Antworten

Kapitel 1 Die Erde

1. Nein, Sie können es nicht. So hoch die Berge uns auch erscheinen (einige sind höher als 8000 m) und so tief die Täler und der Meeresboden auch sind (an einigen Stellen reicht er tiefer als 10 000 m), die Erde ist im Verhältnis zu diesen Höhen und Tiefen soviel größer, daß, wenn sie die Größe einer elfenbeinernen Billardkugel hätte, sie sich noch glatter anfühlen würde als eine solche Kugel.


2. In einem tiefen Bergwerk würde ihr Gewicht (die Kraft, die die Erdanziehung auf Sie ausübt) geringfügig kleiner sein als an der Oberfläche. Der Grund dafür ist der, daß ein kleinerer Teil der Erde unter Ihnen ist, der Sie abwärts zieht, und etwas von der Erde über Ihnen, das Sie hinaufzieht. Je tiefer Sie absteigen, um so geringer wird die abwärts wirkende Kraft. Im Mittelpunkt der Erde, falls ein Bergwerk so tief reichte, würden Sie überhaupt nichts mehr wiegen.


3. Ein Mann, der auf einem Pferd sitzt, ist weiter von der Erdoberfläche entfernt, als wenn er auf dem Boden steht, deswegen wiegt er eine Winzigkeit weniger.


4. Das Problem, was geschehen würde, wenn man durch eine Röhre fiele, die geradewegs durch den Erdmittelpunkt führte, wurde von Galilei richtig gelöst. Wenn man die Reibung an den Wänden und den Luftwiderstand vernachlässigt, würde man immer schneller fallen, bis man im Erdmittelpunkt seine größte Geschwindigkeit – etwa acht Kilometer in der Sekunde – erreichte. Obwohl die Schwerkraft geringer würde, wenn man sich dem Erdmittelpunkt näherte, würde die Trägheit – die Eigenschaft, die Bewegung in dieselbe Richtung beizubehalten – verbunden mit dem beständigen Ziehen der Schwerkraft dafür sorgen, daß man beschleunigt würde (die Geschwindigkeit zunehmen würde), bis man den Mittelpunkt erreichte. Wenn man einmal den Mittelpunkt durcheilt hätte, würde die Geschwindigkeit abnehmen, da jetzt der größere Teil der Erde hinter einem wäre und eine größere Kraft ausüben würde als der Teil vor einem. Die Geschwindigkeit würde gerade auf Null gesunken sein, wenn man das andere Ende der Röhre erreichte.

Wenn man nicht den Rand der Röhre ergriff (oder jemand anders ergriff einen), würde die Anziehungskraft einen wieder in die Röhre zurückziehen, und man fiele auf dem umgekehrten Weg. Unter idealen Bedingungen würde man ewig hin und her schwingen. Jede Hin- und Rückreise würde 84 Minuten dauern.


5. Schwerkraftzüge würden tatsächlich funktionieren. Natürlich würde die Reibung der Räder und der Luftwiderstand den Zug abbremsen, aber wenn diese und andere störende Kräfte vernachlässigt werden, könnte ein Zug durch einen geraden Tunnel von, sagen wir, Hamburg nach New York fahren, durch nichts anderes angetrieben als die Schwerkraft.

Betrachten Sie die Abbildung, und Sie werden sehen, daß während der ersten Hälfte der Reise der Zug bergab rollt (zum Mittelpunkt der Erde). Wie jemand, der durch die Erde fällt, erreicht der Zug eine genügend hohe Geschwindigkeit, um die andere Hälfte des Tunnels wieder bergan zu rollen. Merkwürdigerweise stellt es sich heraus, daß die Zeit, die ein Zug für solch eine Reise benötigen würde (unter idealen Bedingungen ohne Reibung), genauso groß sein würde wie die Zeit, die eine Person benötigte, um in eine Richtung durch die Erde zu fallen – etwa 42 Minuten. Diese Zeit bleibt gleich, unabhängig davon, wie lang der gerade Tunnel ist.

Wie diese Röhre durch die Erde sind Untergrundbahnen von dieser Art in vielen Science-fiction-Geschichten beschrieben worden. In den letzten Jahren sind abgewandelte Formen solcher Beförderungssysteme, die die Schwerkraft benutzen, um die Untergrundbahnen zu beschleunigen und wieder abzubremsen, von Ingenieuren ernsthaft vorgeschlagen worden.


6. Nein. Dies ist ein alter Aberglaube, der durch keine Tatsache gestützt wird. Dasselbe trifft auf den alten Glauben zu, daß Sterne bei Tageslicht gesehen werden könnten, wenn man durch einen hohen Schornstein hinaufschaut. Da die Sterne nur bei Nacht gesehen werden können, schien es vernünftig anzunehmen, daß es dasselbe wäre, wenn man einen dunklen Schornstein oder Brunnen hinaufschaute, wie wenn man in den Nachthimmel sah. Aber natürlich ist das nicht so. Der schmale Ausschnitt des Tageshimmels um einen Stern ist genauso hell, wenn man durch einen langen dunklen Brunnen oder Schornstein sieht, wie wenn man auf einem offenen Feld steht.


