Глава 7. Железо и медь в организмах; их роль в энергетике клетки

Эти два металла играют исключительно важную роль как в технической культуре человечества, так и в организме человека. Но в технике используют свободные металлы или их сплавы, а в организмах действуют ионы железа и меди.

Природа экономна. Создавая сложные комплексные соединения металлов, она приспособила их для выполнения различных биохимических "обязанностей". Одно и то же соединение железа способно выполнять различные виды работы, смотря по тому, с каким белком оно связано и в каком валентном состоянии находится ион металла. Поэтому железо, как и медь, необходимо и для нормальной деятельности ферментов, и для процесса кроветворения, и для переноса кислорода, и для организации движения электронов от одной молекулы к другой в процессе обмена веществ (метаболизма).

Железо

Как мы уже указывали, ионы железа чаще всего встречаются в форме комплексных соединений с протопорфирином:

Ионы железа чаще всего встречаются в форме комплексных соединений с протопорфирином

Ионы железа в степени окисления +2, занимая внутреннюю область протопорфирина, замещают два атома водорода, которые находятся в группах NH, а два других атома азота соединяются с ионом железа за счет имеющихся у азота пар свободных электронов. При этом возникают сложные электронные орбитали, охватывающие все кольцо атомов С и N, окружающее центральный ион. Получившееся соединение — ферропротопорфирин — называется гемом. Это плоский цикл (макроцикл) с ионом железа(II) в центре. Гем входит в состав гемоглобина:

Ферропротопорфирин — называется гемом. Гем входит в состав гемоглобина

Подобная структура встречается часто, ее находят также в миоглобине и большинстве цитохромов, о которых речь будет ниже.

Гемоглобин — продукт присоединения гема к особому белку — глобину, с которым гем соединен прочно (рис. 8).

Рис. 8. Схема связывания кислорода гемоглобином

Клетки организма для своей жизнедеятельности нуждаются в кислороде. Того кислорода, который просто растворен в воде, а следовательно, может оказаться и в клеточных жидкостях, клетке не хватает. В 1 л воды при 20°С и нормальном давлении растворяется всего 6,6 см3 кислорода (что соответствует содержанию 3*10-4 моль кислорода в 1 л). Обмен веществ идет значительно быстрее, чем процессы проникновения кислорода воздуха в воду, и при такой его растворимости клетки организма просто задохнулись бы. Но кровь обладает особыми свойствами: в тех же условиях в 1 л крови человека растворяется 200 см3 кислорода! Это — результат связывания кислорода гемоглобином — пигментом крови, веществом ярко-красного цвета, содержащимся в красных кровяных шариках — эритроцитах.

Гемоглобин выполняет роль переносчика кислорода от легких к клеткам, причем степень окисления иона железа не изменяется при соединении всего комплекса с кислородом! Соединение это, называемое оксигемоглобином, непрочно: при повышенном давлении кислорода (в альвеолах легких) оно образуется, а там, где давление кислорода ниже (в дышащей клетке), распадается, освобождая кислород. Процесс следует схематическому уравнению:

Соединение это, называемое оксигемоглобином, непрочно: при повышенном давлении кислорода (в альвеолах легких) оно образуется, а там, где давление кислорода ниже (в дышащей клетке), распадается, освобождая кислород

Равновесие смещается в правую сторону в легких и в левую — в клетках. Окраска оксигемоглобина более яркая, поэтому венозная кровь, содержащая восстановленный (лишенный кислорода) гемоглобин, по сравнению с артериальной кажется темной. Каждый эритроцит несет в себе 280 млн. молекул гемоглобина. Молекулярная масса белка-глобина около 65000. Вот какое огромное сооружение тащит эритроцит для того, чтобы обеспечить своевременную доставку кислорода клеткам. На одну молекулу глобина приходится четыре атома железа, иначе говоря, четыре гема. Каждый гем окружен сложной белковой цепочкой, состоящей из остатков аминокислот: 574 аминокислоты израсходовала природа на создание этих цепочек. Всего цепочек четыре: две из них одинаковые и называются α-цепями, а две другие — тоже одинаковые, но отличные от первых, — β-цепями (рис. 9).

Рис. 9. Четвертичная структура гемоглобина. Черные диски обозначают молекулы гема

С каждым атомом железа соединяется одна кислородная молекула, т. е. одна частица гемоглобина может соединиться с четырьмя молекулами кислорода.

