Часть I Соленая купель

Глава 1. Бурная история океана

Откуда взялся океан

Еще совсем недавно представления о возникновении и первых этапах истории Земли основывались главным образом на предположениях. Наряду с более или менее реалистическими гипотезами уживались совершенно фантастические воззрения, обычно связанные с вмешательством в акт мироздания божественных сил. В нынешний век научно-технического прогресса человек получил возможность проникнуть на дно глубочайших океанских желобов, увидеть нашу планету из космоса, побывать на Луне. Раздвигая рамки познания, пытливый человеческий ум охватывает области структурного строения частиц атома и внегалактических миров, добывает информацию миллиардов лет давности и заглядывает на века вперед. В науке о Земле умозрительные гипотезы уступили место теориям, основанным на фактических данных. Современные представления о происхождении Земли облечены в стройную систему доказательств, подтверждающих все основные стороны этой сложной и трудной проблемы.

«История Земли, — пишет член-корреспондент Академии наук СССР А. Монин, — поражает воображение грандиозностью своих масштабов. Если возраст письменных источников сведений по истории человечества оценивается несколькими тысячелетиями, а останков материальной культуры древних людей — десятками тысячелетий, то геологическая история оперирует сотнями миллионов и даже миллиардов лет; возраст нашей планеты оценивается в 4,6 миллиарда лет».

Согласно одной из наиболее обоснованных теорий, выдвинутой советским ученым академиком О. Шмидтом, Солнце и все планеты солнечной системы образовались из холодного, медленно вращавшегося газопылевого облака. Здесь нет возможности детально обсуждать проблему происхождения Земли, для этого понадобилась бы специальная книга. Укажем только, что, когда часть первичного газопылевого облака уплотнилась и образовала плотный земной шар, на нем еще не было водной оболочки. В момент формирования нашей планеты вода будущего океана находилась в связанном состоянии в виде гидроокислов. О первом миллиарде лет существования Земли, который ученые называют катархеем, известно не очень много. Однако можно с уверенностью утверждать, что по крайней мере во второй половине катархея уже имела место активная вулканическая деятельность. В этот период недра нашей молодой планеты разогрелись в результате гравитационного сжатия и радиоактивного распада долгоживущих изотопов, которых тогда было в 4–7 раз больше, чем теперь. Это привело к расплавлению верхней мантии планеты и вызвало мощные вулканические процессы.

Известно, что при извержении современных вулканов наряду с твердыми частями (пеплом, вулканическими бомбами) и жидкой горячей лавой в изобилии выделяются газы. Обычно над кратером «живого» вулкана даже в относительно спокойный период его деятельности поднимается облако. Эта характерная особенность отразилась в названии вулканических островов — Курильские; вершины их гор постоянно дымят, курятся. Газовые облака над вулканами на 75–80 процентов состоят из паров воды, кроме того, в них имеются окись углерода, аммиак, метан, соединения серы, хлора и некоторые другие вещества. Большинство этих газообразных соединений поступает в атмосферу, а пары воды конденсируются и падают вниз в виде дождя.

Как только на Земле начали действовать вулканы, она окуталась облаками, у нее появилась оболочка из газов и дыма. Современные тонкие и очень точные методы анализа позволили установить состав первичной атмосферы, для чего были исследованы крошечные полости в древнейших кварцитах. Как показал анализ, маленькие пузырьки газа, пребывавшие в «законсервированном» состоянии 3,5–4 миллиарда лет, совершенно лишены свободного кислорода, но содержат двуокись углерода, сероводород, двуокись серы, аммиак, соляную и плавиковую кислоты, а также небольшое количество азота и инертных газов. Если не считать отсутствия воды, то содержимое пузырьков, впаянных в древние кварциты, по химическому составу почти не отличается от современных вулканических газов. Но куда в таком случае делась вода? Объясняется это крайне просто. Вычисления показали, что к концу катархея температура на поверхности Земли в среднем равнялась 15 градусам тепла и водяные пары вулканических газов должны были немедленно превращаться в жидкую воду.

Когда история Земли вступила в следующую фазу и на смену катархею пришел архей (он также длился целый миллиард лет), отдельные лужи и озера слились воедино и образовали первичный океан. Правда, он был еще совсем небольшим: по глубине и по общему объему впятеро меньше современного.

Как это ни парадоксально, но океан с первых дней своего существования был соленым, хотя и образовался из совершенно чистой дистиллированной воды. Дело в том, что в воду незамедлительно переходили некоторые другие составные части вулканических газов, главным образом галоидные кислоты и двуокись углерода, а также сероводород и аммиак. Растворенные в воде кислоты реагировали с горными породами, извлекая из них соответствующие количества натрия, калия, кальция и других элементов с образованием солей, благодаря чему в растворе поддерживалось кислотно-щелочное равновесие.

Вот почему соленая океанская вода всегда была нейтральной. Положение о том, что все анионы морской воды возникли из продуктов дегазации мантии Земли, а катионы из разрушенных горных пород, наиболее детально обосновано в трудах крупнейшего специалиста в области геохимии океана академика А. Виноградова.

В результате перехода части вулканических газов в растворенное состояние атмосфера Земли продолжала оставаться очень тонкой, и потому температура на поверхности планеты все время держалась ниже 100 градусов, но выше ноля, то есть такой, при которой вода пребывает в жидком состоянии. Таким образом, Земля во все время своего существования, начиная с конца катархея, обладала жидкой оболочкой — гидросферой, в чем и заключается ее главное отличие от других планет солнечной системы. Крайне разреженная атмосфера Марса (ее плотность в 500–800 раз меньше, чем на Земле) способствует излучению тепла в мировое пространство, и потому на красной планете царит вечный холод. Причем температура поверхности днем даже на экваторе только на короткий срок поднимается до 25 градусов выше ноля, но вскоре опускается до минус 55, а ночью даже до минус 100.

Понятно, что ни о какой жидкой оболочке на Марсе не может быть и речи. Плотность атмосферы на Венере превосходит земную примерно в 90 раз. Это привело к сильному увеличению так называемого парникового эффекта, в результате чего температура у поверхности нашей соседки составляет около 460 градусов выше ноля. Стало быть, жидкой воды там тоже нет, а где нет воды, нет и жизни. Земля, расположенная между горячей Венерой и холодным Марсом, по температурным условиям оказалась в «золотой середине».


Так выглядело море в силурийский период, то есть около 420 миллионов лет назад.

Океан создал условия для зарождения и поддержания жизни на нашей планете, для образования ее биосферы, в чем заключается второе существенное отличие Земли от других известных небесных тел.

Имеется несколько доказательств существования океана на протяжении всей геологической истории Земли. Еще в катархее благодаря круговороту воды между океаном, атмосферой и сушей начали образовываться осадочные породы. Английские геологи С. Мурбат, Р. О’Найон и Р. Панкхерстон недавно нашли на юго-западе Гренландии осадочный бурый железняк, возраст которого оценивается в 3760 миллионов лет. По-видимому, это самое древнее свидетельство существования гидросферы.

Советский вулканолог Е. Мархинин подсчитал, что при извержении вулкана на долю водяных паров приходится примерно 3 процента массы изверженных веществ. Соотношения между массами современной гидросферы (1,46 · 106) и земной коры (4,7 · 107) почти точно соответствует этой величине, в чем заключается второе доказательство постоянного присутствия гидросферы на земном шаре. Можно представить себе, что по мере утолщения земной коры пропорционально увеличивался и океан, пока он не достиг современного состояния.

Поскольку вулканическая деятельность на Земле не прекратилась, объем гидросферы продолжает постепенно нарастать.

Третьим доказательством извечного и непрерывного существования океана служат находки останков и отпечатков тел живых организмов. Жизнь на нашей планете, ни на мгновение не прерываясь, существует в течение трех миллиардов лет, и ее процветание обеспечивается океаном.


Материки плывут

К концу XVI века, когда на глобус более или менее правильно были нанесены материки (кроме Австралии и Антарктиды, которые к тому времени еще не были открыты), географы невольно обратили внимание на сходство очертаний Западной Африки и восточного побережья Южной Америки. В самом деле, берега двух континентов, разделенных огромным водным пространством Атлантического океана, как бы дополняют друг друга: каждому заливу и каждой бухте в Африке соответствует равный по форме и размерам мыс в Южной Америке, и, наоборот, африканским мысам соответствуют американские бухты. Долгие годы это негативное сходство считалось случайным, его рассматривали как величайший по масштабу природный курьез. Первым человеком, которому это удивительное совпадение показалось не лишенным закономерности, был не географ и даже не моряк, а философ Фрэнсис Бэкон. В своем сочинении «Новый Органон», вышедшем в Англии в 1620 году, Ф. Бэкон прямо указал на взаимную зависимость извивов береговых линий Южной Америки и Африки, но причину такого сходства он объяснить не смог. Прошло более двух столетий, и вот итальянский ученый Антонио Снидар-Пеллегрини в 1858 году высказал совершенно невероятное и вместе с тем предельно простое предположение. По его мнению, Старый и Новый Свет некогда составляли единый праматерик, который в результате космической катастрофы раскололся надвое, причем осколки разошлись в разные стороны, а постепенно увеличивавшаяся щель между ними заполнилась водой и стала Атлантическим океаном. Свою идею А. Снидар-Пеллегрини подкрепил несколькими доказательствами. Он первым обратил внимание на то, что положение месторождений угля в Европе и Америке совпадает по широте, что по обеим сторонам Атлантики обнаружены очень сходные между собой ископаемые растения. Фактическая сторона гипотезы была почти безупречной, но причина раскола праматерика и силы, которые должны были двигать континентами, оставались недоказанными.

Конечно, столь оригинальная идея о подвижности (мобильности) материков не могла не привлечь внимания ученых того времени. Одни сразу же последовали за А. Снидаром-Пеллегрини, другим же самая мысль о возможности перемещения континентов показалась настолько крамольной, что они образовали противоположный лагерь и твердо встали на позиции полной неподвижности (фиксизма) материков в продолжение всей истории Земли. По мере получения новых фактов то мобилисты, то фиксисты одерживали верх. До сих пор в ученом мире нет единого мнения по этому вопросу, однако новейшие сведения о строении земной коры дали в руки первых ряд таких решительных аргументов, которые уже невозможно опровергнуть.

Теория мобилизма, выдвинутая в середине прошлого века, получила наиболее полное и серьезное обоснование в трудах выдающегося немецкого геофизика Альфреда Вегенера, опубликованных в 1912 и 1915 годах.

Опираясь на ряд новых данных, А. Вегенер впервые определил пути дрейфа материков и характер их развития в продолжение длительной истории нашей планеты. Он решительно отверг туманную идею о вмешательстве космических сил для объяснения причин движения континентов. Вместо этого им была предложена новая, вполне земная концепция. Как известно, наша шарообразная планета на самом деле вовсе не шар, а геоид. К тому же благодаря возвышающимся континентам она имеет неровную поверхность. При вращении Земли вокруг своей оси континенты под влиянием так называемой полюсобежной силы Этвеша стремятся занять равновесное положение поближе к экваториальному вздутию. Этим А. Вегенер и объяснял движение материков. Следует сказать, что причина движения была установлена им неверно. Как показали подсчеты, полюсобежная сила Этвеша не настолько значительна, чтобы сдвинуть с места материк, зато под ее влиянием происходит смещение земных полюсов, чем и достигается известное равновесие.

Здесь необходимо сказать, что еще в середине XVIII века идея о раздвижении материков была высказана М. Ломоносовым. В работе «О слоях земных» гениальный русский натуралист говорил о перемещении «больших частей земного шара», то есть материков. Причину этих перемещений он видел в процессах, происходящих в глубинах Земли. К сожалению, труд М. Ломоносова, значительно опередивший современную ему научную мысль, не был тогда оценен по заслугам, а затем на долгие годы затерялся в архивах.

Согласно новейшим представлениям о древней истории Земли в середине протерозоя, то есть около 1,7 миллиарда лет назад, океан уже имел глубину и объем, равные примерно двум третям современного. Мнения большинства геологов сходятся на том, что в это время над поверхностью воды возвышался всего один континент, который получил название Пангея — «Единая Земля». Пангея, состоявшая из относительно легких пород, плавала на раскаленной полужидкой и более тяжелой верхней мантии. Внутри последней (как в то отдаленное время, так и теперь) постоянно происходит перемещение магматических масс. Вещество мантии, расплавившись в более горячих глубинах, в виде восходящих потоков устремляется вверх. Это несколько напоминает передвижение жидкости в кипящем котле. Всплыв к поверхности, горячий поток растекается в стороны и по мере остывания опускается нисходящими струями в глубину, где снова подвергается нагреванию.

Мощные восходящие потоки конвекционных течений мантии, ударяя снизу в Пангею, разорвали праматерик, подобно тому как кипящая в котле вода разносит в стороны сгустки плавающей на поверхности пены. Осколки Пангеи, подгоняемые расходящимися горизонтальными потоками, поплыли в разные стороны. Конечно, этот процесс не носил характера всемирной катастрофы. Вязкость мантии настолько велика, что она движется не быстрее нагретого в котле асфальта. Скорость дрейфа частей разорванного первичного материка ничтожна. Потребовалось 250 миллионов лет, чтобы Новый Свет отплыл от Старого на расстояние ширины Атлантического океана.

Так в самых общих чертах выглядит концепция сторонников мобилизма. Какие же доказательства приводят они в пользу теории плавающих континентов? Какова была конкретная история рождения материков и расчленения океана? На эти вопросы современная наука может дать исчерпывающие ответы.

Наверное, каждому из читателей известна игра-головоломка «мозаика». Яркую картинку разрезают на множество частей разной формы. Задача заключается в том, чтобы из них сложить целую картину, при восстановлении которой руководствуются совпадением формы частей и нанесенных на их поверхностях деталей рисунка. Мобилисты для составления карты праматерика так и этак прикладывали друг к другу континенты и крупные острова. Кое-где совпадение берегов было почти полным, в других местах между ними оставались заметные промежутки. Иногда для более полного совмещения приходилось частично надвигать один берег на другой.

Трудности собирания «мозаики» из осколков Пангеи были преодолены, когда стало понятным, что линия разрыва вовсе не обязательно должна совпадать с береговой. Ведь материки «плывут» вовсе не по океану, а перемещаются по поверхности расплавленной горячей мантии. (О механизме этого движения еще будет сказано в главе «Геология моря».) Если взять за основу конфигурацию внешнего края континентального склона на уровне километровой изобаты (глубины), то соответствие будет гораздо более точным. Правда, и в этом случае нужно несколько повернуть отдельные материки, оторвать Индостан от Евразии, слегка прижать Пиренейский полуостров и сделать еще кое-какие «поправки». Тем не менее даже при таких вольностях в обращении с континентами конфигурация Индостана и Австралии плохо совпадает с берегами африканско-американского монолита. Фиксисты видели в этом почти полный провал идеи подвижности материков, но они радовались преждевременно. В 1937 году английский ученый А. Дю-Тойт предложил поместить в самый центр древнего материка Антарктиду, чем и заполнил брешь в палеогеографической (древней) карте мира. Мозаичная картина была собрана почти без огрехов, но идея А. Дю-Тойта в то время ученым показалась совершенно дикой фантазией. В самом деле, разве может здравомыслящий человек поместить ледяной материк вплотную к трем тропическим: Африке, Южной Америке и Австралии, приладить к нему Индостан и после этого утверждать, что «это так и было»!


Карта Гондваны.