7. Zehn Pfund. Ist Ihnen eingefallen, daß Sie dieses Experiment tatsächlich durchführen können? Drehen Sie einfach einen Tisch um! Nach Newtons Gravitationsgesetz ziehen zwei Körper sich gegenseitig mit derselben Kraft an. Wenn daher die Erde mit solcher Kraft an dem Tisch zieht, daß er zehn Pfund wiegt, dann zieht gleichzeitig der Tisch mit einer Kraft an der Erde, daß auch sie zehn Pfund wiegt.

Die Situation ist dieselbe wie bei einer riesigen Eisenkugel, die im Raum treibt, und die mit einem Korken durch ein Gummiband verbunden ist. Wenn man das Band an jedem Ende um denselben Betrag verlängert und dann losläßt, wird es der Korken sein, der sich bewegt. Die Eisenkugel hat eine so große Masse, daß ihre Bewegung nicht festgestellt werden kann, aber trotzdem bewegt sie sich ein wenig. Die Anziehungskraft, die von dem gedehnten Gummiband ausgeht (und der Massenanziehung entspricht), ist genau gleich in beiden Richtungen.


8. Wenn die Erde in einen Meteoritenschwarm eintaucht, wird ihr ›Gesicht‹, die Seite in Bewegungsrichtung der Erde um die Sonne, von mehr Meteoriten getroffen als die abgewandte Seite. Von Sonnenuntergang bis Mitternacht befindet man sich auf der Rückseite, von Mitternacht bis Sonnenaufgang auf der Vorderseite. Mit anderen Worten: Man sieht aus demselben Grund am frühen Morgen mehr Sternschnuppen, wie das Gesicht nasser wird als der Hinterkopf, wenn man bei Windstille durch fallende Regentropfen geht.


Kapitel 2 Die Sonne


9. Seltsam, die Sonnenoberfläche rotiert mit verschiedener Geschwindigkeit. Nahe bei den Polen braucht die Oberfläche für eine Umdrehung etwa zehn Tage länger als die Oberfläche nahe dem Äquator. Die Astronomen wissen nicht warum.


10. Weil die Erdachse gegen die Ebene, in der sie um die Sonne kreist, geneigt ist, wandert die Sonne scheinbar auf einer Bahn am Himmel, die ›die Ekliptik‹ genannt wird und die während des Jahres in ihrer nördlichen oder südlichen Lage schwankt. Nur zweimal im Jahr geht die Sonne an Punkten auf und unter, die genau im Osten und Westen liegen. Wenn das geschieht, ist der Tag (Sonnenaufgang bis Sonnenuntergang) genauso lang wie die Nacht (Sonnenuntergang bis Sonnenaufgang). Diese beiden Daten werden die ›Äquinoktien‹ oder ›Tagundnachtgleiche‹ genannt. Die Frühlings-Tagundnachtgleiche fällt auf den 21. März oder in die Nähe, die Herbst-Tagundnachtgleiche auf den 23. September oder in die Nähe. Dieses letzte Datum ist die Lösung des Problems.


Die scheinbare Bahn der Sonne, die sie im Laufe eines Jahres am Himmel beschreibt, heißt die Ekliptik. Ihre Ebene schneidet die Äquatorebene der Erde. Die beiden Schnittpunkte an der Himmelskugel heißen Äquinoktien (Frühlings- und Herbstpunkt).


Die Tage, wenn die Sonne am höchsten oder am tiefsten steht, werden ›die Solistitien‹ oder Sonnenwende genannt. Der Tag, an dem die Sonne so weit südlich wie möglich untergeht, heißt die Winter-Sonnenwende. Sie fällt etwa auf den 22. Dezember, die Zeit, wenn die Tage am kürzesten sind. Die Sommer-Sonnenwende, die etwa auf den 22. Juni fällt, ist die Zeit, wenn die Tage am längsten sind. Wir sagen ›etwa‹ an diesen Tagen, weil, wie bei den Äquinoktien, das genaue Datum von Jahr zu Jahr etwas verschieden ist. Das liegt daran, daß unsere Jahre sich in der Länge unterscheiden: Jedes Schaltjahr ist einen Tag länger als die anderen Jahre.


11. Aus einem seltsamen Grund, der bisher unbekannt ist, kippt das Magnetfeld völlig um, wenn die Sonnenfleckentätigkeit ihr Maximum erreicht. Der magnetische Nordpol wird zum Südpol und umgekehrt! Wegen dieses Umschaltens der Pole sagt man, daß ein voller Sonnenfleckenzyklus 22 Jahre dauert. In der Hälfte der Zeit ist der magnetische Nordpol an dem einen Ende der Sonnenachse und dann an dem anderen Ende.


