0,69. Как уже отмечалось ранее, это лучшая на сегодня оценка двух ключевых космических параметров: их неопределенность уменьшилась до ±2 %. Они демонстрируют, что на вещество — как на обычное, так и на темную материю — приходится лишь 31 % суммарной плотности вещества (или обычной энергии в его эквиваленте), в то время как на долю темной энергии приходится 69 %. Если хотите, можно рассматривать массовый эквивалент темной энергии — E/c2; тогда на долю темной энергии приходится 69 % всей массы Вселенной.

Ученые установили, что при ненулевом значении космологической постоянной относительное влияние вещества и темной энергии должны меняться с течением времени. С другой стороны, плоская Вселенная навсегда останется плоской, от своего рождения в результате Большого взрыва и вплоть до того бесконечного будущего, что ждет нас впереди. В плоской Вселенной сумма ΩM и ΩΛ всегда равна единице, а значит, если изменится одно слагаемое, то другое не сможет остаться неизменным.

В космические эпохи, наступившие вскоре после Большого взрыва, темная энергия не играла во Вселенной почти никакой роли. По сравнению с предстоящими вехами в ее истории Вселенная тогда была столь мала, что на долю ΩΛ приходилось число немногим больше нуля, в то время как ΩM практически равнялась единице. В те времена Вселенная напоминала собой пространство без какой-либо космологической постоянной. Шло время, и значение ΩM постепенно уменьшалось, зато значение ΩΛ росло в обратной к нему пропорции, сумма же неизменно оставалась равной единице. Рано или поздно, через сотню миллиардов лет от сегодняшнего дня, ΩM упадет почти до нуля, зато ΩΛ будет расти и расти, пока не приблизится по своему значению к единице. Мы видим, что история плоской Вселенной с ненулевой космологической постоянной подразумевает переход от «ранних лет», когда темной энергии отводилась самая незначительная роль, к «настоящему», когда ΩM и ΩΛ были приблизительно равны, а затем и к бесконечному будущему, в котором вещество будет распределено по Вселенной столь разреженно, что ΩM будет бесконечно стремиться к нулю, хотя сумма двух Ω все равно будет оставаться равной единице.

Наши наблюдения позволяют, с одной стороны, вычислить, что в данный момент в галактических кластерах величина ΩM составляет примерно 0,29, с другой — наблюдения за реликтовым излучением и далекими сверхновыми звездами приводят значение, скорее близкое к 0,31. С учетом экспериментальной погрешности эти два значения можно считать «совпадающими». Если мы действительно живем во Вселенной с ненулевой космологической постоянной и если эта постоянная отвечает (в паре с веществом) за формирование плоской Вселенной, как это предсказывает инфляционная модель, тогда космологическая постоянная должна иметь значение, которое, в свою очередь, приближает значение ΩΛ к 0,7 с лишним. То есть оно в два с половиной раза больше значения ΩM. Другими словами, ΩΛ сейчас выполняет основную часть работы во имя того, чтобы сумма ΩM + ΩΛ равнялась единице. Это означает, что мы уже оставили позади ту эпоху, в которой вклад вещества и космологической постоянной в поддержание плоской формы Вселенной был равен (значение каждой Ω составляло 0,5).

Прошло менее десяти лет, и прозвучавший двойной выстрел результатов наблюдений за сверхновыми звездами типа Ia и реликтовым излучением привел к переходу концепции темной энергии из статуса «какой-то там» идеи, на которой в свое время ненадолго остановился Эйнштейн, в статус непреложного космического факта о жизни. Если только в будущем не окажется, что все эти многочисленные данные получили неверную трактовку, были некорректно собраны или просто в корне неверны, нам останется лишь принять тот факт, что Вселенная никогда не сожмется в размере и не прекратит свое существование. Вместо этого нас ждет довольно скучное будущее: через сотню миллиардов лет, когда большинство звезд уже выгорит, все, кроме самых ближайших галактик, навсегда исчезнет из нашего поля зрения.

К тому времени Млечный Путь соединится со своими ближайшими соседями, создав одну огромную — гигантскую! — галактику в буквальном смысле в настоящей космической глуши. В нашем ночном небе останется сколько-то звезд, мертвых или еще функционирующих, и больше ничего. Астрофизикам будущего предстоит жить в весьма жестоком мире. Вокруг не будет ни одной галактики, которая помогла бы им отследить факт расширения Вселенной, и они, как и Эйнштейн, ошибочно предположат, что живут в статической Вселенной. Космологическая постоянная и ее темная энергия доведут Вселенную до состояния, в котором их нельзя будет не только измерить, но и в принципе вообразить.

Рекомендуем получать удовольствие от космологии, пока это еще возможно.


Глава 6. Напряжение в космосе!

