Девять или десять?

– Скажи, Гоги, сколько будет четырежды два?

– Семь, учитель.

– Где-то так, Гоги, где-то так... Семь, восемь...

Анекдот

Девятая планета кружится в такой несусветной дали, что разглядеть ее в небесах до начала XX столетия было решительно невозможно. Даже световому лучу, пробегающему расстояние от Земли до Солнца всего-навсего за восемь минут, требуется пять с половиной часов, чтобы с грехом пополам доползти до Плутона. Плутон отыскали совсем недавно – в 1930 году, и с момента его открытия прошло немногим более трех с половиной плутоновских месяцев, ибо полный оборот вокруг Солнца эта небольшая и очень холодная планета совершает почти за 246 земных лет. Честь открытия девятой и самой маленькой планеты Солнечной системы принадлежит американскому астроному Клайду Томбо, которому в ту пору едва-едва стукнуло 24 года. Однако судьба Плутона как-то сразу же не задалась. Беднягу то вышибали с позором из членов планетного семейства, то вновь принимали обратно под гром рукоплесканий. Эта бестолковая чехарда продолжалась довольно долго, пока в августе 2006 года на Генеральной ассамблее Международного астрономического союза в Праге шумные делегаты большинством голосов окончательно не лишили многострадальный Плутон почетного статуса классической планеты и не поместили его вместе со спутником Хароном в группу так называемых транснептуновых объектов (ТНО). Основными причинами столь возмутительной дискриминации стали малые размеры девятой планеты и некоторые особенности ее орбиты. Плутон – самая маленькая планета Солнечной системы (всего 2300 километров в диаметре, то есть в полтора раза меньше Луны), однако площадь его поверхности (17,9 млн км2) вполне сопоставима с территорией России.

Плутон, единокровный брат Зевса-Юпитера и Посейдона-Нептуна, был повелителем царства мертвых, а Сатурн и Уран приходились ему отцом и дедом, поэтому он замечательно вписался в семью самых далеких планет Солнечной системы. Древние греки считали его редким богачом, ибо ему принадлежали не только души умерших, но и несметные сокровища, таящиеся в земных глубинах. У владыки античного Эреба было и другое имя – Аид, или Гадес, что переводится как «безвидный», «невидимый», «ужасный». Когда в 1978 году американский астроном Джеймс Кристи обнаружил у Плутона естественный спутник, его почти сразу же окрестили Хароном в честь мифического лодочника из царства мертвых. Этот хмурый и неприветливый старик, облаченный в ветхое рубище, перевозил умерших по водам подземных рек, которых в Аиде было полным-полно: бурный Стикс, огненный Флегетон, Лета – река забвения и непроглядно-черный Коцит. Увы, но все на свете имеет свою цену, а потому трудился Харон отнюдь не бесплатно. Помните Бродского, читатель?

Тщетно драхму во рту твоем ищет угрюмый Харон,

тщетно некто трубит наверху в свою дудку протяжно.

Посылаю тебе безымянный прощальный поклон

с берегов неизвестно каких. Да тебе и не важно.

Правда, Иосиф Александрович несколько погорячился, безбожно взвинтив плату за проезд. Покойнику действительно совали денежку под язык во время погребального обряда, однако это была не полновесная драхма, а обол – мелкая серебряная или медная монета достоинством в одну шестую ее часть.

Именем бога смерти хороший мир не назовут. По сравнению с Землей Плутон получает в полторы тысячи раз меньше солнечного тепла, поэтому на его поверхности всегда царит ледяная стужа – от минус 220 до минус 240 градусов Цельсия. При таких низких температурах замерзает даже азот, образуя крупные прозрачные кристаллы до нескольких сантиметров в поперечнике. Обычный водный лед тоже можно найти на Плутоне, правда, в небольших количествах. В некоторых районах встречается замерзший угарный газ – окись углерода. Путешественнику, ступившему на поверхность девятой планеты, откроется пейзаж потрясающей красоты, удивительный мир совершенных геометрических форм наподобие ледяных чертогов Снежной Королевы из сказки Ганса Христиана Андерсена. Подобно мальчику Каю, он даже может попытаться сложить слово «вечность» из прозрачных кристаллов, ибо где, как не на Плутоне, можно в полной мере ощутить ее царственное равнодушие? Угольно-черное небо над головой в тифозной сыпи звезд, нагромождение вековых льдов под ногами и огромный Харон, неподвижно висящий в зените, как напоминание о тщете всего сущего.

Плутон исследован из рук вон плохо, потому что на сегодняшний день это единственная планета Солнечной системы, до которой пока еще не добрался ни один космический зонд. Полет к Плутону – весьма сложная техническая задача, поскольку шесть миллиардов километров, отделяющие девятую планету от Солнца, предъявляют максимум требований и к проблеме радиосвязи с автоматической станцией, и к элементам ее энергоснабжения. Стандартные солнечные батареи на таком огромном расстоянии совершенно бесполезны. Тем не менее в январе 2006 года к Плутону стартовал американский аппарат «New Horizons», который должен встретиться с повелителем холодных миров в июле 2015 года. Если все сложится благополучно, космический зонд продолжит полет, все дальше уходя от Солнца. Его новой целью станут объекты пояса Койпера – аморфное облако насквозь промороженных ледяных глыб, лежащее за орбитой Плутона.

В 1988 году у девятой планеты была обнаружена очень разреженная атмосфера, предположительно состоящая из азота, метана, аргона и неона. Давление этой почти невесомой дымки совершенно ничтожно, что, однако, не мешает протеканию химических реакций. Под влиянием солнечного ветра атомы азота, углерода, водорода и кислорода взаимодействуют между собой, порождая сложные органические соединения. Оседая на поверхность планеты, они окрашивают ее в желтовато-розовый цвет. Но наиболее примечательная особенность атмосферы Плутона – ее сезонные метаморфозы, связанные со сменой времен года. По мере приближения к Солнцу температура начинает расти, что приводит к испарению азотного льда и «распуханию» атмосферы. Но стоит Плутону улететь от Солнца подальше (его орбита представляет собой сильно вытянутый эллипс), как температура немедленно падает, а газы вновь конденсируются и выпадают на поверхность планеты в виде кристаллов азотного льда. Наступает сезонный ледниковый период, и атмосфера на долгое время улетучивается без следа. Таким образом, Плутон – единственная планета Солнечной системы, атмосфера которой периодически рождается и гибнет, как у комет во время их движения вокруг Солнца.

