Весь предшествующий опыт убеждает нас в том, что природа представляет собой реализацию простейших математически мыслимых элементов.{15}
Естествознание с античных времен определяло наше отношение к природе, но его роль еще более возросла после того, как предсказания важнейших научных теорий были многократно подтверждены опытом. Основные философские течения строились на физической науке и, казалось бы, неопровержимых фактах, установленных ею.
Однако дальнейшее развитие физики и прежде всего создание теории электромагнетизма, теории относительности и квантовой механики вызвали необходимость пересмотра философских учений. В этой главе мы кратко обрисуем и сопоставим некоторые из старых и более новых направлений философии, формирующих наши взгляды на природу. Умонастроение любой эпохи, мышление и поведение общества определяются господствующим мировоззрением. В современном обществе представления об окружающем нас физическом мире во многом определяют всю систему наших взглядов.
Основное учение — имеющее, как мы увидим в дальнейшем, первостепенное значение само по себе, — на которое в той или иной мере опираются все остальные учения, получило название «механицизм». Не претендуя на строгость, суть механицизма можно сформулировать так: физический мир представляет собой гигантский механизм, части которого взаимодействуют между собой. Механизм действует без сбоев и ошибок, о чем свидетельствуют движения планет, регулярность чередования приливов и отливов, предсказуемость солнечных и лунных затмений. Части гигантского механизма — это непрерывно движущаяся материя. Движение обусловлено действием сил. Рассмотрим эти понятия более подробно.
В основе механицизма лежит понятие материи как некоторой телесной вещественной субстанции. Убеждение в том, что материя составляет основу всего сущего, восходит к древним грекам. Выдающиеся греческие философы наблюдали окружающий мир и, несмотря на свои весьма ограниченные возможности, всеми доступными им средствами исследовали природу. При этом они с готовностью переходили от немногочисленных наблюдений к широким философским обобщениям. Так, Левкипп и Демокрит выдвинули идею о том, что мир состоит из неразрушимых и неделимых атомов, существующих в пустоте. Аристотель строил материю из «четырех элементов» — земли, воды, воздуха и огня, но не из настоящих земли, воды, воздуха и огня, а из четырех сущностей, наделенных теми качествами, которые мы воспринимаем посредством наших органов чувств в четырех реальных аналогах этих «элементов».
Томас Гоббс, развивая несколько более грубый вариант того же учения, утверждал:
Мир, т.е. вся масса всех вещей, телесен; иначе говоря, есть тело, и оно обладает измерениями величины, а именно длиной, шириной и глубиной; но каждая часть тела также есть тело и также обладает измерениями. Следовательно, каждая часть нашего мира есть тело, а то, что не есть тело, не есть часть мира, а поскольку мир есть все — то, что не есть часть его, есть ничто и, следовательно, не существует нигде.
Тело, продолжает Гоббс, есть нечто такое, что занимает пространство; оно делимо, подвижно и ведет себя математически.
Таким образом, механицизм утверждает, что реальность — это всего лишь сложная машина, управляющая объектами в пространстве и во времени. Так как мы сами составляем часть физической природы, все человеческое должно быть объяснимо через понятия материи, движения и математики.
Декарт, как мы уже отмечали, также утверждал, что все физические явления можно объяснить с помощью понятий материи и движения. По Декарту, материя действует на материю при непосредственном соприкосновении. Материя состоит из мельчайших невидимых частиц, отличающихся по величине, форме и другим свойствам. Так как частицы слишком малы и их нельзя видеть, для объяснения более крупномасштабных и потому доступных наблюдению явлений, например движений планет вокруг Солнца, требовалось принять определенные гипотезы относительно поведения таких частиц. Понятие пустого пространства Декарт отвергал, заявляя, что ваза, совершенно пустая внутри, должна была бы разрушиться.
Естествознанию картезианская философия (от латинизированного имени Декарта — Картезий), которую разделяло большинство естествоиспытателей доньютоновской эпохи, в частности Гюйгенс, отводила по существу ту же функцию, а именно физическое объяснение явлений природы.
До начала XX в. все физики и философы придерживались убеждения, что материя — первооснова и сущность физической реальности. Вот что писал по этому поводу Ньютон в своей «Оптике»:
При размышлении о всех этих вещах мне кажется вероятным, что Бог вначале дал материи форму твердых, массивных, непроницаемых, подвижных частиц таких размеров и фигур и с такими свойствами и пропорциями в в отношении к пространству, которые более всего подходили бы для той цели, для которой он их создал. Эти первоначальные частицы, являясь твердыми, несравнимо тверже, чем всякое пористое тело, составленное из них, настолько тверже, что они никогда не изнашиваются и не разбиваются на куски. Никакая обычная сила не способна разделить то, что создал Бог при первом творении.
Так как движущаяся материя была ключом к математическому описанию движения планет и свободно падающих тел, ученые попытались распространить такое материалистическое объяснение на явления, природу которых они совсем не понимали. Тепло, свет, электричество и магнетизм рассматривались как «невесомые» разновидности материи; «невесомость» означала, что плотность материи этих видов слишком мала и потому ее невозможно измерить. Например, тепловая «материя» называлась калорической. Нагреваемое тело впитывало в себя эту «материю», как губка воду. Электричество также считалось материей в жидком состоянии: электрическая жидкость, или, точнее, две электрические жидкости (положительно и отрицательно заряженные), текущие по проводникам, и представляют собой электрический ток.
