Тот, кто сотворил мир, сделал несбыточной мечтой встречи Сотворенных на разных звездах. Он возвел между ними преграду, идеально пустую и невидимую, но непреодолимую: свое, а не человеческое расстояние.
В старину люди жили на плоской Земле. Ничего удивительного в этом нет, ибо человеческому глазу земная поверхность и впрямь видится убегающей за горизонт бескрайней плоскостью, если, конечно, пренебречь локальными перепадами рельефа по высоте. Путешествуя по долинам и по взгорьям, купцы и солдаты Древнего мира могли на собственном опыте удостовериться, что поверхность Земли представляет собой огромный плоский блин.
Однако считать наших далеких предков наивными простаками было бы опрометчиво и недальновидно. Просто наука в ту пору пока что барахталась в пеленках. Рыхлую груду фактов, где точные наблюдения и поразительные догадки перемежались с чудовищными заблуждениями, еще предстояло систематизировать. Отделение зерен от плевел – совсем не такая легкая задача, как может показаться на первый взгляд.
Но если зрение нас не обманывает и Земля действительно плоская, следовало бы выяснить, как далеко она простирается. А поскольку никому из смертных не удалось добраться до ее края и заглянуть вниз, вполне логичным казалось предположение, что этого края нету вовсе – земная поверхность нигде не кончается. Но бесконечность – весьма неуютное понятие, плохо поддающееся рациональному осмыслению, и люди всегда стремились от нее избавиться. Если же край у Земли все-таки есть, что, скажите на милость, может помешать мировым водам, со всех сторон омывающим сушу, без остатка излиться в бездонную пропасть? Положение спасал небесный свод, опрокинутый над Землей исполинской чашей и составляющий с ней единое целое. Таким образом, вечно убегающий горизонт будет тем местом, где хрустальный купол небес соединяется с земной твердью. Между прочим, библейское выражение «твердь земная и твердь небесная» является отголоском тех ветхозаветных географических представлений.
Итак, мы худо-бедно разобрались с устройством Вселенной. Получилось корыто с плоским дном, прихлопнутое крышкой небесного свода. Осталось определиться с формой и размерами этой конструкции. Однако у разных народов порой бытовали диаметрально противоположные мнения на этот счет.
Скажем, древние египтяне, жившие в долине Нила, и шумеры, населявшие междуречье Тигра и Евфрата, полагали, что Земля гораздо протяженнее с востока на запад, чем с севера на юг. В силу ряда исторических причин они были довольно неплохо знакомы с обитателями сопредельных стран, лежавших у восточных и западных границ их царств, а вот южные и северные земли долго были для них почти полной terra incognita. Поэтому шумерам и египтянам Земля рисовалась в виде прямоугольного ящика, вытянутого в широтном направлении. У греков же чувство геометрических пропорций было, по-видимому, развито лучше: по их мнению, Земля представляла собой круглую плиту, разумеется, с Грецией в центре. Сушу со всех сторон омывали воды могучей реки под названием Океан, а Средиземное море являлось ее худосочным ответвлением, своего рода аппендиксом, протянувшимся к центру мира.
Древнегреческий историк и географ Гекатей Милетский, живший за пять веков до начала христианской эры, автор фундаментального труда «Землеописание», который дошел до наших дней в отрывках, попытался даже вычислить размеры этой плиты. Он пришел к выводу, что ее диаметр не должен превышать 8 тысяч километров; таким образом, площадь плоской Земли будет равняться 50 миллионам квадратных километров. И хотя истинная площадь нашей планеты в 10 раз больше, смеем полагать, что цифры, полученные отважным уроженцем Милета, представлялись современникам чудовищными. Конечно, круг – более совершенная фигура по сравнению с неуклюжим прямоугольником, однако сакраментальный вопрос, что удерживает земной диск на месте, по-прежнему оставался без ответа. Древние греки были не лыком шиты и прекрасно знали, что все тяжелые тела имеют тенденцию падать вниз.
– Если плоский земной диск действительно столь велик, – говорили скептики, радостно потирая сухие ладошки, – то пусть уважаемый Гекатей объяснит нам, неразумным, какие силы заставляют его висеть неподвижно. Если же он все-таки со свистом проваливается в пустоту, подобно всем остальным телам, то почему мы не замечаем этого стремительного падения?
Мы не знаем, как отвечал первый античный географ на неудобные вопросы оппонентов. Проще всего было сказать, что земная твердь простирается вниз неограниченно, но это сразу же приводило на память проклятую бесконечность, от которой только что удалось отделаться. Куда разумнее было предположить, что земной диск покоится на чем-нибудь прочном. Индусы помещали Землю на четыре столпа.
– Очень хорошо, – язвительно цедили через губу скептики, – а на чем стоят столпы?
– На гигантских слонах, это даже малые дети знают.
– А слоны?
– А слоны, да будет вам известно, попирают своими ногами панцирь исполинской черепахи.
– А черепаха?...
Дурная бесконечность раз за разом упорно вылезала изо всех дыр, и представление о плоской Земле загоняло мыслителя в безнадежный тупик.
Давайте вспомним веселую сказку Лазаря Лагина о могущественном джинне Гассане Абдуррахмане ибн Хоттабе родом из древней Аравии, волею судеб очутившемся в современной Москве. Говорят, он был весьма влиятельной фигурой при дворе мудрого царя Соломона, который правил 3000 лет тому назад в Палестине, но чем-то не потрафил кесарю. Любвеобильный царь (по преданию, у Соломона было 700 жен и 300 наложниц) не стал церемониться с ослушником и без долгих разговоров повелел заточить его в глиняный сосуд, каковой надлежало утопить в морской пучине. А 3000 лет спустя московский школьник Волька Костыльков случайно наткнулся на замшелую керамическую посудину во время утреннего купания. Сколько живут джинны, в точности никто не знает, но Хоттабыч оказался на редкость бодрым и покладистым стариком, а потому сразу же предложил своему спасителю массу услуг. Вольке предстоял экзамен по географии, в которой он довольно мелко плавал, так что после нескольких сугубо формальных телодвижений правильный пионер и действительный член астрономического кружка при Московском планетарии подмахнул взаимовыгодную сделку.
Подсказки джинна – не фунт изюму. Вольке досталась Индия, но об Аравийском море и Бенгальском заливе, которые моют берега этого огромного полуострова, бедный мальчик ничего сказать не успел. Вопреки собственному желанию он понес несусветную чушь о стране, лежащей на самом краю земного диска, и о сопредельных землях, населенных плешивыми людьми, которые питаются исключительно сырой рыбой и древесными шишками.
