1 Самое звучное место в мире

В Книге рекордов Гиннесса есть несколько мировых рекордов, связанных со звуком: самое громкое мурлыканье домашней кошки (67,7 децибела, если вам интересно), самая громкая отрыжка у мужчины (109,9 децибела), самый громкий хлопок в ладоши (113 децибел). Все это очень впечатляет. Но как специалиста по архитектурной акустике меня больше интересует утверждение, что в часовне мавзолея Гамильтона в Шотландии самое долгое в мире эхо, какое только можно услышать в помещении. Согласно Книге рекордов Гиннесса издания 1970 г., при захлопывании литых бронзовых дверей часовни для полного затухания звука требуется 15 секунд.

Книга рекордов Гиннесса описывает это явление как «самое долгое эхо», однако это неверный термин. Мои коллеги, специалисты по архитектурной акустике, используют термин «эхо» для описания случаев четко различимого повторения звука, что можно часто наблюдать в горах. Постепенное затухание звука акустики называют реверберацией.

Реверберация – это звук, сохраняющийся в помещении после того, как умолкнет речь или музыкальная нота. Музыканты и инженеры студий звукозаписи различают живые и мертвые помещения. Живое помещение похоже на ванную комнату – оно отражает голос, возвращая его к вам и вызывая желание петь. Мертвое помещение подобно роскошному гостиничному номеру: звук голоса поглощается мягкой обивкой мебели, шторами и ковром и быстро затухает. Ощущается ли помещение звонким или глухим, зависит в основном от реверберации. Слабая реверберация приводит к удлинению звука – этот эффект немного усиливает слова и ноты. В чрезвычайно живых местах, например в соборе, реверберация словно живет собственной жизнью и длится достаточно долго, чтобы ею можно было насладиться. Реверберация усиливает музыку и играет главную роль в богатстве звучания оркестра в большом концертном зале. Умеренная реверберация может усилить голос и облегчить разговор людей, находящихся в разных концах комнаты. Имеющиеся данные позволяют предположить, что размер помещения, воспринимаемый с помощью реверберации и других акустических признаков, определяет эмоциональную реакцию на нейтральные и приятные звуки. Маленькие помещения мы склонны воспринимать как более спокойные, безопасные и приятные, чем большие[12].

Мне представилась возможность исследовать известный своей акустикой мавзолей Гамильтона во время конференции акустиков в Глазго, программа которой включала экскурсию в часовню. Ранним воскресным утром я присоединился к двадцати специалистам в области акустики, стоящим у входа в мавзолей. Это величественное сооружение в романском стиле из хорошо подогнанных блоков песчаника, высотой 37 метров, охраняемое двумя громадными каменными львами. Дотошный наблюдатель может попытаться сделать какие-либо выводы о мужских достоинствах 10-го герцога Гамильтона по форме здания, которое представляет собой приземистый цилиндр с куполом. Мавзолей был построен в середине XIX в., но все захоронения из него давно убрали. Здание просело на 6 метров из-за расположенных под землей шахт, и крипту могло затопить водами реки Клайд.

Восьмиугольная часовня расположена на втором этаже и освещается неярким светом через стеклянный купол. В часовне четыре ниши и мозаичный мраморный пол из черных, коричневых и белых плит. Оригинальные бронзовые двери, источник рекордного эха (по образцу ворот Гиберти в баптистерии Сан-Джованни во Флоренции), установлены во второй нише. Напротив новых деревянных дверей находится постамент из одного куска черного мрамора, на котором раньше стоял древний алебастровый саркофаг египетской царицы, где покоилось забальзамированное тело герцога, и наш экскурсовод с удовольствием рассказывал ужасные истории, что тело пришлось укоротить, чтобы оно поместилось в саркофаге. В тот день, когда я был в часовне, постамент был заставлен ноутбуками, усилителями звука и другими инструментами для акустических измерений.

