Выбравшись подальше от городских огней и взглянув на ясное ночное небо, вы сразу заметите облачное формирование бледного света, местами дополненное более темными пятнами, которое тянется от горизонта до горизонта. Уже давно известная всем как небесный «млечный путь» (да, с маленькой буквы), эта молочно-беловатая дымка несет в себе свет огромного количества звезд и газовых туманностей. Те, кому посчастливится глядеть на «млечный путь» сквозь бинокль или собственный домашний телескоп, смогут увидеть, как при приближении более темные и скучные участки… остаются такими же темными и скучными, в то время как рассеянное сияние более ярких участков превращается в мириады звезд и туманностей.
В свою небольшую книгу «Звездный вестник»[36], опубликованную в 1610 году в Венеции, Галилео Галилей включил первый отчет о небесах, таких, какими он видел их через телескоп; также он приложил к отчету описание более светлых участков Млечного Пути. Называя свой научный инструмент зрительной трубой, так как термина «телескоп» в обиходе еще не было (кстати, с греческого это слово переводится как «далеко смотрящий»), Галилей едва мог сдержать волнение.
«…Предметом нашего наблюдения была сущность или материя Млечного Пути. С помощью зрительной трубы ее можно настолько ощутительно наблюдать, что все споры, которые в течение стольких веков мучили философов, уничтожаются наглядным свидетельством, а мы избавляемся от многословных диспутов. Действительно, Галаксия является не чем иным, как собранием многочисленных звезд, расположенных группами. В какую бы его область ни направить зрительную трубу, сейчас же взгляду представляется громадное множество звезд, многие из которых кажутся достаточно большими и хорошо заметными. Множество же более мелких не поддается исследованию»[37].
Это самое «громадное множество звезд» Галилея, безусловно, похоже на объект основного астрономического интереса, ведь оно являет нам самые густонаселенные звездами регионы нашей галактики Млечный Путь. Так зачем кому бы то ни было интересоваться темными ее участками, в которых нет видимых звезд? Исходя из их внешнего облика такие темные участки, скорее всего, представляют собой космические дыры, открывающие путь к бесконечному и пустому пространству, что кроется за ними.
Пройдет еще целых три столетия, прежде чем кому-то придет в голову, что темные участки Млечного Пути не просто не являются «дырами», но состоят из плотных облаков газа и пыли, которые скрывают от нас более удаленные скопления звезд и, более того, могут размещать в своих недрах целые звездные кухни. Разделяя более ранние предположения американского астронома Джорджа Кэри Комстока, которого интересовало, почему далекие звезды выглядят бледнее, чем должны были бы согласно их предполагаемому расстоянию от нас, голландский астроном Якоб Корнелий Каптейн обнаружил виновника этого в 1909 году. В двух научных статьях с одинаковыми названиями «О поглощении света в космосе»[38] Каптейн представил наглядные доказательства того, что такие темные облака (его новообретенные «межзвездные среды») не только заслоняют свет, исходящий от звезд, но и делают это неравномерно с точки зрения палитры спектра излучения таких звезд: они поглощают и затем рассеивают, а значит, разбавляют свет в фиолетовом сегменте видимого спектра более эффективно, чем в красном. Такое избирательное поглощение приводит к тому, что фиолетового света нейтрализуется больше, чем красного, из-за чего удаленные звезды кажутся более красными, чем те, что расположены ближе к нам. Количество такого межзвездного покраснения звездного света увеличивается пропорционально суммарному объему материала, который свет встречает на своем пути к нам.
Обычные водород и гелий, принципиальные ингредиенты космических газовых облаков, не придают свету красноту. Однако сложные молекулы из многих атомов на это способны, особенно те, в которых содержатся углерод и кремний. Когда межзвездные частицы вырастают до такого размера, что становится неуместным называть их молекулами, учитывая составляющие их сотни тысяч или даже миллионы отдельных атомов в каждой такой «молекуле», мы называем их пылью. Большинству из нас знакома домашняя бытовая пыль, хотя немногие в курсе, что в совершенно закрытом доме такая пыль состоит из мертвых клеток человеческой кожи (а также перхоти домашних животных, если они у вас есть). Насколько нам известно, в состав космической пыли человеческий эпидермис не входит. Однако межзвездная пыль содержит исключительно богатый ассортимент сложных молекул, которые излучают фотоны в основном в инфракрасном и микроволновом диапазонах спектра. До 1960-х годов у астрофизиков не было хороших микроволновых телескопов, а приличных инфракрасных не имелось вплоть до 1970-х годов. Но как только они разработали и создали эти инструменты наблюдения, они смогли исследовать истинное химическое разнообразие всего того, что лежит между звезд. В течение десятилетий, последовавших за соответствующими прорывами в области технологий, на свет постепенно появлялась удивительная и сложная картина образования звезд.
Звезды формируются не из всех газовых облаков. Довольно часто газовое облако оказывается в ситуации, когда не понимает, что ему дальше делать. Точнее, это астрофизики не понимают, что им делать. Мы знаем, что межзвездное облако «хочет» коллапсировать под воздействием своей собственной гравитации, чтобы образовать из своего материала одну звезду или более. Но его вращение, как и влияние турбулентного движения газа внутри самого облака, мешает ему достигнуть этой цели. Кстати, давление газа, о котором всем вам должны были рассказывать в старших классах школы, тоже препятствует коллапсу. Да и магнитные поля ему совсем не способствуют: они проникают в облако и ограничивают динамику любых свободно передвигающихся внутри него заряженных частиц, препятствуя сжатию, а значит, чиня помехи попыткам самого облака среагировать на свою собственную гравитацию. Самый страшный вывод, который можно сделать из этого последовательного мышления, заключается в следующем: если бы никто заранее не знал, что звезды на самом деле существуют, даже самые передовые исследования предоставили бы нам достаточно убедительных причин того, что звезды никогда не могли бы сформироваться в принципе.
Как и несколько миллиардов звезд в нашей галактике Млечный Путь, получившей свое название в честь той широкой полосы света, что тянется через весь небесный свод и представляет собой наиболее густонаселенные звездами регионы, гигантские газовые облака тоже вращаются вокруг центра нашей галактики. Звезды — это песчинки размером всего лишь в несколько световых секунд в диаметре, парящие в огромном океане почти пустого пространства и изредка проплывающие одна мимо другой, словно корабли в открытом море. Напротив, газовые облака — огромны. Как правило, они достигают в размере нескольких сотен световых лет, а масса каждого из них — массы миллиона Солнц. Неуклюже передвигаясь по всей галактике, эти гигантские облака нередко сталкиваются, цепляясь своими газовыми и пылевыми внутренностями друг за друга. Иногда в зависимости от их относительных скоростей и углов столкновения облака так и остаются вместе, становясь одним целым и еще более гигантским облаком, в других случаях, нанося друг другу ощутимые повреждения при столкновении, они, наоборот, разрывают друг друга на части.
Если температура облака упадет до достаточно низкого уровня (не более 100 градусов выше абсолютного нуля), составляющие его атомы при столкновении будут слипаться, а не отскакивать друг от друга в разные стороны, как это происходит при более высоких температурах. Этот химический переход влечет за собой всеобъемлющие последствия. Растущие в объеме частицы, которые теперь насчитывают десятки атомов каждая, начинают рассеивать видимый свет во все стороны, сильно ослабляя свет звезд, расположенных за таким облаком. К тому времени как эти частицы станут полноценными твердыми частицами космической пыли (этакими «зернышками»), в них будут уже миллиарды атомов. Стареющие звезды производят подобные твердые частицы и ненавязчиво отправляют их в межзвездное пространство в то время, когда сами находятся в стадии красного гиганта своего жизненного цикла. В отличие от меньших частиц, такие твердые частицы космической пыли, состоящие из миллиардов атомов, больше не рассеивают фотоны видимого света, источником которых являются звезды, расположенные за облаком. Вместо этого они поглощают эти фотоны и затем снова излучают их энергию «как свою» — в виде инфракрасного излучения, которое легко покидает облако космической пыли. В то время как это происходит, давление фотонов, передаваемое поглощающим их молекулам, толкает облако в направлении, противоположном направлению источника света. И вот наше облако уже практически есть звездный свет!
Звезды рождаются тогда, когда силы, делающие облако все более плотным, в конце концов приводят к его коллапсу под воздействием собственной гравитации: в это время каждый участок облака старается притянуть все остальные его участки как можно ближе к себе. Так как горячий газ противостоит сжатию и коллапсу более эффективно, чем холодный, возникает неоднозначная ситуация. Облако должно остыть, прежде чем оно сможет снова разогреться само в процессе формирования звезды. Другими словами, для создания звезды, ядро которой разогревается до десяти миллионов градусов (этого как раз хватает для запуска процесса термоядерного синтеза), облако сначала должно остыть до минимально достижимой в его условиях температуры. Только при экстремально низких температурах всего в несколько десятков градусов выше абсолютного нуля наше облако сможет коллапсировать и запустить процесс звездообразования.
Что же такого происходит внутри облака, чтобы от коллапса оно могло вдруг перейти к выковыванию новой звезды? Астрофизики здесь могут только разводить руками. Как бы им ни хотелось отследить динамику событий, происходящих внутри огромного межзвездного облака в этот период, создать компьютерную модель, которая учла бы все известные законы физики, все внешние и внутренние воздействия на такое облако и все актуальные химические реакции, которые могут в это время протекать внутри него, — это пока за пределами наших возможностей. Следующая непростая загадка: почему первоначальное облако, из которого со временем получится звезда, обладает размером, в миллиарды раз большим, чем ее конечный размер, а плотность такой звезды затем составит в 100 секстиллионов раз больше средней плотности облака-родителя? В таких ситуациях то, что имеет наибольшую важность в контексте одной шкалы размеров, может оказаться не заслуживающим интереса в контексте другой шкалы.
Тем не менее, полагаясь на уже увиденное нами в космосе, мы можем с уверенностью заявить, что в центре межзвездного облака, в его самых глубоких, темных и плотных регионах, где температура предположительно падает примерно до уровня десяти градусов выше абсолютного нуля, гравитация способна провоцировать коллапс отдельных объемов газа (так называемых газовых карманов), с легкостью преодолевая сопротивление магнитных полей и другие помехи. Это сжатие, в свою очередь, преобразует гравитационную энергию таких газовых карманов в тепловую. Температура каждого из таких участков облака, которым вскоре предстоит сформировать собой ядро новорожденной звезды, стремительно возрастает во время коллапса, не давая твердым частицам космической пыли в своем непосредственном окружении соединяться при столкновении и раскидывая их в стороны. В какой-то момент температура в центре коллапсирующего газового кармана достигает критической отметки в десять миллионов градусов по абсолютной шкале.
При этой волшебной температуре некоторые протоны (представляющие собой, по сути, обнаженные атомы водорода, лишенные своего электрона) движутся достаточно быстро, чтобы преодолеть взаимное отталкивание. Их высокая скорость позволяет им в какой-то момент оказаться достаточно близко друг к другу, чтобы под влиянием сильного ядерного взаимодействия соединиться. Это взаимодействие, работающее только на исключительно малых расстояниях, удерживает протоны и нейтроны вместе во всех атомных ядрах. Термоядерный синтез протонов, где «термо» намекает на необходимую для него высокую температуру, а «ядерный синтез» подразумевает, что из отдельных частиц синтезируются целые ядра, приводит к созданию ядер гелия, масса каждого составляет чуть меньше, чем суммарная масса тех частиц, что пошли на его изготовление. Та масса, что пропадает во время синтеза, превращается в энергию согласно знаменитому и уже так хорошо знакомому нам уравнению Эйнштейна. Энергия, выраженная в массе (всегда в количестве, равном массе, умноженной на квадрат скорости света), может трансформироваться в иные формы энергии, например, в дополнительную кинетическую энергию (энергию движения) быстро перемещающихся частиц, которые рождаются вследствие реакций ядерного синтеза.