Параметры орбиты Плутона тоже заслуживают внимания. В момент его открытия он располагался достаточно далеко от Солнца, по праву занимая место девятой планеты. Но поскольку его орбита имеет весьма значительный эксцентриситет (0,25, то есть заметно больше, чем даже у Меркурия), расстояние до Плутона от Солнца на протяжении его года меняется почти в два раза – от 29,6 а. е. в перигелии до 48,8 а. е. в афелии. Таким образом, время от времени Плутон оказывается ближе к Солнцу, чем Нептун. Через ближнюю точку своей орбиты Плутон прошел в сентябре 1989 года и теперь продолжает удаляться в сторону афелия (точка максимального удаления от Солнца), которого достигнет лишь в 2112 году, а первый полный оборот вокруг Солнца после своего открытия завершит лишь к 2176 году. Вдобавок орбита Плутона сильно наклонена к плоскости эклиптики (17 градусов, на 10 градусов больше, чем у Меркурия), что также нетипично для большинства планет Солнечной системы.

Осевое вращение девятой планеты тоже имеет свои особенности. Угол между плоскостью экватора Плутона и его орбитальной плоскостью составляет 32 градуса, поэтому при движении по орбите он перекатывается с боку на бок, как колобок. В этом смысле он немного напоминает Уран, хотя у последнего, как мы помним, осевое наклонение еще больше: седьмая планета фактически лежит на боку. Полный оборот вокруг оси Плутон совершает за 6,4 земных суток, а его спутник Харон оборачивается вокруг материнской планеты в точности за то же самое время. Кроме того, орбита Харона лежит в экваториальной плоскости Плутона, поэтому он виден только с одного полушария и никогда не скрывается за горизонтом. А поскольку расстояние между Плутоном и Хароном не превышает 19 400 километров, с поверхности Плутона его спутник смотрится весьма внушительно: его видимый диаметр в семь раз больше диаметра Луны на земном небосводе.

Надо сказать, что Плутон и Харон представляют собой совершенно уникальный тандем среди других планет Солнечной системы. Они очень близки по размерам (2300 и 1200 километров соответственно) и расположены на небольшом расстоянии друг от друга. Соотношение их масс тоже является беспрецедентно высоким, поскольку Плутон всего в восемь раз тяжелее Харона. Для сравнения: Луна, которая традиционно считается весьма крупным спутником, в 81 раз легче Земли, да и расположена гораздо дальше. Аналогичные соотношения масс других планет Солнечной системы и их спутников дают несопоставимо меньшие величины. Скажем, спутники Юпитера (не говоря уже о спутниках Марса) уступают ему по массе в несколько тысяч раз. С другой стороны, Плутон и Харон ощутимо различаются по параметру средней плотности, что позволяет задуматься об их независимом происхождении. Поэтому большинство астрономов полагают, что Плутон и Харон – двойная карликовая планета.

Совокупность всех этих обстоятельств – чрезвычайно вытянутая орбита девятой планеты, сильно наклоненная к эклиптике, ее очень небольшие диаметр и масса, наличие крайне нестандартного спутника – в конце концов побудили специалистов решительно и бесповоротно изгнать Плутон из числа планет Солнечной системы и поместить его в список объектов пояса Койпера (ОПК).

Читатель уже столько раз встретился на страницах этой книги с транснептуновыми объектами (или объектами пояса Койпера, что практически одно и то же), что настало время поговорить о далеких окрестностях Солнечной системы более обстоятельно. Если бы некий межзвездный скиталец посмотрел на Солнечную систему со стороны, он бы увидел, что она окружена сферическим облаком протопланетных тел, роем каменных и ледяных глыб сравнительно небольших размеров. По некоторым оценкам, их там насчитывается несколько миллиардов, а суммарная масса этих небесных тел сопоставима с массой Юпитера. Эту сферическую оболочку, удаленную на 20–50 тысяч астрономических единиц от Солнца, назвали облаком Оорта в честь ее первооткрывателя, голландского астронома Яна Хендрика Оорта. Вспомним, что одна астрономическая единица (1 а. е.) – это среднее расстояние от Земли до Солнца, составляющее около 150 миллионов километров. Таким образом, облако Орта расположено чудовищно далеко – в 20–50 тысяч раз дальше от Солнца, чем Земля. Даже Плутон находится в тысячу раз ближе, поскольку афелий его орбиты лежит «всего» в 50 астрономических единицах от нашего светила. Такие расстояния уже не имеет смысла измерять в километрах, потому что от обилия нулей начинает рябить в глазах. Дабы вы, читатель, могли сколько-нибудь наглядно представить себе эти просторы, достаточно сказать, что центральная часть облака Оорта лежит в половине светового года от земного наблюдателя. Проксима Центавра, ближайшая к нам звезда, находится всего лишь в восемь раз дальше.

Небесные тела, составляющие облако Оорта, медленно вращаются вокруг Солнца, совершая полный оборот за несколько миллионов лет. Астрономы полагают, что именно оттуда, с далекой периферии Солнечной системы, приходят так называемые долгопериодические кометы, которые движутся по чрезвычайно вытянутым орбитам с перигелием ниже орбиты Меркурия. При этом точка их максимального удаления теряется в несусветной дали – в тысячах или даже десятках тысяч астрономических единиц от Солнца. Наконец, орбиты планет лежат приблизительно в одной плоскости (плоскости эклиптики), а кометы летят как бог на душу положит – под самыми причудливыми углами, из чего, собственно, и был сделан вывод о сферической форме облака Оорта.

Но какая сила выталкивает ледяные обломки с их спокойных орбит, заставляя поменять почти круговую траекторию на эллиптическую? До недавнего времени считалось, что аномалии в движение некоторых объектов облака Оорта вносит суммарное гравитационное воздействие едва ли не всех звезд Млечного Пути, поскольку долгопериодические кометы равномерно распределяются по небосводу. Однако несколько лет назад американский астроном Джон Матезе выступил с сенсационной гипотезой. Тщательно проанализировав траектории 82-х наиболее хорошо изученных долгопериодических комет, он пришел к выводу, что в распределении их траекторий обнаруживается отчетливая избирательность. Примерно треть этих комет приходит преимущественно с одной стороны, поэтому говорить о равномерном распределении не приходится. Вдобавок все они имеют атипичные орбиты – слишком короткие по сравнению с орбитами других комет. По мнению Матезе, причиной подобного аномального поведения является не суммарная гравитация звезд, а влияние некоего массивного тела – десятой планеты Солнечной системы, которая выталкивает кометы из облака Оорта по направлению к Солнцу. Согласно его расчетам, эта планета в несколько раз увесистее Юпитера и прячется в самой сердцевине облака, на расстоянии примерно 25 тысяч астрономических единиц (около 0,4 светового года), совершая полный оборот вокруг Солнца за 4–5 миллионов лет.

