Максвелл успешно справился с испытаниями Кембриджа и понимал, что настала пора вернуться к собственным исследованиям. Пребывание в университете подарило ему уверенность, ясность мысли и отработанную методику — все это он был готов применить при решении стоявших перед ним задач. К данному периоду относится одно из самых интересных исследований Максвелла, получившее широкую известность, — теория цветов.
Благодаря ей он стал известен как физик- экспериментатор с хорошим знанием математики.
В середине XVII века молодой английский ученый захотел выяснить, почему мы видим листья деревьев зелеными, небо голубым, а хлопок белым. Для этого он смотрел прямо на Солнце до тех пор, пока цвета в его глазах не изменялись. Он так увлекся своим занятием, что ему пришлось закрыться на несколько дней в абсолютно темной комнате, пока скопления светящихся точек, которые постоянно плавали перед его глазами, не исчезли. Этим «несознательным» исследователем был великий Исаак Ньютон.
Через несколько лет он вернулся к данной теме, но уже с большей осторожностью. Модная теория того времени, распространенная в академических кругах, утверждала, что цвета — это смешение света и темноты. Существовала даже шкала, которая шла от ярко-красного (чистого белого света с минимальным количеством темноты) до темно-синего цвета, предшествующего черному, то есть абсолютному исчезновению света в полной темноте. Однако Ньютона такое объяснение не устраивало: если делать запись черными чернилами на белой бумаге, то написанное не становится цветным...
Ньютон начал исследовать то, что было известно как «знаменитый феномен цветов». Ученые использовали призму для своих работ и думали, что в ней есть что-то, ответственное за придание свету различных цветов. Проблема была в том, что они помещали экран, на который падал свет, исходящий из призмы, очень близко от нее, поэтому видели только разноцветное пятно. Ньютон отдалил экран от призмы насколько это было возможно, и... появилась радуга. Тогда он усложнил эксперимент. В экране, на который падал свет, разложенный на цвета, ученый сделал маленькую щель как раз на той высоте, где проходил зеленый пучок, и поставил позади другую призму. Ньютон выяснил, что свет, который проходит через эту вторую призму, остается зеленым. Так он доказал, что белый свет является простым смешением цветов, а единственное, что делает призма, — разделяет их. Следующим его шагом стал поиск правил, регулирующих смешение цветов. И Ньютон создал то, что сегодня известно как цветовой круг Ньютона (см. рисунок).
С помощью этой диаграммы Ньютон хотел теорию смешения цветов,согласно которой из основных цветов спектра можно образовать любой другой.
Он разделил окружность на семь дуг, по числу цветов спектра. Каждая дуга была окрашена в один из этих цветов, в то время как белый центр круга, О, представлял собой смешение всех цветов спектра (как это происходит с белым светом Солнца). Таким образом, пространство между О и окружностью представляло собой гамму ненасыщенных, тусклых цветов, которые мы наблюдаем в реальном мире. Ньютон нашел метод для вычисления хроматичности (то есть тона и чистоты) заданного цвета.
Как можно видеть на рисунке на этой странице, в центр каждой дуги Ньютон поместил маленький круг, размер (или вес) которого пропорционален числу лучей рассматриваемого цвета. Данные лучи входят в состав определенного смешения, а точка Y указывает, какой цвет составлен на основе этого смешения цветов спектра; в данном случае представлен краснооранжевый.
В заключение своего рассуждения Ньютон заметил:
«Если бы точка Yпопала на линию OD или оказалась рядом с ней, основными ингредиентами были бы красный и фиолетовый и получившийся цвет не был бы ни одним из призматических цветов [тех, что появляются при пересечении призмы лучом света], а был бы пурпурным, ближе к красному или фиолетовому; следовательно, точка Y находилась бы со стороны линии DO ближе к Е или Сив целом составной фиолетовый был бы ярче и более выражен [насыщен], чем несоставной».
Наука о цвете должна считаться, по сути, наукой о разуме.
