Ощущения — это обман наших чувств.
Несмотря на то что Беркли отрицал существование мира вне нас, а Юм, Гераклит, Платон и Милль признавали это только с различными оговорками и ограничениями, физики и математики убеждены в том, что внешний мир существует. Они утверждают, что даже если бы все люди внезапно исчезли, то внешний, или физический, мир продолжал бы существовать. Если в чаще леса на землю падает дерево, то звук раздается независимо от того, слышит его кто-нибудь или не слышит. Мы наделены пятью чувствами: зрением, слухом, осязанием, вкусом и обонянием, и каждое из них непрерывно воспринимает «послания» из этого мира.
Из практических соображений, а именно для того, чтобы выжить или иметь возможность улучшить условия бытия в реальном мире, мы определенно хотим знать об этом мире как можно больше. Нам необходимо отличать сушу от моря. Нам нужно выращивать съедобные растения и разводить животных, строить укрытия и защищаться от диких зверей. Почему бы нам для достижения этих целей не полагаться на свои органы чувств? Ведь именно так поступают примитивные цивилизации. Но подобно тому, как мир чист для того, кто чист сердцем, мир прост для того, кто простодушен.
Пытаясь улучшить материальные условия своего существования, мы вынуждены расширять наше знание внешнего мира. Это побуждает нас напрягать до предела и наши органы чувств. К сожалению, они не только ограничены по своим возможностям, но и способны вводить нас в заблуждение. Если бы мы полагались только на наши органы чувств, то последствия этого могли бы быть самыми печальными. Нетрудно назвать случаи, когда наши чувства обманывают нас.
Самым ценным из пяти чувств, по-видимому, является зрение, и следует прежде всего проверить, в какой мере мы можем доверять ему. Начнем с примеров. За долгие годы ученые придумали и построили много обманчивых картинок, наглядно демонстрирующих, сколь ограничены возможности нашего глаза. Физики и астрономы в XIX в. проявляли большой интерес к оптическим иллюзиям, ибо их очень заботила надежность визуальных наблюдений. На рис. 1 показана T-образная фигура, предложенная Вильгельмом Вундтом, ассистентом знаменитого естествоиспытателя Германа Гельмгольца (1821-1894). При взгляде на эту картинку кажется, что вертикальная линия длиннее горизонтальной, хотя в действительности обе они имеют равную длину. Иллюзию Вундта можно обратить: на рис. 2 показана другая Т-образная фигура, у которой обе линии — горизонтальная и вертикальная — кажутся одинаковыми по длине, в действительности же горизонтальная линия длиннее.
Рис. 1.
Рис. 2.
Рис. 3, который предложил в 1899 г. Франц Мюллер-Лайер, дает нам пример иллюзии другого рода. Она известна под названием иллюзии Эрнста Маха. В действительности здесь обе горизонтальные линии имеют одинаковую длину.
Рис. 3.
Рис. 4.
На рис. 5 верхнее основание нижней трапеции кажется короче верхнего основания верхней трапеции. Попутно заметим, что, как ни трудно в это поверить, максимальная ширина нижней трапеции по горизонтали превышает ее высоту.
Рис. 5.
На рис. 6 поразительную иллюзию создают углы — тупой и острый: диагонали AB и AC двух параллелограммов равны, хотя диагональ AC кажется гораздо короче.
Рис. 6.
Удивительное впечатление производит также картинка с двумя наклонными линиями, пересекаемыми двумя вертикальными прямыми (рис. 7). Если правую наклонную линию продолжить, то она пересечется с левой в ее верхнем конце. Кажущаяся точка пересечения расположена несколько ниже. Эту хорошо известную иллюзию приписывают Иоганну Поггендорфу (около 1860).
Рис. 7.
Три горизонтальных отрезка на рис. 8 равны, хотя кажется, что они имеют различную длину. Эта иллюзия обусловлена величиной углов, образуемых с горизонтальными отрезками линий на концах. В определенных пределах больший угол вызывает иллюзию большего удлинения центрального горизонтального участка.
Рис. 8.
Поразительная иллюзия контраста изображена на рис. 9. Окружности в центре левой и правой фигур равны, хотя окружность в обрамлении шести окружностей большего радиуса кажется меньше, чем окружность в обрамлении шести окружностей меньшего радиуса.
Рис. 9.