12. Die Blätter eines Baumes erzeugen Hunderte von kleinen Löchern, durch die das Sonnenlicht fällt. Diese Löcher wirken wie die Öffnungen einer Lochkamera und erzeugen umgekehrte Bilder der Sonne auf dem Boden oder an einer Mauer oder Häuserwand (s. Abbildung rechts). Normalerweise werden wir uns dieser Bilder nicht bewußt, weil es einfach runde Lichtflecken sind. Während einer partiellen Sonnenfinsternis jedoch sehen wir die Bilder als sichelförmige Lichtreflexe.

Das Loch einer Stecknadel in einem Stück Karton liefert eine sichere Methode, um eine Sonnenfinsternis zu beobachten. Es ist gefährlich, die Finsternis unmittelbar zu beobachten, auch wenn sie total ist. Unsichtbare Sonnenstrahlung kann das Auge dauernd beschädigen. Wenn man eine Stecknadel durch ein großes Stück Karton sticht, kann man den Karton wie in der Abbildung halten, so daß das Sonnenlicht durch das Nadelloch auf das Papier fällt und ein gutes Bild der Sonnensichel erzeugt.




Es gibt andere ausgezeichnete und sichere Methoden, um eine Sonnenfinsternis zu beobachten. Eine davon ist die, ein Fernrohr oder einen Feldstecher mit dem Okular zur Sonne zu halten. Das Sonnenlicht durchläuft das Instrument rückwärts und erzeugt ein scharfes Bild der Sonnenscheibe auf dem Blatt Papier.

Der Gebrauch von dunklem Glas oder geschwärztem Filmnegativ ist nicht ratsam, weil, wenn das Glas oder der Film nicht nahezu undurchsichtig ist, gefährliche Sonnenstrahlen durchdringen und in das Auge gelangen können. Und in keinem Fall sollte man zur Sonne durch irgendein Ende eines Fernrohres oder Feldstechers schauen.


13. Die Mondoberfläche ist mit Kratern bedeckt; deshalb ist der Mondrand äußerst ungleichmäßig. Das Sonnenlicht, das durch die Täler der gezackten Mondoberfläche scheint, erzeugt das Perlschnurphänomen.


Kapitel 3 Der Mond


14. Obwohl man sagt, daß der Mond die Erde umkreist, muß man genauer sagen, daß die Erde und der Mond ein ›Zwei-Körper-System‹ bilden und um den gemeinsamen Schwerpunkt kreisen. Weil die Erde eine so viel größere Masse als der Mond hat, liegt der Schwerpunkt innerhalb der Erde. Während die Erde und der Mond um diesen Punkt kreisen, läßt die Zentrifugalkraft den Ozean sich zu einem zweiten Flutberg auf der dem Mond abgewandten Seite erheben und erzeugt so die zweite Flut.


Die beiden Flutberge. (Die Entfernung des Mondes von der Erde ist im Verhältnis zu klein.)

15. Die Fehler in der Geschichte über die Astronauten sind:

1) Sterne, die jemand auf dem Mond sieht, funkeln nicht. Das Funkeln der Sterne wird durch die Bewegung der Luft erzeugt. Da der Mond keine Atmosphäre hat, leuchten die Sterne immer stetig.

2) Der Mond hat keine Wolken.

3) Der Mond hat keine Luft, die eine Brise erzeugen könnte.

4) Geräusche können auf dem Mond nicht gehört werden, weil es keine Atmosphäre gibt, die den Schall übertragen könnte.

5) Sterne können genausowenig im Innern der Erdsichel gesehen werden, wie wir auf der Erde sie im Innern der Mondsichel sehen können. Damit solche Sterne sichtbar wären, müßten sie sich zwischen der Erde und dem Mond befinden. Natürlich ist der Grund der, daß das, was in der Erdsichel oder Mondsichel leerer Raum zu sein scheint, keineswegs leer ist. Es ist der Teil der Kugel, der nicht gesehen werden kann, weil das Sonnenlicht ihn nicht bescheint.


16. Man könnte geneigt sein zu sagen, daß der Mond sich überhaupt nicht dreht, weil er uns immer dieselbe Seite zukehrt. Für einen Beobachter auf der Erde ist das in gewissem Sinne richtig. Astronomen ziehen es jedoch vor, die Situation von einem Punkt außerhalb des Erde-Mond-Systems zu betrachten. Relativ zu den Sternen zum Beispiel dreht der Mond sich bei jeder Umkreisung der Erde genau einmal um seine Achse.

Es gibt einen einfachen Weg, das einzusehen: Man legt einen Groschen auf den Tisch, der die Erde darstellt, und bewegt dann einen zweiten Groschen (der den Mond darstellt) so um den festen Groschen, daß immer dieselbe Seite des ›Mondgroschens‹ dem ›Erdgroschen‹ zugekehrt ist. Man stellt fest, daß man den bewegten Groschen drehen muß und daß man ihn genau einmal gedreht hat, wenn er in die Ausgangslage zurückgekehrt ist.