Существует какая-то таинственная связь между всеми атомами железа в гемоглобине. Так, если три атома железа соединились с молекулой кислорода О2, то ускоряется связывание кислорода и четвертым атомом железа. Гидрокарбонаты, молочная кислота — продукты жизнедеятельности — ускоряют отщепление кислорода.

Каким образом кислород соединяется с железом? На этот счет нет единого мнения, но несомненно, что кислород попадает на шестое координационное место в гемоглобине. Протопорфирин — плоская молекула. Ион железа окружен четырьмя атомами азота пиррольных ядер. Пятое место в его координационной сфере занято той аминокислотой, которая связывает весь комплекс с белком (по-видимому, это гистидин). Шестое место свободно — это реакционное пространство комплекса, та зона, в которой происходят реакции. Вот в эту зону и попадает молекула кислорода (рис. 8).

Заметим, что синтетические производные порфирина, содержащие вместо железа ионы марганца(II и III), цинка, никеля(II), меди(II), не обладают способностью связывать кислород обратимо (т. е. и поглощать, и отдавать его при изменениях давления газа). Только кобальтовый комплекс (кобоглобин) обнаруживает эту способность, выраженную у него приблизительно в три раза слабее, чем у гема. Интересно, что если в гемоглобине окислить ион железа (II) до степени окисления +3, то способность связывать кислород исчезает. Полагают, что это объясняется неспособностью иона железа(III) легко передавать электроны с низших орбиталей иона на орбитали кислорода.

Огромное значение для правильного функционирования переносчика кислорода имеет строение белковой части — глобина. В результате ряда выдающихся исследований (особенно П. Перутца) было доказано, что каждая из α- и β-цепей свернута так, что ее углеводородная часть спрятана внутри клубка, а группы -ОН, NH2, -СООН, способные образовывать связи с водой, расположены на его наружной стороне. Клубки размещены приблизительно по углам тетраэдра (не совсем правильного). Гемы лежат в особых углублениях на поверхности огромной молекулы и относительно далеко друг от друга. Но когда к гемам присоединяется кислород, происходит смещение β-цепей при неизменном характере свертывания α-цепей. β-цепи расходятся, по-видимому, в результате сдвига атомов железа после их связывания с кислородом; это в свою очередь может облегчить присоединение кислорода к последнему (четвертому) атому железа. Перутц, сравнивая гемоглобин с ферментами, заметил, что между этими веществами имеется сходство: "...это подвижные механизмы, а вовсе не какие-то статические поверхности, волшебно наделенные каталитическими свойствами". Эта мысль, в общем, получила подтверждение: детали биологических машин не абсолютно жестки, они способны приспособляться к контурам обрабатываемых изделий, достигая высокой эффективности и точности, невозможной при использовании жестких инструментов.

Миоглобин. Железопорфириновый комплекс входит и в состав миоглобина — белкового соединения, функция которого заключается в сохранении запаса кислорода в мышцах. Как и гемоглобин крови, миоглобин обратимо связывает кислород.

В отличие от гемоглобина, миоглобин содержит одну белковую полипептидную цепь и всего один гем на молекулу белка. Полученный из тканей кашалота миоглобин оказался состоящим из 153 аминокислотных остатков на молекулу. Полипептидная цепочка имеет спиральные участки. Чередование аминокислот в ней похоже, но не вполне совпадает с последовательностью аминокислотных остатков в белке гемоглобина. Как и в гемоглобине, железо миоглобина находится в степени окисления +2 и сравнительно легко окисляется до степени окисления +3 (полученный продукт называется метмиоглобином — он не способен обратимо связывать кислород).

Современные методы исследования показали, что те углубления на поверхности белковой части гемоглобина и миоглобина, в которых прячется ион железа, устроены так, что ион металла окружен главным образом углеводородными частями молекул аминокислот. Эти части слабо взаимодействуют с водой — обладают гидрофобными свойствами. Поэтому углубление, содержащее ион железа (гидрофобный карман, как его часто называют), не заполняется молекулами воды и вполне доступно для таких молекул, как кислород или оксид углерода(II). Это облегчает, конечно, работу по переносу кислорода, но создает опасность отравления, если организм находится в атмосфере, содержащей угарный газ (СО). Молекула СО тоже попадает в карман и застревает в нем. (Сродство СО к гемоглобину гораздо большее, чем к изолированному гему, т. е. комплексу, не связанному с глобином. То же относится и к миоглобину).