Другой механизм лежит в основе иллюзии Мюллера-Лайера. Линии, отходящие от верхнего и нижнего концов вертикального отрезка A на рис. 10, воспринимаются как верхние и нижние края двух стен, образующих выступающий угол. Вертикальное ребро A выходит на первый план «сцены реального мира». Справа на рис. 10 две стены образуют угол, уходящий от зрителя. В результате вертикальное ребро B отступает на задний план. Убеждение в постоянстве размеров зрительно увеличивает длину ребра B и уменьшает длину ребра A.
Рис. 10.
Оптическую иллюзию, изображенную на рис. 11 и 12, первым описал Иоганн Цёлльнер. Он случайно заметил этот эффект на рисунке ткани. Длинные параллельные прямые на рис. 11 кажутся расходящимися, а на рис. 12 — сходящимися.
Рис. 11.
Рис. 12.
Картинка, демонстрирующая так называемую иллюзию Херинга (рис. 13), была впервые опубликована Эвальдом Херингом в 1861 г.: горизонтальные прямые кажутся здесь изогнутыми на фоне сходящихся наклонных прямых.
Рис. 13.
Ненадежность зрения подтверждается еще одним примером, придуманным С. Толанским. На рис. 14 изображена фигура, обычно встречающаяся в работах но статистике. Основание CD фигуры равно ее высоте. Если попросить зрителя провести отрезок, равный полуширине (половине CD) фигуры, то он, как правило, проводит отрезок AB, тогда как в действительности полуширине равен отрезок XY.
Рис. 14.
Нам всем хорошо знакома иллюзия, используемая широко, сознательно и высокопрофессионально, а именно реалистическая живопись. Художник намеренно пытается изобразить трехмерную сцену на плоском (двумерном) холсте. Одно из великих достижений художников эпохи Возрождения заключалось в создании математической схемы, известной под названием теории линейной перспективы, которая позволяет добиться желаемого эффекта.
С некоторыми простыми примерами иллюзии, рожденной линейной перспективой, мы встречаемся в своем повседневном опыте. Принцип, используемый в этих примерах и в теории линейной перспективы, состоит в том, что линии в реальной сцене, идущие от зрителя, должны казаться сходящимися в некоторой точке — так называемой точке схода. Простым примером могут служить два параллельных рельса железной дороги: кажется, что они сходятся-вдали в некоторой точке (рис. 15).
Рис. 15.
Эффект перспективы особенно заметен на рис. 16, где лучи, идущие в точку схода, проведены для создания иллюзии объемной сцены. Высокие ящики в действительности одинаковы (имеют одну и ту же длину, ширину и высоту), но кажется, что «дальний» ящик больше. Опыт говорит, что с увеличением расстояния до наблюдаемого предмета его размеры кажутся меньше, поэтому правый ящик выглядит больше, чем на самом деле.
Рис. 16.
Питая горячее пристрастие к реалистической живописи, мы охотно идем на то, чтобы быть обманутыми. Более того, этот обман доставляет нам удовольствие. Написанные в реалистической манере картины двумерны, но если они нарисованы в соответствии с законами математической теории линейной перспективы, то, глядя на них, мы испытываем такое ощущение, будто разглядываем трехмерную сцену. Хорошим примером такого рода «объемных изображений» может служить «Афинская академия» Рафаэля (рис. 17).
Рис. 17.
Резюмируя, мы можем утверждать, что математическая теория линейной перспективы позволяет использовать оптические иллюзии. Изображая на заднем плане предметы и человеческие фигуры меньших размеров, чем на переднем, художник добивается глубины изображения, ибо и в действительности человеческий глаз видит так, что далекие предметы кажутся ему меньше, чем близкие. Прибегают художники и к другому оптическому эффекту: краски более далеких предметов они смягчают, делая более блеклыми по сравнению с яркими красками предметов, находящихся на переднем плане.
В своем повседневном опыте мы сталкиваемся и с другими оптическими иллюзиями. Солнце и Луна вблизи горизонта выглядят по размерам больше, чем когда они стоят высоко в небе: вблизи горизонта оба светила кажутся нам ближе, и мы подсознательно поддаемся этой иллюзии. Разумеется, точные измерения показывают, что размеры Солнца и Луны остаются неизменными.
