Глава 9. Многофункциональные ионы

Кобальт

Cоединение кобальта, проявляющее биологическую активность, содержится в организмах в очень малых концентрациях. Мы уже знаем, что скот, который пасется на пастбищах, бедных кобальтом, часто заболевает анемией; злокачественная анемия поражает и людей: до 1926 г. эта болезнь считалась неизличимой. В 1926 г. Мимо и Мерфи обнаружили, что сырая печень является хорошим средством борьбы со злокачественной анемией. С этого времени начались исследования, направленные на выделение из тканей печени вещества, обладающего лечебным действием. Двадцать два года потребовалось для достижения успеха. В 1948 г. наконец удалось получить в кристаллическом состоянии соединение красного цвета, оказавшееся комплексным соединением кобальта; оно и было действующим началом препаратов печени, излечивающих анемию.

Соединение это содержится в крови человека в концентрации 2,6*10-4 мкг на 1 мл! Оно образуется в кишечнике в результате деятельности бактерий и всасывается при условии, что в организме имеется особое белковое соединение, содержащее углеводы (мукопротеид). Недостаточное содержание кобальта в пище или отсутствие фактора всасывания и обусловливает развитие болезненных симптомов.

Комплексное соединение кобальта получило название кобаламин. Известно несколько производных кобаламина. Продукт, полученный из печени, назвали витамином B12. Его сложная формула приведена на схеме рисунка 18.

Рис. 18. Витамин B12 (цианкобаламин)

Как видно, ион кобальта (II) помещается в центре цикла, очень похожего на порфириновый. Но, внимательно посмотрев на формулу, мы заметим и важное отличие. Комплекс витамина B12 построен так, что два пиррольных ядра (на схеме слева) соединены непосредственно друг с другом, а другая пара пиррольных ядер соединена через группу СН, т. е. так, как у порфириновых колец. Такие циклы называются корриновыми. Типичное для различных кобаламинов строение, по-видимому, имеет отношение и к их своеобразным каталитическим свойствам.

На схеме показано соединение, содержащее цианогруппу (-CN). В природном коферменте вместо этой группы содержится другая, а именно остаток дезоксиаденозина:

Соединение, содержащее цианогруппу (-CN)

Цианогруппа (по которой это соединение часто называют цианкобаламином) может отщепляться в процессе выделения витамина.

Витамин B12 необходим для образования эритроцитов. Механизм его действия еще во многом не ясен, но доказано, что, наряду с другими функциями, этот витамин осуществляет перенос групп -СН3 (и других алкильных групп) на важных стадиях обмена веществ. Перенос этот интересен тем, что в нем промежуточным продуктом является соединение, в котором имеется связь между ионом кобальта и атомом углерода переносимой группы, например -СН3. С точки зрения химика, образование таких связей (металл — углерод) совершенно необычно; соединения этого типа получаются искусственно и хорошо известны, но в природе, как правило, не встречаются. Кобаламиновые комплексы — пока единственный пример такого рода.

Кальций и магний

Мы уже неоднократно имели возможность заметить, что один и тот же металл выполняет несколько биохимических обязанностей: железо переносит кислород и электроны, медь участвует в аналогичных процессах, цинк способствует гидролизу полипептидов и разложению бикарбонатов и т. д.

Но кальций побивает в этом отношении все рекорды. Ионы кальция образуют защитные оболочки у кораллов, скопления которых достигают громадных размеров; кальций необходим для работы ферментов, обеспечивающих мышечную деятельность; кальций регулирует систему свертывания крови, активирует некоторые ферменты; он же входит в состав костей и зубов у позвоночных и т. д.

Круговороту кальция способствует различная растворимость его углекислых солей: карбонат СаСО3 мало растворим в воде, а гидрокарбонат Са(НСО3)2 растворим довольно хорошо, причем концентрация его в растворе зависит от концентрации диоксида углерода и, следовательно, от парциального давления этого газа над раствором; поэтому, когда углекислые воды горных источников вытекают на поверхность земли и теряют диоксид углерода (углекислый газ), карбонат кальция выделяется в виде осадка, образуя кристаллические сростки (сталактиты и сталагмиты в пещерах). Микроорганизмы осуществляют аналогичный процесс, извлекая из морской воды гидрокарбонат и используя карбонат для строительства защитных оболочек.

В организмах высших животных кальций также выполняет функции, связанные с созданием механически прочных структур. В костях кальций содержится в виде солей, близких по составу к минералу апатиту 3Са3(РO4)2*CaF2(Cl). Символ хлора в скобках указывает на частичное замещение фтора на хлор в этом минерале.