Поскольку одного совпадения береговых линий для доказательства подвижности континентов оказалось недостаточным, мобилисты начали искать другие факты, подтверждающие их идею. Особенно много новых данных было получено в самое последнее время в результате изучения Антарктиды. Через Трансантарктические горы на протяжении 4 тысяч километров тянется желоб, названный геосинклиналью Росса. Почти столь же длинный (около 3 тысяч километров) желоб, известный под названием геосинклиналь Аделаида, пересекает юго-восточную Австралию. Если приложить Австралию к Антарктике, их желоба будут переходить один в другой. Этого мало. Геосинклиналь Росса как будто имеет продолжение в основании южноафриканских Капских гор. По-видимому, до разделения континентов все три желоба составляли единое гигантское понижение земной коры длиной почти 8 тысяч километров.

Другое доказательство былого единства нынешних материков заключается в сходстве составляющих их горных пород. История обнаружения одной из таких пород совершенно необычна.

На юге Индии, невдалеке от жаркого Мадраса, у самого берега Бенгальского залива в тени пальм и казураин находятся высеченные в скалах пещерные храмы и дворцы. Между ними в неподвижном шествии застыли каменные слоны, также вырубленные на месте. Их огромные скульптуры составляют единое целое с подножием скалы. Здесь же можно видеть самый большой в мире многофигурный наскальный рельеф, изображающий сошествие на Землю богини Ганги, принесшей благополучие народу Индии. Огромные каменные изваяния составляют всемирно известный комплекс Махабалипурам, создание которого относится к IV–VIII векам нашей эры. Тысячи безвестных ваятелей, вооруженных лишь примитивными орудиями — молотками и долотами, — превратили скалы в неподражаемые произведения искусства. Самое интересное то, что плоды их трудов почти не тронуты временем, материал оказался поистине благородным, не подвергающимся воздействию эрозии.

Храмами и скульптурами Махабалипурама в течение полутора тысяч лет восхищались простые люди и художники, их подробно изучили и описали археологи и историки, но никто не поинтересовался, из какого именно материала все это сделано.

В конце прошлого века Индию посетил английский геолог Т. Холланд. При осмотре достопримечательностей Калькутты (тогдашней столицы британской колонии) он обратил внимание на надгробную плиту, установленную на могиле основателя города Джоба Чарнока. Подобный камень не был известен геологам. В окрестностях Калькутты таких горных пород нет, камень был явно привезен издалека. Впоследствии Т. Холланд установил, что этот камень (он назвал его чарнокитом) в изобилии встречается на юге Индии. Оказалось, что весь комплекс Махабалипурама высечен в чарнокитовых скалах.

С тех пор геологи стали находить чарнокиты и в других частях земного шара — в Южной и Центральной Африке, в Австралии. Казалось, что в распространении этой горной породы нет никакой закономерности. Но вот во время одной из антарктических экспедиций известный советский геолог и активный сторонник мобилизма Михаил Равич делает завершающее открытие.

Оказывается, что самые крупные горные хребты, наполовину сложенные из чарнокита, находятся в Восточной Антарктике. Находка его была далеко не случайной. М. Равич давно подозревал, что найдет эту горную породу в Антарктиде, и, собственно говоря, ради нее туда и отправился.


Антарктические скалистые горы сложены из чарнокита.

Вот что он говорит о своем открытии: «В Восточной Антарктиде на сотни километров протянулись скалистые горы. Коричневатые и синеватые породы этих каменных громад, напоминающие издали то развалины замков, то караваны верблюдов, то армады парусных кораблей, были подняты сотни миллионов лет назад из глубин земли и образовали гигантские глыбовые горы. Тщательно исследуя многочисленные природные разрезы, нам удалось проследить процессы образования чарнокитов из древнейших лавовых покровов, переслаивающихся с осадочными породами».

После разлома праматерика основная часть чарнокитового горного массива осталась в Антарктиде, а отроги этих гор поплыли вместе с Африкой, Индией и Австралией в разные стороны. Стоит приложить Индостан к Антарктиде, и храмы Махабалипурама расположатся рядом с родными им горами ледяного континента. В этом соседстве не будет ничего противоестественного. Индостан действительно некогда был приполярной землей. На нем даже обнаружены явные следы древнего оледенения. Кстати, ни в соседней Бирме, ни на Аравийском полуострове ничего подобного не наблюдается. Оледенение охватывало также Австралию, Южную Африку и юго-восточный край Южной Америки.

Чтобы быть объективным, нужно сказать, что чарнокиты находят и в противоположном, северном, полушарии: на Украине, в Сибири, в Финляндии и даже на Кольском полуострове, но здесь ими занято едва 15 процентов площади кристаллических фундаментов, платформ и материков, тогда как в южном полушарии они составляют 30, а в Антарктиде 50 процентов. По-видимому, эта горная порода вообще характерна для древнейших материковых щитов, Антарктида же была главным местом выхода на поверхность этих глубинных формаций.

Идея подвижности континентов получила мощное подтверждение в результате новейших исследований явления магнетизма. Некоторые горные породы, содержащие зерна ферромагнитных веществ, то есть соединений железа, при определенных условиях способны намагничиваться под влиянием магнитного поля Земли. Так, при извержении вулкана содержащиеся в лаве ферромагнитные зерна располагаются параллельно магнитному полю Земли, а после охлаждения извергнутой породы застывают в этом положении. Если такой участок земной коры впоследствии изменит свое положение, направленность магнитных полей ферритовых зерен уже не будет совпадать с магнитным полем Земли.

Аналогичное явление наблюдается при изучении осадочных пород, содержащих железо. Когда вынесенные в море мельчайшие частицы этих горных пород медленно оседают на дно, они ориентируются своими магнитными полюсами в точном соответствии с магнитным полем Земли и располагаются совершенно одинаково. Если этот участок в процессе геологической истории Земли станет сушей и вместе с ней изменит свое положение, то магнитная направленность отдельных частиц породы уже не будет совпадать с направлением магнитного поля Земли.

Исследования показывают, что ориентация ферромагнитных зерен в изверженных и осадочных породах вполне соответствует представлениям геологов о подвижности континентов.

Так как ферромагнитные зерна с предельной точностью документируют ориентировку материков в отдаленном прошлом, они в значительной мере способствуют восстановлению картины дрейфа осколков Пангеи.

Теперь на Антарктическом материке нет ни одного деревца или кустика, нет никаких наземных позвоночных животных (гнездящиеся невдалеке от побережья водоплавающие птицы — пингвины и поморники, а также выползающие на лед тюлени в счет идти не могут), но было время, когда этот южный материк покрывали леса, на нем водились земноводные и пресмыкающиеся.

О прежней фауне и флоре Антарктиды свидетельствуют ископаемые останки животных и залежи каменного угля.

Древние антарктические леса состояли в основном из семенных папоротников из группы глоссоптерисовых. Это были примитивные высшие растения высотой до 10 метров.

На зиму они сбрасывали листву: климат Антарктиды, даже в наиболее теплые периоды ее истории, был достаточно суровым. Ископаемые останки глоссоптерисовых папоротников находят также на всех материках южного полушария и в Индостане. Это служит важным доказательством непосредственного соединения в прошлом всех этих земель.

Первые останки ископаемых антарктических позвоночных были обнаружены только в 1967 году; тогда американскому ученому П. Баррету посчастливилось найти плохо сохранившуюся часть челюсти вымершего земноводного животного. Три года спустя группа американских палеонтологов, возглавляемая Д. Эллиотом, извлекла из пластов песчаника в Трансантарктических горах несколько сотен костей, большинство из которых принадлежало вымершим пресмыкающимся из группы листрозавров. До этого останки листрозавров были найдены в Южной Африке и Индостане.

Сейчас эти области разобщены, но стоит объединить их в соответствии с реконструкцией древнего материка, как все места находок листрозавров окажутся рядом.

При всей убедительности доказательств, свидетельствующих в пользу дрейфа континентов, в обилии фактов можно увидеть и некоторые противоречия. В самом деле, мобилисты приводят на первый взгляд совершенно несовместимые друг с другом доводы: как можно, например, допустить факт одновременного существования оледенения, захватившего даже Индию, и густых лесов, якобы росших в Антарктиде? Но не следует забывать, что Пангея и ее крупные части существовали не какой-то короткий срок, а миллиарды лет. За это время не раз похолодания сменялись потеплением климата планеты. Да и само название «Единая Земля» говорит о немалых размерах древнего материка. Поэтому естественно предполагать, что природные условия в разных его частях не могли быть одинаковыми.

Как же представить себе перемещение материков во времени и пространстве? Современная наука делает это с достаточной точностью и полнотой. Правда, конфигурация суши на карте самых древних времен имеет лишь приблизительные очертания и размеры, и тем не менее начиная с палеозойской эры (то есть за последние 570 миллионов лет) можно проследить историю континентов и океанов с высокой степенью точности.

Примерно 400 миллионов лет назад Пангея была разорвана надвое в области экватора. Ее южная половина, получившая название Гондваны, стала медленно отходить к югу. Северная же часть в палеозойскую эру не была материком в полном смысле этого слова, так как уже некоторое время почти полностью находилась под водой.

По сути дела, она представляла собой лишь подводное продолжение Пангеи, ее шельф. Материки или их части периодически испытывали то подъем, то понижение.


Так по прогнозам ученых будет выглядеть наша планета через 50 миллионов лет.

Впрочем, вскоре эта погруженная часть стала возвышаться над поверхностью океана и получила название Лавразии. Между ней и Гондваной заплескались волны теплого моря Тэтис, вытянувшегося в экваториальном направлении.

Во время мезозойской эры, около 260 миллионов лет назад, Гондвана распалась на четыре части. Каждая из них дала начало одному из современных континентов южного полушария — Антарктиде, Австралии, Южной Америке и Африке вместе с Аравией. Будущий Индостан в то время составлял единое целое с Антарктидой. В результате раскола Гондваны и расхождения ее частей в разные стороны возникли Индийский океан и южная часть Атлантического.

Затем наступила очередь распада Лавразии, от которой отделилась Северная Америка с Гренландией. Атлантический океан после такой перестройки увеличился вдвое и вытянулся в меридиональном направлении.

После этого от Антарктиды откололся Индостан. Огромный массив (его недаром называют подконтинентом) поплыл на север и здесь столкнулся с Азией. В результате удара в месте стыковки земная кора вздыбилась и образовалась высочайшая в мире горная система Гималаев.

Самый молодой из океанов — Северный Ледовитый. Он возник в результате подъема материков Европы, Азии и Северной Америки и частичного смыкания их краев. Самый старый океан — Тихий. Его возраст равен возрасту первичного океана.


Наступление и отступление океана

Невдалеке от Неаполя на берегу залива стоят остатки колоннады и виднеются развалины древнего храма, посвященного Серапису — богу умирающей и возрождающейся природы. Выбор места для постройки храма был сделан древними римлянами далеко не случайно: здесь из-под земли бьют теплые сернистые ключи. Задолго до начала нашей эры толпы паломников приходили сюда на поклонение божеству и для того, чтобы искупаться в теплых источниках, славившихся своими целебными свойствами по всей Римской республике. Время не пощадило изящное архитектурное сооружение. В результате землетрясений и войн храм превратился в руину, но перед этим он был разрушен морем.

Из года в год оно все ближе подступало к основаниям колонн, к зданиям терм (теплых бань) и угрожало затопить сами целебные ключи. Пришлось возводить вдоль берега плотину, чтобы преградить путь морской воде. Но никакие ухищрения строителей и жертвоприношения жрецов не могли спасти обреченный храм. Море занесло песком постамент колоннады, широко разлилось по дворикам зданий, и наконец соленая морская вода смешалась с исцеляющей водой ключей. Храм Сераписа утратил свою привлекательность и славу и вскоре был заброшен.

Тем временем море продолжало наступление. Основания колонн на два с половиной метра ушли в прибрежный песок, груды обломков лежали на каменных плитах полов, вода медленно прибывала. Проходили века. В XIII–XIV столетиях уровень моря достиг предела, колонны оказались залитыми водой на 6 метров.

Как известно, Неаполь расположен вблизи одного из величайших вулканов мира — Везувия; все окрестности лежат в области активной вулканической деятельности, проявлением которой и были горячие ключи храма Сераписа. В 1538 году произошло очередное землетрясение и сильное излияние лавы, после чего руины начали подниматься из воды. Море отступило. К началу XIX века развалины стояли на суше, а возродившиеся теплые источники снова стали привлекать к себе жаждущих исцеления. Глядя на раскаленные горячим солнцем камни, на выгоревшую траву, трудно поверить, что 400 лет назад вся местность находилась на дне моря. Теперь об этом свидетельствуют только исторические записи да множество отверстий, пробуравленных в колоннах морскими моллюсками-камнеточцами. Известный немецкий биолог, профессор К. Келлер, посетивший в конце прошлого века развалины храма, сообщает, что он без труда извлек из ходов в колоннах несколько побелевших раковин этих моллюсков.

Случай с храмом Сераписа далеко не единственный. Известно много других архитектурных сооружений, которые поглотило море. Обнаружение высоко над уровнем океана множества ископаемых останков морских животных свидетельствует о том, что почти любой участок современной суши был один, а то и несколько раз дном моря.

Иногда наступление (трансгрессия) или отступление моря (то есть его регрессия) имеет лишь местный характер. Они возникают в результате сравнительно небольших тектонических движений земной коры и не затрагивают соседние участки побережья. Однако имеются неопровержимые данные о том, что в течение геологической истории Земли трансгрессии и регрессии океана имели глобальный характер, причем уровень воды то поднимался на 150–180 метров по сравнению с современным, то опускался на 200–300 метров ниже его. Известный советский ученый, специалист в области изучения моря Г. Линдберг пишет по этому поводу следующее: «Хорошо известны факты расположения морских террас на высоте до 1000 и более метров над уровнем океана. Они с неопровержимостью доказывают вертикальные движения суши. Но вместе с тем также хорошо известны факты относительной одновысотности расположения морских террас на значительном протяжении побережий не только в пределах одного моря, но и ряда морей и даже на побережьях других материков». В качестве примера Г. Линдберг приводит данные о расположении шести главных горизонтов морских террас вдоль атлантического берега Патагонии (Южная Америка) и в Европе по берегам Средиземного, Черного и Каспийского морей. Высоты всех этих горизонтов удивительным образом совпадают между собой, значит, их поверхности были образованы одновременно и при одинаковом уровне океана.

Крупные реки после впадения в море обычно имеют глубоко и далеко идущее продолжение русла, часто с образованием на морском дне настоящей дельты. Эти подводные долины не могут образовываться глубоко под водой, следовательно, они обязаны своим происхождением текучей воде рек и возникли в период понижения уровня океана.

Причины, вызывающие изменение уровня океана, различны.

С одной стороны, это результат движения земной коры.

Представим себе, что в каком-либо месте произойдет опускание морского дна. Вода немедленно заполнит впадину, и общий уровень океана станет ниже.

Немецкий ученый А. Пенк подсчитал, что в результате опускания дна Средиземного моря уровень воды в Мировом океане понизился на 12 метров. Установлено, что в результате опускания дна возникли Берингово, Охотское, Японское и Восточно-Китайское моря, многие глубоководные желоба Тихого океана. Понятно, что их образование вызвало падение уровня воды в океане. Возможны также и обратные процессы, когда морское дно на отдельных участках начинает подниматься и тем самым вызывает трансгрессию. Усиленная вулканическая деятельность под водой с излиянием лавы тоже способствует подъему уровня океана. Однако при всех этих процессах объем воды в океане не меняется.

А может ли вообще меняться объем океана? Оказывается, может, и такие изменения случались, по-видимому, неоднократно. Известно, что часть гидросферы, водной оболочки нашей планеты, находится в твердом состоянии в виде ледников. Представим себе, что под влиянием каких-то причин вдруг растопятся льды Антарктиды, объем которых равен 25 миллионам кубических километров! Незамедлительно уровень океана поднимется на 40 метров, на морском дне окажется большинство крупнейших городов мира, самые густо населенные части материков, а также множество островов.


