Часть 1. Структура Реальности

Глава 1. Знаменитый эксперимент

Сама попытка вообразить картину элементарных частиц и думать о них визуально — значит иметь абсолютно неверное представление о них.

В. Гейзинберг

В ближайших двух главах на примере конкретных экспериментов мы познакомимся с базовыми представлениями квантовой физики, сделаем их понятными и «рабочими». Затем обсудим необходимые нам теоретические концепции и применим их к тому, что чувствуем, видим, наблюдаем. А далее рассмотрим то, что обычно относят к мистике.

Согласно классической физике, исследуемый объект находится лишь в каком-то одном из множества возможных состояний. Он не может пребывать в нескольких состояниях одновременно, нельзя придать смысл сумме состояний. Если я нахожусь сейчас в комнате, я, стало быть, не в коридоре. Состояние, когда я нахожусь и в комнате, и в коридоре, невозможно. Я ведь не могу в одно и то же время находиться и там, и там! И не могу одномоментно выйти отсюда через дверь и выпрыгнуть в окно: я либо выхожу через дверь, либо выскакиваю в окно. Очевидно, такой подход полностью согласуется с житейским здравым смыслом.

В квантовой механике (КМ) такая ситуация является лишь одной из возможных. Состояния системы, когда реализуется только один из множества вариантов, в квантовой механике называют смешанными, или смесью. Смешанные состояния являются по сути классическими — система может быть с определенной вероятностью обнаружена в одном из состояний, но никак не в нескольких состояниях сразу.

Однако известно, что в природе имеет место и совершенно другая ситуация, когда объект находится в нескольких состояниях одновременно. Иными словами, происходит наложение двух или большего числа состояний друг на друга без какого-либо взаимного влияния. Например, экспериментально доказано, что один объект, который мы по привычке называем частицей, может одновременно проходить через две щели в непрозрачном экране. Частица, проходящая через первую щель, — это одно состояние, та же частица, проходящая через вторую, — другое. И эксперимент показывает, что наблюдается сумма этих состояний! В таком случае говорят о суперпозиции состояний, или о чисто-квантовом состоянии.

Речь идет о квантовой суперпозиции (когерентной суперпозиции), то есть о суперпозиции состояний, которые не могут быть реализованы одновременно с классической точки зрения. Суперпозиционные состояния могут существовать лишь при отсутствии взаимодействия рассматриваемой системы с окружением. Они описываются посредством так называемой волновой функции, которую также называют вектором состояния. Это описание формализуется заданием вектора в гильбертовом пространстве[9], определяющим полный набор состояний, в которых может находиться замкнутая система.

Волновая функция — это частный случай, одна из возможных форм представления вектора состояния как функции координат и времени. Это представление системы, максимально приближенное к привычному классическому описанию, предполагающему наличие общего и независимого ни от чего пространства — времени.

Наличие этих двух типов состоянийсмеси и суперпозиции — является основой для понимания квантовой картины мира и ее связи с мистической. Другой важной для нас темой будут условия перехода суперпозиции состояний в смесь и наоборот. Эти и другие вопросы мы разберем на примере знаменитого двухщелевого эксперимента[10].

Для начала возьмем пулемет и мысленно проведем эксперимент, показанный на рис. 1.


Рис. 1

Он не очень хорош, наш пулемет. Он выпускает пули, направление полета которых заранее неизвестно. То ли направо они полетят, то ли налево…. Перед пулеметом стоит броневая плита, а в ней проделаны две щели, через которые пули свободно проходят. Далее стоит «детектор» — любая ловушка, в которой застревают все попавшие в нее пули. По окончании эксперимента можно пересчитать число пуль, застрявших в ловушке, на единицу ее длины и разделить это число на общее количество выпущенных пуль. Или на время стрельбы, если скорость стрельбы считать постоянной. Эту величину — число застрявших пуль на единицу длины ловушки в окрестности некоторой точки Х, отнесенное к полному числу пуль, мы будем называть вероятностью попадания пули в точку Х. Заметим, что мы можем говорить только о вероятности — нельзя сказать определенно, куда попадет очередная пуля. И даже попав в дыру, она может срикошетить от ее края и уйти вообще неизвестно куда.

Мысленно проведем три опыта: первый — когда открыта первая щель, а вторая закрыта; второй — когда открыта вторая щель, а первая закрыта. И, наконец, третий опыт — когда обе щели открыты.

Результат нашего первого «эксперимента» показан на том же рисунке, на графике. Ось вероятности в нём отложена вправо, а координата — это и есть положение точки X. Пунктирная линия показывает распределение вероятности P1 попавших в детектор пуль при открытой первой щели, кривая из точек — вероятность попадания в детектор пуль при открытой второй щели и сплошная линия — вероятность попадания в детектор пуль при обеих открытых щелях, которую мы обозначили как P12. Сравнив величины P1, P2 и P12, мы можем сделать вывод, что вероятности просто складываются,

P1 + P2 = P12.

Итак, для пуль воздействие двух одновременно открытых щелей складывается из воздействия каждой щели в отдельности.

Представим себе такой же опыт с электронами, схема которого показана на рис. 2.


Рис. 2

Возьмём электронную пушку, наподобие тех, что когда-то стояли в каждом телевизоре, и поместим перед нею непрозрачный для электронов экран с двумя щелями. Прошедшие через щели электроны можно регистрировать различными методами: с помощью сцинтиллирующего экрана, попадание электрона на который вызывает вспышку света, фотопленки или с помощью счетчиков различных типов, например, счетчика Гейгера.

Результаты подсчетов в случае, когда одна из щелей закрыта, вполне предсказуемы и очень похожи на итоги пулеметной стрельбы (линии из точек и штрихов на рисунке). А вот в случае, когда обе щели открыты, мы получаем совершенно неожиданную кривую P12, показанную сплошной линией. Она явно не совпадает с суммой P1 и P2! Получившуюся кривую называют интерференционной картиной от двух щелей.

Давайте попробуем разобраться, в чём тут дело. Если мы исходим из гипотезы, что электрон проходит либо через щель 1, либо через щель 2, то в случае двух открытых щелей мы должны получить сумму вкладов от одной и другой щели, как это имело место в опыте с пулеметной стрельбой. Вероятности независимых событий складываются, и в этом случае мы бы получили P1 + P2 = P12. Во избежание недоразумений отметим, что графики отражают вероятность попадания электрона в определенную точку детектора. Если пренебречь статистическими ошибками, эти графики не зависят от полного числа зарегистрированных частиц.

Может, мы не учли какой-нибудь существенный эффект, и суперпозиция состояний (то есть одновременное прохождение электрона через две щели) здесь совсем не при чём? Может быть, у нас очень мощный поток электронов, и разные электроны, проходя через разные щели, как-то искажают движение друг друга? Для проверки этой гипотезы надо модернизировать электронную пушку так, чтобы электроны вылетали из нее достаточно редко. Скажем, не чаще, чем раз в полчаса. За это время каждый электрон уж точно пролетит всё расстояние от пушки до детектора и будет зарегистрирован. Так что никакого взаимного влияния летящих электронов друг на друга не будет!

Сказано — сделано. Мы модернизировали электронную пушку и полгода провели возле установки, проводя эксперимент и набирая необходимую статистику. Каков же результат? Он ничуть не изменился.

Но, может быть, электроны каким-то образом блуждают от отверстия к отверстию и только потом достигают детектора? Это объяснение также не подходит: на кривой P12 при двух открытых щелях есть точки, в которые попадает значительно меньше электронов, чем при любой из открытых щелей. И наоборот, есть точки, вероятность попадания электронов в которые более чем вдвое превышает вероятность попадания электронов, прошедших через каждую щель по отдельности.

Стало быть, утверждение о том, что электроны проходят либо сквозь щель 1, либо сквозь щель 2, неверно. Они проходят через обе щели одновременно. И очень простой математический аппарат, описывающий такой процесс, дает абсолютно точное согласие с экспериментом, показанным сплошной линией на графике.

Если подойти к вопросу более строго, то утверждение, что электрон проходит одновременно через две щели, неверно. Понятие «электрон» можно соотнести только с локальным объектом (смешанным, «проявленным» состоянием), здесь же мы имеем дело с квантовой суперпозицией различных компонент волновой функции.

Чем же отличаются пули от электронов? С точки зрения квантовой механики — ничем. Только, как показывают расчеты, интерференционная картина от рассеяния пуль характеризуется столь узкими максимумами и минимумами, что никакой детектор их зарегистрировать не в состоянии. Расстояния между этими минимумами и максимумами неизмеримо меньше размеров самой пули. Так что детекторы будут давать усредненную картину, показанную сплошной кривой на рис. 1.

Давайте теперь внесем такие изменения в эксперимент, чтобы можно было «проследить» за электроном, то есть узнать, через какую щель он проходит. Поставим возле одной из щелей детектор, который регистрирует прохождение электрона сквозь нее (рис. 3).


Рис. 3

В этом случае, если пролетный детектор регистрирует прохождение электрона через щель 2, мы будем знать, что электрон прошел через эту щель, а если пролетный детектор не дает сигнала, а основной детектор дает сигнал, то ясно, что электрон прошел через щель 1. Можно поставить и два пролетных детектора — на каждую из щелей, но это никак не скажется на результатах нашего опыта. Конечно, любой детектор, так или иначе, исказит движение электрона, но будем считать это влияние не очень существенным. Для нас ведь куда более важен сам факт регистрации того, через какую из щелей проходит электрон!

Как вы думаете, какую картину мы увидим? Результат эксперимента показан на рис. 3, качественно он ничем не отличается от опыта с пулеметной стрельбой. Таким образом, мы выяснили, что, когда мы смотрим на электрон и фиксируем его состояние, то он проходит либо через одно отверстие, либо через другое. Суперпозиции этих состояний нет! А когда мы на него не смотрим, электрон одновременно проходит через две щели, и распределение частиц на экране совсем не такое, как тогда, когда мы на них смотрим! Выходит, наблюдение как бы «вырывает» объект из совокупности неопределенных квантовых состояний и переводит его в проявленное, наблюдаемое, классическое состояние.

Может быть, всё это не так, и дело только в том, что пролетный детектор слишком сильно искажает движение электронов? Проведя дополнительные опыты с различными детекторами, по-разному искажающими движение электронов, мы заключаем, что роль этого эффекта не очень существенна. Существенным оказывается только сам факт фиксации состояния объекта!

Таким образом, если измерение, проведенное над классической системой, может и не оказать никакого влияния на ее состояние, для квантовой системы это не так: измерение разрушает чисто квантовое состояние, переводя суперпозицию в смесь.

Сделаем математическое резюме полученных результатов. В квантовой теории вектор состояния принято обозначать символом | >. Если какой-то набор данных, определяющих систему, обозначить буквой x, то вектор состояния будет иметь вид |x>.

В описанном эксперименте при открытой первой щели вектор состояния обозначается как |1>, при открытой второй щели — как |2>, при двух открытых щелях вектор состояния будет содержать две компоненты,

|x> = a|1> + b|2>, (1)

где a и b — комплексные числа, называемые амплитудами вероятности. Они удовлетворяют условию нормировки |a|2 + |b|2 = 1.

В случае, если поставлен пролетный детектор, квантовая система перестает быть замкнутой, поскольку с ней взаимодействует внешняя система — детектор. Происходит переход суперпозиции в смесь, и теперь вероятности прохождения электронов через каждую из щелей даются формулами P1 = |a|2, P2 = |b|2, P1 + P2 = 1. Интерференция отсутствует, мы имеем дело со смешанным состоянием.

Если же событие может произойти несколькими взаимоисключающими с классической точки зрения способами, то амплитуда вероятности события — это сумма амплитуд вероятности каждого отдельного канала, а вероятность события определяется формулой P = |(a|1> + b|2>)|2. Возникает интерференция, то есть взаимное влияние на результирующую вероятность обеих компонент вектора состояния. В этом случае говорят, что мы имеем дело с суперпозицией состояний.

Отметим, что суперпозиция — это не смесь двух классических состояний (немного одного, немного другого), это нелокальное состояние, в котором электрона, как локального элемента классической реальности, нет. Лишь в ходе декогеренции[11], вызванной взаимодействием с окружением (в нашем случае — экраном), электрон возникает в виде локального классического объекта.

Теперь — короткий экскурс в историю подобных опытов. Впервые интерференцию света на двух щелях наблюдал английский ученый Томас Юнг в начале XIX века. Затем, в 1926–1927 годах К. Д. Дэвиссоном и Л. X. Джермером в экспериментах с использованием монокристалла никеля была открыта дифракция электронов — явление, когда при прохождении электронами через множество «щелей», образованных плоскостями кристалла, наблюдаются периодические пики в их интенсивности. Природа этих пиков совершенно аналогична природе пиков в двухщелевом эксперименте, а их пространственное расположение и интенсивность позволяют получить точные данные о структуре кристалла. Этим ученым, а также Д. П. Томсону, который независимо от них также открыл дифракцию электронов, в 1937 году была присуждена Нобелевская премия.

Затем подобные опыты многократно повторялись, в том числе и с летящими «поштучно» электронами, а также с нейтронами и атомами, и во всех них наблюдалась предсказываемая квантовой механикой интерференционная картина. Впоследствии были проведены эксперименты с более крупными частицами. Один из таких опытов (с молекулами тетрафенилпорфирина) был проведен в 2003 году группой ученых из Венского университета во главе с Антоном Цайлингером[12]. В этом классическом двухщелевом эксперименте было четко продемонстрировано наличие интерференционной картины от одновременного прохождения очень большой по квантовым меркам молекулы через две щели.

Наиболее впечатляющий на сегодняшний день эксперимент был недавно проведен той же группой исследователей[13]. В этом исследовании пучок фуллеренов (молекул C70, содержащих 70 атомов углерода) рассеивался на дифракционной решетке, состоящей из большого числа узких щелей. При этом имелась возможность вести контролируемый нагрев летящих в пучке молекул C70 посредством лазерного луча, что позволяло менять их внутреннюю температуру (иначе говоря, среднюю энергию колебаний атомов углерода внутри этих молекул).

Теперь вспомним, что любое нагретое тело, в том числе молекула фуллерена, испускает тепловые фотоны, спектр которых отражает среднюю энергию переходов между возможными состояниями системы. По нескольким таким фотонам можно, в принципе, с точностью до длины волны испускаемого кванта определить траекторию испустившей их молекулы. Отметим, что чем выше температура и, соответственно, меньше длина волны кванта, тем с большей точностью мы могли бы определить положение молекулы в пространстве, а при некоторой критической температуре точность окажется достаточна для определения, на какой конкретно щели произошло рассеяние.

Соответственно, если бы кто-то окружил установку Цайлингера совершенными детекторами фотонов, то он, в принципе, мог бы установить, на какой из щелей дифракционной решетки рассеялся фуллерен. Другими словами, испускание молекулой квантов света дало бы экспериментатору ту информацию для разделения компонент суперпозиции, которую нам давал пролетный детектор. Однако никаких детекторов вокруг установки не было. Как и предсказывала теория декогеренции[14], их роль сыграла окружающая среда.

В эксперименте было обнаружено, что в отсутствии лазерного нагрева наблюдается интерференционная картина, совершенно аналогичная картине от двух щелей в опыте с электронами. Включение лазерного нагрева приводит сначала к ослаблению интерференционного контраста, а затем, по мере роста мощности нагрева, к полному исчезновению эффектов интерференции. Было получено, что при температурах T < 1000K молекулы ведут себя как квантовые частицы, а при T > 3000K, когда траектории фуллеренов «фиксируются» окружающей средой с необходимой точностью — как классические тела.

Таким образом, роль детектора, способного выделять компоненты суперпозиции, оказалась способна выполнять окружающая среда. В ней при взаимодействии с тепловыми фотонами в той или иной форме и записывалась информация о траектории и состоянии молекулы фуллерена. Никакого специального устройства не надо! Совершенно не важно, через что идет обмен информацией: через специально поставленный детектор, окружающую среду или человека. Для разрушения когерентности состояний и исчезновения интерференционной картины имеет значение только принципиальное наличие информации, через какую из щелей прошла частица, а кто ее получит, не важно. Иначе говоря, фиксация или «проявление» суперпозиционных состояний вызывается обменом информацией между подсистемой (в данном случае — частицей фуллерена) и окружением.

Возможность контролируемого нагрева молекул позволила в данном эксперименте изучить переход от квантового к классическому режиму во всех промежуточных стадиях. Оказалось, что расчеты, выполненные в рамках теории декогеренции (о ней пойдет речь ниже), полностью согласуются с экспериментальными данными.

Иначе говоря, в эксперименте подтверждены выводы теории декогеренции о том, что в основе наблюдаемой реальности лежит нелокализованная и «невидимая» квантовая реальность, которая становится локализованной и «видимой» в ходе происходящего при взаимодействии обмена информацией и сопутствующей этому процессу фиксацией состояний.

На рис. 4 приведена схема установки Цайлингера, без всяких комментариев. Полюбуйтесь на неё, просто так.


Рис. 4

Глава 2. Чудо квантовых корреляций

Если вы пошли в магазин за арбузом, то одновременно вы не можете находиться в кругосветном путешествии или на заседании ученого совета. Если арбуз оказался весом 8 кг, то ни у вас, ни у продавца не возникает сомнений в том, что как до взвешивания, так и после него его вес был именно 8 кг, а не 15 кг. Но Богом сотворенный мир гораздо богаче этого нашего житейского опыта…

А. Белинский[15]

Где-то в глубине нас сидит потребность сводить все явления окружающего мира к простым и уже известным нам образам и соотношениям. И если мы сталкиваемся с чем-то радикально новым, это нередко вызывает раздражение и скептицизм, а иногда и агрессию. Что заставляет нас наматывать круги по привычным житейским траекториям, когда каждому открыта дверь неповторимости, глубины и яркости любого мгновения?

Попробуем представить, что скажет по этому поводу психолог, философ и мистик.

Психолог отметит, что с этим явлением, именуемым сопротивлением, он сталкивается при работе практически с каждым клиентом. Сопротивление — это переживание внутренней преграды, возникающее у людей по отношению к возможным изменениям в поведении или при осознании некоторых переживаний. Иначе говоря, это переживание границы, за которую человек боится ступить, страшится почувствовать, что там, и обычно избегает даже разговоров на эту тему, находя для этого тысячи причин и оправданий.

Снять или обойти сопротивление в каком-то конкретном случае иногда возможно, только от этого, как от любой манипулятивной технологии, может быть и вред, добавит психолог.

Он также отметит непластичность (ригидность) психики и высокий уровень деструктивного страха тех, у кого новая информация вызвала реакцию неприятия. И подчеркнет возможное отсутствие в их арсенале понятий, способных служить опорой при восприятии: никуда не деться от того, что связь восприятия и поведения с наличием в языке индивида необходимых структур несомненна[16]. В жизни человека нет того, чего он не знает. Если в языке нет слова, обозначающего синий цвет, далеко не каждый носитель этого языка будет способен отличить синий цвет от зеленого.