Предполагалось, что материя приводится в движение и обычно поддерживается в этом состоянии действием сил. Бильярдный шар, сталкиваясь с другим шаром, сообщает тому движение силой удара. Для объяснения непрерывного движения планет Ньютон ввел силу тяготения. Для объяснения электрических и магнитных явлений Фарадей ввел электрические и магнитные силовые линии, которые считал реально существующими.
Итак, имеются три основных понятия: материя, сила и движение. Сила действует на материю, а движение есть не что иное, как поведение материи. Следовательно, материя — наиболее фундаментальное из названных понятий. Исходя из этого, философы провозгласили материю (поведение которой задано соответствующими математическими законами) единственной реальностью.
К концу XVIII в. наиболее полное развитие получила одна область физики, а именно механика. В знаменитой французской «Энциклопедии» Д'Аламбер и Дидро весьма уверенно провозгласили, что механика — наука универсальная. По словам Дидро, «истинная система мира познана, изложена и усовершенствована». Механика стала парадигмой для более новых и быстро развивающихся областей науки.
Лейбниц, хотя и отстаивал механицизм как самоочевидную истину, не мог удовлетвориться одним лишь этим направлением. Бог, энергия и цель были одинаковы для него. В своей «Монадологии» (1714) Лейбниц утверждал, что мир состоит из крохотных монад, каждая из которых неделима и представляет собой сосредоточение энергии. В каждой монаде заключено ее прошлое и будущее. Монады действуют сообща в предустановленной гармонии, образуя более крупные организмы. Монады определяют внутренний динамизм вещей. Механицизм же занимается рассмотрением внешних, пространственных и других физических качеств вещей, например сил.
По утверждению великолепного физика, врача и математика Германа Гельмгольца (1821-1894), высказанному в одном из докладов, вошедших в его «Популярные лекции о науке» (1869), конечная цель естественных наук состоит в том, чтобы найти решение всех своих проблем в механике. Вместе с тем Гельмгольц сознавал, что еще не все элементы механики достаточно понятны, и признавал необходимость обратить особое внимание на проблему природы сил:
Таким образом, мы обнаруживаем в конечном счете, что задача физической материальной науки состоит в сведении явлений природы к не подверженным изменениям силам отталкивания и притяжения между телами, величина которых зависит только от расстояния. Разрешимость этой задачи есть условие познаваемости природы… Ее [физической науки] миссия завершится, как только удастся окончательно свести явления природы к простым силам и доказать, что такое сведение — единственное, допускаемое этими явлениями.
Гельмгольц выражает здесь благие, но несбыточные надежды, ибо даже в то время, когда были написаны эти строки, физическая наука располагала убедительными данными, свидетельствовавшими о том, что не все явления можно объяснить, сводя их к массам, подверженным воздействию простых и понятных сил.
Ныне мы со всей очевидностью столкнулись с тем, что, возможно, оставалось незамеченным в XIX в.: с участившимися случаями «несрабатывания» механицизма. Излагать результаты своих исследований ученые стремятся по возможности ясно и понятно, но именно тогда, когда им удается достичь наибольшей ясности, они наиболее далеки от истины. Вплоть до конца XIX в. физики пребывали в уверенности, что все явления природы допускают механистическое объяснение. А если какие-то явления пока не удавалось объяснить в рамках механицизма, то, считалось, со временем это будет сделано. Среди тех явлений, которые не находили механистического объяснения, особенно важными были действие тяготения и распространение электромагнитных волн.
Что касается тяготения, то физики конца XIX в., разумеется, знали о настойчивых попытках Ньютона дать объяснение этому явлению. Каким образом сила притяжения со стороны Солнца действует на планеты, находящиеся от него на расстоянии в миллионы и сотни миллионов километров? Усилия Ньютона не увенчались успехом, и, как бы подводя им итог, он изрек свое знаменитое: «Я не измышляю гипотез». Механицизм не помог Ньютону.
Почему же ученые XVIII-XIX вв. столь ревностно придерживались механицизма? Возможно, что их не покидала надежда разгадать природу тяготения. Однако более существенно другое: физики были настолько ослеплены успехами ньютоновского направления в науке, что упустили из виду проблему объяснения физической природы тяготения. Воспользовавшись математическим выражением закона всемирного тяготения, они (в особенности Лагранж и Лаплас) настолько преуспели в применении этого закона для объяснения ряда наблюдаемых аномалий в движениях небесных тел и в обнаружении новых явлений, что проблема физической природы тяготения оказалась погребенной под грудой математических «мемуаров» (как принято было называть тогда публикации). Ныне мы знаем, что тяготение (или гравитация) — научная фикция, происхождение которой в определенной степени связано со способностью человека оказать силовое воздействие на различные предметы. Джордж Беркли подверг критике понятие физической силы тяготения с общих позиций своей философии. В сочинении «Алсифрон, или Мелкий философ. В семи диалогах, содержащих апологию христианской религии против тех, кого называют свободомыслящими» (1732) он писал:
Ефранор. …Прошу тебя, Алсифрон, не играй терминами: оставь слово сила, изринь все прочее из своих мыслей, и ты увидишь, какова точная идея силы.
Алсифрон. Под силой я понимаю в телах то, что вызывает движение и другие ощутимые действия.
Ефранор. А не существует ли что-нибудь отличное от этих действий?
Алсифрон. Существует.
Ефранор. Тогда будь добр, исключи все, что отличается, и те действия, к которым оно приводит, и поразмысли над тем, что такое сила в собственной, точной идее.
Алсифрон. Должен признаться, нелегкое это дело.