Измерив угол, под которым глаз видит диаметр Луны, мы обнаружили бы, что он близок к половине градуса. Так как половина дуги небосвода составляет 180°, угол, под которым виден диаметр Луны, равен 1/360 угловых размеров небосвода. Площадь же лунного диска составляет поразительно малую долю (около 1/100 000) площади небосвода, но если вспомнить, сколь великолепное зрелище являет собой наше ночное светило в полнолуние, то трудно поверить, что занимаемая им площадь столь ничтожна.
Ряд других оптических иллюзий связан с явлением рефракции, или преломления, света. Всем нам приходилось замечать, что палка, частично погруженная в воду, кажется переломленной в том месте, где она входит в воду.
С древних времен внимание людей привлекало такое проявление рефракции в воздухе как мираж. Это явление порождается совместным действием двух эффектов: разного преломления лучей света в неодинаково нагретых Солнцем (и потому имеющих различную плотность) слоях воздуха и полного внутреннего отражения. Когда нам случается в жаркий день ехать на автомобиле по длинному прямому участку гладкого ровного шоссе, то мы наблюдаем еще один мираж. Издали кажется, будто дорога впереди покрыта водой, но, подъехав ближе, мы убеждаемся, что воды нет и в помине. Чем же обусловлен такой эффект?
Мираж возникает только в том случае, если поверхность дороги сильно нагрета солнцем. Соприкасаясь с дорожным полотном, воздух нагревается, плотность его становится меньше, и более легкие нижние слои поднимаются вверх. Следовательно, свет в нижних слоях преломляется слабее, чем в верхних. Представим себе эту последовательность слоев с меняющейся плотностью (рис. 18). Проходя через них, свет попадает в наши глаза из нижних слоев, расположенных у самой земли. Наблюдатель видит свет, идущий в действительности из точки A, как бы приходящим из точки В. Именно такую картину он наблюдал бы, если бы перед ним простиралась водная поверхность, так как при взгляде на нее или на мокрую дорогу он увидел бы отражение неба. Таким образом, нагрев дороги создает такую же картину отражения света, какую мы привыкли связывать с водной поверхностью. Зрение вводит нас в заблуждение, и нам кажется, что дорога залита водой или что впереди расстилается водная поверхность.
Рис. 18.
Большинство приведенных нами примеров оптической иллюзии придуманы, причем намеренно, психологами. Но чтобы убедиться в постоянных ошибках зрения и понять, чем они вызваны, совсем не обязательно обращаться к искусственным примерам. Из-за рефракции света в земной атмосфере, мы продолжаем видеть Солнце и после того, как оно скрывается за горизонтом. Земля кажется нам плоской. Мы «своими глазами» видим, как Солнце обращается вокруг Земли, которая кажется нам неподвижной. Предположим, что Солнце стоит высоко в небе. На вопрос «Видите ли вы сейчас Солнце?» вы, не задумываясь, отвечаете утвердительно. Между тем испускаемый Солнцем свет доходит до нас только через восемь минут, а за это время может произойти немало событий (например, Солнце может взорваться). Когда Солнце стоит у самого горизонта, мы видим его не круглым, а несколько сплюснутым: вертикальный диаметр Солнца кажется нам несколько укороченным. Это явление также обусловлено преломлением солнечных лучей в атмосфере. Звезды же, находящиеся от нас на невообразимо больших расстояниях, кажутся нам крохотными пятнышками света.
Искажения видимых изображений часто называют иллюзиями, но «иллюзии» необычайно многообразны. Сигналы о цветовых ощущениях поступают в мозг от сетчатки глаза по трем каналам. Существуют три типа цветовых рецепторов (колбочек), каждый из них чувствителен к одному из трех первичных цветов: красному, зеленому или синему. Белый свет возбуждает все три цветовых канала. Каждый предмет поглощает одни световые лучи и отражает другие. Видимый нами цвет — это то, что предмет отражает. Белый предмет отражает падающий на него свет во всем спектре. Но является ли коричневый стол в действительности коричневым? Пламя свечи в ярко освещенной комнате выглядит тусклым, а в темной комнате — ярким. Кусок дерева кажется нам твердым, а в действительности представляет собой весьма рыхлую структуру из атомов, удерживаемых силами межатомного сцепления. Твердость куска дерева — это не твердость сплошной среды.