При первых же признаках отравления угарным газом пострадавшего надо вывести на свежий воздух. Кислород быстро вытеснит молекулы СО из соединения с гемоглобином (это соединение называется карбоксигемоглобином) и восстановит нормальный транспорт кислорода к дышащим клеткам.

Описанные комплексы железа с порфириновым циклом переносят кислород. Аналогичные соединения выполняют и множество других функций. Среди них большого внимания заслуживает процесс переноса электронов.

Цитохромы. Мы уже отмечали, что биологические машины работают так, что молекула пищевого вещества не сразу, а постепенно изменяет свой состав. Слишком быстрые реакции могли бы создать беспорядок в клеточных механизмах. Важным этапом обмена вещества (метаболизма) является отщепление от пищевых веществ водорода. Атомы водорода при этом переходят в ионное состояние, а отделенные от них электроны поступают в дыхательную цепь; в этой цепи, переходя от одного соединения к другому, они отдают свою энергию на образование богатых энергией молекул аденозинтрифосфорной кислоты (АТФ), а сами, в конечном счете, попадают к молекуле кислорода и присоединяются к ней. Получившийся ион кислорода О2 образует с ионами водорода Н+ молекулы воды (рис. 10).

Рис. 10. Схема дыхательной (электронпереносящей) цепи: ФП — флавопротеид, FeS-белок — железосерусодержащий белок, KoQ — убихинон, цит b, s1, S2, а, а3 — система цитохромов

Мостиком, по которому бегут энергичные электроны, служат комплексные соединения железа с порфириновым ядром, очень похожие на те, которые входят в состав гемоглобина.

Рассмотрим подробнее природу переносчиков электронов — цитохромов. Название указывает на то, что это — окрашенные соединения ("цитохром" значит "клеточная окраска"[6]). Их существенное отличие от гемоглобина и миоглобина в том, что вся работа цитохромов построена на изменениях степени окисления железа. Переходы Fe3+ + = Fe2+, Fe2+ — ё = Fe3+ и создают возможность перебрасывать электрон от одного цитохрома к другому (рис. 11)

По строению комплексного иона цитохромы очень похожи на гем; различие заключается лишь в боковых цепях порфиринового кольца и, конечно, в том, что в цитохромах железо изменяет степень окисления. Известно несколько цитохромов, отличающихся спектрами поглощения. Кейлин разделил цитохромы на три класса: а, b и с. В настоящее время известно несколько разновидностей цитохромов каждого класса. Лучше других изучен цитохром с, так как только его можно легко выделить из клеток водными солевыми растворами.

Доказано, что в этом соединении протопорфириновое кольцо, содержащее в центре ион железа, связано с белком за счет ковалентных связей атомов кольца с остатком цистеина в молекуле белка. С кислородом или оксидом углерода (II) цитохром не реагирует, поскольку у него шестое координационное место в координационной сфере железа занято аминокислотой — метионином.

Связь с белком через порфириновое ядро настолько характерна, что служит отличительным признаком для отнесения данного цитохрома к классу с. В настоящее время открыто и более или менее изучено много цитохромов этого класса (например, c1, отмеченный на рис. 10), отличающихся строением белковой части, числом гемов в молекуле, молекулярной массой и спектрами поглощения.

В цепи переноса электронов цитохром с передает электроны цитохромам а и а3, эти два цитохрома имеют общее название — цитохромоксидаза. Имеются данные о наличии в цитохромоксидазе ионов меди. Возможно, что медь связывает цитохромы а и а3, передавая электроны от а к а3. Весь комплекс в целом обладает большой молекулярной массой — 240000. Принимая поток электронов от частиц цитохрома с, он направляет его на молекулярный кислород. Следовательно, ион железа(III) в цитохромоксидазе присоединяет электрон от цитохрома с и переходит в ион железа(II), затем электрон присоединяется к кислороду, а железо возвращается к прежней степени окисления (см. рис. 11).

Рис. 11. Принцип действия цитохромов. Ион железа изменяет свою степень окисления, передавая электроны

Заряженные отрицательно ионы кислорода реагируют с ионами водорода окружающей среды и образуют воду, или пероксид водорода Н2O2. Пероксид быстро разлагается специальным ферментом каталазой на воду и кислород. Если бы не было этого процесса, пероксид водорода мог бы оказать вредное действие на вещества клетки.