Ефранор. Поскольку ни ты, ни я не можем определить идею силы и поскольку, как ты сам заметил, разум и способности людей во многом схожи, мы можем предположить, что и у других людей нет ясного представления об идее силы…
Резюмируя, можно сказать, что не только замечательные достижения самого Ньютона, но и сотни результатов, полученных его многочисленными последователями, стали возможными благодаря тому, что их авторы полагались на математическое описание даже в случаях, когда физическое понимание явления полностью отсутствовало. По существу все эти естествоиспытатели принесли физическое понимание в жертву математическому описанию и математическому предсказанию. В этой связи уместно привести слова английского писателя Г.К. Честертона. (1874-1936): «Мы узрели истину, и оказалось, что истина не имеет [физического] смысла». Что же касается механицизма, то история развития теории электромагнитного поля по существу повторяет историю развития теории тяготения. Мы уже упоминали о том, что Фарадей ввел понятие силовых линий для объяснения различных электрических явлений, магнетизма и взаимодействия электрических зарядов. Предполагалось, что со временем удастся доказать физическую реальность силовых линий. Но когда Максвелл распространил «юрисдикцию» электрических и магнитных явлений на волны, способные распространяться на сотни и тысячи километров, силовые линии Фарадея оказались совершенно непригодными даже как средство описания, потенциально обладающее физическим смыслом. Вместо силовых линий Максвелл ввел понятие эфира, который был определен как среда — носитель света, как среда, в которой распространяются все электромагнитные волны, включая световые. Максвелл настойчиво пытался дать механистическое объяснение распространению электромагнитных волн, но все его усилия, как и попытки Ньютона объяснить тяготение, оказались безуспешными. Верх одержали математические уравнения.
Последующее развитие физики показало несостоятельность механицизма. Эфир, как материальная субстанция, был отвергнут. Его заменили чисто математические законы. Вместо силы тяготения общая теория относительности ввела геодезические в пространстве-времени. Мы «признали» явление распространения электромагнитных волн, хотя их физическая природа неизвестна. Нам пришлось также «принять» дуализм волна — частица, противоречащий здравому смыслу, и, как по мановению волшебной палочки, электроны, бывшие в атоме частицами, вылетая из него, стали превращаться в волны. Особенно глубокого пересмотра классической механики потребовали теория относительности и квантовая механика. Тем не менее эти изменения не столь беспрецедентны, если проследить всю долгую историю развития естествознания с античных времен до создания классической механики Ньютона, работ Лагранжа и Лапласа. Пересмотры аристотелевской и схоластической механики и птолемеевой астрономии были в свое время не менее революционны.
Вторжение новых идей в механистическую концепцию природы явственно ощутимо в сетованиях лорда Кельвина, ведущей фигуры в английских научных кругах второй половины XIX в.:
Я никогда не испытываю чувства полного удовлетворения до тех пор, пока не построю механическую модель изучаемого объекта. Если мне это удается, то я сразу все понимаю, в противном случае не понимаю. Мне хотелось бы понять природу света как можно полнее, не вводя вещей, которые я понимаю еще меньше.
Тем не менее Кельвину пришлось довольствоваться пониманием света, далеко не соответствовавшим его желаниям.
Еще одно философское учение, неоднократно привлекавшееся для объяснения поведения природы, основано на понятии причины и следствия. Мы ищем причины, полагая, что знание причин позволит нам получить желаемые следствия. Учение о причинности в чем-то более смутная доктрина, чем механицизм. Причинность лишь констатирует существование причины и следствия, но ничего не говорит о механизме связи между ними. На протяжении нескольких столетий (вплоть до начала XX в.) причинность действительно подразумевала существование некоего механизма. Многие явления происходят потому, что причина и следствие связаны физическим механизмам, который порождает следствие. В первоначальном варианте учение о причинности предполагало непосредственный «контакт» между причиной и следствием, т.е. их пространственную «смежность». Но вскоре понятие причинности стали использовать и при рассмотрении дальнодействия (действия на расстоянии), например в случае тяготения.
Как большинство философских учений, учение о причинности зародилось в Древней Греции. Аристотель различал четыре типа причин, действующих в мире: форму (эйдос, морфе); цель, т.е. «то, ради чего»; материю («то, из чего»), или субстрат, и источник движения, или «творящее начало». Великий математик и естествоиспытатель Архимед, умевший применять свои знания на практике, подчеркивал значение принципа причинности, интерпретируя последнюю в духе «творящего начала» Аристотеля. Согласно Архимеду, причинность приводит к тому, что материя всюду и всегда ведет себя упорядоченно и предсказуемо.
Выявление причинности в науке нового времени берет начало с Галилея. Он говорил о земном тяготении как о причине движения земных тел, хотя ему пришлось отказаться от причинности, ограничившись математическим описанием движений.
Ньютон и его современники разработали концепцию, сохранившуюся по существу неизменной на протяжении следующих двух столетий. Согласно этой концепции, причинность присуща самой природе физического мира. Следуя такой концепции, Ньютон ввел универсальную силу тяготения — как причину эллиптичности планетных орбит (не будь всемирного тяготения, планеты двигались бы по прямолинейным траекториям). Лейбниц также говорил, что все, что случается, имеет, свою причину.
Совершенно иное толкование причины и следствия предложил Иммануил Кант. Находясь под сильным влиянием ньютоновской науки в ту эпоху, когда в Европе господствовали космологические теории Декарта, Кант вступил в защиту системы небесной механики и даже существенно дополнил ее в работе «Всеобщая естественная история и теория неба» (1755). В своем основном философском сочинении «Критика чистого разума» (1781) Кант утверждал, что причинность является логической предпосылкой всего рационального мышления. По Канту, разум не нуждается в подтверждении эмпирическими данными. Во втором издании «Критики чистого разума» (1787) Кант так определил причинность: «Все изменения происходят по закону связи причины и действия» ([6], т. 3, с. 258).