С открытия темной энергии прошло не так много времени, но она уже заняла одно из главенствующих мест в списке самых волнующих вопросов существования Вселенной. К ответам на них ученые так пока и не приблизились, но их можно простить: за этот период астрофизики смогли еще точнее определить параметры, с помощью которых можно описать Вселенную на всем пути ее существования. И они продолжают работать над тем, чтобы еще точнее установить основной из них — скорость расширения. Для ее измерения ученые разработали два метода, почти равноценные по точности, однако их усилия привели к появлению еще одной животрепещущей, провокационной и многообещающей проблемы — оба метода дали совершенно разные результаты.

К такой противоречивости можно относиться по-разному. С одной стороны, воспринимать расхождение результатов как неверное, считая, что оно, вероятно, обусловлено не свойствами Вселенной, а неправильной интерпретацией, ошибками в расчетах или неточными исходными данными. С другой стороны, видеть в этом потенциал. Если мы будем работать над уточнением соответствующих знаний о космическом пространстве, его законах и истории развития либо — что еще более интересно — сможем открыть нечто новое в области базовой физики, которая лежит в основе любого космологического анализа, то сможем обрести новое понимание Вселенной.

Расхождение, о котором идет речь, касается значения основного параметра современной космологии — постоянной Хаббла H0, которая выражает скорость расширения Вселенной в настоящее время. Нужно отметить, что астрофизики описывают постоянную Хаббла в единицах «км/с на мегапарсек», то есть на сколько километров в секунду увеличиваются скорости удаления галактик с увеличением расстояний до них, измеряемых в мегапарсеках (один мегапарсек соответствует 3,26 миллиона световых лет). Один метод определения постоянной Хаббла дает значение чуть больше 67 километров в секунду на мегапарсек, а второй демонстрирует результат, который примерно на 10 % больше первого и близок к 73. Разница между этими двумя числами привела к ситуации, которую космологи часто называют «космическим напряжением», или «напряжением Хаббла». Мы могли бы дать ей и другое, гораздо более звучное имя, например «кризис космологии», чтобы привлечь еще больше внимания, но давайте ограничимся словом «напряжение» и подумаем лучше вот о чем: «Что означает данное явление для нас и в целом для науки?»

Если мы обратимся к истории, то заметим, что нынешнее взволновавшее всех расхождение в оценках больше похоже на сближение. До появления телескопа «Хаббл» выдающиеся астрофизики, которые делали попытки определить значение постоянной Хаббла, расходились в своих оценках ровно в два раза: одни принимали за верное число 50, а другие — 100. Учитывая, какое напряжение породила разница между значениями 67 и 73, занимающая ученых сегодня, можно представить, как далеко мы продвинулись за одну жизнь.

Некоторые астрофизики — обычно не те, кто непосредственно участвует в измерениях или интерпретации результатов — спокойно смотрят на ситуацию. Они считают, что напряжение Хаббла разрешится довольно прозаически, и причем довольно скоро, а правильным будет признано значение, близкое к 70. Но многие из тех, кто потратил годы и даже десятилетия на определение точного значения постоянной Хаббла, придерживаются противоположной точки зрения (что, впрочем, вполне ожидаемо) и продолжают участвовать в жарких спорах. Если оба лагеря окажутся правыми в своих оценках, то с точки зрения истории настоящее вполне может быть названо эпохой, в которой два разных числа открыли дверь в новую физику.

Какие же методы породили напряжение Хаббла? С помощью первого было выявлено существование темной энергии; он использует оценки расстояний, полученные из наблюдений взрывов сверхновых в далеких галактиках. Постоянно совершенствующиеся средства наблюдения за взрывами этих сверхновых, а также уточнения тонких различий между ними привели к получению значений, близких к 73. Однако прежде чем обсуждать неопределенности, связанные этим числом, необходимо изучить главный альтернативный метод определения постоянной Хаббла.

Этот подход основан на использовании того, что космологи называют «стандартной линейкой» по аналогии со «стандартными свечами» — сверхновыми, используемыми в традиционном подходе вычисления постоянной Хаббла. Как рассказывалось в предыдущей главе, в эпоху разделения, которая наступила через 380 тысяч лет после Большого взрыва, некогда существенное гомогенизирующее воздействие излучения на материю наконец прекратилось. С той поры излучение свободно путешествует среди частиц материи, не оказывая на них весомого воздействия. Это произошло, когда максимальное расстояние, на котором частицы материи могли воздействовать друг на друга, составляло около 420 тысяч световых лет — более удаленные друг от друга области не успели каким-либо образом повлиять друг на друга. Это расстояние послужило ученым стандартной линейкой. В предыдущей главе оно было отмечено как максимальное расстояние, на котором частицы вещества еще могли иметь друг на друга какое-либо влияние и создавать какие-либо шероховатости.