Формирование костной ткани происходит под влиянием витаминов группы D; эти витамины, в свою очередь, синтезируются в организмах под влиянием ультрафиолетового излучения Солнца. Значительное количество витамина D имеется в рыбьем жире, поэтому при дефиците витамина в детском питании кальций не всасывается в кишечнике и развиваются симптомы рахита; врачи назначают в качестве лекарства рыбий жир или чистые препараты витамина D. Избыток этого витамина очень опасен: он может вызвать обратный процесс — растворение костной ткани!

Из пищевых продуктов кальций содержится в молоке, молочных продуктах (особенно много его в твороге, так как белок молока казеин связан с ионами кальция), а также в растениях.

Белки, имеющие небольшую молекулярную массу (около 11000) и содержащиеся в мышцах рыб, проявляют способность активно захватывать ионы кальция. Некоторые из них (например, альбумин карпа) были тщательно изучены; их состав оказался необычным: они содержат много аминокислоты аланина и фенилаланина и вовсе не содержат гистидина, цистеина и аргинина — почти неизменных составных частей других белков.

Для комплексных соединений иона кальция характерно образование мостиков — ион связывает преимущественно карбоксильные и карбонильные группы в образующемся комплексе.

Координационное число иона кальция велико и достигает восьми. Эта его особенность, по-видимому, лежит в основе действия фермента рибонуклеазы, который катализирует важный для организма процесс гидролиза нуклеиновых кислот (РНК), сопровождающийся освобождением энергии. Предполагают, что ион кальция образует жесткий комплекс, сближая друг с другом молекулу воды и фосфатную группу; находящиеся в окружении иона кальция остатки аргинина способствуют фиксации фосфатной группы. Она поляризуется кальцием и легче подвергается атаке со стороны молекулы воды. В результате фосфатная группа отщепляется от нуклеотида. Было доказано также, что ион кальция в этой ферментной реакции нельзя заменить на другие ионы с той же степенью окисления.

Ионы кальция активируют и другие ферменты, в частности α-амилазу (катализирует гидролиз крахмала), но в этом случае кальций все же можно заменить в искусственных условиях трехзарядным ионом металла неодима.

Кальций является и важнейшим компонентом той удивительной биологической системы, которая больше всего походит на машину, — системы мышц. Эта машина производит механическую работу за счет химической энергии, заключенной в веществах пищи; ее коэффициент полезного действия высок; она почти мгновенно может быть переведена из состояния покоя в состояние движения (причем в покое энергия не расходуется); ее удельная мощность около 1 кВт на 1 кг массы, скорость движений хорошо регулируется; машина вполне пригодна для длительной работы, требующей повторяющихся движений, срок службы около 2,6*106 операций. Примерно так описал мышцу проф. Уилки в популярной лекции, добавив еще, что машина ("линейный двигатель") может служить пищей.

Ученым очень трудно было выяснить, что же происходит внутри этого "линейного двигателя", каким образом химическая реакция порождает целенаправленное движение и какую роль играют во всем этом ионы кальция. В настоящее время установлено, что мышечная ткань состоит из волокон (вытянутых клеток), окруженных мембраной (сарколеммой). В мышечных клетках находятся миофибриллы — сократительные элементы мышцы, которые погружены в жидкость — саркоплазму. Миофибриллы состоят из сегментов — саркомеров. В саркомерах находится система из нитей двух типов — толстых и тонких.

Толстые нити состоят из белка миозина. Молекулы миозина представляют собой вытянутые частицы, имеющие на одном конце утолщение — головку. Головки выступают над поверхностью нитеобразной молекулы и способны располагаться под различными углами к оси молекулы. Молекулярная масса миозина равна 470000.

Тонкие нити образованы молекулами белка актина, имеющими сферическую форму. Молекулярная масса актина — 46000. Частицы актина расположены так, что получается длинная двойная спираль. Каждые семь молекул актина связаны нитеобразной молекулой белка тропомиозина, несущей на себе (ближе к одному из концов) шарообразную молекулу еще одного белка — тропонина (рис. 19). Тонкая нить скелетной мышцы содержит до 400 молекул актина и до 60 молекул тропомиозина. Таким образом, работа мышцы основывается на взаимодействии деталей, построенных из четырех белков.