Цитохромы а и а3 содержат протопорфириновое кольцо такого же типа, как и кольцо в хлорофилле; пятое координационное место в этих цитохромах занято аминогруппой, принадлежащей белковому носителю железо-порфиринового комплекса.

В цепи переноса электронов цитохрому с предшествует еще один цитохром, — именно цитохром b. Этот цитохром также имеет протопорфириновое кольцо с ионом железа в центре, причем кольцо не связано с белком через боковые группы (как у цитохрома с). Молекулярная масса цитохрома типа b равна приблизительно 28000, она значительно меньше, чем у цитохромов а и а3. Цитохром b получает те электроны, которые освобождаются в цикле Кребса и проходят через убихинон.

В общем виде дыхательная цепь представлена на рисунке 10. Между флавопротеидом (ФП) и убихиноном находится еще один вид переносчика — белок, содержащий железо и серу (см. ниже о ферредоксинах). Электроны, проходя всю эту цепочку передатчиков, теряют часть энергии; энергия расходуется на создание молекул АТФ. По всем данным, образование АТФ (окислительное фосфорилирование) происходит на участке дыхательной цепи между b и Сu на участке, предшествующем убихинону, а также между цитохромоксидазой и кислородом.

Механизм окислительного фосфорилирования будет рассмотрен далее (в гл. 8).

Ферредоксины. Итак, мы уже знаем, что перенос электронов осуществляется при помощи ряда соединений (цитохромов), в которых ионы железы связаны в комплекс с протопорфириновым циклом. Однако тщательные химические исследования белков дыхательной цепи привели биохимиков к выводу, что существует целый класс белковых соединений железа иной природы, но также принимающих участие в переносе электронов. Выяснилось, что эти белки содержат железо и серу (железо-серосодержащие белки), причем атомы серы частично входят в состав аминокислоты — цистеина, а частично находятся в какой-то иной форме, получившей название лабильной ("подвижной") серы. Лабильная сера легко выделяется в виде сероводорода H2S при подкислении растворов белка. Известны и такие белки этого класса, которые вовсе не содержат лабильной серы. В настоящее время для всех этих соединений используется термин "ферредоксин" (от fer — "железо" и redoxin — "восстанавливающий и окисляющий белок").

Ферредоксины были найдены в бактериях (клостридиум, кишечная палочка), в растениях (шпинат) и в органах животных (печень, надпочечные железы); они выполняют работу по переносу электронов в таких важных реакциях, как процессы фотосинтеза, фиксации атмосферного азота, образования АТФ и др.

Белковая цепочка ферредоксинов способна складываться так, чтобы взаимодействующие лиганды оказывались в благоприятном для реакции взаимном расположении. На одну молекулу белка приходится от одного до восьми атомов железа. Эти атомы (ионы) соединены с белком через короткие цепочки, состоящие из цистеиновых остатков. По-видимому, в тех белках, которые содержат более одного иона железа, между ионами металла имеется связь, осуществляемая одним электроном так, что все они вместе образуют единую группу, или кластер ("рой").

Если в белке находятся два атома лабильной серы на два атома железа (тип Fe2S2), то возникает связь между ионами железа за счет мостика из атомов серы. Схематически состояния, в которых находится железо и его ближайшее окружение, можно представить так (рис. 12, а): средние и концевые группы лежат во взаимноперпендикулярных плоскостях. В концевых группах символ S обозначает серу аминокислоты цистеина.

Рис. 12. Строение ферредоксина: а — окисленная форма; б — восстановленная форма, S — обозначает серу остатка цистеина

После присоединения электрона может возникнуть структура, показанная на рисунке 12, б.

В процессах фотосинтеза принимают участие именно эти ферредоксины. Их присутствие в хлоропластах растений доказано.

Белки некоторых микроорганизмов содержат один атом железа на молекулу (рубредоксины). Они имеют молекулярную массу около 10000; ион железа в них находится в тетраэдрической координации и окружен четырьмя цистеиновыми остатками. Функция этих белков пока не известна.

В низших организмах и фотосинтезирующих бактериях были найдены белки, содержащие на молекулу четыре и восемь атомов железа. Их внутреннее строение до конца не изучено, но несомненно, что все они содержат цистеиновые остатки, связывающие железные кластеры с белковой частью молекулы, и все обеспечивают передачу электронов в самых разнообразных биохимических процессах — от фотосинтеза до фиксации атмосферного азота.