Кроме того, орбита гипотетической планеты, по всей вероятности, сильно наклонена к плоскости эклиптики, а сама она вращается ретроградно, то есть в направлении, прямо противоположном движению большинства планет Солнечной системы. Орбита с такими параметрами должна быть нестабильной, поэтому планета «икс» Джона Матезе не родная, а пришлая: она не могла сформироваться внутри газово-пылевого диска, который 4 с половиной миллиарда лет назад породил восьмерку классических планет – от Меркурия до Нептуна включительно. Следовательно, «неправильная» десятая планета изначально представляла собой бездомную странницу, блуждавшую в межзвездном пространстве, и только сравнительно недавно была приголублена и удочерена, когда случайно оказалась в окрестностях Солнца.

Впрочем, рассуждать всерьез о десятой планете в облаке Оорта пока не приходится, поскольку реально ее никто не наблюдал – она существует исключительно «на кончике пера» Джона Матезе. А вот в поясе Койпера, который начинается почти сразу же за орбитами Нептуна и Плутона, в последнее время обнаружено немало планет. Американский астроном Джерард Койпер еще в 50-х годах минувшего века выдвинул гипотезу о том, что на задворках Солнечной системы существует обширный пояс астероидов номер два (в отличие от хорошо известного пояса астероидов между орбитами Марса и Юпитера), который простирается на миллиарды километров и постепенно сходит на нет, оставляя между собой и облаком Оорта внушительный пустой промежуток. Долгое время гипотеза американца оставалась не более чем изящной игрой ума, пока в начале 90-х годов прошлого века за орбитой Плутона не обнаружили несколько ледяных обломков. С тех пор существование пояса Койпера стало бесспорным фактом, а список транснептуновых объектов год от года неуклонно пополняется новыми представителями.

Если облако Оорта уподобить дальнему Подмосковью, то пояс Койпера, лежащий на расстоянии от 30 до 100 астрономических единиц от Солнца, будет Подмосковьем ближним. По оценкам специалистов, он может насчитывать сотни тысяч или даже миллионы ледяных и каменных глыб самого разного размера. Тандем Плутон – Харон тоже угодил в число объектов пояса Койпера, лишившись статуса классической планеты, о чем мы в свое время уже писали. Причиной тому стали малые размеры девятой планеты (диаметр Плутона всего-навсего 2300 километров, в полтора раза меньше, чем у Луны) и особенности ее орбиты (выраженный эксцентриситет и заметный наклон к плоскости эклиптики).

Серьезные проблемы у Плутона начались в 2003 году, когда группа американских астрономов во главе с Майклом Брауном обнаружила в поясе Койпера довольно яркий объект, получивший каталоговый номер 2003UB313. В 2005 году удалось рассчитать его орбиту и вычислить размеры новой планеты. Оказалось, что она движется по чрезвычайно вытянутой орбите и сегодня находится в точке максимального удаления от Солнца, на расстоянии 97 астрономических единиц. А вот когда она достигнет перигелия, то будет располагаться втрое ближе – почти на таком же расстоянии от Солнца, как и Плутон. Правда, это произойдет еще не скоро, поскольку Зена (именно так назвал свою планету Браун, в честь героини известного сериала о женщине-воине) совершает полный оборот вокруг Солнца за 650 лет. По оценкам Брауна и его группы, диаметр Зены должен составлять около 3000 километров, что сразу же поставило Плутон в неловкое положение, ибо его поперечник значительно меньше. Вдобавок группа Брауна открыла еще два ярких объекта пояса Койпера на расстоянии 51 астрономической единицы от Солнца, лишь немного уступающих в размерах девятой планете (примерно 70 % ее диаметра).

А когда выяснилось, что поперечник Зены, возможно, определен неверно, а истинные ее размеры могут в два с лишним раза превышать диаметр Плутона, страсти и вовсе разгорелись не на шутку. С какой такой, спрашивается, стати мы должны считать его девятой и последней планетой Солнечной системы, если много дальше вокруг Солнца обращается куда более внушительное небесное тело? Не проще ли безжалостно вычистить незадачливый Плутон из дружной планетной семьи, переквалифицировав его в объект пояса Койпера? Особенно если учесть, что у Зены найден спутник, названный Габриелой в честь верной подруги отважной воительницы. В скобках заметим, что впоследствии Зену переименовали в Эриду – древнегреческую богиню вражды и раздора, урезав ее поперечник до 2400 километров. Тем не менее он все равно больше Плутона, диаметр которого составляет 2300 км. Габриелу тоже вычеркнули из святцев – сегодня она называется Дисномией. Между прочим, именно Эрида поссорила Афродиту, Афину и Геру, бросив на стол знаменитое яблоко раздора с надписью «Прекраснейшей», что привело к Троянской войне. Хорошо, что у греков было так много богов...

В начале 2004 года американский космический телескоп «Спитцер» отыскал в поясе Койпера еще одну планету, которая сейчас находится в 13 миллиардах километров от Солнца, то есть вдвое дальше, чем Плутон. Как и Зена-Эрида, она движется по безбожно растянутому эллипсу, совершая один оборот вокруг Солнца за 10 500 лет. Ее афелий (точка максимального удаления) должен лежать в 130 миллиардах километров от нашего светила, что составляет около 900 астрономических единиц, поэтому размеры пояса Койпера следует, по всей видимости, увеличить как минимум на порядок. Новую планету назвали Седной – в честь эскимосской богини океана и повелительницы морских животных, а ее диаметр оценивается в 1800 километров. Среди других находок «нулевых» годов есть еще несколько примечательных объектов: планеты-карлики 2003EL61 и 2003FY9, почти не уступающие Плутону в размерах, и Квавар с поперечником около 1300 километров (Квавар – это божество-созидатель у индейцев племени Тонгва). Первая из этих планет имеет форму эллипсоида вращения и путешествует в сопровождении двух спутников.