Далее психолог, вероятно, перейдет к роли Я-образа (некоторого ментального представления о самом себе), посредством которого человек[17] проводит границы между собой и не собой, между возможными и недопустимыми для него мыслями. Эти границы проводятся каждым из нас самым причудливым образом, и мысли, представляющие угрозу для ментального образа себя, будут встречать серьезное сопротивление. А иногда — агрессию, которая может быть направлена не только вовне, но и на себя самого.

Также, добавит психолог, современная система обучения направлена на то, чтобы ориентировать человека на стимулы и оценки, получаемые извне, из социума. С первых дней жизни ребенок учится получать информацию извне, искать награды и поощрения извне и игнорировать свой внутренний голос, если он идет вразрез с тем, что требуют внешние авторитеты. Всё это приводит к тому, что человек становится неспособным следовать своим внутренним импульсам, а стало быть, теряет способность к подлинному развитию и содержательной жизни.

Так скажет психолог.

Современный философ, знакомый с творчеством Мартина Хайдеггера[18], вспомнит «Бытие и время»[19], где автор противопоставил подлинное существование человека Dasein («присутствие», «экзистенция», «вот-бытие») и das Man (люди, люд) — существование человека в повседневности, обыденности.

Бытие-c-другими, усредненная, общественная «понятливость» и «толкуемость» — это характеристики das Man, «люда». Когда человек живет в среде, где всё для него понятно и знакомо, тогда он крутится в бесконечном кругу общепринятых значимостей, избегая всего иного. У «люда» не возникает вопросов о собственном бытии, о смысле, о начале. Жизнь усредненного человека, таким образом, становится неподлинной, его личное теряется в общественном.

Человек, реализующий в себе Dasein, напротив, живет в подлинном здесь и сейчас, открытый тайнам бытия, разговаривающий на языке бытия, проникающий в свою внутримирную действительность.

Именно повседневность и обыденность, заключенность в повторении одного и того же и мешает восприятию актуальности настоящего, не дает подлинной жизни проникнуть в нас. Делая непростой шаг, скачок из круговорота понятности к бытию здесь и сейчас, с его ужасом и одиночеством, но и с его красотой, жизненностью, человек, наконец, может войти в пространство истины.

Так подумает философ.

Мистик же направит спрашивающего внутрь него самого.

Он может сказать так: ты хочешь узнать о стоящих перед тобой препятствиях? Очень хорошо. Однако ты не поймешь, откуда берутся препятствия и в чём они заключаются, пока не узнаешь, кто ты. И как ты делаешь себя таким, какой ты есть.

Вспомни, что определило твои поступки и состояния в последние дни. Почему ты пошел сюда, а не туда, почему у тебя вдруг сменилось настроение, что обусловило важность тех или иных действий или событий для тебя. Вероятно, ты испытывал удовлетворение или неудовлетворение происходящим и пользовался при этом какими-то критериями правильности. Тут у тебя вышло — и ты молодец, хотя тебе просто подфартило. А тут не вышло, и ты считаешь себя неудачником, хотя был внимателен и сделал всё, что мог. Осознавал ли ты, что это были за критерии, и откуда они взялись? Разберись в них. А после честно ответь: ты кто?

Ты подменил себя ролью и функциями, которые привык исполнять? Может, ты действовал из чувства долга? Ты — жалость к себе и страх за себя? Ты делал всё, чтобы получить признание хоть кого-нибудь: друга, знакомого, жены, собственного ребенка? А может быть, ты был животным, которому достаточно поесть и позаниматься сексом? Или ты — некая концепция самого себя, типа: «Я человек, меня ждут важные дела»? Или ты — одна сплошная озабоченность чем-то?

Кто ты?

А когда ты поймешь, с кем, с какой условностью ты ошибочно отождествился, ты сможешь раскрыть свою прежде подавленную природу и отказаться от хождения по кругу иллюзорных значимостей. Используй свою несвободу, именно она показывает тебе путь к себе истинному! Иди туда, откуда мысли рождаются, и там ты встретишь себя истинного! Сейчас же ты вовлекся в происходящее и позволил своей низшей природе, своим ролям, привычкам, функциям считать их собой, забыв, что твоя суть — это ничем не обусловленный и не связанный Дух. Или, пока ты не осознал себя Духом, ты можешь обнаружить себя как Открытость, Незнание, Удивление, Тайну и одновременно поиск этой Тайны.

А далее, при необходимости, мистик пояснит, что в нашу эпоху, эпоху Кали-юги, человек имеет дело лишь с отражением, тенью Истины в своем уме, обычному человеку доступна примерно четвертая часть истины. Восприятие Истины среднему человеку недоступно[20] из-за схваченности его внимания всевозможными аттракторами[21] и сопутствующими им ложными отождествлениями со своей низшей природой. Отсюда проистекает неразвитость более мощных, чем ум, структур восприятия и почти полная слепота и роботизированность. Отсюда и раскол внутри человека, и непонимание других, и всего, что происходит вокруг, и своих задач.

Заодно мистик может добавить: «Разобравшись, кто ты, и став собой, ты узнаешь, что такое жизнь — не выживание, а жизнь. А ответ на вопрос о препятствиях, точнее, решение этого вопроса, возникнет как побочный эффект. Ты увидишь, как твой ум избавляется от всего, что было непонятно или неприятно ему, и находит тысячи причин и уловок, чтобы не допустить новое в твою жизнь. А пока же знай, что ты сам, то есть всё то, что ты о себе полагаешь, и есть главное препятствие. Вне ложных отождествлений ты уже Истина, тебе необходимо лишь осознать свое бытие в ней».

Какой ответ вам нравится больше? Кстати, мистик никогда не станет настаивать на чём-либо. Вы спросили — он ответил. А далее дело ваше, он уважает ваше право на свой путь и свое мнение. Вдобавок, он прекрасно видит и знает, как узки врата, ведущие в жизнь, и на чужом горбу, или повторяя чужой путь, в них не въедешь.

Так что будьте совершенны и позволяйте осуществиться вашей уникальности прямо сейчас! А о возможных путях открытия в себе новых граней сознания мы поговорим позже. Ещё подробнее об этом пойдет речь в моей будущей книге[22].

Сейчас мы рассмотрим эксперименты, говорящие о наличии мгновенной связи между частицами на таких расстояниях, когда между ними уже нет никакого взаимодействия. Я не оговорился! Повторю еще раз: речь будет идти о мгновенной связи между частицами тогда, когда между ними нет никакого взаимодействия.

Приступим. Известно, что фотоны, или кванты света, имеют такую характеристику, как поляризация, которая определяет направление колебаний электрического поля относительно направления движения фотона. Это схематично показано на рис. 5 — колебания волнообразной кривой, обозначающей электрическое поле фотона, лежат в некоторой плоскости, называемой плоскостью поляризации. Существуют пленочные покрытия, называемые поляризационными анализаторами, обладающие свойством пропускать кванты только с определенной плоскостью поляризации.

Подобные пленки используются, например, в поляроидных очках, способных отфильтровывать всевозможные блики, поскольку отраженный свет частично поляризован. Я в таких очках люблю ходить на рыбалку — в них подводный мир виден как на ладони, поскольку почти весь отраженный от поверхности воды свет ими задерживается.

Поляризующая пленка способна пропускать почти весь свет, когда он поляризован в некотором направлении, называемом оптической осью анализатора (она показана горизонтальными линиями). Фотон с такой поляризацией называют продольно поляризованным, он изображен на нижней части рисунка волнообразной линией. В то же время, пленка задерживает весь свет, поляризованный в направлении, перпендикулярном оптической оси поляризационного анализатора (волнообразная линия в верхней части рисунка). Такой фотон называют перпендикулярно поляризованным.


Рис. 5

В случае, когда плоскость поляризации фотона и оптическая ось анализатора образуют между собой угол[23] между 0 и 90°, нельзя дать определенного ответа на вопрос, пройдет фотон сквозь пленку или нет. Если кому интересно, в этом случае вероятность прохождения фотона будет равна квадрату косинуса указанного угла. Когда на пленку упадет фотон с поляризацией 45°, то исход события предсказать невозможно: при этом угле в среднем половина фотонов пройдет сквозь пленку, а половина будет задержана. Примерно половина фотонов будет проходить и в том случае, когда угол между плоскостью поляризации пучка и оптической осью анализатора случаен, как это имеет место при обычном дневном свете.

В случае, когда поляризация пучка неопределённа, то есть когда продольные и поперечные компоненты поляризации пучка находятся в состоянии суперпозиции, волновой вектор падающего фотона имеет вид

, (2)

где |0> и |1> — компоненты, обозначающие продольную (то есть вдоль оптической оси) и поперечную (перпендикулярно к ней) поляризацию соответственно, а — нормировочный множитель, обеспечивающий, чтобы суммарная вероятность прохождения и задержания равнялась единице.

В этой непредсказуемости результата нет ничего странного, разве что может возникнуть вопрос: а уверены ли мы в том, что прохождение фотона сквозь поляризационный анализатор действительно есть случайный процесс? Может быть, есть какой-нибудь скрытый фактор, который определяет, пройдет ли фотон или нет, а мы его просто не знаем?

К этому вопросу — вопросу о наличии так называемых скрытых параметров — мы вернемся позже, а пока попытаемся узнать, что происходит при одновременном наблюдении пары фотонов.

Обычный источник света испускает фотоны со случайной поляризацией, и при наблюдении за любой парой таких фотонов мы увидим, что они будут вести себя совершенно независимо друг от друга. Однако в физике известны процессы, к примеру, последовательное испускание фотонов некоторыми атомами, находящимися в возбужденном состоянии, когда получаются два фотона с одинаковой поляризацией. Одно состояние — продольная поляризация обоих фотонов, другое возможное состояние — их поперечная поляризация.

Поместим источник пар фотонов (в реальных экспериментах в качестве источника использовались атомы кальция и ртути) между двух поляризационных анализаторов (рис. 6), оптические оси которых параллельны, и понаблюдаем за прохождением каждого фотона из пары.


Рис. 6

Чтобы задать вектор состояния пары фотонов, необходимо описать состояния каждого из фотонов пары. Обозначения в квантовой механике приняты такие: внутри значка вектора |> первый символ описывает состояние первой частицы, а второй символ характеризует состояние второй частицы. Напомним, что источник выбран так, что вылетающие из него фотоны имеют одинаковую поляризацию. Обозначим как 0 состояние, когда фотон поляризован вдоль оси анализатора, и за 1 примем обозначение поляризации фотона перпендикулярно оптической оси. Возможны только два состояния фотонов пары — |00>, когда они оба поляризованы параллельно оптической оси, и |11>, когда оба они поляризованы перпендикулярно к ней. Соответственно, суперпозиция этих компонент описывается выражением

, (3)

где |00> и |11> — компоненты, обозначающие продольную и поперечную поляризацию фотонов пары соответственно, а — уже знакомый нам нормировочный множитель, обеспечивающий, чтобы сумма вероятностей всех возможных исходов равнялась единице.

Первое, что нам необходимо проверить, это действительно ли поляризация каждого из фотонов пары случайна. Проделав соответствующие опыты, мы убеждаемся, что да: сквозь анализатор как справа, так и слева от источника проходит, в пределах статистической погрешности, ровно половина фотонов. Точно такой же результат мы бы имели при использовании любого обычного источника света.

Далее следует проверить, что происходит, например, со вторым фотоном, когда первый поглощается. Согласно классическим представлениям, связь между ними должна быть, но только статистическая. Расчёты в теории вероятностей показывают, что при поглощении первого фотона поляризующей пленкой, второй с вероятностью 75 % поглощается[24], однако может с вероятностью 25 % пройти сквозь пленку. В этих расчетах мы исходили из совершенно разумных, на первый взгляд, предположений о том, что оба фотона имеют определенную и совпадающую между собой поляризацию с момента своего рождения.

Эксперимент же показывает, что если проходит один фотон, то всегда проходит и другой. А если поглощается один, то всегда поглощается и другой. То есть один из фотонов пары непостижимым образом знает, что происходит со вторым фотоном!

Это происходит вне зависимости от расстояния между источником пар фотонов и анализаторами. Один из анализаторов, к примеру, может стоять рядом с источником, а второй — быть удален сколь угодно далеко. Полученный результат не зависит и от ориентации оптических осей анализаторов относительно горизонта: важно только, чтобы они совпадали.

Возникает вопрос, можно ли использовать квантовые корреляции для «мгновенной» передачи классической информации из одной точки в другую? Ответ отрицателен, поскольку определяемые состояния частиц на каждом из анализаторов случайны, и их последовательность не несет никакой информации.

Квантовая теория объясняет результат эксперимента поразительно просто и красиво: до измерения поляризации фотона, то есть до прохождения фотоном анализатора, состояния поляризации существуют в состоянии суперпозиции, их просто не существует как локальных характеристик частицы. А в ходе измерения анализатор выделяет из суперпозиции, определяемой выражением (3) либо компоненту |00>, либо компоненту |11>. И в том, и в другом случае оба фотона имеют одинаковую поляризацию, определяемую относительно оптической оси анализатора, поглотившего первый из фотонов! Соответственно, либо они оба будут поглощены, либо они оба пройдут сквозь пленки. Последнее утверждение справедливо, однако, лишь в том случае, когда оптические оси обоих анализаторов совпадают.

Эта ситуация немного напоминает случай, когда у нас имелись два шара, черный и белый, которые потерялись. Найдя белый шар, мы можем утверждать, что оставшийся — черный. Однако объяснить поведение квантовых частиц в предположении, что каждый шар изначально белый или черный, не удастся. Шары, пока мы их не нашли, будут находиться в состоянии суперпозиции белого и черного и вести себя как бесцветные. И только тогда, когда мы определили цвет одного из шаров как черный, другой немедленно перестает быть бесцветным и приобретает белый цвет, на каком бы расстоянии он ни находился! А пока мы не увидели один из шаров, проведя тем самым измерение, шары не имеют цвета в качестве своей индивидуальной локальной характеристики.

На первый взгляд, результаты эксперимента говорят, что квантовый объект каким-то непостижимым образом «узнаёт», что происходит с другим объектом, удаленным от него на значительное расстояние (сейчас проведены эксперименты с расстоянием между парами фотонов более 100 км). Это не совсем так: ничего никому не нужно узнавать, поскольку пара фотонов остается единым объектом по поляризационным (= спиновым[25]) степеням свободы, несмотря на то, что «носители» поляризации пространственно разделены. Сложная система может быть локальна (то есть сепарабельна, разделима на независимые части) по одним степеням свободы и нелокальна (несепарабельна, неразделима на части) — по другим.

Таким образом, в общем случае поляризационные свойства группы фотонов нельзя разделить и приписать каждому фотону свою, присущую ему и только ему поляризацию. Поляризация оказывается системным свойством, а не свойством отдельной частицы! То же самое можно сказать и о любых других характеристиках любой другой частицы или более сложного объекта.

Подобную связь между частицами называют квантовыми корреляциями, а состояния участвующих в них частиц — запутанными.

Запутанное состояние — состояние составной системы, которая не может быть разделена на отдельные, полностью самостоятельные и независимые части, то есть это несепарабельное (неразделимое) состояние.

Запутанные (это устоявшийся термин, хотя я бы предпочел термин «сцепленные») состояния могут возникать в системе, части которой взаимодействовали, а затем система распалась на невзаимодействующие друг с другом подсистемы. Например, если электрон сталкивается с атомом, то образуется запутанное состояние, в котором состояние электрона будет коррелированно с состоянием атома в результате произошедшего взаимодействия. Запутанное состояние не может быть представлено в виде совокупности состояний отдельных частей системы в силу наличия корреляций[26] между ними.

Суперпозиционные состояния — более общее понятие, чем запутанные состояния. В них компоненты волновой функции могут быть как коррелированны между собой, так и нет. Последний случай отвечает наличию в системе изолированных (сепарабельных) подсистем, которые никогда не взаимодействовали друг с другом. Сепарабельные подсистемы могут рассматриваться как существующие независимо друг от друга, они не запутаны между собой. Термины «несепарабельность», «запутанность» и «нелокальность» очень близки и означают наличие в системе квантовых корреляций.

Не беспокойтесь, если термины не сразу станут привычными, это нисколько не будет мешать восприятию дальнейшего повествования[27].

Наличие квантовых корреляций — неотъемлемое свойство запутанных состояний. Запутанные состояния частиц означают наличие связи между характеристиками этих частиц после их взаимодействия, в замкнутых системах связь между ними будет сохраняться всегда. А в случае открытых систем связь между частицами будет сохраняться до тех пор, пока суперпозиция состояний не превратится под влиянием взаимодействия с окружающими объектами в смесь. То есть смешанные состояния возникают как результаты измерений, выполненных над чисто-квантовыми состояниями, это результат декогеренции чисто-квантовых состояний (говорят — чистых состояний). Смешанные состояния — наиболее привычные для здравого смысла состояния, это именно та материя, которая воспринимается нашими органами чувств и классическими устройствами.

Глава 3. Нелокальность и детерминизм

Реальностью может быть только то, небытие чего невозможно.

Шри Шанкарачарья

Опыты по исследованию квантовых корреляций во многом оказались возможными потому, что физики научились создавать, или, как они выражаются, «приготавливать» запутанные состояния с известными характеристиками. Запутанные состояния образуются всегда, но найти метод «приготовления» того типа связи, который необходим для эксперимента, было весьма непросто, это смогли сделать не так давно. Вот почему опыты, задуманные еще Эйнштейном, удалось провести лишь в 80-х годах XX века.

Кстати, когда Эйнштейн задумывал свои мысленные опыты[28] с парами частиц, он хотел тем самым опровергнуть квантовую механику, поскольку в этом случае ее предсказания явно противоречили классическим представлениям о локальном характере взаимодействий и невозможности мгновенного дальнодействия. Однако мир оказался гораздо фантастичнее, чем это представлялось величайшему из физиков!

Ход рассуждений А. Эйнштейна и его коллег[29] заслуживает того, чтобы на нём остановиться.

Из квантовой механики вытекает, что у частицы нельзя одновременно точно измерить координаты и импульс. Но что, если проводить одновременно наблюдение за двумя частицами? Например, после столкновения двух частиц импульс одной можно измерить, а импульс второй — рассчитать из закона сохранения импульса.

Затем можно измерить координаты второй частицы. Тем самым для второй частицы будут известны одновременно координаты и импульс. Соотношение неопределенности[30], таким образом, рухнет. Этот мысленный эксперимент и казался Эйнштейну опровержением квантовой механики.

Однако здесь заложено предположение, что в момент измерения импульса первой частицы она никак не может передать информацию об этом второй частице, так как при этом они могут находиться на огромном расстоянии, когда никакого «обычного» взаимодействия между ними уже нет. Эйнштейн исходил из привычных представлений, которые в настоящее время именуются локальным реализмом:

• физические свойства системы (например, поляризация фотона) существуют сами по себе, они объективны и не зависят от измерения;

• измерение одной системы не влияет на результат измерения другой системы.