Джеймс Клерк Максвелл
Однако Ньютон знал ограничения своего построения: была одна неудобная точка непрерывности в том месте, где сталкивались два цвета краев спектра — красный и фиолетовый. Кроме того, что произойдет, если смешать в одинаковых частях два цвета, которые находятся в местах, диаметрально противоположных друг другу? В чистом виде новый цвет попал бы в центр (О) и должен был быть белым, но, как высказался сам ученый, «это был бы не идеально белый, а некий слабый и неизвестный [разбавленный и безымянный] цвет». Он также признал, что ему не удалось произвести белый на основе двух цветов, несмотря на то что голландский физик Христиан Гюйгенс (1629-1695) утверждал, что это можно сделать, смешав синий и желтый цвета. Зато Ньютон признавал, что такое возможно при помощи «смешения трех цветов, взятых на одинаковом расстоянии от окружности». Однако он говорил о разнице между белым, который производится при смешивании некоторых из семи цветов радуги, и «белым цветом света, непосредственно идущего от Солнца»: по его мнению, это были два разных белых.
Ньютон совершил несколько ошибок при разработке своей теории, которые из-за его невероятного авторитета достаточно долго никто не опровергал. Поскольку при объяснении своих экспериментов он четко не разграничил свет и пигменты, последующие ученые предположили, что смешивать свет и пигменты — одно и то же. Ньютон также считал очевидным то, что цвет пигмента эквивалентен цвету света, который он отражает (например, желтый пигмент отражает желтый свет), и эта ошибка еще «жива». В эпоху Максвелла теория Ньютона была самой лучшей из всех имевшихся.
Между тем художники и текстильные фабрики в понимании смешивания цветов находились на несколько световых лет впереди от ученых. Начиная с XVII века они прекрасно знали, как получить нужный цвет на основе красного, синего и желтого — триады «первичных» цветов. Но почему их три? Английский физик и врач Томас Юнг (1773-1829) предположил в своем «Курсе лекций по натуральной философии» (1807), что в основе может лежать физиологическая причина. Возможно, у нас в глазу «три типа ощущений на сетчатке», различные рецепторы, и смешение их сигналов в мозге дает воспринимаемый цвет.
Цвет, который мы воспринимаем, — это функция с тремя независимыми переменными. По крайней мере три я считаю достаточным, но время покажет, так ли это.
Максвелл в письме Уильяму Томсону
Джеймс начал интересоваться проблемой цветов начиная с дней, проведенных в лаборатории Форбса в Эдинбурге. Его наставник думал, что можно образовать любой цвет, используя классический цветовой круг (см. рисунок), измененный должным образом. Поскольку если быстро крутить его, наш глаз неспособен различить каждый из цветов, нарисованных на круге, в итоге мы видим их смешение. Это характеристика глаза, но не слуха: если разделить звуки на самые простые компоненты, мы способны услышать мелодию, а не единое смешение всех нот. Следуя предположению Юнга, Форбс думал, что можно воспроизвести любой цвет, включая белый, расположив подходящим образом три первичных цвета на круге. Итак, он пытался получить белый на основе красного, желтого и синего, распределяя их по кругу в секторах различного размера. Напрасно. Также Форбс попытался воспроизвести зеленый на основе синего и желтого, как это делали художники на своих палитрах, но не добился этого: к своему удивлению, он получил розовый.
Первый цветной круг, показывающий отношении, существующие между первичными и вторичными цветами, — это работа Исаака Ньютона. Здесь мы приводим два круга, которые появляются в «Трактате о живописи в миниатюре» (1708), приписываемом французскому художнику Клоду Буте. Справа показан более древний пример цветового круга с 12 оттенками.
Ученый был обескуражен. Сегодня мы знаем, что смешивать цвета и пигменты — не одно и то же: первое смешение — аддитивное, а второе — субтрактивное. Мы видим желтый цвет на стенах, потому что наш глаз воспринимает желтый свет, который не поглощается, а отражается желтой краской. Именно это обнаружил Максвелл: он открыл, что если экспериментировать с цветовым кругом, содержащим красный, зеленый и синий в качестве первичных цветов, то все работает идеально.
Джеймс Клерк Максвелл начал исследование цветов в подходящий момент — во время большого интереса к данной теме.