Пояс Койпера загадал астрономам немало загадок. Например, выяснилось, что он не редеет постепенно, как полагал его первооткрыватель, а резко и неожиданно обрывается на некотором – очень большом – расстоянии от Солнца. По мнению специалистов, подобное «усекновение» объясняется взрывом сверхновой звезды неподалеку от нашего светила, в результате чего вся окраинная часть газово-пылевого облака, послужившего материалом для формирования планет Солнечной системы, оказалась начисто выметенной. Первоначальное представление о поясе Койпера как о плоском диске протопланетных тел (в отличие от сферического облака Оорта) тоже, по-видимому, следует признать ошибочным. Скажем, орбита Зены-Эриды не только сильно вытянута, но и наклонена к плоскости эклиптики под углом 44 градуса, а угол наклона орбит двух других объектов пояса Койпера, открытых группой Брауна, составляет 28 градусов. А если вспомнить, что и орбита Плутона тоже лежит вне плоскости орбит всех остальных планет Солнечной системы (правда, у Плутона этот угол меньше – всего 17 градусов), то уже только по этому параметру его следует исключить из списка классических планет.

Таким образом, орбиты едва ли не всех объектов пояса Койпера наклонены к плоскости эклиптики совершенно произвольно, что решительно противоречит господствующей ныне теории образования планет Солнечной системы. Если судить по ортодоксальному сценарию, планеты рождались из плоского газово-пылевого диска, который окружал созревающую в его центре звезду – будущее Солнце. Однако новейшие наблюдательные данные неопровержимо свидетельствуют, что пояс Койпера – никакой не пояс и его нельзя рассматривать в качестве плоского диска. Скорее всего, он представляет собой сферическое образование, напоминающее гораздо более удаленное облако Оорта. Тогда наша Солнечная система, если посмотреть на нее извне, будет похожа на матрешку или луковицу: одна большая сфера (облако Оорта), внутри нее сфера поменьше (пояс Койпера) и, наконец, Солнце и восемь планет, лежащих практически в одной плоскости.

Старая теория происхождения планет такой картины не дает, поэтому в последние годы некоторые астрономы стали активно развивать принципиально иной сценарий, получивший название олигархического. В рамках этой версии главная роль отводится так называемым планетам-олигархам, которые силой своей гравитации существенно повлияли на поведение других небесных тел. После рождения Солнца, классических планет и поясов астероидов процесс формирования Солнечной системы отнюдь не завершился, а продолжал набирать обороты. Астероиды бурно росли и по пересечении некоторого предела начали энергично притягивать к себе другие тела, превращаясь в большие планеты. Сергей Ильин в статье «Бурная биография десятой планеты», опубликованной в июньском номере журнала «Знание – сила» за 2006 год, подробно излагает суть олигархического сценария.

По убеждению авторов этой новой теории, такой же процесс одновременно происходил на окраине Солнечной системы, в поясе Койпера. В результате, как показывают расчеты и компьютерные симуляции, внутри Солнечной системы должно было образоваться 20–30 объектов размером с Марс, а на окраине – примерно столько же объектов размером с Землю. При таком количестве они должны были быть достаточно близки, и это с необходимостью вызывало искажение ими орбит друг друга. Движение «олигархов» становилось хаотическим, они «вышвыривали» друг друга с устойчивых орбит, расположенных в плоскости эклиптики. Часть из них при этом вообще уходила из Солнечной системы в межзвездное пространство, становясь «бездомными» планетами, «планетарами», другие, оставшиеся, приобретали орбиты, наклоненные под самыми «дикими» углами к плоскости эклиптики, и тем самым в своей совокупности создавали сферическое облако диаметром в 1000 астрономических единиц, а то и более. В этом облаке, таким образом, должны по сей день существовать не только «малые планеты» типа Плутона или 2003UB313, но и некоторые из уцелевших «первичных олигархов». Сторонники такого сценария надеются, что создаваемые сейчас телескопы, предназначенные для целей своевременного предупреждения Земли об астероидной опасности, позволят параллельно произвести систематический поиск таких «олигархов» и найти «десятую, одиннадцатую, двенадцатую и так далее» планеты величиной с Землю или даже больше.

Ну что ж, поживем – увидим...

А как обстоит дело с планетами возле других звезд? Ведь если наше Солнце, представляющее собой заурядную желтую звезду спектрального класса G, сумело обзавестись внушительным семейством из восьми классических планет и десятков тысяч разномастных астероидов и планет-карликов, то логично предположить, что у других звезд тоже могут быть свои собственные планеты. А поскольку главным пристанищем жизни во Вселенной являются именно планеты (во всяком случае, так склонны думать большинство биологов), поиск внесолнечных планет приобретает особую актуальность. Правда, вывод о непременной «привязке» жизни к поверхности планет сделан на основе нашего весьма скудного опыта (жизнь известна нам в одном-единственном земном варианте), но гадание на кофейной гуще еще менее плодотворно. Конечно, вполне вероятно, что жизнь может зародиться даже в межзвездной среде (в свое время английский астрофизик Фред Хойл написал на эту тему фантастический роман под названием «Черное облако»), однако подобная гипотеза будет еще более спекулятивной. С планетами все же как-то яснее – тому примером наше собственное существование. Поэтому если мы хотим знать, насколько распространена жизнь во Вселенной, следует сначала разобраться с планетными системами у других звезд.

До недавнего времени многие ученые полагали, что планеты – весьма редкое явление в космосе. Такой взгляд с очевидностью вытекал из теории происхождения планет английского астронома Джинса. Согласно этой некогда популярной теории, планеты Солнечной системы образовались из языка солнечного вещества, который был выхвачен гравитационными силами проходившей мимо Солнца массивной звезды. Струя вещества, выплеснувшаяся в космос, имела веретенообразную форму – с утолщением в центральной части и сравнительно тонкими концами. Поэтому ближайшие к Солнцу планеты земной группы и наиболее удаленные вроде Плутона и других объектов пояса Койпера невелики по размерам и массе, а в центре Солнечной системы обосновались газовые гиганты. А поскольку сближение звезд – событие не только случайное, но и крайне редкое (во всяком случае, на задворках Млечного Пути, где находится наше Солнце), рождение планетных систем совершается весьма нечасто. Правда, сегодня теория Джинса представляет в значительной мере исторический интерес, так как на смену ей пришел иной сценарий: практически одновременное возникновение планет и Солнца из вращающегося газово-пылевого облака. Как бы там ни было, но теории остаются теориями, а мы желаем знать наверняка, существуют ли планетные системы у других звезд.