Из этих взглядов, в сочетании с представлением о полной предсказуемости (детерминистичности) поведения системы, следует вывод:

• поведение невзаимодействующей с окружением системы зависит лишь от условий в более ранние моменты времени.

Эти выводы и составляют основу так называемых локальных объективных теорий. Все они требуют введения дополнительных, так называемых «скрытых» параметров, в силу неизвестности которых и возникает кажущаяся непредсказуемость результатов отдельного измерения. То есть, будь эти параметры нам известны, мы бы могли точно сказать, пройдет отдельно взятый фотон через поляризационный анализатор или нет.

Наоборот, выполнение принципа неопределенности формально означало бы, что между частицами существует мгновенная связь с бесконечной скоростью передачи информации. Эту связь Эйнштейн именовал «телепатической», не веря в ее существование. Он и другие сторонники локального реализма при помощи скрытых параметров или как-то иначе пытались свести квантовую нелокальность к привычным представлениям локального реализма.

Таким образом, уже тогда, во времена Эйнштейна, возник вопрос, каков же на самом деле окружающий мир? Этот вопрос долгое время оставался предметом философских спекуляций, однако в 1964 году Джон Белл[31] сформулировал теорему, доказывающую возможность отличить предсказания теорий, основанных на локальности и детерминизме, от предсказаний нелокальной теории (квантовой механики). Соответственно, так называемые неравенства Белла позволяют ответить на вопрос о том, какая из теорий справедлива, исходя из анализа результатов эксперимента. Нарушение этих неравенств означает невозможность описать систему классическим образом.

Ответ на вопрос о том, в каком мире мы живем, и ответ именно в пользу нелокальности мира, был получен в 1982 году в историческом эксперименте группы Алена Аспекта[32], проведенном в Парижском университете. К настоящему времени результат подтвержден сотнями последующих экспериментальных исследований.

Ознакомимся немного с историей этих захватывающих экспериментов. Эксперимент, подобный описанному выше с парой запутанных фотонов, был выполнен[33] в 1972 году, а затем повторен рядом других групп[34]. Схема эксперимента показана на рис. 7.


Рис. 7

Фотоны от источника при помощи системы линз направлялись к поляризационным анализаторам, а затем — к детекторам. Для эксперимента было необходимо регистрировать только 2 фотона, испущенных одним и тем же атомом. Это достигалось методом временных совпадений: если оба детектора зарегистрируют фотон, и разность времен регистрации не превысит окно в 20 нс (1 нс = 10–9 с), то с очень большой вероятностью можно утверждать, что оба фотона были одновременно испущены одним и тем же атомом.

Результаты полностью соответствовали предсказаниям квантовой механики: если мы проведем измерение[35] одного фотона пары, то можем точно предсказать, каким будет результат измерения другого фотона, сколь угодно далеко они не были бы пространственно разнесены. Эксперимент показывает, что связь между частицами носит принципиально нелокальный характер.

В рамках классического подхода воздействие на одну из частиц не могло бы повлиять на состояние другой, если частицы не взаимодействуют.

Тем не менее, этот и другие эксперименты того времени еще оставляли возможность сторонникам локального реализма на что-то надеяться. Дело в том, что поляризационные анализаторы сохраняли свою относительную ориентацию постоянной, по крайней мере, в то время, пока фотон летел от источника к детектору. Как говорили сторонники теории скрытых параметров, этого может быть достаточно для обмена информацией между анализаторами с помощью какого-либо гипотетического механизма. Они утверждали, что в условиях данных экспериментов не были выполнены требования локальности Белла. Поэтому такие опыты нельзя рассматривать как критические эксперименты, устанавливающие справедливость квантовой механики или моделей со скрытыми параметрами.

Чтобы исключить и эту возможность[36], Ален Аспект с коллегами выполнили эффектный эксперимент, в котором выбор ориентации поляризационных анализаторов производится оптическими переключателями во время полета фотонов (см. рис. 8).


Рис. 8

Эксперимент потребовал 8 лет подготовки и был закончен только в 1982 году.

Каждый переключатель представляет собой небольшой сосуд с водой, в котором ультразвук периодически возбуждает стоячие волны. Эти волны играют роль дифракционной решетки, способной отклонять падающие фотоны. При возбуждении стоячей волны фотон отклоняется на анализатор с одной ориентацией, а при «выключении» стоячей волны путь фотона лежит к другому анализатору с иной ориентацией. Время, за которое свет проходит расстояние между анализаторами (40 нс), превышает время, необходимое для переключения с одной ориентации на другую (10 нс).

Поскольку скорость распространения сигнала не может превышать скорости света, то, согласно классическому подходу, в данном случае воздействие на одну часть системы не может повлиять на другую ее часть. Поэтому выбор ориентации для каждого анализатора не может повлиять на результаты наблюдений на другом анализаторе.

Эксперимент Аспекта показал, что данные о корреляции фотонов полностью согласуются с предсказаниями квантовой механики и более чем на 5 стандартных отклонений[37] отличаются от предельных значений, допускаемых теоремой Белла для любой локальной модели со скрытыми параметрами.

Подтверждение нелокальности окружающего нас мира недавно было получено[38] и в условиях, когда различие между теориями возникает не только в статистических предсказаниях, как в эксперименте Аспекта, но и в каждом отдельном событии. Это стало возможным благодаря исследованию корреляций между тремя частицами в так называемых ГХЦ-состояниях[39]. Модели, основанные на локальном реализме, предсказывали для этих состояний противоположный знак измеряемой величины, нежели предсказания квантовой механики. Эксперимент однозначно показал справедливость предсказаний КМ.

Выдающимся экспериментальным результатом последних лет является также доказательство[40] наличия нелокальных квантовых корреляций не только в системах с небольшим числом частиц, но и в макроскопических системах с громадным (около 1023) числом частиц.

Применительно к теме книги этот результат может означать, что любой объект остается в неразрывной связи с Целым вне зависимости от того, осознаёт он это или нет.

Ещё одно удивительное явление, связанное с нелокальностью, — квантовая телепортация, то есть возможность переноса на расстоянии квантового состояния одного объекта на другой объект.

Перемещения самого объекта при этом не происходит, передаются лишь свойства одного объекта другому. Разрушив квантовое состояние в одной точке пространства, мы можем создать точно такое же состояние в другой точке.

Это явление примечательно тем, что наряду с классическим каналом передачи информации в нём используется и нелокальный квантовый канал. Телепортация может быть осуществлена и в том случае, когда состояние телепортируемого объекта неизвестно.

Способ практической реализации этого эффекта был предложен в 1993 году группой Чарльза Беннета[41] (IBM), а само явление впервые наблюдалось[42] в работах австрийских исследователей, возглавляемых Антоном Цайлингером, а также итальянских под руководством Франческо Де Мартини.

Общая схема квантовой телепортации такова. Сначала требуется получить две коррелированные частицы. Затем проводится измерение состояния одной из них посредством взаимодействия с частицей, несущей информацию, которую нужно передать. Измерение стирает квантовую информацию в этой частице, однако в силу запутанности она немедленно оказывается на второй частице пары вне зависимости от ее удаленности. Эту информацию можно извлечь и передать другой частице, используя в качестве ключа результаты измерения, которые передаются по классическому (обычному) каналу связи.

В случае, когда телепортируемое состояние само по себе является запутанным, можно наблюдать еще более удивительный феномен. Представим, что в эксперименте типа показанного на рис. 6 запутанность пары фотонов не существует изначально, но может быть создана экспериментатором в результате использования эффекта квантовой телепортации. Очевидно, если мы запутанность не создаем, фотоны будут регистрироваться независимо друг от друга. В случае, когда запутанность фотонов создается до их регистрации, результат для нас также ясен: проведя измерение над одним фотоном пары, мы можем точно предсказать, каков будет результат измерения, проведенного над другим фотоном.

Однако что будет, если мы создадим запутанность между фотонами пары уже после их регистрации? Результат эксперимента[43] поражает воображение — он ничем не отличается от того, как если бы мы создали запутанность фотонов до их регистрации.

Таким образом, более позднее по времени действие влияет на результат более раннего измерения! Этот парадокс, неразрешимый в рамках классического подхода, находится в точном соответствии с предсказаниями КМ.

Отметим, что и здесь нет мгновенной передачи информации: квантовая информация передается мгновенно, однако, чтобы перевести эту информацию в классическую, необходимо передать результаты классических измерений. Это не может быть сделано со скоростью, выше скорости света.

Однако принципиальной невозможности передачи сигналов со сверхсветовой скоростью, вполне возможно, нет. По крайней мере, сообщение извне светового конуса[44] можно почувствовать мистически, в себе самом. Для этого принимающий сообщение должен иметь высокоразвитое сознание, позволяющее перемещаться по различным пространствам событий (об этом см. в следующих главах). Не исключено, что подобная передача информации возможна во время встреч во сне, которые может освоить почти каждый человек.

В заключение главы хочу сказать, что квантовая механика давно имеет дело не только с лабораторными опытами. Согласно имеющимся оценкам[45], 30 % национального продукта Соединённых Штатов базируется на изобретениях, ставших возможными благодаря квантовой механике. А сейчас уже имеются коммерческие предложения, использующие нелокальную связь между частицами: например, в предлагаемых на рынке системах квантовой криптографии, обеспечивающих абсолютную защиту связи[46]. Так что сказанное еще как относится к тому миру, в котором мы живем. А о том, какие следствия из квантовой картины мира применимы к общим вопросам мироздания, мы поговорим далее.

Подведём итоги этой главы.

• Физическим системам нельзя приписать (по крайней мере, всегда) характеристики как объективно существующие и независимые от проводимых измерений. Характеристики объекта «создаются» наблюдателем; вне акта наблюдения состояние любого объекта во многом является неопределенным. Частицы, образованные когда-то в одном акте, остаются в замкнутой системе единым объектом, вне зависимости от того, на каком расстоянии они находятся, и как давно произошло их разделение. Если с одной из них что-то происходит, то другие мгновенно меняют свои наблюдаемые свойства, и это происходит без материального носителя взаимодействия. Такие объекты не локализованы где-либо и обычно называются нелокальными (или квантово-коррелированными) структурами. Как мы убедимся в следующей главе, для них понятия времени и пространства, причины и следствия могут терять смысл.

• В любой замкнутой системе когерентность состояний не разрушается, то есть суперпозиция не переходит в смесь, и сама система является нелокальной. Отдельные локальные объекты (например, частицы) могут наблюдаться в ней только «изнутри», при взаимодействии отдельных подсистем и при «взгляде» из отдельных подсистем (подробнее об этом позже).

• В замкнутой системе состояние каждой частицы может быть как квантово-коррелированным с состояниями остальных частиц в данной системе, так и нет. В первом случае говорят о запутанном (то есть связанном, квантово-коррелированном, взаимозависимом) состоянии, а во втором — о сепарабельном (независимом) состоянии подсистем.

• Наш мир в своей основе нелокален и не может быть описан теориями, основанными на локальности и детерминизме. Именно об этом свидетельствуют результаты опытов, направленных на проверку неравенств Белла, которые позволяют отличить предсказания квантовой механики от предсказаний локальной объективной теории.

Домашнее задание будет таким. Я сейчас расскажу об эффектном эксперименте, идея которого была предложена в 1978 году Дж. Уилером[47] и который в дальнейшем был осуществлен[48] несколькими группами ученых в середине 80-х годов. Он известен как эксперимент с отложенным выбором.

Вашей задачей будет предсказать его результаты.


Рис. 9

Поток единичных фотонов (см. рис. 9) падает на расщепитель луча, представляющий собой обыкновенное полупрозрачное зеркало.

Выберет ли фотон определенный путь, А или А'? Если это так, то он проявит свойства частицы, а мы будем с 50 %-й вероятностью регистрировать срабатывание то детектора А, то детектора А'.

А может быть, фотон пройдет одновременно по двум путям А и A', и наши детекторы зафиксируют интерференционную картину, наподобие картины при дифракции электрона на двух щелях?

Добавим в эксперимент изюминку, в силу которой он и получил название эксперимента с отложенным выбором.

Поставим переключатель, так называемую ячейку Поккельса, которая при включении способна практически мгновенно перенаправить летящий по пути B фотон в еще один приготовленный нами фотодетектор.

Будем включать ячейку Поккельса тогда, когда фотон уже прошел через расщепитель. То есть в этом эксперименте фотон не знает заранее, как ему следует себя вести: как частице, выбрав какой-то определенный маршрут, или как нелокальному объекту, перемещаясь сразу двумя путями.

Какую картину мы будем наблюдать?

Глава 4. Пространство и время

Когда меня спрашивают, что такое время, я этого не знаю. Но когда меня не спрашивают, я это знаю.

Августин Блаженный

Проверьте себя.

При выключенной ячейке Поккельса будет наблюдаться интерференционная картина, отвечающая одновременному прохождению фотона по двум путям. Фотон будет интерферировать сам с собой.

Этот результат ничем не отличается от интерференционной картины, наблюдаемой в двухщелевом эксперименте с электроном или другими частицами.

При включении ячейки Поккельса, в том числе в момент, когда фотон уже прошел через расщепитель, произойдет превращение (редукция) суперпозиционного состояния двух возможных траекторий в состояние смеси, когда фотон как локальный объект летит либо по одному пути, либо по другому. Так происходит потому, что выполняется измерение, выделяющее одну из компонент суперпозиции. Тем самым определяется, по какому из возможных путей движется фотон.

Таким образом, экспериментатор способен заставить фотон стать частицей (и пройти по одному из путей) или вести себя как нелокальный объект и пройти двумя путями сразу. Всё зависит от способа наблюдения! Он может это сделать уже после взаимодействия фотона с расщепителем, поскольку расщепитель не фиксирует каких-либо состояний фотона и не разрушает квантовую суперпозицию.

Мы видим, что способ наблюдения является фильтром, который извлекает из состояния, существовавшего до измерения, одну из содержащихся в нём возможностей.

Сейчас мы с вами двинемся дальше и зададимся вопросом, вызывающим интерес у многих. Всегда ли можно ввести понятие времени? Можно ли использовать его для целостной (замкнутой) системы типа нашей Вселенной или любой замкнутой системы? Возможно, вы уже не удивитесь, что ответ однозначен — нет[49].

Прежде чем рассмотреть вопрос о существовании времени в тех или иных системах, сделаем краткий исторический обзор.

Согласно Ньютону, время отделено от пространства, дано Богом и вечно. Существуют Абсолютное Пространство и Абсолютное Время, на которые не влияет никто и ничто, они подобны арене, где происходят все остальные физические явления. Что бы ни происходило, они остаются неизменными. Эти представления о пространстве и времени, отделенных как от материи, так и друг от друга, пользовались и пользуются популярностью, ибо они просты, но в то же время в достаточной степени соответствуют подавляющему большинству практических задач.

Специальная теория относительности[50] (СТО) Эйнштейна связала пространство и время в единое пространство-время, в котором временные интервалы и даже последовательность событий для разных наблюдателей могут выглядеть по-разному. Например, СТО утверждает, что часы в самолете идут медленнее часов на земле, и это, как и другие следствия СТО, экспериментально доказано. «Образование» единого пространства — времени возможно благодаря постоянству скорости света: раз скорость света не зависит от скорости источника, его испускающего, и одинакова во всех системах отсчета (это экспериментальный факт!), то единица длины (например, метр) задает и единицу времени (время, за которое свет проходит один метр, или метр светового времени). А из этого вытекает возможность математических структур, описывающих взаимозависимость пространства и времени.

Общая теория относительности (ОТО) идет дальше: она вводит динамическое понятие пространства и времени, которое сложным образом изменяется при взаимодействии с материей. Гравитация понимается здесь как искривление времени и пространства. Это искривленное пространство-время больше не является только ареной, оно само принимает участие в происходящем. Предсказания ОТО многократно подтверждались при наблюдениях разнообразных космических объектов, они используются при расчетах траекторий полетов космических аппаратов в масштабах солнечной системы.

Квантовая теория гравитации[51] (которая, впрочем, далека от завершения) идет еще дальше и утверждает, что время не есть нечто, имеющее самостоятельное бытие, его не существует вне объектов и полей. В современных теориях время и вовсе выпадает из уравнений. Это означает, что привычного нам пространства и времени в общем случае нет, эти понятия не являются исходными и общими для всех наблюдателей феноменами. Их возникновение должно быть выведено в рамках более глубокой теории[52].

Если быть последовательными до конца, то все теории, в которых изначально предусмотрено наличие внешних пространственно-временных координат, следует отнести к классической физике, которая имеет дело исключительно с независимыми друг от друга (так называемыми сепарабельными) состояниями, когда вкладом квантовых корреляций можно пренебречь[53].

Несмотря на то, что последовательной теории, описывающей возникновение пространства — времени, в настоящее время нет, мы вполне можем ответить на многие важные вопросы.

Очевидно, с замкнутой системой не происходит ничего. Не взаимодействуя с замкнутой системой, мы ничего определенного сказать о ней не можем, ее некому наблюдать, некому перевести чисто-квантовое состояние в смесь, в наблюдаемое состояние. Внутри замкнутой системы нет локальных объектов, ее нельзя познавать из привычной для исследователя разделенности на субъект и объект. Как сказал величайший мистик древности Гермес Трисмегист: «Мир невидим в своей целостности». Оттуда, из целостности, возникновение времени видимо и ясно — только некому об этом рассказать, нет наблюдателя, отличного от самого времени. Августин Блаженный в приведенной в начале главы цитате сказал точно: когда тебя спрашивают, что такое время, ты не можешь ответить. Хотя бы потому, что находишься в разделенности, где есть как минимум ты и вопрос. А когда тебя не спрашивают, ты медитативно достигаешь целостности, где все ответы на все вопросы становятся очевидными. Тогда ты понимаешь, что такое время.

Целостная (замкнутая) система развивается одновременно во все возможные стороны. Поскольку в ней нет выделенных состояний и переходов между ними, то нет и времени, а привычные нам понятия пространства и времени возникают как результат взаимодействия подсистем, существуют только «внутри них» и «между ними» и представляют лишь часть квантовой реальности. И для различных локальных наблюдателей (то есть подсистем внутри этой системы) последовательность событий может быть различной.

Другими словами, пространство и время не существуют изначально, они возникают в ходе происходящей при любом взаимодействии декогеренции, то есть процесса перехода чисто-квантовых состояний в смешанные[54]. О том, что такое декогеренция, мы поговорим подробнее в следующей главе.

Хороший преподаватель попросил бы вас закрыть глаза и мысленно повторить то, что мы сегодня прошли. У меня нет необходимости быть хорошим преподавателем. Я хочу, чтобы вы увидели в изложенном и неизреченном Тайну, и помолчу.

Кто хочет, насладитесь этой Тайной вместе со мной.