С расширением пространства расширялась и стандартная линейка, соответствующая наибольшим расстояниям в пространстве, в пределах которых могли возникнуть когерентные отклонения плотности материи от среднего значения. Теперь мы можем «увидеть» линейку — точнее, ее влияние — в двух разных эпохах. С первой из них мы уже знакомы. Это эпоха разделения, когда возникли небольшие неоднородности в распределении реликтового излучения, отражающие неравномерность распределения материи. В течение следующих миллиардов лет эти отклонения в плотности, составляющие стотысячные доли, превратились в чрезвычайно большие различия в плотности распределения материи внутри гигантских скоплений галактик и в областях между ними. Максимальные размеры этих скоплений показывают, насколько увеличился размер стандартной линейки с эпохи разделения до настоящего времени.

Таким образом, второй метод определения постоянной Хаббла основан на создании точной карты современной Вселенной и ее сравнении с первоначальными различиями в реликтовом излучении. (На самом деле слово «современный» означает «всего пару миллиардов лет назад» — это среднее время, необходимое для наблюдения за скоплениями галактик, выросшими из крошечных отклонений в реликтовом излучении.) В первые десятилетия XXI века проект Sloan Digital Sky Survey для большей точности задействовал специальный телескоп в Апач-Пойнт (штат Нью-Мексико, США), чтобы составить карты трехмерного распределения галактик в космосе и определить современный размер стандартной линейки. Он оказался равен примерно 490 миллионам световых лет. Сравнение этого расстояния с размером 450 тысяч световых лет, который имела линейка в эпоху разделения, приводит к значению постоянной Хаббла, близкому к 67.

Какую погрешность имеет каждый из этих двух методов, давших оценки 67 и 73? Самый последний анализ, проведенный группами астрофизиков, которые используют подход со стандартной линейкой, дает значение 67,3 (±0,6). Альтернативный подход к определению постоянной Хаббла, основанный на измерении светимости сверхновых, практикуется несколькими независимыми группами наблюдателей, состязающимися не только в точности результатов, но и в привлекательности аббревиатур команд, две из которых, H0LiCOW и SH0ES, с удовольствием включили H0 в свои названия. Самая последняя оценка, полученная группой SH0ES, равна 73,3 (±1,0), тогда как H0LiCOW дает оценку 73,3 (±1,8). Разница между 67+ и 73+ вместе с оценками погрешности создает то, что ученые называют «разницей в пять сигм», что в переводе на простой человеческий звучит как «слишком большая, чтобы ее игнорировать». (Большинство ученых считают значимым расхождение в больше, чем три сигмы, при условии, что они доверяют данным, лежащим в основе расчетов.)

Прежде чем заняться разбором этих противоречивых результатов, следует отметить, что, к нашему удивлению, астрофизики имеют в своем арсенале еще три подхода для определения значения постоянной Хаббла. Один из них уже используется, а еще два скоро будут готовы помочь уточнить наши знания.

Первый из них основан на оценке расстояний до сверхновых в сравнительно близких галактиках путем пристального наблюдения за самыми яркими звездами в гигантских звездных скоплениях. Благодаря изучению этапов эволюции звезд астрофизики знают, сколько энергии те излучают. Как и в случае с наблюдениями сверхновых, сравнение видимых яркостей объектов, которые, как известно, имеют одинаковую истинную светимость, дает соотношение расстояний до объектов. Этот метод не распространяется на такие большие расстояния, которые позволяет измерять метод наблюдения за сверхновыми, но его результаты позволяют предположить, что постоянная Хаббла имеет компромиссное значение 70, упомянутое выше. Анализ полученных результатов, проведенный сторонниками значения 73, привел их к выводу, что это число лишь немного занижено. Из таких конфликтов может возникнуть окончательное решение.

Два других независимых метода оценки постоянной Хаббла достигли определенного успеха, но пока находятся в зачаточном состоянии. Оба открывают новые горизонты, опираясь на общую теорию относительности Эйнштейна. Один из них связан с искривлением пространства гравитационными силами, а другой — с гравитационным излучением, которое ученые обнаружили только в последние несколько лет. Как и более старые, хорошо зарекомендовавшие себя методы, новые нацелены на более точное определение расстояний до объектов и сравнение скоростей, с которыми они удаляются от нас. Первый из этих методов основан на анализе гравитационного отклонения реликтового излучения, проходящего мимо множества галактик на пути к нам. Второй, более подробно описанный в главе 9, основан на наблюдении за «стандартными сиренами» — подмножеством источников гравитационного излучения со схожими характеристиками, разбросанных в наблюдаемой части Вселенной. Название «стандартные сирены» было выбрано по аналогии со «стандартными линейками». Оба подхода, основанные на измерении искривления пространства и на наблюдении за стандартными сиренами, обещают дать результаты, более точные, чем позволяют получить лучшие на данный момент методы измерения скорости расширения Вселенной.