В то время как новая энергия, полученная за счет термоядерного синтеза, расходится во все стороны, газ нагревается и начинает светиться. Затем у поверхности звезды та энергия, что ранее была заключена в отдельные ядра, вырывается в космос в форме фотонов, образованных газом в то время, как освобожденная при термоядерном синтезе энергия нагревала этот газ до температуры в несколько тысяч градусов. И несмотря на то что этот огромный участок раскаленного газа все еще находится внутри космической утробы огромного межзвездного облака, мы уже можем смело поздравлять счастливого родителя по имени Млечный Путь с рождением новой звезды.
Астрофизики знают, что диапазон масс звезд составляет от одной десятой доли массы Солнца до величин, превосходящих ее почти в сотню раз. По не совсем ясным причинам в типичном гигантском газовом облаке может образоваться множество холодных газовых карманов, которые зачастую коллапсируют примерно в одно и то же время, давая жизнь звездам от мала до велика. Однако перевес на стороне звезд поменьше: на каждую крупную звезду приходится около тысячи малых. Тот факт, что в общей сложности лишь несколько процентов всего газа исходного облака принимают участие в формировании звезды, предлагает нам классическую загадку: почему этот «небольшой хвост» виляет этой «большой собакой» из газа и пыли, а не наоборот? Вероятно, ответ лежит в излучении новорожденных звезд, которое не дает новым звездам сформироваться из тех газа и пыли, что не пошли на образование самой новорожденной звезды.
Нам нетрудно объяснить нижний предел массы, которой может обладать новорожденная звезда. Карманам коллапсирующего газа с массой, составляющей менее одной десятой массы Солнца, не хватает гравитационной мощи для того, чтобы раскалить свой центр до десяти миллионов градусов, необходимых для термоядерного синтеза водорода. Соответственно рождение звезды, способной на ядерный синтез, невозможно. Вместо этого появляется несостоявшаяся «почти звезда» — астрофизики называют такие объекты коричневыми карликами. Не имея своего собственного источника энергии, коричневый карлик понемногу потухает, излучая тот скромный свет, что образовался во время изначального коллапса. Газообразные внешние слои коричневого карлика настолько холодны, что многие крупные молекулы, которые обычно разрушаются вблизи более горячих звезд, прекрасно чувствуют себя и продолжают существовать около таких карликов. Из-за незначительной светимости их невероятно трудно обнаружить. Чтобы все же найти хотя бы несколько, астрофизикам приходится применять сложные методики наподобие тех, что используются иногда для обнаружения планет, и ориентироваться по едва различимому инфракрасному излучению объектов. Лишь в последние несколько лет астрофизикам удалось разыскать во Вселенной достаточное количество коричневых карликов для того, чтобы даже разделить их как класс на несколько отдельных категорий.
Мы с легкостью можем определить и максимально возможную массу формирующейся звезды. Если масса звезды превысит массу Солнца более чем в сотню раз, ее светимость сделает ее настолько яркой, что она будет похожа на огромный шарообразный факел энергии в форме инфракрасного и ультрафиолетового света, а любые газ или пыль, стремящиеся к ней под воздействием ее гравитации, будут отталкиваться обратно под давлением звездного света. Фотоны, излучаемые звездой, отталкивают частицы пыли, которые, в свою очередь, увлекают за собой и газ. Это давление излучения столь эффективно, что буквально несколько крупных звезд с высокой массой в одном темном облаке могут обладать достаточной суммарной светимостью для того, чтобы равномерно разогнать вокруг себя межзвездное вещество, выставляя напоказ перед Вселенной десятки, если не сотни новорожденных звезд — по сути, родственниц друг другу — во всей их красе.
Когда вы будете наблюдать туманность Ориона, расположенную прямо под тремя яркими звездами, образующими Пояс Ориона, обратите внимание примерно на середину бледного меча охотника: там вы увидите как раз такие звездные ясли. В этой туманности родились тысячи звезд, в то время как еще тысячи лишь ожидают своего часа. На этом месте со временем образуется огромный кластер, который будет становиться все ярче и заметнее по мере рассеивания «неиспользованных» пыли и газа этой туманности. Наиболее крупные из ее новых звезд, формирующие собой группу под названием Трапеция Ориона, в данный момент очень заняты проделыванием огромной ясной дыры в середине того облака, из которого образовались. Фотографии этого региона, сделанные телескопом Хаббла, говорят о сотнях новых звезд на одном только этом участке космоса. Каждая из новорожденных малышек бережно запеленута в еще только зарождающийся протопланетарный диск из пыли и других молекул, позаимствованных у первоначального облака. Внутри каждого из таких дисков постепенно формируется своя собственная система планет.
Через десять миллиардов лет после образования Млечного Пути новые звезды продолжают формироваться по всей нашей галактике. Хотя звездообразование в типичных огромных галактиках вроде нашей большей частью уже давно завершилось, нам повезло, что новые звезды все же еще не исчерпаны и будут рождаться еще многие миллиарды лет. Наше везение заключается в том, что мы можем наблюдать за их формированием и изучать самые молодые из них в поисках улик, которые расскажут нам полную историю о том, как из холодного газа и межзвездной пыли получаются сияющие звезды.
Возраст некоторых звезд можно определить с помощью спектрального анализа. Среди многочисленных способов оценки возраста звезд, которые были разработаны астрофизиками, анализ палитры спектра звездного излучения является самым надежным. Каждый цвет — каждое сочетание конкретной длины и частоты световой волны — рассказывает нам о том, как вещество произвело этот свет, или повлияло на тот свет, что покинул свой источник-звезду, или просто оказалось на пути между нами и звездой в направлении нашего взгляда. Путем тщательного сравнения со спектрами, полученными в лабораторных условиях, физики смогли найти множество вариантов воздействия разных типов атомов и молекул на ту радугу, что представляет собой видимый свет.
Они могут применить эти обширные знания к наблюдениям за звездными спектрами и определить количество атомов и молекул, оказавших воздействие на свет, исходящий от определенной звезды, а также температуру, давление и плотность таких частиц. За годы сравнения лабораторного спектра со спектрами звезд и исследований спектральных особенностей разных атомов и молекул, астрофизики научились читать между строк видимого спектра объекта — словно космическую схему, показывающую нам, какими физическими характеристиками обладают внешние слои звезды, излучающие свет во все стороны прямо в космос. Вдобавок к этому астрофизики умеют определять, как могли повлиять на спектр звездного излучения атомы и молекулы, свободно парящие в межзвездном пространстве при гораздо более низких температурах, а значит, определять химический состав, температуру, плотность и давление этого межзвездного вещества.
В таком спектральном анализе каждый отдельный тип атома или молекулы может рассказать что-то свое. Например, присутствие молекул любого конкретного типа, что можно определить по их характерному воздействию на определенные цвета спектра, показывает, что температура внешних слоев звезды составляет меньше 3000 градусов по шкале Цельсия (или 5000 по шкале Фаренгейта). При более высоких температурах молекулы перемещаются так быстро, что при столкновении разбиваются на отдельные атомы. Применяя подобный анализ к самым разным субстанциям, астрофизики могут получить почти полную и в любом случае весьма подробную картину условий, характерных для атмосферы разных звезд. Говорят, некоторые особенно трудолюбивые астрофизики знают о спектрах звезд гораздо больше, чем о своих собственных семьях. Возможно, это оказывает неблагоприятное влияние на человеческие взаимоотношения, но однозначно идет на пользу нашему пониманию взаимоотношений межзвездных.
Из всех встречающихся в природе элементов — тех разных типов атомов, что могут влиять на спектр звезды, — астрофизики используют один конкретный элемент для того, чтобы определять возраст наиболее молодых звезд. Речь идет о литии — третьем по простоте строения и легкости элементе периодической таблицы, знакомом некоторым землянам в качестве активного ингредиента ряда антидепрессантов. В периодической таблице элементов литий занимает место сразу вслед за водородом и гелием, которые гораздо более знамениты, потому что в космосе их несметное количество. В первые минуты своего существования Вселенная синтезировала ядра гелия из водорода в огромных количествах, но выработала лишь относительно крошечные объемы других, более тяжелых ядер. В итоге литий остался довольно редким элементом, и астрофизики отмечают тот факт, что звезды почти не производят дополнительных партий лития, они только потребляют уже имеющиеся его запасы. У лития, так сказать, билет в один конец: каждой звезде гораздо проще уничтожить литий, чем создать его. Поэтому его космические запасы постепенно таяли, тают и будут таять. Если вам хочется заполучить себе немного лития, не медлите и приобретайте его сейчас же.
Эта особенность лития превращает его в невероятно полезный для астрофизиков инструмент измерения возраста звезд. Все звезды приходят в мир с соответствующим запасом лития, оставшимся после термоядерного синтеза, что протекал во Вселенной в первые полчаса ее существования, а также непосредственно во время Большого взрыва. Что значит «соответствующий запас»? Это значит — примерно одно ядро лития на сто миллиардов ядер других элементов. После того как новорожденная звезда приходит в наш мир с таким «богатым» запасом лития, дальнейшая судьба этого элемента весьма незавидна: ядерные реакции в недрах звезды начинают понемногу перерабатывать его. Стабильное и иногда эпизодическое смешение вещества в ядре звезды с веществом извне уносит получающийся материал к ее поверхности, поэтому спустя тысячи лет внешние слои звезды могут показать нам, что же раньше происходило в ее центре.
Когда астрофизики ищут в небе самые молодые звезды, они следуют простейшему правилу: нужно искать те звезды, в которых больше всего лития. Соотношение количества ядер лития каждой звезды к, скажем, количеству ядер водорода (что можно определить по спектру ее излучения) помогает подобрать для этой звезды место на графике, отображающем корреляцию возраста звезды и лития во внешних ее слоях. Этот метод позволяет астрофизикам определять с большой точностью самые юные звезды в конкретном кластере и приписывать каждой из них основанный на литиевом анализе возраст. Так как звезды очень продуктивно разрушают литий, в более старых звездах обнаружить его почти невозможно. Соответственно такой подход хорош только в применении к звездам, чей возраст не превышает несколько сотен миллионов лет: для этих юных особ литиевый метод работает просто замечательно! Недавние исследования двух дюжин молодых звезд в туманности Ориона, масса каждой из которых примерно равна массе Солнца, показали, что их возраст составляет от одного до десяти миллионов лет. Наступит день, когда астрофизикам удастся найти еще более молодые звезды, ну а пока один миллион лет — это лучшее, что они могут нам предложить.
Долгое время после своего рождения группы молодых звезд только распыляют скопления газа, из которого образовались, превращают водород в гелий внутри своих ядер и пожирают запасы лития. Но ничто не вечно. За многие миллионы лет большинство потенциальных звездных кластеров, подверженных постоянному гравитационному воздействию проплывающих мимо огромных облаков, «испаряется», и их участники присоединяются к числу прочих звезд галактики.