Глава 5. Реальность классическая и квантовая

Никто не поймет квантовой механики до тех пор, пока не начнет думать о волновой функции как о реальном поле, а не только как об «амплитуде вероятности».

Джон Белл

Классическая физика описывает реальность как объективную, находящуюся «вне нас», существующую независимо от нас и эволюционирующую согласно тем или иным детерминистским законам. Простые объекты, сцепляясь друг с другом, образуют более сложные. Наши тело и мозг тоже являются частью этого мира и, следовательно, также подчинены детерминистским законам вопреки нашим представлениям о свободе воли.

Некоторые считают, что такая картина мира соответствует здравому смыслу. Что же меняет в ней квантовая физика? Мы знаем о возможности состояния суперпозиции, когда объект характеризуется совокупностью состояний, каждое из которых с классической точки зрения исключает другое. Помимо этого, эксперименты свидетельствуют о возможности нелокальной связи между объектами, которая отражает взаимосвязи частей внутри целого и происходит вне пространства, времени и привычных физических взаимодействий.

Однако, где граница между классическим и квантовым мирами? Насколько выводы из наблюдений за элементарными частицами приложимы к описанию макроскопических явлений, то есть явлений, в которых участвует огромное количество частиц?

Прежде всего, необходимо развеять несколько мифов о роли квантовых эффектов. Один из них заключается в том, что квантово-механическое рассмотрение применимо только к микрочастицам, а для больших масштабов вполне достаточно классического описания, быть может, с незначительными поправками.

Одна из причин подобного непонимания связана с тем, что у многих квантовая механика ассоциируется с так называемым дуализмом[55] «волна — частица», представление о котором возникло на заре развития КМ. Волновые свойства действительно не имеют существенного значения для макроскопических тел, а при выполнении некоторых условий уравнения КМ переходят в уравнения классической физики.

Отсюда многие делают ошибочный вывод, что нет необходимости в КМ при описании макромира. Однако каждое тело связано с окружением нелокальными связями, для возникновения которых достаточно любого когда-либо произошедшего взаимодействия. Классическое описание полностью игнорирует эту взаимосвязь объектов как частей целого. Очень часто эти связи оказываются столь существенными, что радикально меняют картину происходящего.

Например, спектр излучения Солнца (достаточно большого по любым меркам объекта), как и лампочки, или атома водорода, описывается исключительно квантовыми формулами. Более того, сама возможность существования атомов и твердых тел как стабильных структур возникает только благодаря квантовым эффектам. И есть еще явления сверхтекучести и сверхпроводимости, которые наблюдаются при низких температурах без всяких ограничений на размер системы, всё это — чисто квантовые явления.

Можно сказать иначе. Основной квантовый дуализм — это не дуализм «волна — частица», как считалось вплоть до 80-х годов прошлого века, а дуализм «локальность — нелокальность», который существует для всех тел, всех частиц вне зависимости от их размера. То есть КМ предоставляет взаимодополняющее описание любого объекта и как локализованного в пространстве-времени, и как не локализованного нигде.

Теория запутанных состояний и теория декогеренции формулируется не в категориях частиц, а в категориях систем и подсистем, содержащих любое число частиц. Нелокальные связи возникают между любыми взаимодействующими объектами, а не только между микрочастицами. Опыты по квантовым корреляциям в системах, содержащих макроскопическое число частиц, о которых мы упоминали во второй главе, однозначно подтверждают предсказания КМ.

И всё же следует заметить, что перенос выводов КМ на все окружающие нас системы в настоящее время является гипотезой. Ей мы и будем следовать в дальнейшем, сопоставляя предсказания и следствия КМ с известным человечеству мистическим опытом.

Перейдём к рассмотрению того, как связаны между собой классический и квантовый миры. Начнём с теперь уже очевидного для нас утверждения: наличие квантовой суперпозиции означает, что при существовании каких-либо векторов состояний |A>, |B>, |C>… возможна любая их комбинация вида a|A> + b|B> + g|C> +… с произвольными значениями коэффициентов a, b, g. То есть каждому набору классических состояний соответствует неизмеримо большее количество квантовых, а в классическую «действительность» превращается лишь одна из них. Это делает квантовый мир «огромным» в сравнении с классическим, а связь между этими мирами не всегда однозначной.

Например, мы можем интерпретировать исходное состояние как нелокальное квантовое. А можем — и так поступают в ансамблевой интерпретации квантовой механики — рассматривать компоненты суперпозиции просто как совокупность (ансамбль) всех возможных классических состояний системы и считать, что в действительность превращается одна из возможностей этого ансамбля.

Результаты конкретных вычислений при этом будут совпадать.

В силу неоднозначности связи между классическим и квантовым мирами и возникает возможность различных интерпретаций КМ. Каждая из них по-своему отвечает на наиболее важные для понимания мироустройства вопросы:

• Является ли вектор состояния реальным объектом, или математической абстракцией, введение которой необходимо лишь для того, чтобы рассчитывать наблюдаемые величины?

• Является ли КМ детерминистической теорией, то есть позволяет ли она предсказать состояние системы на основании знания ее состояния в прошлые моменты времени? Возможны ли случайные процессы? Имеются ли скрытые переменные?

• Существует одна Вселенная или их множество?

• В чём заключается суть процесса измерения, и как происходит переход от квантового мира к классическому?

Рассматривать все известные интерпретации (а их около двух десятков) нам нет никакой необходимости. Тем более что большинство из них созданы до решающих экспериментов по проверке неравенств Белла и являются попыткой примирить КМ с «классическим» здравым смыслом. Мы рассмотрим интерпретации, наиболее важные для понимания общей ситуации: копенгагенскую, многомировую и экзистенциальную.

Наиболее известной на сегодняшний день является копенгагенская интерпретация[56] (КИ), родившаяся практически одновременно с самой квантовой механикой. В ней, фактически, сосуществуют два мира — классический и квантовый, каждый из которых живет по своим законам. Если за частицей не ведется наблюдение, она существует в состоянии суперпозиции, то есть в нескольких состояниях и/или точках пространства одновременно. Акт измерения «сводит» (редуцирует) волновую функцию частицы к конкретной точке или состоянию, где частица и обнаруживается, и этот переход необратим.

Для проявления квантового мира необходим классический прибор или наблюдатель, который обеспечивает «схлопывание» (редукцию, коллапс) волновой функции. Если редукции волновой функции не происходит, квантовое состояние остается ненаблюдаемым, и волновая функция является лишь формальным описанием нашего знания о системе, средством вычисления вероятности тех или иных событий.

Говоря словами известного физика Джона Уилера, в копенгагенской интерпретации «ни один квантовый феномен не является феноменом до тех пор, пока не станет наблюдаемым (зарегистрированным) феноменом». Иными словами, в КИ описывается не квантовый мир, а только то, что мы можем сказать о нём, используя измерительный прибор. При этом мы не можем описать измерительный прибор как квантовый объект.

Такой подход никак нельзя назвать последовательным, однако он достаточно прост для понимания и позволяет без лишних рассуждений рассчитывать всё необходимое. А на случай, когда какой-либо студент начинает задавать неудобные вопросы типа, как конкретно происходит редукция волновой функции и в чём она состоит, у преподавателя имеется простой, немного с солдатским юмором ответ: «Shut up and calculate!»[57]

Недостаток этого подхода в том, что нет объединенного описания Универсума (Вселенной) в целом. Получается, что классическая и квантовая теория одинаково необходимы, и граница между ними в лучшем случае неточна, ибо далеко не всегда ясно, что является «прибором» — техническое устройство или сознание наблюдателя. Поскольку реальность возникает только в ходе измерений, квантовая механика в КИ представляет собой лишь математическую структуру, позволяющую прогнозировать реальные величины.

В многомировой интерпретации квантовой механики, предложенной Хьюго Эвереттом[58], подход совершенно иной: каждая из компонент суперпозиции описывает целый мир, и ни одна из них не имеет преимущества перед другой. Если в копенгагенской интерпретации вектор состояния представлял собой полезную теоретическую конструкцию, то в многомировой интерпретации он имеет под собой реальную физическую основу.

С математической точки зрения, это просто другая формулировка квантовой механики. В традиционной интерпретации имеется один исход для каждого измерения. Мы можем только предсказать вероятность этого исхода, однако ничего нельзя сказать о том, по какой причине произошло именно так (к примеру, почему радиоактивное ядро распалось именно через секунду или именно через час). Напротив, в интерпретации Эверетта реализуются все возможные исходы любого события, только в разных мирах. А число миров, в которых произошло то или иное событие, пропорционально вероятности этого события. То есть вместо вопроса о вероятности события ставится вопрос о том, с какой вероятностью наблюдатель попадает в тот или иной мир.

Таким образом, в подходе Эверетта вектор состояния рассматривается как объект, имеющий собственное «бытие», родственное классическим состояниям. Все возможные состояния объектов (например, выпадение при бросании монеты «орла» или «решки») необходимо рассматривать как одинаково «реальные»: в каких-то бесчисленных эвереттовских вселенных выпадает орел, а в каких-то — решка.

Возникает недоумение: почему и как я попадаю в тот или иной мир? И вопрос о границе между мирами, от которого так хотелось уйти, всё равно встает, только он выглядит теперь как вопрос о границе между бесконечным числом реальных миров и сознанием наблюдателя, «выбирающим» один из них.

Иногда задают вопрос, можно ли экспериментально проверить справедливость интерпретации Эверетта. Ответ такой: если эвереттовские Вселенные не взаимодействуют, то все предсказания модели Эверетта будут в точности совпадать с предсказаниями, полученными по стандартным правилам КМ. Если же допустить некое взаимодействие между параллельными мирами, то различие в предсказаниях возникает, однако серьезных теоретических оснований предполагать такую возможность в настоящее время нет, и поиск подобных отличий сегодня едва ли возможен.

Концепция Эверетта сыграла свою положительную роль в понимании и популяризации квантовой механики. Однако эта интерпретация «классична» в том смысле, что подменяет нелокальность и суперпозиции квантового мира бесчисленным набором классических миров.

Следует заметить, что и копенгагенская, и многомировая интерпретации КМ вступают в конфликт с религиозно-мистическим мировоззрением. Так, в копенгагенской интерпретации видимая реальность создается прибором (наблюдателем), а не Богом. В многомировой интерпретации реализуются все возможные исходы любого события, и наша воля, по большому счёту, не имеет никакого значения. И, что самое важное, обе интерпретации не оставляют места ни для сотрудничества (взаимодействия) человека с Богом, ни для раскрытия и реализации человека как богоподобного существа.

Наиболее последовательной на сегодняшний день является экзистенциальная интерпретация КМ, сформулированная Войцехом Зуреком в 2001 году[59]. Она во многом основана на теории декогеренции[60], описывающей проявление классических объектов из квантовой суперпозиции, и практически лишена недостатков рассмотренных выше подходов.

Классическая реальность, согласно данному подходу, возникает из квантовой при наличии взаимодействия между объектами. Для «создания» классической реальности информации, передаваемой при взаимодействии всем возможным наблюдателям, должно быть достаточно, чтобы различить компоненты суперпозиции между собой.

Вспомним двухщелевой эксперимент: как только мы любым образом получали информацию, через какую из щелей прошла частица, квантовые эффекты исчезали, суперпозиция превращалась в смесь. В экзистенциальной интерпретации роль получающих эту информацию наблюдателей могут играть любые объекты окружения. Иначе говоря, любое взаимодействие является каналом декогеренции, или, что по сути одно и то же, каналом обмена информацией. Именно обмен информацией рассматривается в экзистенциальной интерпретации как причина изменения любых состояний.

Особо важным представляется то, что мы можем сопоставить любому наблюдаемому объекту, в том числе эмоциям и мыслям, исходный вектор состояния, который в ходе взаимодействия с окружением декогерируется в данный наблюдаемый объект.

Глава 6. Мост между мирами

Мы можем полностью игнорировать истинную действительность из-за того, что наши представления о мире не допускают ее существования.

Д. Бом

Рассмотрим теперь подробнее, что такое декогеренция. Надеюсь, вы уже не пугаетесь терминов, и можно дать вполне строгое определение.

Декогеренция — процесс потери системой квантовых свойств и перехода из суперпозиционного квантового состояния в смешанное, который происходит в результате взаимодействия системы с окружающей средой. В ходе этого взаимодействия исходное квантовое состояние запутывается с таким большим числом степеней свободы окружения, что при усреднении по ним вклад интерференционных членов оказывается случайным и в сумме стремится к нулю[61].

Суть процесса декогеренции хорошо сформулировал С. И. Доронин[62]:

«Это процесс, при котором подсистемы начинают обосабливаться, отделяться друг от друга, вплоть до полного отделения и независимости (сепарабельности). При этом происходит их локализация: подсистемы приобретают видимые формы и „плотные тела“, которые разделяют их друг от друга.

Следствием декогеренции является то, что предсказания квантовой теории для макроскопических состояний невозможно отличить от предсказаний классической теории, если только не контролировать все степени свободы. Если ограничиться только „проявленными“ плотными телами, мы не найдем запутанности».

Декогеренция происходит тогда, когда в ходе взаимодействия состояния системы «перепутываются» с таким большим количеством состояний окружающей среды, что при усреднении исходного состояния по состояниям окружения эффекты квантовой запутанности становятся пренебрежимо малыми. Результат оказывается в точности таким же[63], как и в копенгагенской интерпретации, однако никакой «редукции» волновой функции не происходит: в совокупной системе, содержащей и измерительный прибор, и наблюдателя, суперпозиция состояний сохраняется. Иначе говоря, в этой системе сохраняются альтернативные варианты развития событий, и только для самого наблюдателя реализуется один из них.

Таким образом, «редукция» может рассматриваться как математический прием, компенсирующий переход от описания системы в целом к описанию ее частей. При этом за счет «редукции» можно учесть как раз те связи с окружением, которыми мы пренебрегаем при рассмотрении подсистемы.

Вероятностное описание классического мира возникает в КМ не потому, что мы чего-то не знаем о системе, а потому, что до измерения у нее нет каких-либо определенных характеристик. В целостной системе продолжает существовать суперпозиция возможных состояний, и только одно из них, для некоторой конкретной подсистемы, реализуется в ходе «эксперимента», проводимого всеми участниками процесса друг над другом.

Парадоксы квантовой механики исчезают при таком подходе, так как они — следствие попытки описать локальными понятиями (точка, пространство, время, частица и так далее) нелокальный мир. Как только мы отказываемся от этих попыток, исчезают и парадоксы.

В настоящее время можно утверждать, что декогеренция и есть тот универсальный механизм, который переводит суперпозиционное квантовое состояние в смешанное, проявленное, наблюдаемое, классическое. Именно она задает «стрелу времени»: направление изменений, необратимых в рамках данной подсистемы. Этот механизм при взаимодействии с окружением «проявляет» частицы и их локальные характеристики из множества потенциально возможных квантовых состояний.

Отметим, что даже в том виде, в котором она существует сейчас, теория декогеренции весьма последовательна и не включает в себя каких-либо допущений, выходящих за рамки КМ. Однако, несмотря на ее последовательность и красоту, не будем забывать, что теория декогеренции, как и любая физическая теория, является лишь средством описания реальности, а не самой реальностью.

Прежде чем рассмотреть процессы декогеренции на конкретных примерах, хочется сказать более подробно об открытых и замкнутых системах. Как уже говорилось, вектор состояния можно сопоставить только замкнутой системе, не взаимодействующей со своим окружением. Состояния таких систем называются в квантовой механике чисто-квантовыми, или чистыми, состояниями.

В обыденной жизни мы имеем дело с открытыми системами, когда есть какой-то объект, за которым мы наблюдаем (например, камень), и есть что-то внешнее по отношению к нему (например, песок, мы сами, и вся Вселенная вокруг камня). Очевидно, что окружение может взаимодействовать с объектом и тем самым влиять на его состояние. Кроме того, в окружении так или иначе записывается информация о состоянии объекта. И объект, конечно, тоже в какой-то форме записывает информацию о состоянии окружения. Под «записью информации» мы имеем в виду любое изменение состояния подсистем под влиянием взаимодействия между ними.

Пример замкнутой (изолированной, целостной) системы — Вселенная. В ней есть всё, что есть, всё, что может быть. Вне ее нет ничего, что могло бы на нее повлиять, и нет ничего, где могла бы записаться информация о ее состоянии. Ведь если что-то подобное есть, это по определению является частью Вселенной и входит в нее. В любом случае замкнутая система будет оставаться в чистом состоянии, независимо от того, что происходит во внутренней структуре на уровне подсистем. Подобие замкнутых систем можно создать и в лабораторных условиях, для этого надо исключить влияние окружения на систему и проследить, чтобы состояние системы никак не сказывалось на состоянии окружения.

Теория декогеренции утверждает, что суперпозиция состояний в какой-либо системе возможна лишь в том случае, если в окружении не записывается информации, достаточной для разделения компонент суперпозиции[64].

Для существования суперпозиции важно, чтобы состояния системы не слишком «запутывались» с состоянием окружения. То есть чтобы система не взаимодействовала с окружением с интенсивностью, достаточной для записи в окружении информации, позволяющей разделить компоненты вектора состояния этой системы.

Таким образом, суперпозиционные состояния могут существовать лишь в замкнутых системах, когда нет взаимодействий, переводящих суперпозицию в смесь. По крайней мере, если, не затрагивая окружения, ограничиться лишь самой системой, суперпозицию в открытых системах наблюдать невозможно.

Что же происходит в открытых системах? Очень просто: в них суперпозиционные состояния переходят в смешанные — из-за записи в окружении информации о состоянии системы, происходящей в ходе взаимодействия. Возможны и обратные переходы, от смешанных (классических) состояний к чисто-квантовым. Этот процесс обретения системой квантовых свойств при прекращении или ослаблении взаимодействия с окружением называется рекогеренцией. Для рекогеренции системы в квантовое состояние ничего «особенного» не нужно — необходимо лишь прекращение или ослабление обмена информацией с окружением. Эти процессы в настоящее время интенсивно изучаются исследователями, стремящимися к созданию квантового компьютера.

Ситуация, когда наряду с квантовыми корреляциями присутствуют классические (то есть связи между наблюдаемыми величинами, возникшими в ходе тех или иных взаимодействий), характерна для всех окружающих нас тел и называется смешанным запутанным состоянием. Смешанно-запутанные состояния возникают при взаимодействии объектов друг с другом, что приводит к частичной потере когерентности. Эти состояния можно охарактеризовать соотношением классических и квантовых корреляций, или, иначе говоря, выраженностью и классических, и квантовых свойств.

В теории можно ввести непрерывную меру запутанности, показывающую степень выраженности квантовых свойств системы. Для классической системы, в которой все состояния независимы друг от друга и наличествуют лишь классические корреляции между ними, она равна 0. А в случае, когда в системе присутствуют только квантовые корреляции и отсутствуют классические, мера запутанности равна 1.