Морская терраса.

Такое таяние может произойти в результате усиления солнечной активности или под влиянием перемещения материка, покрытого ледниками, в более низкие широты.

Правда, ряд специалистов, особенно астрономы, считают, что наше Солнце, как и другие подобные ему звезды, так называемые «желтые карлики», отличается весьма высокой стабильностью излучения, которое мало меняется даже в течение 10 миллиардов лет.

Но не следует забывать, что даже небольшое и относительно кратковременное повышение солнечной радиации не может не сказаться на земном климате.

Известны же одиннадцатилетние солнечные циклы! Во всяком случае, никто не может опровергнуть периодичности наступления и таяния ледников на протяжении последних 1–2 миллионов лет. Очевидно, что в ледниковую эпоху океан мелел, так как часть воды, испаряясь с его поверхности, скапливалась на суше в виде льда. В межледниковые эпохи уровень океана повышался, и отчасти это происходило уже на глазах человека.

Рассказы о всемирном потопе, сохранившиеся в преданиях многих народов (в том числе в Библии), по-видимому, отражают события, действительно имевшие место на заре истории человечества.

Объем океана и конфигурация его берегов в течение геологической истории претерпевали постоянные изменения, которые будут происходить и в дальнейшем.

Даже составлены карты, на которых даны положение и контуры материков, какими они станут через миллионы лет.

Поэтому привычную географическую карту мира следует рассматривать вовсе не как отражение чего-то постоянного и неизменного, а скорее как моментальную фотографию сложного динамического процесса эволюции нашей планеты.

Глава 2. География океана

Какие бывают полушария?

Попробуйте задать кому-нибудь этот вопрос, и вы, несомненно, получите в 90 процентах случаев один и тот же ответ — северное и южное. Несколько реже вам ответят, что существует разделение Земли также на западное и восточное полушария. Оба ответа, конечно, правильные, но географы, кроме того, различают полушария материковое и океаническое. Если разделить Землю на две половинки, то большая часть суши окажется на одном из полушарий, тогда как другое будет почти целиком покрыто водой. Глядя на эти несколько непривычные карты, лишний раз убеждаешься, насколько велик Мировой океан.

Известный французский ученый Камилл Валло в капитальном труде «Общая география моря» говорит по этому поводу буквально следующее: «Для наблюдателя, находящегося в межпланетном пространстве и видящего только океаническое полушарие, создалось бы впечатление, что земной шар почти сплошь покрыт водой. Весьма замечательно, что и в материковом полушарии поверхность моря все же занимает несколько большую площадь, чем суша. Даже наиболее обширные материки представляются не более как громадными островами».

Из 510 миллионов 101 тысячи квадратных километров, составляющих поверхность нашей планеты, 361 971 000, то есть 70,1 процента, принадлежат океану, и только 148 миллионов 130 тысяч (29,9 процента) заняты материками и островами.

Материки и острова разобщены, сам же Мировой океан представляет собой единое целое, но для удобства изучения и практических нужд его подразделяют на части — океаны, моря, заливы.


Океаны, моря, заливы…

До какой степени условно подразделение Мирового океана, можно судить по отсутствию единого мнения на число океанских бассейнов, имеющих собственные названия. По мнению одних специалистов, таких океанов три — Тихий, Атлантический и Индийский. В СССР принято выделять четыре океана: те, что были перечислены, и Северный Ледовитый. В ряде зарубежных руководств, в частности французских, на карте мира можно найти и пятый океан — Южный, который омывает берега Антарктиды.

Согласно различной классификации выделяют разное число морей, иногда более ста. На статус одной и той же акватории могут существовать самые разные точки зрения: одни утверждают, что это море, другие считают заливом, а третьи вообще говорят, что это и не море и не залив, а просто часть океана, окруженная островами. Беда заключается в том, что нет четкого определения термина «море». Границы таких морей, как Черное или Японское, совершенно недвусмысленно определяются их берегами, а как быть, скажем, с Норвежским морем, которое, по сути дела, ничем не отделено от соседних с ним Гренландского и Баренцева?

В общем, можно сказать, что море отграничивается от океана или соседнего с ним моря как по чисто географическим признакам (наличию на периферии островов, подводных гор или понижений дна и т. д.), так и по характеру гидрологии (температуре, солености водной массы, направлению и скорости ее течений). Признаки эти довольно условны и не отличаются четкостью. Вот и получается, что в ряде случаев по традиции морями называют вовсе не моря. Так, Каспийское и Аральское моря, которые не связаны с Мировым океаном, на самом деле соленые озера.

С заливами тоже существует изрядная путаница. Считается, что залив не должен отличаться по составу своей воды от моря или океана, которому он принадлежит. Обычно приводят в качестве примера Бискайский залив, вода которого даже служит стандартом океанской воды Атлантики. Но как быть в таком случае с Финским заливом? Соленость его воды значительно ниже, чем в центральной части Балтийского моря, к которому Финский залив относится. Персидский, Бенгальский, Мексиканский, Калифорнийский, Гудзонов и некоторые другие заливы вполне могли бы называться морями.

Наверное, в будущем географы внесут ясность во все эти понятия и дадут четкие определения океанам, морям и заливам, а пока приходится иметь дело с ныне действующими картами, на которых имеется так много названий морских акваторий. В этой книге мы будем придерживаться разделения Мирового океана, официально принятого в основополагающем издании по этому вопросу — «Морском атласе».

Самый большой из океанов — Тихий. Так его назвал великий испанский мореплаватель Фернан Магеллан, корабли которого впервые пересекли величайшее водное пространство.

Участники первой кругосветной экспедиции терпели невероятные бедствия, у них кончилось продовольствие, испортились запасы пресной воды, на кораблях свирепствовала цинга. Из 265 участников похода в Испанию вернулись только 34 человека. Сам Ф. Магеллан погиб, ввязавшись в междоусобную войну на Филиппинских островах. Там же нашли себе могилу еще 27 испанцев. Часть из оставшихся в живых впоследствии попала в плен к враждебным португальцам. Но с погодой Ф. Магеллану посчастливилось: все время пути его кораблей Великий океан был спокоен, потому и получил название Тихого. На самом деле Тихий океан вовсе не оправдывает своего названия. В этой книге еще будет сказано об ужасающей силе его ураганов.

Тихий океан омывает берега Северной и Южной Америк, Антарктиды, Австралии и Азии. В его состав входят 23 моря. Некоторые из них — Берингово, Охотское, Японское, Желтое, Восточно-Китайское, Южно-Китайское, Коралловое, Тасманово, Беллинсгаузена, Амундсена и Росса — относительно крупные акватории. Кроме того, к бассейну Тихого океана относится 12 маленьких морей. Одно (Внутреннее) расположено между японскими островами Хонсю, Сикоку и Кюсю. Остальные 11 (Яванское, Бали, Флорес, Саву, Тиморское, Арафурское, Банда, Серам, Молуккское, Целебесское и Сулу) представляют группу Австрало-Азиатских морей и занимают юго-западный треугольник Тихого океана, ограниченный Филиппинским архипелагом, Новой Гвинеей, Австралией, Явой, Суматрой и Калимантаном. Кроме морей, непосредственно с океаном сообщаются два больших залива — Аляска и Калифорнийский.

В Тихом океане насчитывается свыше 10 тысяч островов. На севере и западе они образуют островные дуги. Самое крупное в мире скопление островов — Океания, включающее несколько архипелагов, сосредоточено в центральной и западной частях бассейна.

Тихий океан недаром имеет второе, правда не вполне официальное, название — Великий. Его площадь составляет чуть меньше половины всего Мирового океана и равна 179 миллионам 672 тысячам квадратных километров. Наибольшая протяженность океана с запада на восток — свыше 21 тысячи километров, а с севера на юг — почти 15 тысяч.

Через этот океан проходит множество воздушных и морских путей, связывающих три континента. На островах и по берегам материков живет значительная часть населения Земли.

Второй по величине океан — Атлантический. Он протянулся в меридиональном направлении и окаймлен Европой, Африкой, Северной и Южной Америками, а на юге его воды омывают Антарктиду.

Атлантика была единственным реальным океаном, известным жителям Европы в античное время.

В представлении древних греков океан окружал землю со всех сторон. В нем брали начало все морские течения, все реки и все источники, в него же стекала вся вода с земли. Греческие мудрецы полагали, что из океана восходят и в него опускаются все светила — Солнце, Луна и звезды, кроме созвездия Большой Медведицы, которая никогда не касается воды.

Весь круг океана никто из греков, конечно, видеть не мог, но, когда их корабли, двигаясь на запад, выходили из Средиземного моря, взорам потрясенных моряков открывалась безбрежная водная гладь, смыкавшаяся на горизонте с небом. Согласно греческой мифологии там, на крайнем западе, обитал титан Атлант, который держал на своих плечах небесный свод.

По имени этого титана и все водное пространство к западу от Европы стали называть Атлантическим океаном.

К бассейну Атлантического океана относятся 13 морей. На Американском побережье — Карибское; у берегов Антарктиды — Уэдделла; все остальные находятся в Старом Свете. Только одно из этих морей, Северное, имеет широкую связь с океаном, другие же отграничены от него сушей. Маленькое Ирландское море заключено между островами Великобритания и Ирландия, Балтийское глубоко вдается в северную часть Европы. Южная группа внутренних морей соединена между собой узкими проливами. Это Азовское, Черное, Мраморное, Эгейское, Адриатическое, Тирренское, Ионическое и Средиземное, только последнее из них имеет непосредственную связь с океаном через узкий Гибралтарский пролив.

Кроме перечисленных морей, имеющих береговую линию, посредине Атлантического океана находится четырнадцатое море, лишенное берегов. Оно названо Саргассовым из-за множества плавающих на его поверхности водорослей саркассум. Границы Саргассова моря непостоянны, их образует круговое поверхностное течение.

На американском побережье Атлантики океан вдается в материк, образуя заливы Святого Лаврентия и Мексиканский. Третий залив — Бискайский — расположен у берегов Европы между Испанией и Францией, четвертый (Гвинейский) ограничен берегами Африки, которые в этом месте образуют почти правильный прямой угол.

В отличие от Тихого океана в Атлантическом очень мало островов. Большинство их находится вблизи материков, и только Азорские возвышаются над водами центральной Атлантики.

Ни один океан не получает столько пресной воды из впадающих рек, сколько Атлантический, ведь почти все реки обеих Америк, Европы и Африки имеют сток в его бассейн.

Со времен X. Колумба между Европой, Африкой и Америкой через Атлантический океан пролегают многочисленные водные и воздушные пути.

Современные корабли и самолеты быстро преодолевают расстояние между Старым и Новым Светом, так как наибольшая ширина Атлантического океана всего 9 тысяч километров. Зато его протяженность с севера на юг лишь на тысячу километров уступает Тихому океану. Площадь Атлантического океана — 93 миллиона 360 тысяч квадратных километров.


Среди зарослей Саргассова моря живут странные рыбы антеннариусы.

Вряд ли нужно говорить о том, что Индийский океан получил свое название от Индии, берега которой он омывает.

Стремление найти морской путь в эту богатую страну руководило X. Колумбом, когда под испанским флагом он направил свои корабли в Атлантический океан, надеясь обогнуть земной шар с запада.

О существовании Америки и Тихого океана, лежавших на пути в Азию, в Европе тогда никто не подозревал.

В 1492 году эскадра X. Колумба достигла Антильских островов и вскоре вернулась в Испанию с первыми трофеями — золотом и перьями тропических птиц.

В Европу было привезено и несколько пленных островитян, которых все, в том числе и сам X. Колумб, считали жителями Индии — индийцами. Ошибочное мнение о том, что морской путь в вожделенную страну пряностей и драгоценных камней наконец открыт, было общим.

Конечно же, с этим никак не могла примириться Португалия, которая конкурировала с Испанией за мировое могущество на суше и на море. Еще неизвестно, какой путь короче, решили португальцы и начали спешно готовиться к экспедиции на восток, чтобы успеть опередить испанцев с другой стороны. Состязаясь с X. Колумбом, который уже готовил свою третью экспедицию, португальцы снарядили эскадру под командованием молодого моряка из знатной семьи Васко да Гама. В конце 1497 года его корабли обогнули южную оконечность Африки и вошли в Индийский океан, а 20 мая следующего года уже были в богатом городе южной Индии Каликуте (не путать с Калькуттой). Хотя Васко да Гама и был первым европейским мореплавателем, пересекшим Индийский океан, но открыл его вовсе не он. Задолго до португальцев между портами Восточной Африки и Индией плавали арабские купцы.

Индийский океан — третья по величине часть Мирового океана. Его площадь равна 79 миллионам 917 тысячам квадратных километров. Он ограничен Африкой, Азией и Австралией, а на юге его воды омывают побережье Антарктиды.

К бассейну Индийского океана относятся три моря — Красное, Аравийское и Андаманское, а также два залива — Бенгальский и Большой Австралийский. Над поверхностью Индийского океана поднимается несколько групп островов, и один остров весьма внушительных размеров — Мадагаскар.

Путь из Европы в Азию, открытый Васко да Гама, свыше 350 лет был весьма оживленным, но в 1869 году в связи с прорытием Суэцкого канала его значение несколько упало. Теперь главнейшие морские дороги Индийского океана проходят через его северную часть.

Самый маленький из океанов — Северный Ледовитый. Его окаймляют берега Евразии и Северной Америки. Состоит он из центрального бассейна и 10 окраинных морей — Гренландского, Норвежского, Баренцева, Белого, Карского, Лаптевых, Восточно-Сибирского, Чукотского, Бофорта и Баффина. Ему принадлежит также обширный Гудзонов залив, который, по сути дела, тоже следовало бы считать морем.

По периферии центрального полярного бассейна расположено несколько групп островов, а также самый большой остров мира — Гренландия. Арктические моря, находящиеся ближе к теплой Атлантике, свободны ото льда круглый год, остальные открыты для мореплавания лишь в течение нескольких летних месяцев. Центральный полярный бассейн скован вечными льдами и доступен только мощным атомным ледоколам.

Площадь Северного Ледовитого океана ни в какое сравнение не идет с остальными, она равна 13 миллионам 100 тысячам квадратных километров.

Название океана определяется его арктическим положением. Долгое время побережье Студеного моря (так называли океан на Руси) из-за суровых климатических условий оставалось и неисследованным и малозаселенным. Исключение представляли только районы, расположенные ближе к Атлантическому океану, так как там сказывалось влияние теплого течения.

В X–XI веках на берегах Баренцева и Белого морей появились предприимчивые охотники за морским зверем из Великого Новгорода.

Вскоре они основали там первые русские поселения. Новгородцы плавали на своих кочах (небольших судах) до Шпицбергена и Новой Земли и проникали даже в Карское море. В XII веке они достигли устья реки Оби.

Уже в те отдаленные времена русские поморы были искусными навигаторами, они даже составляли «Расписания мореходства», некое подобие современных лоций, без которых теперь не выйдет в море ни один капитан. При помощи записей, устных преданий да пользуясь примитивным компасом, который любовно назывался маточкой, поморы находили нужные им проливы и бухты. От тех времен на карте Арктики осталось название — Маточкин Шар. Этот узкий пролив между южным и северным островами Новой Земли находили (нашаривали!) с помощью компаса.


Атомный ледокол в Арктике.

Освоение Северного Ледовитого океана оплачено ценой жизни многих отважных моряков, дерзнувших проникнуть в глубь Арктики. Теперь через северные моря от Мурманска до Берингова пролива проходит морской путь, на льдинах океана постоянно работают плавучие научные и метеорологические станции СП.