17. Wenn es fast Neumond ist, dann ist es vom Mond aus gesehen fast ›Vollerde‹. Das bedeutet, daß nahezu der größtmögliche Teil des Sonnenlichtes von der Erde zum Mond reflektiert wird. Es ist dieser reflektierte Erdschein, der es uns ermöglicht, den dunklen Teil des Mondes schwach zu erkennen, wenn der hell erleuchtete Teil des Mondes nur eine schmale Sichel ist.


18. Nein. Der Grund ist, daß ein Athlet bei einem Hochsprung die Füße so hoch wie möglich reißt. Das befähigt ihn, zwei Meter hoch zu springen, obwohl er seinen Schwerpunkt viel weniger als zwei Meter angehoben hat.

Um das klarzumachen, wollen wir annehmen, daß der Mann wie in der folgenden Abbildung 2 m groß ist. Sein Schwerpunkt (der Punkt, an dem man sich sein ganzes Gewicht vereinigt denken kann) ist etwa 1,15 m über dem Boden. Wenn er 2 m hoch springt, hat er daher seinen Schwerpunkt nur 85 cm angehoben. Auf dem Mond kann er seinen Schwerpunkt sechsmal so hoch heben, also 5,10m. Wenn er auf dem Mond so hoch wie er kann springt und die Beine in derselben Weise wie auf der Erde nach oben reißt, müßte der Athlet 6,25 m überspringen können. Das ist gerade etwas mehr als die Hälfte des Zwölfmeter­spunges, der manchmal in Geschichten über das Leben auf dem Mond erwähnt wird.


Kapitel 4 Die Planeten


19. Die neun Buchstaben sind die Anfangsbuchstaben der neun Planeten in ihrer Reihenfolge von der Sonne aus: Merkur, Fenus, Erde, Mars, Tupiter, Saturn, Lfranus, Afeptun und Pluto.


20. Uranus und Saturn. Man kann das ›T‹ von Saturn in ein ›U‹ oder ein ›U‹ von Uranus in ein ›T‹ abändern, und die Buchstaben ergeben den Namen des anderen Planeten.


21. Die Damen könnten tatsächlich von Mars oder Venus gekommen sein. Es gibt ein Mars in Pennsylvania und je ein Venus in Pennsylvania, Florida, Nebraska und Texas, USA.


22. Nein. Merkur hat keine Dämmerungszone. 1965 fanden Astronomen heraus, daß Merkur sich nicht während eines Umlaufs einmal dreht, wie es der Mond beim Umkreisen der Erde tut. Er dreht sich dreimal während zweier Umläufe um die Sonne.


23. Venus ist der einzige Planet im Sonnensystem, der sich rückläufig dreht. Alle anderen Planeten drehen sich, wenn man von oben auf ihren Nordpol sieht, gegen den Uhrzeigersinn mit Ausnahme von (wie wir später sehen werden) Uranus, dessen Achse so genau parallel zu seiner Umlaufebene liegt, daß für seine Drehrichtung beide Möglichkeiten in Betracht kommen. Venus dreht sich im Uhrzeigersinn. Ihre Drehung erfolgt so langsam, daß ein Beobachter auf ihr die Sonne im Westen langsam aufgehen sehen würde und der Tag länger dauern würde als das Venusjahr (etwa 225 Erdentage).

Es gibt etwas noch Seltsameres bei der Venusdrehung. Die Drehung ist so abgestimmt, daß, wenn immer sie der Erde am nächsten kommt, sie uns dieselbe Seite zuwendet. Keiner weiß bisher warum. Die Astronomen vermuten, daß Venus eine einseitig verteilte Masse hat. Das ermöglicht es der Erde, die Drehung ›einzufangen‹ durch eine ›Resonanzkopplung‹.


24. Die ›Marskanäle‹ in dem Sinn, in dem das Wort gewöhnlich verstanden wird, gibt es einfach nicht. Viele ausgezeichnete Astronomen der Vergangenheit – besonders der Italiener Giovanni Schiaparelli und der Amerikaner Percival Lowell – glaubten, sie sähen den Planeten durchkreuzt von Hunderten von feinen Linien. Sie zeichneten sogar detaillierte Karten von ihnen. Lowell schrieb einige Bücher, in welchen er bewies, daß die Kanäle Bewässerungsgräben sein müssen, die von den Marsbewohnern gegraben worden sind, um Wasser von den Polarregionen in die trockenen Wüstengebiete zu bringen.

Leider zeigen die Photos vom Mars, die von der Raumsonde Mariner aufgenommen wurden, keinerlei Spuren solcher Kanäle. Die Oberfläche des Mars ist mit Kratern bedeckt, ähnlich denen auf dem Mond. Es gibt auch unermeßliche kraterfreie Gebiete von wildem, zerzaustem Aussehen, deren Wesen noch nicht bekannt ist.