Все многочисленные концепции причинности различным образом включают в себя идею связи (или сцепления), посредством которой причина порождает следствие. Шотландский философ Дэвид Юм пытался очистить причинность от какой бы то ни было метафизической подоплеки. В действительности он поставил под сомнение само понятие причинности. В работе «Исследование о человеческом познании» (1793) Юм утверждал:
Единственная непосредственная польза всех наук состоит в том, что они обучают нас управлять будущими явлениями и регулировать их с помощью причин. Обладающие сходством объекты всегда соединяются со сходными же — это мы знаем из опыта; сообразуясь с последним, мы можем поэтому определить причину как объект, за которым следует другой объект, причем все объекты, похожие на первый, сопровождаются объектами, похожими, на второй.
В приведенном отрывке слово «объект» лучше всего интерпретировать как «явление». Юм утверждает, что ситуация C и последующая ситуация E связаны между собой как причина и следствие, если возникновение ситуации C (или похожей ситуации) всегда влечет за собой ситуацию E (или подобную ей) и если ситуация E возникает после наступления ситуации С. В свое определение причинности Юм включил слова «похожий», «подобный», так как хотел сделать причинность экспериментально проверяемой и понимал, что определенная ситуация никогда не может повториться с абсолютной точностью.
Определив, что такое причинность, Юм приступил к критике этого понятия. По убеждению Юма сам по себе тот факт, что мы знаем о следовании события A за событием B, даже если это следование многократно повторялось, отнюдь не доказывает, что и в будущем событие A неизменно будет следовать за событием B. Юм приходит к выводу, что наша вера в причинность не более, чем привычка, и с полным основанием утверждает, что привычка не может служить подходящей основой для веры.
Джон Стюарт Милль, наиболее известный английский философ XIX в., поддержав отрицание причинности Юмом, добавил несколько собственных идей. В сочинений «Система логики» (1843) Милль так изложил свою концепцию причинности: «Закон причинности, главный столп, на который опирается наука, есть не что иное, как знакомая истина об обнаруживаемой путем наблюдения неизменности следования между каждым природным фактом и каким-то другим фактом, ему предшествующим». Таким образом, Милль, подобно Юму, усматривает сущность причинности в «неизменности следования» и, подобно Юму, подводит под причинность эмпирический базис. Милль лишает причинность логической необходимости, отказываясь от идеи принуждении. Он анализирует условия, при которых, по его мнению, можно предположить существование причинно-следственных связей между двумя событиями: событие-причина пространственно близко к событию-следствию; следствие во времени происходит непосредственно после причины; событие-следствие имеет место всегда, когда происходит событие-причина. Милль не опровергает явно высказывание Юма, что причинность — всего лишь привычка мышления. Для Милля причинность — это обобщение эмпирических данных. Индукция служит основой некоторых обобщений, в частности законов природы. Милль рассматривает также методы, которые позволяют выявить причинную связь, например метод различий:
Если в данном случае, когда происходит исследуемое явление, и в другом, когда оно не происходит, все условия одинаковы, за исключением одного, которое выполняется только в первом случае, то единственное условие, которым отличаются два случая, и есть причина (или неотъемлемая часть ее) указанного явления.
Это четко сформулированный принцип и поныне широко используется во многих областях науки. Например, эксперимент, проводимый на лабораторных животных для проверки действия нового лекарственного препарата, всегда ставится на двух группах животных, подобранных так, чтобы они были как можно более схожи по размерам, возрасту, условиям содержания, кормления и т.д. Единственное различие между группами состоит в том, что животным одной из них дают испытываемое лекарство, а животные другой (так называемой контрольной) группы его не получают. Согласно методу различий, любой эффект, наблюдаемый у животных первой группы, но не наблюдаемый у животных второй, можно считать причинно обусловленным лекарством. Еще более разрушительную атаку на причинность предпринял Бертран Рассел, английский математик и философ, удостоенный в 1950 г. Нобелевской премии по литературе. В работе «О понятии причины» Рассел писал:
Все философы, к какой бы школе они ни принадлежали, воображают, будто причинность есть одна из фундаментальных аксиом науки, но, как ни странно, в столь передовой науке, как гравитационная астрономия, слово «причина» никогда не встречается… Принцип причинности, как и многое другое, имеющее хождение среди философов, кажется мне реликтом прошлого века, выжившим, подобно монархии, только потому, что его ошибочно сочли безвредным.
Называя причинность «реликтом прошлого века», Рассел заходит, пожалуй, слишком далеко. Но так или иначе, несмотря на критику Юма, Милля и Рассела, к концу XIX в. причинность в глазах естествоиспытателей поднялась до статуса самоочевидной истины, который столетием раньше Кант придал ей, исходя из метафизических оснований. Отношение к причинности, сложившееся в конце XIX в., достаточно четко выразил Герман Гельмгольц в своей «Физиологической оптике»:
Принцип причинности носит характер чисто логического закона даже в том, что выводимые из него следствия относятся в действительности не к самому опыту, а к пониманию опыта и, следовательно, не могут быть опровергнуты никаким возможным опытом.
О том, как повлияло на толкование принципа причинности развитие квантовой теории, мы расскажем дальше.