Как выглядит дно океана

Рельеф поверхности суши легко доступен изучению.

Все, что находится на дне океана, скрыто от глаз человека толщей воды.

Хотя моряки измеряли глубину моря с незапамятных времен, до последнего времени о рельефе морского дна имелись лишь самые общие представления.

Ручной лот — тонкий линь (веревка) с узелками и грузом на конце — был первым прибором, позволявшим определять расстояние от поверхности воды до дна на мелких местах. Точность показаний и диапазон действия ручного лота до поры до времени удовлетворяли практические требования судовождения, но не давали никакого представления о том, что делается на глубине. Поэтому он был заменен стальным тросом со счетчиком и лебедкой. Однако механический лот тоже не идеальный прибор. Чтобы определить глубину дна, нужно остановить судно и только тогда начать измерение. Чем глубже, тем больше времени требуется для опускания и подъема лота.

При таком способе неизбежно одна точка далеко отстоит от другой, карта дна получается неполной. С увеличением глубины трос становится тяжелее груза, что мешает определить момент касания грузом дна; течения прогибают трос, относят груз в сторону, поэтому измерения получаются неточными.

Теперь на всех судах, даже на небольших, устанавливается сложный прибор — эхолот, позволяющий производить на ходу измерение дна до любой глубины.

Самописец этого прибора все время регистрирует истинные расстояния до дна.

По данным измерений, сделанных на множестве судов, воссоздана карта рельефа дна Мирового океана, которая сильно отличается от обычных карт с обобщенными глубинами.

Материки, крупные острова и группы мелких островов имеют подводное продолжение до глубины 135–200 метров, называемое шельфом. Его средняя ширина (протяженность от берега) равна 70 километрам, но иногда достигает 800 километров. Таков шельф морей у берегов Сибири. На тихоокеанской стороне Америки шельф предельно укорочен или вовсе отсутствует.

Поверхность морского дна в области шельфа имеет небольшой уклон в сторону океана (в среднем 2 метра на каждый километр). На глубине 135–200 метров шельф резко обрывается, образуя материковый склон с крутизной порядка 70 метров на километр. Этот крутой склон отделяет континентальный блок от ложа океана.

Шельф наиболее богатая жизнью часть океанского дна. На глубине 100–150 метров, куда проникает достаточное количество солнечных лучей, дно обычно покрыто разнообразными водорослями. Здесь нет той постоянной низкой температуры, которая характерна для более глубоких частей океана, и это способствует развитию множества донных животных, служащих пищей огромным стаям рыб. Самые богатые рыбой промысловые районы расположены именно в пределах шельфа.

Средняя глубина океанского ложа около четырех километров.

На нем возвышаются подводные хребты и отдельные горы.

Во многих местах дно ложа понижается с образованием котловин и узких, но очень глубоких желобов.

Через все океаны сложным зигзагом проходит система срединноокеанских хребтов. На физических картах мира, составленных по данным измерений глубин механическим лотом, хребты едва намечены. Только с помощью эхолота удалось изучить эту главнейшую горную систему Мирового океана и дать ее изображение.

Дело в том, что все срединноокеанские хребты относительно невысокие и с очень пологими склонами. Их вершины скрыты под двух-трехкилометровым слоем воды и только в нескольких местах поднимаются над поверхностью океана в виде островов.

Глубокая долина проходит точно вдоль гребня, разделяя хребет на две части. Посмотрим, что представляет собой один из таких хребтов — Среднеатлантический.

Начавшись в Арктике между Гренландией и Шпицбергеном, он буквально упирается в Исландию и продолжается далее на юг, извиваясь как змея между материками Старого и Нового Света. Его можно проследить по нескольким островам. Примерно на середине пути из Европы в Америку из океана встают Азорские острова, расположенные на восточном склоне подводных гор. Почти на самом экваторе лежит маленький остров Святого Павла, а к юго-востоку от него такой же безвестный и одинокий остров Вознесения. Остров Святой Елены, известный каждому потому, что на нем кончил свои дни Наполеон Бонапарт, тоже представляет собой выдающуюся над океаном вершину Среднеатлантического хребта.

Последний раз в Атлантическом океане хребет показывает свои вершины на середине морского пути между Кейптауном и Буэнос-Айресом. Здесь корабли проходят мимо угрюмых островов Тристан-да-Кунья.


Так выглядит дно Атлантического океана.

Обогнув с юга Африку, хребет входит в Индийский океан, отмечая свой путь на поверхности островами Принс-Эдуард и Родригес. В этом месте подводная горная система примыкает сбоку к Срединному индийскому хребту, который начинается в Аденском заливе у самого входа в Красное море и пересекает весь Индийский океан с северо-запада на юго-восток. Над водой поднимаются лишь отдельные его пики — остров Сокотра на севере и два маленьких островка — Амстердам и Сен-Поль — в самом центре океана.

В направлении на восток хребет проходит между Австралией и Антарктидой, а потом изгибается к северу и заканчивается у полуострова Калифорния в Северной Америке.

В юго-восточной части Тихого океана одна из вершин хребта одиноко возвышается над безбрежными водными просторами. Это скалистый остров Пасхи, известный во всем мире своими древними каменными изваяниями.

Нетрудно заметить, что все острова, выступающие над океанскими хребтами, начиная с богатой горячими источниками Исландии и кончая легендарным островом Пасхи, имеют вулканическое происхождение.

Вдоль срединноокеанских хребтов проходят ряды глубоких параллельных борозд, а поперек хребтов видны следы многочисленных разломов.

В нескольких местах над океанским ложем вздымаются хребты покороче, имеющие вид узких гребней с крутыми скалами. Часто их вершины поднимаются из моря в виде цепи (или дуги) островов. Для примера можно назвать Алеутские, Курильские, Гавайские, Марианские острова в Тихом океане; Лаккадивские, Мальдивские и Андаманские острова в Индийском; Малые Антильские — в Атлантическом. Как правило, параллельно таким хребтам дно океана понижается, образуя глубочайшие желоба. Самая большая глубина Мирового океана — 11 022 метра — обнаружена советской экспедицией на исследовательском судне «Витязь» в Марианском желобе.

Кроме хребтов, на дне океана имеются отдельные подводные конические горы и целые горные группы.

Их особенно много в тропической области западной половины Тихого океана.

Часть этих конусов имеет чисто вулканическое происхождение, другие надстроены сверху рифообразующими кораллами. Так называемые высокие острова Океании представляют собой выдающиеся над поверхностью моря вершины вулканов; низменные острова (по большей части кольцевидной формы атоллы) — коралловые постройки на вулканическом основании.

Общая характеристика рельефа океанского дна была бы неполной без описания котловин. Так называют более или менее значительные понижения ложа океана, имеющие округлую форму. Котловины расположены у края шельфа. Несколько таких понижений вытянулись вдоль западного берега Америки. Самая северная из них образует дно моря Баффина, другая находится под Дэвисовым проливом, третья расположена в Атлантическом океане к югу от острова Ньюфаундленд.

Край Северо-Американской котловины близко подходит к Нью-Йорку. Мексиканский залив тоже представляет собой большую впадину, а вдоль берега Южной Америки протянулись Бразильская и Аргентинская котловины.

Имеются котловины также по другую сторону Атлантического хребта и в других океанах. Самая большая из них образует центральный полярный бассейн Северного Ледовитого океана.

Структура рельефа океанского дна служит весомым подтверждением теории подвижности материков. Действительно, любой сторонник мобилизма скажет вам, что горные системы Кордильер и Анд, вытянувшиеся вдоль западных берегов Северной и Южной Америки, возникли в результате лобового сопротивления движущимся континентам. Этим же они объяснят и отсутствие шельфа на их тихоокеанской стороне. Совсем иное дело на восточном берегу. Здесь за плывущими на запад американскими континентами, подобно шлейфу, тянется подводное пологое продолжение — шельф.


У Курильских островов.

После перемещения материка остаются следы — глубокие вмятины дна океана — котловины.

На первый взгляд кажется невероятным, что твердые горные породы могут быть столь же пластичны, как остывающий расплавленный воск. Трудно поверить, будто высочайшие горы в мире и самые глубокие желоба Мирового океана появились в результате сморщивания земной коры. Однако не следует забывать, что карты, которыми мы пользуемся, легко вводят нас в заблуждение.

Для наглядности и в целях осуществления графического изображения действительности все карты умышленно искажены, и потому горы и долины кажутся очень рельефными.

На любом схематическом разрезе через материк или через океан масштаб по вертикали в десятки раз крупнее масштаба по горизонтали. Только при этом условии рельеф нашей планеты становится заметным для глаза.

Кроме того, человек, средний рост которого равен 170 сантиметрам, выглядит жалким пигмеем по сравнению с горными массивами или понижениями океанского дна. Для нас даже небольшие холмы и овраги кажутся серьезными препятствиями, но что они могут значить по сравнению с такими огромными величинами, как, например, диаметр земного шара?

Если изготовить рельефный глобус диаметром 1 метр, то разница в положении дна Марианского желоба (предельная глубина 11 022 метра) и вершины Джомолунгмы (Эвереста), возвышающейся над уровнем моря на 8848 метров, едва составит полтора миллиметра! На глобусе Эверест, высотой менее 0,7 миллиметра, уже с расстояния 3–4 метров будет вообще незаметен. Глядя на такую модель земного шара, вполне можно представить себе, что именуемая рельефом легкая рябь на лице нашей планеты могла появиться в результате смещения отдельных участков ее коры.

Глава 3. Геология океана

Кора

Строение планеты, на которой мы живем, издавна занимало умы ученых. Было высказано множество наивных суждений и гениальных догадок, однако доказать правоту или ошибочность любой гипотезы убедительными фактами до самого последнего времени никто не мог. Да и в наши дни, несмотря на колоссальные успехи науки о Земле, в первую очередь благодаря развитию геофизических методов исследования ее недр, не существует единого и окончательного мнения о строении внутренних частей земного шара. Правда, в одном все специалисты сходятся между собой: Земля состоит из нескольких концентрических слоев, или оболочек, внутри которых расположено шаровидное ядро. Новейшие методы позволили с большой точностью измерить толщину каждой из этих вложенных друг в друга сфер, но что они собой представляют и из чего состоят, пока до конца еще не установлено.

Некоторые свойства внутренних частей Земли известны доподлинно, о других можно пока только догадываться. Так, с помощью сейсмического метода удалось установить скорость прохождения сквозь планету упругих колебаний (сейсмических волн), вызванных землетрясением или взрывом. Величина этой скорости, в общем, очень велика (несколько километров в секунду), но в более плотной среде она возрастает, в рыхлой — резко снижается, а в жидкой среде такие колебания быстро гаснут.

Сейсмические волны могут пройти сквозь Землю менее чем за полчаса. Однако, достигнув границы раздела слоев с различной плотностью, они частично отражаются и возвращаются к поверхности, где время их прибытия можно зарегистрировать чувствительными приборами.

О том, что под верхней твердой оболочкой нашей планеты расположен другой слой, догадывались еще в глубокой древности. Первым об этом сказал древнегреческий философ Эмпедокл, живший в V веке до нашей эры. Наблюдая за извержением знаменитого вулкана Этна, он увидел расплавленную лаву и пришел к выводу, что под твердой холодной оболочкой земной поверхности находится слой расплавленной магмы. Смелый ученый погиб при попытке проникнуть в жерло вулкана, чтобы получше узнать его устройство.

Идея об огненно-жидком строении глубоких земных недр получила наиболее яркое развитие в середине XVIII века в теории немецкого философа И. Канта и французского астронома П. Лапласа. Эта теория просуществовала до конца XIX века, хотя никому не удавалось измерить, на какой глубине кончается холодная твердая кора и начинается жидкая магма. В 1910 году югославский геофизик А. Мохоровичич сделал это, применив сейсмический метод. Изучая землетрясение в Хорватии, он обнаружил, что на глубине 60–70 километров скорость сейсмических волн резко меняется. Выше этого раздела, который был позднее назван границей Мохоровичича (или просто «Мохо»), скорость волн не превышает 6,5–7 километров в секунду, тогда как ниже она скачкообразно возрастает до 8 километров в секунду.

Таким образом, оказалось, что непосредственно под литосферой (корой) находится вовсе не расплавленная магма, а, напротив, стокилометровый слой, еще более плотный, чем кора. Его подстилает астеносфера (ослабленный слой), вещество которой находится в размягченном состоянии.

Некоторые исследователи считают, что астеносфера представляет собой смесь твердых гранул с жидким расплавом.

Если судить по скорости распространения сейсмических волн, то под астеносферой, вплоть до глубины 2900 километров, находятся сверхплотные слои.

Что представляет собой эта многослойная внутренняя оболочка (мантия), находящаяся между поверхностью «Мохо» и ядром, сказать трудно. С одной стороны, она имеет признаки твердого тела (в ней быстро распространяются сейсмические волны), с другой — мантия обладает несомненной текучестью.

Следует учесть, что физические условия в этой части недр нашей планеты совершенно необычны. Там господствуют высокая температура и колоссальное давление порядка сотен тысяч атмосфер. Известный советский ученый, академик Д. Щербаков считает, что вещество мантии хотя и твердое, но обладает пластичностью. Может быть, его можно сравнить с сапожным варом, который под ударами молотка разбивается на осколки с острыми краями. Однако со временем даже на морозе начинает растекаться подобно жидкости и течь под небольшой уклон, а достигнув края поверхности, капать вниз.

Центральная часть Земли, ее ядро, таит в себе еще больше загадок. Какое оно, жидкое или твердое? Из каких веществ состоит? Сейсмическими методами установлено, что ядро неоднородно и разделяется на два главных слоя — внешний и внутренний. Согласно одним теориям оно состоит из железа и никеля, согласно другим — из сверхуплотненного кремния. В последнее время выдвинута идея, будто центральная часть ядра железоникелевая, а наружная — кремниевая.

Понятно, что наиболее хорошо из всех геосфер известны те, которые доступны непосредственному наблюдению и исследованию: атмосфера, гидросфера и кора. Мантия, хотя она и близко подходит к земной поверхности, по-видимому, нигде не обнажается. Поэтому даже о ее химическом составе нет единого мнения. Правда, академик А. Яншин считает, что некоторые редкие минералы из так называемой группы меррихбитареддерита, известные прежде лишь в составе метеоритов и недавно найденные в Восточных Саянах, представляют собой выходы мантии. Но эта гипотеза еще требует тщательной проверки.

Земная кора материков изучена геологами с достаточной полнотой. Большую роль в этом сыграли глубинные бурения. В СССР сейчас проводятся работы по бурению пятнадцатикилометровой скважины.

Верхний слой континентальной коры образован осадочными породами. Как показывает само название, они имеют водное происхождение, то есть частицы, образовавшие этот слой земной коры, осели из водной взвеси. Подавляющее большинство осадочных пород образовалось в древних морях, реже они обязаны своим происхождением пресноводным водоемам. В очень редких случаях осадочные породы возникли как результат выветривания непосредственно на суше.

Главнейшие осадочные породы — это пески, песчаники, глины, известняки, иногда каменная соль. Толщина осадочного слоя коры различна в разных частях земной поверхности. В отдельных случаях она достигает 20–25 километров, но кое-где осадков вовсе нет. В этих местах на «дневную поверхность» выходит следующий слой земной коры — гранитный.

Он получил такое название потому, что слагается как из самих гранитов, так и из близких к ним горных пород — гранитоидов, гнейсов и слюдистых сланцев.