Из фотосинтезирующих бактерий был выделен ферредоксин типа Fe4S4, с молекулярной массой около 9600. Другой аналогичный белок, содержащийся в этих бактериях, имеет молекулярную массу 10100 и во всех отношениях близок к первому. Оба они — одноэлектронные восстановители. В окисленной форме белок парамагнитен (один неспаренный электрон), в восстановленной — диамагнитен.

Резервы железа

Красные кровяные шарики — эритроциты живут всего около двух месяцев, затем они разрушаются и заменяются новыми. В то же время железо, которое содержится в эритроцитах (в форме гемоглобина), практически не выводится из организма. Человек получает очень немного железа с пищей, поэтому создается впечатление, что железо совершает в организме какой-то круговорот. Следовательно, должно существовать депо — "склад", предназначенный для хранения соединений железа, уже использованных ранее для создания гемоглобина и теперь дожидающихся, когда они снова понадобятся.

Ферритин. Надо иметь в виду, что ионы железа(III) не безвредны — в свободном (т. е. гидратированном) состоянии они обладают токсическими свойствами. Железо в такой степени окисления сохраняется в организме лишь после предварительного обезвреживания.

В 1937 г. из селезенки лошади был получен железосодержащий белок, названный ферритином и оказавшийся тем самым веществом, которое и сохраняет ионы железа (III) в нетоксичной форме. Позже выяснилось, что ферритин встречается не только в органах животных, но и у растений и даже у грибов.

У человека приблизительно 1/4 всего железа, совершающего круговорот, находится в форме ферритина, т. е. в депо, а около 3/4 — в гемоглобине крови.

В ферритине соединения железа связаны с белком и не проявляют токсичности; освобождение железа из ферритина сопряжено с восстановлением иона Fe3+ до степени окисления +2. Молекулярная масса ферритинового белка равна 450000, а у некоторых видов достигает 900000, иначе говоря, очень велика; ферритин окрашен в красно-коричневый цвет и содержит до 4500 атомов железа на молекулу белка.

Ферритин представляет собой белковые частицы, внутри которых, закутанные в полипептидные цепи, находятся ядра, или мицеллы, состоящие из сложных комплексов гидроксида и фосфата железа. Предполагают, что их состав можно приблизительно выразить формулой: (FeO-OH)8*(FeO-ОРО3Н2).

Состав белковой части ферритина в настоящее время известен. В этом белке много остатков глутаминовой кислоты, серина и лейцина, а также аспарагиновой кислоты. Как часто наблюдается у белков, молекула ферритина сложена из меньших по размеру субъединиц; формой она напоминает тутовую ягоду — 20 или 24 небольшие сферические частицы окружают центральное ядро, состоящее из соединений железа. Имеются данные, свидетельствующие о кристаллическом строении ядра; сам ферритин также можно получить в кристаллической форме.

Трансферрины. Ферритин не мог бы успешно выполнять свои функции, если бы не существовало специальных средств доставки ионов железа(III) к клеткам (называемым ретикулоцитами), в которых происходит образование гемоглобина. Дело в том, что при тех значениях кислотности, которые характерны для физиологических условий (рН около 7), ионы железа(III) существуют в виде гидроксида; растворимость его очень мала, и поэтому концентрация ионов железа(III) в растворе, находящемся в равновесии с гидроксидом, составляет ничтожно малую величину, порядка 10-14 моль/л. Из раствора такой концентрации очень трудно "вылавливать" ионы железа. В сыворотке крови, в яичном белке, в молоке, в желудочном соке и других жидкостях и тканях организма были найдены особые белки, отличающиеся способностью активно связывать железо в форме ионов Fe3+. Эти белки получили общее название трансферринов ("переносчики железа"); некоторые ученые делят их на классы: лактоферрины (содержатся в молоке), кональбумин (из яичного белка), сывороточный трансферрин (из крови) и др. Их белковые составные части немного отличаются друг от друга (особенно по содержанию гистидина и аргинина). Молекулярные массы трансферринов лежат в пределах от 77100 до 82000. Эти белки не имеют субъединиц и представляют собой частицы, состоящие из одной полипептидной цепи.

Каждая молекула трансферрина связывает два иона железа(III), причем получается продукт красного цвета. Было доказано, что в реакции связывания принимает участие ион бикарбоната, а ионы железа вытесняют шесть ионов водорода на одну молекулу белка. Поэтому реакцию можно схематически представить так:

Каждая молекула трансферрина связывает два иона железа(III)

Предполагается, что ион бикарбоната увеличивает прочность связи между ионом железа и белком трансферрина. Самым замечательным свойством трансферрина является то, что этот белок "знает", по какому адресу надо доставить ионы железа. Каким-то образом трансферри-новые частицы отличают ретикулоциты от всех других клеток и отдают железо именно клеткам, производящим гемоглобин.