Die meisten Astronomen, sowohl zu Lowells Zeiten als auch heute, waren nie wirklich in der Lage, Marskanäle zu sehen. Man ist sich einig darüber, daß die ›Kanäle‹ zum einen optische Täuschung waren, die durch das Bestreben des Gehirns, dunkle Flecken zu Linien zu gruppieren, verursacht wurde, zum anderen Selbsttäuschung, herbeigeführt durch den starken Willen, Kanäle zu sehen. Im Fernrohr ist der Mars eine kleine, tanzende Scheibe, und nur für flüchtige Momente kann man einen zuverlässigen Blick auf ihn werfen. In solchen Momenten kann das Auge mit dem, was man zu sehen glaubt, seltsame Dinge vorspiegeln. Die ›Kanäle‹ von Lowell und anderen Astronomen sind nie auf unseren Photographien vom Mars erschienen.

Einer der rätselhaftesten Aspekte der Marsgeologie hat mit Nix Olympica zu tun, einem gewaltigen Krater von 483 km Durchmesser, viel größer als alle Krater auf dem Mond. Fast in seiner Mitte ist ein heller Fleck, vielleicht eine Art Spitze, die von Jahr zu Jahr ihre Helligkeit ändert. Keiner hat bis jetzt eine überzeugende Erklärung für diese wunderliche Erscheinung angeboten.



Schiaparellis Karte der Marskanäle, die auf seinen Beobachtungen von 1877 bis 1886 beruht.



Die Totalaufnahme des Mars (links) und die Nahaufnahme der Marsoberfläche (rechts), beide vom Raumschiff Mariner aufgenommen, zeigen keinerlei Hinweis auf die fabulösen ›Kanäle‹.


25. Der Große Rote Fleck ist ein riesiger, ovaler rosa Fleck südlich des Jupiteräquators. Er ändert seine Größe und Form, ist aber gewöhnlich rund 50000 km lang und 11000 km breit und hat ungefähr die Fläche der Erdoberfläche. Der Fleck treibt langsam nach Osten oder Westen in andere Positionen, bewegt sich aber nie nach Norden oder Süden.

Der erste Bericht eines Beobachters, der den Roten Fleck gesehen hat, stammt aus dem Jahre 1664; zu der Zeit war er wesentlich blasser. 1878 wurde er plötzlich heller, und er blieb bis 1882 hell; dann begann er, schwächer zu werden. Bis 1890 wurde er fast unsichtbar, danach wurde er wieder heller. Seitdem hat er viele unvorhersehbare Änderungen in der Helligkeit, Farbe, Form, Größe und Lage durchgemacht.

Was in Jupiters Namen ist er?



Jupiters Großer Roter Fleck in zwei verschiedenen Lagen.


Es gibt zwei Haupttheorien:

1) Die Floßtheorie. Es handelt sich um eine Art besonderer fester Materie – vielleicht eine Form gefrorenen Wassers –die wie ein Floß auf Jupiters dichter Atmosphäre schwimmt.

2) Die Wirbeltheorie. Es handelt sich um einen geheimnisvollen atmosphärischen Zustand, der durch einen festen Höcker oder eine Vertiefung in der Oberfläche des Jupiters erzeugt wird. Wenn dies richtig ist, wären die unregelmäßigen Bewegungen des Roten Flecks nach Osten und nach Westen eher die Folge einer Änderung der Drehung des Planeten als eine Bewegung des Flecks selbst.

Die Wahrheit ist, daß kein Astronom weiß, was der Große Fleck ist. Er ist eines der faszinierendsten Geheimnisse des ganzen Sonnensystems. Bis unsere Raumsonden anfangen, in die Nähe des Riesenplaneten zu fliegen, können die Astronomen wenig mehr tun als wilde Vermutungen zu äußern.


26. Wie bei unserer Erde ist die Drehachse des Saturn gegen die Ebene des Sonnensystems geneigt. Aus diesem Grund sehen wir seine Ringe unter verschiedenen Winkeln, wenn der Planet um die Sonne wandert. Einmal etwa alle vierzehn Jahre ist ihre Lage so, daß wir auf die Kante der Ringe sehen. Obwohl die Ringe viele Tausende Kilometer breit sind, sind sie sehr dünn. Astronomen schätzen ihre Dicke auf höchstens elf Kilometer; einige glauben, sie sind nur fünfzehn Zentimeter dick. Selbst elf Kilometer ist so dünn, daß die Ringe zu den Zeiten, an welchen die Kante auf uns weist, in unseren Teleskopen nicht sichtbar wären.

Die beiden Lichtkleckse, die Galilei 1610 sah, sind tatsächlich verschwunden. Selbst die heutigen licht-

Die Saturnringe sind unter verschiedenen Winkeln zu sehen, während der Planet um die Sonne kreist. Wenn man auf die Kante sieht, wie auf den Bildern unten links und oben rechts, dann sind die Ringe im Fernrohr nicht zu sehen und scheinen völlig verschwunden zu sein.

starken Teleskope wären nicht in der Lage gewesen, sie im Jahr 1612 zu zeigen, als ihr Verschwinden eine solche irreführende Enttäuschung für Galilei bedeutete. Das letzte Mal, als die Saturnringe verschwanden, war 1966. 1973 erreichten sie erneut eine Periode der größten Sichtbarkeit, als der Planet so kippte, daß die südliche oder Unterseite der Ringe zu sehen war.