Рис. 19. Механизм мышечного сокращения: а — мостики между нитями актина и миозина; б — мышца расслабленная и мышца в состоянии сокращения: нити актина вдвинуты между нитями миозина

Перпендикулярно осям нитей располагаются белковые образования — z-пластинки, к которым прикрепляются одним концом тонкие нити. Толстые нити размещены между тонкими. В расслабленной мышце расстояние между z-пластинками составляет приблизительно 2,2 мк. Сокращение мышцы начинается с того, что под влиянием нервного импульса выступы (головки) молекул миозина прикрепляются к тонким нитям и возникают так называемые сшивки, или мостики. Головки толстых нитей по обе стороны пластинки наклонены в противоположные стороны, поэтому, поворачиваясь, они втягивают тонкую нить между толстыми, что и приводит к сокращению всего мышечного волокна.

Источником энергии для работы мышцы является реакция гидролиза аденозинтрифосфорной кислоты (АТФ); присутствие этого вещества необходимо для работы мышечной системы.

В 1939 г. В. А. Энгельгардт и М. Н. Любимова доказали, что миозин и комплекс его с актином — актомиозин являются катализаторами, ускоряющими гидролиз АТФ в присутствии ионов кальция и калия, а также магния, который вообще часто облегчает гидролитические реакции. Особая роль кальция заключается в том, что он регулирует образование сшивок (мостиков) между актином и миозином. Молекула АТФ присоединяется к головке молекулы миозина в толстых нитях. Затем происходит какое-то химическое изменение, приводящее этот комплекс в активное, но неустойчивое состояние. Если такой комплекс вступит в соприкосновение с молекулой актина (на тонкой нити), то произойдет освобождение энергии вследствие реакции гидролиза АТФ. Эта энергия и заставляет мостик отклониться и подтянуть толстую нить ближе к белковой пластинке, т. е. вызвать сокращение мышечного волокна. Далее к актин-миозиновому комплексу присоединяется новая молекула АТФ, и комплекс немедленно распадается: актин отделяется от миозина, мостик более не связывает толстую нить с тонкой — мышца расслабляется, а миозин и АТФ остаются связанными в комплекс, находящийся в неактивном состоянии.

Ионы кальция содержатся в трубочках и пузырьках, окружающих одиночное мышечное волокно. Эта система трубочек и пузырьков, образованная тонкими мембранами, называется саркоплазматической сетью; она погружена в жидкую среду, в которой и находятся нити. Под влиянием нервного импульса изменяется проницаемость мембран, и ионы кальция, покидая саркоплазматическую сеть, выходят в окружающую жидкость. Предполагается, что ионы кальция, соединяясь с тропонином, влияют на положение нитевидной молекулы тропомиозина и переводят ее в такое положение, при котором активный комплекс АТФ — миозин может присоединиться к актину. По-видимому, регуляторное влияние ионов кальция распространяется с помощью нитей тропомиозина сразу на семь молекул актина.

После сокращения мышцы кальций очень быстро (доли секунды) удаляется из жидкости, вновь уходя в пузырьки саркоплазматической сети, и мышечные волокна расслабляются. Следовательно, механизм работы "линейного двигателя" заключается в попеременном вдвигании системы толстых миозиновых нитей в пространство между тонкими нитями актина, прикрепленными к белковым пластинкам, причем этот процесс регулируется ионами кальция, периодически появляющимися из саркоплазматической сети и снова уходящими в нее.

Ионы калия, содержание которого в мышце гораздо больше содержания кальция, способствуют превращению глобулярной формы актина в нитчатую — фибриллярную: в таком состоянии актин легче взаимодействует с миозином.

С этой точки зрения становится понятным, почему ионы калия усиливают сокращение мышцы сердца, почему они необходимы вообще для развития мышечной системы организма.

Ионы кальция — деятельные участники процесса свертывания крови. Нет надобности говорить, насколько важен этот процесс для сохранения жизни организма. Если бы кровь была лишена способности свертываться, ничтожная царапина представляла бы серьезную угрозу жизни. Но в нормальном организме кровотечение из небольших ран прекращается уже через 3-4 мин. На поврежденных тканях образуется плотный сгусток белка фибрина, закупоривающий рану. Исследование образования кровяного сгустка показало, что в его создании принимают участие сложные системы, включающие несколько белков и специальных ферментов. Не менее 13 факторов должны действовать согласованно для правильного хода всего процесса.

При повреждении сосуда кровеносной системы в кровь поступает белок тромбопластин. Ионы кальция принимают участие в действии этого белка на вещество, называемое протромбином (т. е. "источником тромбина"). Еще один белок (из класса глобулинов) ускоряет превращение протромбина в тромбин. Тромбин действует на фибриноген — высокомолекулярный белок (его молекулярная масса около 400000), молекулы которого имеют нитевидное строение. Фибриноген образуется в печени и является растворимым белком. Однако под влиянием тромбина он превращается сначала в мономерную форму, а затем полимеризуется, и получается нерастворимая форма фибрина — тот самый сгусток, который и прекращает кровотечение. В процессе образования нерастворимого фибрина опять участвуют ионы кальция.

