[1] А. Азимов связывает накопление химических знаний прежде всего с появлением и развитием металлургии. Однако ремесленная химия древности была гораздо шире. Параллельно с металлургией развивалась техника изготовления красок (минеральных и растительных) и крашения, изготовления стекла и керамики. Наряду с металлургией важной основой дальнейшего развития экспериментальной химии была фармация.
[2] Самые древние изделия из меди насчитывают 9200—8750 лет до н. э. Они найдены в неолитических поселениях в верховьях р. Тигр. Изделия из меди, найденные на территории нынешней Турции, датируются 6400—5700 гг. до н. э.
[3] Железо земного (не метеоритного) происхождения было известно народам Южного Кавказа уже в 2100 г. до н. э.
[4] О процессе формирования представлений об «элементах-стихиях» см.: Ахутин А. В. Мифологические истоки учения об элементах. В кн.: Всеобщая история химии. Возникновение и развитие химии с древнейших времен до XVII в.— М.: Наука, 1980, с. 74—91.
[5] «Элемент» — латинское слово неизвестного происхождения. Греки не употребляли его, но, поскольку это одно из важнейших понятий современной химии, обойтись без него невозможно, даже в тех случаях, когда речь идет о греках.
[6] Очень важным для формирования качественно-химических представлений о веществе было введенное последователем Фалеса Анаксимандром (ок. 610— 546 гг. до н. э.) понятие άπειρον — первоначало, порождающее бесконечное многообразие всего сущего с различными качествами.
[7] На первый (и не очень внимательный) взгляд эти рассуждения представляются очень наивными. Но подумав немного, мы оценим, насколько глубоки были в действительности догадки древних греков. Заменим воздух, воду, землю и огонь на газ, жидкость, твердое вещество и энергию. Как известно, при охлаждении и сжатии газы сжижаются — образуют жидкости, которые при охлаждении и сжатии в свою очередь образуют твердые вещества. Разве представления Анаксимена противоречат такой схеме? А разве представления Гераклита об огне не похожи на современные представления об энергии, инициирующей химические реакции и выделяющейся при протекании химических реакций?
[8] Интересно, что Лукреций ни разу не употребил в своей поэме слова «атом», но использовал более десятка синонимов. Некоторые из них («корпускула», «элемент») позднее получили распространение в языке науки, но в ином смысле.
[9] По материалам этой главы см.: Всеобщая история химии. Возникновение и развитие химии с древнейших времен до XVII в.— М.: Наука, 1980, 399 с. (Часть первая. Истоки химических знаний); Колчин В. А. Черная металлургия и металлообработка в Древней Руси.— М.: Изд-во АН СССР, 1953; Лукас А. Материалы и ремесленные производства Древнего Египта.— М.: ИЛ, 1958, 747 с.
[10] И в Древнем Риме, и позднее в Византийском государстве накопление химических знаний продолжалось благодаря развитию фармации. Так, «Геопоника», компиляция из 20 книг, приписываемая Кассину Бассу (VII в.), содержала массу практических рецептов и мистические толкования химических процессов.
[11] Несторианин Иов Эдесский много сделал для распространения эллинистических химических воззрений в арабской науке и остался в ее истории под именем Айюба аль-Рухави (ок. 769—835).
[12] Проникновение алхимических учений в Европу шло тремя путями: через Византию (самый ранний путь, но быстро утративший значение), через Сирию, Египет и Сицилию (оказавший влияние на развитие науки в Южной Италии) и через Пиренейский полуостров благодаря арабской культуре Магриба (см.: Мец А. Мусульманский Ренессанс.— М.: Наука, 1966, 437 с). Однако химические знания накапливались и в других регионах: Китае, Средней Азии и на Кавказе. Не последнюю роль при этом играла фармация. Примером могут служить труды армянского врача XII в. Мхитара Гераци (см.: Мхитар Гераци. Утешение при лихорадках.— Ереван, Айастан, 1968, 244 с).
[13] Приписывая Р. Бэкону убеждение, что «залогом прогресса является экспериментальная работа», А. Азимов не указывает, что «опыт» по Бэкону не только эксперимент в современном смысле, но и мистическое «озарение».
[14] Это очень упрощенное объяснение сложного исторического процесса, начавшегося в X в. и продолжавшегося до XVI в. и получившего название второй промышленной революции. Он начался с усовершенствования землепашества, создания новых типов упряжи и плугов. Затем последовало создание водяных и ветряных мельниц, мощность которых уже достигала в XI-XII вв. 40—60 лошадиных сил. Этот прирост мощности дал толчок развитию металлурги». В XIII в. мехи для печей стали приводить в действие водой, в результате температура в плавильной печи превысила 1500°С, что позволило получать чугун. Развились ткачество и сукноделие. В середине XV в. был изобретен печатный станок. Было создано множество гидротехнических сооружений. В строительстве вместо монолитных римских конструкций начали применять новые более легкие конструкции. Весь комплекс этих факторов привел к грандиозным социальным переменам и гибели феодализма.
[15] Шухардин С. В. Георгий Агрикола.— М.: Изд-во АН СССР, 1955.