Когда же его спросили, о каком диске он толкует и разве неизвестно ему, что Земля имеет форму шара, Волька, повинуясь Хоттабычу, высокомерно усмехнулся и продолжал в той же велеречивой манере:
– Ты изволишь шутить над твоим преданнейшим учеником! Если бы Земля была шаром, воды стекали бы с нее вниз и люди умерли бы от жажды, а растения засохли. Земля, о достойнейшая и благороднейшая из преподавателей и наставников, имела и имеет форму плоского диска и омывается со всех сторон величественной рекой, называемой «Океан». Земля покоится на шести слонах, а те стоят на огромной черепахе. Вот как устроен мир, о учительница!
Шутки шутками, но обывательские представления о природе вещей на редкость живучи. Рассказывают, что однажды Бертран Рассел, выдающийся английский философ и математик, читал публичную лекцию по астрономии. И хотя дело происходило сравнительно недавно, в начале прошлого века, лектор был обстоятелен и нетороплив. Рассказав о том, как Земля вращается вокруг Солнца, он не преминул заметить, что наше великолепное дневное светило является заурядной звездой и, в свою очередь, тоже движется вокруг центра Галактики. Когда лекция подошла к концу, из задних рядов поднялась маленькая пожилая леди и заявила, что все, о чем здесь толковал уважаемый лектор, – сплошная чушь.
– На самом деле, – сказала она, – наш мир – это большая плоская тарелка, которая стоит на спине гигантской черепахи.
– Ну хорошо, – улыбнулся Рассел, – а на чем же держится черепаха?
– Вы очень проницательны, молодой человек, – отвечала маленькая пожилая леди. – Черепаха стоит на спине другой черепахи, та – еще на одной и так далее, и так далее, и так далее.
Наверное, космогония Гекатея еще долго была бы в ходу, если бы не отдельные досадные мелочи. Наблюдательные греки подметили, что картина звездного неба ощутимо меняется во время путешествия с юга на север. Часть звезд уплывает за южный горизонт, а на севере загораются новые созвездия, которые невозможно разглядеть в южных широтах. Например, Полярная звезда шаг за шагом взбирается все выше и выше, из чего с необходимостью следовало заключить, что рано или поздно она повиснет прямо над головой путешественника. Разумеется, грекам было невдомек, что подобное событие может состояться только лишь на Северном полюсе, но тенденция говорила сама за себя. (Справедливости ради отметим, что за пять веков до Рождества Христова Полярная, то есть альфа Малой Медведицы, не была ближайшей к полюсу звездой, но эти частности мы здесь опустим.) С другой стороны, при поездке на юг Полярная звезда начинает скользить вниз, увлекая за собой северные созвездия, а из-за южного горизонта выныривают незнакомые звезды. На линии экватора (понятие столь же умозрительное для древних греков, как и Северный полюс) Полярная звезда должна лечь на северный горизонт. Если бы Земля была плоским диском, рисунок созвездий менялся бы крайне незначительно, чуть-чуть смещаясь по перспективе. Звездное небо всюду выглядело бы одинаково, а вышеописанных сложных эволюции не было бы и в помине.
Поэтому древнегреческий философ Анаксимандр, живший почти за 100 лет до Гекатея и тоже уроженец Милета, предположил, что земная поверхность искривляется по направлению с юга на север. Вместо круглой плиты у него получился цилиндр, лежащий горизонтально, на поверхности которого живут люди. Надо сказать, что малоазийский город Милет был самой настоящей культурной Меккой античного мира, ибо старший современник Анаксимандра, его земляк и учитель Фалес, первый представитель школы ионийских натурфилософов, тоже понимал толк в движении небесных светил. По преданию, он предсказал солнечное затмение 585 года до н. э. Откровенно говоря, не совсем понятно, как ему удалось это сделать, потому что у Фалеса наша Земля имела форму плоского диска, плавающего на поверхности бескрайнего океана. Теорию солнечных и лунных затмений греки разработали значительно позже, так что оставим достижения Фалеса Милетского на совести хронистов.
Цилиндрическая Земля Анаксимандра была бесспорным шагом вперед по сравнению с плоской Вселенной Гекатея или Фалеса, но и она, увы, не спасала положения. Как известно, античные греки были морским народом, очень рано освоившим и заселившим средиземноморское побережье на всем его протяжении – от Гибралтарских столпов на западе до берегов Малой Азии на востоке. Верткие остроносые корабли отважных мореходов не только проникли через цепочку проливов в Черное море (греки называли его Эвксинским Понтом), но и вышли в Атлантику, а в поисках легендарной страны Туле добрались до Британских островов (экспедиция Пифея). Недаром баснописец Эзоп однажды сравнил своих соплеменников с лягушками, облепившими со всех сторон родное болото. Древним грекам, вся жизнь которых была тесно связана с морем, едва ли не каждый божий день доводилось провожать утлые скорлупки в далекое плавание. Внимательно наблюдая за кораблями, покидавшими гавань, они не единожды имели возможность удостовериться, что судно не просто тает «в тумане моря голубом», а словно бы пропадает за склоном холма по частям: сначала из глаз скрывается корпус, потом – парус, затем – верхушки мачт. Тем, кто способен думать, оставалось сделать элементарное умственное усилие, чтобы прийти к выводу о шарообразности Земли. Более того, корабли ускользали под гору совершенно одинаково, вне зависимости от направления, в котором они плыли. Путешествие на юг давало в точности такой же результат, что и плавание на восток или запад. Цилиндрическая модель Анаксимандра была не в силах объяснить равномерный изгиб поверхности Земли по всем направлениям, а потому оказалась несостоятельной. Греки справедливо рассудили, что только поверхность шара не противоречит всей сумме накопленных античной наукой фактов.
Полагают, что мысль о сферичности Земли была впервые высказана современником Сократа Филолаем из Тарента. Это произошло во второй половине V века до н. э. А великий Аристотель, живший примерно 100 лет спустя, уже твердо знал, что Земля – шар, и даже добавил в копилку античной астрономии свой собственный аргумент. Он догадался, что причиной лунных затмений является отбрасываемая Землей тень, когда наша планета оказывается между Луной и Солнцем. Причем поперечное сечение земной тени на диске Луны всегда бывает круглым, что может произойти только в том случае, если Земля имеет форму шара. Будь Земля плоским диском, картина была бы совершенно иной. Говорят, что Аристотель даже попытался вычислить длину экватора нашей планеты, взяв за основу разницу в положении Полярной звезды в Греции и Египте. У него получилась величина, примерно равная 400 000 стадиев. Если перевести античные меры длины в привычную нам метрическую систему, то в одном стадии окажется около 200 метров. Во всяком случае, большинство историков полагают, что это именно так (аттический стадий насчитывал 185 метров, а вавилонский – 195 метров), хотя полной ясности в этом вопросе нет. Так или иначе, но диаметр Земли, измеренный Аристотелем, оказался вдвое больше современного значения.