Поскольку причину того или иного явления удается установить не всегда (например, мы не знаем, как образовались кометы), а механицизм также не всегда может объяснить разнообразные явления, в XIX в. господствующее положение приобрело философское учение под названием «детерминизм». Различие между учением о причинности и детерминизмом отмечал еще Декарт: следствие отстает во времени от причины из-за ограниченности чувственных восприятий человека. Causa sive ratio (причина есть не что иное, как разум). Суть детерминизма лучше всего пояснить с помощью аналогии. Если аксиомы евклидовой геометрии заданы, то свойства окружности (например, ее длина и площадь ограниченного ею круга) и вписанных углов полностью определены как необходимые логические следствия. Говорят, что Ньютон как-то спросил, зачем нужно выписывать теоремы евклидовой геометрии, если они очевидным образом следуют из аксиом. И все же большинству людей требуется немало времени, чтобы доказать каждую из теорем. Но хронологический порядок открытия новых геометрических свойств, который, казалось бы, связывает аксиомы и теоремы такой же временной последовательностью, как причину и следствие, в действительности иллюзорен.
Так же обстоит дело и с физическими явлениями, считал Декарт. Для «божественного разума» все явления «сосуществуют» в одной математической структуре. Но наши чувства в силу ограниченности их возможностей распознают явления не одновременно, а одно за другим, и поэтому мы одни явления принимаем за причины других. Отсюда понятно, заявлял Декарт, почему математика позволяет предсказывать будущее. Это становится возможным благодаря ранее полученным математическим соотношениям. Именно математическое соотношение дает самое ясное физическое объяснение реальности. Кратко можно сказать, что реальный мир — это совокупность математически представимых движений объектов в пространстве и времени, а Вселенная в целом — огромная, гармоничная машина, построенная на основе математических законов. Кроме того, многие философы, включая самого Декарта, утверждали, что математические законы заданы раз и навсегда, поскольку именно так сотворил мир сам Бог, а божья воля неизменна. Независимо от того, удалось ли человеку проникнуть в сокровенные «замыслы Бога», мир функционировал по закону, и закономерность процессов, происходящих в природе, не ставилась никем под сомнение, по крайней мере до начала XIX в.
Ньютоновская концепция Вселенной, состоящей из твердых неразрушаемых частиц, каждая из которых действует на другие с вполне определенной, вычислимой силой, была положена в основу последовательного и жесткого детерминизма французским астрономом и математиком маркизом Пьером Симоном де Лапласом. Ему принадлежит ставшее классическим описание сущности детерминизма:
Состояние Вселенной в данный момент можно рассматривать как результат ее прошлого и как причину ее будущего. Разумное существо, которое в любой момент знало бы все движущие силы природы и взаимное расположение образующих ее существ, могло бы — если бы его разум был достаточно обширен для того, чтобы проанализировать все эти данные, выразить одним уравнением движение и самых больших тел во Вселенной, и мельчайших атомов. Ничто не осталось бы сокрытым от него — оно могло бы охватить единым взглядом как будущее, так и прошлое.
«Одно уравнение», охватывающее, по словам Лапласа, всю Вселенную, поражает воображение, но детерминисты вполне довольствовались и многочисленными формулами.
Сам того не ведая, Лаплас составил эпитафию механицизму и детерминизму. Он рисует нам фантастический сверхчеловеческий «разум», но существование такого разума к делу не относится. Если Вселенная во все времена, в прошлом и будущем, неукоснительно следует по жестко детерминированному пути, то она функционирует так в независимости от того, знает об этом сверхчеловеческий разум или нет, ибо на Вселенную Лапласа он не оказывает никакого влияния. Среди математиков и астрономов Лаплас пользовался огромным и вполне заслуженным авторитетом, поэтому его концепция полностью детерминистической Вселенной оказала на них большое воздействие.
Детерминизм завоевал столь прочные позиции, что философы стали подходить с детерминистической точки зрения к оценке деятельности человека как части природы. Идеи, волевые акты и действия человека рассматривались как неизбежные проявления взаимодействия материи с материей. По мнению детерминистов, человеческая воля определяется внешними физическими и физиологическими причинами. Гоббс, например, объяснял кажущуюся свободу воли следующим образом. События извне воздействуют на наши органы чувств, а те в свою очередь — на мозг. Движения внутри мозга порождают то, что мы называем аппетитом, восторгом или страхом, но все эти чувства — не более чем наличие движений внутри мозга. Когда аппетит и отвращение сталкиваются в противоборстве, наступает особое физическое состояние, именуемое осмотрительностью. Одно движение одерживает верх над другим, а мы говорим о проявлении свободы воли. Но в действительности выбор преобладающего движения принадлежит не личности. Мы видим результат, но не в состоянии осознать определяющий его процесс. Свободы воли не существует. Это бессмысленный набор слов. Воля жестко ограничена действиями материи.
Вольтер в сочинении «Невежественный философ» утверждал: «Было бы очень странно, если бы вся природа, все планеты должны были подчиняться вечным законам, а одно небольшое существо, ростом в пять локтей, презирая эти законы, могло бы действовать, как ему заблагорассудится». Случай — не что иное, как слово, придуманное для обозначения известного действия неизвестной причины.
Этот вывод был настолько категоричен, что, даже материалисты попытались умерить его остроту. Некоторые из них утверждали, что детерминированы только действия человека, но не его мысли. Введение такой «дихотомии» вряд ли облегчало ситуацию, ибо означало, что человеческое мышление не влияет на человеческие поступки — люди становились автоматами. Другие пытались найти новую интерпретацию свободы, пытаясь сохранить хотя бы какое-то подобие ее. Вольтер саркастически заметил в этой связи: «Быть свободным означает иметь возможность делать что угодно, а не хотеть что угодно».