[16] Агрикола Г. О горном деле и металлургии. Под ред. С. В. Шухардина.— М.: Изд-во АН СССР, 1962.
[17] Интересно, что единственный перевод на английский язык работы Агриколы, опубликованный в 1912 г., с иллюстрациями из оригинала был сделан Гербертом Гувером — бывшим президентом США (по профессии горным инженером) и его женой.
[18] Парацельс положил начало важному направлению в химии, получившему название иатрохимии (от греческого ιατρόδ — врач). Иатрохимия сыграла важную роль в борьбе с догмами средневековой схоластической медицины. В развитие химических представлений иатрохимики также вносили далеко не только одну мистику. Иатрохимия не только пыталась подвести химическое основание под теорию гуморальной патологии, но и содействовала эмпирическому прогрессу химии. Иатрохимики ввели представления о кислотности и щелочности, открыли много новых соединений, начали ставить первые воспроизводимые (хотя далеко не всегда методологически правильные) эксперименты. К числу иатрохимиков принадлежали Я. Б. Ван Гельмонт, Франциск Сильвия, Анджело Сала и Андрей Либавий, которого А. Азимов ошибочно причисляет к алхимикам. Иатрохимия в определенной мере облегчила развитие технической химии Возрождения, приняв на себя тормозящие химическую мысль традиции мистического теоретизирования, использования не доступного непосвященным языка и т. п. Техническая химия начала беспрепятственно накапливать и описывать эмпирический материал.
[19] Наиболее всеобъемлющими трудами по истории алхимии являются следующие: LippmannE. О. Entstehung und Ausbreitung der Alchemie. Berlin, Springer, 1919; RuskaJ. Arabische Alchemisten. 2 Bd. Heidelberg, Winter, 1924. Подробные сведения о Парацельсе и других иатрохимиках можно найти в наиболее документированной истории химии: PartingtonJ. R. A History of Chemistry. Vol. II, London, Macmillan, 1959, а также в кн.: Sudhoff К. Paracelsus, ein deutsches Lebensbild aus der Renaissancezeit. Leipzig, Bibliogr. Inst., 1936; Pagel W. Paracelsus. An Introduction to Philosophical Medicine in the Era of the Renaissance. Basel. Karger, 1958. О технической химии см.: Фестер Г. История химической техники. Пер. с нем. / Под ред. М. А. Блоха с вводной статьей А. Е. Луцкого.— Харьков, Научно-техническое изд-во Украины, 1938, 304 с.
[20] Тот «переходный период», о котором говорит А. Азимов в этой главе, фактически описывается и в следующей главе. В этот период сформировались основы экспериментальной химии, основанной на измерении физических величин, и была создана первая всеобъемлющая химическая теория — теория флогистона.
[21] Профессор Падуанского университета Санторио Санторио (1561—1636) на несколько лет раньше Ван Гельмонта использовал взвешивание как метод измерения при изучении обмена веществ. Санторио проводил взвешивание в специальной сконструированной им камере-весах.
[22] Происхождение названия «газ» иногда связывают с голландским словом gisten — бродить или gist — дрожжи, закваска.— Прим. перев.
[23] Р. Бойль ставил и подлинно химические опыты и даже такие опыты, которые можно назвать биохимическими. Дело в том, что он интересовался не только физическими измерениями сжимаемого воздуха, его занимала также сущность горения и дыхания. И соответствующие опыты, проведенные им и его сотрудниками и последователями, привели к важным химическим выводам. Современник Бойля Джон Мейоу заметил, что в воздухе содержится вещество, необходимое для горения и дыхания. См.: Кривобокова С. С. Биологическое окисление (исторический очерк).— М.: Наука, 1971, 168 с.
[24] Необходимо отметить, что исследования Бойля как таковые не относятся к химии. Воздух, как бы его ни сжимали или разрежали, остается воздухом. Подобные изменения в объеме являются физическими изменениями, и, таким образом, относятся к области физической химии, изучающей физические изменения веществ, Бойль заложил основы физической химии, однако эта область науки еще не получила признания и два столетия спустя (см. гл. 9).
[25] Р. Бойль испытывал также влияние воззрений Рене Декарта (1596—1650), Атомизм, лежащий в основе его системы взглядов (картезианства — от латинизированного имени Декарта — Картезий), был ближе Бойлю.— Прим. ред.
[26] Представление Бойля об «основном металле» отличалось от представлений алхимиков, которые считали, что золото можно получить, в частности, из ртути. «Основной металл» Бойля — это корпускулярная основа металлов, которую, по Бойлю, еще предстояло найти.— Прим. ред.
[27] Partington J. R. A History of Chemistry. Vol. II, London, Macmillan, 1959.
[28] См.: Дорфман Я. Г. Лавуазье.— М.: Наука, 1962, 328 с.
[29] 5 июля 1748 г. М. В. Ломоносов впервые сформулировал закон сохранения материи и движения. В письме к Л. Эйлеру он писал: «Все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется какому-либо телу, столько же теряется у другого… Так как это всеобщий закон природы, то он распространяется и на правила движения, столько же теряет от своего движения, сколько сообщает другому, им двинутому» (Ломоносов М. В. Поли. собр. соч.— М.-Л.: Изд-во АН СССР, 1950—1959, т. 2, с. 183).