27. Ja. Viele Astronomen haben erörtert, daß Pluto einst ein Mond des Neptun war. Die Theorie beruht auf Plutos sehr geringer Umdrehungsgeschwindigkeit. Das ist charakteristisch für Monde. Wenn Pluto tatsächlich ein Mond war, der Neptun entkommen ist und ein Planet wurde, hätte er seine geringe Drehgeschwindigkeit behalten.

Die Theorie des entkommenen Mondes wird auch unterstützt durch die Tatsache, daß Plutos Umlaufbahn eine so schiefe Ellipse ist, daß zu bestimmten Zeiten Pluto tatsächlich dichter an der Sonne ist als Neptun. Die Bahnen der beiden Planeten kreuzen sich jetzt nicht, aber das könnte in der Vergangenheit so gewesen sein. Einige Astronomen haben erörtert, daß der Einfluß von Uranus’ Schwerkraft Pluto veranlaßt haben könnte, aus einer Bahn um Neptun auszubrechen, und indem er das tat, könnte Pluto Triton, den größeren von Neptuns gegenwärtigen Monden, veranlaßt haben, seine Umlaufrichtung umzukehren.


Kapitel 5 Kometen und Planetoide

28. Es gibt keine Methode, aus der Abbildung zu ersehen, in welche Richtung sich der Komet bewegt. Ein Kometenschweif weist wegen eines ›Sonnenwindes‹ molekularer Teilchen, der außerhalb der Sonnenoberfläche bläst, immer von der Sonne weg. Wenn ein Komet sich der Sonne nähert, ist sein Schweif nach hinten gerichtet. Am sonnennächsten Punkt bildet der Schweif einen rechten Winkel mit der Kometenbahn. Wenn er sich wieder von der Sonne entfernt, ist sein Schweif nach vorn gerichtet!


Der Schweif eines Kometen weist immer von der Sonne weg.


Es ist daher unmöglich, aus einer Abbildung zu ersehen, in welche Richtung sich ein Komet bewegt.


29. Es ist äußerst unwahrscheinlich, daß die Erde mit einem Planetoiden zusammenstößt, aber es ist durchaus möglich. Mehr als ein Dutzend Planetoide haben Bahnen, die die Erdbahn kreuzen. Einige kreuzen die Bahnen von Venus und Jupiter. Ein Planetoid, Icarus (1949 entdeckt), kreuzt sogar die Merkurbahn und kommt näher an die Sonne als jeder andere Körper im Sonnensystem mit Ausnahme einiger Kometen. Im Juni 1968 flog Icarus nur etwa 6,5 Millionen Kilometer an der Erde vorbei. Das mag eine große Entfernung scheinen, aber es ist nur etwa siebzehnmal so weit wie die Entfernung des Mondes von der Erde. Zuvor hatte in dem Jahr eine Zahl von unkundigen religiösen Fanatikern vorausgesagt, daß Icarus die Erde treffen und die meisten seiner Bewohner vernichten würde. Die nächste Annäherung des Planetoiden an die Erde ist 1987. Es ist unmöglich, die tatsächliche Bahn von Icarus im voraus genau aufzuzeichnen, weil sie von so vielen anderen Planeten beeinflußt wird.

Einige Planetoiden sind viel dichter an der Erde vorbeigeflogen als Icarus 1968. Am knappsten sind wir am 30. Oktober 1937 davongekommen, als Hermes nur 0,8 Millionen Kilometer an der Erde vorbeiflog, etwa die doppelte Entfernung von Erde und Mond. Hermes ist seitdem nicht mehr gesehen worden. Keiner weiß, wo der kleine Planetoid ist.


Die Bahnen des Planetoiden Icarus und der Erde kreuzen sich an zwei Punkten. Dadurch werden Zusammenstöße möglich.


Weil ein Zusammenstoß mit einem großen Planetoiden ein Land so groß wie, sagen wir, Frankreich zerstören kann, hat Isaac Asimov vorausgesagt, daß wir in Zukunft Raumstationen haben werden mit Computern, die dazu bestimmt sind, genaue Radarbeobachtungen an allen sich nähernden Körpern vorzunehmen. Wenn ein Planetoid auf Kollisionskurs mit der Erde entdeckt wird, könnte ein Raumschiff losgeschickt werden, das ihn mit einer H-Bombe sprengt. Dies würde, schreibt Asimov, einen harmlosen Meteoritenschauer erzeugen. »Bis dann«, so schließt er, »schweben die Felsen des Damokles über uns, und die Ewigkeit kann für Millionen von uns – zu jeder Zeit – nur eine Stunde entfernt sein.«



Am 30. Oktober 1937 verfehlten sich die Erde und Hermes nur um 0,8 Millionen Kilometer.