Спустя пять миллиардов лет после формирования Солнца определить в галактике его родственниц и узнать, живы ли они еще, невозможно. Все звезды Млечного Пути и других галактик с низкой массой, из-за чего они очень медленно потребляют свое топливо, живут практически бесконечно. Звезды «в среднем весе», вроде Солнца, рано или поздно превращаются в красных гигантов, увеличивая границы своих внешних газовых слоев в сотни раз и умирая медленной смертью. Эти внешние слои столь условно связаны со звездой, что постепенно отчаливают прочь в открытый космос, обнажая то самое ядро, полное переработанного ядерного топлива, что кормило звезду на протяжении всех десяти миллиардов лет ее жизни. Газ, который возвращается в межзвездное пространство, будет так или иначе подхвачен проходящими мимо облаками и когда-нибудь примет участие в новом этапе звездообразования.
Несмотря на их редкость в природе, звездам с самой высокой массой достались почти все козыри эволюции. Их огромная масса дает им самую мощную светимость — для некоторых она в миллион раз выше светимости Солнца. Так как эти звезды перерабатывают ядерное топливо гораздо быстрее своих малых товарок, они проживают жизнь быстрее других: всего за несколько миллионов лет, а то и меньше. Непрекращающийся термоядерный синтез внутри звезд с высокой массой позволяет им производить десятки элементов, начиная с водорода и заканчивая гелием, углеродом, азотом, кислородом, неоном, магнием, кремнием, кальцием и так далее вплоть до железа. Ближе к концу своей жизни такие звезды, излучая последние вспышки света, все еще вырабатывают новые химические элементы, иногда затмевая своим сиянием всю родную галактику. Астрофизики называют каждую такую вспышку сверхновой звездой: при внешнем сходстве со сверхновыми звездами типа Ia, описанными в главе 5, они совсем другие по природе. Энергия взрыва сверхновой звезды раскидывает химические элементы прошлой и самой свежей выработки по всей галактике, проделывая дыры в распределении газа и обогащая близлежащие облака новым сырьем для образования твердых частиц космической пыли. Этот взрыв на сверхзвуковой скорости прорывается сквозь межзвездные облака, сжимая их газовое и пылевое содержимое и, вполне возможно, создавая ряд газовых карманов высокой плотности, из которых потом смогут образоваться новые звезды.
Вселенной от таких сверхновых звезд перепадает великий дар — все химические элементы, помимо водорода и гелия: те самые элементы, из которых могут образовываться планеты, простейшие организмы и люди. Мы живем на Земле только потому, что миллиарды лет назад где-то в космосе взорвалось бессчетное количество звезд — в те далекие эпохи истории Млечного Пути, когда Солнца и его планет еще и в помине не было и им лишь предстояло собраться в единые скопления внутри пыльного и темного космического межзвездного облака, которое, в свою очередь, несло в себе химические богатства, унаследованные от предыдущих поколений звезд с высокой массой.
Персональная премия авторов этой книги за самое недооцененное научное достижение XX века присуждается открытию того факта, что сверхновые звезды — мощные финальные взрывные аккорды особо крупных умирающих звезд — являются первостепенным источником тяжелых элементов в природе. Это относительно невоспетое озарение впервые было высказано в научной статье, авторами которой выступили Э. Маргарет Бербидж, Джеффри Р. Бербидж, Уильям Фаулер и Фред Хойл. Она была опубликована в 1957 году в американском журнале «Обзоры современной физики»[39] под заголовком «Синтез элементов в звездах» и содержала теоретическую и вычислительную схему, которая по-новому трактовала и объединяла размышления других ученых за последние 40 лет по двум основным темам: об источниках звездной энергии и о преобразованиях химических элементов.
Космическая ядерная химия и попытки понять, как в процессе термоядерного синтеза появляются и разрушаются разные типы ядер, всегда были непростым делом. В числе самых главных вопросов непременно значились следующие: как ведут себя химические элементы под воздействием разных температур и разного уровня давления? Соединяются ли эти элементы или распадаются? Насколько это трудоемкий процесс? Выделяется ли при этих процессах новая кинетическая энергия или потребляется существующая? Как эти процессы отличаются между собой в случае с каждым отдельным элементом периодической таблицы?
Что для вас значит периодическая таблица химических элементов? Если вы не отличаетесь от большинства школьников, то наверняка помните огромную таблицу на стене кабинета химии. Некие загадочные буквы и символы в ее прямоугольных ячейках ассоциировались с лабораториями, в которые незачем заходить без явной на то причины. Но для тех, кому знакомы ее секреты, эта таблица — книга рассказов о космической жестокости, в результате которой ее компоненты, собственно, и появились на свет. В периодической таблице перечислены все известные человечеству природные элементы Вселенной, выстроенные от малого до великого по мере увеличения количества протонов, приходящихся на ядро каждого из них. Два самых легких элемента — это водород (один протон на ядро) и гелий (два). Как верно подметили четверо авторов той самой научной статьи, при наличии должных условий — температуры, плотности и давления — звезда может использовать свои запасы водорода и гелия для того, чтобы собрать из них все остальные элементы периодической таблицы.
Подробности этого созидательного процесса и прочих взаимодействий, которые ведут не к созданию, а к распаду ядер, составляют собой основу науки ядерной химии. Она занимается тем, что рассчитывает и использует «сечения столкновений», чтобы измерить, как близко одна частица должна оказаться к другой, чтобы они могли вступить в какое-либо существенное взаимодействие. Физики могут запросто рассчитать сечения столкновений для бетономешалок или огромных жилых трейлеров, путешествующих по улице в кузове эвакуатора, а вот проанализировать поведение крошечных ускользающих от внимания субатомных частиц уже в разы труднее. Уверенное понимание концепции сечения столкновения позволяет физикам прогнозировать скорость ядерных реакций и их динамику. Нередко небольшие неясности в сверочных таблицах значений этих сечений приводят ученых к вопиюще ошибочным заключениям. Трудности, которые им приходится преодолевать, можно сравнить с попытками ориентироваться в метро одного города, вооружившись схемой метро другого: при всей корректности вашей базовой теории любой нюанс ситуации может оказаться критическим.
Несмотря на то что ученые ничего не знали о сечениях столкновений, в первой половине XX века они на протяжении долгого времени подозревали, что если и есть во Вселенной место для экзотических ядерных процессов, то ядра звезд для них — самый подходящий вариант. В 1926 году британский астрофизик-теоретик сэр Артур Эддингтон опубликовал статью, которая называлась «Внутреннее строение звезд»[40]. В ней он доказывал, что лаборатория имени Кавендиша, бывшая ведущим центром по исследованиям в области атомной и ядерной физики, не может быть единственным местом во Вселенной, где умеют переплавлять одни элементы в другие.
«Но возможно ли признать, что такое преобразование происходит? Утверждать это непросто, но отрицать, что это происходит, пожалуй, еще сложнее… и если что-то можно совершить в лаборатории Кавендиша, вряд ли так уж сложно повторить это внутри Солнца. Думаю, что предположение о том, что звезды — плавильные котлы, в которых более легкие атомы, взятые из туманности, соединяются в более сложные элементы, в целом должно поддерживаться»[41].
Статья Эддингтона, которая легла в основу книги под тем же названием, которая вышла в 1926 году, предвосхитила более подробные исследования четверки ученых из 1957 года. Она вышла на несколько лет раньше открытия квантовой механики, без которой наше понимание физических свойств атомов и атомных ядер было бы, мягко говоря, жалким. Словно пророк, Эддингтон сформулировал подобие сценария для создания звездной энергии с помощью термоядерного синтеза водорода и гелия.
«Нам не следует привязываться к реакции образования гелия из водорода как к единственно возможному источнику энергии [для звезды], хотя что-то подсказывает, что для дальнейших этапов создания химических элементов характерно гораздо меньше выделения и гораздо больше поглощения энергии. Позицию можно сформулировать следующим образом: атомы всех элементов состоят из атомов водорода, прочно связанных друг с другом, и, вероятно, когда-то они были образованы из водорода; нутро звезды — столь же подходящее место для свершения эволюции, как и любое другое»[42].
Любая модель преобразования элементов должна объяснять то их разнообразие, которое мы наблюдаем на Земле и в других регионах Вселенной. Для этого физикам требовалось найти некий фундаментальный процесс, который позволял бы звездам извлекать энергию из процесса переплавки одних элементов в другие. К 1931 году, когда теории квантовой механики уже вполне оформились (хотя еще не были открыты нейтроны), другой британский астрофизик, Роберт д'Эскур Аткинсон, опубликовал подробную статью, которая предлагала читателю «теорию синтеза звездной энергии и происхождения элементов… в которой различные химические элементы постепенно создаются из более легких внутри самих звезд с помощью успешной переработки протонов и электронов одного за другим».
В том же году американский ядерный химик Уильямс Д. Харкинс опубликовал статью, в которой отметил, что «элементы с низким атомным весом (помните? речь о количестве протонов и нейтронов в каждом ядре) имеются в природе в гораздо большем изобилии, нежели тяжелые элементы, а элементы с четными атомными числами (по количеству протонов в атомном ядре) в среднем встречаются примерно в десять раз чаще, чем элементы с нечетными атомными числами, но примерно того же достоинства». Харкинс выражал догадку, что относительное изобилие ряда элементов скорее зависит от ядерного синтеза, чем от такого химического процесса, как возгорание, и что более тяжелые химические элементы наверняка получились из более легких.
Подробности механики самого процесса термоядерного синтеза, протекающего в звездах, могли бы в результате объяснить наличие в космосе многих элементов, особенно тех, которые получаются каждый раз, когда вы прибавляете ядро гелия с двумя протонами и двумя нейтронами к тому элементу, который получили на предыдущем этапе синтеза. Такие элементы и представляют собой те самые изобилующие с «четными атомными номерами», о которых говорил Харкинс. Однако существование и относительные количества многих других элементов так и оставались необъясненными. Значит, сборка элементов по кирпичикам в космосе происходила по какому-то другому принципу.
Нейтрон, который был открыт в 1932 году британским физиком Джеймсом Чедвиком во время работы в тех же лабораториях им. Кавендиша, играет важнейшую роль в ядерном синтезе — роль, которую Эддингтон себе и вообразить не мог. Собрать что-то из протонов — это большой труд, ведь они естественным образом отталкивают друг друга, как и все одинаково заряженные частицы. Чтобы соединить протоны, нужно приблизить их друг к другу на достаточно малое расстояние (как правило, это делается при воздействии высоких температур, давления и плотности), позволяющее преодолеть их природную взаимную неприязнь, — и тогда сильное ядерное взаимодействие привяжет их друг к другу. — Нейтрон, однако, не имея заряда, не отталкивает от себя другие частицы, поэтому он может запросто проследовать в атомное ядро и присоединиться к банкету собравшихся там частиц, удерживаясь на месте благодаря той же силе, что удерживает там и протоны. В итоге новый элемент не образуется, ведь для этого в ядре нужно изменить количество протонов. Но, добавляя нейтрон, мы создаем «изотоп» ядра исходного элемента, который лишь немного отличается от своего прототипа, так как даже суммарный электрический заряд у него остается тем же. В некоторых случаях свежепойманный нейтрон, стоит добавить его к ядру, оказывается нестабильным: тогда он спонтанно преобразует сам себя в протон (который уже вполне стабилен и не покидает ядро) и в электрон (который тут же покидает данную систему частиц). Именно таким образом, словно внутри троянского коня, протоны могут проникать в атомные ядра под видом нейтронов.
Если стабильный поток нейтронов не иссякает, каждое ядро может успеть поглотить немало нейтронов, прежде чем первый из них распадется на протон и электрон. Такие «быстро усвоенные» нейтроны помогают образовать группу элементов, происхождение которых отождествляется с «быстрым процессом захвата нейтронов» и которые отличаются от тех элементов, что образуются за счет медленной подачи в их ядро нейтронов (когда каждый последующий нейтрон попадает в ядро только после того, как предыдущий распадется на протон и электрон).