В 1756 г. М. В. Ломоносов, повторив опыт Р. Бойля, раньше А. Лавуазье высказал мысль, что увеличение массы металлов при обжигании следует приписать присоединению частиц воздуха. И в отличие от своих современников он исключил «огненную материю» из числа химических агентов (Ломоносов М. В. Поли. собр. соч., т. 10, с. 392).— Прим. ред.
[30] В начале XX столетия этот закон был уточнен, но введенная поправка настолько мала, что если рассматриваются обычные реакции, проводимые в обычных лабораторных условиях, то ею можно пренебречь.
[31] Труды М. В. Ломоносова подробно освещены в отечественной историко-научной литературе. Б. Н. Меншуткин в серии монографий (Меншуткин Б. Н. М. В. Ломоносов как физико-химик. К истории химии в России.— СПб., 1904; Меншуткин Б. Н. Труды М. В. Ломоносова по физике и химии.— М.-Л.: Изд-во АН СССР, 1936; Меншуткин Б. Н. Михайло Васильевич Ломоносов. Жизнеописание. Изд. 3-е. Под ред. С. И. Вавилова и Л. Б. Модзалевского.— М.-Л.: Изд-во АН СССР, 1947) провел глубокий анализ опубликованных трудов Ломоносова и архивных материалов и показал, что Ломоносов ввел многие представления, получившие распространение лишь много десятилетий спустя. Как показала Люс Ланжевен (см.: Ланжевен Л. Ломоносов и французская культура XVIII в. В сб.: Ломоносов, VI, — М.-Л.: Наука, 1965, с. 27—62; LangevinLuce. Lomonosov. Sa vie, son oeuvre. Paris, Edition sociales. 1967, 320 pp.), труды Ломоносова были известны во Франции. См. также: Павлова Г. Е., Федоров А. С. Михаил Васильевич Ломоносов. Жизнь и творчество.— М.: Наука, 1980, 279 с.
[32] Это название получило распространение во французском (nitrogéne) и английском (nitrogen) языках.— Прим. ред.
[33] Русский химик Михаил Васильевич Ломоносов (1711—1765) еще в 1756 г., т. е. почти за двадцать лет до работ Лавуазье по горению, отказался от теории флогистона и предположил, что при горении вещества соединяются с частью воздуха. К сожалению, труды Ломоносова были опубликованы на русском языке, и западноевропейские химики, включая Лавуазье, не смогли с ними ознакомиться. Примечательно также, что Ломоносов имел почти современные взгляды на теорию атомов и теорию теплоты, опередив, таким образом, свое время почти на сто пятьдесят лет.
[34] По материалам этой главы см.: Соловьев Ю. И. История химии. Развитие химии с древнейших времен до конца XIX в.— М.: Просвещение, 1976, 367 с; Фигуровский Н. А. Очерк общей истории химии. От древнейших времен до начала XIX в.— М.: Наука, 1969, 456 с.
[35] История формирования представлений о химическом соединении рассмотрена в кн.: Шептунова З. И. Химическое соединение и химический индивид (очерк развития представлений).— М.: Наука, 1972, 212 с.
[36] Термин стехиометрия (от греческого στοιχείον — стихия, начало, элемент, основа) был введен И. Рихтером для обозначения соотношения масс кислот и оснований при образовании солей.— Прим. перев.
[37] В действительности состав некоторых соединений может колебаться в определенных пределах, но это особые случаи. Состав тех простых соединений, которыми занимались химики до 1800 г., строго соответствует требованиям закона постоянства состава.
[38] См.: Дальтон Дж. Сборник избранных работ по атомистике. Под ред. и с примечаниями Б. М. Кедрова.— М.: Госхимиздат, 1940, 244 с; Кедров Б. М. Атомистика Дальтона.— М.-Л.: Госхимиздат, 1949, 312 с.
[39] Столетие спустя это представление претерпело изменение. В конце концов один атом можно превратить в другой (см. гл. 14). Однако достичь этого можно, лишь пользуясь такими методами, которых не мог бы себе ни представить, ни осуществить ни один алхимик.
[40] Атомный вес — это не вес как сила и вовсе не масса, а число, выражающее отношение главным образом масс атомных ядер. Процесс взвешивания, имевший место при определении атомных весов, был процессом сравнения масс.— Прим. ред.
[41] См.: Быков Г. В. Амедео Авогадро, Очерк жизни и деятельности.— М.: Наука, 1970, 184 с.
[42] Работа Дюлонга и Пти была опубликована в 1819 г.— Прим. перев.
[43] См.: Соловьев Ю. И., Куринной В. И. Якоб Берцелиус. Жизнь и деятельность.— М.: Наука, 1980, 2-е изд., 320 с.
[44] См.: Кудрявцев П. С. Фарадей.— М.: Просвещение, 1969, 168 с.
[45] См.: Крицман В. А. Роберт Бойль. Джон Дальтон. Амедео Авогадро. Создатели атомно-молекулярного учения в химии.— М.: Просвещение, 1978, 144 с.