С научной точки зрения утверждение «событие A определяет событие B» означает, что если задано событие A, то можно вычислить событие B и наоборот. Таким образом, применение детерминизма в точных науках можно охарактеризовать следующим образом: если состояние некоторого множества объектов в произвольный момент времени задано, то состояние объектов того же множества в любой момент времени в прошлом или будущем может быть определено путем вычислений.
Естественнонаучная концепция детерминизма наиболее четко выражена функциональными соотношениями между переменными, т.е. формулами, подобными тем, с которыми мы встречались в предыдущих главах. Ясно, что из функционального соотношения не следует существования причинно-следственной связи.
Многое из того, чем занимаются точные науки, сводится к установлению функциональных соотношений между переменными. Если такого рода соотношение оказывается верным в широких пределах и выражает нечто важное относительно физического мира, то оно обретает статус закона природы. Что касается детерминизма, то суть его кроется просто в постоянстве и надежности естественнонаучных законов. При должном учете двух обстоятельств: 1) экспериментальные данные, на которые опираются эти законы, никогда не бывают идеально точными; 2) все теоретические соотношения имеют «пробный характер» и подлежат пересмотру в свете новых открытий — детерминизм означает не больше и не меньше как однородность природы.
Но детерминизму не была суждена долгая жизнь. В действиях имеются моменты нестабильного поведения (Максвелл называл такие моменты особыми точками). Камень на вершине горы находится в неустойчивом положении: достаточно легкого толчка, чтобы он обрушился вниз, увлекая за собой лавину. Подобным образом спичка, вызывающая лесной пожар, неосторожно брошенное слово, способное привести к мировой катастрофе, крохотный ген, в зависимости от которого люди становятся мудрецами или идиотами, — все это примеры явлений неустойчивости. Факторы неустойчивости пробивают брешь в эволюции детерминистического мира: в моменты потери устойчивости безотказно действовавшие ранее законы нарушаются и эффекты, пренебрежимо малые при других обстоятельствах, становятся доминирующими.
Максвелл предостерегал своих ученых коллег против недооценки роли этих особых точек в научном познании:
Таким образом, если те, кто культивирует физическую науку,… в погоне за ее волшебным зельем придут к изучению особых точек и неустойчивости, сменившей непрерывность и стабильность вещей, то успехи естествознания, возможно, позволят устранить предрасположение к детерминизму, проистекавшее единственно из допущения, что физическая наука будущего — всего лишь увеличенное изображение физической науки прошлого.
Лидер физической науки своего времени, Максвелл стал пророком для следующего поколения ученых. Некоторые из его работ по кинетической теории газов способствовали закату детерминизма. Трещины и пробелы, которые Максвелл увидел в детерминистической схеме, вскоре расширились, и детерминистический мир распался.
На смену детерминизму пришли статистические законы. Но прежде чем углубиться в новые проблемы, необходимо выяснить, что мы понимаем под статистическими законами. Приведем в качестве примера лишь одну из задач, которые успешно решают математическая статистика и теория вероятностей. Страховое дело получило в США широкое развитие. Совершенно очевидно, что любая попытка предсказать, исходя из первых принципов, когда умрет какой-то конкретный человек, обречена на провал. Тем не менее, опираясь на данные о продолжительности жизни тысяч людей и используя методы теории вероятности, страховые компании занимаются страхованием жизней, взимая суммы, устраивающие и тех, кто выплачивает страховой полис, и компанию, берущую на себя риск.
Применение статистических законов в физике началось со статистической механики, где еще можно было предполагать, что, детально описав миллионы столкновений молекул, ведущих себя детерминистически, мы могли бы, например, предсказать поведение газа; но это число столь велико, что рассматривать подобные «коллективные эффекты» можно только статистическими методами. Первым стал широко использовать статистические законы Людвиг Больцман в своих работах по кинетической теории газов. Его подход был радикальным шагом в эпоху, когда господствовали идеи механицизма и детерминизма, и вызвал ожесточенные споры. Задачу физики Больцман видел не в сборе эмпирических данных и последующей оценке их с точки зрения известных законов и умозрительных построений, а в том, чтобы привести наше мышление, идеи и понятия в соответствие с эмпирическими данными. Статистическую механику Больцмана его современники восприняли не более как измышления «математического террориста».
Процесс радиоактивности, кажущееся произвольным поведение электронов одновременно и как волн, и как частиц, непредсказуемый распад атомных ядер — все эти новые явления подрывали устои детерминизма. Невозможно было предсказать достоверно и поведение квантов Планка, фотонов Эйнштейна или «скачки» электронов в модели атома Бора.
Сформулированный Гейзенбергом в 1927 г. принцип неопределенности (см. гл. X) также сыграл важную роль в потрясении основ детерминизма. В статье, опубликованной в 1927 г., Гейзенберг подверг критике и причинность, и детерминизм:
Согласно формулировке «жесткого» принципа причинности, если мы точно знаем настоящее, то можем вычислить будущее; но в действительности речь идет не о незыблемом законе (который неверен), о допущении. Мы в принципе не можем знать настоящее во всех его детерминированных подробностях. Следовательно, все наше восприятие — это право произвести отбор из огромного числа возможностей и наложить ограничения на будущие возможности. Поскольку статистический характер квантовой теории столь тесно связан с неточностью нашего восприятия, возникает подозрение, что за воспринимаемым статистическим миром скрывается другой «реальный» мир, в котором выполняется принцип причинности. Но такого рода умозрительные заключения представляются нам… бесцельными и бесплодными. Физика должна давать только формальное описание связи между восприятиями. Гораздо более точная констатация реальных фактов состоит в следующем: так как все эксперименты удовлетворяют законам квантовой механики, она неопровержимо свидетельствует о том, что принцип причинности не выполняется.