Обе модели захвата нейтронов — быстрая и медленная — в ответе за создание множества элементов, которые не могут сформироваться в процессе традиционного термоядерного синтеза. Все остальные элементы в природе могут быть получены за счет еще ряда процессов, в том числе сталкивания на огромной скорости сильно заряженных фотонов (гамма-излучение) с ядрами тяжелых атомов, которые затем распадаются на несколько меньших по размеру.
Рискуя чрезмерно упростить суть жизненного цикла звезды с высокой массой, мы все же позволим себе заявить, что каждая звезда живет за счет того, что внутри нее создается и высвобождается энергия, которая позволяет звезде противостоять гравитации. Если бы не это производство энергии с помощью термоядерного синтеза, каждый звездный газовый шар просто коллапсировал бы под тяжестью своего собственного веса. Эта доля ожидает те звезды, которые уже истощили запасы ядер водорода (протонов) в своих звездных ядрах. Как уже было отмечено ранее, превратив водород в гелий, ядро звезды принимается делать из гелия углерод, затем из углерода — кислород, из кислорода — неон и так далее, пока дело не дойдет до железа. Чтобы успешно синтезировать все новые и новые и все более тяжелые элементы в этой последовательности, сопутствующая температура реакций должна постоянно повышаться, чтобы атомные ядра могли преодолевать возникающие между ними силы отталкивания. К счастью, это происходит само собой, потому что в конце каждой промежуточной стадии, когда источник энергии звезды временно перекрывается, ее внутренние регионы сжимаются, температура подскакивает — и запускается новый этап ядерного синтеза. Так как ничто не продолжается вечно, звезда в какой-то момент сталкивается с серьезной проблемой: оказывается, во время синтеза железа энергия не выделяется, но поглощается. Плохие новости для нашей звезды! В ее термоядерной шляпе фокусника нет больше волшебной палочки, одним взмахом которой она могла бы запустить новый процесс, выделяющий энергию для противопоставления своей собственной гравитации. В этот момент звезда резко коллапсирует, из-за чего ее внутренняя температура возрастает столь стремительно, что она взрывается, раскидывая свои звездные внутренности во все стороны.
В процессе самого взрыва наличие нейтронов, протонов и энергии позволяет сверхновой звезде создавать элементы множеством разных способов. В статье 1957 года четверка авторов объединила:
• хорошо проверенные положения квантовой механики;
• физические особенности взрывов;
• свои новейшие сечения столкновений;
• разнообразные процессы преобразования одних элементов в другие;
• основы теории эволюции звезд.
Все это для того, чтобы подвести читателя к одной мысли: взрывы сверхновых звезд — это первоосновной источник всех элементов тяжелее водорода и гелия в нашей Вселенной.
Помимо звезд с большой массой в качестве источников тяжелых элементов и сверхновых звезд в качестве наиболее вероятного источника распространения этих элементов великолепная четверка заодно получила решение еще одной задачи совершенно даром: когда внутри звездного ядра синтезируются элементы тяжелее водорода и гелия, никакого прока от этого нет, если не отправить их на все четыре стороны в межзвездное пространство, чтобы там из них рано или поздно получился мир, в котором могут рождаться такие существа, как вомбаты. Э. Маргарет Бербидж, Джеффри Р. Бербидж, Уильям Фаулер и Фред Хойл (их еще называют командой Б2ФХ) объединили наше понимание ядерного синтеза в звездах с той вселенской кузницей элементов, следы которой мы находим в космосе повсеместно. Их выводы пережили десятилетия скептического анализа, поэтому опубликованной ими статье можно отвести лишь одну роль — роль переломной работы в истории изучения человеком устройства Вселенной.
В последние годы астрофизики осознали, что для производства новых элементов у звезд есть два дополнительных пути. Когда звезды с большой массой становятся красными гигантами, они, как было описано в главе 8, отбрасывают свои внешние слои, которые образуют то, что ошибочно было названо планетарными туманностями. Эти газы, богатые образовавшимися в результате ядерного синтеза углеродом и азотом, в конечном итоге сливаются с веществом, плавающим в галактике, и могут поглощаться новыми поколениями звезд. Именно таким путем попала в нашу экосистему большая часть углерода и азота, необходимых для жизни на Земле.
Занимая шестую и седьмую позиции в таблице Менделеева, углерод и азот входят в число самых легких элементов. Следующие 30 или около того элементов, от кислорода до рубидия, возникли в горниле взрывов сверхновых, которые Б2ФХ назвали фабрикой элементов. Еще более тяжелые элементы, как теперь считают астрофизики, появились в результате других масштабных космических событий: слияний нейтронных звезд, описанных в главе 9. В 2017 году, который стал поворотным для прогресса в астрономии, три детектора зафиксировали гравитационное излучение от источника, известного как GW170817. А одновременное исследование гамма-излучения, видимого света и других типов электромагнитного излучения, исходящих из одного источника, открыло для мира «астрономию нескольких посыльных», что журнал Science после назвал прорывом года. В отличие от слияний двух черных дыр, которые генерируют большую часть гравитационного излучения, обнаруженного до сих пор, и почти не оставляют вещественных следов, слияния нейтронных звезд производят облака материи, испускающие электромагнитное, гамма— и рентгеновское излучение, а также радиоволны и видимый свет, раскрывающий детали химического состава обломков.
Свет от события, наблюдаемого в 2017 году, выявил присутствие стронция (38-го элемента), подтвердив расчеты астрофизиков, предсказавших, что слияния нейтронных звезд производят тяжелые элементы. Как показывают расчеты, их подавляющее, возникая в результате описанного выше процесса быстрого захвата нейтронов, обязано своим существованием скручиванию спиралей и возможному слиянию нейтронных звезд в двойных системах. Поскольку нейтронные звезды — это схлопнувшиеся ядра бывших сверхновых, ученые, изучающие сверхновые, могут справедливо заявить, что здесь мы тоже наблюдаем образование элементов, порождаемых взрывающимися звездами, только в этом случае элементы возникают в одном шаге от взрыва.
Да, Земля и вся жизнь на ней суть звездная пыль. Нет, мы еще не ответили на все интересующие нас химические вопросы космического масштаба. Так, любопытную загадку современности представляет собой технеций — первый химический элемент, полученный (в 1937 году) искусственным путем в земной лаборатории. (Само слово «технеций», как и другие с префиксом «тех», отсылает к греческому «технетос», что означает «искусственный».) Найти технеций в природе на Земле нам еще предстоит, но астрономы уже нашли его в атмосферах небольшого количества красных гигантов, входящих в нашу галактику. Само по себе это не столь удивительно, если бы не тот факт, что технеций преобразуется в другие элементы с периодом полураспада в два миллиона лет, что в разы меньше возраста и средней продолжительности жизни звезд, за которыми мы наблюдаем. Эта головоломка привела к рождению разных экзотических теорий, которые пока не получили единодушного одобрения мирового сообщества астрофизиков.
Заинтересованных ученых подобные бесконечные химические загадки пленят столь же сильно, как и темы черных дыр, квазаров и ранней Вселенной. Но вам прочитать о них редко где удается. Почему так? Потому что средства массовой информации уже давно решили, о чем следует писать, а о чем — нет. Судя по всему, новости о космическом происхождении каждого отдельного химического элемента, из которых в общей сложности состоит ваше тело, в повестку дня не попадают. И все же, как рассуждал директор Гарвардской обсерватории Харлоу Шепли в своей книге «Вид с далекой звезды», вышедшей в 1963 году, «человечество состоит из звездного вещества и подчиняется Вселенским законам».
В своих попытках разузнать историю Вселенной мы неоднократно убеждались в том, что наиболее плотно укутанные завесой тайны этапы мироздания — это те, что относятся непосредственно к началу начал: к истокам самой Вселенной, ее наиболее крупных структур (галактик и галактических кластеров) и ее звезд, которые являются источником большей части света в космосе. Каждая из этих историй о происхождении играет определенную и жизненно важную роль — и не только в объяснении того, как предположительно бесформенный космос произвел на свет сложные объединения различных типов объектов, но и в определении того, как и почему через 14 миллиардов лет после Большого взрыва мы вообще живем на планете Земля и можем задаться этим вопросом: «Как же все это произошло?»
Не в последнюю очередь подобные загадки рождаются потому, что во время «темных веков» космической истории, когда вещество еще только начинало скапливаться в самодостаточные единицы, такие как звезды или галактики, большая часть всего этого вещества производила очень мало или вообще не производила обнаружимого излучения. То темное время оставило нам лишь минимум возможностей (все еще не до конца исследованных) для того, чтобы каким-то образом узнать, как выглядело вещество на тех ранних стадиях организации. В свою очередь, это означает, что нам следует полагаться — в пугающе высокой степени — на свои собственные теории о том, как должно вести себя вещество, и что у нас не так уж много инстанций, в которых мы могли бы сопоставить свои теории со своими наблюдениями.
Стоит нам обратиться к происхождению планет, как загадки лишь множатся и усугубляются. У нас нет не только результатов наблюдений за ключевыми первоначальными стадиями формирования планет, но и успешных теорий о том, как же именно в свое время планеты сформировались. В качестве позитивной ремарки спешим отметить, что вопрос «Откуда появились планеты?» за последние годы стал рассматриваться гораздо шире. На протяжении большей части XX века в поисках ответа на него ученые акцентировали внимание только на планетах Солнечной системы. За прошедшее же десятилетие рядом с относительно близкими звездами было найдено более сотни экзопланет, которые подарили ученым существенно больше данных для того, чтобы попробовать определить раннюю историю их рождения и существования — в первую очередь как эти астрономически малые, темные и плотные объекты сформировались среди звезд, дающих им свет и жизнь.
Сегодня у астрофизиков, может быть, и имеется больше данных, чем раньше, но это не помогло им получить ответы на свои вопросы. Более того, обнаружение экзопланет, многие из которых движутся по орбитам, заметно отличающимся от орбит планет Солнечной системы, во многом даже усложнило задачу, не приблизив ученых к разгадке истории планетообразования. Мы можем утверждать, что у нас нет объяснения тому, как планеты начали образовываться из газа и пыли, хотя мы можем с легкостью объяснить, как уже запущенный процесс планетообразования был способен сделать из малых объектов большие и почему это заняло относительно немного времени.
Начало образования планет — тема на удивление неподатливая, вплоть до того, что один из главных мировых экспертов в этой области, Скотт Тримейн из Принстонского университета, позволил себе следующие высказывания, пусть и не до конца всерьез. Он сформулировал свод законов планетообразования, первый из которых утверждает, что «все теоретические предсказания о свойствах экзопланет неверны», а второй — что «самая надежная теория о том, как образовались планеты, — теория, говорящая, что это в принципе невозможно». Юмор Тримейна, однако, подчеркивает тот необъяснимый факт, что планеты все же существуют — при всем нашем неумении разрешить эту астрономическую головоломку.