[46] См.: Шамин А. Я. Биокатализ и биокатализаторы (исторический очерк).— М.: Наука, 1971, 196 с.
[47] См.: Мусабеков Ю. С. Историческая оценка синтеза Вёлера.— Вопросы истории естествознания и техники, 1957, вып. 5, с. 66—73.
[48] Впрочем, это было только первое поражение витализма, который продолжал удерживать свои позиции в других областях химии. Несмотря на медленное ослабление его позиций на протяжении XIX в., окончательно витализм не исчез и сегодня. Полное описание различных этапов крушения витализма можно найти в кн. «Краткая история биологии» (Азимов А. Краткая история биологии. Пер. с англ, — М.: Мир, 1967).
[49] См.: Мусабеков Ю. С. Марселен Бертло. 1827—1907.— М.: Наука, 1965, 231 с.
[50] См.: Шамин А. Н., Джабраилова Н. А. Развитие химии аминокислот.— М.: Наука, 1974, 152 с.
[51] Это утверждение уже устарело. В 1963 г. впервые был синтезирован природный белок — инсулин. Сейчас методы синтеза белков значительно усовершенствованы, и их синтез уже не является проблемой. Химики могут синтезировать и другие сложнейшие природные биополимеры — нуклеиновые кислоты. См.: Шамин А. Н. Химический синтез белка (исторический очерк).— М.: Наука, 1969, 115 с.
[52] См.: Быков Г. В. Август Кекуле. 1828—1896. Очерк жизни и деятельности.— М.: Наука, 1964, 236 с.
[53] См.: Мусабеков Ю. С. Юстус Либих.— М.: Изд-во АН СССР, 1962, 215 с.
[54] Либих был одним из талантливейших преподавателей химии за всю историю ее существования. Он преподавал в Гиссенском университете, где организовал первый настоящий лабораторный курс химии. Очень многие химики работали с Либихом и учились у него методике лабораторных работ. Либих сумел создать научную школу, в которой сформировались многие прославленные химики. Благодаря трудам Либиха к концу XIX в. Германия стала «химической державой» Европы, опередив даже Францию.
[55] Некоторые, но не все. Хлорид натрия необходим для жизни, бромид натрия оказывает небольшое токсическое действие, а цианид натрия — быстродействующий яд.
[56] См.: Шорлеммер К. Возникновение и развитие органической химии.— М.: 1937; Быков Г. В. История органической химии. Открытие важнейших органических соединений.— М.: Наука, 1978, 379 с.
[57] О доструктурных теориях органической химии (теории радикалов, теории этерина, теории замещения Дюма, «старой» теории типов Дюма и «новой» теории типов Ш. Ф. Жерара см.: Быков Г. В. История классической теории химического строения.— М.: Изд-во АН СССР, 1960, 311 с. О вкладе Шарля Фредерика Жерара (1816—1856) в развитие теоретической органической химии см.: Фаерштейн М. Г. Шарль Жерар.— М.: Наука, 1968, 163 с.
[58] В истинных металлорганических соединениях атом металла прочно связан с атомом углерода. Соединения, подобные ацетату цинка (вещества такого типа были известны и до Франкланда), являются солями органических кислот. В таких солях атом металла присоединяется к атому кислорода, и они не считаются истинными металлорганическими соединениями.
[59] О возникновении учения о валентности и появлении понятия «химическая связь» см.: Быков Г. В. История органической химии. Структурная теория. Физическая органическая химия. Расчетные методы.— М.: Химия, 1976, 360 с.
[60] Главные положения теории строения высказал А. М. Бутлеров в докладе «О химическом строении вещества», сделанном 9 сентября 1861 г. на съезде немецких естествоиспытателей и врачей. Бутлеровым были сформулированы правила, которыми можно было руководствоваться при определении строения органических соединений, а также было объяснено явление изомерии. А. Кекуле в 1865 г. распространил положения теории строения на ароматические соединения. Экспериментальное подтверждение теории химического строения Бутлеровым и его учениками имело огромное значение для ее утверждения.— Прим. ред.
[61] Впервые А. М. Бутлеров изложил свои взгляды на теорию строения в лекциях, прочитанных им в Казанском университете в 1860 г., а в 1861 г. на Съезде немецких естествоиспытателей выступил с подробным докладом на эту тему. Самым главным вкладом Бутлерова, отличающим его труды от работ А. Кекуле и А. С. Купера, было последовательно проводимое положение о взаимосвязи между химическим строением и свойствами молекул. Это сделало понятие о химическом строении важнейшим теоретическим элементом химии. Подробнее см. упомянутые выше книги Г. В. Быкова (примечания 62 и 64).
[62] См.: Быков Г. В. Александр Михайлович Бутлеров. Очерк жизни и деятельности.— М.: Изд-во АН СССР, 1961, 218 с; Быков Г. В. О приоритете А. М. Бутлерова в создании теории химического строения. В кн.: Материалы по истории отечественной химии.— М.: Изд-во АН СССР, 1953, с. 20—32.
[63] Однако объяснить загадку двойных связей бензола, которые ведут себя не так, как двойные связи в других соединениях, удалось лишь спустя примерно три четверти века (см. гл. 12).