Ошибки свойственны и другим типам ощущений: температуры, вкуса, громкости и высоты звука, скорости движения. Примером может служить иллюзия в восприятии температуры. Опустите одну руку в таз с горячей водой, а другую — в таз с холодной. Выждав несколько минут, погрузите обе руки в таз с чуть теплой водой. Хотя обе руки теперь находятся в одной и той же воде, руке, бывшей перед этим в тазу с горячей водой, она кажется прохладной, тогда как другой руке — теплой. Интересно отметить, что если руку погрузить в воду, нагреваемую (или охлаждаемую) постепенно, так что изменение температуры происходит незаметно, то рука успевает адаптироваться к изменению температуры.
Вкусовые ощущения также порождают иллюзии. Сладкие напитки постепенно начинают казаться менее сладкими. Подержите несколько секунд во рту крепкий раствор сахара в воде, а затем попробуйте на вкус обычную пресную воду — вы отчетливо ощутите солоноватый привкус.
Ошибки в оценке скорости общеизвестны. После получасовой поездки по скоростной автотрассе нам кажется, что автомобиль, едущий со скоростью около 50 км/ч, тащится до смешного медленно. Общеизвестна иллюзия, возникающая при встрече двух поездов на станции. Если ваш поезд стоит, а встречный движется, то вы легко впадаете в заблуждение, и вам кажется, что ваш поезд также движется.
Некоторые искажения в нашем чувственном восприятии возникают, когда наши рецепторы утомляются или адаптируются к продолжительному и интенсивному раздражению. Такое может случиться с любым из наших органов чувств и привести к весьма серьезным ошибкам. В качестве примера можно привести хотя бы иллюзию тяжести. Если в течение нескольких минут подержать в руках тяжелый предмет, то после этого другой, более легкий предмет покажется нам почти невесомым.
Помимо иллюзий, связанных с чувственным восприятием реальных физических объектов или явлений, необходимо иметь в виду и ограниченность восприятия наших органов чувств. Нормальное человеческое ухо способно различать на слух частоты в пределах 20-20 000 Гц (колебаний в секунду). Нормальный человеческий глаз воспринимает свет с длиной волны (см. гл. VII) в диапазоне 380-760 нм (1 нм = 10-9 м). И звук, и свет (точнее электромагнитные волны) существуют и физически реальны в гораздо более широком диапазоне, чем тот, который доступен нашим органам чувств. Даже белый свет не белый, а, как показал еще Ньютон, представляет собой смесь многих частот. Наш глаз регистрирует только смесь, не разлагая ее на отдельные компоненты. В действительности в реальном мире нет красок. Цвет по словам Гёте, — это то, что мы видим.
Мы воспринимаем непосредственно не физический объект, а информацию о нем, которую дают наши органы чувств. Они же дают и всегда будут давать не подлинное изображение объективной реальности, доступной или недоступной нам, а скорее картину отношений между человеком и реальностью.
Тем не менее люди считают, что наша интуиция действует и за пределом чувственного опыта и мы можем с уверенностью полагаться на нее. Попробуем разобраться, сколь надежна человеческая интуиция.
Предположим, что некто совершает поездку на автомобиле из Нью-Йорка в Буффало (расстояние 400 миль) и по дороге туда развивает скорость 60 миль/ч, а по дороге обратно — всего лишь 30. Какова его средняя скорость? Интуиция почти заведомо подсказывает нам, что средняя скорость равна 45 миль/ч. Правильный же ответ, который получается, если расстояние разделить на время в пути, оказывается иным: около 40 миль/ч.
Рассмотрим еще несколько примеров проявления нашей хваленой интуиции. Предположим, что мы открыли в банке счет на сумму P долл. Банк выплачивает вкладчикам i процентов годовых, причем проценты начисляются не от начальной, а от текущей суммы (сложные проценты). Мы хотим выждать, покуда исходная сумма не удвоится. Предположим, что это произойдет через n лет. Интуиция подсказывает нам, что если бы мы открыли счет на сумму 2P долл., то она удвоилась бы быстрее, чем за n лет. В действительности же нам пришлось бы ждать удвоения нашего вклада одинаково долго.