30. ›Ekard‹ ist das Wort ›Drake‹ rückwärts geschrieben. Der Entdecker war, als er den Planetoiden fand, Student der Drake Universität in Des Moines, Iowa, USA.


Kapitel 6 Raumflug

31. Die drei Methoden, um das Glas mit Hilfe der Trägheit zu leeren, sind:

1) Halte das Glas ruhig und ziehe es dann ruckartig in Richtung des Bodens. Das Wasser wird zurückbleiben.

2) Bewege das Glas in Richtung der Öffnung und halte es plötzlich an. Das Wasser wird sich weiterbewegen.

3) Schwenke das Glas mit dem offenen Ende nach außen im Kreis. Die Zentrifugalkraft (eine Form der Trägheit) wird das Wasser aus dem Glas treiben.

Tatsächlich würde Wasser im schwerefreien Raum nicht lange im Innern eines offenen Glases bleiben. Ohne eine hinabziehende Kraft, die das Wasser im Glas hält, würde die Adhäsionskraft das Wasser die Wände hochkriechen lassen, dann über den Rand und die Außenfläche hinunter.



32. Die Antwort auf diese Frage ist dieselbe wie auf die vorhergehende. Das Raumschiff entspricht dem Glas, die darin befindlichen Gegenstände dem Wasser. Die drei Methoden sind:

1) Das Raumschiff nutzt sein Antriebssystem während der ersten Hälfte der Reise zu einer ständigen Beschleunigung (Erhöhung der Geschwindigkeit). Die Trägheit drückt die Gegenstände in Richtung auf das hintere Ende des Schiffes, so wie man in einem Fahrstuhl nach unten gedrückt wird, wenn die Kabine nach oben anfährt. Nach Albert Einsteins ›Prinzip der Äquivalenz‹ ist ein ›Trägheitsfeld‹ dieser Art ununterscheidbar von einem Schwerefeld. Wenn die Beschleunigung den richtigen Betrag hat, verhalten sich die Gegenstände innerhalb des Schiffes genauso, wie wenn das Raumschiff auf der Erde ruht.

2) Das Raumschiff nutzt sein Antriebssystem während der zweiten Hälfte seiner Reise zu einer ständigen Verzögerung (Verminderung der Geschwindigkeit). Dadurch wird ein Schwerefeld wie vorher simuliert, diesmal ist die Trägheitskraft jedoch zur Spitze des Schiffes gerichtet.

3) Das Raumschiff rotiert. Die Zentrifugalkraft, eine Form der Trägheit, zwingt die Gegenstände im Schiff, sich vom Rotationszentrum nach außen zu bewegen, wie wenn ein Schwerefeld das Schiff umgäbe. Das ist die ideale Methode, um innerhalb einer Raumstation, die die Erde umkreist, Schwerkraft zu simulieren. Die Station hätte die Form eines riesigen hohlen Krapfens. Indem man die Station mit der richtigen Geschwindigkeit rotieren ließe, könnte man bestimmten Abteilen in der Station ein Trägheitsfeld von derselben Größe wie die Schwerkraft auf der Erde geben.

Dies sind die drei allein bekannten Methoden, um in einem Raumschiff Schwerkraft zu simulieren. Keine ist bisher angewandt worden.


33. Nicht, wenn sie an einer Stelle bleibt. Eine Kerze kann nur brennen, wenn die durch das Brennen verbrauchten Gase aufsteigen. Das geschieht auf der Erde, weil die Schwerkraft die Luft nach unten zieht und eine Auftriebskraft erzeugt, die alles, was leichter als Luft ist – die verbrauchten Gase zum Beispiel –, nach oben steigen läßt. Im schwerelosen Raum hat die Luft keine Auftriebskraft. Verbrauchte Gase bleiben nahe bei der Kerzenflamme und löschen sie schnell aus. Natürlich könnte man die Kerze eine lange Zeit am Brennen halten, indem man sie langsam von einer Seite zur anderen bewegt oder sie behutsam anbläst.



34. Nach Einsteins Relativitätstheorie ist der reisende Zwilling, wenn er zurückkehrt, ein wenig jünger als der zurückgebliebene Bruder. Je schneller sich ein Raumschiff bewegt, um so langsamer verstreicht die Zeit im Innern des Schiffes verglichen mit der Zeit auf der Erde. Wenn das Raumschiff sich so schnell wie das Licht bewegen könnte, würde die Zeit völlig stillstehen! (Der Grund dafür ist zu kompliziert, um ihn hier zu erklären. Aber wenn Sie sich dafür interessieren, ein Kapitel in meinem Buch Relativitätstheorie für alle handelt von der ›Zwillingsparadoxie‹.)