Разумеется, прямое оптическое наблюдение планет возле других звезд невозможно даже сегодня и вряд ли будет возможно в обозримом будущем. И хотя научно-технический прогресс поспешает вперед семимильными шагами, существуют запреты принципиального характера. Планеты, как известно, представляют собой небесные тела, которые светят отраженным светом своего солнца, поэтому их блеск на фоне сияния материнской звезды практически неразличим. Разглядеть чуточную искорку на фоне полыхающего костра до сих пор не удавалось еще никому. Возможно, что в центре Млечного Пути, где звезды сбиваются в тесные стаи, визуальное отслеживание планет не представляет особых трудностей, но на периферии нашей Галактики фиксация планет у соседних звезд оборачивается почти неразрешимой задачей. Спиральные рукава Млечного Пути, в одном из которых прозябает наше Солнце, отстоящее от центра Галактики на 26 тысяч световых лет, не могут похвастаться высокой плотностью звездного населения. Это отнюдь не Голландия, не Бельгия и не долина Ганга, где люди сидят друг у друга на головах, а скорее Якутия или Чукотка. В наших галактических широтах очень много свободного места. Напомню вам, читатель, что даже ближайшие звезды лежат невообразимо далеко: расстояние до Проксимы Центавра (кстати, «проксима» в переводе с латыни означает «ближайшая») составляет 4,3 световых года, знаменитая «летящая» звезда Барнарда отстоит от Солнца на 6 световых лет, а до Сириуса – самой яркой звезды нашего неба – почти 9 световых лет.

Если взять куб со стороной в 10 световых лет, то в нем в лучшем случае поместятся две-три звезды. А вот в заурядном шаровом скоплении, лежащем неподалеку от центра Галактики (в составе Млечного Пути таких скоплений около 200), на 100 кубических световых лет приходится несколько сотен звезд. Плотность звездного населения там в несколько тысяч раз выше, и ночное небо в тех краях должно быть необыкновенно ярким. Итак, подчеркнем еще раз: прямое оптическое наблюдение вне-солнечных планет (или экзопланет, как их стали называть сегодня) не представляется возможным.

Но если экзопланету нельзя обнаружить непосредственно, то, быть может, в распоряжении современной астрономии имеются косвенные методы их выявления? В настоящее время таких методов предложено несколько – астрометрический способ, метод лучевых скоростей, наблюдение транзитов и некоторые другие. Я не стану вдаваться в технические детали и по косточкам разбирать каждый из этих подходов, а отмечу только, что большинство современных методов обнаружения экзопланет основывается на учете гравитационных возмущений в движении звезд. Дело в том, что любое массивное тело (например, планета), вращаясь вокруг звезды, воздействует на нее силой своего тяготения. При этом планета как бы слегка подтягивает звезду к себе, а поскольку за счет движения по орбите она периодически оказывается по разные стороны от светила, то и звезда периодически смещается в разных направлениях под действием гравитации планеты. Другими словами, если планета движется по орбите вокруг материнской звезды, то и звезда, в свою очередь, не остается неподвижной, а описывает крохотную окружность в пространстве под влиянием сил тяготения своего естественного спутника. Таким образом, оба тела в действительности вращаются вокруг общего центра масс, который астрономы называют барицентром.

Разумеется, масса планет ничтожно мала по сравнению с массой звезды, поэтому размах ее колебаний весьма невелик. Скажем, Солнце под воздействием притяжения Юпитера (а это самая массивная планета) колеблется относительно центра масс Солнечной системы со скоростью всего 12,5 метра в секунду. Для Земли или Венеры эта величина еще меньше и составляет примерно 0,1 метра в секунду. Можно сказать, что Солнце чуть-чуть покачивается при движении планет по своим орбитам, а барицентр Солнечной системы лежит, таким образом, внутри нашего светила. До самого недавнего времени чувствительность аппаратуры, имеющейся в распоряжении астрономов, была явно недостаточна, чтобы обнаружить легкие небесные тела у других звезд. И хотя такие попытки неоднократно делались, все они находились на пределе экспериментальной точности и подвергались обоснованному сомнению.

Положение изменилось только в начале 90-х годов прошлого века, когда появились спектрометры нового поколения, позволявшие гораздо точнее измерять лучевые скорости звезд. Что такое лучевая скорость? Если у звезды имеется спутник (другая звезда или планета), то при движении вокруг барицентра лучевая скорость звезды (скорость ее приближения или удаления от наблюдателя по лучу зрения) будет испытывать колебания с периодом, равным периоду обращению звезды вокруг центра масс. Чувствительность аппаратуры в конце XX столетия выросла, по крайней мере, на порядок, так что стало возможным находить внесолнечные планеты, сопоставимые по массе с Юпитером.

Помимо астрометрического метода и метода лучевых скоростей, существует еще один способ обнаружения экзопланет – так называемое наблюдение транзитов. Если поймать планету в момент ее прохождения по диску звезды, можно не только вычислить ее массу, но и определить размеры (объем), а следовательно – рассчитать плотность. Разумеется, различить темный кружок на точечном диске звезды нельзя (даже в самый мощный телескоп звезды выглядят безразмерными точками), однако измерить небольшое уменьшение потока света от звезды вполне возможно. К сожалению, метод наблюдения транзитов требует выполнения особых условий: планета, ее звезда и земной наблюдатель должны располагаться в одной плоскости (в плоскости кеплеровской орбиты, как говорят астрономы). Такая удача выпадает сравнительно редко, поэтому случаи наблюдения транзитов можно буквально пересчитать по пальцам. Тем не менее овчинка стоит выделки, ибо только с помощью этого метода удается изучить ряд важных характеристик экзопланет, измерить их радиус и даже исследовать свойства их атмосфер.