Шотландский физик-оптик Дэвид Брюстер (1781-1868) сформулировал теорию об ощущении цвета, а немец Герман фон Гельмгольц (1821-1894) опубликовал в 1852 году свою первую статью по этой теме. Согласно Брюстеру, тремя первичными цветами являются красный, синий и желтый; и они соответствуют (следуя Юнгу) трем типам объективного света. Но фон Гельмгольц указал на глубинное несоответствие: эксперименты, поставленные на тот момент, осуществлялись смешиванием пигментов, за исключением немногих, сделанных с помощью цветового круга, а нужно было смешивать свет разных цветов, чтобы можно было сравнить результаты. Для этого фон Гельмгольц сконструировал прибор, способный смешивать свет двух цветов спектра любой интенсивности. У этих экспериментов были удивительные результаты: при смешении красного и зеленого получился желтый, а зеленого и фиолетового — синий.
Максвелл учел замечания немецкого ученого и сконструировал свой прибор в 1852 году. Однако ранее ему нужно было провести собственные исследования с цветовым кругом.
Первое, что нужно было сделать, — получить количественные измерения смешения цветов. Для этого Максвелл изменил круг (своего рода волчок) таким образом, чтобы можно было выбрать количество каждого цвета, который он собирался использовать. В ходе экспериментов Максвелл выяснил, что с помощью белого, черного, красного, зеленого, желтого и синего можно получить любой цвет. Но нужно было сделать результаты более точными, и он использовал второй круг меньшего размера, который поместил поверх первого. Таким образом, на нижний круг накладывались три цвета, например черный, желтый и синий, а на верхний — красный и зеленый. Чтобы количественно оценить пропорцию каждого цвета, который был на обоих кругах, ему нужно было только посмотреть на нанесенную на них шкалу.
Эскиз Ньютона к одному из его экспериментов с цветами. В числе многочисленных разработок английского математика и физика — теория цвета.
Джеймс Клерк Максвелл (в возрасте 23 лет) держит цветовой круг в Тринити- колледже в Кембридже. Максвелл основывался на теории цвета Ньютона и был первым ученым, предложившим количественную теорию цвета, что принесло ему признание коллег.
Можно ли получить один и тот же цвет на обоих кругах? Оказалось, что да. Во время одного из своих экспериментов он обнаружил, что получает один и тот же цвет, грязный желтый, из 46,8 части черного, 29,1 желтого и 24,1 синего, а также из 66,6 части красного и 33,4 части зеленого. Но черный — не цвет: Максвелл включил его, чтобы контролировать блеск и тональность смешения синего и зеленого. Получалось, что 29,1 части желтого и 24,1 синего производят тот же цвет, что и 66,6 части красного и 33,4 части зеленого. Если обозначить цвета как А, В, С и D, а количество каждого цвета — как а, b, с и d, мы можем обобщить этот результат:
cC+dD = aA+bB,
где символ + означает «в сочетании с», а символ = «совпадает по окраске». Точно так же мы можем сказать, что
dD = аА + bВ - сС.
В этом случае символ — означает, что для приравнивания цветов мы должны сочетать С и D и тогда это совпадет со смешением А и В. Следовательно, можно утверждать, что для любого цвета X существует такое смешение из трех цветов, что
хХ = аА + bВ+сС.
Если знак какой-нибудь из величин а, b или с отрицательный, то это значит, что цвет должен сочетаться с X для совпадения по окраске со смешением двух других. В январе 1855 года Максвелл написал:
«Нет необходимости определять какие-либо цвета как типичные для этих ощущений. Юнг выбрал красный, зеленый и фиолетовый, но он мог выбрать любую другую группу из трех цветов, которые дадут белый, если их смешать подходящим образом».
Юнг включил в свою теорию цветовой треугольник, на котором он показывал, что все цвета, включая белый, можно получить на основе трех первичных: красного, зеленого и фиолетового. Это противоречие с триадой цветов, принятой среди художников, в 1849 году Форбс обозначил как «исключительное мнение».
В том же году в январе Максвелл согласился с идеей Юнга, но подчеркнул, что ключевым моментом выбора первичных цветов является их сочетание в нужных пропорциях для получения белого цвета. Благодаря своим экспериментам он чувствовал себя готовым к классификации цветов. Он исходил из предположения немецкого ученого Германа Грассмана (1809-1877), изложенного в его статье «О теории смешения цветов» (Oberdie Theorie der Farbenmischung), опубликованной в 1853 году. В ней говорилось, что с точки зрения цветов существуют три переменные: тон, или спектральный цвет; блеск, или интенсивность цвета; а также блеск белого. Исходя из этого Грассман ввел две производные величины: общий блеск, то есть сумма блесков цвета и белого, и степень насыщенности, или причина блеска одного цвета в общем цвете. Ученый доказал, что каждый цвет может быть представлен через свое положение и определенный «вес» в хроматическом круге Ньютона, так что, например, произведение общего блеска на расстояние от центра дает в результате интенсивность цвета.