Натрий и калий

Оба эти элемента находятся в первой группе системы Менделеева — они соседи и во многих отношениях похожи друг на друга. Активные, типичные металлы, атомы которых легко расстаются со своим единственным внешним электроном, переходя в ионное состояние, эти элементы образуют многочисленные соли, широко распространенные в природе. Однако более внимательное исследование обнаруживает, что биологические функции натрия и калия не одинаковы. Соли калия лучше поглощаются почвенным комплексом, поэтому в тканях растений оказывается относительно больше калия, тогда как соли натрия преобладают в морской воде. В биологических машинах оба эти иона иногда действуют совместно, иногда прямо противоположным образом.

Рис. 20. Распространение нервного импульса: а — ионы калия покидают нервное волокно быстрее, чем ионы натрия входят в него; б — диффузия ионов натрия усиливается; в — на внешней стороне нервного волокна возникает отрицательный заряд; г — исходное состояние восстанавливается, но отрицательный заряд появляется слева — в направлении распространения нервного импульса

В распространении по нерву электрических импульсов принимают участие оба иона. В покоящемся нерве, во внутренней его части, сосредоточен отрицательный заряд (рис. 20, а), а на внешней стороне — положительный; концентрация ионов калия больше концентрации ионов натрия внутри нерва. При раздражении изменяется проницаемость мембраны нервного волокна, и ионы натрия устремляются внутрь нерва быстрее, чем ионы калия успевают выходить оттуда (рис. 20, б). В результате на внешней стороне нервного волокна появляется отрицательный заряд (там не хватает катионов), а внутри нерва (где имеется теперь избыток катионов) возникает положительный заряд (рис. 20, в). На внешней стороне волокна начинает происходить диффузия ионов натрия от соседних участков к тому, который обеднен ионами этого металла. Энергичная диффузия ведет к появлению отрицательного заряда уже на соседних участках (рис. 20, г), а на исходном восстанавливается первоначальное состояние. Таким образом, состояние поляризации (плюс — внутри, минус — снаружи) передвинулось по нервному волокну. Дальше все процессы повторяются, и нервный импульс довольно быстро распространяется по всему нерву. Следовательно, механизм распространения электрического импульса по нерву обусловлен различной проницаемостью мембраны нервного волокна по отношению к ионам натрия и калия.

Вопрос о проницаемости мембран клеток для тех или иных веществ крайне важен. Прохождение вещества через биологическую мембрану далеко не всегда напоминает простую диффузию через пористую перегородку. Так, например, глюкоза и другие углеводы проходят через мембрану эритроцита с помощью специального переносчика, который проводит молекулы через мембрану. При этом должны выполняться специальные условия — молекула углевода должна иметь определенную форму, она должна быть изогнута так, чтобы ее контур приобрел очертания кресла, иначе перенос может не состояться. Концентрация углеводов во внешней среде больше, чем внутри эритроцита, поэтому такой перенос называют пассивным.

Бывают случаи, когда мембрана наглухо закрывается для определенных ионов: в частности, в митохондриях внутренняя мембрана вообще не пропускает ионов калия. Однако эти ионы попадают внутрь митохондрии, если в окружающей среде имеются антибиотики валиномицин или грамицидин. Валиномицин специализируется, главным образом, на ионах калия (может переносить и ионы рубидия и цезия), а грамицидин переносит, кроме калия, также ионы натрия, лития, рубидия и цезия.

Было выяснено, что молекулы таких проводников имеют форму баранки, радиус отверстия которой таков, что внутри баранки помещается ион калия, натрия или другого щелочного металла. Эти антибиотики назвали ионофорами ("носителями ионов"). На рис. 21 показаны схемы переноса ионов сквозь мембрану молекулами валиномицина и грамицидина. Весьма вероятно, что то токсическое действие, которое антибиотики оказывают на различные микроорганизмы, как раз и связано с тем, что в их присутствии мембраны начинают пропускать внутрь те ионы, которым быть там не полагается; это нарушает работу химических систем клетки микроорганизма и ведет к ее гибели или к серьезным расстройствам, прекращающим ее размножение.

Рис. 21. Схема работы переносчиков ионов — ионофоров: а — подвижный переносчик (валиномицин); б — перенос с помощью канала (грамицидин)

Существенную роль в биологических машинах играют активные переносы через мембраны (см. гл. 8). Возникает вопрос: откуда же черпается энергия, необходимая для активного переноса, и можно ли осуществить его без специального переносчика?