Часовня предназначалась для богослужений, но молиться в ней было невозможно. Акустикой она напоминала большой готический собор, и я мог разговаривать с коллегами, только если они стояли рядом, поскольку звук, отражающийся от стен часовни, делал мою речь неразборчивой. Но действительно ли это самое звучное место в мире? Это важно для меня как для инженера-акустика, поскольку изучение реверберации заложило основу современных научных методов, применяемых в архитектурной акустике.


Научная дисциплина, получившая название архитектурной акустики, появилась в XIX в. в результате работы Уоллеса Клемента Сэбина, блестящего физика, который, по свидетельству энциклопедии Британника, «не удосужился получить докторскую степень; его статьи немногочисленны, но превосходны по содержанию»[13]. В 1895 г. Сэбина, молодого профессора Гарвардского университета, попросили исправить ужасную акустику лекционного зала Музея Фогга, который (по словам самого Сэбина) «считался непрактичным и не использовался»[14]. Зал представлял собой просторное полукруглое помещение со сводчатым потолком. Речь в помещении звучала крайне невнятно – какой-то вязкий суп, который ожидаешь услышать скорее в мавзолее Гамильтона, чем в специально спроектированном лекционном зале. Особенно был недоволен залом Чарльз Элиот Нортон, читавший курс изящных искусств.

Представьте профессора Нортона, стоящего перед большой аудиторией и пытающегося рассуждать об искусстве, – строгий костюм, пышные усы, бакенбарды, редеющие волосы. Студенты сначала услышат звук, который идет непосредственно от профессора к их ушам – по прямой, по кратчайшему пути. Но за ним сразу же следуют отражения – звук, отразившийся от стен, сводчатого потолка, столов и других твердых поверхностей.

Эти отражения и определяют архитектурную акустику – то есть как люди воспринимают звук в помещении. Инженеры воздействуют на акустику, меняя размер, форму и планировку помещения. Вот почему мои коллеги акустики испытывают непреодолимое желание хлопнуть в ладоши и послушать, как отражается звук. (Моя жена пришла в ужас, когда я хлопнул в ладоши в крипте французского собора. Наверное, это один из самых необычных способов смутить супруга.) Хлопнув в ладоши, я слушаю, как долго затухают отражения. Если для угасания звука требуется много времени – время реверберации слишком велико, – то речь в таком помещении будет невнятной, поскольку соседние слова накладываются друг на друга и сливаются в одно. Как писал в XIX в. Генри Мэтьюз, реверберация «не станет вежливо ждать, пока оратор закончит; с момента начала и до самого конца речи она высмеивает его десятью тысячами языков»[15]. Именно это и происходило, когда профессор Нортон пытался прочесть лекцию. Студенты могли острить, что большинство лекций недоступно для понимания даже при хорошей акустике, но профессор Нортон был блестящим оратором и опытным преподавателем. В данном случае виновата была действительно аудитория, а не лектор.

В просторных помещениях с твердыми поверхностями, таких как соборы, мавзолей Гамильтона или похожий на пещеру лекционный зал в Музее Фогга, отражения слышны продолжительное время. Мягкие поверхности поглощают звук, уменьшая отражение и ускоряя затухание звука. Уоллес Сэбин экспериментировал с мягкими, звукопоглощающими материалами в лекционном зале – со стороны он выглядел как экзальтированный любитель подушек. Сэбин взял 550 метровых мягких сидений из соседнего кинотеатра и постепенно переносил их в лекционный зал Музея Фогга, чтобы проверить, что произойдет. Ему требовалась тишина, и поэтому он работал по ночам, когда студенты уходили домой, а на улицах прекращалось движение. Он измерял время полного затухания звука, но не хлопал в ладоши – непрерывно хлопать могут только профессиональные исполнители фламенко, – а использовал звук органной трубы.