Более двух веков назад, пытаясь объяснить формирование Солнца и его планет, Иммануил Кант высказал «небулярную гипотезу», согласно которой закрученная масса газа и пыли, окружающая нашу главную звезду в процессе ее формирования, конденсировалась в сгустки, из которых позднее сформировались планеты. В самом широком смысле гипотеза Канта и сегодня является основой для современных астрономических теорий о планетообразовании, одержав верх над другой концепцией, весьма популярной в первой половине XX века. Она заключалась в том, что планеты Солнечной системы образовались вследствие прохождения другой звезды мимо Солнца на пути по своим космическим делам. Такой сценарий подразумевает, что гравитационное воздействие должно было повыдергивать газовые облака из обеих звезд, после чего какое-то количество такого газа впоследствии охладилось и скондесировалось, образовав планеты. У этой гипотезы, продвигаемой известным британским астрофизиком Джеймсом Джинсом, был один дефект (или же изюминка, как предпочитают думать некоторые): исходя из нее, планетные системы должны быть очень редким явлением — ведь близкое общение звезд при личной, так сказать, встрече, скорее всего, состоялось буквально считанные разы за всю историю существования галактики. Как только расчеты показали, что весь газ, выдернутый из звезд, будет улетучиваться в разных направлениях, а не конденсироваться, астрофизики отказались от гипотезы Джинса и вернулись к кантовской, согласно которой у большинства звезд, если не у всех вообще, орбиты должны быть украшены планетами.
Теперь у астрофизиков есть надежные доказательства того, что сами звезды формируются — и не по одной, а сразу тысячами и десятками тысяч — внутри огромных облаков газа и пыли, причем из одного такого облака в итоге может образоваться до миллиона отдельных звезд. В таких гигантских звездных яслях в свое время сформировалась туманность Ориона — ближайший к Солнечной системе регион активного звездообразования. Еще через несколько миллионов лет в этом регионе появятся сотни тысяч новых звезд, которые разгонят большую часть оставшегося в туманности газа и пыли в открытый космос; и астрономы сотни тысяч поколений спустя смогут наблюдать эти молодые звезды, которые не будут больше скрываться за остатками своих газовопылевых коконов.
Сейчас астрофизики используют радиотелескопы для того, чтобы фиксировать распределение охлажденного газа и пыли в непосредственном окружении молодых звезд. Как правило, на таких картах распределения можно увидеть, что молодые звезды не плывут в космосе, лишенные какого-либо окружающего вещества. Наоборот — у звезд, как правило, есть вращающийся вокруг них газопылевой диск, похожий по размеру на Солнечную систему, но состоящий из водорода (и других газов, представленных гораздо менее широко) и чуть присыпанный частичками межзвездной пыли. В данном случае термин «пыль» описывает группы частиц, состоящих из нескольких миллионов атомов каждая и по размеру все равно недотягивающих даже до размера точки, которая стоит в конце этого предложения. Многие частицы такой пыли состоят в большей степени из атомов углерода, объединенных в вещество графит (основной ингредиент в стержнях карандашей). Другие твердые частицы состоят из сочетаний кремния и кислорода — по сути, это крошечные камешки, чьи каменистые сердца окутывает ледяная мантия.
Образование этих твердых частиц пыли в межзвездном пространстве уже само по себе загадочно и описано одновременно в множестве теорий, на которых мы можем здесь не останавливаться: достаточно запомнить, что пыль в космосе есть. Чтобы сформировать эту пыль, атомам приходится собираться бок о бок миллионами; если учесть, сколь мала плотность какого бы то ни было вещества в межзвездном пространстве, наиболее очевидным местом для формирования этой пыли кажутся внешние атмосферы прохладных звезд, которые понемногу отправляют свой отработанный материал в космос.
Благодаря тому, что космический телескоп Уэбба способен регистрировать инфракрасное излучение, мы можем заглянуть в давно прошедшую эпоху формирования галактик, что определенно поможет понять, как формируются планеты. Поскольку инфракрасное излучение проходит через богатые пылью регионы гораздо легче, чем видимый свет, мы также более подробно исследуем регионы звездообразования и газопылевые диски, окружающие молодые звезды, из которых могут образовываться планеты.
Частицы межзвездной пыли — первый шаг на пути к формированию планет. Это касается не только твердых планет вроде нашей с вами, но и огромных газовых гигантов, представленных в Солнечной системе Юпитером и Сатурном. Даже несмотря на то что эти планеты состоят преимущественно из водорода и гелия, астрофизики, проанализировав внутренние структуры этих гигантов в сочетании с их подсчитанными массами, пришли к заключению, что их ядра все же твердые. Из всей суммарной массы Юпитера, в 318 раз превышающей массу Земли, его твердое ядро представлено массой в несколько дюжин земных масс. А у Сатурна, в 95 раз превышающего массу Земли, — в одну-две дюжины. У Солнца есть еще две планеты из числа газовых гигантов поменьше — Уран и Нептун, и их твердые ядра пропорционально большего размера. Каждая из них превышает массой Землю в 15 и 17 раз соответственно, и вполне возможно, что ядро в них составляет не менее 50 % всей массы планеты.
Для каждой из этих четырех планет и, вероятно, для всех гигантских планет, недавно обнаруженных на орбитах других звезд, их планетные ядра сыграли ключевую роль в процессе формирования: сначала появилось ядро, а затем и газ, притянутый этим ядром. Выходит, для образования любой планеты просто необходимо, чтобы сначала образовался большой комок плотного вещества. В Солнечной системе, например, у Юпитера самое большое ядро, следом идет Сатурн, а затем Нептун, Уран и на пятом месте — Земля, которая также занимает пятое место среди всех планет по размеру. Истории их формирования ставят перед нами ребром один фундаментальный вопрос: как смогла природа заставить вещество сгуститься и в итоге собраться в «комки», насчитывающие многие тысячи миль в диаметре?
Ответ на этот вопрос состоит из двух частей — одной известной и одной неизвестной; последняя, как нетрудно догадаться, лежит ближе к самому истоку. Как только вам удастся образовать объекты шириной примерно в полмили, которые астрономы называют планетезималями, каждому из них хватит своей собственной гравитации для того, чтобы успешно подтянуть к себе и другие объекты. Взаимное гравитационное воздействие планетезималей друг на друга довольно быстро порождает первые планетные ядра, а затем и сами планеты. Нужно всего несколько миллионов лет, чтобы пройти путь от некоторого количества «комков», размером с небольшой город каждый, до полноценных новых миров, дозревших до состояния, в котором они готовы либо приобрести тонкий слой атмосферного газа (что и произошло с Венерой, Землей и Марсом), либо укутаться в толстенный слой водорода и гелия (как в случае с четырьмя газовыми гигантами, которые вращаются вокруг Солнца на достаточном от него расстоянии, чтобы притянуть к себе огромные объемы этих двух легчайших в мире газов). Для астрофизиков переход от планетезималя шириной в полмили к полноценной планете сводится к ряду хорошо проработанных компьютерных моделей, которые описывают процесс во всех подробностях и почти всегда приводят к формированию маленьких, каменистых и плотных внутренних планет звездной системы в сочетании с крупными и (за исключением ядра) газовыми — даже разреженными — внешними планетами. В течение этого процесса многие планетезимали, как и некоторые объекты, которые они образуют, оказываются выкинутыми за пределы Солнечной системы в результате гравитационного взаимодействия с еще более крупными объектами.
Все это отлично работает на компьютере, но вот создание собственно планетезималей в полмили шириной пока остается за гранью понимания даже самых светлых умов современной астрофизики, которые все еще не в состоянии должным образом объединить свои познания о физике нашего мира с возможностями современных компьютеров. Гравитация не может создавать планетезимали, потому что скромной взаимной силы тяготения маленьких объектов недостаточно, чтобы удержать их друг рядом с другом. Для того чтобы получить планетезимали из межзвездной пыли, существуют две теоретические возможности — и ни одна из них не является особо удовлетворительной. Первая модель предлагает формирование планетезималей посредством аккреции, которая совершается в тот момент, когда твердые частицы пыли сталкиваются и слипаются. В принципе, аккреция — это вполне рабочая идея, так как большинство частиц пыли и вправду слипаются друг с другом при столкновении; вот почему под диваном могут образоваться целые хлопья пыли. Теперь остается лишь представить огромные хлопья межзвездной пыли, танцующие вокруг Солнца, и нужно еще всего одно небольшое умственное усилие для того, чтобы позволить им в своем воображении разрастись до размера стула, дома, городского квартала… и, наконец, планетезималя, уже готового к основательной гравитационной работе над собой и своим окружением.
К сожалению, в отличие от хлопьев поддиванной пыли, на взращивание целого планетезималя из хлопьев межзвездной пыли уходит слишком много времени. Датирование с помощью радиоизотопов нестабильных ядер, обнаруженных в самых древних метеоритах, показало, что на формирование Солнечной системы ушло всего лишь несколько десятков миллионов лет — а то и намного меньше. В сравнении с текущим возрастом наших планет, который составляет примерно 4,55 миллиарда лет, это словно капля воды в наполненном ею до краев ведре: всего 1 % (или даже меньше) от общей продолжительности существования Солнечной системы. Но на процесс аккреции, который помог бы сформировать из пыли первоначальные планетезимали, ушло бы существенно больше нескольких десятков миллионов лет, так что, если только астрофизики не упустили что-то очень важное в понимании того, как именно в процессе аккреции пыль собирается в крупные структуры, нам требуется иной механизм образования планетезималей, который более красиво впишется в имеющиеся у нас временные рамки.
Второй гипотетический механизм опирается на огромные воронки, в которые частицы межзвездной пыли улетают целыми тучами и очень стремительно прямо навстречу их счастливому объединению в более крупные структуры. Так как сжимающееся облако газа и пыли, которому в конце концов предстояло превратиться в Солнце и его планеты, в процессе трансформации приобрело вращающий момент, оно вскоре изменило свою общую форму со сферической на тарелкообразную, оставив формирующееся Солнце в виде относительно плотной сжимающейся сферы в своем центре и окружив его сильно сплющенным диском материала, вращающегося вокруг этой самой сферы. На сегодняшний день орбиты всех планет Солнца, которые движутся в одном и том же направлении и располагаются фактически в одной плоскости, служат доказательством в пользу теории о дискообразном распределении вещества и формировании из него планетезималей и планет. Астрофизики предполагают, что внутри такого вращающегося диска будут появляться «нестабильные участки», словно подернутые рябью, — чередующиеся области с большей и меньшей плотностью вещества. Более плотные регионы вбирают в себя как газ, так и пыль, парящую внутри этого газа. Через несколько тысяч лет такие нестабильные участки превратятся в закрученные воронки, которые смогут сгонять большие партии пыли в одно место и сжимать их до относительно небольших и плотных объемов.
Эта модель воронкообразного формирования планетезималей выглядит многообещающе, хотя пока ей не удалось завоевать сердца тех, кто продолжает искать объяснение тому, как Солнечная система произвела на свет все необходимое для юных планет. После тщательного анализа становится ясно, что модель предлагает более удачную трактовку процессов формирования ядер Юпитера и Сатурна, чем Урана и Нептуна. Так как у астрономов нет возможности доказать, что те нестабильные участки, без которых модель становится голословной, действительно когда-то существовали, нам тоже следует воздержаться от каких-либо личных суждений. Существование бесчисленного количества малых астероидов и комет, которые своими размерами и составом весьма напоминают планетезимали, поддерживает идею о том, что миллиарды лет назад из миллионов планетезималей образовались многочисленные планеты. Так что давайте относиться к образованию планетезималей как к установленному, пусть и не до конца понятному, явлению, которое каким-то образом заполняет зияющий пробел в наших знаниях, и перейдем к следующему развлечению: рассмотрим, что происходит, когда планетезимали сталкиваются.