Первый успех выпал на долю швейцарских астрономов М. Майора и Д. Квелоца, которым повезло обнаружить планету возле солнцеподобной звезды, обозначенной в каталоге как 51-я в созвездии Пегаса (51 Peg). Это знаменательное событие произошло в 1994 году, однако характеристики первой экзопланеты оказались настолько неожиданными, что ученые решили задержать публикацию, чтобы как следует перепроверить свои результаты. К 1995 году все сомнения отпали, и открытие вылупилось. Новая планета у 51 Пегаса поражала воображение. Ее масса примерно равнялась массе Юпитера, а расстояние от материнской звезды составляло всего 0,05 астрономической единицы, то есть в 20 раз меньше, чем от Земли до Солнца (и даже почти в 8 раз меньше, чем от Солнца до Меркурия). Планета совершала полный оборот вокруг звезды за 4,2 суток – такова была продолжительность ее года. Из-за близости к светилу температура ее поверхности превышала 1000 градусов по Кельвину.

Сказать, что научный мир был повергнут в состояние шока, – ничего не сказать. Планетная система 51 Пегаса оказалась совершенно непохожей на Солнечную систему. Осенью 1995 года Майор и Квелоц доложили о своем открытии на конференции в Италии, а планеты условились называть по имени звезды с добавлением буквы «b» для первой найденной планеты, «с» – для второй и так далее. Поначалу астрономы тешили себя надеждой, что швейцарцев угораздило наткнуться на какую-то аномалию, небывалую редкость в мире планет, однако последующие находки заставили взглянуть на вещи по-иному. Очередная экзопланета имела массу вчетверо большую, чем у Юпитера, а период ее обращения вокруг материнской звезды (то есть год) оказался еще короче – 3,3 суток. Впоследствии планеты подобного типа стали называть «горячими юпитерами». Правда, в 1996 году американским астрономам Д. Марси и П. Батлеру вроде бы удалось обнаружить планетную систему, отчасти напоминающую Солнечную, у звезды ипсилон Андромеды (?And), однако более внимательный анализ показал, что сходство это кажущееся. В системе ?And вокруг материнской звезды кружатся три весьма увесистые планеты, причем масса ближайшей из них немного меньше массы Юпитера, а две другие тяжелее нашего газового гиганта в два и четыре раза соответственно. Первая (самая легкая) планета – типичный «горячий юпитер» с радиусом орбиты 0,06 а. е., а вот две другие лежат на вполне приличных расстояниях – 0,9 и 2,5 а. е. Однако орбиты этих далеких экзопланет не имеют ничего общего с орбитами планет Солнечной системы, поскольку обладают весьма значительным эксцентриситетом. К сожалению, опять неувязочка. Список внесолнечных планет продолжал неуклонно пополняться, и к середине марта 2007 года насчитывалось уже 182 звезды, обремененные планетами. А поскольку в некоторых системах удалось обнаружить несколько планет, их общее количество превысило число 200.

Таким образом, на сегодняшний день астрономы располагают пусть ограниченной, но все же достаточно обширной статистикой, на основании которой можно утверждать, что примерно 4 % звезд, близких к Солнцу по спектральным свойствам, обладают планетными системами или одиночными планетами. У чуть более горячих и чуть более холодных звезд классов F и К (напомним, что наше Солнце относится к классу G) планет обнаружено совсем мало. Разумеется, это не означает, что у горячих белых и голубых звезд планеты отсутствуют в действительности; просто метод лучевых скоростей не универсален и плохо работает, если звезда имеет неспокойную фотосферу.

Но самая главная проблема заключается в том, что практически все новооткрытые экзопланеты или планетные семейства демонстрируют разительное отличие от Солнечной системы и ее планет. Только в единичных случаях удалось обнаружить планеты, обращающиеся по круговым или почти круговым орбитам на достаточном удалении от материнской звезды. Все прочие либо крутятся, как безумные, впритык к своему солнцу, разогреваясь до сотен и тысяч градусов (а ведь речь идет о газовых гигантах размером с Юпитер, а то и больше), либо находятся на резко эксцентрических орбитах, больше напоминающих орбиты комет. Что бы вы сказали о планете, в несколько раз превосходящей по массе Юпитер, которая то приближается к материнской звезде почти вплотную, то улетает за орбиту Нептуна? А между тем именно так сплошь и рядом устроены планетные семейства чужих солнц.

В последнее время астрономы заговорили об «очень горячих юпитерах». Одна такая планета, в полтора раза превышающая Юпитер по массе, была сравнительно недавно обнаружена у звезды солнечного типа. Она расположена на расстоянии 3,3 миллиона километров (0,02 а. е.) от родительской звезды (среднее расстояние Меркурия от Солнца – 58 миллионов километров) и обращается вокруг нее за рекордно короткий срок – 1,2 суток. Материнская звезда с поверхности этой уникальной планеты выглядит как невообразимо огромный, пышущий испепеляющим огнем шар (в 50 раз больше в поперечнике, чем Солнце на земном небосклоне).

Необычные планетные семейства других звезд решительно противоречат общепринятой теории образования планетных систем, согласно которой Солнце и планеты родились из газово-пылевого диска практически одновременно. Все планеты Солнечной системы распадаются на две большие группы: сравнительно небольшие твердые шарики с высокой плотностью, сложенные скальными породами, и газовые гиганты, чья средняя плотность мало отличается от плотности воды. Разница между большими и малыми планетами объясняется тем, что газовые гиганты рождались в центральной части протозвездного облака путем постепенного налипания огромных масс газа на первичное ледяное ядро, а малые планеты формировались на ближней и дальней периферии газово-пылевого диска, где вещества было весьма негусто. Образование планет земной группы мыслится как результат многократных столкновений и слияний так называемых планетазималей (планетных зародышей) с последующим их разогревом за счет радиоактивных элементов, осевших в ядрах твердых планет. Поскольку первичное газово-пылевое облако имело форму вращающегося вокруг вертикальной оси диска с утолщением в центре, орбиты всех планет должны представлять собой почти правильные окружности и лежать в одной плоскости. Во всяком случае, так гласит общепринятая теория планетообразования.