[64] См.: Быков Г, В. История стереохимии органических соединений.— М.: Наука, 1966, 372 с.
[65] См.: Добротин Р. Б., Соловьев Ю. И. Вант-Гофф.— М.: Наука, 1977, 272 с.
[66] Теория напряжения Байера в свое время удовлетворительно объясняла нестойкость циклов малого размера (трех- и четырехчленных). Однако впоследствии было установлено, что тетраэдрические атомы углерода в циклических системах не находятся в одной плоскости, поэтому возможно построение шестичленных циклов и любых циклов большего размера, свободных от углового напряжения.
[67] По материалам этой главы см. также: Фаерштейн М. Г. История учения о молекуле в химии (до 1860 г.).— М.: Изд-во АН СССР, 1961, 368 с.
[68] См.: Фигуровский Н. А. Открытие элементов и происхождение их названий.— М.: Наука, 1970, 207 с.
[69] На конгрессе присутствовали русские ученые А. П. Бородин, Н. Н. Зинин, Т. Лесинский, Д. И. Менделеев, Я. Натансон, Л. Н. Шишков. О С. Канниццаро см.: Быков Г. В., Крицман В. А. Станислао Канниццаро. Очерк жизни и деятельности.— М.: Наука, 1972, 215 с.
[70] Указанное соотношение выполняется лишь приблизительно, поскольку атомы различных элементов не всегда заполняют одинаковые части занимаемого веществом пространства.— Прим. ред.
[71] См.: Кедров Б. М. День одного великого открытия.— М.: Соцэкгиз, 1958,560 с.; Кедров Б. М. Философский анализ первых трудов Д. И. Менделеева о периодическом законе (1869—1871).— М.: Изд-во АН СССР, 1959, 294 с; Фигуровский Н. А. Дмитрий Иванович Менделеев.— М.: Изд-во АН СССР, 1961, 315 с.
[72] В данном случае Менделеев интуитивно принял правильное решение, однако объяснить, почему элементы следует располагать именно таким образом, удалось лишь спустя около полувека (см. гл. 13).
[73] Открытие Д. И. Менделеевым периодического закона датируется 17 февраля (1 марта) 1869 г., когда им была составлена таблица, озаглавленная «Опыт системы элементов, основанной на их атомном весе и химическом сходстве». В 1864 г. Л. Мейер предложил таблицу для нескольких групп элементов, в которой он показывал соотношение их атомных масс, но никаких теоретических выводов не сделал. Менделеев же развил свои представления, придав уже к 1871 г. своей периодической системе современный вид.— Прим. ред.
[74] По материалам этой главы см. также: Макареня А. А. Д. И. Менделеев и физико-химические науки. Опыт научной биографии Д. И. Менделеева.— М.: Атомиздат, 1972; Трифонов Д. Н. Структура и границы периодической системы.— М.: Атомиздат, 1969. Б. М. Кедров, Д. Н. Трифонов. Закон периодичности и химические элементы. Открытия и хронология.— М.: Наука, 1969, 194 с; Соловьев Ю. И., Петров Л. П. Вильям Рамзай. 1852—1916.— М.: Наука, 1971, 239 с.
[75] См.: Соловьев Ю. И. Герман Иванович Гесс.— М.: Изд-во АН СССР, 1962, 104 с.
[76] В 1892 г. эта работа была переведена на русский язык.— Прим. перев.
[77] Д. У. Гиббс — одна из величайших фигур в истории естествознания. Он внес в химию новый стиль мышления. Гиббс фактически заложил основы новой области науки — химической термодинамики. Это тем более удивительно, что он никогда серьезно не изучал химию. О значении вклада Гиббса в науку говорит такой факт: после его смерти в течение пятидесяти лет работам, основанным на его трудах, присуждались Нобелевские премии. См.: Франкфурт У. И., Френк А. М. Джозайя Уиллард Гиббс.— М.: Наука, 1964, 279 с.
[78] По решению Международного союза чистой и прикладной химии теперь называется анергией Гиббса (G). Она является термодинамическим потенциалом и описывается равенством G = H – TS, где H — энтальпия, S — энтропия, T — температура.— Прим. ред.
[79] Приведем пример одного из важных дополнений. В 1923 г. американский химик Джильберт Ньютон Льюис (1875—1946) в классической книге по термодинамике ввел понятие активность. Активность вещества не то же самое, что его концентрация, но связана с ней. Уравнения химической термодинамики можно сделать более точными в более широких пределах, если заменить концентрацию на активность.
[80] В. Оствальд очень много сделал для развития физической химии. Он разрабатывал теорию электролитической диссоциации, открыл закон разбавления, носящий его имя, заслуги Оствальда отмечены в 1909 г. Нобелевской премией. Однако он был также автором «энергетической» теории — одной из разновидностей «физического» идеализма, в которой материя рассматривалась как форма проявления энергии. В. И. Ленин назвал Оствальда «очень крупным химиком, но очень путаным философом» (Полн. собр. соч., 5-е изд., т. 18, с. 173). Об Оствальде см. прекрасную биографию: Родный Н. И., Соловьев Ю. И. Вильгельм Оствальд. 1853—1932.— М.: Наука, 1969, 375 с.