Основываясь на всем этом, Максвелл показал, что данные переменные можно представить на диаграмме, которая включает в себя треугольную схему Юнга, цветовой круг Ньютона и классификацию цветов Грассмана. Его геометрическое представление цвета известно как «треугольник Максвелла».
Три первичных цвета — красный, зеленый и синий (на самом деле это киноварь, изумрудный и ультрамарин) — представлены вершинами равностороннего треугольника (см. рисунок на следующей странице). Каждая точка треугольника изображает цвет, который можно получить определенным смешением этих трех цветов, а центральная точка представляет собой белый цвет. Каждая точка треугольника соответствует решению уравнения
Цвет = %К + %3 + %С,
где — это процент красного, определяемый как 100 k/(k+3+ с), %3 — процент зеленого, 100 з/(k+3+ с), а %C процент синего, 100 с/ (k+з+с), а и с — расстояния до точки треугольника. Кроме того, спектральный цвет задан угловым положением прямой к центру тяжести треугольника (белому), а уровень насыщенности — расстоянием от него.
Однако Максвелл осознавал, что не все цвета могут образовываться в качестве сочетания этих трех первичных: в его геометрическом представлении были цвета, которые оказывались вне границ треугольника. Какие? Те, что, как мы видели, получаются при вычитании первичного цвета, либо (то же самое) имеющие отрицательное значение с, з или к.
Система Максвелла была устойчивой, поскольку не зависела от выбора первичных цветов, но Джеймс выяснил, что его личный выбор этих цветов очень близок к идеальной триаде, поскольку подавляющее большинство цветов оказывалось внутри треугольника.
Результаты исследования Максвелла были опубликованы в 1855 году в журнале Эдинбургского королевского общества под названием «Эксперименты с цветом, восприятие глаза». Сегодня мы ежедневно сталкиваемся с тремя первичными цветами, когда включаем телевизор.
Конкретный цвет может быть определен в этом треугольнике по расстоянию от каждой из его сторон, как поясняется в тексте. Геометрический центр треугольника соответствует белому.
В письме Форбсу в ноябре 1857 года Максвелл объяснял:
«Раскрашенные листы бумаги и волчки, хотя и довольно точны в большинстве спектральных экспериментов, не предоставляют никаких абсолютных фактов по определению цветов».
Причину этого он изложил еще в статье 1855 года:
«Цвета на дисках никоим образом не воспроизводят первичных цветов, они просто представляют различные типы красок».
Следовательно, уравнения, которые нашел Максвелл, описывали всего лишь отношения «между цветами определенных пигментов».
Схема «цветовой коробки», сконструированной Максвеллом, где лучи света показаны пунктирной линией.
По этой причине еще в 1852 году он сконструировал (следуя фон Гельмгольцу) собственную «цветовую коробку» с рядом призм и щелей для экспериментов со светом (см. рисунок ниже). На тот момент наибольшая сложность была в качественной шлифовке оптики коробки. В 1855 году Максвелл сконструировал коробку, в которой мог наблюдать смешения двух чистых цветов, и на ее основе в следующем году — другую, портативную, «чтобы показывать явление, хотя и в грубом виде, другим людям».
С помощью своей идеально откалиброванной коробки и идей Грассмана, Юнга и Ньютона в качестве теоретической основы, Максвелл смог нарисовать кривые распределения светимости каждого стандартного цвета в зависимости от длины его волны, представив механизм физиологической реакции глаза. Его интересовал принцип работы глаза, животного или человеческого. Но у него не было приборов для таких исследований, так что ему пришлось сконструировать офтальмоскоп, изобретенный фон Гельмгольцем за год до этого, о чем Джеймс не имел ни малейшего понятия. Максвелл провел много времени, изучая с помощью офтальмоскопа глаза людей и собак. Чтобы убедить людей согласиться на исследование, он позволял им сначала посмотреть внутрь его собственных глаз.