Предположим, что некто сначала поднимается на веслах вверх по реке на 2 мили, а затем спускается вниз по реке на 2 мили. Скорость течения — 3 мили/ч. В стоячей воде наш гребец способен развивать скорость 5 миль/ч. Сколько времени — уйдет у него на весь путь туда и обратно? Интуиция подсказывает нам, что, когда лодка плывет вниз по реке, течение помогает ровно настолько, насколько оно мешает, когда лодка плывет вверх по реке. Следовательно, гребец преодолевает расстояние 4 мили со скоростью 5 миль/ч, затрачивая на весь путь туда и обратно 4/5 ч. Интуиция обманывает нас; на весь путь туда и обратно гребец затрачивает в действительности час с четвертью.
Предположим, что, желая приготовить мартини с более пикантным вкусом, мы добавляем к кварте джина кварту вермута. Интуиция подсказывает, что получатся две кварты мартини. Правильный ответ и на этот раз расходится с интуитивно ожидаемым: мартини получится одна и девять десятых кварты. Аналогичным образом, при смешивании пяти пинт воды и семи пинт спирта не получится двенадцать пинт смеси. В обоих случаях молекулы располагается более экономно.
Обратимся теперь к проблеме времени. Мы можем говорить о секунде, следующей за данной секундой. Секунда — всего лишь продолжительность определенного интервала времени. Интуиция подсказывает нам, что за каждым мигом есть следующий. Но миг, или мгновение, — это не продолжительность интервала времени (вспомним хотя бы: «И в этот миг часы пробили один раз»). Нельзя не вспомнить и о парадоксе, впервые сформулированном Зеноном Элейским (V в. до н.э.). Летящая стрела в любой момент времени занимает определенное положение в пространстве. Когда стрела успевает переместиться из одного положения, в другое?
Рассмотрим другую задачу, тесно связанную с временем. Часы пробили шесть ударов за пять секунд. За сколько секунд эти часы пробьют двенадцать ударов? Интуиция подсказывает: за десять. Но шесть ударов разделены пятью паузами, а двенадцать ударов — одиннадцатью. Следовательно правильный ответ: за одиннадцать, а не за десять секунд.
Приведем еще несколько примеров того, как нас подводит интуиция. Рассмотрим два прямоугольника с равными периметрами. Должны ли они иметь равную площадь? На первый взгляд кажется, что должны. Но, как показывают нехитрые расчеты, равенство площадей отнюдь не обязательно. Естественно напрашивается вопрос: какой из прямоугольников с одинаковыми периметрами имеет наибольшую площадь? Допустим, мы сооружаем забор вокруг участка земли прямоугольной формы и всю его площадь намереваемся использовать под посевы. Ясно, что наиболее желательным в этом случае является прямоугольник, обладающий при данном периметре наибольшей площадью. Это — квадрат.
Аналогичная проблема возникает при рассмотрении двух коробок одинакового объема. Одинакова ли у них площадь поверхности? Предположим, что объем каждой коробки равен 100 м3. Одна коробка имеет размеры 50×1×2 м3, другая — 5×5×4 м3. Соответственно площадь поверхности коробки составляет 204, а другой — 130 м2. Разница весьма ощутимая.
Еще один пример того, как может заблуждаться наша интуиция, — история о молодом человеке, вставшем перед необходимостью выбора, какой из двух работ отдать предпочтение. Начальный оклад в обоих случаях одинаков: 1800 долл. в год, но в одном месте обещали ежегодную прибавку в 200 долл., а — в другом — каждые полгода 50 долл. Какое из предложений заманчивее? На первый взгляд кажется, что ответ очевиден: ежегодная прибавка в 200 долларов более весома, чем прибавка, дающая в год лишь 100 долл. Но займемся несложными расчетами и выясним, сколько долларов получит молодой человек на одной и другой работе за последовательные полугодия. На первой работе ему выплатят 900, 900, 1000, 1000, 1100, 1100, 1200, 1200…, на второй (с прибавкой в 50 долларов каждые полгода) — 900, 950, 1000, 1050, 1100, 1150, 1200, 1250…
Из сравнения этих двух последовательностей видно, что вторая работа сулит молодому человеку больший доход за второе полугодие каждого года и такой же доход, как первая работа, за первое полугодие каждого года. Нехитрые подсчеты позволяют разобраться, почему так происходит. Прибавка в 50 долл. за каждые полгода означает, что заработная плата возрастает на 50 долл. за шесть месяцев, или на 100 долл. за год. Иначе говоря, получив за год две прибавки по 50 долл., молодой человек с начала следующего года будет получать столько же, сколько он получил бы, имея годовую прибавку в 200 долларов. С этой точки зрения к началу каждого следующего года оба предложения оказываются одинаково выгодными. Но на второй работе молодой человек начинает получать прибавку уже через полгода, тогда как на первой ему пришлось бы ждать прибавки целый год. Именно поэтому на второй работе он получает за второе полугодие больше, чем на первой.