После того как из окружающих Солнце газа и пыли сформировалось несколько триллионов планетезималей, все эти объекты принялись сталкиваться друг с другом, слипаться и создавать более крупные объекты, чтобы в конце концов образовать собой четыре внутренние планеты Солнечной системы и ядра ее четырех внешних планет-гигантов. Нельзя забывать и о лунах планет — объектах с более скромными размерами, что вращаются вокруг каждой планеты Солнца за исключением самых близких к нему: Меркурия и Венеры. Самые крупные из этих лун, диаметры которых составляют от нескольких сотен до нескольких тысяч миль, вроде бы аккуратно вписываются в созданную нами модель: предположительно они образовались вследствие тех самых столкновений планетезималей. Образование лун завершилось, когда в результате столкновений миры-спутники доросли до своих сегодняшних размеров, потому что (позволим себе предположить) к тому времени близлежащие планеты с их более сильной гравитацией присовокупили к себе большинство расположенных рядом планетезималей. В эту картину надо не забыть включить сотни тысяч астероидов, что вращаются вокруг Марса и Юпитера. Самые большие из них достигают в диаметре нескольких сотен миль (намного меньше того, который взорвал герой Брюса Уиллиса в фильме «Армагеддон» 1998 года), и они тоже наверняка выросли за счет столкновений планетезималей. Правда, в какой-то момент обнаружили, что расти и дальше им уже не дает гравитационное вмешательство близлежащего гиганта Юпитера. Самые мелкие астероиды, менее километра в ширину, вполне могут представлять собой обнаженные планетезимали. То есть объекты, образовавшиеся из пыли, но ни разу не столкнувшиеся с себе подобными — опять же благодаря влиянию Юпитера, — после того как они достаточно выросли, чтобы участвовать в гравитационном взаимодействии.
Для спутников гигантских планет такой сценарий вполне подходит. У всех четырех гигантских планет есть семейства спутников, размеры которых варьируются от огромных и невероятно огромных (вплоть до размеров Меркурия!) до маленьких и даже крошечных. Самые маленькие из таких лун, менее мили в диаметре, тоже могут оказаться обнаженными планетезималями, лишенными вследствие близости других объектов, которые уже успели вырасти в разы крупнее, каких-либо возможностей дальнейшего роста за счет столкновений. В каждом из этих четырех семейств спутников почти все наиболее крупные луны вращаются вокруг своих планет в одном и том же направлении и делают это практически в одной и той же плоскости. Трудно удержаться от того, чтобы не объяснить этот факт так же, как и в случае с планетами, которые вращаются вокруг Солнца в одном и том же направлении и примерно в одной плоскости: вокруг каждой из этих планет вращалось когда-то облако газа и пыли, из которого потом сформировались «комки» вещества, позднее выросшие до размеров планетезималей, а затем и лун.
Во внутренней Солнечной системе только у нашей Земли есть луна значительного размера. У Меркурия и Венеры лун нет, а две картофелеобразные луны Марса — Фобос и Деймос — насчитывают всего несколько миль в поперечнике каждая, из чего следует, что они представляют собой более ранние стадии формирования более крупных объектов из имеющихся уже планетезималей. Некоторые теории приписывают происхождение этих лун астероидному поясу, а их сегодняшние орбиты — воздействию гравитации Марса, которому удалось с успехом подтянуть два этих бывших астероида к себе поближе.
Диаметр нашей Луны составляет более 2000 миль, и крупнее ее из всех лун Солнечной системы лишь Титан, Ганимед, Тритон и Каллисто; в целом по размеру наша Луна сравнима с Ио и Европой. Так является ли Луна продуктом столкновений планетезималей, как и четыре внутренние планеты нашей системы?
Пока человек не привез на Землю образцы лунных пород, эта теория казалась вполне состоятельной. Более 30 лет назад химический состав этих образцов, доставленных на Землю по итогам успешного возвращения «Аполлона», наложил сразу два ограничения на вероятное происхождение Луны. С одной стороны, состав лунного грунта настолько сильно напоминает земные породы, что предположение о формировании Луны независимо от нашей планеты более не кажется приемлемым. С другой — состав лунного камня достаточно отличается от состава коры Земли, чтобы стало очевидным: спутник Земли не целиком образовался из того же земного материала, что и сама планета. Но если Луна сформировалась где-то рядом с Землей и при этом не из аналогичного источника материала, то как и откуда она тогда взялась?
Принятый сегодня ответ на этот непростой вопрос, на первый взгляд вызывающий изумление, строится на когда-то популярной гипотезе о том, что Луна сформировалась в самом начале истории Солнечной системы вследствие какого-то колоссального по силе внешнего воздействия, которое «вычерпнуло строительный материал» со дна Тихого океана и закинуло его в космос, где он сжался в единый объект и образовал нашу Луну. Согласно этой новой версии, которая уже обрела довольно широкое признание как наиболее качественное из доступных человеку объяснений, Луна действительно сформировалась после того, как о Землю ударился гигантский небесный объект, который астрофизики назвали Тейей в честь матери Селены — богини Луны. Но его размер был настолько велик — практически размером с Марс, — что часть его собственного вещества естественным образом добавилась к веществу, отброшенному с Земли в космос. Большая часть материала, отбывшего в космос в результате этого происшествия, могла разлететься достаточно далеко, но все же материала осталось достаточно для того, чтобы образовать нашу Луну, сделанную из земного вещества с добавлением неземного. Все это произошло примерно 4,5 миллиарда лет назад, в первые 100 миллионов лет после того, как началось образование планет Солнечной системы.
Если объект размером с Марс ударился о Землю в те незапамятные времена, то где же он сейчас? Удара вряд ли было бы достаточно для того, чтобы расколоть этот предмет на столь крохотные останки, что мы не могли бы их увидеть: наши лучшие телескопы способны обнаружить во внутренних областях Солнечной системы объекты не крупнее планетезималей. Ответ на это возражение предлагает нам полноценную новую картину всей Солнечной системы — картину, которая подчеркивает ее жестокую и склонную к столкновениям природу. Сам факт, что планетезимали способны были слипнуться в один объект размером с Марс, еще не является гарантией того, что этот объект просуществовал достаточно долго. Вероятно, он не только столкнулся с Землей, но и разбросал свои куски в результате столкновения во все стороны по всей Солнечной системе, где они продолжали время от времени сталкиваться с самой Землей и другими внутренними планетами, друг с другом и с той же Луной (когда она закончила формироваться). Другими словами, во внутренней Солнечной системе на протяжении первых нескольких сотен миллионов лет царила ужасная сутолока, и те куски, что прикреплялись к планетам после столкновения с ними, становились частью этих планет. Встреча Земли с Тейей — это не единственное, но всего лишь одно из самых крупных и мощных событий во время продолжительного дождя из падающих на Землю и ее соседей объектов и даже планетезималей самой разной величины, бомбардирующих всех и вся в эту эпоху разрушений.
Если взглянуть на все это под другим углом, такая смертельная бомбардировка лишь послужила очередной точкой отсчета, обозначая собой финальные стадии планетообразования. Кульминацией всего процесса стала Солнечная система — такая, какой мы видим ее сегодня, не слишком изменившаяся за последние четыре с лишним миллиарда лет. Одна обычная звезда, вокруг которой вращаются восемь планет (плюс льдистый Плутон, который все же больше сродни комете, нежели планете), сотни тысяч астероидов, триллионы метеоритов (мелкие сгустки вещества, которые ежедневно тысячами падают на Землю) и множество комет — грязноватых снежков, которые образовались на расстоянии от Солнца, в десятки раз превышающем расстояние от него до Земли. Не будем забывать о спутниках планет, которые стабильно движутся по своим орбитам (за весьма редким исключением) с самого своего рождения, состоявшегося около 4,6 миллиарда лет назад.
На протяжении большей части нашей истории Солнечная система считалась единственной известной нам планетной системой. Вполне естественно, что, когда астрофизики приступили к поискам планет вокруг других звезд, они ожидали найти системы, в целом похожие на Солнечную по своим размерам и орбитам планет. Как же они ошибались! И насколько реальность оказалась более увлекательной, чем то, что предлагало наше воображение!
Когда себя являет Бог в мирах,
Являет ли нам Бога здешний прах?
Кто видит сквозь невидимый покров
Сложение Вселенной из миров,
Другие солнца, коим счету нет,
В круговращении других планет,
Других созданий и других эпох,
Тот скажет нам, как сотворил нас Бог.
Почти пять веков назад Николай Коперник возродил гипотезу, впервые предложенную еще древнегреческим астрономом Аристархом. Отнюдь не являясь центром Вселенной, заявил тогда Коперник, Земля — лишь одна из планет, что вращаются вокруг Солнца. Правда, многим людям еще только предстоит признать это, ибо они до сих пор свято верят в то, что именно небеса вращаются вокруг нашей неподвижной Земли. Однако астрономы уже давно не скрывают ни от кого убедительных доказательств тому, что Коперник был тогда совершенно прав насчет нашего родного космического дома. Заключение о том, что Земля лишь одна из планет Солнца, позволяет немедленно предположить, что другие планеты очень похожи на нее и что на них вполне могут жить обитатели, обремененные, как и мы с вами, своими планами и мечтами, работой, играми и фантазиями.
Таким образом, планеты, вращающиеся вокруг других звезд, смогут послужить нам космической лабораторией и помочь понять, как и когда жизнь появляется в космосе, как она развивается и как влияет на миры, в которых она возникла. Планеты-соседки Земли по Солнечной системе — это лишь ограниченный набор примеров других миров Александра Поупа, «коим счету нет». Исследование Марса и других планет Солнечной системы может привести к обнаружению жизни на соседних с нами мирах. С другой стороны, мы можем обнаружить, что наша планета сформировалась в узком диапазоне расстояний от Солнца, где обеспечивается температура, благоприятная для жизни, а все остальные планеты оказались за пределами «обитаемой зоны». Возможно когда-нибудь наши потомки исследуют планетные системы, близкие к нашей, не только ради удовлетворения внутреннего интереса, но и ради того, чтобы узнать, что они могут рассказать нам о разнообразии жизни по всему Млечному Пути и за его пределами.
Все это случится еще очень и очень нескоро, но уже сейчас мы можем отдать должное тому, как далеко все-таки мы продвинулись за одно человеческое поколение. На протяжении многих веков астрономам, которые пользовались телескопами для наблюдения за сотнями тысяч отдельных звезд, не хватало навыков и возможностей, чтобы определить, есть ли у этих звезд свои собственные планеты. Их наблюдения позволяли утверждать, что наше Солнце вполне себе среднестатистическая звезда и что ее братья и сестры, почти идентичные ей, в огромном множестве рассыпаны по галактике Млечный Путь. Если у Солнца есть свое семейство планет, то почему бы ему не быть и у других звезд? Получается, что на таких планетах тоже могли возникнуть условия для жизни самых разных существ. Джордано Бруно, к сожалению, выразил свою солидарность с этой мыслью в оскорбительной манере, подрывающей авторитет церкви, за что и угодил в 1600 году на костер. Сегодня любой турист, одолев толпы людей и столики уличных кафе на римской площади Кампо ди Фиори, может оказаться у подножия памятника Бруно и, возможно, поразмышлять немного о том, как сила его мыслей и идей (пусть и не его личная сила) одержала блестящий триумф над теми силами, что пытались подавить его.
Как наглядно демонстрирует судьба Джордано Бруно, сама идея жизни в других мирах — одна из самых сильных мыслей, на которую способен человеческий разум. Если бы это было не так, Бруно дожил бы до более зрелых лет, а NASA не на что было бы просить финансирование. Все эти разговоры о жизни в других мирах на протяжении всей истории — а NASA увлекается ими и сегодня — вертелись вокруг планет Солнечной системы. Однако в поисках внеземной жизни мы столкнулись с определенной проблемой: ни один из миров нашей Солнечной системы, за исключением Земли, не подходит для жизни.