Между тем экзопланеты и экзопланетные семейства упорно не желают вписываться в сию идиллическую картину, поэтому астрофизикам и планетологам приходится подыскивать другие объяснения. И если необычные свойства первых внесолнечных планет поначалу рассматривались как некая аномалия, то новые открытия побуждают задуматься о том, что аномалией, скорее всего, следует считать нашу Солнечную систему. Чтобы объяснить феномен «горячих юпитеров», был предложен механизм миграции, представляющий собой медленное сползание планет с высоких орбит, где они первоначально образовались, на орбиты низкие, околозвездные. То обстоятельство, что они ни в коем случае не могли родиться в непосредственной близости от материнской звезды, где и находятся по сей день, у большинства планетологов сомнений не вызывает. Дополнительным аргументом в пользу «далекого» рождения «горячих юпитеров» являются обнаруженные астрономами газово-пылевые облака в стадии формирования планет. Обширная зона вокруг звезды всегда чисто подметена, свободна от пыли и газа, потому что плотность звездного излучения здесь настолько высока, что напрочь выметает весь мусор на периферию. Поэтому материал, из которого формируются низкоорбитальные «горячие юпитеры», может находиться только на расстоянии не меньше пяти астрономических единиц от родительской звезды. По всей видимости, механизм миграции включается очень рано, а события развиваются весьма стремительно: едва успев родиться, планеты начинают скользить по пологой спирали к своему солнцу, пока приливные взаимодействия звезды и планеты не стабилизируют орбиту «горячего юпитера» вплотную к звезде. Впрочем, вполне возможен и другой сценарий: гравитация материнской звезды постоянно тормозит планету, пока та не рухнет по суживающейся спирали на свое солнце и не сгорит в его недрах.

Притиснутые вплотную к родительской звезде, газовые гиганты являются настолько заурядным явлением, что остается только развести руками. Феномен Солнечной системы не находит внятного объяснения. Доктор физико-математических наук Л. Ксанфомалити, сотрудник Института космических исследований РАН, пишет об этом следующим образом: «Внесолнечные планеты предлагают теоретикам столько вопросов, что впору всю теорию образования планет писать заново. А наивный вопрос: почему миграции нет в нашей Солнечной системе? – им лучше не задавать». Тем более не стоит спрашивать специалистов о других физических параметрах экзопланет. Принимая за точку отсчета Солнечную систему, мы вправе предположить, что средняя плотность газовых гигантов возле чужих солнц (горячие они или холодные – принципиального значения не имеет) должна укладываться в знакомые величины, мало отличающиеся от плотности воды. Однако не тут-то было! Средняя плотность массивных экзопланет «плавает» в очень широких пределах – от половины плотности Юпитера до нескольких плотностей Сатурна. Например, одна из таких планет, ощутимо уступающая Юпитеру в диаметре, основательно превосходит его по массе, из чего следует предположить, что она обладает увесистым ядром из тяжелых элементов, на которое приходится до 0,7 массы новой экзопланеты. Газовые гиганты в Солнечной системе не могут похвастаться столь плотным ядром, так что в стандартной теории происхождения планет этот факт не находит вразумительного объяснения.

Феномен «горячих юпитеров» астрофизики с грехом пополам объяснили, но остаются еще «холодные юпитеры», сплошь и рядом описывающие вокруг материнской звезды настолько растянутые эллипсы, которые больше пристали долгопериодическим кометам, время от времени улетающим в никуда. Правда, компьютерное моделирование вроде бы помогло пролить свет на эволюцию планетной системы ипсилон Андромеды («горячий юпитер» на низкой орбите и две далекие планеты с отчетливым эксцентриситетом орбит). С другой стороны, модели моделям рознь. Например, сотрудники Вашингтонского университета в Сиэтле почему-то пришли к выводу, что большинство экзопланет, сходных по размерам с Землей (на всякий случай для справки: ни одна такая планета пока что не наблюдалась, ибо их обнаружение лежит за пределами современных астрофизических методов), должны быть водными мирами. Они тасовали различные сценарии планетогенеза, и каждый раз на дисплее возникали четыре землеподобные планеты, самая маленькая из которых была впятеро меньше Земли, а самая большая – в четыре раза больше. При компьютерном моделировании на этих виртуальных землях накапливалось невероятное количество воды – в 300 раз больше, чем на реальной Земле, так что вся их поверхность должна быть покрыта впечатляющим океаном многокилометровой глубины.

Кстати, а что можно сказать о поисках планет земного типа? Увы, но практически ничего, так как чувствительность метода лучевых скоростей позволяет надежно обнаруживать только планеты-гиганты (планеты возле пульсаров, о которых речь пойдет ниже, – редкое и счастливое исключение). Самая маленькая из недавно открытых экзопланет вращается вокруг красного карлика – звезды спектрального класса M с температурой поверхности 2–3 тысячи градусов Кельвина (у нашего Солнца – 6 тысяч). Предположительно она является твердой, то есть состоит из скальных пород, как Земля, а ее масса оценивается примерно в 7,5 земной массы (заметно меньше, чем у Нептуна или Урана). Все бы ничего, однако, к сожалению, это опять планета на низкой орбите (правда, по причине сравнительно небольших размеров назвать ее «юпитером» как-то язык не поворачивается). Вокруг своего тусклого солнца она обращается за двое суток (1,94 дня) и находится от него на расстоянии три миллиона километров – в 50 раз ближе, чем Земля от Солнца. И хотя красный карлик – не чета нашему жаркому светилу, он все же разогревает поверхность стремительно летящей планеты до 200–400 градусов по Цельсию. Жизнь земного типа там едва ли возможна.

Однако отчаиваться все же не стоит, поскольку статистика внесолнечных планет далеко не полна. Скажем, немалый интерес представляет система звезды HD37124 в созвездии Тельца, где обнаружены три планеты, каждая из которых вдвое легче Юпитера, а радиусы их орбит равны 0,5, 1,7 и 3,2 а. е. А поскольку особой тесноты в системе звезды из созвездия Тельца не наблюдается, там вполне можно предположить наличие планет земного типа. То же самое относится и к звезде 47 Большой Медведицы, у которой обнаружены массивные планеты, напоминающие Сатурн и Юпитер, с весьма сходными параметрами орбит. Следовательно, во внутренней области этой системы не исключено существование планет земного типа.

Однако факт остается фактом: строение орбит подавляющего большинства экзопланет даже отдаленно не напоминает Солнечную систему. Вплотную притиснутые к своим солнцам раскаленные газовые шары или убегающие по невообразимо растянутым эллипсам ледяные гиганты не имеют ничего общего с планетами Солнечной системы. Если предположить, что во внутренних областях некоторых экзопланетных систем остается место для землеподобных планет, трудно представить, каким образом они смогут уцелеть, ибо миграция гигантов к звезде неминуемо приведет к катастрофическому пересечению орбит.