Как же все-таки оценить значение нынешнего напряжения в космологии? Как и астрофизики, проницательные читатели могут предсказать решение, опираясь на собственный опыт. Вы предпочитаете консервативный подход, сохраняете спокойствие и ожидаете, что вскоре все оценки сойдутся к значению 70? Или предпочитаете революцию: конфронтацию доказательств между значениями 67 и 73, которая откроет дверь в новую физику? В любом случае мы можем быть уверены, что в самой Вселенной нет никакого кризиса. Проблемы возникают на Земле, где человеческое понимание пока очень далеко от совершенства. Космологи и физики, считающие, что это напряжение требует решения, попытались, как того требуют их должностные инструкции, разрешить его, определив, что было упущено в нашем понимании Вселенной.

Список предлагаемых решений, к чести их создателей, может утомить большинство читателей. Почти все подобные предложения либо меняют принятую в настоящее время модель расширения Вселенной, либо вводят «новую физику», которая включает изменение теории относительности или законов гравитации. Самые популярные предложения новой физики связаны с неизвестными гипотетическими частицами (отличными от неизвестных гипотетических частиц, образующих темную материю), либо гипотетическими тонкими изменениями количества темной энергии во время раннего расширения Вселенной до момента разделения или вскоре после этого. К несчастью для некоторых из этих теорий, но к счастью для прогресса науки, точность наших нынешних наблюдений реликтового излучения накладывает жесткие ограничения на эти гипотезы, а в самых простых случаях делает их с высокой степенью вероятности несостоятельными.

С определенной точки зрения, это увеличивает волнение, которое напряжение Хаббла вносит в космологию: мы можем обнаружить, что за кажущимся скромным разногласием между 67 и 73 скрывается не только новая физика, но также и тот факт, что добавления «простой» новой физики может оказаться недостаточно. В последнем случае должен произойти более широкий пересмотр нашего понимания, чтобы напряжение Хаббла разрешилось само собой и астрофизики смогли сосредоточиться на новых загадках, которые, несомненно, возникнут в результате будущих наблюдений.

Глава 7. Одна Вселенная или множество?

Немного блегчить головную боль, которую вызывают попытки разрешить напряжение Хаббла, можно. Для этого нужно вспомнить о том, что каким бы ни было значение H0, мы можем быть уверены в двух фактах, связанных с космосом, — во-первых, мы живем в расширяющейся Вселенной, а во-вторых, это расширение ускоряется. Опровержение любой из этих характеристик положило бы начало космологической революции, более глубокой, чем признание любой новой физики. Чтобы отдать должное открытию того, что мы живем в расширяющейся Вселенной, и понять, почему астрофизики так доверяют этому выводу, оглянемся назад и вспомним времена, когда открытие ускоряющегося расширения потрясло мир космологии. Так почему же оно быстро получило широкое признание?

В начале 1998 года мир космологии потрясло открытие, что мы живем в ускоряющемся мире, в котором Вселенная не только постоянно расширяется, но и делает это все быстрее и быстрее. Тогда были объявлены первые результаты наблюдений за сверхновыми звездами, которые и помогли ученым прийти к заключению о расширении Вселенной. Сегодня, когда эта идея также окончательно заручилась поддержкой исследователей реликтового излучения (а у космологов было достаточно лет для того, чтобы пропустить через себя мысль о постоянно ускоряющемся космическом расширении), возникают два серьезных вопроса, и в поиске ответов на них космологи проводят дни и ночи: почему скорость расширения Вселенной растет, почему у этого ускорения именно такое значение и как оно характеризует Вселенную?

Простой ответ на первый вопрос перекладывает всю ответственность за ускорение расширения Вселенной на сам факт существования темной энергии или же, что равнозначно, на наличие ненулевой космологической постоянной. Сама степень ускорения напрямую зависит от количества темной энергии на каждый кубический сантиметр пустого пространства: чем больше энергии, тем быстрее ускорение. Так, если бы ученые смогли объяснить, откуда берется эта самая темная энергия и почему сегодня во Вселенной ее именно столько, сколько есть, они могли бы с чистой совестью заявить, что разгадали фундаментальную загадку Вселенной. То есть определили происхождение этой провоцирующей космос на дальнейшее и все более стремительное расширение энергии в пустом пространстве. Вперед в будущее, в котором нас ждет поистине необъятное космическое пространство, не менее гигантские запасы темной энергии в нем и почти никакого вещества на один кубический световой год.