[81] Накопление знаний в области биохимии (т. е. химических реакций, обычно регулируемых ферментами и происходящих в живых тканях) в настоящей книге затрагивается лишь вскользь. Этот вопрос более подробно рассматривается в кн. «Краткая история биологии» (Азимов А. Краткая история биологии. Пер. с англ.— М.: Мир, 1967).
[82] О творчестве В. Оствальда, которого В. И. Ленин назвал «очень крупным химиком, но очень путаным философом», см.: Родный Н. И., Соловьев Ю. И. Вильгельм Оствальд. 1853—1932.— М.: Наука, 1969.— Прим. ред.
[83] Говоря об открытии и изучении электролитической диссоциации, нельзя забывать о работах прибалтийского ученого Теодора Гротгуса (1785—1822). В 1805 г. он развил теорию электропроводности растворов, в 1818 г. предложил теорию состояния молекул (ионов) в растворе. В этой теории он развил представление о том, что атомы вещества могут приобретать электрические заряды и что свойства таких атомов отличны от свойств атомов нейтральных. Биографию Т. Гротгуса см.: Страдынь Я. П. Теодор Гротгус 1785—1822.— М.: Наука, 1966, 184 с.
[84] См.: Соловьев Ю. И., Фигуровский Н. А. Сванте Аррениус.— М.: Изд-во АН СССР, 1959, 179 с.
[85] Понятие абсолютный нуль — самая низкая из возможных температур — впервые было введено Томсоном (лордом Кельвином) в 1848 г. В признание его приоритета шкала абсолютных температур получила название шкалы Кельвина. В 1906 г. Нернст показал, что при стремлении температуры к абсолютному нулю все изменения состояния системы не изменяют ее энтропии (третье начало термодинамики),или, другими словами, при помощи конечной последовательности термодинамических процессов нельзя достичь температуры, равной абсолютному нулю.
[86] Физическая химия является одной из наиболее сложных областей химии, и изложить ее историю, проследить формирование основных понятий на полутора десятках страниц очень трудно. Подробнее о развитии этой области науки можно прочитать в кн.: Соловьев Ю. И. Очерки по истории физической химии.— М.: Наука, 1964, 342 с.
[87] Это сомнительное утверждение. Прежде всего, с помощью химического синтеза можно получить соединения, отсутствующие в природе. Это и есть главная область, где синтез может конкурировать с биосинтезом. Кроме того, развитие химии продолжается и сейчас, появление биотехнологии во всех ее ответвлениях сулит необычайный прогресс в области искусственного получения сложнейших природных соединений.
[88] Р. Вудворд был не только блестящим химиком-синтетиком, ему принадлежат также важные обобщающие исследования по механизму органических реакций.
[89] Тетрациклин был впервые синтезирован М. М. Шемякиным. См.: Шемякин М. М., Гуревич А. И., Карапетян М. Г., Голосов М. Н., Коробко В. Г., Поправка С. А., Докл. АН СССР, 1967, т. 174, № 2, ее. 358—361. Прим. ред.
[90] Работ по истории аналитической химии очень мало. Самая последняя монография: Comprehensive Analytical Chemistry. Ed. G. Svehla. Szabadvary F., Robinson A. The History of Analytical Chemistry. Amsterdam, Elsevier, 1980, 303 p.
[91] См.: Шамин А. И. История химии белка.— М.: Наука, 1977, 349 с.
[92] В 1833 г. Грэхем изучал различные формы фосфорной кислоты и показал, что в некоторых из них на металл можно заместить более одного атома водорода. В результате химики узнали о существовании многоосновных кислот.
[93] Основные труды Э. Фишера и его биографический очерк можно прочитать в кн.: Э. Фишер. Избранные труды.— М.: Наука, 1979, 639 с. Характерно, что Э. Фишер не только создал представление о типе строения белковых молекул, но и высказал важное положение о том, что белковые молекулы могут обладать одновременно и химической и биологической индивидуальностью благодаря способности образовывать бесчисленное множество изомеров. Это положение — одно из фундаментальных представлений молекулярной биологии. Удивительно, что химик оценил его значение по меньшей мере на два десятилетия раньше, чем это сделали биологи.
[94] О М. С. Цвете и его роли в создании хроматографии имеется обширная литература. Наиболее полно она представлена в библиографии к кн.: Сенченкова Е. М. Михаил Семенович Цвет. 1872—1919.— М.: Наука, 307 с.
[95] За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конце 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира.
[96] Увлекательную историю создания модели дезоксирибонуклеиновой кислоты описал Д. Уотсон в ставшей знаменитой книге «Двойная спираль. Воспоминания об открытии структуры ДНК» (М.: Мир, 1969, 152 с). Но изложение истории этих направлений будет неполным, если не упомянуть о том, что изучение биополимеров — белков и нуклеиновых кислот, а также низкомолекулярных физиологически активных соединений — привело к формированию нескольких направлений в области взаимодействия химии и биологии. Классическая биохимия дополнилась молекулярной биологией, молекулярной генетикой, возникла биоорганическая химия. Сейчас этот процесс привел к формированию нового направления в науке — физико-химической биологии. Эти события вызвали революционные преобразования современной биологии. А. Азимов включает эти направления в сферу истории биологии, но сейчас уже невозможно отрывать их от химии. К сожалению, изложение их истории в данном издании достаточно полно сделать невозможно, да и история их только начинает разрабатываться. См.: Olby R. The Path to the Double Helix. Seattle, Univ. Washington Press, 1975. 510 p.