Время до полного затухания звука Сэбин назвал временем реверберации, и в результате его работы появилось одно из главных уравнений акустики. Оно устанавливает связь между временем реверберации и размерами помещения, измеряемыми как физический объем, а также количеством звукопоглощающих материалов, таких как мягкие сиденья из экспериментов Сэбина или слой фетра дюймовой толщины, который он в конечном итоге использовал для облицовки стен лекционного зала, чтобы исправить его акустику. Одно из главных решений, которые принимают инженеры при проектировании помещения с хорошей акустикой – большой аудитории, зала судебных заседаний, офиса с открытой планировкой, – это желаемая длительность реверберации. После этого они могут использовать уравнение Сэбина, чтобы вычислить необходимое количество мягкого, звукопоглощающего материала[16].

Кроме времени реверберации, проектировщик должен учитывать частоту, которая напрямую связана с воспринимаемой высотой звука. Когда скрипач проводит смычком, струна ведет себя как крошечная скакалка, описывая круги. Если скрипач берет ноту, которую музыканты называют средним до, струна делает 256 оборотов в секунду. Вибрация скрипки посылает во все стороны 256 звуковых волн каждую секунду – с частотой 256 герц (Гц). Эта единица измерения была названа в честь Генриха Герца, немецкого физика XIX в., который первым научился излучать и принимать радиоволны. Самая низкая частота, которую может слышать человек, составляет около 20 Гц, а самая высокая (у молодых людей) – 20 000 Гц. Но наибольшее значение имеют частоты, расположенные в середине диапазона. Рояль издает звуки частотой от 30 до 4000 Гц. За пределами этого диапазона мы уже с трудом различаем высоту звука, и все ноты становятся похожими друг на друга. Выше 4000 Гц мелодии превращаются в бессмысленный свист человека, лишенного музыкального слуха. Наше ухо эффективнее всего усиливает и различает звуки на средних частотах, в диапазоне музыкальных нот. В этот диапазон попадает и речь, и поэтому при проектировке залов, предназначенных для исполнения музыки, акустические инженеры в своих расчетах используют частоты от 100 до 5000 Гц.

В 2005 г. Брайан Кац и Эварт Уэтерил применили компьютерные модели для оценки эффективности мер Сэбина в Музее Фогга. Они ввели в программу размер и форму лекционного зала и использовали уравнения, описывающие, как звук распространяется по помещению и отражается от поверхностей и объектов. Затем они добавили виртуальные звукопоглощающие материалы к модели зала, чтобы сымитировать действия Сэбина. Хотя акустика улучшилась, в некоторых местах речь по-прежнему оставалась плохо различимой. По словам одного из студентов, в зале были как места, где они хорошо слышали лектора, так и «мертвые зоны, в которых зачастую ничего невозможно было разобрать»[17]. Хотя результат получился далеким от совершенства, эксперименты Сэбина заложили основу для разнообразных акустических исследований. Его уравнения и сегодня составляют фундамент архитектурной акустики.


Мне нравится приходить в концертный зал и чувствовать контраст между маленьким холлом и огромным пространством самого зала. Из тесного прохода вы попадаете в просторное помещение, слушая тихие, исполненные ожидания разговоры и редкие громкие звуки, вызывающие мощную реверберацию. Особое волнение я испытываю, переступая порог симфонического зала в Бостоне. Бостонский симфонический зал – Мекка для многих акустиков, поскольку именно там Уоллес Сэбин применил свою новую науку, чтобы спроектировать аудиторию, которая до сих пор входит в тройку лучших в мире мест для исполнения классической музыки. Зал, построенный в 1900 г., имеет форму обувной коробки – длинный, высокий и узкий – с шестнадцатью копиями греческих и римских статуй, установленных в нишах над балконами. Обычно я устраиваюсь на одном из скрипучих кресел, обтянутых черной кожей, и слушаю, как настраивают инструменты музыканты Бостонского симфонического оркестра, расположившиеся на приподнятой сцене перед позолоченным органом. При первых же звуках музыки я понимаю, почему публика и критики так любят это место. Зал превосходно украшает и обогащает музыку – время реверберации в нем составляет 1,9 секунды[18]. Когда после умеренно громкого пассажа оркестр умолкает, для полного затухания звука требуется около 2 секунд.