Откуда берется и что представляет собой темная энергия? Нащупать ответ космологи могут в глубинных пластах своих знаний о физике частиц: темная энергия — это продукт каких-то событий, происходящих в пустом пространстве (если не терять надежды на то, что квантовая теория достоверно описывает суть вещества и энергии). Вся физика частиц основана на данной теории, состоятельность которой столь многократно и очень точно была подтверждена в микроскопических условиях, что почти все физики не видят повода сомневаться в ней. Неотъемлемая часть квантовой теории подразумевает, что так называемое пустое пространство на самом деле гудит и дрожит от «виртуальных частиц», которые появляются в нем и исчезают быстрее, чем мы успеваем их заметить, однако позволяют нам отследить эффект своего существования (темную энергию). Собственно, возникает она в результате этого постоянного мельтешения — появления и исчезновения — виртуальных частиц, которое мы называем квантовыми флуктуациями вакуума (это специально для тех, кому нравится звонкая терминология физиков, остальные могут использовать слово «колебания»). Более того, исследователи частиц могут без особых трудностей вычислить точное количество энергии, заполняющей каждый кубический сантиметр вакуума. Непосредственное применение квантовой теории к так называемому вакууму напрямую предполагает, что такие квантовые колебания должны производить темную энергию. Со стороны эта история звучит весьма непринужденно, и возникает резонный вопрос: почему же космологам понадобилось так много времени на то, чтобы обнаружить существование этой энергии?

К сожалению, в силу особенностей реального расклада вещей нам следует иначе сформулировать вопрос: как могли физики, изучающие частицы, так радикально ошибиться? Подсчеты количества темной энергии на каждый кубический сантиметр вакуума указывают на число примерно в 10120 раз большее, чем значение, экспериментально найденное космологами в процессе наблюдения за сверхновыми звездами и реликтовым излучением. В абстрактных астрономических ситуациях расчеты, которые оказываются приблизительно верными, демонстрируя ошибочность в десять или менее раз, зачастую воспринимаются как «временно удовлетворительные». Однако ошибку в 10120 раз под диван не спрячешь, даже если вы неисправимый оптимист в огромных очках с толстыми розовыми стеклами. Если бы в реальном вакууме темной энергии было столько, сколько следует из квантовых законов физики, Вселенная уже давно распухла бы до таких размеров, которых нам с вами никогда даже близко не вообразить, причем крошечной доли секунды хватило бы на то, чтобы разнести вещество по всему космосу в невероятно разреженном виде. Теория и наблюдения единодушны в своих выводах о том, что в пустом пространстве содержится темная энергия, однако в вопросах того, сколько именно такой энергии там можно обнаружить, они расходятся в триллион в десятой степени раз. Чтобы наглядно проиллюстрировать это колоссальное расхождение, не получается придумать ни одного «земного» примера, да и космический тоже не приходит в голову. Расстояние от Земли до самой далекой известной нам галактики превышает размер одного протона в 1040 раз. Даже это гигантское число — всего лишь кубический корень из того, во сколько раз расходятся теория и практика относительно значения нашей космологической постоянной.

Специалисты по физике частиц и космологи давно знают, что квантовая теория задает неприемлемо высокое значение для объема мировой темной энергии. Но в те дни, когда считалось, что значение космологической постоянной равно нулю, они надеялись обнаружить какое-либо еще объяснение своим наблюдениям — такое, которое, по сути, свело бы на нет сам вопрос к устройству Вселенной с помощью взаимного исключения положительных и отрицательных величин теории. Подобное взаимоисключение когда-то решило проблему того, каким количеством энергии виртуальные частицы наделяют обычные — видимые нам — частицы. Теперь же, когда мы знаем, что космологическая постоянная не равна нулю, надежды на то, что подобное решение методом «взаимоисключения» найдется, довольно призрачны. Однако, если такое решение существует, оно каким-то образом должно будет обесценить практически все те теоретические знания, которыми мы обладаем на сегодняшний день. Сейчас, из-за отсутствия объяснения размера космологической постоянной, ученым остается лишь продолжать плотное сотрудничество в областях космологии и физики частиц, стремясь найти способ привести в соответствие теорию о том, как в космосе рождается темная энергия с ее невероятно высокой концентрацией из расчета на один кубический сантиметр вакуума.

Светила современной физики частиц и космологии тратят немало сил на то, чтобы объяснить значение космологической постоянной — и безрезультатно. Отсюда и жаркий гнев бессилия в рядах ученых-теоретиков, не в последнюю очередь потому, что тот, кто сможет объяснить, как природа смогла создать именно такое космическое пространство, каким мы его наблюдаем, получит и Нобелевскую премию, и невообразимую радость открытия и научного прорыва. Но объяснение требуется еще многим вещам, и одна из них имеет самое прямое отношение к нашей теме обсуждения: почему количество темной энергии, выраженное в ее массовом эквиваленте, примерно равно количеству энергии, производимой всем веществом во Вселенной?

Этот вопрос можно задать и иллюстративно, с помощью двух Ω, представляющих собой плотность вещества и плотность массового эквивалента темной энергии: почему значения ΩM и ΩΛ приблизительно равны? Почему одно из них не больше другого в разы?