Принцип неопределенности Гейзенберга вовсе не сводится к утверждению о том, что причинные связи квантовых явлений находятся за пределами возможности их обнаружения; он со всей очевидностью предполагает, что таких связей просто не существует. Именно к такому выводу пришел сам Гейзенберг. С появлением принципа неопределенности классическая причинность и детерминизм утрачивают смысл. Квантовая механика оперирует только статистическими понятиями. Она не дает точного описания отдельной частицы и точного предсказания ее поведения. Однако квантовая механика позволяет с высокой точностью предсказывать поведение больших ансамблей частиц.
Рихард фон Мизес и другие ученые, размышляя над проблемами квантовой механики, отстаивали идею недетерминированности реального мира. Все детерминированные законы, по мнению этих исследователей, представляют собой не что иное, как приближенное и чисто пассивное отражение вероятностных соотношений, подчиняющихся законам случая. Отдельные процессы и события в атомном мире тем самым ставятся «вне закона». Как указывал Эддингтон в книге «Природа физического мира» (1933), «физика сделала детерминизм непрочным».
В 1957 г. Ганс Рейхенбах в работе «Атом и космос» подчеркивал точность вероятностной интерпретации всех физических результатов. Наиболее вероятное и есть то, что лежит в пределах ошибки наблюдения. Только в больших масштабах, когда огромное число атомов участвует в процессах, идущих с высокой вероятностью, мы можем считать явления практически достоверными. Но в принципе даже крупномасштабные процессы носят вероятностный характер. Понятия пространства, времени, вещества, силы, причинности и законов природы заимствованы из обыденного человеческого опыта, приобретенного в мире «средних размеров», и заведомо непригодны для описания явлений на атомном уровне.
Долгое время одни выдающиеся физики (Борн, Бор и Паули) придерживались с незначительными вариациями точки зрения, что все явления природы подлежат лишь вероятностной интерпретации, тогда как другие, не менее крупные физики (Планк, Эйнштейн, фон Лауэ, де Бройль, Шрёдингер и другие) не соглашались с ними, придерживаясь концепций причинности и детерминизма, восходящих к классической механике. Суть спора сводилась главным образом к следующему: является ли статистический характер законов квантовой физики временной «платой» за неполное знание и не уступят ли эти законы со временем место другим, столь же детерминированным, как законы ньютоновской механики, или же статистические законы объективны, т.е. не зависят от нашего знания и сознания, и соответствуют явлениям, реально происходящим в микромире.
Широко известно высказывание Эйнштейна, что «Бог не играет в кости». Эту мысль Эйнштейн подчеркивал и в двух письмах, приведенных в книге Рональда У. Кларка «Эйнштейн: жизнь и времена». В первом письме (1926), адресованном Максу Борну говорится:
Квантовая механика, безусловно, впечатляет. Но внутренний голос подсказывает мне, что ее пока нельзя считать реальной. Теория многое говорит, но ни на йоту не приближает нас к секрету Старика. Я, во всяком случае, убежден, что Он не бросает кости.
Во втором письме, написанном гораздо позже и адресованном Джеймсу Франку, Эйнштейн заявляет:
Я могу еще, если на то пошло, понять, что Господь Бог мог сотворить мир, в котором нет законов природы. Короче говоря, хаос. Но то, что должны быть статистические законы с вполне определенными решениями, например законы, вынуждающие Господа Бога бросать кости в каждом отдельном случае, я считаю в высшей степени неудовлетворительным.
В Сборнике «Мир, каким я вижу его» (1934) Эйнштейн говорит: «Господь Бог изощрен, но не злонамерен». Кроме того, в коллективной статье{16}, опубликованной в журнале Physical Review за 1935 г., Эйнштейн утверждает, что волновая механика неполна. По мнению авторов статьи, со временем должна появиться статистическая квантовая теория, аналогичная статистической механике: движения отдельных частиц (например, молекул газа) должны быть детерминированы, но вследствие большого числа частиц эта теория должна использовать статистику и теорию вероятностей. То же мнение выразил (1978) Поль А.М. Дирак, английский физик, внесший значительный вклад в создание новой физики:
Я думаю, вполне возможно, что в конечном счете правым окажется Эйнштейн, ибо существующую ныне форму квантовой механики не следует рассматривать как окончательную… Я считаю вполне возможным, что в будущем у нас появится усовершенствованная квантовая механика, в которой произойдет возврат к детерминизму, и тем самым подтвердится точка зрения Эйнштейна. Но такой возврат к детерминизму возможен только ценой отказа от кое-каких основных идей, которые мы сейчас принимаем, не подвергая ни малейшему сомнению. Если мы вернемся к детерминизму, то нам придется каким-то образом заплатить за это, хотя сейчас трудно предугадать, каким именно.
Дирак, несомненно, прав, говоря о некоем идейном барьере, преграждающем путь к развитию более полной детерминистической теории. Как сказано в «Опыте о человеке» Александра Поупа, «все дело случая, пути которого неисповедимы…».
Ни Дирак, ни Эйнштейн не предложили альтернативной модели квантовой теории. Другие критики вероятностного характера квантовой механики, например физики Дэвид Бом (1957) и Шоичи Саката (1978), также не смогли найти разумные альтернативные модели. Над той же проблемой безрезультатно бились и другие выдающиеся ученые. Но к настоящему моменту квантовая теория достигла в своем развитии такого уровня, что решение проблемы вряд ли зависит от получения новых экспериментальных данных.