Во время концерта на открытом воздухе оркестр может играть под навесом, в то время как зрители наслаждаются пикником. Нередко вечер заканчивается шампанским и грохотом фейерверка в небе. Это приятные концерты, но оркестр звучит тихо, как будто издалека. В хороших залах, таких как в Бостоне, музыка, наоборот, заполняет все помещение и окружает слушателей со всех сторон. Реверберация усиливает звучание оркестра, которое становится более громким и впечатляющим. Реверберация помогает получить богатый и яркий звук. Современный дирижер Адриан Боулт говорит: «Идеальным концертным залом, очевидно, является тот, в котором оркестр производит не слишком приятный звук, а слушатели получают нечто прекрасное»[19].

Преобразующий эффект реверберации не ограничен классической музыкой; он активно используется в поп-музыке. В 1947 г. популярный хит Peg o’ My Heart (медленная инструментальная музыка, исполнявшаяся на гигантских губных гармониках) группы Jerry Murad’s Harmonicats стал первой записью, в которой творчески использовалась реверберация[20]. С тех пор «искусственное эхо» составляет неотъемлемую часть инструментария музыкального продюсера. Оно делает голоса богаче и сильнее, подобно тому, что происходит во время выступления на сцене театра. Во многих телевизионных программах, когда петь пытаются люди со слабым голосом, можно услышать, как после первой же ноты инженеры звукозаписи на полную мощность включают реверберацию, чтобы спасти звук.

Реверберация – не единственная важная характеристика хорошего зала. Наверное, самым ярким примером неудачной концертной площадки может служить первый вариант филармонического зала в Линкольн-центре в Нью-Йорке, который открылся в 1962 г. (впоследствии был перестроен и получил название Эвери-Фишер-холл). Акустик Майк Бэррон описывает его «как самую известную акустическую катастрофу XX в.»[21]. Влиятельный музыкальный критик Гарольд Ч. Шонберг образно назвал его «гигантским желтым лимоном за 16 миллионов долларов»[22]. Специалист в области акустики Крис Джаффе вспоминал, как Шонберг «развлекался, сочиняя статью за статьей об ужасной акустике зала, в стиле мыльной оперы «Все мои дети»[23]. По иронии судьбы консультантом проекта был Лео Беранек, один из самых влиятельных специалистов по архитектурной акустике, единственная знаменитость, которого на конференциях преследуют поклонники. Помню, как столкнулся с Лео за завтраком на одной из конференций, когда я сам еще был молодым ученым. Это была превосходная возможность обсудить со «звездой» мои исследования по акустике концертного зала. К сожалению, он встретил меня вопросом, зачем я измерял эхо от утиного кряканья (см. главу 4).

По мнению Беранека, последние изменения в проекте испортили филармонический зал. Оригинальная идея предполагала простую «обувную коробку», похожую на симфонический зал в Бостоне. Но затем появились возражения – в проектируемом зале слишком мало мест. В газетах Нью-Йорка началась кампания по увеличению вместимости, и, как говорит Беранек, комитет, наблюдавший за строительством, «сдался»[24]. В новом проекте изменилась форма балконов и боковых стен, а также появились многочисленные отражатели на потолке. Когда зал открылся, критики начали жаловаться, что там слишком много высоких звуков и мало басов, а музыканты с трудом слышат друг друга, что влияет на слаженность оркестра. Вооруженный современным знанием, Беранек теперь утверждает, что без этих изменений «мы бы покорили Нью-Йорк»[25].