В первый миллиард лет после Большого взрыва ΩM была практически равна единице, в то время как ΩΛ — нулю. В те далекие времена ΩM сначала была в миллионы, затем в тысячи и потом уже в сотни раз больше ΩΛ. Сегодня же, когда ΩM = 0,31 и ΩΛ = 0,69, эти два значения можно считать примерно равными друг другу, хотя ΩΛ и явно выше ΩM. В далеком будущем, примерно через 50 миллиардов лет, ΩΛ будет сначала в сотни, потом в тысячи, а затем в миллионы и даже в миллиарды раз больше ΩM. Только в течение периода космической истории примерно от 3 до 50 миллиардов лет после Большого взрыва эти два значения более или менее соответствуют друг другу.

Для беспечного ума обывателя промежуток времени от 3 до 50 миллиардов лет — это очень много. С астрономической точки зрения это совсем мало. В астрофизике популярен логарифмический подход ко времени, когда рассматриваемый промежуток для удобства делят на интервалы так, чтобы каждый последующий был больше предыдущего в десять раз. Сначала Вселенной было столько-то лет, потом она стала в десять раз старше, потом еще в десять раз старше и так до бесконечности — бесконечное количество умножений на десять. Предположим, мы начали отсчитывать время в тот самый миг, который с точки зрения квантовой теории имеет хотя бы какое-то значение — в 10–43 секунд после Большого взрыва. Так как в каждом году примерно 30 миллионов секунд (если точнее, то их 3 × 107), нам нужно примерно 60 степеней десяти (1060), чтобы пройти путь от 10–43 секунд после Большого взрыва до трех миллиардов лет спустя. Но нам требуется всего лишь чуть больше, чем умножить имеющееся на этот момент число еще на десять, чтобы проскочить отрезок от 3 до 50 миллиардов лет — а именно в этот промежуток времени ΩM и ΩΛ приблизительно равны. Еще дальше — и бесконечное количество степеней десяти открывают дорогу в бесконечное будущее. С такой логарифмической точки зрения вероятность того, что мы будем жить в космических условиях приблизительного равенства ΩM и ΩΛ, ничтожно мала. Майкл Тернер, ведущий американский космолог, даже дал этому парадоксальному явлению — вопросу о том, почему нам довелось жить в эпоху приблизительного равенства ΩM и ΩΛ, — шуточное название «загадка Нэнси Керриган», в честь олимпийской чемпионки по фигурному катанию из США, которая, получив удар по коленке перед выходом на лед на этапе чемпионата США, в слезах вопрошала: «Почему я? Почему сейчас?»[21]

Несмотря на то что космологам не удается вычислить такое значение космологической постоянной, которое хотя бы приблизительно походило на правду, у них есть ответ на загадку Нэнси Керриган. Правда, мнения о важности этого ответа и возможных из него выводах сильно расходятся. Одни принимают предлагаемые объяснения; другие внимают им весьма неохотно; третьи гарцуют вокруг да около; а четвертые отвергают полностью. Это объяснение связывает значение космологической постоянной с тем фактом, что вот они мы — живем именно на этой планете, вращающейся вокруг средней звезды в средней галактике именно сейчас. Аргумент следующий: раз мы существуем, значит, параметры, описывающие Вселенную, — и особенно величина космологической постоянной — обладают такими значениями, которые допускают наше существование.

Представьте, какой была бы Вселенная, в которой космологическая постоянная существенно превышала бы свое реальное значение. В разы большее количество темной энергии существенно увеличило бы значение ΩΛ по сравнению с ΩM, и на это не понадобилось бы 50 миллиардов лет — хватило бы всего нескольких миллионов. К этому времени в космосе, в котором преобладало бы ускорение — продукт темной энергии, — вещество разлетелось бы в разные стороны так быстро, что ни галактики, ни звезды, ни планеты просто не успели бы сформироваться. Если предположить, что от начала формирования первых небольших скоплений вещества до зарождения на Земле жизни прошло не менее одного миллиарда лет, мы можем достаточно уверенно заключить, что само наше существование ограничивает значение космологической постоянной некоторой величиной в промежутке от нуля до числа, в несколько раз превышающего ее реальное значение. Бесконечно большие значения она явно принимать не может.

Аргумент начинает выглядеть более весомо, если предположить вместе со многими космологами, что все, что мы с вами называем Вселенной, является частью гораздо более огромной Мультивселенной (ее еще называют «мультиверс» — от англ. multiverse). Мультивселенная состоит из бесконечного множества вселенных, никаким образом друг с другом не взаимодействующих. Согласно концепции Мультивселенной, все устройство каждой отдельной вселенной — это высокая материя и некие высшие измерения, вследствие чего пространство нашей Вселенной недоступно ни для какой другой вселенной — и наоборот. Это отсутствие даже гипотетического взаимодействия между ними ставит теорию Мультивселенной в число непроверяемых, а значит, неподтверждаемых (но и неопровергаемых!) гипотез, как минимум пока какие-нибудь мудрецы не найдут способа ее проверить. В Мультивселенной новые вселенные зарождаются в произвольном порядке и с произвольной частотой, раздуваются за счет инфляции до гигантских размеров, но никак при этом не взаимодействуют с бесконечным количеством других вселенных.