[97] Читатель, интересующийся более подробно этим предметом, может обратиться к моей книге «Генетический код» (Orion Press, 1963).
[98] Впервые нитроцеллюлозу получил французский химик Т. Пелуз в 1838 г., однако это открытие осталось незамеченным.— Прим. перев.
[99] Точности ради надо заметить, что эту работу Дж. У. Хайятт проводил вместе со своим братом И. С. Хайяттом.— Прим. перев.
[100] Первая целлулоидная фабрика была основана в Нью-Йорке в 1872 г., а в 1878 г. аналогичная фабрика появилась на европейском континенте — во Франции. С 20-х годов нашего века целлулоид стал производиться повсеместно.— Прим. перев.
[101] Перед первой мировой войной русский химик Григорий Семенович Петров (1886—1957) разработал метод получения сульфокислот при очистке нефти. Нефтяные сульфокислоты, получившие название «контакт Петрова», использовались в качестве быстродействующего расщепителя жиров при контактном методе переработки последних. В 1910—1914 гг. Г. С. Петров, используя «контакт» для конденсации фенолов с альдегидами, получил первую пластмассу «карболит», не уступавшую бакелиту.
[102] Каучук — природный полимер, получаемый из сока тропических растений (каучуконосов). При нагревании каучук становится мягким и липким, а при охлаждении — твердым и ломким, поэтому применять его непосредственно нельзя. Американский изобретатель Чарльз Гудьир (1800—1860) открыл (отчасти случайно), что нагретый в присутствии серы каучук не размягчается и остается эластичным в широком диапазоне температур. В 1844 г. Гудьир запатентовал полученный им вулканизованный каучук. По-настоящему широко каучук стал применяться лишь в XX в., когда из него начали изготавливать шины.
[103] Основополагающие исследования в области методов синтеза синтетических каучуков выполнили русские ученые С. В. Лебедев, И. Л. Кондаков, А. Е. Фаворский и др. С. В. Лебедев в 1910 г. впервые получил образец синтетического бутадиенового каучука. В 1926—1928 гг. он с группой сотрудников разработал метод получения натрий-бутадиенового каучука. См.: Сергиенко С. Р. Академик Сергей Васильевич Лебедев. Жизнь и научная деятельность.— М.: Изд-во АН СССР, 1959, 127 с. Создание СК было выдающимся достижением и в катализе. В СССР независимо от работ Д. А. Ньюленда был разработан метод получения хлоропрена — синтетического каучука — аналога неопрена.
[104] Создание алюминий-органических катализаторов К. Циглером и смешанных металлорганических катализаторов Д. Натта позволило сначала Циглеру в лабораторных условиях, а затем Натта в промышленных масштабах осуществить процесс стереоспецифической полимеризации. В результате был синтезирован цисполиизопрен, аналогичный по структуре и свойствам натуральному каучуку. В Советском Союзе исследования стереоспецифического катализа и стереорегулярных полимеров вели Б. А. Долгоплоск, В. А. Каргин и др.
[105] По материалам этой главы см.: Соловьев Ю. И., Трифонов Д. Н., Шамин А. Н. История химии. Развитие основных направлений современной химии.— М.: Просвещение, 1978, 352 с.
[106] Биографии великих химиков. Пер. с нем./Под ред. Г В. Быкова, С. А. Погодина.— М.: Мир, 1981.
[107] При снятии давления такие вещества, как правило, возвращаются в обычное состояние. Алмаз составляет исключение.
[108] А. Азимов лишь очень кратко касается развития одной из важнейших и в познавательном, и практическом смысле областей химии — химии элементоорганических соединений. Не упоминает он и о работах Виктора Гриньяра (1871 — 1935), получившего в 1900 г. магний-галогенорганические соединения (реактивы Гриньяра). Вклад советских ученых П. П. Шорыгина, А. Е. Арбузова, А. Н. Несмеянова, К. А. Кочешкова, К. А. Андрианова в развитие элементоорганической химии особенно велик. Достаточно упомянуть о синтезе кремнийорганических соединений, проведенном К. А. Андриановым, уже в 30-х годах запатентовавшим свои открытия. Не упоминает А. Азимов и об открытии органических соединений переходных металлов. Вместе с тем синтез ферроцена, дибензилхрома был своеобразной химической сенсацией и стимулировал многочисленные теоретические и экспериментальные исследования. См.: Соловьев Ю. И., Трифонов Д. Н., Шамин А. Н. История химии (примечание 13 к гл. 10).
[109] По материалам этой главы см.: Развитие органической химии в СССР. (Серия «Советская наука и техника за 50 лет»).— М.: Наука, 1967, 575 с.