Огромное значение для качества концертного зала имеет форма помещения. Очень важно, как отражается звук с разных сторон, поскольку акустические волны, достигающие наших двух ушей, отличаются друг от друга. Отражению требуется больше времени, чтобы достичь дальнего уха; кроме того, это ухо попадает в акустическую тень и хуже воспринимает высокие частоты, поскольку им труднее огибать голову, чем низким. Эти два признака сигнализируют мозгу, что музыка идет не только со сцены. Благодаря боковым отражениям мы чувствуем, что окружены музыкой, и не воспринимаем ее как исходящую от исполнителей на далекой сцене. Кроме того, боковые отражения словно физически расширяют оркестр – этот эффект называется расширением источника, и зрителям он обычно нравится[26]. В симфоническом зале Бостона эффект достигается за счет узкого зала, обеспечивающего сильное боковое отражение. Научное объяснение боковых отражений привело к появлению новых конструкций и форм для залов. Недалеко от моего дома в Манчестере дает концерты оркестр Халле – в Бриджуотер-холле, построенном в 1990-х гг. Задняя часть зала состоит из отсеков, разделенных стенами наподобие террасных виноградников. Перегородки в зале установлены под таким углом, чтобы создавать боковые отражения.

При расчете реверберации необходимо найти тонкую грань между недостаточной (как на открытой площадке) и чрезмерной. Композитор и музыкант Брайан Ино так излагал последствия чрезмерной реверберации в Королевском Альберт-холле до его реконструкции:

Это было ужасно, любой музыкальный фрагмент с ритмом или быстрым темпом полностью терялся, поскольку каждая нота звучала гораздо дольше, чем требовалось. Мне это напомнило урок в художественной школе, когда мы рисовали очень толстую натурщицу. У нее уходило 20 минут на то, чтобы устроиться, а рисовать ее было невозможно. Примерно так же выглядит попытка играть быструю музыку при слишком сильной реверберации[27].

Желательный уровень реверберации зависит от музыки. Сложная камерная музыка Гайдна или Моцарта сочинялась для прослушивания во дворцах и поэтому звучит лучше всего в небольших помещениях с малым временем реверберации – скажем, 1,5 секунды. Французский композитор-романтик Гектор Берлиоз писал о музыке Гайдна и Моцарта, исполняемой «в слишком большом и акустически неподходящем здании», что с тем же успехом это можно было делать в поле: «Она звучала слабо, холодно и нестройно»[28].

Романтическая музыка Берлиоза, Чайковского или Бетховена требует более длительной реверберации, чем камерная, – время реверберации должно быть около 2 секунд. Для органной музыки или хора – еще больше. Известный американский органист Э. Пауэр Биггс говорил: «Органист использует все время реверберации, которое у него есть, а затем просит еще немного… Многие органные произведения Баха рассчитаны… на использование реверберации. Вспомните о паузе, которая следует за ярким вступлением знаменитой токкаты ре минор. Совершенно очевидно, что она предназначена для наслаждения нотами, повисшими в воздухе»[29].

Королевский фестивальный зал в Лондоне был построен в 1951 г. для Фестиваля Британии и должен был помочь поднять дух нации после многолетнего аскетизма и карточной системы во время и после Второй мировой войны[30]. Критики восхищались зданием, но акустики разошлись во мнениях относительно качества концертного зала. В конечном итоге они пришли к выводу, что время реверберации слишком мало – всего полторы секунды. В 1999 г. дирижер сэр Саймон Рэттл говорил: «Королевский фестивальный зал – худшая из крупных концертных площадок Европы. После получасовой репетиции пропадает желание жить»[31]. Главным консультантом по акустике при проектировании зала был Хоуп Багенал. Инженер-акустик Дэвид Тревор-Джонс писал, что «широкое либеральное образование» Багенала имело большое значение, поскольку было основой «любознательности и… компетентности, позволявшей использовать тот объем физических знаний из области акустики, который требовался»[32]. Уравнение Сэбина продемонстрировало бы Багеналу, что имеются два способа улучшить акустику зала. Первый – увеличить размер помещения, чтобы обеспечить пространство для распространения отраженного звука. Можно было бы увеличить высоту потолка, но это обошлось бы слишком дорого. Второй способ – ухудшить звукопоглощение. Багенал порекомендовал убрать 500 кресел, чтобы увеличить время реверберации, но его совету не последовали[33]. В результате было выбрано революционное решение: использовать электронику для искусственного улучшения акустики.