В Мультивселенной каждая новая вселенная зарождается и существует по своим законам физики, обладая своими характерными космическими параметрами — включая те, что определяют для такой вселенной значение космологической постоянной. У большого количества таких вселенных космологическая постоянная в разы превышает нашу — и они быстро разгоняются и разбегаются до состояния почти нулевой плотности вещества; жизни в таких вселенных просто не из чего появиться. Только в крошечной доле всех вселенных, составляющих Мультивселенную, комплекс условий складывается так, чтобы допустить возможность зарождения и существования жизни, потому что только эти несколько комбинаций параметров позволяют веществу сформировать галактики, звезды и планеты и дают возможность всем этим объектам существовать миллиарды лет.

Космологи называют такой подход к объяснению величины космологической постоянной антропным принципом, хотя термин «антропный подход» был бы, пожалуй, более уместен. У такого подхода к объяснению одного из ключевых вопросов в космологии есть одна несомненно привлекательная особенность: его любят или ненавидят, но редко кто относится к нему равнодушно. Как и многие другие увлекательные идеи, антропный подход можно подгонять под разные теологические и телеологические системы мышления или делать вид, что он удачно «подгоняется». Некоторые религиозные фундаменталисты отмечают, что антропный принцип устройства Вселенной перекликается с их верованиями, потому что отводит человечеству центральную роль: если бы космос — по меньшей мере известный нам космос — некому было изучать и наблюдать, его бы не могло и не должно было «быть». Значит, некие высшие силы создали его таким, чтобы и нам нашлось в нем уютное местечко. Противник подобного хода мысли может сказать, что антропный принцип подразумевает совсем не это и на теологическом уровне этот вроде как аргумент в пользу существования Всевышнего указывает на невероятно нехозяйственного и расточительного Создателя, который зачем-то мастерит бесчисленное множество вселенных, из которых лишь крохотная часть способна создать условия для зарождения жизни. Почему бы не избавиться от этого неловкого посредника и не следовать мифам и легендам о мироздании, которые сразу ставят человека во главу угла?

С другой стороны, если вы предпочитаете видеть Божественное провидение во всем, что вас окружает (как Спиноза, например), вы не устанете восхищаться Мультивселенной, в которой вселенные расцветают одна за другой, словно цветы. Как и большинство новостей с переднего края науки, концепцию Мультивселенной и антропного принципа можно с легкостью «склонять» по-своему — так, чтобы привести в соответствие с конкретной системой устоев и убеждений. Стивен Хокинг, обладатель почетной должности Лукасовского профессора Кембриджского университета по астрономии[22] (как и когда-то Исаак Ньютон до него), считает антропный подход превосходным решением загадки Нэнси Керриган. Стивен Вайнберг, лауреат Нобелевской премии по физике за свои исследования и открытия в области физики элементарных частиц, недолюбливает этот подход, но тем не менее относит себя к его последователям. По крайней мере, «пока» не будет предложено что-то более разумное.

Возможно, когда-нибудь история рассудит нас, показав космологам, что они занимались не той задачей — в том смысле, что не до конца понимали, какая именно задача перед ними стоит. Вайнбергу нравится проводить аналогию с попыткой Иоганна Кеплера объяснить, почему у Солнца шесть планет (как тогда считали астрономы) и почему они вращаются именно на таких орбитах. С тех пор прошло 400 лет, а астрономы до сих пор знают слишком мало о происхождении планет, чтобы дать объяснение их числу в Солнечной системе. Мы знаем, что гипотеза Кеплера о том, что расстояния между планетами, вращающимися вокруг Солнца, можно объяснить возможностью вписать между соседними орбитами одно из пяти платоновых тел (или правильных многогранников), в корне неверна и не имеет ничего общего с реальным устройством Вселенной. Правильные многогранники вписываются меж орбит не так уж хорошо, и, что важно, у нас нет никакого повода считать, что орбиты планет должны следовать такому принципу формирования. Так что вполне возможно, что будущие поколения ученых будут видеть в космологах сегодняшнего дня этаких Кеплеров, старающихся изо всех сил объяснить пока необъяснимое с помощью тех инструментов для изучения и понимания Вселенной, что им уже доступны.