А вот Эратосфен Киренский, живший в III веке до н. э., получил куда более надежный результат. Из расчетов Эратосфена следовало, что окружность земного шара составляет (в переводе на метрические меры) 39 700 километров (современные вычисления дают почти 40 000 километров). Результат Эратосфена удалось слегка подправить только в конце XVIII столетия, что не может не насторожить вдумчивого исследователя, поскольку инструменты, которыми пользовался греческий астроном, были на редкость примитивны. Он измерял высоту Солнца над горизонтом 21 июня, в день летнего солнцестояния, когда полуденное светило наиболее высоко поднимается в небе. Измерения проводились в один и тот же день в двух египетских городах – Сиене (современный Асуан) и Александрии, которая расположена на 800 километров севернее. В Сиене вертикально воткнутая в землю палка не давала тени, из чего следует, что Солнце в тот день стояло точно в зените над Сиеной. А вот в Александрии коротенькая тень обнаружилась, что соответствовало положению полуденного Солнца на 7 с лишним градусов южнее зенита.
Будь Земля плоской, Солнце и в Сиене, и в Александрии стояло бы в зените одновременно, поскольку расстояние между этими городами сравнительно небольшое. А коль скоро удалось выявить разницу в длине тени, это означает, что поверхность планеты между городами искривлена, так как палки в Сиене и Александрии оказались под углом друг к другу. Несложный расчет показывает, что если разница в 7 градусов соответствует 800 километрам, то разница в 360 градусов (полный оборот по окружности) даст величину около 40 000 километров. Понятно, что если известна длина окружности, не составит труда рассчитать диаметр шара, его объем и площадь его поверхности. Поперечник Земли составляет примерно 12 800 километров, а площадь сферы с таким диаметром окажется равной примерно 500 миллионам квадратных километров.
Между прочим, человечеству крупно повезло, что размеры Земли не особенно велики. Будь наша планета значительно больше, вид звездного неба при перемещении на несколько сотен километров практически не менялся бы, а корабли успевали бы растаять в атмосферной дымке, прежде чем скрылся бы за горизонтом их корпус. Да и граница земной тени на диске Луны выглядела бы в этом случае идеально прямой линией. Угадать на глаз ее ничтожную кривизну было бы решительно невозможно. Надо полагать, что и развитие астрономии пошло бы тогда совсем по-другому, а представление о шарообразности планеты возникло значительно позже.
Если бы Вселенная исчерпывалась Землей, древние греки разрешили бы основной вопрос космологии еще более 2000 лет назад. Однако существовало еще и небо. Поскольку было неопровержимо доказано, что Земля имеет сферическую форму, следовало пересмотреть традиционные представления о небесном своде. Модель опрокинутой чаши сдали в архив, а ее место заняла полая сфера, охватывающая земной шар со всех сторон. Понятно, что диаметр такой сферы должен быть больше диаметра Земли. Весь вопрос заключается в том, насколько больше. Другими словами, далеко ли до неба? Расхожая байка о том, что это немного выше, чем орел летает, уже не работала. Что интересного можно увидеть на небе? Кроме деятельно путешествующих по небосводу Солнца и Луны, на небе имеются еще неподвижные звезды. Точнее, они смещаются все разом, как будто небесная сфера увлекает их за собой, совершая каждые 24 часа полный оборот вокруг Земли. Но друг относительно друга звезды неподвижны, а рисунок созвездий всегда один и тот же. И через год, и через 10, и через 100 лет их можно отыскать в точности на том же самом месте. Складывается впечатление, что звезды пришпилены к небесной сфере, которая неустанно вертится вокруг Земли.
Однако наблюдать древние любили и замечать умели. Они давно обнаружили, что в большом звездном семействе имеются свои непоседы, которые не сидят на месте, а мечутся как угорелые, вычерчивая сложные петлеобразные зигзаги на протяжении года. Солнце и Луна, конечно, – они слишком велики, чтобы считать их звездами. Ну и еще таких торопыг ровно пять – Меркурий, Венера, Марс, Юпитер и Сатурн. Греки стали называть этих вечных скитальцев планетами, что в переводе означает «блуждающие». Оказалось, что при известной сноровке можно даже определить относительные расстояния между ними.
Ближе всего к Земле, бесспорно, находилась Луна, поскольку во время солнечных затмений проплывала между Землей и Солнцем. Расстояния до других планет можно рассчитать, исходя из относительных скоростей их движения на фоне неподвижных звезд. По опыту известно, что чем ближе предмет, тем быстрее он движется. Птица высоко в небе парит величаво и неторопливо, а оказавшись низко над землей, проносится подобно стремительной серой молнии. Итак, расклад древних греков выглядел следующим образом (по мере увеличения расстояния от Земли): Луна, Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн.
Так возникла геоцентрическая модель, которую обычно связывают с именем Клавдия Птолемея, древнегреческого астронома, жившего в I–II веках н. э., создателя фундаментального трактата «Альмагест». В центре мироздания неподвижно покоилась Земля, а вокруг нее обращались по правильным окружностям восемь вложенных одна в другую сфер, несущих на себе Луну, Солнце и пять известных к тому времени планет. На восьмой сфере располагались неподвижные звезды. Чтобы объяснить весьма сложный путь, который планеты совершают на фоне звезд, Птолемей предположил, что они вдобавок движутся по меньшим кругам, сцепленным с соответствующей сферой. Эти дополнительные орбиты получили название эпициклов.
А нельзя ли вычислить не относительное, а абсолютное расстояние хотя бы до некоторых небесных тел? Если не считать полулегендарного Аристарха Самосского, якобы построившего гелиоцентрическую модель за полторы тысячи лет до Коперника, впервые измерением расстояния до Луны озаботился выдающийся астроном античности Гиппарх, живший во II веке до н. э., почти за 300 лет до Птолемея. Вспомним, что во время лунных затмений на диске Луны наблюдается контур земной тени, который всегда (при любых затмениях) представляет собой окружность. По изгибу края земной тени можно судить о величине ее поперечного сечения по сравнению с размерами Луны. Если допустить, что Солнце находится от Земли гораздо дальше Луны, можно рассчитать, как далеко от Земли должна быть расположена Луна, чтобы тень Земли уменьшилась до наблюдаемых размеров (размеры Земли нам известны). Гиппарх пришел к выводу, что расстояние до Луны в 30 раз больше земного диаметра; если принять величину диаметра нашей планеты, найденную Эратосфеном (12 800 километров), то расстояние до Луны составит 384 000 километров.
Это совершенно блистательный результат: по современным оценкам, среднее расстояние между Луной и Землей составляет 384 400 километров, меняясь от 356 610 километров в перигее (точке минимального удаления) до 406 700 километров в апогее (точке максимального удаления). И поэтому я готов согласиться с ревизионерами ортодоксальной исторической версии, которые настаивают на том, что измерения такого уровня точности не могли быть выполнены раньше эпохи Возрождения. Более того, даже в XVII столетии подобная точность была архисложной задачей. Совершенно непонятно, каким образом древние греки умудрялись точно измерять углы между небесными телами при помощи тех примитивных инструментов, которые имелись в их распоряжении. Я уже не говорю о том, что для точных астрономических наблюдений совершенно необходимы часы с секундной стрелкой, тогда как изобретенные в Европе на излете Средних веков механические часы долгое время не имели даже минутной. Между тем нам рассказывают, что Гиппарх с умопомрачительной точностью рассчитал продолжительность лунного месяца – 29 суток 12 часов 44 минуты 2,5 секунды (действительная величина – 29 суток 12 часов 44 минуты 3,5 секунды). Как он сумел ошибиться всего на одну секунду (и как считал половинки секунд), не имея механических часов, история умалчивает.