Рассмотрим еще одну простую задачу. Торговец продает яблоки по 5 центов за пару и апельсины по 5 центов за три штуки. Боясь просчитаться, торговец решает смешать фрукты и продавать их по 10 центов за пять штук. Такой шаг на первый взгляд представляется разумным. От продажи двух яблок и трех апельсинов, т.е. пяти штук фруктов, он выручил бы раньше 10 центов. Смешав яблоки с апельсинами, торговец, как ему казалось, получил возможность продавать любые фрукты без разбора по 2 цента за штуку, тем самым существенно упростив расчеты с покупателями.
Но в действительности торговец обманул самого себя. В этом нетрудно убедиться на примере. Предположим, что торговец вынес на продажу дюжину яблок и дюжину апельсинов. Обычно он, продавая яблоки по 5 центов за пару, выручил бы за дюжину яблок 30 центов. Продавая апельсины по 5 центов за три штуки, торговец выручил бы за дюжину апельсинов 20 центов. Следовательно, его общая выручка составила бы 50 центов. Продавая же две дюжины фруктов по 10 центов за пяток, он выручил бы по 2 цента за штуку, или всего 48 центов. Средняя цена одного фрукта равна не 2 центам, a 21/12 цента.
Торговец понес убыток из-за того, что допустил ошибку в своих рассуждениях. Он предполагал, что средняя цена яблок и апельсинов должна быть по 2 цента за штуку, тогда как средняя цена яблока составляет 21/2 цента, а средняя цена апельсина — 12/3 цента. Средняя цена одного фрукта равна 21/12 цента, а не 2 центам.
Приведем еще одну распространенную ошибку интуиции. Предположим, у нас имеется сад круглой формы радиусом 10 м. Мы хотим обнести его стеной, которая отстояла бы всюду на 1 м от границы сада. Насколько периметр стены длиннее периметра самого сада? Ответить на этот вопрос нетрудно. Периметр сада вычисляется по формуле геометрии: длина окружности равна 2πr, где r — радиус, а π — число, которое приближенно равно 22/7. Следовательно, периметр сада составляет 2π×10 м. По условию стена должна на 1 м отстоять от границы сада, поэтому радиус стены равен 11 м, а ее длина — 2π×11 м., Разность длин двух окружностей равна 22π − 20π = 2π, т.е. стена должна быть на 2π м длиннее периметра сада. Пока ничего удивительного нет.
Рассмотрим теперь аналогичную задачу. Предположим, что нам необходимо проложить дорогу, которая опоясывала бы земной шар (для современного инженера это не слишком трудная задача), и что дорога повсюду должна проходить на высоте 1 м над поверхностью Земли. На сколько метров такая дорога была бы длиннее окружности Земли? Прежде чем приниматься за вычисление этой величины, попытаемся оценить ее из интуитивных соображений. Средний радиус Земли составляет около 6370 км. Так как это примерно в 6 млн. раз больше радиуса сада из предыдущей задачи, можно было бы ожидать, что и приращение длины дороги (по сравнению с длиной окружности Земли) примерно во столько же раз больше приращения длины стены (по сравнению с периметром сада). Напомним, что последнее было равно 2π, м. Таким, образом, интуитивные соображения приводят к величине 6 000 000×2π м. Даже если эта оценка вызывает у вас какие-то возражения, вы, вероятно, согласитесь с тем, что длина дороги должна быть гораздо больше окружности земного шара.
Простой расчет позволяет поднять, как обстоит дело в действительности. Чтобы избежать вычислений с большими числами, обозначим радиус Земли в метрах через r. Тогда длина окружности Земли равна 2πr, а длина дороги — 2π(r + 1) м. Но последнюю величину можно записать в виде 2πr + 2π. Следовательно, дорога длиннее окружности Земли ровно на 2π м, т.е. ровно на столько, на сколько стена длиннее периметра сада, хотя дорога опоясывает огромную Землю, а стена — небольшой сад. Формулы позволяют утверждать нечто большее: независимо от значения r разность 2π(r + 1) − 2πr всегда равна 2π. Это означает, что внешняя окружность, проходящая на расстоянии 1 м от внутренней, всегда (независимо от радиуса) на 2π м длиннее внутренней окружности.