Мера запутанности, равная 0, соответствует наличию в системе только сепарабельных состояний с одной компонентой в векторе состояния. В этом случае между суперпозицией и смесью исчезают какие-либо отличия, что означает переход квантовой теории в классическую.

Теперь обсудим вопрос о степени «объективности» окружающего нас мира.

Как известно, любой опыт, основанный на разделении субъекта и объекта, древние индусы называли майей, иллюзией. Дело не в том, иллюзия всё вокруг или нет. Вопрос в том, что при разделении на субъект и объект невозможно отличить реальность от иллюзии, ведь невозможно узнать что-либо об объекте, не взаимодействуя с ним. А в результате взаимодействия состояния субъекта и объекта «запутываются», становятся взаимосвязанными. Какие-то части от каждой из двух подсистем оказываются перемешанными, и нет никакой возможности выделить в этой «перепутанной» части, что относится к объекту, а что — к субъекту. Как при впадении реки в море: на некотором расстоянии от берега уже нельзя сказать, где речная вода, а где морская, — они перемешались!

Однако в той части, которая еще «не перемешалась», мы по-прежнему можем разделить систему на составляющие, то есть сказать: вот эта часть относится к первой подсистеме, а эта — ко второй. Такое состояние характерно для всех окружающих нас объектов (поскольку все они взаимодействуют между собой) и называется, как уже говорилось, смешанным запутанным состоянием.

Может возникнуть вопрос: если я не смотрю на Солнце, оно, что, перестает существовать?

Да, если никто-никто не будет «смотреть» на Солнце, и ни один объект вокруг (включая астероиды, другие звёзды, пыль, атомы и так далее) не будет с ним взаимодействовать и записывать в своей структуре информацию о нём, Солнце перестанет существовать как локальный классический объект и перейдет в чисто квантовое нелокальное состояние. Однако, поскольку наблюдающих подсистем вокруг великое множество, Солнце предстает перед нами как локальный, классический объект. Другие объекты внешнего мира уже осуществили декогеренцию и перевели объект под названием «Солнце» в локальное состояние. При этом каждый из объектов «видит» в другом лишь те компоненты волновой функции, взаимодействие с которыми было достаточным для определения их состояния, то есть для перевода этих компонент из суперпозиции в смесь.

Можно сказать, каждый из существующих объектов вносит свой вклад в формирование реальности. И если таких объектов достаточно много, реальность вокруг предстает как «объективная» и независящая от нас. В этом случае возникает иллюзия объективности мира и существования у него Истории, то есть последовательности независимых от наблюдателя событий, приведшей к настоящему состоянию. Разумеется, такая «объективность» возникает преимущественно в «плотных» пластах реальности, характеризуемых высокой энергией взаимодействий и низкой степенью запутанности, когда множество объектов уже осуществили декогеренцию исходной нелокальной структуры. А в целом можно сказать, что ни Истории, ни «объективного» (то есть не зависящего от нас) мира не существует.

Тут есть важный и тонкий момент. Как уже говорилось, уровень «классичности» объекта определяется записываемой в окружении информацией о его состоянии, получаемой в ходе взаимодействия. А количество этой информации, в свою очередь, напрямую зависит от силы взаимодействия: чем выше энергия взаимодействия, тем сильнее изменяется состояние окружения, тем больше в нём записывается информации об объекте.

Вспомним теперь, что любое материальное тело состоит из структур, сильно различающихся типичными энергиями взаимодействия. Ядра атомов характеризуются одним порядком энергии взаимодействия, химические связи — другим, возбуждения в электронном газе — третьим, межспиновое взаимодействие — четвертым. И так далее, то есть любой объект предстает как цепочка взаимодействующих квантовых полей, отличающихся энергией взаимодействия.

Таким образом, энергетический спектр системы можно разбить на участки, каждый из которых характеризуется собственной «силой» взаимодействия с окружением. Нетрудно сделать вывод, что та часть полей, которая наиболее сильно взаимодействует с окружением, переходит в проявленное, локальное, классическое состояние. А та часть полей, которая взаимодействует с окружением слабо, остается в нелокальном, суперпозиционном, запутанном состоянии. Точнее, в обоих случаях поля и соответствующие им частицы будут находиться в смешанном запутанном состоянии, только в первом случае степень запутанности будет много меньше, чем во втором.

Например, если мы сейчас смотрим на стену и фиксируем ее форму, цвет, материал и т. д., она предстает как классический объект. Но состояние поляризации атомов в стене мы не фиксируем, и соответствующая им «часть» полей стены продолжает находиться в нелокальном запутанном состоянии. То есть стена как бы присутствует сразу в двух ипостасях — и как локальный объект, находящийся перед нами, и как нелокальный, находящийся «везде и нигде».[65]

И если бы стена обладала развитым сознанием, она могла бы осуществить «восприятие мира» каждым участком цепочки присущих ей квантовых полей по отдельности, ведь любой из этих участков взаимодействует с окружением и получает информацию о нём своим уникальным образом. Среди них есть структуры с малой степенью квантовой запутанности, взаимодействующие с локальным классическим окружением, и таким образом записывающие в себе информацию о нём. И есть нелокальные квантовые структуры с высокой степенью запутанности, состояния которых коррелированно с состоянием соответствующего пространства событий.

Идея использования представления о «цепочке» взаимодействующих между собой квантовых полей, отличающихся энергией взаимодействия и соответствующей ей степенью запутанности, в том числе для описания таинственных и паранормальных феноменов, принадлежит Сергею Доронину[66].

Эта идея представляется весьма перспективной и, похоже, позволяет понять огромное количество явлений, включая обычные и осознанные сновидения, путешествия вне тела, ясновидение и многое другое. Всего этого мы коснемся позже, а сейчас — несколько слов о психических феноменах вообще, просто для того, чтобы вы почувствовали вкус применения методов КМ в этой области.

С психическими явлениями дело обстоит несколько иначе, чем с физическими телами. Каждый из нас выявляет в другом лишь те структуры, с которыми интенсивно взаимодействует. Поскольку «наблюдателей», способных различать тонкие психические состояния, неизмеримо меньше, чем способных «видеть» Солнце, то и степень влияния каждого из наблюдателей на наше состояние может быть достаточно высокой. Если наблюдатель будет один, именно при взаимодействии с ним и произойдет декогеренция, которая и определит наблюдаемое состояние объекта.

Соответственно, выше становится субъективность восприятия, проще говоря, сколько людей, столько и мнений о характере другого человека. Если один психоаналитик, к примеру, может видеть у 80 % своих клиентов эдипов комплекс и находит этому массу «объективных» доказательств, то другой, в аналогичной выборке клиентов, у 80 % видит анальную фиксацию[67]. Приведённые цифры — реальны и даже типичны.

Напрашивается вполне обоснованный вывод: когда речь идет о качествах другого человека, мы не столько их наблюдаем, сколько создаем в ходе своего взаимодействия с ним. Видимый нами мир вторичен, он отражает наши собственные качества. Наверное, вы и сами сталкивались с людьми, для которых «все бабы — дуры», или «все мужики — сволочи», и которые имеют этому столько «объективных» доказательств, что и других убедить могут!

Следует добавить, что любые способы жесткой манипуляции начинаются с того, что человека кнутом или пряником (то есть через усиление энергии взаимодействия с ним) приводят в определенное, фиксированное состояние. Тогда его поведение предсказуемо и подчиняется детерминистским законам, так как его психика становится классическим объектом. Так что, если хотите быть непредсказуемыми, свободными и способными проявляться как угодно, уменьшайте вовлеченность в происходящее, уменьшайте силу взаимодействия со значимыми объектами и соответствующий уровень классических корреляций! У нас всегда есть в наличии уровни сознания, где мы нелокальны и находимся «везде и нигде».

Этого мы коснемся позже, а сейчас, пожалуйста, вопросы.

Валентина (участница встреч): Михаил, существует ли Вселенная без наблюдателя?

Михаил (далее — М.): Любая замкнутая система находится в чистом запутанном состоянии, в ней нет никаких локальных, классических объектов. Локальные объекты существуют только для подсистем (наблюдателей), обменивающихся между собой энергией.

Мы всегда можем формально выделить в мире какой-то объект (подсистему), и этот объект вместе с оставшейся частью Вселенной и образуют замкнутую систему, в которой сохраняется когерентность состояний. Этот объект и является наблюдателем, он способен разделять компоненты вектора состояния в оставшейся части Вселенной. Этих наблюдателей бесконечное множество. И в то же время, автономного существования у них нет, они существуют лишь друг для друга и благодаря друг другу.

Таким образом, каждый наблюдатель в сотворчестве с Единым и другими объектами принимает участие в создании Мира. Вселенная существует и благодаря нам с вами! Мы не существуем без Бога, но и Бог не существует без нас!

На самом деле, по утверждению многих мистиков, существует только Единое, для которого нет ни пространства, ни времени. Это тысячи лет назад было сформулировано в одном из великих ведических изречений «Тат твам аси», подчеркивающем божественную природу всего вокруг, включая нас. В переводе с санскрита оно означает «Ты — тот», или «Ты един с Всевышним», или «Всё есть Ты». Единое называют по-разному, его можно называть Сознанием. В дальнейшем мы иногда будем называть Единое чистым запутанным состоянием Универсума (ЧЗСУ).

Однако утверждение мистиков о том, что существует только Единое, следует понимать с оговоркой: только Единое имеет независимое существование. В рамках взаимозависимого существования в отдельных подсистемах имеется и множественное, и уникальное. Также существует сверхсистема (или метасистема), представляющая собой систему вместе со всей совокупностью входящих в нее подсистем. В рамках метасистемы происходит выход из всех оппозиций — единого и множественного, личного и безличного, различаемого и неразличаемого, целого и разделенного, и так далее.

Игорь: Михаил, а почему люди воспринимают мир примерно одинаково, если мир каждого наблюдателя, как ты говоришь, субъективен?

М.: Хороший вопрос. Действительно, каждый из нас имеет дело только с объектами в своем сознании. Однако органы восприятия у людей примерно одинаковы и имеют дело с объектами с высоким уровнем классических корреляций. Взаимодействие с окружением уже сделало их локальными и классическими. И таким образом независимыми от отдельного наблюдателя. Именно поэтому имеется общая, почти одинаково воспринимаемая всеми реальность.

Однако мистики и представители оккультных дисциплин сходятся в том, что существует и множество других миров[68], обитатели которых коллективно поддерживают существование своего мира, точно так же, как мы своим восприятием создаем общую реальность нашего мира.

Возникает вопрос: почему же большинство из нас не может видеть другие миры?

Дело в том, что каждый из миров тем реальнее, чем больше обитателей поддерживают его своей энергией. Попадая в какой-либо мир, не можешь из него легко вырваться, ведь остальные его обитатели «заставляют» тебя с ними взаимодействовать и тем самым декогерируют тебя именно в своем мире! Человеку нелегко покинуть мир, где он родился, пока он не освоит умение избирательно взаимодействовать с окружением, осознанно осуществляя процессы декогеренции и рекогеренции[69]. То есть пока он не овладеет своим вниманием. Это умение и дает возможность осознанно управлять движением точки сборки[70], перемещаться по различным мирам или собирать различные миры вокруг себя.

Хочу подчеркнуть: не следует видеть в ограниченности собственного восприятия одни лишь минусы. Только при объединении и сотрудничестве с другими в каком-либо устойчивом мире мы имеем возможность учиться, в том числе — управлению процессами де- и рекогеренции. И тогда путешествия по мирам станут осмысленными и безопасными.

Итак, основная причина того, что большинство людей не могут перемещаться по различным мирам, заключается в социально обусловленных фиксациях внимания и общей системе понятий, которой пользуется человечество. Данные фиксации внимания коллективно поддерживаются всеми взаимодействующими с индивидом членами социума, декогерируя его в мире «общей реальности». Это и фиксирует точку сборки большинства людей в сходной позиции, не позволяя им смотреть на мир из других участков спектра сознания.

Глава 7. Планы Бытия

Каждую частицу материального мира можно представить как сад, полный растений, как водоем, полный рыб. При этом каждая веточка растения, каждая рыбка, каждая капля росы является таким же садом или таким же водоемом.

Г.В. Лейбниц

Не так уж и давно, в средние века, в университетах Европы программа обучения состояла из двух основных частей — тривиума и квадриума. В программу тривиума входили грамматика, риторика, диалектика, а в программу квадриума — арифметика, геометрия, астрономия и музыка. После окончания тривиума выпускники получали звание бакалавра искусств, после квадриума — степень магистра искусств.

Вершиной осваиваемой в университете премудрости считалось деление многозначных чисел — то, что сейчас проходят, если не ошибаюсь, в третьем классе.

Говорит ли это о том, что человечество стало способнее и умнее? Нет! Просто получили распространение более простые методы счёта.

Сейчас мы пользуемся арабскими цифрами[71], а в средние века в Европе применялись римские, с их сложным и далеко не последовательным представлением чисел. Использование десятичной системы исчисления, реализованное в арабских цифрах, и сделало доступным большинству людей то, что прежде было доступно единицам.

Настоящий физик ценит простоту и красоту описания никак не меньше, чем точность. Помните, в школе мы проходили первый закон Ньютона: «Всякое тело продолжает удерживаться в своем состоянии покоя или…»? Так вот, смысл этого закона не только в том, что тела сохраняют состояние своего движения при отсутствии действующих на них сил.

Наиболее глубокий смысл этого закона в том, что существуют системы отсчета, в которых законы природы выглядят проще. Если мы сядем на качели и раскачаемся, траектория полета камня покажется нам весьма замысловатой. Если же мы будем стоять на месте, понять закономерности движения камня будет значительно легче.

Поиск методов, позволяющих упростить описание мира, всегда занимал центральное место в физике.

Каждый из нас видит, как Солнце и звёзды вращаются вокруг Земли. И может показаться, что описание движения светил с позиций неподвижного наблюдателя на Земле легче всего. Однако стоит присмотреться внимательнее, как оказывается, что планеты совершают какие-то непонятные возвратные движения на фоне звезд, и для их описания приходится вводить понятие эпициклов[72], в ходе которых планеты совершают собственное круговое движение вокруг некоторой точки, движущейся по орбите вокруг Земли. Описание становится сложным и запутанным. Для ясного и простого описания законов движения планет солнечной системы мы должны перейти в гелиоцентрическую систему отсчета, в которой Земля обращается вокруг Солнца наряду с остальными планетами. В то же время, эта модель нам совершенно не нужна, когда мы едем из Питера в Москву.

Как же описать строение мира в целом? Должны ли мы начать с известных нам простеньких «кирпичиков» мироздания, изучить их свойства и на этой базе попробовать составить из них более сложные объекты? Или нам следует начать с «невидимого в своей целостности» квантового состояния и попробовать описать, как наблюдаемые объекты образуются в результате взаимодействия между отдельными подсистемами?

Мы должны комбинировать оба пути. Описание мира в терминах частиц до какого-то момента возможно и вполне годится при разработке технических устройств. Только при переходе к большим масштабам и составным структурам оно становится всё сложнее и сложнее, и рано или поздно на этом пути мы заходим в тупик.

Сейчас мы попытаемся обрисовать совокупность планов и подпланов бытия, исходя из свойств нелокального квантового состояния. Каждый из вас хоть что-то да слышал об эфирном, астральном, ментальном и прочих планах существования: вот об их возникновении и квантово-механическом описании и пойдет сейчас речь.

Как уже говорилось, описание квантовой системы с помощью вектора состояния возможно не всегда, а только для чисто квантовых состояний, существующих в замкнутых системах. При наличии взаимодействия с окружением возникают смешанные состояния, система может быть с определенной вероятностью обнаружена в одном из состояний, но никак не в нескольких состояниях сразу. То есть один и тот же эксперимент может иметь несколько возможных исходов, а вероятность каждого из них описывается матрицей плотности[73]. Если мы хотим описать не только замкнутые системы, но подсистемы в них, которые взаимодействуют друг с другом, нам не обойтись без этого понятия.

Вероятно, у многих возникли вопросы: что такое матрица, и о какой плотности идет речь? Матрица — это прямоугольная таблица из чисел. В матрице плотности в каждой ячейке этой таблицы находится величина, характеризующая плотность[74] распределения вероятности различных состояний системы.

Это более общий способ описания, матрица плотности содержит всю информацию о системе и ее корреляциях с окружением. Матрицу плотности можно использовать и для описания чистых состояний, в этом случае она будет отличаться от матрицы плотности смешанного состояния наличием недиагональных (интерференционных) членов. Однако необходимо отметить, что как вектор состояния, так и матрица плотности задают лишь набор возможных состояний системы, а описание их эволюции является отдельной задачей, решение которой возможно лишь при знании законов взаимодействия между соответствующими степенями свободы.

Очень часто нам необходимо описать случай, когда рассматриваемая система находится в окружении, состояние которого мы не можем достоверно знать и контролировать. Например, если мы описываем испускающую фотоны молекулу фуллерена в опыте Цайлингера, у нас нет возможности описать всю Вселенную вокруг нее.

В этом случае состояние объекта описывается так называемой редуцированной матрицей плотности, возникающей при усреднении по «внешним» по отношению к нему состояниям, или, как говорят, степеням свободы окружения. Например, электрон в атоме водорода является квантовой подсистемой, которая может быть описана одночастичной редуцированной матрицей плотности, возникающей при усреднении состояний электрона по состояниям единственной «внешней» для него частицы — протона.

С точки зрения математического формализма переход к смешанному состоянию заключается в усреднении (операции взятия частичного следа) по степеням свободы, не относящимся к данной подсистеме. Например, если выделенная подсистема может находиться в некоторых энергетических состояниях, то по всем остальным состояниям мы усредняем, и эта «отброшенная» часть будет являться окружением для нашей подсистемы.

Само введение матрицы плотности связано с расширением гильбертова пространства до пространства Лиувилля[75].

Формализм матрицы плотности весьма сложен, однако в дальнейшем нам будет достаточно знания очень простых следствий, вытекающих из этого метода описания.

Проведём рассмотрение иерархии возникающих в замкнутой системе структур (то есть планов бытия), используя в качестве примера простую модель. Невообразимая сложность реальных систем по отношению к ней роли не играет: те результаты, которые мы получим, не зависят от числа возможных в системе состояний, то есть от размерности соответствующих им гильбертовых пространств (ГП).

Рассмотрим[76] замкнутую систему, состоящую из трех подсистем A, B и C. Например, это могут быть три фотона, — хотя отметим, что число частиц в каждой из подсистем может быть любым. А разбиение замкнутой системы именно на три подсистемы мы выбрали исключительно из соображений простоты и наглядности.

Эволюция каждой из подсистем A, B, C в замкнутой системе (ABC) будет описываться редуцированными матрицами плотности, возникающими при усреднении по двум внешним по отношению к данным подсистемам степеням свободы. Благодаря усреднению по этим степеням свободы и осуществляется частичная или полная декогеренция каждой из рассматриваемых подсистем.