Хроники сообщают, что расстояния между географическими пунктами Эратосфен измерял по скорости верблюжьих караванов, а углы подъема Солнца определял с помощью врытой в землю палки. Похоже на правду, ибо, скажем, у средневековых монголов единицей длины считался дневной конский переход. Конечно, постоянство у такой единицы измерения более чем сомнительное, хотя батыров Чингисхана она, видимо, вполне устраивала. Но ведь монголам даже в голову не приходило мерить окружность Земли! Воля ваша, однако с античной астрономией что-то не все так просто, если, например, древнеримский архитектор Витрувий (I в. до н. э.) знал периоды гелиоцентрических (то есть вокруг Солнца) обращений планет лучше Коперника.
Косвенным аргументом в пользу справедливости наших рассуждений может послужить совершенно пещерный уровень космологических представлений в раннесредневековой Византии. Просвещенный византиец Косьма Индикоплевт (Козьма Индикополов), признанный специалист по средневековой космографии, полагал, что Вселенная представляет собой прямоугольный ящик, омываемый водами великой реки Океан. Небесный свод поддерживается четырьмя отвесными стенами. Звезды, по мнению Косьмы, есть не что иное, как маленькие гвоздики, которыми нашпигована крышка этого ящика, а по углам сей невразумительной конструкции помещаются четыре ангела, производящие ветер. Между прочим, упомянутый Косьма жил в VI веке уже новой эры, то есть через 900 лет после Аристарха и через 700 – после Эратосфена. А ведь Византия – это Восточная Римская империя, некогда входившая в состав просвещенного Pax Romana, который, в свою очередь, наследовал грекам. В отличие от Западной Римской империи Византия не подвергалась опустошительным набегам варварских племен, да и времени с момента падения Рима (476 год) прошло чуть да маленько – около 100 лет. Ну ладно, рассмотрение нетрадиционных исторических версий не входит в наши задачи. Это просто замечания, что называется, по поводу...
Итак, за 100 с лишним лет до начала христианской эры астрономам удалось измерить расстояние до Луны, причем очень точно. А что можно сказать о других небесных телах? Насколько далеко они расположены от Земли? Уже упоминавшийся Аристарх Самосский (IV–III вв. до н. э.) попытался вычислить расстояние от Земли до Солнца, но потерпел фиаско. Математические рассуждения греческого астронома были вполне безупречны, а вот инструменты, имевшиеся в его распоряжении, никуда не годились, поэтому полученная им величина оказалась меньше истинного расстояния почти в 15 раз. (Впрочем, многие историки сомневаются в реальном существовании Аристарха и не без оснований полагают, что ему приписаны достижения европейских астрономов XVI века.) Результат Архимеда был значительно лучше (2/5 от действительной величины), однако сие весьма настораживает, поскольку даже Иоганн Кеплер в XVII веке с этой задачей не справился – вычисленное им расстояние оказалось еще меньше. Как бы там ни было, небо отодвинулось в несусветную даль, а Вселенная оказалась гораздо больше, чем могли помыслить самые дерзкие умы античности.
После Гиппарха и Птолемея в астрономических науках наступил застой. Стагнация продолжалась свыше полутора тысяч лет, вплоть до начала XVI века, когда польский священник Николай Коперник предложил новую модель мироздания с неподвижным Солнцем в центре, получившую название гелиоцентрической. Согласно этой модели, планеты вращались вокруг Солнца по правильным окружностям, а их число уменьшилось до шести (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн). Луна же, строго говоря, потеряла статус полноценной планеты и превратилась в естественный спутник Земли. Хотя модель Коперника была значительно проще птолемеевой и давала несколько лучшие результаты, ее на протяжении почти 100 лет серьезно не воспринимали. Перелом произошел в XVII веке, когда сначала итальянский астроном Галилео Галилей сумел разглядеть в телескоп (который он же сам и изобрел в 1608 году) спутники Юпитера, а вслед за ним великий Иоганн Кеплер внес поправки в схему Коперника. Проанализировав блестящие наблюдения Марса, выполненные его учителем, датским астрономом Тихо Браге, Кеплер пришел к выводу, что единственная геометрическая фигура, которая идеально отвечает этим наблюдениям, – эллипс. Итак, в модифицированной модели Коперника планеты стали обращаться вокруг Солнца по эллиптическим орбитам, а Солнце переместилось в один из фокусов этого эллипса.
Более того, Кеплер обнаружил, что между средними расстояниями планет от Солнца и периодами их обращения существует простое математическое соотношение. Таким образом, стало возможным вычислить относительное расстояние между Солнцем и любой из планет. К сожалению, это мало что давало, потому что у схемы, предложенной Кеплером (вполне надежной и замечательно согласующейся с наблюдениями), напрочь отсутствовал масштаб. Можно было сказать, что, скажем, Сатурн расположен от Солнца в 10 раз дальше Земли, но чему равно это расстояние в километрах – тайна, покрытая мраком. А вот если бы удалось каким-то способом вычислить расстояние между Землей и любой из планет, у астрономов сразу бы появился в руках необходимый масштаб. Дело было за малым – придумать такой способ.
Для определения расстояний между небесными телами используют явление параллакса. Параллакс – очень простая штука. Если рассматривать свой собственный палец на фоне пестрых обоев правым и левым глазом поочередно, легко убедиться, что в тот момент, когда вы закрываете один глаз и открываете другой, палец смещается на некоторое расстояние относительно фона. Чем ближе расположен к глазам палец, тем больше будет это смещение. Суть явления лежит на поверхности: поскольку глаза разнесены на некоторое расстояние друг от друга, вы смотрите на предмет каждым глазом под определенным углом.
Тот же самый подход без труда применим и к небесным телам. Разумеется, поочередно моргать глазами, глядя, скажем, на Луну, совершенно бессмысленно, поскольку она расположена слишком далеко. А вот если два астронома, разделенные расстоянием в несколько сотен километров, будут одновременно наблюдать наш естественный спутник на фоне звездного неба, лунный параллакс легко обнаружится. Нужно только договориться, относительно какой звезды будут вестись наблюдения, и тогда первый астроном увидит край лунного диска на одном угловом расстоянии от заранее выбранной звезды, а второй, соответственно, – на ином. Дальше – уже дело техники: если известны смещение Луны относительно звездного фона и расстояние между обсерваториями, то с помощью несложных тригонометрических функций можно рассчитать расстояние до Луны.