Даже анатомия чужих газовых гигантов принципиально иная. Многие из них обладают массивным ядром из тяжелых элементов, на которое приходится до 70 % всей массы планеты. Заметно уступая в размерах нашему Юпитеру или Сатурну, такие нетипичные экзопланеты ощутимо превосходят их по массе. В Солнечной системе ничего подобного не встречается. Все эти загадки, вместе взятые, приводят к весьма печальному выводу об уникальности нашей планетной системы. Планеты земной группы обращаются по устойчивым орбитам и в принципе способны быть колыбелью жизни. Планеты-гиганты неспешно кружатся в отдалении и никому не мешают; более того, существует точка зрения, согласно которой они выполняют важную защитную функцию, прикрывая внутренние планеты от неожиданных атак опасных небесных тел. Дело доходит до того, что некоторые астрофизики поговаривают о своеобразном варианте антропного принципа, в соответствии с которым возникновение жизни на Земле теснейшим образом связано с Юпитером.

Астрономия как наука развивалась под знаком нарастающей децентрализации. Сначала мы узнали, что Земля не является центром мироздания, а представляет собой весьма скромное небесное тело, неутомимо снующее вокруг Солнца. Затем выяснилось, что наше великолепное светило, обожествляемое, превозносимое до небес и дарующее жизнь всякой твари, – заурядный желтый карлик спектрального класса G, каковых в составе Млечного Пути насчитывается тьма-тьмущая. Да и расположено оно отнюдь не в центре Галактики, как опрометчиво полагали некоторые астрономы XVIII столетия, а обосновалось на ее далеких задворках, где звезд раз-два и обчелся, между двумя пыльными спиральными рукавами. А теперь нам говорят, что диск Млечного Пути, эта скрученная в тугой узел чудовищная клякса с поперечником в 100 тысяч световых лет, есть не что иное, как одна из сотен миллиардов галактик, рассыпанных по необозримой Вселенной.

Мысль об уникальности Солнечной системы продолжает сидеть, как заноза, изрядно отравляя астрономам жизнь. Ксанфомалити пишет:

Все крупные планеты Солнечной системы имеют почти копланарные (расположенные в одной плоскости) стабильные орбиты с низким эксцентриситетом, исключающим их катастрофические сближения. Солнечная система – это система с низкой энтропией (высокой устойчивостью). Но именно высокоэнтропийные системы экзопланет, в которых выживают лишь самые массивные тела, могут оказаться нормой. Солнечная система могла оказаться совсем другой, чем та, в которой мы живем. Или, может быть, мы живем в ней именно потому, что она не похожа на другие?

В заключение остается сказать, что первая экзопланета была обнаружена не 1994 году, а на несколько лет раньше – в 1990-м, когда американский астроном польского происхождения Алекс Вольцшан (Волчан в другой транслитерации) направил свой радиотелескоп на слабый пульсар PSR 1257+12, находящийся на расстоянии 1300 световых лет от Земли. По своей физической природе пульсары являются нейтронными звездами, которые испускают мощные, строго периодические импульсы электромагнитного излучения. Периодичность импульсов у каждого пульсара строго индивидуальна и обычно лежит в пределах от 640 импульсов в секунду до одного импульса за пять секунд. Стремительно вращающаяся нейтронная звезда представляет собой, по сути дела, гигантский магнит, а вдоль прямой, соединяющей полюса этого магнита, который крутится как угорелый, вылетают так называемые джеты – мощные струи раскаленной плазмы и фотонов. Переменность блеска объясняется просто, так как магнитный полюс не обязан лежать на оси вращения (магнитные полюса Земли тоже не совпадают с точкой географических полюсов). Вылетающая электромагнитная струя описывает конус вокруг оси вращения, а мы видим пульсар только в те моменты, когда он «смотрит» прямо на Землю. Через мгновение он отворачивается и уходит в сторону, с тем чтобы опять вернуться спустя некоторый, строго фиксированный промежуток времени.

Поскольку период пульсаров исключительно стабилен (вплоть до 10-14секунд), лучевую скорость нейтронной звезды можно измерить с точностью до 1 см/с, что совершенно недоступно для обычных звезд. Еще точнее можно определить ее периодическое смещение при обращении вокруг барицентра, поэтому у пульсара не составляет большого труда обнаружить планеты с массой порядка Земли. Но поскольку существование планет у пульсаров никому не могло привидеться даже в кошмарном сне, астрономы попросту махнули на них рукой.

А вот Алекс Вольцшан нарушил традицию и не прогадал. Анализ вариаций пульсара с частотой импульсов 6,2 миллисекунды показал, что вокруг нейтронной звезды обращаются целых три планеты, массы которых вполне сопоставимы с массой Земли (0,02, 4,3 и 3,9 М„соответственно). Орбиты, по которым они движутся, почти круговые и составляют 0,2, 0,4 и 0,5 а. е. Периоды обращения тоже приемлемые – 25, 66 и 98 суток. Проблема заключается в том, что совершенно непонятно, каким образом эти планеты смогли благополучно пережить взрыв сверхновой, ибо нейтронная звезда есть не что иное, как продукт взрыва обычной звезды на излете ее жизни. Взрыв сверхновой – это чудовищный катаклизм, который должен был «выгладить» подчистую окрестности звезды, так что планеты элементарно не могли уцелеть. Астрофизики предполагают, что неподалеку от взорвавшейся сверхновой когда-то находилась другая звезда, вещество которой постепенно перетекало к пульсару (пульсар – весьма массивное тело), а сопли, оставшиеся не у дел, сконденсировались в планеты.

Чтобы решить, насколько уникальна Солнечная система, нужно продолжать поиск экзопланет, и в первую очередь – землеподобных. Есть основания полагать, что грядущее десятилетие должно ознаменоваться новыми находками. Французы намереваются запустить космический спутник COROT, специально предназначенный для наблюдения транзитов, а американский орбитальный телескоп «Кеплер» за четыре года работы сможет исследовать около 100 тысяч звезд. Европейское космическое агентство запланировало запуск спутника «Дарвин», представляющего собой систему из шести орбитальных телескопов, который нацелен на поиски химических признаков жизни на других планетах. Остается надеяться, что количество рано или поздно перейдет в качество.

Загрузка...