Сначала, по-видимому, трансферрин прочно связывается (адсорбируется) на поверхности ретикулоцита, затем связь между ними упрочняется, и железо переносится в клетку. Возможно, что повышение прочности связи и сопровождается внедрением трансферрина внутрь клетки. Прочность связи ретикулоцит — трансферрин зависит от содержания железа в последнем. Как только железо отдано, связь сразу ослабляется, и белок трансферрина выходит из клетки.

Почти полмиллиона молекул трансферрина может быть размещено на поверхности ретикулоцита. Что происходит дальше и как именно строится молекула гемоглобина в ретикулоцитах, пока еще не выяснено...

Заметим, что кональбумин, содержащийся в яичном белке, играет роль антимикробного фактора и защищает куриные яйца от порчи. Дело в том, что, энергично соединяясь с железом, содержащимся в микроорганизмах, кональбумин прекращает их жизнедеятельность. Так природа экономно использует одно и тоже вещество, применяя его для решения множества разнообразных задач.

Гемэритрин. Химические машины, работающие в организмах, не всегда были такими, какими их сейчас видят биохимики в высокоорганизованных организмах. По мере постепенного развития и усложнения форм жизни изменялись и совершенствовались механизмы обмена веществ. В организмах некоторых беспозвоночных (например, морских червей) функции переноса кислорода выполняет соединение железа — гемэритрин, совершенно не похожее на гемоглобин и не содержащее порфиринового кольца. В этом соединении ионы железа связаны с аминокислотными остатками полипептидной цепи белка, причем для того, чтобы присоединить одну молекулу кислорода, требуется два иона железа (а в гемоглобине — один). Удалось установить, что в гемэритрине пара ионов железа окружена аминокислотными остатками гистидина (четыре остатка) и тирозина (два остатка); предполагают, что и другие аминокислоты (глутаминовая, аспарагиновая кислоты, метионин) участвуют в образовании группировки, окружающей ионы железа.

Свойства железа в таком соединении необычны: при связывании кислорода резко падает магнитная восприимчивость и изменяется окраска гемэритрина — бесцветное соединение становится розово-красным.

Применение наиболее мощных, современных методов исследования (спектроскопия Мессбауера) позволило сделать вывод, что ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием. Возможно следующее расположение ионов железа:

Ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием

Молекула кислорода, по-видимому, присоединяется к мостиковой группе. Возможно, что в результате присоединения кислорода железо(II) переходит в железо(III).

Крупная молекула гемэритрина имеет молекулярную массу около 108000 и состоит из восьми субъединиц (по два атома Fe в каждой). Биологическая роль гемэритрина заключается не только в переносах, но и в резервном хранении связанного кислорода, чем этот белок существенно отличается от гемоглобина. Гемэритрин, по-видимому, выполняет функции и гемоглобина, и миоглобина в организмах беспозвоночных.

В организмах обнаружен ряд белков, способных прочно связывать железо(III). Так, в яичном желтке содержится фосвитин, подавляющий всасывание железа при употреблении яиц в пищу. В желудочном соке найден белок, названный гастроферрином, также прочно соединяющийся с ионами железа. Биологическая роль таких белков не вполне ясна, но высказывается предположение, что они служат в качестве регуляторов поступления железа в клетки. Слишком большой приток ионов железа может оказать вредное действие на клеточные механизмы, поэтому регулирующий аппарат необходим для наиболее эффективной работы биологических машин.

Медь. Медьсодержащие оксидазы

Кроме ионов железа, функцию переноса кислорода и переноса электронов способны выполнять и ионы других металлов, в частности ионы меди.

Соединение, называемое гемоцианином, представляет собой белок, содержащий медь в ионном состоянии. Еще в 1847 г. Харлес, исследуя голубую кровь улитки, пришел к выводу, что голубой цвет обусловлен содержа нием в крови улитки меди вместо железа. Греческое слово "гемоцианин" и означает "синекровный". Гемоцианины различных видов были найдены в моллюсках и членистоногих (в крабах, осьминогах, кальмарах и т. д.), в паукообразных, ракообразных и даже в сороконожках.