Женитьба Максвелла в 1858 году придала ему сил, и он смог доказать, что при смешении любого цвета спектра от красного до зеленого с небольшой частью синего получается определенное смешение красного и зеленого. Точно так же любой цвет, полученный в результате смешения цвета от зеленого до фиолетового с небольшим количеством красного, можно получить смешением зеленого и фиолетового. Таким образом, он смог заменить хроматический круг Ньютона кривой, основанной на его треугольнике. Очевидно, форма данной кривой зависит от глаза наблюдателя, но Максвелл открыл, что большинство людей воспринимают цвета почти одинаково. Отдельный случай представляют собой люди с дисхроматопсией (нарушением цветового зрения): если они не видят красный, то для них практически все цвета сводятся к смешению зеленого и фиолетового. В 1860 году Джеймс опубликовал последнюю большую работу по теории цвета, в которую включил все свои заключения: «О теории составных цветов».
Работа Максвелла по теории цвета ввела в обиход исключительно точные измерения и математические уравнения, что очень понравилось научному «истеблишменту» Кембриджского университета, особенно Стоксу, который занимал престижную Лукасовскую кафедру по математике (ее когда-то возглавлял сам Исаак Ньютон), и ректору Тринити, Уэвеллу. В июне 1859 года его номинировали на медаль Королевского общества «за математическую теорию разложения цветов, проверяемую количественными экспериментами», что означало публичное признание создания математической теории, основанной на количественных изменениях. Впрочем, эту медаль Максвелл не получил. Зато в следующем году он был удостоен медали Румфорда (специально созданной для поощрения исследований в области оптических и тепловых явлений). Как раз в том году он отправил свою статью не в журнал Эдинбургского королевского общества, где опубликовал два предыдущих исследования, а в журнал Лондонского королевского общества, по просьбе самого Стокса, секретаря общества. Таким образом, работа в области цвета превратила Максвелла в значимую фигуру в мире британской науки. Он стал известен в научных кругах как физик-экспериментатор из Эдинбурга, который одновременно был прекрасным математиком из Кембриджа.
Пока в лаборатории Максвелла кипела бурная деятельность, в мире за ее пределами жизнь продолжала идти своим чередом.
На рождественских каникулах 1854 года отец ученого подхватил серьезную легочную инфекцию, и Джеймс временно оставил работу, чтобы ухаживать за ним. Он не мог вернуться в Кембридж до последнего триместра курса. В письме отцу он выражал радость, поскольку Уильям Томсон «начинает верить в теорию, что все цвета можно получить из трех основных», и в то же время жаловался на то, что в Кембридже он чувствует себя одиноко.
Сложно поддерживать интерес к интеллектуальным темам, когда друзей в интеллектуальном мире становится все меньше.
Из письма Максвелла к отцу, в котором он рассказывает о пребывании в Кембридже
Максвелл успешно сдал экзамен на звание фелло в Тринити и был официально назначен им 10 октября 1855 года. Он сразу же попросил разрешения вести занятия по гидростатике и оптике в колледже студентам третьего курса, в то же время отказавшись быть чьим-либо наставником: он хотел посвятить все свое время занятиям, ученикам и исследованиям. В феврале 1856 года он получил письмо от своего наставника и друга Форбса, в котором тот сообщал ему о вакантной должности преподавателя натуральной философии в Маришал колледже в Абердине, на севере Шотландии, и предлагал ему откликнуться на нее. Джеймс решил, что подаст заявку, если это одобрит его отец. «Думаю, — писал он, — чем раньше я получу постоянную работу, тем будет лучше, и самый легкий способ добиться этого — подать заявку на должность преподавателя».
Отец был воодушевлен этой возможностью и начал ходить по инстанциям в Эдинбурге, стремясь поддержать сына. Когда Джеймс вернулся в Шотландию в середине марта, все уже было готово. Оба приехали в Гленлэр, проведя несколько дней в Эдинбурге, когда 2 апреля Максвелл-старший внезапно скончался:
«Мой отец внезапно умер ровно в 12 часов. Он раздавал распоряжения в саду, после чего сказал, что ненадолго присядет отдохнуть, как обычно. Через несколько минут я сказал ему, чтобы он прилег на диван, но он не обратил на меня внимания; тогда я принес ему немного эфира, поскольку знал, что он ему помогает. Еще до того как он смог выпить его, он слегка вздрогнул, и все кончилось».