В углубления на потолке зала были вмонтированы микрофоны, которые воспринимали определенные частоты. Электрические сигналы от микрофонов затем усиливались и подавались на динамики, также размещенные на потолке. Получалась звуковая петля – по проводам от микрофона к динамику, а затем по воздуху от динамика к микрофону. Это позволяло увеличить длительность звуков, создавая искусственную реверберацию. Замечательное инженерное достижение, учитывая несовершенную электронику 1960-х гг. Изобретателем системы усиленного резонанса был Питер Паркин, который увлекся акустикой во время Второй мировой войны, помогая разрабатывать средства противодействия акустическим подводным минам. Во время работы над Королевским фестивальным залом домой к Паркину протянули выделенную телефонную линию, чтобы он мог слушать звук и проверять работу системы[34]. Он пытался выявить недостатки в системе, которые могли привести к появлению положительной обратной связи и усилению звука – результатом стали бы завывание и скрежет, ассоциируемые со стилем хеви-метал.

Электронная система Питера Паркина увеличила время реверберации с 1,4 до более 2 секунд для низких частот, и звук в зале значительно «потеплел». Но Паркин никому не рассказывал о своем достижении. Использование электронного усиления для классической музыки воспринимается неоднозначно, и поэтому систему усиленного резонанса устанавливали поэтапно, не информируя оркестр, публику и дирижеров. Только после того как полностью отлаженная система отработала восемь концертов, инженеры раскрыли секрет. Систему использовали до декабря 1998 г., когда было найдено другое решение, без электроники.

Я всегда считал, что классическую музыку не следует усиливать электронными средствами, в чем убедился лет двадцать назад, когда присутствовал на демонстрации различных электронных систем в одном из театров в окрестностях Лондона. По мере того как инженеры переключали настройки, я слышал странные металлические оттенки и неестественные искажения, а иногда мне начинало казаться, что звук идет сзади, а не со сцены. Удивительно, но эта демонстрация была предназначена для того, чтобы убедить людей покупать новую технику. Тем не менее современные цифровые системы, используемые во многих театрах, бывают чрезвычайно эффективными. В прошлом году я слышал одну такую систему на конференции по акустике: щелчком переключателя конференц-зал превращался в драматический театр или большой концертный зал с естественной акустикой.


В список самых звучных мест в мире войдут многие мавзолеи: Тадж-Махал и Гол-Гумбаз в Индии, мавзолей Гамильтона в Шотландии и «Томба Эммануэле» в Осло[35]. Большой объем и твердые каменные стены делают эти сооружения чрезвычайно «живыми».

Художник Эммануэль Вигеланн построил «Томба Эммануэле» в 1926 г. как музей для своих работ, но потом решил сделать здание местом своего последнего упокоения. Норвежский акустик и композитор Тор Халмраст, величественный и громогласный, рассказывал, как ему пришлось согнуться, чтобы войти в «Томба Эммануэле», – в буквальном смысле поклониться праху художника, урна с которым была установлена над входом. Халмраст вошел в высокое помещение с цилиндрическим сводом и фресками на стенах. «Поначалу ты почти ничего не видишь, – объяснял он, – потому что стены очень темные. Через какое-то время начинаешь различать роспись на стенах и каменную резьбу на потолке: события всей жизни, от зачатия (и даже само зачатие) до смерти»[36]. На одной из фресок изображен столб дыма и дети, поднимающиеся от двух скелетов, лежащих в «позе миссионера». Реверберация на средних частотах длится 8 секунд, чего можно ожидать в очень большой церкви, – Халмраст считает, что это очень много, учитывая относительно скромные размеры помещения[37].

Откровенно сексуальные фрески в «Томба Эммануэле» резко контрастируют со строгим убранством мавзолея Гамильтона, но в каком помещении реверберация сильнее? Мировой рекорд был зарегистрирован после хлопка дверей в часовне мавзолея, однако этот эксперимент никак не назовешь научным. Чтобы должным образом сравнить реверберацию, требуются исходные звуки равного качества и силы[38]. Если бы измерения проводила главная героиня сказки Хилэра Беллока «Про девочку Анну, которая для забавы хлопала дверью и погибла» (Rebecca Who Slammed Doors for Fun and Perished Miserably), она хлопнула бы дверью изо всех сил и для затухания звука потребовалось бы много времени[39]. У менее энергичного экспериментатора получилось бы и меньшее время.