Молекулярная масса гемоцианинов колеблется в широких пределах — от 36000 до 825000. Молекула гемоцианина состоит из нескольких равных частей — субъединиц, число которых неодинаково у гемоцианинов различного происхождения. Молекулярная масса наименьших субъединиц равна 36700 (у членистоногих), при содержании меди 0,173%, и 25100 (у моллюсков), при содержании меди 0,253%.

В составе гемоцианина медь находится в степени окисления +1. Предполагается, что два иона меди связывают одну молекулу кислорода: Cu+ — О2 — Cu+, причем возможны состояния Cu2+ — O2- — Cu+ и Cu+ — O2- Cu2+ Медь, несомненно, связана с какими-то лигандами, но их точный состав не известен. Возможно, что лигандами являются аминогруппы или дисульфидные мостики белка.

Число активных центров гемоцианина, т. е. пар ионов меди, связывающих одну молекулу кислорода, колеблется от 6 до 200, смотря по тому, из каких организмов получен гемоцианин.

Гемоцианин — отнюдь не единственное природное соединение меди. В крови и различных органах животных (почки, печень), а также в тканях растений (огурцы, кабачки, лаковое дерево) и грибов найдена медь, находящаяся там в виде комплексных ионов. Насколько можно судить, комплексообразование происходит между ионами меди и различными участками полипептидной белковой цепи; установлено, что медь часто выполняет те или иные биохимические функции совместно с соединениями железа.

Широкая распространенность в природе белков, связанных с ионами меди, и важность сочетании железо — медь в биохимических реакциях, сопровождающих переносы электронов и окисление пищевых веществ, стимулировали исследования роли меди в процессах жизнедеятельности. Но, несмотря на всю мощь современных физико-химических средств анализа, до сих пор не удалось охарактеризовать медь с такой полнотой, какая достигнута по отношению к соединениям железа.

Установлено, что медьсодержащие белки (например, стеллацианин, получаемый из лакового дерева) служат переносчиками электронов. Ионы меди в белках катализируют реакции гидроксилирования и окисления. Последние особенно важны.

Ферменты, ускоряющие реакции окисления, — оксидазы — довольно многочисленны и содержат ионы меди в различных состояниях. Мы рассмотрим некоторые типичные примеры.

Оксидазы, в молекуле которых содержится не менее четырех атомов меди на молекулу фермента, ускоряют восстановление кислорода до воды. Их синяя окраска настолько интенсивна, что эту группу оксидаз иногда называют "синие оксидазы", в отличие от другой группы оксидаз, в молекуле которых всего один-два атома меди ("несиние оксидазы"). Они окрашены менее ярко и катализируют восстановление кислорода до пероксида водорода.

К синим оксидазам относится церулоплазмин — медьсодержащий белок, найденный в плазме крови человека и многих позвоночных (свиньи, лошади, коровы, олени, собаки, кошки и др.). Церулоплазмин плазмы человека содержит всего 0,3 масс. % меди, имеет молекулярную массу 151000. Вероятно, в его молекуле — четыре полипептидные цепочки, две из которых обладают сравнительно небольшой длиной (масса их около 16000) и две длинные (молекулярная масса около 60000). Церулоплазмин удалось получить также в виде кристаллов. Доказано наличие в этом белке и небольшого количества углеводов (8%). Церулоплазмин катализирует окисление ионов железа(II) в ионы железа(III), что может служить объяснением механизма совместного действия обоих этих ионов в процессах переноса электронов и активизации железа. Каталитически ускоряются церулоплазмином реакции окисления полиаминов и полифенолов — обычных составных частей обмена веществ в организмах.

Медь связана с белком церулоплазмина очень прочно, и, по-видимому, на одну молекулу белка приходится шесть атомов меди. Действие ионов меди в реакциях окисления сводится к попеременному окислению и восстановлению, т. е. к переходам типа:

Действие ионов меди в реакциях окисления сводится к попеременному окислению и восстановлению

Имеются данные, показывающие, что только половина атомов меди находится в степени окисления +2; эти ионы окисляются и восстанавливаются по указанной схеме, обратимо. Ионы меди в степени окисления +1 окисляются очень трудно и только при разрушении белковой части фермента. Ионы меди(I) тоже не вполне одинаковы — два из четырех связаны с атомами серы. Пока не ясно, все ли атомы меди принимают участие в указанных выше реакциях окисления-восстановления.

Загрузка...