Например, состоянию отдельно взятой подсистемы A в замкнутой системе (ABC) будет соответствовать редуцированная матрица плотности (A)BC, описывающая состояние подсистемы A при усреднении по внешним для нее степеням свободы B и C.

Здесь мы используем обозначения, согласно которым внутри скобок находится рассматриваемая нами подсистема, а вне скобок записываются подсистемы, по степеням свободы которых ведется усреднение.

Размерность пространства состояний объединенной системы будет равна произведению размерности пространств отдельных систем. Иными словами, имеет место не простое суммирование пространств состояний систем, а их «умножение»[77] друг на друга. Например, если каждая из наших подсистем отвечает двум возможным поляризациям фотона и имеет размерность 2, то размерность пространства системы трех фотонов будет не 2 + 2 + 2 = 6, а 2 × 2 × 2 = 8.

Отметим, что замкнутая система (ABC) нелокальна, мы не можем разделить ее на части в пространстве-времени, которого для всей системы не существует. Однако для классификации состояний можно использовать тот факт, что подсистема в квантовой механике всегда содержит меньшее число возможных состояний, чем исходная система, и потому характеризуется более узким энергетическим интервалом, в котором располагаются все доступные ей состояния. Каждая из подсистем, таким образом, характеризуется энергетическим интервалом, в котором расположены доступные ей состояния, и числом этих состояний.

Классифицируем состояния, возможные в системе (ABC).

Исходная система (ABC) замкнута, находится в чистом запутанном состоянии, ей соответствует ГП максимальной размерности, то есть она имеет наибольшее по сравнению с другими число возможных состояний.

Мы отнесем ее к первому уровню реальности, уровню источника всех возможных состояний, структур и форм. Это абсолютная и не зависящая ни от чего реальность. В отличие от нее, все структуры на других уровнях не имеют автономного существования, их образование невозможно без взаимодействия с другими структурами и вне нелокального источника, у них взаимозависимое происхождение.

На этом уровне нет массы, энергии, пространства и времени, нет ничего, что имело бы отношение к классической физике.

Ко второму уровню реальности, уровню частично декогерированных (или «тонких») тел отнесем состояния типа (AB)C, возникающие при усреднении по степеням свободы только одной из подсистем, в данном примере — подсистемы C.

Состояния типа (AB) частично декогерированы в силу взаимодействия с подсистемой C и находятся в ГП меньшей по сравнению с исходной размерности, поскольку при усреднении по каким-либо состояниям последние «теряются». Состояния на этом уровне реальности остаются нелокальными и частично запутанными в силу того, что произошла лишь частичная декогеренция, не охватившая все возможные степени свободы.

Соответственно, подобные состояния могут быть доступны другим подсистемам для взаимодействия с ними вне зависимости от их пространственной локализации. В то же время, здесь уже можно ожидать возникновения пространства и времени[78], которых не было в исходном нелокальном состоянии.

Наконец, максимально декогерированные состояния типа (A)BC мы отнесем к третьему уровню — уровню проявленных тел, находящихся в смешанном состоянии с минимальной степенью запутанности. Очевидно, им соответствует ГП наименьшей размерности, отвечающей усреднению исходной матрицы плотности по степеням свободы двух внешних подсистем.

Данный класс состояний характеризуют наиболее высокие энергии взаимодействия и максимальные плотности энергии.

Это можно пояснить так: чем сильнее потоки энергии между подсистемами, тем сильнее идет процесс декогеренции. Стало быть, наиболее декогерированным системам отвечают наиболее сильные потоки энергии, для возникновения которых необходимы значительные интервалы между состояниями энергетического спектра системы.

На этом уровне модельной реальности объекты локализованы и могут взаимодействовать между собой только локально, классически. Метрика пространства — времени для них будет отлична от метрики пространства — времени второго уровня в силу значительных различий в размерностях соответствующих им гильбертовых пространств по сравнению с исходной.

Нетрудно видеть, что наш первый уровень реальности очень напоминает своими свойствами известный по мистическим учениям Абсолют (Брахман), второй уровень — тонкие миры, третий — уровень плотных тел, или известный всем нам материальный мир.

Итак, мы имеем следующие возможные в нашей системе состояния:


(ABC) 1й уровень «Абсолют»
(AB)C, (AC)B, (BC)A 2й уровень «тонкие миры»
(A)BC, (B)AC, (C)AB 3й уровень «материальный мир»

Рассмотрим вопрос о том, все ли эти структуры существуют, и может ли какая-то из подсистем — A, B или C — быть представлена на всех трех планах модельной реальности.

Отметим, что любая из подсистем A, B или C, в принципе, способна перемещаться по уровням реальности. На уровне целостной нелокальной системы (ABC) она оказывается тогда, когда не «проводит измерения» (то есть не взаимодействует) ни с одной из других подсистем.

На частично декогерированный уровень тонких миров она «попадает» при проведении измерений только над одной подсистемой. Наконец, на уровне проявленных тел она оказывается при взаимодействии со всеми своими соседями.

Казалось бы, чтобы реализовать все три указанные возможности, необходимо не только, чтобы образуемые структуры были стабильны, но и чтобы рассматриваемая подсистема обладала способностью к управляемому взаимодействию с окружением, то есть умела «включать» и «выключать» взаимодействие со своими соседями по своему усмотрению.

Однако это не так.

Квантовая механика указывает на существование еще одной возможности: объект с уровня физических тел может участвовать не только во взаимодействиях со своими соседями по уровню, но и в более слабом взаимодействии с объектами на тонком плане. В этом случае вокруг каждого из состояний физического мира образуются подуровни, отвечающие состояниям тонких планов[79].

Иными словами, представители «тонких миров» могут взаимодействовать с представителями физического мира и образовывать с ними комплексы. Например, если структура (A)BC обладает способностью к взаимодействию с объектами на тонком плане, то можно говорить об образовании комплекса A{(AB)C,(AC)B}BC, где в фигурных скобках обозначены потенциально взаимодействующие c ней представители второго уровня. В энергетическом спектре такой системы вокруг состояний системы (A)BC возникнут уровни, отвечающие состояниям (AB)C и (AC)B.

В свою очередь, взаимодействие входящих в комплекс представителей второго уровня с другими может привести к его дальнейшему усложнению и развитию. Подобный «рост» комплекса возможен и далее, в него могут войти любые возможные состояния, при этом план Абсолюта (ABC) связан с каждым из вложенных уровней посредством квантовых корреляций, и может быть рекогерирован «изнутри» комплекса. Сам он в комплекс не входит, поскольку любое взаимодействие с планом Абсолюта означает его декогеренцию, и приводит к образованию тех или иных уровней.

В результате, каждый такой комплекс оказывается носителем информации, присущей всей системе в целом.

В китайском буддизме школы Хуаянь имеется захватывающий образ драгоценной сети бога Индры, прекрасно иллюстрирующий это положение. Сеть Индры сплетена из драгоценных камней, каждый из которых отражает все остальные камни и, в свою очередь, сам отражается во всех камнях. Объясняя последователям одно из теоретических положений — «всё в одном и одно во всём», то есть в каждом элементе содержится весь мир, и этот элемент находится в каждом другом элементе, последователи этой школы окружали статую Будды зеркалами таким образом, что она начинала до бесконечности отражаться в этих зеркалах.

Подобные структуры, в которых свойства одной или нескольких систем оказываются «вложенными» друг в друга, называются фрактальными. Они обладают свойством самоподобия, когда один участок энергетической структуры комплекса оказывается подобен другому участку, вне зависимости от масштаба рассмотрения. Любое стабильное состояние каждой из подсистем оказывается содержащим информацию обо всех других возможных состояниях системы.

Однако ожидать, что все возможные конфигурации реализуются в мире в виде стабильных структур, нельзя.

Скажу больше — в уже упоминавшихся работах Войцеха Зурека, посвященных экзистенциальной интерпретации квантовой механики, вводится такое любопытное понятие, как квантовый дарвинизм. Это понятие подчеркивает, что между квантовыми состояниями идет конкуренция за то, чтобы оказаться декогерированными и получить право на существование в виде стабильных структур. В результате этого «естественного отбора» выживают лишь те структуры, которые лучше других обмениваются с соседями информацией и энергией. В силу «огромности» квантового мира в отношении классического, эта конкуренция столь высока, что естественный отбор в биологии не идет с ней ни в какое сравнение.

Рассмотрим теперь порядок проявления структур на различных уровнях реальности и возможность переходов между ними.

Со всей очевидностью первыми из нелокального источника появляются представители тонких миров, которые начинают «чувствовать» внешний для них объект. Именно здесь возникает самое элементарное сознание — отражение.

Каждая из подсистем еще не является чем-то обособленным, индивидуальным, она пока в единстве с другой подсистемой, они вместе «ощущают» присутствие чего-то внешнего по отношению к ним. Например, в системе (AB)C члены пары (AB) совместно «чувствуют» внешнюю по отношению к ним структуру C. На тонких уровнях реальности отдельные подсистемы А, В, C еще не выделились в качестве самостоятельных «сущностей» и обладают пока коллективным, совместным с другим членом пары, «разумом», то есть способностью к отражению в своем состоянии потоков энергии, возникающих при взаимодействии с внешней подсистемой или другими парами своего уровня.

И только после прохождения стадии тонких миров в качестве самостоятельных структур появляются отдельные объекты А, В и С. Для них окружение является плотным, классическим, ведь их мир отвечает максимально возможной степени декогеренции.

Однако именно они имеют шанс получить наиболее совершенное сознание, поскольку только у них есть потенциальная возможность к отражению действительности на всех уровнях. Но только шанс: например, «представителей» системы A на втором уровне может и не быть, конфигурации (AB)C и (AC)B могут оказаться неустойчивыми и просто не существовать как стабильные структуры! В этом случае система (A)BC способна реагировать только на самые плотные энергии материального мира, и возможности взаимодействия через тонкие планы у нее нет.

Можно предположить, что такая ситуация соответствует минеральному царству. У таких структур нет «партнеров»[80] на более высоких этажах реальности и, соответственно, нет возможности восприятия и управления потоками энергий на этих уровнях. А стало быть, нет развитого сознания.

Так же, при большом числе планов существования, любая из подсистем может иметь своих представителей на первом и втором уровнях реальности и не иметь на третьем и последующих. Подобный вариант можно сопоставить растениям, у которых есть физическое тело и зачатки сенсорики, но нет эмоций и мышления. А животных, у которых есть тело, сенсорика и эмоции, однако нет способности к абстрактному мышлению, можно сопоставить со случаем наличия представителей только на втором и третьем планах существования, отвечающим за сенсорику и эмоции.

Таким образом, наилучший вариант для любой системы — быть представленной на всех уровнях реальности. Только в этом случае она будет обладать потенциальной возможностью освоить все уровни, все слои Бытия и использовать свое тело в физическом мире для создания новых нелокальных связей и расширения своего присутствия во всех мирах. Для этого ей необходимо овладеть управлением потоками энергий и уметь целенаправленно осуществлять процессы де- и рекогеренции.

Мы видим: квантовая теория предполагает наличие различных уровней реальности, каждый из которых отвечает своему классическому миру. В любом из таких миров своя степень квантовой запутанности, в нём существуют свои объекты и могут быть свои «обитатели», там может быть характерная только для этого мира метрика пространства — времени.

Классическая физика, напротив, может предложить лишь концепцию общего для всех классического мира, существующего в едином пространстве — времени.

Освоение всего пространства Бытия человеком внутри себя, «не выходя со своего двора», мы рассмотрим позже, для этого нам понадобится модель освоения вложенных в состояния физического мира других уровней реальности. А сейчас мы подробнее ознакомимся со структурой тонких миров.

Глава 8. Тонкие миры

Настоящий мудрец познаёт мир, не выходя со двора, и ведает истину, не выглядывая в окно.

Лао-цзы

Рассказ про тонкие миры мне хочется начать со слов, приписываемых китайскому мастеру Цин-юаню[81]: «Когда я еще не начал изучать чань, горы были горами, а реки — реками; когда я начал изучать чань, горы перестали быть горами, а реки — реками; когда я постиг чань, горы снова стали горами, а реки — реками».

Приведу одну из возможных трактовок слов мастера.

Поначалу, в обыденном состоянии ума, ты не сомневаешься в том, что называется горами, а что реками, и кто ты: у тебя есть имя, пол, образование, семья, культура и так далее. Ты даже не задумываешься об этом, а просто находишься в общей понятийной реальности.

В ходе практик ты осознаёшь, что имеешь дело исключительно с объектами своего сознания. Для использующих шоковые методы адептов Чань это период великого сомнения: всё то, что для тебя было опорой в прежнем восприятии себя и мира, рушится, хаотичные душевные состояния достигают апогея, горы перестают быть горами, а реки — реками. По сути, ты переживаешь смерть себя, смерть своего «Я». Однако вслед за смертью следует «великое пробуждение»[82], обретение нового себя и способности воспринимать мир напрямую, уже без посредничества вербальных и понятийных структур. Горы снова становятся горами, а реки — реками.

Рассмотрим типичные этапы, которые проходит современный человек на пути к «великому пробуждению».

В ходе взросления каждый из нас вначале осознаёт себя как тело, потом — как эмоции, затем — как мысль. Чтобы раскрыть в себе способности мыслящего существа, человеку необходимо получить образование, ему необходимы книги, педагоги, учителя. Вопрос о познании себя на этом этапе практически не стоит, он понимается лишь как овладение эффективными способами манипуляции своим состоянием, расширение интеллектуальных и физических возможностей, освоение новых навыков и ролей.

Чтобы сделать следующий шаг, человеку необходимо погрузиться в мир творчества, открыть в себе спонтанность, способность к импровизации, включить в свою жизнь жизнь тела, поучиться у музыкантов, поэтов, художников, танцоров.

Этот шаг — осознание себя как внимания — делают уже далеко не все. На этом уровне ты становишься способен находиться не только в мыслях или чувствах, но и в происходящем Здесь и Сейчас. Не отслеживать происходящее, думая о нём, как это делает человек ума, а пребывать в нём, как в своем доме, доверяя происходящему и ни о чём без нужды не заботясь. Теперь тебе легко увидеть, как в восприятие активно вмешивается память[83], и в какой-то момент становится совершенно ясно, что, даже когда ты спокойно любуешься на пруд с утками, ты взаимодействуешь не с реальностью, а с памятью о ней, и имеешь дело исключительно с объектами в своем сознании. Теперь ты понимаешь, что реальность совершенно неотличима от твоих собственных реакций на нее и насквозь переплетена с ними. На этом этапе у человека возникает интерес не только к подлежащему освоению объективному миру, но и к себе, этот мир познающему.

Здесь ты можешь остановиться и вполне заслуженно насладиться открывшимися радостями от самого процесса жизни или воспользоваться значительными преимуществами перед другими людьми. Однако можешь пойти и дальше и в ходе практик осознать себя не просто вниманием, а пространством, в которое погружен весь мир. Ты начинаешь понимать, что твоя былая отождествленность случайна, твоя суть — это чистое, ничем не занятое сознание, которое может отождествиться с чем угодно — хоть с камнем, хоть с человеком, хоть с морской свинкой.

Наконец, ты ясно понимаешь роль ума и его представлений в формировании того слоя реальности, в котором живешь. Теперь ты можешь видеть мир напрямую, таким, какой он есть, без описаний и сопутствующих им фильтров. Ты воспринимаешь мир как себя и знаешь его как себя, между вами исчезло противопоставление, исчезла граница между наблюдателем и наблюдаемым, исчез наблюдатель. Внешний мир становится частью внутреннего, внутренний — частью внешнего, и всё это переживается как Единое.

И всё становится на свои места. Ты познаёшь не только то, что мир нереален, но в то же время и то, что мир реален. Горы вновь становятся горами, а реки — реками.

Однако подобный путь становится возможным лишь тогда, когда твои мысли, чувства и само восприятие перестают быть средством познания отражаемого через них мира, а сами становятся объектом твоего наблюдения, исследования, свидетельствования. Иначе у тебя нет возможности узнать себя независимого от них и отделить реальность от привнесенного или отфильтрованного умом и другими структурами в ходе восприятия.

Дорог к этому много, и каждый, как правило, идет своей. Например, поначалу ты в состоянии отмечать лишь собственные состояния и мысли. Здесь есть типичная ловушка: вместо того, чтобы наблюдать состояния и мысли извне, человек создает себе вторую голову, и каждая из голов начинает следить за другой. Вместо Свидетеля взращивается многоголовый дракон, а человек искренне считает, что это и есть Свидетель.

Наблюдая за своими состояниями, в какой-то момент ты начинаешь замечать, что их смена всегда происходит через бездонную щель[84], которую обычный человек не видит, для него это — как глубокий сон, который он не помнит. И ты эти щели начинаешь отмечать… ну почти ежесекундно, по крайней мере, если направляешь на них внимание.

А потом ты обнаруживаешь, что это состояние в щели идентично состоянию, когда ты уже проснулся, но еще не вспомнил, кто ты и где ты.

И есть еще одно важное переживание — переживание себя как пространства тишины. Все мы знаем, что такое тишина и покой внутри, но здесь речь о другом, совсем о другом. В этом состоянии тишина не внутри тебя, а ты и есть тишина, ты и есть пространство вибрирующей тишины, на которую ничего не влияет. А весь мир находится в тебе, в этом пространстве тишины и безмятежности.

И ты вдруг понимаешь, что это пространство тишины является тем же, что было в ускользающей щели между состояниями. Все состояния возникают из Пустоты и возвращаются в нее, а ты эта Пустота и есть!

И до тебя доходит со всей ясностью, что она и есть твое истинное Я[85]. И если какая-либо крокозявка из созвездия Тау-кита себя осознала, то она могла это сделать только так, а не иначе, дальше просто некуда осознавать, дальше чистое пространство и всё!

Ты осознаёшь, что Я — это, в сущности, Пустота, само Сознание, а Мир существует сам по себе и только отражается в этой Пустоте… Из тишины, из пространства происходящего ты легко можешь увидеть, что наше восприятие жизни очень условно, и мы могли иметь совершенно другую жизнь и приобрести совершенно другой опыт…

Переживание, подобное описанному, именуется в индо-буддистской традиции переживанием Шуньяты, или Сияющей Пустоты.

Наблюдение же за возникновением из этого состояния абсолютного покоя некой динамики — мгновений/кадров/атомов восприятия — приводит к другому ключевому переживанию — переживанию Ясности. Оно более заметно в глубокой медитации, или в момент оргазма, или в состоянии медленного сна, в котором обычный человек себя не осознаёт и потом совершенно ничего не помнит. Освоив это переживание, человек видит не итоги своего восприятия, а саму его структуру, этапы и механизмы. Если раньше он мог только отметить, что ему пришла в голову та или иная мысль, то теперь он способен воспринимать мысли и чувства как объекты в пространстве, почти так же, как обычный человек видит глазами материальные объекты. Если человек осознал эти механизмы, он может выходить за пределы стереотипов своего восприятия еще и еще. А это дает возможность переживать мир как целое. Такой опыт, развиваясь, и приводит к мудрости, святости, адекватности понимания происходящего.