В ходе таких наблюдений было установлено, что величина лунного параллакса составляет 57 минут дуги, или около 1 градуса дуги (полная окружность насчитывает 360 градусов; в одном градусе содержится 60 минут, а в минуте – 60 секунд). Смещение в 57 минут дуги измерить очень легко, так как оно равняется примерно двум видимым диаметрам полной Луны. Расстояние, вычисленное с помощью параллакса, показало хорошее совпадение с цифрами, полученными старым проверенным методом – по земной тени во время лунного затмения.
А вот с планетами вышла неувязка. Беда в том, что они расположены слишком далеко, поэтому параллактическое смещение столь незначительно, что его не удавалось измерить вплоть до начала XVII столетия. Задача была успешно решена после изобретения телескопа в 1608 году. Во второй половине XVII века два французских астронома, Жан Рише и Джованни Кассини (итальянец по происхождению), вычислили параллактическим методом расстояние от Земли до Марса. Наблюдения проводились одновременно в Париже и Французской Гвиане. Модель Кеплера получила наконец вожделенный масштаб, после чего можно было без труда рассчитать все остальные расстояния внутри Солнечной системы. В частности, Кассини определил, что расстояние от Земли до Солнца составляет 140 миллионов километров. Для XVII века это очень неплохая точность, так как он ошибся всего на 10 миллионов километров. Техника не стояла на месте, и в первой половине XVIII века результат Кассини был подправлен до 152 миллионов километров (современное значение – 149,6 миллиона километров). Эту величину впоследствии назвали астрономической единицей (а. е.) и стали широко применять в качестве своего рода межпланетной версты.
Солнечная система приобрела впечатляющие размеры: например, расстояние от Солнца до Сатурна составляет почти полтора миллиарда километров, чуть ли не вдесятеро больше, чем до Земли. А когда английский астроном Вильям Гершель открыл в 1781 году Уран (невооруженным глазом эта планета не видна, поэтому древние ничего не знали о ее существовании), Солнечная система сразу же подросла почти вдвое (между Ураном и Солнцем лежит около 3 миллиардов километров). В 1846 году французский астроном Урбан Жозеф Леверье обнаружил Нептун, а американец Клайд Томбо в 1930-м – Плутон, девятую и последнюю планету. Таким образом, Солнечная система снова увеличилась в два раза, ибо Плутон отделяют от Солнца почти 6 миллиардов километров, или около 40 астрономических единиц. А ее диаметр будет соответственно равняться 12 миллиардам километров (80 а. е.). Лучу света, который пролетает 300 тысяч километров в секунду и добегает за секунду с четвертью до Луны и за 8 минут до Солнца, потребуется около 12 часов, чтобы пересечь ее из конца в конец.
Попробуем более наглядно представить себе относительные масштабы Солнечной системы. Если изобразить Солнце в виде бильярдного шара (примерно 7 сантиметров в диаметре), тогда до Меркурия – ближайшей к Солнцу планеты – будет в таком масштабе почти три метра (280 сантиметров), а до Земли – чуть больше семи с половиной метров. Планета-гигант Юпитер отодвинется на расстояние около 40 метров, а до Плутона придется совершить приличную прогулку, поскольку он будет лежать в 300 метрах от Солнца. Размеры Земли в этом масштабе составят всего 0,5 миллиметра, так что разглядеть такую пылинку сможет только человек с неплохим зрением. Поэтому лучше ее сделать немного побольше: пусть величина Земли будет соответствовать размеру стандартных наручных часов. Тогда в этом масштабе поперечник Солнца будет равняться удвоенному среднему человеческому росту, а расстояние между Землей и Солнцем составит 400 метров. Плутон же будет и вовсе не разглядеть, поскольку он удалится на расстояние в 15 километров.
Однако орбита Плутона – отнюдь не самая далекая точка Солнечной системы. Когда в 1684 году великий английский ученый Исаак Ньютон открыл свой знаменитый закон всемирного тяготения, согласно которому тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними, модель Кеплера приобрела математическое обоснование. Ученые получили в руки надежный инструмент, позволяющий вычислять любые орбиты, даже если тело наблюдается на небольшом отрезке своей траектории. Астрономов давно занимали кометы – хвостатые гостьи, время от времени появляющиеся на небосводе. Друг и современник Ньютона Эдмунд Галлей усмотрел в поведении некоторых комет отчетливую периодичность и предположил, что они движутся вокруг Солнца по очень сильно вытянутым орбитам (эллипсам с большим эксцентриситетом, как говорят астрономы). Галлей рассчитал орбиту одной из таких комет и предсказал, что она вновь вернется в 1758 году. Через 16 лет после его смерти предсказание Галлея сбылось: комета действительно появилась на небе в указанный им год и с тех пор носит его имя, регулярно возвращаясь каждые 75 или 76 лет.
В точке своего перигелия (ближайшей к Солнцу) комета Галлея оказывается внутри орбиты Венеры, а в афелии (точке максимального удаления от Солнца) уходит далеко за орбиту Нептуна – на 5 с лишним миллиардов километров. Однако существуют так называемые долго-периодические кометы, которые обращаются по таким вытянутым орбитам, что возвращаются к Солнцу раз в несколько столетий, а то и тысячелетий. В середине прошлого века голландский астроном Ян Хендрик Оорт высказал предположение, что далеко за орбитой Плутона лежит огромное облако комет, откуда они время от времени проникают в окрестности Солнца. В таком случае диаметр Солнечной системы может достигать 1000 миллиардов километров и даже больше, или десятков тысяч астрономических единиц. В наши дни гипотеза Оорта практически превратилась в теорию. Подробный рассказ о планетах Солнечной системы и небесных телах, лежащих за орбитой Плутона, вы, читатель, сможете найти в главах «Кольцо вокруг Солнца» и «Девять или десять?».
Итак, к началу XVIII века вопрос о размерах солнечной семейки был практически решен (разумеется, без трех последних планет, которые были обнаружены позже). Осталось разделаться с неподвижными звездами, раз и навсегда выяснив, что они собой представляют. Что они такое: всего лишь точки на сферической тверди, лежащей у самых границ Солнечной системы, как полагали древние, или огромные небесные тела, удаленные на чудовищное расстояние? Параллактический метод, замечательно себя зарекомендовавший при вычислении расстояний между планетами, здесь явно не работал, поскольку ни у одной звезды не удалось зарегистрировать сколько-нибудь заметного смещения. Даже если наблюдателей разделяло расстояние, равное диаметру Земли, промежуток между соседними звездами не менялся ни на йоту.