Интуиция подводит нас и во многих других ситуациях. Человек, находящийся на некотором расстоянии от яблони, видит, что одно яблоко вот-вот упадет, и хочет попасть в него из ружья. Он знает, что к тому времени, когда пуля долетит до места, где яблоко находилось в момент выстрела, оно успеет пройти в свободном падении некоторое расстояние. Должен ли человек целиться в точку, расположенную ниже яблока, чтобы попасть в цель? Нет. Он должен прицелиться и выстрелить в яблоко: за то время, что пуля летит до яблока, они опустятся вниз по вертикали на одно и то же расстояние.
В качестве последнего примера, показывающего, как интуитивные соображения с большой вероятностью приводят к неверному ответу, рассмотрим задачу о теннисном турнире. Для участия в турнире записалось 136 спортсменов. Организаторы хотели бы составить расписание встреч с таким расчетом, чтобы определить победителя за минимальное число встреч. Сколько встреч для этого потребуется? Интуиция бессильна здесь чем-нибудь помочь. Между тем ответ прост: для выявления победителя требуется провести 135 встреч, так как каждый выбывший из турнира спортсмен должен потерпеть по крайней мере одно поражение, а всякий, кто проиграл встречу, выбывает из турнира.
Почему мы испытываем иллюзии, основываясь на своих ощущениях, и совершаем ошибки, доверяясь интуиции? Иллюзии, порождаемые различными органами чувств, вероятно, всего лучше объяснило бы исследование физиологии последних, но для наших целей достаточно понять, что и в иллюзиях, и в ошибочных интуитивных предсказаниях повинны не только органы чувств, но и мозг человека. Что касается интуиции, то она формируется как результат взаимосвязи опыта, чувственных восприятий и грубых догадок; в лучшем случае интуицию можно было бы назвать дистиллированным опытом. Последующий анализ или эксперименты подтверждают или опровергают интуитивные предсказания. Иногда интуицию определяют как силу привычки, коренящейся в психологической инерции.
Говоря о чем-то как о заведомо воспринимаемом, мы тем самым предполагаем возможность отделения восприятия от того, кто воспринимает. Но такое отделение невозможно, ибо не может быть восприятия без воспринимающего субъекта. Что же такое объективная реальность? Быть может, несколько наивно мы считаем объективным то, по поводу чего сходятся во мнении все воспринимающие субъекты. Так, Солнце и Луна существуют. Солнце желтое, Луна голубая.
В своем «Руководстве по физиологической оптике» (1896) Гельмгольц писал:
Нетрудно видеть, что все свойства, которые мы им [объектам реального мира] приписываем, означают не более чем воздействия, производимые ими либо на наши органы чувств, либо на другие внешние объекты. Цвет, звук, вкус, запах, температура, гладкость, твердость относятся к первому классу; они соответствуют воздействиям на наши органы чувств. Химические свойства аналогичным образом связаны с реакциями, т.е. воздействиями, производимыми рассматриваемым физическим телом на другие. Так же обстоит дело и с другими физическими свойствами тел: оптическими, электрическими, магнитными… Отсюда следует, что в действительности свойства объектов в природе вопреки их названиям не означают ничего присущего самим объектам как таковым, а всегда указывают на их отношение к некоторому второму телу (в том числе к нашим органам чувств).
Что мы можем противопоставить иллюзиям и ошибочной интуиции? Наш самый эффективный ответ состоит в использовании математики. Сколь он эффективен, станет ясно из последующих глав. Мы хотим показать (и видим в этом свою главную цель), что в окружающем нас мире существуют явления, столь же реальные, как и те, которые мы воспринимаем посредством наших органов чувств, но экстрасенсорные или даже вообще не воспринимаемые, и что в нашей современной культуре мы используем эти экстрасенсорные реальные явления и полагаемся на них ничуть не меньше, если не больше, чем на свои чувственные восприятия.
Мы отнюдь не утверждаем, будто математика не использует чувственные восприятия и интуицию во всякого рода наводящих и эвристических соображениях. Но математика превосходит все эти подсказки так же, как алмаз превосходит кусок стекла, и то, что математика открывает нам о внешнем мире, гораздо удивительнее зрелища звездного неба.