После этого человек становится способен к прямому свидетельствованию тонких миров. Человек, освоивший пространства, открываемые переживаниями Пустоты и Ясности, является совершенным свидетелем происходящего. Он равновнимателен, в его восприятии нет слепых пятен, собственных проекций и других искажений, ему незачем обманывать ни себя, ни других. Подобные описания, сделанные представителями разных традиций в различные эпохи, по сути идентичны.

Напротив, описания контактеров, наркоманов и т. д. расходятся между собой. Это связано с тем, что все они воспринимают тонкие миры лишь опосредованно через свои мысли, чувства и ощущения, не имеют собственной воли и картины в целом, и не способны отличить реальность от привнесенного ими.

Мистики наиболее глубоких традиций свидетельствуют наличие 8 планов существования мира, из которых 3 относятся к Абсолюту (Брахману), 3 — к тонким мирам и 2 (эфирный и физический) — к мирам плотных тел. Согласно этим свидетельствам, человеку невероятно повезло: он имеет отражение в себе всех планов бытия. Говоря языком предыдущей главы, он имеет представителей на каждом уровне существования, проводников на каждый из них.

Мы не будем подробно описывать эти уровни и соответствующие проводники на них в тонких телах человека, этой теме посвящено достаточно много литературы[86]. Будет хорошо, если вы найдете первоисточники, а не ограничитесь книгами современных авторов с поверхностным переложением или литературой сектантского характера.


Рис. 10

Возможности ввантово-механического описания возникновения планов реальности мы коснёмся немного позже, а пока отметим, что уровни реальности можно представить в виде показанных на рис. 10 полос энергетического спектра, каждая из которых (изображённых в виде набора линий-состояний) отвечает определенному плану существования.

Первый снизу уровень — физический, он характеризуется максимальным уровнем декогерированности. Энергии взаимодействия и их плотность в физическом мире наиболее высокие, его обитатели воспринимают друг друга как локальные объекты.

Физический план кажется просто крошечным по числу состояний по сравнению с другими, однако именно здесь в ходе взаимодействия образуются новые корреляции между частями системы и новые состояния. Любые взаимодействия посредством обмена энергией являются классическими, однако их результатом является не только декогеренция, но и запутывание с окружением, вследствие чего появляются новые нелокальные квантовые корреляции. Например, если до взаимодействия каждая из частиц характеризовалась матрицей плотности 2 × 2, то после их взаимодействия пространство состояний будет характеризоваться матрицей 4 × 4. А если произойдет еще одна реакция с любой из частиц этой пары, то пространство состояний станет 8 × 8.

Таким образом, развитие Универсума во многом является результатом взаимодействий, идущих на физическом плане. Абсолют не может развиваться без нижних миров, Бог не может обойтись без Дьявола (то есть разделенности, игры, борьбы), если хочет сделать мир краше. Когда мы представляем себе океан, мы редко думаем о его дне, а дно — необходимая и прекрасная часть океана.

Эфирный план обеспечивает энергию и информацию, необходимые для поддержания физического. Это план, на котором работают иглотерапевты, экстрасенсы, мастера боевых искусств. Это план жизненной энергии — праны.

С некоторой натяжкой, в рамках современной науки его можно сопоставить с коллективными возбуждениями в различных средах. Наука последнее время начинает активно интересоваться эфирным планом, регистрируя те или иные его проявления. Одним из косвенных методов наблюдения этого плана является газоразрядная индикация в высокочастотном поле, более известная как эффект Кирлиан[87].

Эфирное тело человека локализовано непосредственно в физическом теле, область его распространения за пределы физического обычно не превышает метра. Характерные энергии взаимодействия на этом плане уже настолько низки, что обнаруживаются только очень чувствительными устройствами.

Астральный план — основа и проводник всех состояний, воспринимаемых человеком и животными как эмоции, страсти, образы, волнения, желания. Этот слой обеспечивает ту сторону нашей природы, которую можно назвать «чувствующей»; на санскрите она называется «кама». На Западе же для этого слоя закрепилось название «астрального» вследствие свойства этой ауры человека светиться в темноте.

Степень запутанности на этом плане много выше, а плотность энергии значительно ниже, чем на эфирном. Область распространения астрального тела за пределы физического, судя по опыту внетелесных путешественников, порядка расстояния от Земли до Луны. Так что вполне возможно, что космонавты при межпланетных полетах столкнутся с подавлением чувственной и мотивационной сфер.

Ментальный план образуют тела мыслей, понятий, категорий, идей, интуиции. Точно так же как чувствование есть восприятие и трансформация объектов астрального плана, мышление есть восприятие и преобразование объектов ментального плана.

Проводником на этот план у человека служат два тела, сильно различающиеся между собой: ментальное (низший, преходящий манас) и каузальное (Высший, бессмертный Манас). Каузальное (причинное) тело иногда называют Душевным телом. С позиций квантово-механического описания, возникновение этих тел легко понять, как отражение в ментальном плане астрального и буддхического уровня соответственно. Отметим, что посредством тел, образующихся как отражения соседних планов друг в друге, и происходит постепенное восхождение живых существ на более высокие уровни существования.

Ментальное тело обеспечивает выход на низший уровень ментального плана, то есть отвечает рассудку и памяти. Важно отметить, что в этом теле мысли и эмоции тесно связаны между собой, мысли вызывают эмоции и наоборот. Соответственно, эмоциональные привязки ограничивают и искажают восприятие ментального плана посредством этого тела.

Каузальное тело отвечает стоящей за рассудком интуиции, совести, душе, а также причинам конкретных поступков и происходящих в жизни человека сюжетов. План, на который мы выходим посредством каузального тела, мы будем называть Высшим ментальным планом.

Также в этом теле человека заключены его склонности, ценности, предпочтения — всё то, что определяет его поступки в жизни, поэтому оно и получило на Западе название каузального[88].

Оказавшись на ментальном плане посредством каузального тела[89], человек оказывается подключенным к Мировому Разуму — он получает немедленный ответ на все встающие перед ним вопросы. Он видит все связи, все причины, все следствия, и это видение происходит одновременно и развивается сразу во всех возможных направлениях. Отметим, что именно так и развивается нелокальная квантовая система.

На этом уровне ментального плана, называемом также «арупа» (бесформенный), существуют первообразы, отвлеченные идеи. Приходя оттуда, они проявляются на низших планах в виде всевозможных конкретных форм.

Опосредованное подключение к ментальному плану через каузальное тело дает человеку тонкость и глубину мысли, интуицию, позволяет ему быть творцом принципиально новых конструкций, связей и понятий. Это тело, в отличие от предыдущих, образует вместе с более высокими телами бессмертное начало человека, сохраняющееся от жизни к жизни.

Буддхический план — план, на котором происходит деление Единого на субъект и объект, здесь появляется самоосознание. Далее, на ментальном плане, возникают всевозможные объекты вне тебя, на астральном — желание обладать некоторыми из них. А на физическом уровне появляется возможность самого этого обладания.

Единое на буддхическом плане совсем близко. На нём мы способны воспринимать одновременно и слияние, и обособление. Это состояние невыразимого блаженства, совмещающее и Единство, и Индивидуальность, не поддается описанию. На этом плане мы одновременно являемся и самими собой, и Всем, что есть.

Данный план воспринимается человеком через буддхическое тело (Буддхи).

Буддхи, как и каузальное тело, является составляющей частью сохраняющегося от жизни к жизни начала человека. Буддхи — это Христос и Будда, что пробуждаются в сердце человека, после чего он становится посвященным. Если голос низшего манаса, очень близкого к чувственной сфере, мы воспринимаем как «хочу», голос Высшего манаса слышится нам как вытекающая из анализа ситуации или подсказок интуиции необходимость, то голос Буддхи слышится нам как голос сердца, как зов, как ощущение сродства чему-то или кому-то. А иногда он проявляет себя как источник откровений или способности к предвидению.

Через буддхический план человеком воспринимается его предназначение, на этом плане формируются основные сюжеты его жизни, без подробностей, которые появляются и обретают конкретный вид на нижележащих планах.

Это очень напоминает ситуацию в экспериментальной физике высоких энергий, когда большая группа исследователей месяцы, а то и годы разрабатывает идею, затем ищет средства, далее уже другая группа людей готовит аппаратуру и длительное время моделирует на компьютере работу установки, стараясь учесть все возможные процессы и подготовиться к любым неожиданностям. И только после всего этого исследователи получают время на ускорителе и проводят эксперимент. Время на пучке частиц дорого, очень дорого! Его никогда не хватает всем желающим.

После этого установка разбирается, ее части, если возможно, идут на новые проекты.

В ходе самого эксперимента в память компьютеров записываются данные от всех регистрирующих частицы детекторов, при этом число зарегистрированных частиц огромно. Затем, в ходе обработки, это гигантское количество информации начинает приобретать всё более и более компактный и ясный вид. Данные о деталях, которые уже не нужны, стираются. Результат предстает в виде какой-либо величины, соотношения или формулы. А потом пишутся статьи, идущие на «вечное» хранение в библиотеки, и теперь любой желающий может воспользоваться полученными результатами, или методическим опытом.

Иначе говоря, любое событие очень тщательно готовится: общая идея, проект возникает на буддхическом плане, на более низких планах замысел начинает приобретать всё более и более конкретные очертания. В конце концов, замысел доходит до физического уровня и реализуется там. После этого то ценное, что было получено, постепенно идет на верхние уровни, «разуплотняясь» в обратном порядке. А в случае успеха какая-либо находка идёт в тираж, и воспроизводится во множестве экземпляров на физическом плане существования.

Чем выше уровень, тем меньше на нём энергии взаимодействия, но тем дольше сохраняется информация. Если на физическом уровне информация о положении и скорости всех молекул в этой комнате исчезает за крошечные доли секунды, на эфирном и астральных планах структуры без энергетической подпитки с физического уровня распадаются в течение нескольких дней[90], то в Абсолюте информация хранится Вечность, ей там просто некуда исчезать, там нет взаимодействий. Только попадает туда на «хранение» далеко не всё!

Вслед за буддхическим планом идут планы Абсолюта, или нирваны, или Брахмана[91], воспринимаемые человеком посредством атманического тела. Это источник Всего, всех структур и форм, всего того, что было, есть и будет.

Атманическое тело, или Атман, — это истинный субъект в человеке, это его божественное Я. Атман — свободный, безупречный и не имеющий свойств единственный свидетель всех переживаемых вами изменений. Происходящее на иных планах бытия отражается в Атмане, словно в зеркале. На этом плане мы становимся сердцем и центром всякого бытия, всего, что есть.

Одно из великих ведических изречений гласит: «Атман есть Брахман». Всё то, что есть в мире, есть в нас самих. На языке квантовой механики это понять нетрудно: в отвечающем человеку комплексе, о котором шла речь в главе 7, содержится и план Абсолюта в виде всех возможных состояний мира, то есть Брахман в своём определённом (т. е. реализованном) аспекте. Содержащийся внутри нас Брахман и есть Атман![92]

А между Атманом и тем «Я», с которым вы привыкли себя отождествлять, лежат все объекты нашего сознания, которые мы привыкли считать окружающим миром.

Подумайте об этом: он внутри вас, прямо сейчас. К нему нет необходимости стремиться, потому что он уже с вами! Вы уже Атман, даже если думаете, что это не так! Царство Божие уже внутри вас — но живете ли вы в Царстве Божием?

Вернёмся к планам Абсолюта. Первый из них, Брахман[93], отвечает уровню чистого запутанного состояния Универсума (ЧЗСУ), он абсолютно безличен, это неопределённый аспект Абсолюта. Это единственная Абсолютная Реальность — как мы уже говорили, любые структуры на всех других планах бытия, кроме Абсолюта, не имеют автономного существования. Они не существуют друг без друга и вне ЧЗСУ, у них взаимозависимое происхождение.

На этом уровне нет массы, энергии, пространства и времени, в нём нет ничего, что имело бы отношение к классической физике. Источник Реальности невидим и познаваем только в творениях своих, или мистически, когда мы растворяем (то есть рекогерируем) границы, отделяющие нас от него. Брахман не имеет форм, и в то же время он является источником и творцом всех существующих структур и форм.

Планы Абсолюта труднодоступны современному человеку, этому препятствуют большие энергетические щели между уровнями существования. И даже если мистик в ходе йогических или иных практик попадает на первый из них, всё равно ему сказать другим совершенно нечего — там нет субъекта, нет объекта, есть только свидетельствование единственной Реальности Себя. Это состояние можно пережить, однако ничего сказать о нём нельзя, единственно возможным ответом о нём является молчание, ибо ни одно состояние, ни одно переживание Брахманом не является. Это Реальность, которая есть во всём, но ничто ее не касается, и ничто ею не является.

В то же время, Брахман объемлет все пласты реальности, все слои бытия, все они исходят от него, и замыкаются на нём, подобно волнам, которые поднимаются из океана, а затем растворяются в нём. Безмерный невозмутимый океан, на бескрайней поверхности которого возникают и исчезают волны, и является классическим образом Брахмана.

На этом уровне нет и не может быть личности, не может быть человека.

Наивысший уровень Абсолюта (Парабрахман) отвечает метасистеме, то есть полной интегации системы со всеми входящими в нее подсистемами. Если для формального описания соответствующей Брахману замкнутой системы требуется задание n компонент вектора состояния (n — размерность соответствующего гильбертова пространства), то для описания динамики смешано-запутанных состояний в подсистемах требуется матрица плотности n × n, содержащая n2 элементов пространства Лиувилля. Таким образом, метасистема включает все возможные объекты, ей отвечает наивысший уровень сознания, включающий все тела и действующий на все тела. Это уровень Знающего Всё и присутствующего во всём.

Перед этим уровнем находится несомненно доступный человеку уровень постижения Атмана как совокупности тонких миров, вложенных в состояния физического мира[94]. На этом уровне происходит интеграция индивидуальных структур восприятия с уровнем Брахмана (ЧЗСУ). Это уровень Знающего Себя и абсолютно точно воспринимающего реальность человека, имеющего непосредственный контакт с Богом (Парабрахманом). Он един с Богом, субъективно он даже тождественен ему (нахождение в нелокальном состоянии воспринимается как единство), однако он отличен от Бога — если сознание Парабрахмана включает все тела и действует на все тела, то здесь сознание индивида полностью распространяется лишь на свое тело, и действовать он может лишь благодаря своему тонкому или физическому телу, или обращаясь к Парабрахману за содействием.

Чтобы разобраться в уровне Парабрахмана детальнее, необходимо обратиться к ведическим представлениям о вечной материи — «пракрити», и непроявленном высочайшем Духе — «Пуруше», о том, как они в гармонии противостоят друг другу, а вместе образуют Парабрахман, и попытаться описать их на языке КМ.

Известно, что любая матрица плотности может быть разложена[95] на две составляющие. Одна из них отвечает максимально смешанному состоянию, то есть характеризует набор состояний, которая система может реализовать. Вторая составляющая матрицы плотности является динамической, посредством этой части система реализует доступные ей состояния. Первая, неизменная часть представляет «идею» всех доступных системе состояний, вторая «отвечает» за их реализацию в ходе происходящих взаимодействий.

Очевидно, первую часть можно соотнести с вечным и неизменным Пурушей, вторую — с пракрити, орудию Духа в материальном мире, его действующему началу. Над этими составляющими матрицы плотности стоит она сама, как Парабрахман. Отмечу, что «содержание» Пуруши аналогично «содержанию» Параматмы — и там, и там мы имеем дело со всеми доступными Миру состояниями, при этом Параматма вторична, она возникает как локализованная копия всех возможных состояний Мира, вкладываемая в состояния материального мира при его рождении.

Совместным результатом действия Пуруши и пракрити, согласно ведическим представлениям, является Махат, то есть Божественная Память и Мышление, иногда называемый Логосом. «В начале было Слово, и Слово было у Бога, и Слово было Бог», — это про Махат. Имеющиеся внутри каждого из нас Пуруша, пракрити и Махат вместе именуются как Атма, мировая душа.

Махат является самим механизмом обмена информацией между образовавшимися подсистемами, возникающим благодаря взаимодействию между ними. В результате взаимодействия происходят изменения состояний участников процесса, происходит запись информации о состоянии одной подсистемы в другую, то есть отражение одной подсистемы в другой. Отражение Пурушей новых состояний пракрити даёт возможность отличить текущую ситуацию от прежних состояний, хранящихся в первой части матрицы плотности. Вероятно, именно таким образом и происходит самоосознание: результаты взаимодействия выглядят для Пуруши как объект, сам же Пуруша принимает свойства субъекта. Так возникает буддхический план, являющийся отражением Пракрити в Пуруше, и представляющий собой первую ступень процесса декогеренции целостного состояния.

В свою очередь, при взаимодействии буддхического плана с Пурушей состояния последнего представляются самоосознанию как содержание Пуруши, как его объекты. Так возникает Манас. Взаимодействие субъекта на плане Буддхи и объектов на плане Манаса приводит к дифференциации последних, притяжению к одним и отталкиванию от других. Так возникает Кама, или астральный план желаний и предпочтений. Отражаясь в Буддхи, мир влечений Камы трансформируется в набор элементов восприятия и органов действия, посредством которых влечения можно удовлетворить. Наконец, отражение в Буддхи элементов восприятия даёт физический мир.

Таким образом, нам кажется логичным предположение, что среди бесконечного множества отражений подсистем друг в друге планы существования образуют лишь подсистемы, возникающие как цепочка последовательных отражений в Буддхи, при этом каждое отражение означает прохождение ещё одной ступени декогеренции. Такое предположение связано с тем, что именно Буддхи отвечает интеллекту и самоосознанию, соответственно подсистемы, образованные в результате взаимодействия с этим планом, могут обладать исключительными возможностями обмена информацией со своими соседями. А именно такие подсистемы будут иметь преимущество при образовании того или иного уровня реальности.

Осознание Махата, возможное после освоения уровня Брахмана (ЧЗСУ), является первым шагом к сознанию Парабрахмана, на котором возникает осознание самого процесса осознания и происходит интеграция воспринимающих структур различных слоев реальности в единое целое. Вторым и заключительным шагом является различение Пуруши и пракрити и освоение всех состояний Пуруши, то есть включение «в свое тело» всех состояний мира, однако я ничего не могу сказать о его возможности или невозможности для человека. К этому вопросу мы вернемся позже, рассматривая вопрос о познании Знающего.

Различение Пуруши, пракрити и Махат внутри нас, по свидетельствам мистиков, в настоящее весьма чрезвычайно затруднительно. В понятиях Пуруши, пракрити, Брахмана, Парабрахмана и Параматмы, описании и отличении их друг от друга путаются многие школы и комментаторы Вед.

Как мы видим, с помощью квантовой механики это можно сделать строго и последовательно.