Хотя, имея дело с явлениями, в которых участвуют видимые или осязаемые объекты, т.е. с явлениями «средних размеров», по определению Рейхенбаха, физики по-прежнему используют детерминистические законы классической механики, их отношение к детерминизму при описании таких явлений претерпело глубокие изменения вследствие новых открытий, ставших возможными благодаря квантовой механике. Предполагается, что все происходит так, как происходит, поскольку вероятность этого весьма высока, а вероятность того, что это должно быть иначе, весьма незначительна.
Механицизм, учение о причинности и детерминизм — лишь три из большого числа философских направлений, испытавших на себе глубокое воздействие последних научных открытий. В действительности таких направлений в философии гораздо больше. Остановимся бегло еще на некоторых.
Философия идеализма — это другой способ решения основной метафизической проблемы — нашего взаимоотношения с внешним миром. Идеализм решает эту проблему, «обрубив» ее с одного конца, а именно отрицая, как это делал Беркли, существование внешнего мира (см. гл. «Историческая ретроспектива»). Все наше осознание внешнего мира в действительности происходит в нас самих; следовательно, убеждение, что это осознание порождено внешними по отношению к нам объектами, вполне может оказаться иллюзией. Когда мы смотрим на дерево, оно существует в нашем сознании. Когда мы отворачиваемся, дерево в нашем сознании перестает существовать. И если мы вспоминаем его или слышим, как кто-то другой уверяет нас, что дерево по-прежнему стоит на том же месте, то и на этот раз не испытываем ничего, кроме неких процессов, происходящих в нашем сознании.
Общая интуитивная реакция на идеализм — отвергнуть его как абсурдное учение. «Грозный доктор» (английский писатель и лексикограф) Сэмюэл Джонсон (1709-1784) считал, что всякий может опровергнуть идеализм, пнув в его сторону большой камень. Но, несмотря на многочисленные усилия весьма авторитетных философов, идеализм так и не был окончательно опровергнут. Существование чего-то, что не вызывало бы чувственных восприятий ни в чьем сознании, невозможно доказать экспериментально, поэтому физическое существование, независимое от человека, следует считать бессмысленным. Более того, все, кто занимается естественными науками, должны быть идеалистами. Однако вся классическая наука прочно стоит на допущении о существовании внешнего объективного мира. Ученые обычно сходятся на том, что природа их не обманывает и созданная ими концепция реального внешнего мира обоснована.
Классический ученый, если подвергнуть сомнению его убеждение в существовании объективного мира, ответил бы, что наблюдения не оказывают сколько-нибудь заметного влияния на наблюдаемый объект. Такой ученый стал бы утверждать, что наблюдатель действительно определяет, каким объект был до наблюдения и каким станет после. Однако это допущение классической физики выглядит в наши дни весьма шатким. Наблюдения оказывают воздействие на наблюдаемые объекту, и, как показал Гейзенберг, для элементарных компонентов нашего мира это воздействие отнюдь не является неощутимо слабым.
Классическая наука исходила из априорного предположения, что внешний мир существует. Математические уравнения классической механики, как принято было считать, описывают то, что реально происходит во внешнем мире. Квантовая механика имеет свои математические уравнения, но они описывают наблюдения — не реальные частицы, а воздействие этих частиц на экраны, подобные телевизионным.
В отличие от идеализма философия логического позитивизма утверждает, что истины строятся только на наблюдаемых фактах. Позитивисты — антиметафизики, и, с их точки зрения, единственным источником осмысленного знания может быть опыт. Из него мы «извлекаем» основные утверждения, которые затем можно развить с помощью строгой дедукции. Но смысл любого утверждения тождествен средствам, позволяющим проверить его. Джон Стюарт Милль, представитель позитивистской философии, утверждал, что хотя знание мы черпаем главным образом из ощущений, оно включает в себя и соотношения, которые наделенный сознанием разум формулирует относительно данных чувственного опыта, например, научные законы. Хотя позитивисты, как и идеалисты, считают, что доказать существование внешнего мира невозможно, они утверждают, что невозможно и противоположное, а именно доказать, что внешний мир не существует. По своей сути позитивисты — эмпирики, проводящие резкое различие между данными опыта и объектами мышления и отрицающими реальность последних.
Что же мы узнали из этого беглого обзора? Наша задача была простой: показать, каким образом недавние достижения физической науки заставляют нас все время пересматривать, казалось бы, давно устоявшиеся представления. Мы хотели также отметить те изменения, которые эти достижения вызвали в нашей собственной жизни и наших взглядах на природу. Философия науки (или, если угодно, поведения природы) строит на основе текущего научного знания широкие обобщения. Поскольку наше знание со временем претерпевает изменения, должна изменяться и философия науки. Следовательно, мы никогда не должны упускать из виду самую «сердцевину» естественно-научных данных.
Цель нашей книги состояла в том, чтобы показать, в сколь значительной степени научное знание зависит от математики. Какой вывод из этого следует, если учесть, что математика — это творение человеческого разума? Мы не в состоянии дать однозначный ответ на вопрос, упорядочена ли природа, заложен ли в ее основе некий план и даже некая цель (как счел бы Аристотель). Но мы можем с полной уверенностью заявить, что самый могущественный из созданных человеком инструмент — математика — позволяет нам достичь определенного понимания сложного и разнообразного мира природных явлений.