Гранитный слой достигает толщины 25–30 километров и обычно прикрыт сверху осадочными породами. Самый нижний слой земной коры — базальтовый — для непосредственного изучения уже недоступен, так как на дневную поверхность нигде не выходит и глубокие скважины его не достигают. О строении и свойствах базальтового слоя судят исключительно по геофизическим данным. С большой степенью достоверности предполагается, что этот нижний слой коры состоит из магматических пород, близких к базальтам, происходящим из остывшей вулканической лавы. Мощность базальтового слоя достигает 15–20 километров.


Строение Земли.

До недавнего времени считалось, что строение земной коры повсюду одинаково и лишь в области гор она возвышается, образуя складки, а под океанами опускается, образуя гигантские чаши. Одним из результатов научно-технической революции было бурное развитие в середине XX века целого ряда наук, в том числе морской геологии. В этой отрасли человеческих знаний сделано немало кардинальных открытий, в корне изменивших прежние представления о строении коры под ложем океана. Было установлено, что если под окраинными морями и вблизи материков, то есть в области шельфа, кора еще в какой-то степени похожа на континентальную, то океаническая кора совершенно иная. Во-первых, она имеет совсем незначительную толщину: от 5 до 10 километров. Во-вторых, под дном океана она состоит не из трех, а всего лишь из двух слоев — осадочного толщиной 1–2 километра и базальтового. Гранитный слой, столь характерный для континентальной коры, продолжается в сторону океана только до материкового склона, где и обрывается.

Эти открытия резко активизировали интерес геологов к изучению океана. Появилась надежда обнаружить на морском дне выходы таинственного базальта, а может быть, и мантии. Крайне заманчиво выглядят и перспективы подводного бурения, с помощью которого можно добраться до глубинных слоев через сравнительно тонкий и легко преодолимый слой осадков.


Осадки

Ежегодно на дно Мирового океана опускается 30 миллиардов тонн осадочного материала. В среднем на каждый квадратный сантиметр дна за тысячу лет выпадает около 4 граммов. Осадочные породы покрывают практически все морское дно, способствуя выравниванию рельефа. Поэтому подводные пейзажи, особенно в области ложа океана, гораздо однообразнее наземных.

Основная масса осадочного материала поступает в океан с суши. Как известно, вода точит камень. Реки беспрерывно выносят в море огромное количество разрушенных и размытых горных пород и почву. Здесь и крупные обломки, и мельчайшая водная взвесь, и растворенные вещества. Поэтому вода большинства крупных рек мутная, иногда совершенно непрозрачная.

Таким образом, основная часть морских осадков зарождается далеко от моря, иногда она переносится текучей водой на тысячи километров. В устье рек происходит сортировка принесенного материала. Вследствие ослабления течения крупные обломки падают на дно, мелкие частицы относятся дальше, иногда на много километров. Границу между мутной речной и прозрачной морской водой прекрасно видно с самолета и даже с борта судна. В открытое море попадает очень незначительное количество самой тонкой взвеси, вынесенной реками, остальное отлагается вблизи берегов.

Кроме рек и временных потоков, вызванных ливнями или таянием снега, различный наземный материал выносят в море льды. Ледяные горы, сползая в океан, захватывают своей подошвой обломки скал и камни разной величины. Движимые течениями и ветрами, айсберги иногда уплывают далеко от мест зарождения. Крайняя северная граница, которой достигают антарктические айсберги, проходит по берегам Африки, Австралии, Южной Америки. Айсберги, рожденные ледниками Гренландии, встречаются в Атлантике на 40-й параллели и даже несколько южнее, то есть на широте Нью-Йорка. Неожиданно появляясь там, где их совсем не ждут, айсберги становятся причиной многих морских трагедий. Так, в апреле 1912 года сверхгигантский лайнер «Титаник», совершая свой первый рейс из Америки в Европу, наскочил в тумане на ледяную гору и затонул.

В этой катастрофе погибло более полутора тысяч человек.

Обломки горных пород по мере таяния льда отделяются от айсберга и падают на дно. Их можно обнаружить в океане за тысячи километров от ближайшего берега.

Произведенные подсчеты возможной «грузоподъемности» айсбергов показывают, что каждый кубический километр льда может нести на себе от 100 до 300 килограммов материкового материала, который затем отлагается на дне океана. Дальность плаваний айсбергов и длительность их существования, по данным члена-корреспондента Академии наук А. Лисицына, зависят не только от направления и скорости морских течений, но и от свойств самого айсберга. Очень большие и глубоко промороженные (до минус 60 градусов) антарктические айсберги существуют по нескольку лет, а в отдельных случаях даже десятилетий.

Гренландские айсберги тают значительно быстрее, всего за 2–3 года, так как они не столь велики по размерам и температура их промерзания не больше минус 30 градусов.

Характер материала, который выносится с материков в океан реками и льдами, различен. В умеренной и особенно в тропической зоне горные породы и почвы разрушаются выветриванием и размывом. Кроме того, наличие здесь влаги способствует химическим процессам разрушения коры. В полярных областях, где рек нет, нет и химического выветривания. Льды воздействуют на поверхность суши только механически. Соответственно текучая вода выносит в первую очередь легко растворимые вещества и мелкие частицы разрушенной коры, а льды захватывают с собой сравнительно крупные обломки.

В осадках находится и материал морских берегов, непосредственно размывающихся прибоем. Часть морских осадков наземного происхождения попадает в океан воздушным путем.

Бури, проносящиеся над пустынями и полупустынями, поднимают огромное количество пыли, которая переносится на несколько тысяч километров, а затем постепенно оседает, попадая как на другие участки суши, так и в океан. Еще 20–30 лет назад этому способу переноса минеральных частиц не придавали серьезного значения, но в связи с развитием высотной авиации, запуском искусственных спутников и атомными взрывами стали выясняться истинные его масштабы.


Реки беспрерывно выносят в море огромное количество разрушенных горных пород.

Вот что отмечает тот же А. Лисицын: «За последние 20 лет в учении об общей циркуляции атмосферы произошли существенные изменения; в частности, были обнаружены высотные струйные течения, имеющие скорость сотни километров в час и протяженность на многие тысячи километров. Это своеобразные „реки“ в атмосфере, по которым идет перенос осадочного материала над океанами и континентами».

Время пребывания пыли в воздухе может быть довольно продолжительным, иногда до 5–6 лет. Лучше всего изучены переносы осадочного материала из Африки в Атлантический океан. Дело в том, что африканская пыль легко может быть обнаружена, куда бы ее ни занесло, так как каждая ее пылинка помечена самой природой.

На севере Африки, где пассаты проносятся над Сахарой, они сдувают с нее ярко-красную и красно-коричневую пыль. Красный шлейф от Сахары прослеживается на дне Атлантического океана вплоть до Антильских островов и берегов Америки. Ученые проследили за скоростью переноса.

Оказалось, что через 5–6 суток после начала пылевой бури в Сахаре красная пыль выпадает на острове Барбадос, расположенном на другой стороне океана.

В засушливых районах юга Африки бури поднимают черную и черно-коричневую пыль. Хотя мощность этого потока значительно уступает северному, но и он прекрасно прослеживается по черному шлейфу в океане.

Ветер поднимает пыль не только в пустынях; значительному выдуванию подвергаются и другие пространства суши, лишенные растительности, в том числе пахотные земли. Распашка земель, вырубка лесов, мелиорация и другие вмешательства человека в веками сложившееся природное равновесие, очень часто приводят к развеиванию самых ценных плодородных почв.

В области Великих равнин США за последние 150 лет из-за сильного выдувания почвы образовался «пыльный котел». Только за один 1934 год во время свирепствовавших тогда бурь отсюда было унесено 300 миллионов тонн почвы. Буря, пронесшаяся в 1969 году над Северным Кавказом, смела пахотный слой вместе с посевами (дело происходило ранней весной) на площади 4 миллиона гектаров. Около 1 миллиарда тонн почвы сдуло в Черное море, а часть ее осела в Румынии, Болгарии и Чехословакии.

К естественным аэрозолям, загрязняющим воздух, все больше и больше примешиваются технические, возникающие в результате деятельности промышленных предприятий. Общее количество технического аэрозоля достигает 200–250 миллионов тонн в год. Это в 20 раз больше того, что выносит в море такая мощная река, как Енисей. Огромное количество взвешенной в воздухе пыли дают атомные и водородные взрывы. Взрывом водородной бомбы в атмосферу и стратосферу поднимается от 10 до 100 миллионов тонн пыли. Конечно, общее количество технических аэрозолей значительно уступает естественному, в отличие от последних они нередко токсичны. Так, мировая добыча свинца составляет около 3 миллионов тонн в год. Десятая часть этого ядовитого вещества попадает в атмосферу, а затем осаждается на сушу и в океан.

Еще 2–3 миллиарда тонн осадочного материала поступает в океан из глубинных слоев планеты в результате извержения вулканов. Вулканическая пыль постоянно присутствует в атмосфере, но наибольшее ее количество было зарегистрировано в 1883 году, когда на всей планете в течение нескольких месяцев наблюдались ярко-красные закаты, названные «кровавыми зорями». Вызваны они были подъемом в стратосферу вулканической пыли, образовавшейся при самом сильном за всю историю человечества извержении. Виновником события был до этого малоизвестный и сравнительно небольшой вулкан Кракатау, находящийся на одном из островков Зондского пролива между Суматрой и Явой. После извержения 1680 года Кракатау почти 200 лет оставался спокойным, но 20 мая 1883 года начал выбрасывать из жерла пемзу и клубы пепла. Пробуждение вулкана сопровождалось небольшим землетрясением, но вскоре он снова успокоился. 26 августа того же года Кракатау неожиданно взорвался. В течение первых дней после катастрофы вулканический пепел густо выпал по всей Юго-Восточной Азии и на прилежащих островах. К сожалению, в то время еще не было сети наблюдательных пунктов, поэтому истинная величина вулканического облака и его передвижение остались плохо изученными.

Гораздо больше данных имеется об извержении вулкана Агунг на острове Бали в Индонезии, которое произошло 17 марта 1963 года. Огромное облако медленно поплыло на восток и через 5 месяцев появилось над штатом Аризона (США). Пепел от этого извержения выпал в Австралии и даже на Южном полюсе.

Через год, обогнув планету, это же самое облако опять появилось над Австралией и снова над полюсом. И так не менее трех раз совершало оно кругосветные путешествия.

Значительная роль в накоплении осадков принадлежит различным морским организмам. Активно извлекая из воды известь, кремний и некоторые другие вещества, они строят из них свои панцири, скелеты, раковины и другие части тела. По мере отмирания таких организмов их минерализованные части отлагаются на дне.

Интересно отметить, что наиболее активно образуют осадки самые мелкие существа — диатомовые планктонные водоросли и одноклеточные простейшие животные (корненожки и радиолярии). От рыб на дне можно найти только зубы, сохраняющиеся благодаря эмали. От гигантов моря — китов — остаются одни лишь кости внутреннего уха.

Наибольшее количество осадков органического происхождения зарождается в верхнем стометровом слое морской воды. Здесь активно проходят процессы фотосинтеза и развиваются одноклеточные водоросли, в том числе и водоросли, обладающие кремниевыми панцирями.

Главную массу животных, населяющих этот слой воды, составляют крылоногие моллюски и простейшие.

Как те, так и другие также снабжены скелетом (известковым или кремниевым). Жизнь самих этих организмов кратковременна, но их скелеты при благоприятных условиях сохраняются миллионы лет (все зависит от химического состава скелетных образований и места их залегания). Кремнезем, из которого построен скелет некоторых обитателей моря, плохо растворим в морской воде, особенно в холодной. Поэтому кремниевые скелетики и панцири, опускаясь на дно, остаются не поврежденными в течение очень длительного времени.


Илистые и песчано-илистые грунты покрывают значительное пространство дна океана.

Из таких кремниевых скелетов иногда образуются мощные напластования.

Так, из крошечных раковинок одноклеточных животных — радиолярий — сложен целый остров Барбадос.

Известковые скелетики часто растворяются, не успевая достигнуть дна.

Особенно интенсивно растворение извести происходит в холодных водах полярных областей и на глубине вследствие большого содержания в холодной воде углекислоты.

Напротив, в условиях тропического мелководья, где содержание углекислоты незначительно, известь почти не подвергается разрушению.

Кроме планктонных организмов в образовании осадков участвуют и донные: двустворчатые моллюски, губки и кораллы.

Осадочный материал, вынесенный с материков, изверженный вулканами из недр планеты и образовавшийся в результате жизнедеятельности морских организмов, в зависимости от условий осадкообразования перемешивается между собой в различных пропорциях.

Песчаные и галечные грунты приурочены к побережьям материков и островов, а на дне открытых частей океана преобладают илы, иногда чистые, иногда с песком или глиной.

В зависимости от условий в каждом участке океана развиваются разные формы растений и животных. Характерные для них минерализованные части скелета, падая на дно, придают терригенным (имеющим наземное происхождение) грунтам биологическую окраску.

Так возникают диатомовый, радиолярный и глобигериновый илы (глобигерины — одноклеточные из отряда корненожек), а также илы с примесью скелетных игл губок.

Значительную часть дна Атлантического океана покрывают илы, включающие раковины крылоногих моллюсков — птеропод.

Очень часто, особенно вблизи берегов и на отмелях, песчаный грунт имеет примесь битых раковин двустворчатых моллюсков, а в тропической зоне океана значительны напластования извести скелетов рифообразующих кораллов.

В области усиленной вулканической деятельности к терригенным и биогенным осадкам прибавляются также и изверженные породы.


С помощью геологической трубки получают пробы грунта.

Однообразие осадочной подводной поверхности нарушают лишь волнообразные складки, образующиеся вследствие течений, да поселения на морском дне животных и растений. Они составляют главную прелесть тех прекрасных морских пейзажей, которые можно видеть в кино и на подводных фотографиях и с которыми знакомо по личным впечатлениям очень небольшое число людей, любителей подводных плаваний и профессиональных водолазов.

Глава 4. Вода океана

Объем мирового океана

Океан — это в первую очередь скопление воды. Не будь ее, не было бы и самого океана. Ведь совершенно очевидно, что так называемые лунные моря, в которых нет ни капли влаги, принципиально не отличаются от остальной поверхности Луны.

Сколько же воды в океане? Произвести точный подсчет объема такого большого бассейна с изрезанными берегами и неровным дном чрезвычайно трудно, поэтому результаты у разных исследователей не совпадают. Французский специалист К. Валло в своей книге «Общая география моря» пишет, что объем Мирового океана равен 1330 миллионам кубических километров. Советский океанолог М. Львович оценивает Мировой океан в 1370 миллионов кубических километров. В некоторых зарубежных руководствах приводится еще большая величина — 1421 миллион кубических километров. Если мы перемножим числа 361 миллион (площадь Мирового океана в километрах) и 3,799 (средняя его глубина), то получим данные, довольно близкие к результатам подсчетов М. Львовича.

Океан настолько велик, что человек может представить себе истинные размеры этой водной массы, только прибегнув к каким-либо понятным сравнениям. Попробуем мысленно вместить Мировой океан в сосуд кубической формы. Сторона такого куба должна быть более 1100 километров, что соответствует расстоянию от Москвы до Варшавы.

Объем всей суши, выступающей над поверхностью океана, почти в 11 раз менее объема этого куба. Ну а если расфасовать океан в более мелкую тару? Обычных двадцатилитровых канистр потребуется для этой операции несметное множество — 6,85 · 1019. Если поровну поделить их между всеми людьми, населяющими Землю, каждому достанется около 20 миллиардов канистр морской воды.

С одной стороны, это невероятно много, с другой стороны, океанской воды едва-едва хватает для всего живущего в океане, для тех съедобных растений и животных, которым океан обеспечивает существование. Кроме того, как это будет видно из дальнейшего, океанская флора играет значительную роль в обогащении атмосферы кислородом.