Не все однозначно одобряют антропный подход. Некоторые космологи критикуют его за пораженчество и антиисторичность (так как он идет вразрез с многочисленными историями успеха традиционной физики, которой не раз удавалось рано или поздно найти объяснение явлениям, до этого считавшимся мистическими); еще они называют его опасным — ведь от него попахивает креационизмом. Многие космологи также находят неприемлемым построение целой теории на предположении о том, что мы живем в Мультивселенной, состоящей из бесчисленного множества других вселенных, с которыми мы никак и ни при каких обстоятельствах не можем взаимодействовать, даже теоретически.

Дебаты, которые разворачиваются на фоне антропного принципа, лишний раз подчеркивают тот скептицизм, что лежит в основе научного подхода к пониманию Вселенной. Теория, которая нравится одному ученому (как правило, тому, кто ее придумал), может показаться абсурдной — да и просто в корне неверной — другому. При этом и тот и другой знают, что теории выживают и расцветают пышным цветом только тогда, когда ученые находят их наиболее эффективными в объяснении большей части полученных с помощью наблюдений данных. Как однажды сказал один известный ученый, «опасайтесь теории, которая способна объяснить все данные — ведь с немалой долей вероятности какие-то из них потом окажутся неверными».

Данное противоречие может так и остаться неразрешенным еще долгое время, но оно обязательно спровоцирует и другие попытки объяснить устройство Вселенной. Например, Пол Штайнхардт из Принстонского университета при поддержке Нила Тюрока из Кембриджского университета создал теоретическую экпиротическую модель Вселенной. Воодушевленный теорией струн (одним из весьма интересных разделов физики элементарных частиц), Штайнхардт предлагает нам Вселенную с одиннадцатью измерениями, большинство из которых «компактифицированы» — свернуты в пространстве, как носки в ящике, благодаря чему они занимают в нем не так уж много места. Но некоторые из таких измерений обладают реальными размерами и значением — мы просто не можем их обнаружить и оценить, потому что заточены в своем четырехмерном мире. Попробуйте представить, что все пространство нашей Вселенной представляет собой бесконечную и бесконечно тонкую плоскую поверхность (в данной модели сетка измерений насчитывает всего два, а не три измерения), затем представьте еще одну такую листообразную поверхность, а потом — как она приближается и сталкивается с первой. В момент самого столкновения происходит Большой взрыв, и пока эти плоскости удаляются друг от друга вследствие удара, история каждой из них идет своим чередом, давая жизнь галактикам и звездам. В какой-то момент эти две плоскости прекращают удаляться друг от друга и начинают снова двигаться друг другу навстречу. Рано или поздно мы получаем новое столкновение и новый Большой взрыв в каждой из них. Получается, что Вселенная циклична: она повторяется, пусть и в огромных временных масштабах, каждые несколько сотен миллиардов лет. С греческого языка слово ekpyrosis означает «возгорание»

(однокоренное ему слово «пиротехника» вам наверняка знакомо), и поэтому фраза «экпиротическая Вселенная» напоминает каждому из нас, обладающему тайным знанием греческого, о том великом огне и той космически жаркой печи, в которой родилась в свое время та Вселенная, которую мы знаем сегодня.

У экпиротической модели Вселенной есть определенная эмоциональная и интеллектуальная привлекательность, которой, однако, оказалось недостаточно, чтобы завоевать умы и сердца многих коллег Штайнхардта из области космологии. Пока недостаточно, во всяком случае. Что-то отдаленно напоминающее такую экпиротическую модель может когда-нибудь оказаться тем самым прорывом в понимании происхождения и природы темной энергии, которого космологи, затаив дыхание, ждут уже столько лет. Даже те, кто поддерживает антропный подход к ее трактовке, вряд ли будут упрямиться, если появится новая теория, способная предложить хорошее объяснение тому, откуда и как берется космологическая постоянная, не прибегая к бесконечной веренице бесконечных вселенных, среди которых наша — просто особо удачливая.

Попытки объяснить космологическую постоянную или любой другой физический параметр, описывающий Вселенную, напоминают нам, что каждое новое открытие какого-либо аспекта Вселенной вызывает новые вопросы, на решение которых потребуются многие годы. Циники могут задаться вопросом: «Кого это волнует?» Не только антропный принцип, но и весь спектр теорий устройства Вселенной, от придуманных древними греками до Мультивселенной, почти не оказал влияния на нашу повседневную жизнь. И все же вопросы мироустройства продолжают волновать многих из нас, ставя нас лицом к лицу (как писал Ф. Скотт Фицджеральд в своем романе «Великий Гэтсби») с чем-то соизмеримым и заложенной в нем способностью к восхищению.

Тем, кто ищет знания поближе к дому, следует обратить внимание на отдельные космические объекты, которые действительно оказывают непосредственное влияние на нашу жизнь. Мы можем начать с того же, с чего начала Вселенная, — с крупнейших из них, а затем перейти к менее значимым, которые можем исследовать, стоя на твердой почве.


Загрузка...