После смерти отца Максвелл был избран на должность преподавателя, которую он занял в ноябре, проведя грустное лето в Гленлэре, осуществляя в имении то, что собирался и не успел сделать его отец.
Когда Максвелл обосновался на новом месте, его настигла первая неожиданность: в свои 25 лет он был самым молодым преподавателем в колледже, и хотя он и надеялся найти коллег своего возраста, младше 40 лет никого не было. Средний возраст преподавателей был около 50 лет. Вторая неожиданность заключалась в том, как тепло его приняли коллеги. Действительно, они все были хорошими друзьями, и очень скоро он чаще стал ужинать вне дома. Хотя существовало одно «но»:
«Здесь никто не понимает ни одной шутки. Я не рассказал ни одной за два месяца, и когда замечаю, что одна из них хочет сорваться у меня с языка, я вынужден прикусить его».
Маришал колледж был вторым старейшим шотландским учебным заведением после Эдинбургского университета. Он выпускал магистров искусств (МА), и обязательными предметами здесь были греческий, латынь, естественная история, математика, натуральная философия, моральная философия и логика. Большинство студентов жили в городе или его окрестностях. Учащиеся в основном происходили из семей торговцев, но также из семей фермеров, священнослужителей, учителей и адвокатов. Дети первых двух категорий обычно не хотели следовать по стопам родителей и мечтали о карьере врачей, священнослужителей, преподавателей или юристов.
Как требовала традиция, любой новый преподаватель должен был прочитать инаугурационную лекцию, на которой присутствовало все университетское сообщество, и объяснить, каким правилам он собирается следовать на своем отделении. Максвелл подготовил ее добросовестно. Он ясно дал понять, что будет не только распространять знания, но также учить студентов думать самостоятельно:
«Я верю, что благодаря тщательному и аккуратному изучению законов природы мы будем способны избежать опасностей туманных и безосновательных форм мышления и приобретем здравую привычку энергичного мышления, которое позволит нам признать ошибку в любом ее виде».
Ученый добавил, что собирается покончить с академической привычкой презрения к эксперименту: лаборатория должна быть основной частью занятий. К счастью, его предшественник был энтузиастом исследования и оставил после себя хорошо оснащенную лабораторию.
Максвелл четко знал, что он хочет делать на своих занятиях, но было необходимо составить письменный план обучения. Его будни были достаточно загружены работой: лекции и практические сессии в колледже, а также (раз в неделю) занятия в Абердинском механическом институте — центре, который открыл свои двери в ответ на новые требования промышленной революции дать техническое образование рабочим. В течение трех десятилетий предшественники Максвелла занимались тем, что по вечерам читали лекции слушателям раз в неделю, и он был очень рад продолжить эту традицию. Таким образом, его еженедельная аудиторная нагрузка занимала 15 часов, к чему добавлялось время, которое он посвящал административным и бюрократическим формальностям своего отделения, а также подготовке к занятиям.
Кроме того, Максвелл стремился уделять время исследованиям.
Джеймс обосновался в уникальном городе: во всей Шотландии было пять университетов, и два из них находились в Абердине — Маришал и Кингс-колледж. Это было несколько необычно, и учебные заведения собирались объединять, несмотря на сложность задачи, поскольку между ними существовало нездоровое соперничество. Джеймс, сердечный человек по натуре, быстро подружился с самыми молодыми представителями Кингс-колледжа, но сразу понял, что между двумя колледжами на самом деле существовала лишь ледяная вежливость: никто не общался с представителями «другой стороны».
Итак, Максвелл начал чувствовать себя одиноко. Он недавно стал частью общества, которое выглядело дружелюбным, но на самом деле оказалось довольно закрытым, и в этой среде он должен был работать в течение всего учебного года, с ноября по апрель. В Гленлэре он тоже жил один, заботясь о поместье и редко принимая друзей. Обычно Максвелл навещал родственников, но его отношения с наиболее близкими людьми складывались в основном по переписке. Письма Джеймса того периода рисуют нам образ человека, увлеченного своей работой и высоко ценящего дружбу. Но ему было очень сложно справиться с болью и одиночеством.