Таким образом, сопоставление объема Мирового океана с населением земного шара имеет вовсе не отвлеченное значение.


Химический состав морской воды

С точки зрения химика молекула воды представляет собой соединение одного атома кислорода с двумя атомами водорода. В повседневной жизни мы обычно имеем дело с пресной водой, в которой почти нет посторонних примесей. Та жидкость, которая заполняет океан, строго говоря, представляет собой не воду, а довольно крепкий рассол. В каждом килограмме морской воды содержится в среднем 35 граммов различных солей.

По последним данным академика А. Виноградова, в водах Мирового океана обнаружены все известные химические элементы. Конечно, в морской воде растворены не сами элементы, а их химические соединения, диссоциированные на анионы и катионы. В литре воды больше всего обыкновенной поваренной соли (27,2 грамма). Отсюда понятно, почему вода в море такая соленая. Хлористый магний (3,8 грамма) и сернокислый магний (1,7 грамма) придают морской воде горький вкус. Довольно много в ней содержится сернокислого калия (1,3 грамма) и сернокислого кальция (несколько менее грамма). В своей совокупности эти соли составляют 99,5 процента растворенных в морской воде веществ. Таким образом, на долю всех остальных элементов приходится всего 0,5 процента.

Несмотря на сравнительно небольшую концентрацию, общее количество солей в водах Мирового океана исчисляется поистине астрономической величиной 4,8 · 1016 тонн, поэтому извлечение их для бытовых и промышленных нужд не влияет на состав морской воды, и можно сказать, что в этом отношении океан неисчерпаем.

Издавна человек путем выпаривания получал из морской воды пищевую соль. Особенно развиты морские соляные промыслы в тропических странах, где соль получают, отгораживая дамбами мелководные участки вблизи берега. Так как концентрация поваренной соли выше, чем остальных солей, она первая выпадает в осадок при выпаривании. Осевшие на дне кристаллы извлекают из так называемого маточного раствора и промывают пресной водой для удаления остатков солей магния, придающих продукту горький вкус.

Этим же методом извлекают из моря различные соли для химической промышленности.

Сейчас в море добывается примерно четвертая часть необходимой человечеству поваренной соли, остальные три четверти получают из соляных копей. В большинстве случаев эта каменная соль обязана своим происхождением прибрежным отложениям древних морей. Можно с уверенностью сказать, что в дальнейшем добыча поваренной соли из моря возрастет, так как залежи каменной соли, как и любых других полезных ископаемых, обречены на более или менее быстрое истощение. Используется поваренная соль как непосредственно, так и для получения из нее натрия и хлора.

На втором месте в списке веществ, растворенных в морской воде, стоят соли магния. Этот металл находит широкое применение в легких и прочных сплавах, он пользуется всевозрастающим спросом в промышленности, в первую очередь в самолетостроении. Магний входит в состав целого ряда минералов (например, доломитов), и потому его добыча была налажена в горнорудной промышленности.

В настоящее время благодаря развитию техники морскую воду следует считать самым лучшим источником для получения магния, так как в каждом ее кубическом метре содержится 1,3 килограмма этого металла.

Первая, а затем вторая мировые войны заставили Англию и США искать новые источники для получения магния в связи с тем, что главнейшие рудные районы находились в руках враждебной Германии. Тогда-то и началось промышленное получение этого ценного стратегического сырья непосредственно из моря. Достигнутые успехи позволили настолько снизить себестоимость магния, извлекаемого из морской воды, что в настоящее время он стоит значительно дешевле металла, получаемого из руд. В 1914 году на нью-йоркском рынке 1 килограмм магния стоил 10 долларов, а в 1943 году — всего 26 центов, хотя потребность в нем не упала, а возросла. Технология извлечения магния из морской воды основана на переводе его растворимых солей в нерастворимые соединения путем осаждения известью.

В 1826 году молодой французский химик А. Баляр увлекся исследованием химизма морской воды. Набрав однажды маточный рассол из солеварни, А. Баляр начал пропускать через него хлор и с удивлением обнаружил, что жидкость в колбе приобрела красно-оранжевый цвет и неприятный запах. Так был открыт новый химический элемент бром (название он получил от греческого слова «бромос», что значит «зловоние»).

Бром находит широкое применение в медицине (в виде солей как успокаивающее средство), в фотографии (при изготовлении светочувствительных бромосеребряных материалов) и в нефтяной промышленности. Двубромистый этилен служит превосходным растворителем для тетраэтилового свинца, который добавляют в бензин, чтобы снизить его детонационные свойства (повысить так называемое «октановое число»). Хотя в морской воде брома относительно мало — 65 граммов на кубический метр, но из других источников этот элемент получить нельзя; он не встречается ни в одном минерале.

Морская вода содержит даже золото, правда в ничтожном количестве — всего 0,00001 грамма на кубический метр. Блеск этого металла всегда притягивал к себе взоры различного рода авантюристов. Еще до второй мировой войны на морское золото позарилась Германия. Немецкие химики подсчитали, что в Мировом океане растворено в виде солей около 10 миллионов тонн золота, причем самый его источник находится буквально под боком — в Северном, или Немецком, море. Оставалось только найти способ извлечения драгоценного металла из морской воды, что и было осуществлено. Однако опустошенные подвалы рейхсбанка не наполнились золотыми слитками. Стоимость затрат на получение золота из морской воды оказалась во много раз больше стоимости самого извлеченного металла.

Хотя попытка получить из моря золото и закончилась на первых порах неудачно, ученые не теряют надежды подойти к решению этой проблемы с другой стороны, применив не химические, а биологические способы. Дело в том, что многие морские организмы обладают способностью накапливать в своем теле различные вещества, извлечение которых из морской воды пока еще совершенно недоступно человеку. Так, в крови рыб процентное содержание железа в тысячи раз превышает его содержание в морской воде. Некоторые моллюски накапливают в своем теле медь, асцидии — ванадий, радиолярии — стронций, медузы — цинк, олово и свинец, губки и водоросли — йод.

Извлекать йод непосредственно из моря — дело совершенно нерентабельное, но получать этот галоген из высушенных бурых водорослей не только возможно, но и очень выгодно.

Биологи Плимутской морской биологической станции (Англия), изучая один из видов асцидий (низших хордовых животных), обнаружили в их теле крайне редкий элемент — ниобий. Только позднее было установлено, что следы ниобия имеются и в воде Плимутского залива.

Собирая или искусственно разводя животных-накопителей, можно наладить получение таких веществ, которые в самой морской воде содержатся в ничтожных концентрациях.


Краб хиас, как и многие другие ракообразные, накапливает в своем теле ванадий.

Говоря о химическом составе морской воды, необходимо остановиться на соединениях углерода, азота и фосфора. В каждой тонне морской воды содержится этих веществ совсем немного — 30, 17 и 0,1 грамма соответственно. Однако они играют весьма важную роль, так как входят в качестве обязательных компонентов в состав всех клеток и тканей растений и животных.

Если морские организмы обычно не испытывают недостатка в углероде, то очень часто их размножение и рост лимитируются нехваткой солей азота и фосфора. Бурная весенняя вспышка развития растительного планктона дает пищу целой цепи существ от мельчайших рачков до китов. Но вот проходит некоторое время, и размножение одноклеточных водорослей прекращается.

Еще не все пространство океана заполнено ими, еще солнце дает вполне достаточно тепла и света, но иссякли запасы солей азота и фосфора, и жизнь начала замирать. Проведенные опыты показывают, что стоит добавить в морскую воду эти биогенные (то есть дающие жизнь) соли, как фитопланктон снова начинает размножаться.

Процентное соотношение солей в морской воде повсюду и всегда одинаково. Исключение составляют только эти биогенные соли — они то исчезают почти полностью, входя в состав тела различных морских организмов, то (после их гибели и разложения) снова поступают в морскую воду, и на их основе развивается следующее поколение.

Наконец, в море содержится еще один компонент, который был назван академиком А. Ферсманом «самым важным минералом на Земле, без которого нет жизни». Это, конечно, сама вода. К сожалению, морская вода до самого последнего времени была почти недоступна человеку. Растворенные в ней соли делали ее совершенно непригодной для питья или другого практического использования. Очень часто моряки умирали в море от жажды, хотя источник живительной влаги находился буквально под ногами. Конечно, получать пресную воду из морской можно методом выпаривания, но такие установки крайне громоздки и требуют большого количества топлива. Выгоднее и проще было запасать ее и возить с собой. Однако в середине XX века положение изменилось. Резкое увеличение потребления пресной воды развивающейся промышленностью и растущим народонаселением привело к сокращению ее запасов, и взоры людей обратились к океану с его необъятными водными ресурсами. Теперь почти на каждом большом судне установлены мощные опреснители, действие которых основано на принципе вымораживания. Каждому, конечно, приходилось видеть ледяную «шубу» в своем домашнем холодильнике. Примерно так же получают пресную воду в судовых и промышленных установках. На морских побережьях, где нет своих источников пресной воды, ее также извлекают из океана. Такой водой пользуются, например, жители острова Кюрасао, находящегося в Карибском море. Эта же вода идет здесь и на промышленные предприятия, ею же снабжают заходящие корабли, не имеющие своих опреснителей. Уникальная атомная установка по опреснению морской воды работает и у нас на Мангышлаке.

Можно не сомневаться, что в будущем основным источником пресной воды будут не реки и озера, а океан.


Откуда в океане соль?

В среднем, как это уже указывалось, концентрация солей в море равна 35 промилле, что соответствует раствору 35 граммов соли в килограмме воды. Однако в разных частях Мирового океана соленость неодинакова. В поверхностном слое Балтийского моря она равна всего 3–4 промилле, а в западной части Балтики, вблизи Ленинграда, соли практически нет, так как в этом месте сказывается распресняющее влияние мощного стока Невы. Дон, выносящий массу пресной воды в маленькое мелководное Азовское море, разбавляет соленую морскую воду до 11 промилле. Черное море, принимающее в себя сток таких многоводных рек, как Дунай и Днепр, имеет соленость поверхностной воды, равную 17–18 промилле.


Финский залив вблизи Ленинграда заполнен пресной невской водой.

Морская вода распресняется также благодаря обильному выпадению осадков, что особенно характерно для умеренных широт. В тропической зоне, где осадков выпадает сравнительно мало, а испарение воды с поверхности океана идет особенно интенсивно, концентрация солей несколько увеличивается. В сравнительно небольшом замкнутом Красном море соленость повышается до 40–41 промилле.

Если соленость в разных частях Мирового океана колеблется в известных пределах, то соотношение разных солей, растворенных в морской воде, отличается удивительным постоянством. В какой части света ни взять пробу морской воды, состав ее солей будет одинаков.

Естественно было бы ожидать, что вся соль моря внесена в него реками. На первый взгляд эта гипотеза, господствовавшая в науке многие годы, выглядит вполне убедительно. За долгую историю Земли реки понемногу вымывали соль из горных пород и несли ее в океан.

Океанская вода испарялась с поверхности и, выпав в виде дождя и снега, снова собиралась в реки. Постепенно первичный совершенно пресный океан становился все более соленым, и его осолонение продолжается в настоящее время.

Возразить против этой гипотезы трудно, так как она опирается на совершенно очевидные факты. Действительно, пресная вода всегда, хотя и в незначительных концентрациях, содержит растворенные соли. Стремление рек к морю было подмечено в глубокой древности. Еще в Библии описано это вечное движение: «Все реки текут в море, но море не переполняется; к тому месту, откуда реки текут, они возвращаются, чтобы опять течь». Но, кроме общих рассуждений, эта истина ни на что не опиралась. А всякая теория должна подкрепляться точными количественными данными.

Сколько же соли реки вынесли в океан за все время существования Земли?

Современная наука отвечает на этот вопрос с достаточной точностью. Установлено, что каждую секунду все реки планеты выносят в океан около миллиона тонн воды, а годовой сток их равен 37 тысячам кубических километров. За 37 тысяч лет вся вода в Мировом океане обновляется, так как именно столько времени нужно, чтобы реки полностью заполнили его объем. На протяжении геологической истории Земли таких циклов насчитывается, по крайней мере, сто тысяч.

Определить количество солей, содержащихся в литре пресной воды, достаточно легко, хотя нужно иметь в виду, что в разных реках оно неодинаково. Если принять, что в среднем литр речной воды содержит 1 грамм солей (обычно их там меньше), то вычислить общее количество вынесенной в море соли совсем нетрудно — для этого нужно лишь помножить этот грамм на объем годового стока, на 37 тысяч лет и на 100 тысяч, что дает в результате около 1,4 · 1020 тонн.

И вот тут получается полное несоответствие. Напомним, что по подсчетам в Мировом океане растворено 4,8 · 1016 тонн соли, то есть в 3 тысячи раз меньше! Но беда заключается не только в этом. Оказывается, химический состав солей, растворенных в речной воде, совершенно отличается от состава морской соли. Если выпарить морскую воду, то 89 процентов ее сухого остатка составят соединения натрия и магния с хлором и лишь 0,3 процента — углекислый кальций. В сухом же остатке после выпаривания речной воды углекислый кальций занимает первое место (свыше 60 процентов), а хлориды натрия и магния в сумме — лишь 5,2 процента.

Итак, гипотеза осолонения моря реками оказалась несостоятельной. Остается предположить, что океан стал соленым в момент своего рождения. Эта идея получает солидное подкрепление со стороны палеонтологии. Дело в том, что наиболее древние из известных животных не могли существовать ни в слабосоленых, ни в пресноводных бассейнах. Значит, состав морской воды за весь период существования океана не менялся. Но как же тогда быть с речным стоком, который все же существует? Ведь благодаря разнице в химизме морской и речной воды океан постепенно должен обогащаться карбонатами.

Основоположник биогеохимии академик В. Вернадский считал, что постоянство солевого состава океана регулируется живыми организмами. В самом деле, почти весь углекислый кальций, а также соли кремния, которые выносятся реками, незамедлительно извлекаются из раствора теми морскими растениями и животными, которые строят из этого материала свои скелеты, панцири и раковины. Очень скоро весь углекислый кальций и соли кремния отлагаются на морском дне в виде осадков органического происхождения, о которых уже шла речь в предыдущей главе. Таким образом, маленькие обитатели моря поддерживают неизменность состава солей необъятного Мирового океана на протяжении всего времени его существования.


Физические свойства морской воды

Как известно, за международную единицу измерения массы принят килограмм. Платиновый килограммовый эталон хранится в Палате мер и весов в Париже, а очень точные дубликаты имеются в аналогичных учреждениях многих стран. С ними сверяют массу гирь и разновесов, употребляемых в научных лабораториях, производстве и торговле. И в повседневной жизни мы давно привыкли пользоваться этой единицей. С нее, можно сказать, начинается жизнь каждого человека: новорожденного, еще до того, как он получил имя и первую порцию молока, непременно взвешивают; любая покупка в продовольственном магазине непременно выражена в килограммах или его долях.

Но почему именно килограмм (а не фунт, унция или золотник) принят теперь во всем мире за единицу измерения массы? Дело в том, что все другие единицы были произвольными, а килограмм имеет свой природный эквивалент: такова масса одного кубического дециметра воды при 4 градусах Цельсия. Учитывать температуру совершенно необходимо, так как с ее изменением меняется и плотность воды. Всякая ли вода годится для установления эталона массы? В учебниках об этом обычно ничего не говорится, так как в данном случае под словом «вода» подразумевают вовсе не ту жидкость, которая течет из водопроводного крана, а химически чистое вещество: воду, подвергшуюся специальной обработке или же синтезированную из водорода и кислорода и не содержащую никаких примесей.