Елена: А почему тонких и проявленных планов так мало, только 5, ведь число составляющих Вселенную частиц неизмеримо больше, и число возможных комбинаций, по которым может вестись усреднение, также гораздо больше?

М.: Планы существования потому и называются планами, что создаются коллективно, всеми структурами, способными к взаимодействию между собой. План образуется, когда это взаимодействие сильнее, чем с объектами на других уровнях реальности, и его силы хватает для создания стабильных декогерированных структур, то есть объективной реальности данного уровня. Другие возможные структуры, которые не нашли себе достаточно партнеров для обмена энергией и информацией, так и остаются в чисто квантовом состоянии, и своего собственного устойчивого «мира», поддерживаемого всеми его участниками, не создают. Вот и получается, что структура мироздания имеет вид небольшого числа полос, каждая из которых группируется вокруг своего по сути классического мира с огромным числом поддерживающих его «обитателей».

Игорь: Михаил, всегда ли эти планы реальности существовали?

М.: Рассмотренная схема характеризует мир в настоящий момент времени. В предыдущих кальпах[96] число планов бытия могло быть меньшим. В настоящее время планы реальности разделены, между ними есть значительные энергетические щели, препятствующие переходам с одного уровня на другой. Однако так было и будет не всегда. Это интересные и значимые вопросы, мы к ним вернемся в заключительной главе. Там мы рассмотрим и то, что из нашей человеческой жизни сохранится на планах Абсолюта, а что — нет.

Александр: Михаил, а эгрегоры, бесы и так далее — всё это можно рассматривать как реальные объекты тонкого мира, или это то, что мы создаем своими мыслями?

М.: Трудно отделить одно от другого, однако во всех случаях мы имеем дело с объектами в нашем сознании и продуктами его работы. Эгрегоры — надличностный источник мыслей, чувств и силы. Это энергетическое образование тонкого плана, возникающее, когда множество людей посылает энергию своих мыслей в одном направлении, при этом мысли имеют мощную эмоциональную поддержку. За счет поступающей энергии эгрегор способен каждого своего сторонника сделать проводником присущих ему идей и силы.

Надёжнейший признак образования эгрегора — возникновение в группе людей своего специфического языка, понятий, ценностей и так далее, которые не до конца ясны окружающим. В этом смысле субкультуры тоже можно рассматривать как частные случаи эгрегоров.

Каждый из нас взаимодействует с множеством эгрегоров разного уровня (семьи, профессии, страны и т. д.), только редко у кого это взаимодействие происходит осознанно: обычный человек принимает мысли и чувства, идущие к нему от эгрегора, как свои. Фактически, именно через эгрегоры в настоящее время идет управление и структурирование социума.

Любому эгрегору для выживания нужны неравнодушные к нему люди, а не только сторонники. Одержимо борясь с чем-то, вы только укрепляете это своей энергией, эгрегору неважно, позитивно вы к нему относитесь или негативно. Важен поток энергии, важно само взаимодействие с ним. Если вы заметили, что попали под влияние какого-то эгрегора и хотите выйти, — просто уходите, улыбаясь и никак к нему не относясь. Только став безразличным и утратив к тому или иному эгрегору всякий интерес, вы освободитесь от его влияния. Не взаимодействовать с эгрегорами, живя в этом мире, невозможно, однако сделать взаимодействие с ними осознанным и управляемым человеку по силам.

Про эгрегоры широко распространены взгляды, не имеющие никакого отношения к действительности. Например, что «ядро» эгрегоров христианства и буддизма образуют сам Христос и Будда, дескать, именно поэтому эти эгрегоры выше остальных. Это не совсем так: эгрегоры христианства и буддизма созданы теми, кто не постиг учение Христа или Будды, именно они направляют энергию чувств и мыслей этим эгрегорам. Христос и Будда, по сути, никакого отношения к ним не имеют.

Что же касается «бесов», то я никогда не сталкивался с ними как с проявлением хорошо структурированной злой силы, хотя подобные свидетельства встречаются. Вероятнее всего, организованная «злая воля» возникает лишь как проекция ментальных установок того или иного человека. Бесы — это сгустки нашей жизненной энергии, это продолжение наших страстей на тонком плане — особенно страстей, которые нацелены на что-то одно. Также «бесами» можно назвать и достаточно примитивные структуры тонкого плана (в эзотерической литературе их иногда называют элементалями), питающиеся исходящими от нас потоками «грубых» энергий. Эти потоки вызываются повторением мыслей или соответствующими эмоциями, такими как гнев, ревность, ненависть, одержимость той или иной идеей, страх и так далее.

Элементали умеют провоцировать эти чувства, то есть стимулировать свой источник корма. Для этого им достаточно подсветить своим тусклым фонариком (то есть потоком внимания, энергии) вызывающую подобные эмоции структуру на астральном плане. Далее, хаотично блуждающее внимание человека рано или поздно натыкается на «подсвечиваемую» приманку, и уже он направляет туда мощнейший поток энергии, сам декогерируя свой страх, гнев или вожделение. Улыбнуться этой милой проделке беса и рекогерировать эти чувства обычный человек не в состоянии, он ведь не владеет своим вниманием. И человек ловится на живца, схватывается испытываемыми чувствами и мыслями, полностью отождествляясь с ними как со своими. Где ему заметить, что вокруг идет самый настоящий пир!

А за такими лакомствами, как глубокое отчаяние, смертельный ужас или невыносимое страдание, являются более серьезные и развитые товарищи. При этом гибель человека почти никогда не входит в их планы: кто же убивает дойную корову!

Все эти существа играют позитивную роль, поедая избыточные потоки энергии, хотя, конечно, могут доставлять своему «кормильцу» определенный дискомфорт. Но и это может идти на благо, вынуждая человека что-то менять в своей жизни. Наши чувства вообще являются важным источником энергии на тонких планах существования, и мы часто напоминаем баранов, которых разводят, чтобы иметь достаточно шерсти.

Если мы будем искать бесов вокруг себя, то так и останемся баранами. Бесы существуют только благодаря нам, это просто тень, которую мы отбрасываем, это неосознанная часть нас самих. Ищите бесов в себе, заметьте, в какие моменты они подменяют вас, увидьте, за какие значимости они цепляют. Это всегда очень простые вещи: страх, гордыня, чувство собственной важности или жалости к себе. Это моменты непонятности или неприятия, от которых ваш ум всячески стремится избавиться.

Увидев же свою несвободу, исследуйте ее во всех деталях, разглядите структуру переживания: из чего оно состоит, как начинается, как проходит, какими действиями заканчивается. Этого достаточно для освобождения, ведь теперь вы оказываетесь вне переживания и можете направить его энергию в другое русло. Только не подменяйте осознание своих обусловленностей рассуждениями о них, иначе проход к свободе так и останется вашей мечтой. И отдавайте энергию своего внимания не страстям и желаниям, а Высшему, ощущаемому как гармония, блаженство, ясность.

На этом мы завершаем экскурсию в завораживающий мир квантовой физики и переходим к вопросам Сознания и пути человека. Всё, что мы узнали, изучая квантовую физику, нам очень там пригодится!

Для ознакомления с проявлениями тонких планов в мире биологии предлагаю вашему вниманию отрывок из замечательной книги Мачея Кучиньского «Жизнь — это мысль»[97].

Инстинктивное поведение животных, до сих пор не объясненное биологами, — ключ (возможно, не единственный) к тому нематериальному пространству, в котором берут начало все явления природы. Мы убедимся в этом, проследив за пауками и птицами, связанными одинаковой страстью к ткачеству.

Птица ткач — африканская разновидность зяблика; от Восточного Конго до южноафриканских саванн встречаются поселения этих пернатых. Словно экзотические плоды, висят на деревьях десятки шарообразных гнезд, сплетенных из травы и других гибких волокон. Гнездо, занятое парой взрослых птиц и несколькими подрастающими птенцами, уже имеет приличный вес. К тому же оно набухает от дождей и раскачивается ветрами. Чтобы постройка в конце концов не рухнула, ткачи дополнительно прикрепляют ее к ветке крепким волосом животных, чаще всего взятым из хвоста зебры или антилопы гну. При этом птица клювом завязывает волос особым, всегда одинаковым узлом.

Известный любитель-природовед Эжен Марэ, живший в начале века в Трансваале и обладавший невероятным даром мгновенной наблюдательности, заметил, что пары юных ткачей, строя новые гнёзда, не берут пример со своих старших товарищей по колонии. Тогда он задал себе вопрос: кто и как их обучает? Ведь при строительстве гнезд птицы всегда придерживаются одного и того же плана.

Начал месье Эжен с того, что исключил фактор обучения. Для этого он вынул из гнезда несколько яичек ткачей и подложил их на высиживание канарейкам, жившим в его просторном бунгало. Когда ткачики проклюнулись и выросли, он не выпустил их на свободу, а перенес из канареечных клеток в «персональные», где они соединились в пары и, не имея доступа к каким-либо материалам, пригодным для плетения гнезда, снесли яйца прямо на пол клетки. Яйца у них отобрали и опять передали на высиживание канарейкам и так далее. Таким образом, четыре поколения ткачей были лишены не только контакта со старшим поколением и природной средой, но и даже вскормлены искусственной пищей.

Марэ решил, что если четвертое поколение ткачей ухитрится построить такие же гнёзда, как и неведомые им пращуры, это будет доказательством того, что такие способности обретены ими иным путем, а не наблюдением, примером и обучением.

Он подбросил в клетки горсточки травы, тонкие веточки, волокна и увидел, что ткачи тут же взялись за работу. Вскоре птицы сплели висячие гнёзда, ничем не отличающиеся от гнезд, построенных в буше их вольными предками. При этом они не хуже пра-пра-прадедов знали, зачем нужен оказавшийся в клетке конский волос. Они отнюдь не вплели его в стенку гнезда! Оставленный на потом, он был использован для прикрепления постройки к верхнему пруту клетки и завязан «фирменным» узлом!

Из своего эксперимента Марэ сделал вывод, что умение строить гнёзда должно быть наследственным. В те времена идея генов только зарождалась, а относительно механизма наследственности практически ничего не было известно. Ясно было одно: наследуемая информация должна пройти через фильтр яйца. В опыте Марэ это произошло трижды. Что же является носителем информации в яйцеклетке или сперматозоиде?

Сегодня мы точно знаем, что единственный носитель информации, передаваемой новому поколению, — нить ДНК с «зашифрованной» генетической «записью».

Однако попытка представить себе механизм «записи-зашифровки» формы гнезда, а затем прочтения «шифра» в соответствии с движением клюва птицы наталкивается на такие трудности биологического и информационного характера, что они делают такой способ передачи невозможным.

Работа автоматического станка с числовым управлением, вырезающего совершенно одинаковые металлические профили всегда одним и тем же способом, — вершина простоты по сравнению с задачей, стоящей перед ткачиком. Всякий раз иные — и дерево, и ветка, и материал для строительства гнезда; работа то и дело прерывается; многочисленные повреждения исправляются на ходу…

Не вдаваясь в дальнейшие подробности, скажу: передачу «инструкции» построения гнезда генетическим путем приходится полностью исключить.

Что же остается? Что управляет молодой птицей, чтобы она могла вести себя в точности так же, как это делали поколения ее предшественниц? Биолог скажет — инстинкт. Хорошо, пусть инстинкт. Но кто знает, что скрывается под этим «инстинктом»?

И тут мы вступаем в «ненаучное» пространство, не поддающееся исследованию физико-химическими методами. Нам наверняка не удастся объяснить, что такое инстинкт, до тех пор, пока мы не примем гипотезы существования субтильных (тонких, идеальных) образцов форм и поведения, всюду присутствующих в пространстве и вступающих в своеобразный резонанс с живыми существами.


Амёбы — это одноклеточные существа, едва различимые невооруженным глазом; самые большие из них не превышают 0,6 мм в диаметре. Эти капельки цитоплазмы, заключенной в клеточную пленку, перемещаются, медленно ползая по дну водоемов и влажной лесной почве. Поглощают бактерии и каждые 3–4 часа делятся. Такова жизнь вида Dictyostelium discodeum. Невозможно даже представить, что амеба в состоянии совершить нечто большее. И вообще что-либо из того, что человеку удалось лишь после миллиардов лет медленного развития многоклеточного организма и 4 миллионов лет столь же упорного создания мозга Homo Sapiens. Тем не менее, это так.

Если на каком-то участке возникает нехватка пищи, голодающие амебы, до того свободно разбросанные по всей его площади, начинают выделять химический сигнал, который доходит до остальных особей и заставляет их собираться в центральной точке. Спустя некоторое время 46 тысяч одноклеточных создают общее тело, именуемое грексом. Подобно голой улитке, уже как единый организм, этот грекс продолжает перемещаться со скоростью 1 мм в час.

И тут-то начинаются вещи невероятные. Отдельные амебы «запоминают» очередность своего прибытия на сборный пункт, хотя у них нет органов памяти. Те, что первыми оказались в «голове» и ведут общество, «знают» о своей роли проводников. Если их переместить в хвост, они за короткое время вновь возвращаются во главу колонны.

Ежели переход грекса в поисках питательных бактерий не дает результатов, амебы изменяют поведение. Явно не обладая ни зрением, ни речью, ни способностью мыслить, сознавать собственное существование и положение в пространстве, они тем не менее начинают вести себя так, словно всё это у них есть.

Ради достижения столь далекой и абстрактной цели, как выживание хотя бы одной особи, простейшие приступают к созданию непростой инженерной конструкции в виде шаровой капсулы на высокой башне. Такая конструкция в принципе природе известна; нечто похожее представляет собою, например, головка зрелого мака на длинном стебле.

Строительство требует от амеб четкого разграничения задач и специализации клеток. Однако не видно, чтобы кто-нибудь отдавал им распоряжения. Те амебы, которые последними прибыли на место сбора, образуют из своих тел дискообразное основание. Из его середины вырастает стебель, создаваемый теми, что прибыли первыми. По ним взбираются следующие в очереди, и именно они формируют из себя шарообразную капсулу.

Часть амеб размещается в получившейся камере наподобие пассажиров в необычном экипаже. Здесь они преображаются, превращаясь в споры. Сжимаются, обезвоживаются, окружают себя плотной кожурой, затормаживают метаболизм и наконец становятся семенами, вроде маковых зернышек

Амёбы, образовавшие «конструкцию», сами обрекли себя на вымирание. Лишённые пищи, они вскоре погибнут. Спустя некоторое время капсула распадется, споры рассыплются, и, если поможет ветер, у них появится шанс попасть на влажную почву. Тогда они оживут, снова станут амебами, начнут питаться и делиться. Популяция восстановится.

А теперь, чтобы лучше понять, в чём суть того, что совершили амебы, взглянем на них с нашей, человеческой, колокольни. Представим себе, что в некой далекой стране в день рождения Обожаемого Вождя 10 тысяч его верноподданных бегают по стадиону, держа в руках разноцветные шапочки. Неожиданно они останавливаются, надевают шапочки на головы, и пред очами восторженных зрителей расцветает точный портрет вождя, сложенный из разноцветных пятнышек.

Вряд ли найдется биолог, который рискнет утверждать, будто дело тут в инстинктивном поведении молодежи. Очевидно, что вначале был разработан детальный план представления, начиная с портрета, разбитого на 10 тысяч цветных точек. Затем положение каждого паренька и девушки на стадионе было точно определено, и даны инструкции, где, когда и какая шапочка должна оказаться на голове. Был оговорен сигнальный код и способ его передачи. Мозг каждого участника запомнил инструкции, и в соответствии с ними человек действовал во времени и пространстве.

Тем не менее, те же самые биологи упорно твердят, что амебы якобы обходятся без всего вышеперечисленного. И утверждают это в эпоху информатики, кибернетики и бурного развития теории управления!

Без проекта конструкции, без центра управления, без плана строительства создать что-либо в принципе невозможно. В природе тоже. К амебам это приложимо в равной мере. Но известно же, что амебы не вычерчивают выкройку штанов на березовом листке. Нет у них и ни малейшего представления о цели и результате совместного действия, поскольку последнее связано исключительно с сознанием и мозгом на человеческом уровне. Так каким же чудом амебы справляются со столь сложной задачей? Ясно одно: это чудо не может быть следствием информационной пустоты. Тогда кто или что создало необходимый «пакет» информации, где его хранит и как преобразует, если мозг тут не при чём?

На ум опять приходят гены. Ну что ж, теоретически рассуждая, генетическая «запись» необходимых сведений возможна. ДНК амебы, как и любая другая, — это длинная лента, вдоль которой линейно расположены «буквы» — основания генетического кода: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Сгруппированные тройками в различных комбинациях в так называемые кодоны, они являются шифром для аминокислот, что создают белковые цепочки.

Такую «запись» можно использовать и по-иному. Например, приписать кодонам цифровые значения. Чтобы такую «запись» реализовать на практике, каждая прибывающая на сбор амеба должна получать очередной номерок и в зависимости от него — координаты позиции, которую ей следует занять в конструкции. Кто-то или что-то должен эти номерки присваивать и одновременно контролировать движения каждой из 60 тысяч особей.

Затем каждая взбирающаяся по своим сестрам амеба должна была бы постоянно устанавливать свое положение по отношению к нулевому пункту трех осей координат (х, у, z), чтобы знать, следует ли ей взбираться дальше, переместиться левее или же правее. Однако, согласитесь, это требование абсурдно, поскольку у амеб нет органа, служащего для телезамеров и сравнения изменяющихся данных с имеющимся планом.

Тогда что же руководит амебами?

Действительно, их поведение можно объяснить, только приняв существование внешнего фактора, влияющего на весь «коллектив», хранящего план-проект, управляющего движениями каждой особи; решающего, как разместить каждую из 40, 60 или более тысяч клеток; всякий раз определяющего диаметр основания и толщину колонны в зависимости от веса и диаметра будущей капсулы.

Существование такого фактора не умещается в рамках известных нам законов физики. Ни одно из известных науке полей: магнитное, гравитационное, электромагнитное — не пригодно для хранения плана или же образца сложных и изменяющихся во времени физических структур: объём информации, которую возможно в таких полях разместить, невелик. По той же причине они не годны для программирования чрезвычайно гибкого поведения живых организмов. Поэтому оправдано предположение, что то, от чего биологи отделываются, назвав «инстинктом», принадлежит трансцендентальному пространству.

Это какой-то вид «представления, воображения», пребывающего, вероятно, в объеме всей Вселенной и воздействующего на всех амеб, где бы они ни появились. И хотя он нематериален, тем не менее «читабелен» для существ, которые, следуя его указаниям, собственными телами заполняют субтильный образец «конусообразного холмика», «ползающей улитки» и, наконец, «башни». Так же «ведет себя» в квашне дрожжевое тесто, когда заполняет собою объём квашни и принимает ее форму.

Я думаю, что именно наука, как это ни парадоксально, достигнув в ходе исследований непреодолимых границ, предоставит нам доказательства трансцендентальной основы всего сущего.

Загрузка...