Впрочем, оставалась еще одна возможность. Поперечник нашей планеты не достигает и 13 тысяч километров, но ведь Земля, как известно, не покоится на месте, а стремительно летит сквозь пустоту вокруг Солнца. Противоположные точки земной орбиты разнесены в пространстве почти на 300 миллионов километров. Решение напрашивалось само собой: если в какой-то вечер нанести положение звезд на карту, а потом сделать то же самое ровно через полгода, то астроном будет наблюдать звездное небо из двух точек, разделенных огромным расстоянием, превосходящим в 23 тысячи раз полную длину земного диаметра. Соответствующим образом должен увеличиться и параллакс. За год звезда опишет крохотный эллипс – своего рода изображение земной орбиты в миниатюре, а угловое расстояние от края этого эллипса до его центра как раз и будет параллаксом звезды.
Для планет подобный метод не годится, потому что они прихотливо петляют по небу на протяжении года, маскируя тем самым параллактическое смещение, вызываемое движением Земли. Отделить собственное движение планеты от ее параллакса – задача непосильной сложности. А вот звезды в течение года практически неподвижны, поэтому обнаружить у них параллактическое смещение вполне реально. Логика вроде бы вполне безупречная, однако звездных параллаксов выявить не удалось. На дворе уже давно стоял XIX век, но астрономы, как ни бились, так и не смогли определить хотя бы чуточного смещения ни у одной звезды.
Ситуация складывалась весьма неприятная. Конечно, всегда можно предположить, что все звезды без исключения находятся на одном и том же расстоянии от Земли. Тогда, разумеется, звездных параллаксов не будет, поскольку параллактическое смещение возникает только в том случае, если мы сравниваем положение близкого предмета с положением относительно далекого. Однако гипотеза твердого небосвода, или тонкой сферической оболочки, на поверхности которой располагаются звезды, выглядела весьма сомнительно. Звезды довольно сильно различаются по яркости, и чтобы в этом убедиться, достаточно просто глянуть на ночное небо. Классифицировать их по этому параметру научились еще древние греки, разделив все звездное население на 6 величин (звезда 1-й величины в 100 раз ярче звезды 6-й величины). Понятно, что с изобретением телескопа звездного полку прибыло, так как появилась возможность наблюдать звезды, не различимые невооруженным глазом. Число звездных величин сразу же изрядно подросло. Разумно было предположить, что истинная светимость всех звезд лежит в довольно узких пределах, а разница в их видимой яркости объясняется исключительно расстоянием. С другой стороны, нельзя было сбросить со счетов и противоположное соображение: все звезды лежат примерно на одном и том же расстоянии от Земли, а вот светят совершенно по-разному, как лампочки большей и меньшей мощности.
Концепция равноудаленности звезд с треском провалилась, когда астрономы догадались обратиться к старинным звездным каталогам. Первым систематически каталогизировать звезды стал Гиппарх, а Птолемей продолжил его труды, оставив потомкам фундаментальный трактат «Альмагест», в котором зафиксированы координаты 1000 с лишним звезд. В 1718 году уже знакомый нам Эдмунд Галлей, изучая звездное небо, неожиданно обнаружил, что как минимум три звезды (Арктур, Процион и Сириус) находятся совсем не там, где их отметили древние греки. Расхождение было столь велико, что об ошибке не могло быть и речи: например, Арктур отстоял на целый градус от указанной в «Альмагесте» точки. Мы помним, что градус – это расстояние, вдвое превышающее диаметр полной Луны. Оставалось предположить, что звезды, как и планеты, обладают собственным движением, только их движение несопоставимо медленнее, если Арктуру потребовалось более полутора тысяч лет, чтобы сместиться на один градус.
Поиски звездных параллаксов продолжились, но первый успех пришел к астрономам только в 30-х годах XIX века, когда телескопы и астрономические инструменты стали значительно совершеннее. В 1838 году немецкому астроному Фридриху Вильгельму Бесселю удалось определить параллакс 61 Лебедя, годом позже опубликовал свои результаты англичанин Томас Гендерсон (он изучал положение альфы Центавра), а 1840 году сообщил о своих наблюдениях яркой звезды Беги русский астроном Василий Яковлевич Струве. Справедливости ради следовало бы отдать пальму первенства именно Струве, потому что он закончил работу раньше всех – в 1837 году, однако несколько запоздал с публикацией. Звездные расстояния оказались невообразимо огромными. Даже ближайшая к Солнцу звезда – альфа Центавра (на самом деле, это тройная звезда, и ближе всего к Солнцу лежит третий, слабый ее компонент – Проксима, что переводится как «ближайшая») находится на расстоянии 4,3 светового года. Межпланетная верста – астрономическая единица – уже не годится для таких просторов, поэтому астрономы пользуются межзвездной милей – световым годом. Световой год – это расстояние, которое луч света, летящий со скоростью 300 тысяч километров в секунду, преодолевает за год. Вспомните, что световому лучу требуется всего 8 минут, чтобы добежать до Солнца, и около 6 часов, чтобы домчаться до Плутона, а до ближайшей звезды ему приходится ползти свыше 4 лет. Если угодно, можно попытаться выразить это расстояние в километрах: поскольку один световой год примерно равен 9,5 триллиона километров, то расстояние до Проксимы Центавра составляет около 40 триллионов километров (40 000 000 000 000 км).
Если вспомнить нашу модель с бильярдным шаром на месте Солнца, Землей в семи с половиной метрах от него и Плутоном на расстоянии около 300 метров, то в таком масштабе дистанция между Солнцем и ближайшей к нему звездой будет равняться почти 2000 километров. А в модели, где Земля была величиной с наручные часы, а Плутон находился в 15 километрах от нее, добраться до Проксимы Центавра будет весьма проблематично, поскольку это расстояние составит около 100 тысяч километров – два с половиной кругосветных путешествия. Еще более наглядный пример придумал один московский лектор. Он взял кусочек мела и объявил его «планетой Земля», а висящую на стене доску – Солнцем. От доски до мела был всего один метр, призванный изобразить астрономическую единицу – 150 миллионов километров, разделяющих Солнце и Землю. «Сколько в этом масштабе до ближайшей звезды?» – спросил лектор у слушателей. Аудитория стала робко высказываться. Кто-то предположил, что звезда окажется в соседнем переулке, но наиболее решительные стояли за городские окраины. Между тем звезда находилась в Ярославле (или любом другом городе, удаленном на 300 километров). Еще раз подчеркнем, что это ближайшая к Солнцу звезда.
Бесселевская 61 Лебедя оказалась еще дальше – в 11,1 светового года, а до Беги, которую изучал В. Я. Струве, было 27 световых лет. Таков масштаб звездных расстояний. После определения первых параллаксов у ближайших звезд получила широкое распространение еще одна межзвездная миля – параллакс-секунда, или парсек. Парсек (пк) – это расстояние, на котором звезда при ее наблюдении с противоположных точек земной орбиты изменяет свое видимое положение на одну угловую секунду дуги. Или еще проще: расстояние, с которого земная орбита видна под углом в одну секунду дуги. Один парсек равен 3,26 светового года, 206 265 астрономическим единицам или 30,857 х 1012километрам (чуть больше 30 триллионов километров). Расстояние до Проксимы Центавра составляет 1,3 парсека, до 61 Лебедя – 3,4 парсека, а до Беги – 7,8 парсека. Напрашивался вывод, что звезды – отнюдь не безразмерные точки на небосводе, а гигантские солнца, во всем подобные нашему родному светилу, только удаленные чудовищно далеко, на расстояние, измеряемое многими световыми годами.