Морская вода, представляющая собой сложный раствор, таким требованиям совершенно не удовлетворяет: ее физические свойства, в том числе и плотность, значительно отличаются от свойств химически чистой воды. В среднем плотность морской воды равна 1,025 грамма на кубический сантиметр. Стало быть, ее литр на 25 граммов тяжелее пресной. Но плотность воды неодинакова по всему Мировому океану, она несколько меняется в зависимости от солености и температуры. Чем выше соленость, тем больше и плотность. Зависимость плотности от температуры обратная: чем вода теплее, тем плотность ее меньше. Так, наименьшая плотность морской воды — 1,022 грамма на кубический сантиметр — была отмечена в поверхностных слоях экваториальной зоны Тихого океана, а наибольшая — 1,028 грамма на кубический сантиметр — вблизи океанского дна.

Даже незначительное изменение плотности морской воды влечет за собой весьма существенные последствия. Так, при охлаждении верхних слоев океана вода становится плотнее и опускается. Навстречу ей устремляются менее плотные глубинные воды. Возникают вертикальные токи. В сочетании с горизонтальными течениями они придают Мировому океану вид слоеного пирога, каждый слой которого характеризуется своими особыми показателями плотности, солености и температуры. Благодаря вертикальным токам вода в океане до известной степени перемешивается, в глубину проникают насыщенные кислородом поверхностные воды, из придонных слоев поднимаются богатые биогенными солями придонные массы воды.


Двустворчатые моллюски, способствующие накоплению извести на морском дне.

Азбучная истина о том, что вода замерзает при 0 градусов, не распространяется на морскую воду. Из-за растворенных солей она остается жидкой и при отрицательной температуре. Только охлажденная ниже минус 1,9 градуса Цельсия, она начинает переходить в твердое состояние. Правда, это касается только воды с нормальной океанической соленостью. Если же в ней растворено не 35 граммов соли на килограмм, а меньше, то она станет замерзать при более высокой температуре. Так, Азовское море, соленость которого равна 12 промилле, замерзает при 0,6 градуса ниже нуля, а Белое море (соленость его 25 промилле) — при 1,4 градуса ниже нуля.


С помощью батометра получают пробы воды с любой глубины.

Когда изменяется агрегатное состояние пресной воды, ее состав не меняется. Совсем иначе обстоит дело с морской водой. Замерзание моря начинается с образования тонких, похожих на иглы ледяных кристалликов, совершенно лишенных соли. Если в этот момент марлевым сачком собрать такие иглы и растопить, то получится вполне чистая пресная вода. Естественно, что на первых порах образования льда соленость верхних слоев воды несколько повышается за счет поступления в эти слои тех порций соли, которые не вошли в кристаллические ледяные иглы. Только потом, когда начинается смерзание комков этих кристаллов, лед также становится соленым, но его соленость все же ниже солености окружающей морской воды. Во время таяния льда прилежащие слои воды несколько распресняются.


Замерзание морской воды начинается с образования тонких ледяных иголочек.

Распространение в морской воде световых и звуковых волн также имеет свои особенности. Еще 20–25 лет назад большинство людей могло судить о том, как выглядит подводный мир, только наблюдая его через поверхность воды. Но с тех пор, как подводные очки и маски повсюду вошли в моду, любой желающий может лично познакомиться с красотами царства Нептуна. При этом стала очевидной одна весьма существенная деталь: в маске не очень хорошо виден подводный мир реки, в море же видимость превосходна. Удивительного в этом ничего нет: морская вода значительно прозрачнее воды большинства пресноводных водоемов.

Самая высокая прозрачность отмечена в центральной части Атлантического океана, где служащий эталоном белый металлический круг диаметром в 30 сантиметров — «диск Секки» — виден через поверхность воды на глубине более 65 метров. Прозрачность вод Тихого и Индийского океанов несколько меньше и равна соответственно 60 и 50 метрам. Чем ближе к берегу, тем больше в морской воде различных взвешенных частиц и мельчайших планктонных организмов, поэтому прозрачность там ниже, чем в открытом океане. В Средиземном море «диск Секки» не виден уже на глубине 30 метров, в Черном море — на глубине 20 метров, а в Балтийском — даже на 13 метрах. В большинстве пресноводных водоемов прозрачность воды не превышает 10 метров, в реках она, как правило, значительно меньше, иногда лишь 0,5–1 метр. Только в Байкале, который славится чистотой своей воды, ее прозрачность равна 30–40 метрам.

По сравнению с атмосферой водная среда пропускает свет хуже, потому что сильнее поглощает его и рассеивает. Когда солнце находится в зените (это возможно только в тропиках), в воду проникает почти весь его световой поток; косые же лучи утреннего или полуденного времени в значительной степени отражаются водной гладью. Поэтому сумерки под водой наступают раньше, чем на суше; день там короче, а ночь длиннее.

Даже в прозрачной воде открытых частей океана яркость света убывает с глубиной примерно в десять раз на каждые 50 метров. Человек, совершающий глубоководное погружение, уже ниже 400 метров не различает за стеклом иллюминатора аппарата никаких следов дневного света. Правда, чувствительная фотографическая пластинка после часовой экспозиции на глубине 1000 метров при проявлении темнеет, но на глубине 1700 метров она вообще не засвечивается.

Прозрачность морской воды неодинакова для разных частей видимого спектра: более короткие световые волны (фиолетовая часть спектра) проникают через нее легче и дальше, чем длинные (красная часть спектра). Первыми в море поглощаются красные лучи, поэтому на глубине более метра красные предметы кажутся уже не такими яркими, как на воздухе. Синие и фиолетовые лучи проникают значительно дальше, они придают подводным пейзажам своеобразный цветовой колорит, за который освещаемая днем часть морского дна получила образное название «голубого континента».

На глубине цвет самых обыденных и хорошо известных предметов меняется до неузнаваемости. Жак-Ив Кусто рассказывает: «Мы брали с собой таблицы с ярко-красными, голубыми, желтыми, зелеными, пурпурными и оранжевыми квадратами, а также шкалу серых тонов от белого до черного и фотографировали на различной глубине вплоть до сумеречной зоны. На глубине пять метров красный цвет казался розовым, а на двенадцатом метре абсолютно черным. Одновременно исчезал и оранжевый цвет. На глубине 35 метров желтый цвет начал превращаться в зеленый, здесь царит уже почти полная монохроматия.

Как-то раз мы охотились в море под уединенными скалами Ла Кассадань. Нырнув на 35 метров, Дюма подстрелил гигантскую ставриду. Гарпун прошел сквозь тело позади головы, но не задел позвоночника. Загарпуненная рыба отчаянно сопротивлялась. Дюма стал подтягиваться все ближе и ближе к ставриде по тросу. Наконец он подобрался вплотную, схватил кинжал и вонзил его прямо в сердце рыбины. Кровь брызнула мощным фонтаном.

Но кровь была зеленая! Ошеломленный этим зрелищем, я подплыл и уставился на струю. Она была изумрудного цвета. Мы с Дюма переглянулись в недоумении. Мы не раз плавали среди гигантских ставрид, но никогда не подозревали, что у них зеленая кровь. Потрясая гарпуном со своим поразительным трофеем, Дюма направился к поверхности. На глубине пятнадцати метров кровь стала коричневой. Шесть метров — она уже розовая, а на поверхности она растеклась алым потоком».

Цвет моря зависит именно от того, что часть лучей поглощается морской водой. Чем вода чище и прозрачней, тем синее цвет. Впервые попав в открытый океан, трудно поверить, что вода в нем не подкрашена. Ближе к материкам цвет воды зеленеет от примеси взвешенных частиц, у самого берега он может быть желтоватым. Вообще говоря, чистая вода обладает крайне низкой по сравнению с другими жидкостями способностью рассеивать свет. Это связано с тем, что рассеяние в любой чистой оптической среде происходит из-за неоднородности ее плотности. Вода же в отличие от многих других жидкостей очень малосжимаема, поэтому плотность ее почти однородна. По-видимому, наблюдающееся светорассеяние в чистой морской воде и в воде чистых горных озер связано с наличием в ней мельчайших пузырьков воздуха.

При отражении от морской поверхности спектральный состав света не меняется. А поскольку источником света обычно служит небосвод, то его цвет и придает окраску морской воде. Чем чище небо, чем меньше в нем облаков и аэрозолей (дымов и пыли), тем оно синее и тем синее должен быть дальний план морской поверхности, поскольку дальний план отражает значительно большую часть света, чем передний. Практически можно считать, что дальний план в этом смысле начинается, когда луч зрения составляет с морской поверхностью угол менее 10 градусов; для человека, стоящего на борту судна высотой около 4 метров, эта зона начинается приблизительно на расстоянии 20–30 метров.

Вода служит хорошим проводником для звука. До тех пор, пока человек не проник во владения Нептуна, они казались ему безмолвными. Поэт В. Жуковский так представлял себе тишину подводного мира: «Все спало для слуха в той бездне глухой». Но ведь ни он сам, ни Ф. Шиллер, балладу которого «Ныряльщик» под новым названием «Кубок» перевел В. Жуковский, никогда не были под водой. Они лишь выражали в поэтической форме господствовавшее тогда общее мнение о полной тишине, царящей в морских глубинах. Действительно, человеческое ухо, приспособленное к воздушной среде, не воспринимает звуки, исходящие из воды, но стоит применить простейшие слуховые аппараты, как подводный мир окажется наполненным самыми разнообразными звуками.

В годы первой мировой войны по всем морям и океанам безнаказанно разбойничали немецкие подводные лодки, обнаружить которые военные корабли союзников никак не могли. Но вот удалось изготовить и спустить в воду гидрофоны. На оборудованных ими военных судах — охотниках за субмаринами — натренированные операторы с наушниками — «слухачи» — стали среди тысяч звуков распознавать шумы винтов немецких подводных лодок. Поначалу, правда, не только проплывающий кит, но даже стая сельдей нередко служили поводом для боевой тревоги.

Подводный мир оказался вовсе не безмолвным. Большой знаток морских животных зоолог Н. Тарасова так описывает подводную симфонию вблизи Севастополя: «…Непрекращающееся щелканье бесчисленного множества рачков-альфеусов, в которое по временам врываются „стоны“ горбылей или ритмичное урчание морских петухов, а то и лающий „скрежет зубовный“ ставрид, наполняют воду разнообразными и громкими звуками».

Услышать голос морских обитателей теперь можно и у себя дома, поставив на проигрыватель пластинку с записями звуков, демонстрирующих «голосовые» возможности некоторых видов рыб и водных беспозвоночных животных.

Звук распространяется в воздухе с постоянной скоростью 340 метров в секунду. В воде он успевает за это же время пробежать расстояние в 4,5 раза больше. Но скорость эта непостоянна и зависит от температуры, солености и давления воды, то есть в конечном счете от ее плотности. В воде с нормальной океанической соленостью при нуле градусов вблизи поверхности скорость звука равна 1440 метрам в секунду. На глубине 10 километров при тех же прочих условиях его скорость возрастает до 1630 метров в секунду. В нагретых до 30 градусов поверхностных водах тропической зоны океана скорость звука повышается до 1543 метров в секунду.

Ультразвук, то есть акустические волны с частотой свыше 16 тысяч колебаний в секунду, уже не воспринимаемый человеческим ухом, поглощается водной средой гораздо сильнее, чем звуки низкой частоты, но зато его можно направлять в виде узкого пучка. Эта особенность ультразвуковых колебаний использована в эхолоте, с помощью которого точно и быстро измеряется глубина. От специального ультразвукового датчика, помещенного на судне, через небольшие промежутки времени вертикально вниз посылается ультразвуковой сигнал. Отразившись от дна, он возвращается обратно и улавливается чувствительной приемной аппаратурой. Зная скорость прохождения ультразвука и определив время между посылкой и возвращением сигнала, можно легко вычислить расстояние от поверхности до дна. В современных приборах регистрация глубины производится автоматически, а самописец на бумажной ленте вычерчивает кривую, соответствующую профилю дна моря. Так как скорость ультразвука, как и слышимых звуков, зависит от солености, температуры и давления воды, в данные эхолота необходимо вносить поправки.

Моряки, пользующиеся эхолотом, давно заметили, что любые препятствия, находящиеся между поверхностью моря и его дном, также регистрируются на ленте прибора. Оказалось возможным, слегка видоизменив эхолот, использовать его для поисков скоплений промысловых рыб. Хорошо натренированный специалист по характеру кривой на ленте может не только определить местонахождение и размер стаи, но и сказать, к какому виду относятся составляющие ее рыбы.


Температура океана

«Научное описание океана — не самое интересное чтение на свете. Да, в таком-то месте океан такой, а далее немного иной. Перечислять эти различия можно с разной подробностью… и заполнить описанием сотни страниц».

Этими словами начинается книга «Океан как динамическая система», недавно изданная тремя молодыми советскими учеными: Владимиром Лебедевым, Тамерланом Айзатуллиным и Кириллом Хайловым.

В самом деле, детальное описание температуры Мирового океана скорее всего будет похоже на справочник, страницы которого заполнены таблицами с колонками чисел. Но за этими числами, отражающими постепенное понижение температуры морской воды от экватора к полярным областям и от поверхности к глубине, можно усмотреть также и общие закономерности, характеризующие океан в целом.

Начнем с того, что большая часть океана (от глубины 1000 метров до океанского ложа) заполнена холодной водой в 1–5 градусов. Еще более низкая температура держится в глубоководных желобах, а в приполярных областях — и вблизи поверхности.

Вторая особенность температурного режима океана — это удивительное постоянство. В открытом море в течение суток температура воды даже у самой поверхности изменяется в пределах всего лишь 0,2–0,4 градуса. Правда, годовое изменение температур, особенно в умеренных областях, может быть довольно значительным, но это касается только верхних слоев воды, тогда как ниже 300 метров температура остается постоянной в течение круглого года.

Таким образом, когда речь идет о студеных и теплых морях, нужно помнить, что температурные различия между ними касаются только верхнего, относительно небольшого слоя воды, ниже которого все моря и океаны холодные.

Нагревание морской воды происходит в результате поглощения ею солнечной энергии. Основное количество тепла поступает в море непосредственно от самого светила; когда же оно скрыто тучами или расположено близко к горизонту, поступление тепла резко сокращается, но не прекращается, так как оно исходит от всего небосвода. Как уже было сказано, вода плохо пропускает красные лучи солнечного спектра. Еще более длинноволновые инфракрасные лучи, несущие основную долю тепловой энергии, проникают в нее лишь на несколько сантиметров. Поэтому нагревание более глубоких слоев океана происходит не за счет непосредственного прогрева их солнцем, а вследствие вертикальных движений водных масс.

В различных частях Мирового океана поверхностный слой воды нагревается неодинаково. Сильнее в приэкваториальном поясе, где солнце посылает лучи отвесно к поверхности океана. В полярных областях, где солнечные лучи падают косо, не упираются в поверхность воды, а как бы вскользь касаются ее, где значительная их часть не проникает в воду, а отражается от ее глади и уходит в мировое пространство, вода нагревается слабее.

По мере продвижения от экватора к полюсам годовое количество солнечной энергии, приходящееся на каждую точку поверхности Земли, уменьшается постепенно, и все же можно заметить более или менее четкую зональность нашей планеты. Все зависит от того, с какой точки зрения рассматривать границы между отдельными зонами, или поясами.

Если взять за основу высоту Солнца над горизонтом, как это делают астрономы, то Земля посредством двух тропиков и двух полярных кругов разделится на пять геометрически правильных поясов. Однако такое формальное деление не устраивает ни океанологов, ни климатологов, ни биологов, ни практиков сельского хозяйства.