Wenn der reisende Zwilling sich mit äußerst hoher Geschwindigkeit sehr weit entfernte, könnte er nur einige Jahre altern, dann zur Erde zurückkehren und feststellen, daß Hunderte von Jahren verstrichen sind! Es ist daher theoretisch möglich, daß ein Astronaut in die Zukunft der Erde reist. (Reisen in die Vergangenheit bringen, wie Kenner von Science-fiction wissen, alle möglichen Widersprüche mit sich. So könnte man zum Beispiel in die Zeit seiner eigenen Kindheit reisen, sich erschießen und damit verhindern, daß man aufwächst und die Reise in die Vergangenheit unternimmt!)

Gegenwärtig sind die Entfernungen und Geschwindigkeiten, mit denen die Astronauten reisen, so gering, daß die Zeitunterschiede noch nicht meßbar sind[3]. Zukünftig jedoch kann die ›Zwillingspa-radoxie‹ Wirklichkeit werden.


35. In Vernes Raumschiff würde schwereloser Zustand geherrscht haben von dem Augenblick, in dem es das Kanonenrohr verlassen hat, bis zu dem Moment, in dem es in den Pazifik stürzt. Der Zustand der Gewichtslosigkeit herrscht in jedem Raumschiff, das sich frei im Raum bewegt, ohne daß die Raketenmotoren es antreiben.


36. Jeder Gegenstand, der aus dem Fenster eines sich bewegenden Raumschiffes gestoßen worden ist, würde sich infolge seiner Trägheit immer weiter von dem Schiff entfernen. Er könnte nicht längsseits des Schiffes verbleiben, wie es in Vernes Geschichte berichtet wird.


37. Die Luft in einer geschlossenen, halb mit Wasser gefüllten Flasche würde in der Mitte der Flasche eine kugelförmige Blase bilden, wie die Zeichnung oben rechts zeigt. Dies wurde tatsächlich im schwerelosen Zustand von dem russischen Astronauten Pavel R. Popowitsch während seines Raumfluges 1962 getestet. »Sie (die Luft) blieb dort«, berichtete er, »selbst wenn ich die Flasche schüttelte.«



38. Die Raumschiffe nähern sich mit der relativen Geschwindigkeit von 30 000 km in der Stunde oder 500 km in der Minute. Wenn Sie sich vorstellen, der Vorgang läuft rückwärts ab wie ein rückwärts projizierter Film, werden Sie sofort erkennen, daß sie eine Minute, bevor sie sich treffen, 500 km voneinander entfernt sein müssen. Die Entfernung von 15 537 km am Anfang wurde nur hinzugefügt, um Sie zu verwirren. Sie wird für die einfache Lösung nicht benötigt.


39. Die Seilruck-Technik würde bei einem Raumschiff, das umhertreibt, nicht funktionieren. Das geht in einem Boot nur, weil die Reibung zwischen dem Boot und dem Wasser da ist. Die Situation ist ähnlich zu der eines Jungen in einem Karton auf gebohnertem Holzfußboden. Indem er seinen Körper plötzlich nach vorn schnellt, kann er den Karton auf dem Fußboden eine kurze Strecke nach vorn schießen lassen. Die Reibung hält den Karton fest, bis die Trägheit des Jungenkörpers den Karton nach vorn treibt.

Im Weltraum gibt es keine Reibung, weil das Schiff von einem fast vollkommenen Vakuum umgeben ist. Aus diesem Grund kann ruckartiges nach vorn Ziehen an einem Seil, das an einem Ende am Schiff befestigt ist, das Schiff nicht in Bewegung setzen. Ab und zu glaubt immer mal jemand, der die grundlegenden Bewegungsgesetze nicht kennt, er hätte einen ›Trägheitsantrieb‹ erfunden, der ein Raumschiff allein durch Trägheitskräfte antreiben könnte. Solche Anstrengungen sind zum Scheitern verurteilt. Die einzige Möglichkeit, wie ein umhertreibendes Raumschiff sich in Bewegung setzen kann, ist, eine Art Materie auszutreiben, wie zum Beispiel das Gas seiner Raketenmotoren.


40. Nein, der Astronaut würde nicht explodieren. Dies ist ein weitverbreiteter Irrglaube, den der Film 2001 Odyssee im Weltraum in einer Szene zu zerstreuen versuchte, von der viele Kritiker glaubten, sie sei naturwissenschaftlich falsch. Die Wahrheit ist, daß man von einigen Tieren herausgefunden hat, daß sie einige Minuten im Vakuum leben können. Ein Mensch könnte natürlich im Weltraum ohne Luft zum Atmen nicht überleben, aber er würde sicher nicht explodieren. Der Druck im Innern seines Körpers ist viel zu schwach, um solch ein Ereignis zu verursachen, selbst wenn der Astronaut den Atem anhielte, um die Luft in der Lunge zu behalten. Tatsächlich könnte er etwa zwanzig Sekunden oder länger tätig sein, bevor er wegen der Kälte und des Luftmangels das Bewußtsein verlöre.

Загрузка...