Для моего посещения мавзолея Гамильтона акустик Билл Мактаггарт приготовил необходимую измерительную аппаратуру. На треноге был установлен странного вида динамик, который излучал звук во всех направлениях (рис. 1.1). Он имел форму додекаэдра, а размером напоминал большой надувной мяч для игры на пляже. Микрофон на другой треноге располагался в нескольких метрах от динамика. Оба устройства были подключены к анализаторам, на экранах которых можно было наблюдать зигзагообразные линии, идущие из верхнего левого угла в нижний правый, – так отображалось затухание звука. Обычно инженеры-акустики используют подобное оборудование для проверки звукоизоляционных свойств стен, которые не должны пропускать звуки из соседних домов, а также для оценки реверберации в аудиториях (не мешает ли она вести занятия).


Рис. 1.1. Динамик, использованный для эксперимента в мавзолее Гамильтона, и купол


Билл подал сигнал, и я поспешил заткнуть уши пальцами, чтобы не оглохнуть. Динамик взревел так громко, что неприятные ощущения испытал даже я, несмотря на закрытые слуховые каналы. Через 10 секунд Билл выключил динамик и стал измерять затухание звука, а я освободил уши, чтобы насладиться реверберацией. Гладкие массивные стены отлично отражали звук, и прошло очень много времени, прежде чем наступила полная тишина. Оглушительный рев из динамиков превратился в урчание, которое кружилось у меня над головой и, затухая, исчезало под самым куполом. За секундой тишины последовала оживленная дискуссия присутствовавших акустиков.

Какое же время реверберации у мавзолея Гамильтона? Это просторное помещение с каменными стенами, и поэтому время реверберации существенно отличается для низких и высоких частот. На низкой частоте – скажем, 125 Гц, что на октаву ниже среднего до (типичная частота для бас-гитары), – время реверберации равнялось 18,7 секунды. На средних частотах – чуть больше 9 секунд[40]. Впечатляюще, но если это самая продолжительная реверберация в мире, то я очень удивлюсь.

На средних частотах мы лучше всего различаем речь, а наш слух обладает максимальной чувствительностью, и поэтому именно в этом диапазоне время реверберации важно для возможности отчетливо слышать. Неудивительно, что пришлось отказаться от мысли проводить богослужения в часовне. Нормальный темп речи – приблизительно три слога в секунду. В мавзолее вы успеете произнести несколько слов, прежде чем через 9 секунд затихнет звук первого. Звуки от разных слов неизбежно будут смешиваться и накладываться друг на друга. В часовне можно разговаривать, если стоишь рядом с собеседником, потому что прямой звук от близкого источника гораздо громче отражений, которые в этом случае легко игнорировать. Помогает также замедленная речь. Но, если вы стоите достаточно далеко от собеседника, прямой звук будет слабее отражений и реверберация заполнит паузы между слогами, сгладив пики и провалы звуковой волны, что сделает речь неразборчивой.


Размеры некоторых соборов в десятки раз превышают размеры часовни в мавзолее Гамильтона, а, согласно уравнению Сэбина, больший объем предполагает и большее время реверберации. Громадные, величественные соборы, построенные для прославления Бога, естественно, обладают впечатляющей акустикой. Звук ассоциируется с духовностью. Сильная реверберация требует от верующих молчания или едва слышного шепота, поскольку более громкая речь усиливается отражениями, создавая неприятную какофонию. Во время богослужения слова проповеди и музыка словно обволакивают вас, подобно вездесущему Богу, которому вы молитесь. Акустика также повлияла на характер богослужения – напевность и медленный темп речи помогают преодолеть последствия сильной реверберации, характерной для таких пространств[41]

Загрузка...