Вычислив истинное расстояние до звезды, можно рассчитать ее светимость, то есть не видимую звездную величину, а подлинную силу ее света, которую принято называть абсолютной звездной величиной. Вполне возможна и обратная процедура: мысленно поместив звезду на любом произвольном расстоянии, можно определить, насколько яркой она будет казаться земному наблюдателю. Абсолютной звездной величиной называется яркость звезды на расстоянии в 10 парсек (32,6 светового года); разумеется, звезды распределяются в пространстве неравномерно, но если мы выстроим их в ряд на указанной дистанции, то сможем сравнивать их действительную светимость. Наше Солнце на расстоянии в 10 парсек было бы весьма слабой звездочкой с абсолютной величиной 4,9, а Сириус – самая яркая звезда нашего неба – светил бы почти так же, как светит на своем месте (2,7 парсека, или около 9 световых лет). Его абсолютная звездная величина составляет 1,4, из чего следует, что истинная светимость Сириуса превышает солнечную в 25 раз. Разумеется, это далеко не предел: голубой гигант Денеб (о классах звезд мы поговорим в следующей главе) превышает по светимости Солнце в 270 тысяч раз; он не выглядит особенно ярким только лишь потому, что находится от нас очень далеко (больше 3 тысяч световых лет).
Другими словами, видимый блеск звезды еще ничего не говорит о количестве света, которое она излучает. Солнце светит чрезвычайно ярко, поскольку расположено буквально в двух шагах. Сириус ярче Веги из созвездия Лиры примерно в четыре раза, а путеводительная Полярная звезда – самая тусклая из них (в шесть раз слабее Веги). Однако если бы мы произвели переоценку ценностей и выстроили эти звезды на одинаковом расстоянии от Земли, то первое место уверенно заняла бы Полярная звезда, на втором месте оказалась бы Вега, на третьем – Сириус, а великолепное Солнце стало бы безнадежным аутсайдером.
Когда в середине позапрошлого века удалось определить расстояние до ближайших звезд, немедленно возник вопрос, как далеко они простираются. Невооруженным глазом можно увидеть около шести тысяч звезд, но когда Галилей посмотрел на небо в свою примитивную зрительную трубу, он сразу же обнаружил, что звезды понатыканы куда гуще. Просто многие представители этого славного семейства настолько слабы, что разглядеть их без помощи телескопа нет никакой возможности. Современная астрономическая техника позволяет различать звезды 25-й величины. Кроме того, уже во времена Гершеля стало ясно, что звезды распределяются в пространстве очень неравномерно. Если посмотреть на небо в темную безлунную ночь, можно заметить слабое туманное свечение, опоясывающее весь небосвод от горизонта до горизонта. К сожалению, яркие городские огни не позволяют разглядеть его как следует (электрификация, с точки зрения астронома, вообще сомнительное благо), но где-нибудь в деревенской глуши можно без большого труда увидеть мягко светящуюся молочную полосу, пересекающую ночное небо. Древние греки называли ее galaktikos («млечный, молочный»), а римляне – via lactea, что в буквальном переводе означает «млечный путь». Происхождение этого названия связано с античным мифом о струе молока, которая брызнула на небо из груди богини Геры, жены Зевса, когда она отпихнула от себя младенца Геракла.
В направлении Млечного Пути можно насчитать гораздо больше звезд, чем в любой другой части небосвода, поэтому Гершель резонно предположил, что звезды не распределяются равномерно, а собраны в компактную структуру, имеющую форму двояковыпуклой линзы. По мнению Гершеля, наша звездная система (впоследствии ее стали называть Галактикой) могла содержать около 300 миллионов звезд и иметь в поперечнике 15 тысяч световых лет (не забудем, что первые звездные параллаксы были измерены только через 16 лет после смерти Гершеля). Сегодня мы знаем, что наша галактика Млечный Путь (или просто Галактика с прописной буквы) значительно больше: ее диаметр составляет 100 тысяч световых лет, а количество звезд доходит до 200 миллиардов (впрочем, численность звездного населения, по оценкам разных авторов, колеблется в широких пределах – от 150 до 400 миллиардов звезд).
Здесь необходимо сделать небольшое отступление и рассказать читателю, каким образом были вычислены эти параметры. Поскольку параллактическое смещение с большим трудом удается измерить даже у ближайших звезд, определение параллакса у объектов, удаленных более чем на 100 световых лет, становится практически неразрешимой задачей. Параллакс – это величина, производная от собственного движения звезды, поэтому понятно, что чем дальше звезда находится, тем труднее уловить ее перемещение по небосводу. Не вдаваясь в детали, скажем, что астрономов выручила так называемая цефеидная шкала. Цефеидами называются пульсирующие переменные звезды, которые строго периодически меняют свой блеск на одну-две звездных величины (мощность излучения возрастает в 2,5–6 раз по сравнению с минимумом). Вообще-то различных переменных звезд существует множество; одна из самых известных – это красный гигант омикрон Кита, открытый еще в конце XVI века немецким астрономом Давидом Фабрициусом. Эта звезда в несколько раз меняет свой блеск с периодом около 11 месяцев, поэтому ее назвали Мирой (в переводе с латыни – «удивительная»). Однако наибольшее значение для астрофизиков имеют короткопериодические переменные звезды с периодом от суток до месяца (обычно около недели). Именно такова дельта Цефея, меняющая блеск с периодом 5,37 суток, которая дала свое имя всему семейству подобных звезд.
В начале прошлого века американский астроном Генриетта Ливитт обнаружила правильную зависимость между светимостью и периодом некоторых цефеид. Чем больше был период, тем больше энергии звезда излучала в единицу времени. Вычислив мощность излучения по зависимости «период – светимость», ученые смогли рассчитать расстояние до цефеиды. Сначала были установлены относительные расстояния (во сколько раз одна звезда ближе или дальше другой), а затем и абсолютные, с учетом лучевой скорости цефеид (в спектре звезды, приближающейся или удаляющейся по лучу зрения происходит смещение спектральных линий). Астрофизики получили надежный масштаб. А совсем недавно на помощь астрономам пришли сверхновые определенного типа (типа 1а), светимость которых лежит в очень узких пределах. Об этих звездах, получивших название «стандартных свечей», подробно рассказано в главе «И тьма пришла».