Что касается энергии, то в конечном счете она доставляется все теми же универсальными молекулами АТФ или креатинфосфатом, гидролиз которых сопровождается освобождением больших количеств энергии. А вот относительно переносчиков вопрос менее ясен, хотя несомненно, что без ионов металлов калия и натрия здесь не обойтись.

Концентрация различных веществ в клетке (белковых и минеральных) выше, чем в окружающей среде; по этой причине чаще всего клетка оказывается под угрозой чрезмерного проникновения в нее воды (в результате осмоса). Для того чтобы избавиться от этого, клетка выкачивает ионы натрия в окружающую среду и тем самым выравнивает осмотическое давление. По этой причине концентрация ионов натрия в клетке меньше, чем в среде. Здесь опять обнаруживается различие между натрием и калием. Удаляется натрий, и концентрация ионов калия оказывается относительно больше внутри клетки. Так, эритроцит содержит калия примерно в пять раз больше, чем натрия.

И в мышцах велико содержание калия: на 100 г сырой мышечной ткани калия содержится 366 мг, а натрия 65 мг. Калий в мышцах облегчает переход глобулярной формы актина в фибриллярную, которая и соединяется с миозином (см. выше).

Известны некоторые случаи, когда фермент, активируемый ионом калия, подавляется ионами натрия, и наоборот. Поэтому открытие фермента, для действия которого необходимы оба иона, привлекло внимание биохимиков. Фермент этот ускоряет гидролиз АТФ и называется (K + Na) АТФ-аза. Для понимания его роли и механизма действия надо опять обратиться к процессам переноса.

Как мы уже указывали, внутри клеток повышена концентрация ионов калия, а в окружающей клеточной среде относительно больше натрия. Выкачивание ионов натрия из клетки ведет к усиленному поступлению в клетку ионов калия, а также и других веществ (глюкозы, аминокислот). Ионы натрия и калия могут обмениваться по принципу "ион на ион", и тогда не возникает разности потенциалов по обе стороны клеточной мембраны. Но если внутри клетки оказывается больше ионов калия, чем оттуда ушло ионов натрия, возможно возникновение скачка потенциалов (около 100 мВ); система выкачивания натрия называется "натриевым насосом". Если при этом появляется разность потенциалов, то применяют термин "электрогенный натриевый насос".

Введение больших количеств ионов калия в клетку оказывается необходимым, так как ионы калия способствуют синтезу белка (в рибосомах), а также ускоряют процесс гликолиза.

В мембране клетки и располагается (K + Na) АТФ-аза — белок с молекулярной массой 670 000, который до сих пор не удалось отделить от мембран. Этот фермент гидролизует АТФ, а энергия гидролиза используется для переноса в направлении роста концентрации.

Замечательным свойством (К + Na) АТФ-азы является то, что она в процессе гидролиза АТФ активируется изнутри клетки ионами натрия (и тем обеспечивает выведение натрия), а снаружи клетки (со стороны среды) — ионами калия (облегчая их введение в клетку); в итоге и происходит необходимое клетке распределение ионов этих металлов. Интересно отметить, что ионы натрия в клетке никакими другими ионами заменить нельзя. АТФ-аза активируется изнутри только ионами натрия, но ионы калия, действующие снаружи, можно заменить на ионы рубидия или аммония.

Для функций отдельных органов, в частности сердца, имеет значение не только концентрация ионов калия, натрия, кальция и магния, но и их отношение, которое должно лежать в определенных пределах. Отношение концентраций этих ионов в крови человека не слишком отличается от соответствующего отношения, характерного для морской воды. Возможно, что биологическая эволюция от первых форм жизни, возникших в водах первичного океана или на его отмелях, до ее высших форм, сохранила некоторые химические "отпечатки" далекого прошлого...

Возвращаясь к началу этой главы, мы снова вспоминаем о многофункциональности ионов, об их способности выполнять в организмах самые разнообразные обязанности. Кальций, натрий, калий, а также кобальт проявляют эту способность неодинаковым образом. Кобальт образует прочный комплекс корринового типа, и уже этот комплекс катализирует разнообразные реакции. Кальций, натрий, калий выполняют функции активаторов. А вот ион магния может действовать и как активатор, и как составная часть прочного комплексного соединения — хлорофилла, одного из самых важных соединений, созданных природой.

Выдающийся ученый К. А. Тимирязев посвятил хлорофиллу труд, названный им "Солнце, жизнь и хлорофилл", указав в нем, что именно хлорофилл и есть то звено, которое связывает процессы выделения энергии на Солнце с жизнью на Земле.

В следующей главе мы и рассмотрим свойства этого интересного соединения.

Загрузка...