Хотя этот вывод совершенно не отдает должное самому факту, что жизнь в принципе может зародиться и поддерживать себя миллионами возможных способов, все же доказательства налицо: наши первоначальные исследования Марса и Венеры, а также Юпитера и его наиболее крупных лун не смогли обнаружить на них сколько-нибудь убедительных признаков жизни. Скорее наоборот: мы обнаружили множество аргументов в защиту утверждений о том, что на этих планетах и лунах условия категорически неблагоприятны для жизни в привычном для нас виде. Нам предстоит продолжать свои исследования еще очень долго, и, к счастью (в том числе для тех, кто любит обо всем этом поразмышлять), мы не прекращаем их ни на секунду — особенно в погоне за признаками жизни на Марсе. Тем не менее вероятность того, что финальный вердикт по наличию внеземной жизни в пределах Солнечной системы будет отрицательным, настолько велика, что многие умы уже переключились на поиски этой жизни за ее пределами, избрав своей целью те многочисленные миры, что вращаются не рядом с нашим Солнцем, но вокруг других звезд.
До 1995 года гипотезы о планетах на орбитах других звезд выдвигались практически вне контекста каких-либо признанных фактов. За исключением ряда объектов размером примерно с Землю, вращающихся вокруг останков взорвавшихся звезд, которые почти наверняка образовались только после взрыва сверхновой и едва ли могут считаться планетами, астрофизикам ни разу не удалось наткнуться на экзопланету — мир, вращающийся вокруг какой-то другой звезды. В конце 1995 года было сделано заявление о первом открытии подобного рода, несколько месяцев спустя было обнаружено еще четыре экзопланеты. И тогда словно прорвало плотину — обнаружение новых миров было практически поставлено на поток. Сегодня нам известно о более чем сотне экзопланет, вращающихся вокруг других звезд. В ближайшие годы это число непременно будет только расти.
Изобретательность и упорство астрофизиков позволили им разработать как минимум восемь различных методов обнаружения экзопланет. С помощью двух из них была совершена большая часть открытий, еще два позволили нам узнать о более 150 новых планетах, а последние четыре — о более 100. Нам с вами достаточно будет познакомиться с первыми четырьмя из этих восьми методов, начав с тех, что дают меньший результат, а затем перейдя к триумфальной паре.
Самый простой метод поиска экзопланет заключается в непосредственном наблюдении с использованием мощной оптической системы. Однако, несмотря на всю очевидность, этот метод сопряжен с огромной проблемой, которая десятилетиями ставила в тупик астрофизиков: с астрономической точки зрения планеты располагаются в непосредственной близости от своих звезд и светят очень слабо, лишь отражая звездный свет. Далекий наблюдатель, рассматривающий нашу Солнечную систему в телескоп, наверняка различит Юпитер, но при этом должен будет смириться с тем фактом, что этого самого крупного обитателя Солнечной системы затмевает Солнце, которое светит ярче в миллиард раз. Наблюдения в инфракрасном диапазоне смогут немного помочь: разница в яркости уменьшится до миллиона, но по-прежнему будет представлять огромную проблему для выделения отдельных объектов, обладающих несопоставимо меньшей яркостью. О чем это нам говорит? О том, что около 150 экзопланет, которые удалось увидеть ученым в последнее время, обладают двумя общими характеристиками: они такие же крупные, как Юпитер, или даже крупнее него; большинство из них находятся от своих звезд дальше, чем Сатурн от Солнца — в три и даже в сто раз. Все изображения таких экзопланет, которые удалось получить с огромным трудом, обычно выглядят как туманные пятнышки, ничем не привлекающие к себе внимания. Всего известно о 5000 экзопланетах в 3600 планетных системах, но астрофизики никогда не видели ни одной, кроме тех, которые мы наблюдаем непосредственно в виде тех самых непримечательных пятен.
То, что вы могли бы счесть серьезным недостатком, на самом деле ярко иллюстрирует триумф науки, которая способна решать подобные проблемы. Например, с помощью следующего метода обнаружения планет, который носит название «гравитационное линзирование» и основан на идее Альберта Эйнштейна. Общая теория относительности Эйнштейна гласит, что силы гравитации искривляют пространство и, следовательно, искривляют пути световых лучей, проходящих вблизи массивных объектов, таких как звезды. Если, двигаясь в пространстве, звезда окажется на пути света, идущего к нам от другой, более далекой звезды, то гравитация ближней звезды сфокусирует свет далекой звезды подобно своеобразной линзе и вызовет резкий всплеск наблюдаемой яркости далекой звезды. Если у более близкой звезды есть одна или несколько планет, то каждая из них будет вызывать одинаковое, хотя и более короткое и гораздо менее выраженное увеличение яркости. Величина вторичных всплесков яркости зависит от масс объектов, которые их вызывают, а точное время между первичным и вторичным всплесками зависит от расстояний между звездой и планетой. Обследуя большое количество звезд каждую ясную ночь, получая все более точные данные об их яркости, астрофизики с помощью телескопов в Австралии и Соединенных Штатах смогли обнаружить таким способом более 150 экзопланет, что близко к числу, обнаруженному методом прямого наблюдения. Гравитационное линзирование хорошо работает для планетарных систем, находящихся от нас намного дальше, чем те, которые можно найти альтернативными методами, но все открытия, сделанные с его помощью, являются одноразовыми, поскольку движущаяся звезда никогда не вернется в то же положение по отношению к ее более удаленным соседкам.
К наиболее эффективным методам обнаружения экзопланет относится непосредственное наблюдение за звездами, а не их планетами. Такой способ помогает выявить кратковременные небольшие уменьшения их яркости либо периодические, повторяющиеся изменения в движении в пространстве (метод эффекта Доплера). Тщательно анализируя эти изменения в яркости или движении звезды, астрофизики могут сделать вывод о существовании одной или нескольких планет, вращающихся вокруг нее, и определить довольно широкий диапазон характеристик планет.
«Транзит» — прекрасный и древний астрономический термин. Он обозначает прохождение одного объекта непосредственно перед другим (поэтому пуристы могут настаивать на том, что события гравитационного линзирования также следует классифицировать как транзиты). Например, транзит Венеры случается, когда Венера проходит между Землей и Солнцем (ближайшие подобные события ожидаются в 2117 и 2125 годах). Соответственно транзит экзопланеты имеет место тогда и только тогда, когда плоскость ее орбиты совпадает с нашим лучом зрения на звезду. В подобных случаях, насколько невероятными они бы ни были, метод дает прекрасные плоды, но, если совпадения нет, обнаружить планеты по их транзитам не получится.
Чтобы применить этот метод, астрофизики должны сначала найти изменения в яркости, сигнализирующие о транзите, затем понаблюдать за несколькими последовательными транзитами и убедиться, что временные интервалы между ними остаются постоянными, чтобы не спутать данные явления с аномалией самой звезды. Проверка на регулярность интервалов сразу же позволяет определить период обращения планеты, а степень падения яркости звездного света — ее размер. Юпитер, например, будет уменьшать яркость света Солнца на 1 % при его транзите каждые 12 лет, в то время как Земля будет уменьшать яркость на 0,01 % каждый год.
Постоянное колебательное движение нашей атмосферы, вызывающее мерцание звезд при визуальном наблюдении, исключает возможность использования наземных обсерваторий для проведения точных измерений, но космические спутники свободны от этой помехи и могут помочь обнаружить экзопланеты размером даже меньше Земли. Планеты с более короткими орбитальными периодами обнаруживаются быстрее, тогда как для обнаружения планет, делающих один оборот вокруг своей звезды за несколько привычных нам лет, естественно, требуются более длительные наблюдения.
Наблюдение за транзитами заняло первое место среди других методов. С его помощью было открыто 3500 экзопланет — в три с лишним раза больше, чем другими способами. Учитывая, какие впечатляющие результаты показал спутник «Кеплер» (запущенный NASA в 2009 году и выведенный из эксплуатации в 2018), на околоземную орбиту были отправлены ныне действующие охотники за транзитами от NASA и Европейского космического агентства — TESS[44] и CHEOPS[45] соответственно. Позже Европейское космическое агентство планирует запустить еще один спутник — PLATO[46], который поможет астрофизикам открывать все новые экзопланеты и определять их свойства по транзитам. Для этого уже действующие аппараты (а также те, которые закончили свою миссию) либо исследуют большое количество звезд, например, «Кеплер» исследовал 150 000 звезд, TESS — 200 000, либо детально изучают экзопланеты, обнаруженные другими методами, как это делает CHEOPS.
Ну и еще один весьма успешный метод, имеющий на своем счету около тысячи побед на поприще охоты за экзопланетами, базируется на эффекте Доплера, с которым мы познакомились в главе 5. Он позволяет по свету галактики, испускаемому миллиардами звезд, определить направление движения этой галактики — к нам или от нас. Применяя тот же метод для анализа звезд Млечного Пути, астрофизики могут измерить скорость приближения или удаления от нас отдельно взятой звезды, и не имеет значения, движемся мы, звезда или и то и другое вместе взятое. Для звезд, вращающихся вокруг центра Млечного Пути и не имеющих планет, эта скорость должна оставаться постоянной (в масштабах человеческой жизни, конечно же). Но если звезду сопровождает одна или несколько планет, их гравитационные силы, хотя и сравнительно слабые, по мере движения планет по своим орбитам будут немного тянуть звезду сначала в одном направлении, а затем в другом. Этот простой факт непреложного действия ньютоновских законов движения и гравитации уже помог получить обширные сведения о множестве экзопланет.
Астрофизики обнаружили, что если скорость удаления или приближения звезды немного превышает ее среднее значение, затем уменьшается ниже среднего, снова возрастает и эти изменения продолжают циклически повторяться, то совершенно справедливо следующее: изменения скорости обусловлены гравитационным влиянием планеты, движущейся по орбите вокруг звезды, притягивающей ее сначала немного к нам, а затем немного отталкивающей от нас. Если это так, то продолжительность цикла изменений будет равна периоду обращения планеты вокруг звезды. Дополнительную информацию астрофизики могут почерпнуть из сведений о звездах, вокруг которых вращаются эти планеты. Детально исследуя спектры звезд от самых тусклых и наименее массивных, обладающих лишь одной десятой массы Солнца, до самых ярких и самых массивных, которые во многие десятки раз больше Солнца, астрофизики могут определить количество излучаемой ими энергии. Узнав массу звезды, а также период обращения планеты, можно вычислить среднее расстояние между ними. В любом случае чем массивнее звезда, тем быстрее должны двигаться планеты, чтобы удержаться на орбите, и чем дальше от звезды находится планета, тем больший период обращения она будет иметь, как это происходит в Солнечной системе.
Еще больше информации астрофизики могут получить из графика изменений, вызванных эффектом Доплера. По этому графику они могут определить формы орбит вращения планеты и звезды вокруг общего центра масс. Формы орбит остаются идентичными, хотя их размеры обратно пропорциональны массам объектов. Круговые орбиты создают равномерное синусоидальное изменение, в то время как удлиненные орбиты смещают пики и впадины в ту или иную сторону, и эти смещения тем больше, чем более вытянуты орбиты.