[110] Начиная с Бенджамина Франклина, все физики, исследовавшие электричество в XVIII и XIX вв., полагали, что ток течет от так называемого положительного полюса к отрицательному (см. гл. 5). Крукс показал ошибочность этого предположения, На самом деле ток течет от отрицательного полюса к положительному.
[111]См.: Быков Г. В. К истории открытия электрона.— Вопросы истории естествознания и техники, 1969, вып. 3 (28), с. 71—72.
[112] Или просто фотоэффектом. (Другие названия — внешний фотоэффект, фотоэлектронная эмиссия.) Систематическое исследование фотоэффекта в 1888 г. начал русский физик Александр Григорьевич Столетов (1839—1896).— Прим. перев.
[113] В нашей стране применяется термин «рентгеновские лучи».— Прим. перев.
[114] Еще в 1920 г. Чедвик экспериментально доказал равенство заряда ядра порядковому номеру элемента.— Прим. перев.
[115] По материалам этой главы см.: Льоцци Марио. История физики. Пер. с итал.— М.: Мир, 1970, 464 с.
[116]См.: Трифонов Д. Н., Кривомазов А. Н., Лисневский Ю. И. Учение о периодичности и учение о радиоактивности. Комментированная хронология важнейших событий.— М.: Атомиздат, 1974.
[117] Эти значения основаны на допущении, согласно которому заряд протона произвольно установлен равным +1, а заряд электрона равен -1.
[118] От латинского nucleus — ядро.— Прим. перев.
[119] Положительные ионы образуются в результате потери электронов, а отрицательные ионы — в результате присоединения электронов. Следовательно, у иона натрия меньше электронов, чем у атома натрия, а у иона хлора их больше, чем у атома хлора.
[120] См.: Развитие учения о валентности. Сб. под ред. В. И. Кузнецова.— М.: Химия, 1977, 248 с.
[121] Здесь и далее автор чрезмерно преувеличивает роль концепции резонанса, не упоминая о ее недостатках. Критический анализ теории резонанса см. Реутов О. А. Теоретические основы органической химии, изд. МГУ, 1964, стр. 94—98, а также Хюккель В. Химическая связь. Пер. с англ.— М.: ИЛ, 1959.— Прим. ред.
[122] Об историческом значении теории резонанса см.: Быков Г. В. История органической химии. Структурная теория. Физическая органическая химия. Расчетные методы.— М.: Химия, 1976, 360 с.
[123] См.: Кошкин Л. В., Мусабеков Ю. С. Возникновение и развитие представлений об органических свободных радикалах.— М.: Наука, 1967, 216 с.
[124] См. также кн.: Быков Г. В. История электронных теорий органической химии.— М.: Изд-во АН СССР, 1963, 423 с.
[125] См.: Кривомазов А. Н. Фредерик Содди. 1877—1956.— М.: Наука, 1978, 208 с.
[126] Во времена Содди считали, что в ядре имеются электроны и потеря ядром бета-частицы оставляет неуравновешенным дополнительный протон и, следовательно, увеличивает положительный заряд. В настоящее время принято считать, что ядро содержит только протоны и нейтроны. Электрон же образуется и выталкивается, когда нейтрон преобразуется в протон, так как увеличение положительного заряда эквивалентно потере путем выбрасывания отрицательного заряда.
[127] В действительности масса атома не совсем кратна массе атома водорода. Небольшие отклонения в массе не имеют значения для химии, но имеют отношение к той огромной энергии, заключенной в ядрах, которая позволила создать атомную бомбу и перейти к атомной энергетике (см. гл. 11).
[128] Этими же причинами объясняется также различие в периодах полураспада природного тория (торий-232) и тория, полученного в результате распада урана (торий-234), о котором говорилось в начале главы.
[129] См.: Старосельская-Никитина О. А. Эрнест Резерфорд (1871 -1937).— М.: Наука, 1967, 316 с.
[130] Космические лучи состоят из частиц, проникающих в атмосферу Земли из космического пространства. Эти частицы, главным образом протоны, разгоняются до почти невообразимых энергий электрическими полями звезд и самой галактики.
[131] См.: Трифонов Д. Н. Структура и границы периодической системы.— М.: Атомиздат, 1969, 271 с.
[132] Имеется в виду курчатовий, названный в честь советского физика Игоря Васильевича Курчатова (1902—1960) — выдающегося ученого и организатора атомной промышленности в нашей стране.— Прим. перев.
[133] Строго говоря, атом с большей массой имеет большее число нейтронов по отношению к его массовому числу. Таким образом, кальций-40 содержит 20 нейтронов, что составляет 0.5 от его массового числа, а уран-238 содержит 146 нейтронов, что составляет 0.65 его массового числа.
[134] СССР был первым государством, начавшим использовать атомную энергию В мирных целях. 27 июня 1954 г. в г. Обнинске была пущена первая в мире атомная электростанция мощностью в 5 МВт. 5 декабря 1957г. в СССР было спущено на воду первое в мире судно гражданского назначения с ядерной силовой установкой — атомный ледокол «Ленин».
[135] В СССР ведутся широкие исследования по созданию установок по управляемому термоядерному синтезу.