К началу XX столетия мир невообразимо расширился. Стало окончательно ясно, что Солнце – одна из многих сотен миллиардов звезд, населяющих нашу Галактику, причем далеко не самая примечательная. В звездной номенклатуре оно числится заурядным желтым карликом класса G. Да и лежит, к тому же, отнюдь не в центре, как считал, например, Гершель, а на периферии Млечного Пути, в одном из его спиральных рукавов – в 26 тысячах световых лет от центра Галактики (примерно 8 килопарсек). Наглядно вообразить эти подавляющие просторы весьма нелегко. Если мы уменьшим всю Солнечную систему до размеров песчинки, то ближайшая звезда Проксима Центавра окажется в этом масштабе на расстоянии одного метра, а расстояние до центра Галактики составит почти 9 километров. Если же вспомнить модель с бильярдным шаром на месте Солнца, размеры Млечного Пути будут равняться 60 миллионам километров – величине, вполне сопоставимой с расстоянием от Земли до Солнца.
Однако Вселенная не исчерпывается галактикой Млечный Путь. Если бы нам удалось покинуть ее пределы, перед нами распахнулось бы необъятное пустое пространство, непроницаемая угольная чернота, лишенная сколько-нибудь заметных объектов. И только на расстоянии около 200 тысяч световых лет от нашего звездного острова мы бы обнаружили два клочковатых туманных образования неправильной формы – Большое и Малое Магеллановы облака. Они хорошо видны на небе Южного полушария в виде двух белесоватых пятен и выглядят как изолированные фрагменты Млечного Пути. Впервые их описал один из участников кругосветного плавания Фернана Магеллана. Прямого отношения к Млечному Пути они не имеют: это две самостоятельные небольшие галактики, довольно бедные звездами. Малое Магелланово облако лежит в 160 тысячах световых лет от нас, а Большое отодвинуто еще дальше – почти на 200 тысяч световых лет. Хотя Магеллановы облака заметно уступают Млечному Пути в размерах, в них обнаружены весьма любопытные объекты. Например, в Большом Магеллановом облаке расположена звезда S Золотой Рыбы, обладающая наибольшей известной светимостью. Невооруженным глазом она не видна, потому что имеет 8-ю звездную величину, но ее абсолютная светимость превосходит солнечный блеск в 600 тысяч раз! А в Малом Магеллановом облаке находятся сотни уже знакомых нам цефеид, которые систематически изучала Генриетта Ливитт в начале прошлого века.
Если бы мы посмотрели с такого расстояния на нашу собственную галактику, то увидели бы внушительный спиральный диск, отдаленно напоминающий бешено крутящийся водоворот (форму двояковыпуклой линзы или веретена она приобретает при взгляде с ребра). Однако Млечный Путь и Магеллановы облака – это еще далеко не все. В 2 с половиной миллиона световых лет от Млечного Пути лежит спиральная галактика Андромеды, значительно превосходящая нашу по массе и количеству звезд. Она видна невооруженным глазом как слабая звездочка 5-й величины и значится в каталоге Мессье под номером 31, поэтому получила название М31. (Шарль Мессье – знаменитый французский астроном, одним из первых начавший составлять каталог туманностей и звездных скоплений.)
Галактика Андромеды, Млечный Путь, Магеллановы облака, спираль в Треугольнике (МЗЗ) и множество галактик поменьше (общим числом около 40) входят в состав так называемой Местной группы с диаметром свыше 3 миллионов световых лет. В пределах 10 Мпк (мегапарсек, то есть миллионов парсек), или более чем 30 миллионов световых лет, разбросано около дюжины аналогичных групп. А в 15 Мпк (почти 50 миллионов световых лет) лежит крупное скопление в созвездии Девы, насчитывающее несколько тысяч галактик. Таким образом, наша Местная группа принадлежит к еще более масштабной структуре, которую принято называть локальным сверхскоплением галактик. Его диаметр составляет 30 Мпк, а толщина – около 10 Мпк (100 и 30 с лишним миллионов световых лет соответственно). Центром этого исполинского галактического облака является вышеупомянутое скопление в Деве.
Галактика Млечный Путь ютится на самом краю локального сверхскопления. А еще дальше, на расстоянии в 90 Мпк (счет идет уже на сотни миллионов световых лет), находится гораздо более крупное скопление в созвездии Волосы Вероники, в состав которого входит больше 10 тысяч галактик. По всей видимости, оно представляет собой часть еще одного гигантского галактического сверхскопления, которых в последнее время открыто несколько десятков. Таким образом, они венчают собой иерархию структур нашей Метагалактики (наблюдаемой части Вселенной). Только на расстояниях порядка многих сотен миллионов световых лет Вселенную можно рассматривать как сравнительно однородную структуру, которая содержит десятки миллиардов галактик. Современная астрофизика располагает высокоточной совершенной аппаратурой, которая позволяет вести наблюдения в самом широком диапазоне волн – от метровых радиоволн до гамма-лучей. Помимо традиционных оптических телескопов широко применяются инфракрасные и радиотелескопы, а также детекторы рентгеновского и гамма-излучения. Бурно развивается нейтринная астрономия. Ученым стали доступны невообразимые расстояния, измеряемые 10–12 миллиардами световых лет, когда мир был еще молод и свеж, а первые галактики едва успели сформироваться. Таким образом, размеры наблюдаемой части Вселенной можно оценить примерно в 6 тысяч мегапарсек.
Когда мы смотрим на далекие звезды или галактики, следует иметь в виду, что мы перемещаемся вспять по временной оси. Если до Сириуса около 9 световых лет, мы видим его таким, каким он был 9 световых лет назад, потому что свет имеет конечную скорость распространения. Лучи красного гиганта Бетельгейзе из созвездия Ориона пустились в дорогу еще в Смутное время, когда на российском престоле сидел Борис Годунов. Шаровые звездные скопления в центре Галактики вернут нас в последний ледниковый период, а свет туманности Андромеды был испущен в те времена, когда наши обезьяноподобные предки вставали на две ноги и обтачивали первые камни. Самые далекие объекты нашей Вселенной посылают свет из эпохи, удаленной в прошлое на многие миллиарды лет. Солнечной системы и планеты Земля тогда еще не было и в помине.
Чтобы воочию, в живых образах оценить размеры наблюдаемой части Вселенной, или Метагалактики, мысленно уменьшим земную орбиту (ее диаметр 300 миллионов километров) до размеров внутренней электронной оболочки в классической модели атома Бора (ее радиус равен 0,53х10-8см). Тогда ближайшая звезда разместится хотя и на небольшом, но вполне макроскопическом расстоянии в 0,014 миллиметра, расстояние до центра Галактики составит 10 сантиметров, а поперечник Млечного Пути будет равен 35 сантиметрам. Галактика Андромеды отступит на целых шесть метров от боровского атома, а расстояние до центральной части скопления галактик в созвездии Девы, куда входит наша Местная группа, будет порядка 120 метров. Радиогалактика Лебедь А (до нее 600 миллионов световых лет) «убежит» в этом масштабе на два с половиной километра, а до далекой радиогалактики ЗС 295 придется шагать и шагать – как-никак 25 километров. В общем, земной шар громаден, как с пафосом говорила одна учительница начальных классов...