Но еще более важная информация сосредоточена в данных, описывающих доплеровский танец звезды и ее планеты. Зная массу звезды, астрофизики могут сделать вывод о массе планеты, вращающейся на любом заданном расстоянии. Скорость удаления или приближения звезды меняется из-за силы гравитации планеты, действующей на звезду, а величина изменения зависит от массы планеты и ее расстояния до звезды. Когда расстояние известно, масса планеты определяется быстро, но с оговоркой. Астрофизики не могут знать наверняка, смотрят ли они на орбиту планеты с ребра или, что более вероятно, под некоторым углом, когда планета находится «выше» луча зрения на звезду на одной половине своей орбиты и «ниже» — на другой. В этом случае астрофизики фиксируют лишь часть полного влияния планеты на движение звезды. В результате массы планет, которые они выводят из максимальных изменений скорости звезды, оказываются меньше истинных, которые можно определить только том случае, если плоскость орбиты планеты строго параллельна нашему лучу зрения.
Разумно предположить, что величина угла наклона плоскости орбиты конкретной планеты к нашему лучу зрения имеет случайное распределение, а значит, средняя планетарная масса, полученная из наблюдений за скоростями звезд с использованием эффекта Доплера, равна лишь половине фактической средней массы. Обычно мы не знаем, орбиты каких планет наклонены больше или меньше. Но, на счастье, в меньшинстве случаев, когда планета действительно проходит транзитом через свою звезду, мы можем быть уверены, что наблюдаем полное влияние эффекта и вычисленная масса равна фактической. О таких экзопланетах, обнаруженных с применением методов наблюдения за транзитами и эффектом Доплера, астрофизики имеют наиболее полную информацию.
Зная количество энергии, излучаемое звездой, и расстояние от нее до планеты, астрофизики в дополнение к размеру, массе, форме орбиты и периоду обращения планеты могут рассчитать и температуру на ее поверхности. Также множество тщательных измерений помогло обнаружить звезды, вокруг которых вращается несколько планет. Каждая из них может иметь свой собственный транзит или вносить свои возмущения в эффект Доплера, характеризующий движение звезды. Применение статистических методов вычислений позволяет выстроить из хаоса сведений стройный порядок и раскрыть полный состав планетной системы. К настоящему времени астрофизики обнаружили более 800 систем, содержащих по две и более экзопланеты. В одной из них, подобно нашей Солнечной системе, имеется восемь планет, в другой — семь, а еще шесть имеют по шесть планет.
Когда мы пытаемся проанализировать данные о тысячах найденных экзопланет, чтобы продвинуться в поисках внеземной жизни, наши представления о диапазоне их масс, размеров, периодов орбит и температур на поверхности дают прекрасную основу для предположений. Конечно, мы не можем утверждать, что имеем представительную выборку данных о планетах в галактике Млечный Путь. Каждый из четырех основных методов неизбежно вносит свою систематическую ошибку. Метод прямого наблюдения позволяет обнаруживать крупные планеты, находящиеся на сравнительно больших расстояниях от звезд. Гравитационное линзирование успешнее обнаруживает планеты с большими массами, независимо от их удаленности от своих звезд. Метод транзитов хорош для обнаружения больших планет с короткими периодами обращения и совершенно не годится для планет с периодами обращения по десять и более лет, а метод поиска экзопланет путем наблюдения за эффектом Доплера в движениях звезд более эффективен, когда звезда имеет близкие к ней планеты с большой массой.
Полностью осознавая недостатки каждого из методов, астрофизики тем не менее пришли к важным обобщениям относительно экзопланет. Самое очевидное и значимое — их много. Вполне возможно, что звезд с планетами больше, чем тех, которые не имеют планет. Даже у самой близкой к Солнцу звезды, красного карлика по имени Проксима Центавра, который является частью звездной системы Альфа Центавра, хоть и находится в некотором отдалении от двух звезд-соседок, есть своя планета. Следующим наиболее примечательным и важным моментом является широкий диапазон размеров, масс и периодов обращения планет, а также расстояний между планетами и звездами. Существуют планеты с диаметром менее 1/3 земного (и, скорее всего, только наши ограниченные возможности не позволяют найти планеты еще меньших размеров) и в восемь раз больше Юпитера. Некоторые имеют массу менее 1/10 000 массы Земли, а массы других в десятки раз превышают массу Юпитера (которая равна 318 массам Земли). Некоторым экзопланетам требуется всего 40 минут, чтобы совершить оборот вокруг своей звезды, а другим — сотни лет. В связи с этим некоторые из них имеют орбиты с диаметром всего в 1/350 от диаметра орбиты Земли, в то время как другие движутся по орбитам, сравнимым с орбитой Нептуна или даже больше.
К слову, самый распространенный тип экзопланет среди тех 4000, которые были обнаружены первыми (3/4 из них открыты с помощью метода транзитов), оказался совершенно непохожим на планеты Солнечной системы! Астрофизики называют планеты этого типа «суперземлями», тем самым подчеркивая, что они значительно больше Земли, но меньше Юпитера, Сатурна, Урана и Нептуна. Суперземлям, большинство из которых примерно в два раза больше нашей планеты, обычно требуется всего несколько месяцев, чтобы совершить оборот вокруг своей звезды. Фактически примерно половина всех звезд имеет хотя бы одну планету с периодом обращения не более 100 дней (и Солнце не является исключением из этого правила, потому что Меркурию требуется 88 дней на каждый оборот). Существование суперземель, о которых мало кто подозревал до эпохи открытия экзопланет, служит отличным напоминанием, насколько сомнительными могут быть поспешные выводы, если делать их на основе ограниченного набора данных — в данном случае на примере восьми планет Солнечной системы. Более крупные суперземли могут оказаться газовыми планетами, и в таком случае Земля имеет все шансы быть признанной одной из крупнейших каменистых планет, когда-либо созданных в процессе планетообразования.
Еще одно обобщение касается природы звезд, вокруг которых вращаются экзопланеты, и заставляет нас иначе отнестись к возможности существования во Вселенной других обитаемых миров, кроме нашего. Размышляя о жизни в планетных системах, мы опираемся на представление о том, что многие из звезд в них относятся к тому же типу, что и Солнце. Но еще большее число звезд, о которых известно, что вокруг них вращаются планеты (возможно, потому, что их малая масса облегчает обнаружение их планет), являются красными карликами с малой светимостью. Они обычно излучают в десятки раз меньше энергии, чем Солнце, имеют около четверти его массы, трети его диаметра и температуру поверхности в два раза ниже. Красные карлики — самый распространенный тип звезд в нашей галактике, но из-за низкой светимости их трудно обнаруживать за пределами ближайшего окружения. Небольшое количество излучаемой энергии, даже с учетом их небольшой массы, дает им важное преимущество — красные карлики имеют самый большой срок жизни, измеряемый триллионами лет, в отличие от звезд типа Солнца, которые живут какой-то десяток миллиардов лет. Неудивительно, что планеты вокруг красных карликов вращаются на сравнительно небольших расстояниях. У многих из них период обращения измеряется часами, а диаметры орбит намного меньше диаметра орбиты Меркурия. Но самая важная особенность многих из этих планет, имеющая решающее значение для перспектив существования жизни, — температура на их поверхности сравнима с земной. Вращаясь вокруг тусклой красной звезды по орбите с очень малым диаметром, планета может получать столько же тепла, сколько получает планета, вращающаяся по орбите с бо́льшим диаметром вокруг гораздо более яркой звезды.
Нам, жителям XXI века, доступна роскошь знания основных фактов о планетах Млечного Пути. Мы знаем, каковы их размеры, массы, температуры на поверхности, а также формы, размеры и периоды их орбит, и можем быть уверенными в данных. Многие из этих планет можно назвать планетами земного типа, которые находятся на орбитах, близких к земным, и обращаются вокруг звезд, подобных Солнцу. Почти все они расположены в пределах нескольких сотен световых лет от Солнечной системы, на расстояниях менее одной сотой расстояния до основной массы звезд нашей галактики.
Что могут сказать нам эти знания? Возможно ли, чтобы на обнаруженных нами экзопланетах однажды появилась и эволюционировала жизнь? И, что не менее важно, можем ли мы делать выводы о вероятности более широкого ее (и даже развитых цивилизаций) распространения, например, в более обширных пределах Млечного Пути и за его пределами?
С другой стороны, открытие большого числа экзопланет позволило избавиться от мнения, бытовавшего всего одно поколение назад, — что если где-то еще в нашей галактике и зародилась жизнь, то таких мест не может быть много и они сильно удалены друг от друга. Как оказалось, Млечный Путь и, предположительно, другие галактики тоже изобилуют множеством разнообразных космических «лабораторий», и молодых, и очень старых, в которых могла зародиться и достичь небывалого расцвета жизнь. Но огромные расстояния даже до ближайших к нам космических соседей уничтожают всякую надежду посетить какие-либо из этих мест, поэтому мы вынуждены продолжать следовать проторенным астрофизиками путем и расширять свои знания, получая дополнительную информацию благодаря более точным наблюдениям.
Наиболее яркие признаки обитаемости других миров должны находиться в их атмосферах. В последующих главах мы обсудим, опираясь на наше нынешнее понимание процессов зарождения жизни, какими должны быть планеты, чтобы на них могли появиться живые организмы. Например, на них должна иметься жидкость, в которой могут плавать и взаимодействовать молекулы. А для существования жидкости на поверхности твердого объекта, в свою очередь, должна образоваться атмосфера, состав которой будет меняться с появлением форм жизни. На Земле, например, живые организмы обогатили атмосферу кислородом. Цивилизация тоже внесла свои изменения, и не самые лучшие, учитывая, насколько наша планета загрязнена, но мы героически боремся, чтобы это изменить, хоть пока и проигрываем в этой битве.
Как же отличить атмосферу с естественным содержимым от атмосферы с компонентами, созданными жизнью? Один из очевидных способов — сравнить измерения, полученные в разное время. Если обнаружатся две или более составляющие, которые не должны существовать одновременно, то мы можем сделать вывод, что что-то постоянно их привносит. Это «что-то» может быть живым. Если использовать в качестве примера нашу собственную планету, то наиболее вероятными компонентами атмосферы, которые могли бы подсказать инопланетному уму, что у нас есть жизнь, были бы молекулы кислорода и метана. Без постоянного пополнения запасов молекулы метана вскоре вступят в химическую реакцию с кислородом (которого примерно в сто тысяч раз больше) и исчезнут. Тот факт, что в нашей атмосфере сохраняется небольшое, но обнаружимое количество метана, свидетельствует о присутствии на поверхности Земли живых организмов, в первую очередь коров и других жвачных животных, которые постоянно выделяют этот газ. (Поскольку метан задерживает тепло гораздо эффективнее, чем углекислый газ, даже небольшое, но растущее его количество способствует глобальному потеплению, угрожающему нашей окружающей среде.)
Благодаря запуску космического телескопа Уэбба мы можем лучше изучить экзопланеты — например, его спектроскопические возможности способны раскрыть дополнительные подробности о составе их атмосфер. К сожалению, даже с его помощью невозможно обнаружить одновременное существование кислорода и метана. Конечно, другие формы жизни могут иметь совершенно другой метаболизм, настолько отличный от присущего жизни на Земле, что мы не сможем обнаружить их по этому признаку. Тем не менее астрофизики нацелены именно на поиски двух этих составляющих. На данный момент мечта остается несбыточной, требуя возможностей, превосходящих те, которые имеются у телескопа Уэбба, и ждет появления нового поколения космических аппаратов для более углубленного исследования атмосфер или получения детальных изображений экзопланет, которые могли бы напрямую доказать существование жизни. Если когда-либо астрофизики смогут достичь в этом успеха, их достижение будет названо великим, а их самих возведут в ранг героев.