С точки зрения особенностей климата, произрастания сельскохозяйственных культур и распространения растений и животных границы между зонами проходят вовсе не в точном соответствии с полярными кругами и тропиками, да и число зон может быть больше пяти. Климатологи, учитывая температуру, влажность, силу и направление преобладающих ветров и т. д., разделяют Землю на целых 13 зон: одну экваториальную и по две субэкваториальные, тропические, субтропические, умеренные, субполярные и полярные.

Повседневная практическая деятельность человека потребовала в пределах каждой зоны выделить еще по нескольку климатических областей. Особенно отчетливо эта дробная зональность проявляется на материках.

Распределение жизни в море подчинено своим законам, и потому биологи разделяют Мировой океан несколько иначе, чем сушу. При этом они далеко не всегда согласны между собой. Широтная зональность очень мало сказывается на больших океанских глубинах, поэтому распределение жизни в батиали и абиссали зависит не столько от температуры, сколько от поступления туда пищевых веществ, а также от конкретной геологической истории водоема. Специалисты, изучающие донное, особенно глубоководное население океана, удовлетворяются самыми общими представлениями о поясных зонах, так как в основном они вынуждены учитывать не их влияние, а историческую обстановку, под воздействием которой формировались фаунистические группировки донных морских животных.

Чем ближе к поверхности моря, тем сильнее сказывается годовой ход температур, тем большее значение в распределении растений и животных приобретает климатическая зональность.

В практике судовождения, в рыболовстве и на зоогеографических картах морских биологов линия, отделяющая полярную зону от умеренной, совпадает вовсе не с полярными кругами, а с границей плавучих льдов.

Одни ученые считают тропической зоной океана только тот пояс, расположенный к северу и югу от экватора, в котором возможно существование коралловых рифов. Другие несколько расширяют его и принимают в качестве границы область распространения морских черепах. Последняя точка зрения совпадает и со взглядами планктонологов.

Между тропической и полярными областями расположены две умеренные зоны океана. Отдельные специалисты считают необходимым выделить также особые субтропические и субарктические зоны. С этим можно соглашаться или не соглашаться, но всегда необходимо помнить, что разделение Мирового океана на климатические зоны касается лишь его сравнительно тонкого поверхностного слоя, ниже которого широтная зональность теряет свое значение, уступая зональности вертикальной.

Каждая из зон Мирового океана характеризуется своими особенностями температурного режима. Приведем несколько обобщенных данных, заимствованных из книги профессора В. Степанова «Мировой океан».


У берегов Антарктика температура воды круглый год близка к нулю.

Температура воды в полярных областях круглый год близка к точке замерзания и, стало быть, равна минус 1,6 — минус 1,8 градуса. Только ближе к границам с умеренными зонами, где летом вода полярных областей очищается ото льда, возможно ее прогревание до плюс 4 градусов. В Северном Ледовитом океане сезонные колебания температуры воды не превышают 1 градуса, а в области постоянных льдов составляют лишь несколько десятых градуса.

Умеренные зоны характеризуются не только более высокими среднегодовыми температурами, но и значительной их разницей между летней и зимней, достигающей порядка 9–10 градусов. Так, в Тихом океане на 40-м градусе северной широты средняя температура в феврале держится около 10 градусов, а в августе — около 20.

Поверхностная температура в тропической зоне почти неизменна в течение всего года. Она никогда не опускается ниже 20 градусов, а в приэкваториальной приближается к 30 градусам. Конечно, у самого берега, на мелководье днем вода значительно прогревается, иногда до 40 градусов, а ночью несколько остывает, но в открытом море температура поддерживается с удивительным постоянством (27–28 градусов), круглые сутки, круглый год, века, тысячелетия, миллионы лет.

Глава 5. Вечное движение

Течения

Гениальный провидец в науке и замечательный писатель-фантаст Жюль Верн одним из первых отметил в качестве самой характерной особенности океана его вечное движение. Недаром девизом для своего «Наутилуса» он избрал краткое, но выразительное изречение: «Подвижный в подвижном». Океан находится в постоянном движении; даже скованные льдами, его воды продолжают перемещаться. Легче всего обнаруживаются поверхностные течения; с ними приходится считаться морякам, их воды несут на себе множество плавающих предметов.

Издавна потерпевшие кораблекрушение и попавшие на неведомый берег путешественники пытались послать о себе весть, доверив океану запечатанную бутылку с вложенным в нее письмом. Такая почта далеко не всегда приходила вовремя. В 1912 году недалеко от Земли Франца-Иосифа попала в беду американская полярная экспедиция, которую возглавлял Э. Болдуин. Потерпевшие решили послать в бутылке просьбу о помощи. Экспедиции удалось благополучно вернуться на родину, сам Э. Болдуин прожил еще 30 лет и скончался в 1933 году, а брошенная бутылка попала в руки людей только в 1949 году.

Но рекорд длительности доставки принадлежит письму X. Колумба. Правда, он вложил свое послание не в бутылку, а в скорлупу кокосового ореха, которую тщательно засмолил и поместил сверх того в дубовый бочонок. Адресовалось оно испанскому королю. Великий мореплаватель сообщал о гибели каравеллы «Санта Мария» и об отказе кормчих на «Нинье» повиноваться его распоряжениям. После этого X. Колумб совершил еще три экспедиции в Америку, а письмо все еще находилось где-то в пути. Его совершенно случайно нашли 358 лет спустя на берегу Гибралтара (бочонок все же прибило к испанским берегам).

Хотя «бутылочная почта», как явствует из приведенных примеров, крайне ненадежна и доставка посланий по адресу зависит от случая, ей придавалось вполне серьезное, даже государственное значение. В 1560 году бедный лодочник нашел на берегу Англии закупоренную бутылку с вложенной в нее бумагой. Заметив через стекло текст, но не умея читать, он отнес находку местному судье. В бутылке оказалось важное государственное донесение о захвате датчанами русского острова Новая Земля. Чтобы подобные секретные сведения впредь не получали огласки, английская королева Елизавета учредила специальную должность Королевского Откупоривателя Бутылок (имелись в виду сосуды не с вином, а с письмами). Только это официальное лицо имело право распечатывать «бутылочную почту». Всякий другой за вскрытие найденной в море или на берегу бутылки отправлялся на виселицу.

Должность «откупоривателя бутылок» просуществовала почти 250 лет, и ее (вместе со смертной казнью за самовольное чтение писем из бутылок) отменил король Георг III.

В наши дни «бутылочная почта» перешла, так сказать, в новое качество: с ее помощью ученые получают важнейшую информацию о скорости и направлении морских течений.

Одним из первых применил для этой цели пустые бутылки американский исследователь Д. Фультон, однофамилец изобретателя парохода. В 1894–1897 годах свыше двух тысяч бутылок с напечатанными письмами и около полутора тысяч маркированных деревянных брусков послужили ему для изучения течений у берегов США.

Позднее бутылки в таких экспериментах стали заменять пластиковыми пакетами, а недавно применили дешевые, легкие и прочные шарики от пинг-понга. Конечно, на каждом таком шарике печатается обращение к нашедшему и адрес для возврата.

Плавающие предметы перемещаются не только благодаря течению, но и под действием ветра. Чтобы исключить его влияние, иногда подмешивают в воду красители или ароматические вещества. Так, летом 1959 года у берегов Флориды в Атлантический океан было вылито 9 тысяч тонн безвредного для морских животных пахучего вещества. К декабрю этот продукт парфюмерной промышленности вместе с Гольфстримом благополучно достиг берегов северной Англии и заполнил там воздух ароматом цветущих садов.

Часто подобные эксперименты ставятся самой природой. Так, например, часть пемзы, выброшенной вулканом Кракатау, течение перенесло через весь Индийский океан и менее чем через год прибило к берегам Мадагаскара. На основании этого факта определили направление, а также скорость течения, которая оказалась равной 9,3 мили в сутки.

Известно немало случаев, когда море перемещало обломки кораблей на огромное расстояние от места их гибели. Одна из таких трагедий разыгралась в 1881 году в Северном Ледовитом океане невдалеке от Новосибирских островов. «Жанетта», небольшое деревянное судно американской полярной экспедиции, руководил которой капитан Д. Де-Лонг, была раздавлена льдами и затонула. Спастись удалось лишь немногим членам экипажа. Сам Де-Лонг и одиннадцать его товарищей хотя и достигли берегов Сибири, но погибли от голода в устье Лены. Их тела удалось найти только через год.

Между тем обломки корабля вместе со льдами Арктики продолжали дрейфовать. Через три года спасательный круг с надписью «Жанетта» и 57 других предметов море выбросило на берег Гренландии. Останки корабля с морским течением пересекли всю Арктику!

Судьба обломков «Жанетты» и ряд других фактов натолкнули знаменитого исследователя Арктики Ф. Нансена на мысль достичь недоступный Северный полюс вместе с дрейфующими льдами. Как показала организованная им экспедиция на «Фраме» (1893–1896), струя течения, начинающаяся у Новосибирских островов, проходит несколько южнее полюса. Тем не менее «Фрам» был первым кораблем, который побывал севернее 85-го градуса.

Направление и скорость морских течений в Арктике почти не меняются. Через 40 лет после «Фрама» его маршрут почти в точности повторил советский ледокол «Седов» (1937–1940). Наиболее полно эти течения изучены советскими дрейфующими экспедициями. Первыми такой рейс на льдине от Северного полюса до кромки льдов Гренландского моря совершила в 1937–1938 годах знаменитая четверка в составе метеоролога Е. Федорова, биолога П. Ширшова и радиста Э. Кренкеля под руководством И. Папанина. Сейчас, когда пишется эта книга, в Арктике работают одновременно две станции «Северный полюс» (СП-22 и СП-24).


Начальник отдела морских экспедиций Академии наук СССР И. Папанин.

Задолго до того, как наш мир был открыт «до конца», когда еще отдельные острова, целые архипелаги и даже материки Америка и Австралия не были нанесены на карту, море доставляло на берега Европы и Азии стволы и плоды неведомых растений. Какие-то странные семена нередко находили в морских выбросах побережья Шотландии и Шпицбергена. Ни одно из известных европейцам растений не давало таких семян. Только после того, как X. Колумб впервые пересек океан и открыл Новый Свет, выяснилось, что деревья, на которых зреют таинственные плоды, растут на Антильских островах.

Долгое время в Индии, а затем и в Европе не могли раскрыть тайну так называемого «морского кокоса». С глубокой древности на западном берегу Индии время от времени находили огромные (до 25 килограммов), как бы сросшиеся из двух половин орехи. Таинственное происхождение орехов породило легенду о том, что они растут на высоких пальмах на морском дне. Из-за необычной формы плодов им приписывали волшебные и целебные свойства. Люди верили, что мякоть «морского кокоса» помогает женщинам избавиться от бесплодия и возвращает старцам юношескую силу и пыл. Поскольку считалось, что эти же плоды предохраняют от действия яда, раджи, постоянно дрожавшие за свою жизнь, платили за найденный на берегу моря «двойной» орех баснословные деньги.

Таинственность, окружавшая происхождение магических орехов, исчезла в 1768 году, когда был открыт остров Праслен в группе Сейшельских островов. Там обнаружили целые рощи с пальмами, на которых росли драгоценные «морские кокосы». Сейшельские острова лежат достаточно далеко и от Африки и от Индии, само местное население говорит, что девиз их родины — «тысяча миль отовсюду». Поэтому на материк попадает лишь считанное число унесенных морем плодов сейшельской пальмы. Тем не менее часть орехов, попавших в море из рощ острова Праслен (единственный остров, где сейшельские пальмы растут в природных условиях), вместе со струями летнего муссонного течения достигает берегов Индии и Мальдивских островов. Если в происхождении плодов сейшельской пальмы не осталось ничего таинственного, то их магическая целебная сила в Индии еще не развенчана, и гигантские орехи продолжают там цениться. Правда, фармакологи это мнение не разделяют.


Плоды знаменитой сейшельской пальмы выносят длительные морские путешествия.

Все реки мира текут по своим наклонным руслам благодаря силе земного тяготения. В отличие от текучей пресной воды морские течения могут быть вызваны различными причинами. Некоторые морские течения периодически меняют свой маршрут, а иногда и направление.

Течения в океане создаются ветрами (это так называемые дрейфовые течения), притяжением водных масс солнцем и луной (приливно-отливные), неравномерностью и переменой атмосферного давления (бароградиентные), впадением с материков потоков речной воды и различием в плотности водных масс, что, в свою очередь, зависит от их солености и температуры. Ни одна из этих сил, кроме ветра, не в состоянии вызвать перемещение воды даже в луже, но своим совместным действием они приводят в вечное движение Мировой океан. Первоначальное направление во всех видах течений вскоре изменяется под воздействием вращения Земли, сил трения, конфигурации дна и береговой линии. В результате создается впечатление неупорядоченности и хаотичности движения. Тщательное же изучение морских течений позволило с достаточной степенью точности нанести их на карту.

Выше уже говорилось, что наибольшее количество солнечного тепла приходится на район экватора. В приэкваториальной полосе воздух нагревается значительно сильнее, чем в других районах земного шара. От этого он становится легче, устремляется вверх, достигает верхних слоев тропосферы и начинает растекаться по направлению к полюсам. Несколько охладившись и достигнув примерно 30-го градуса северной и южной широт, он начинает опускаться. Благодаря притекающим от экватора новым порциям в субтропических широтах образуется избыточное давление, в то время как над самим экватором давление вследствие оттока нагретых воздушных масс постоянно понижено. Воздух из мест высокого давления устремляется в места низкого давления, то есть в направлении к экватору. Однако суточное вращение нашей планеты отклоняет его от прямого меридионального направления на запад. Совокупность этих обстоятельств создает два мощных постоянных потока теплого ветра (пассата), дующих с востока на запад, параллельно экватору.

Там, где пассат проходит над океаном, он увлекает с собой поверхностный слой воды и порождает теплые экваториальные течения. Циркуляция воздушных масс ни на миг не прерывается, пассаты дуют изо дня в день в одном и том же направлении, и теплые экваториальные течения, подобные широким рекам, перемещают с востока на запад огромные массы океанской воды. Поэтому в низких широтах практически нет смены сезонов года. Геометрическая правильность экваториальных течений несколько нарушается конфигурацией материков и гидрологическими особенностями каждого из трех океанов, пересекаемых экватором.

Между северным и южным пассатами находится штилевая зона, в которой происходит обратный отток части воды в восточном направлении, образующий экваториальное противотечение.

Экваториальные течения с выгодой используются в мореплавании. Они помогают судну быстрее пересечь океан с востока на запад. На постоянстве экваториальных течений основана гипотеза норвежского ученого Тура Хейердала о заселении островов Океании древними жителями Южной Америки. Чтобы убедить скептически настроенных ученых оппонентов, Т. Хейердал построил плот, подобный тем, на которых могли, по его мнению, плавать предки полинезийцев, и в обществе пяти других смельчаков пустился в опасное плавание по Тихому океану. Плот «Кон-Тики», подхваченный одной из ветвей южного экваториального течения, был перенесен от порта Кальяо в Перу до атолла Рароиа в архипелаге Туамоту. За 101 день он преодолел расстояние в 4300 морских миль (около 8 тысяч километров). Все расчеты Т. Хейердала строились на постоянстве течения, но во время экспедиции выяснилась и роль пассата, недостаточное уважение к которому однажды чуть не закончилось трагедией. «Мы недооценивали силу ветра и волн и вдруг обнаружили, что „Кон-Тики“ прокладывает себе путь сквозь волны гораздо быстрее, чем мы предполагали. Плот не был способен остановиться и подождать, не говоря уже о том, чтобы развернуться и пойти в обратном направлении…


«Кон-Тики».

Пытаясь схватить мешок, Герман плохо рассчитал свои движения и оказался за бортом. Сквозь гул волн до нас донесся слабый призыв о помощи, затем слева от плота промелькнула голова и рука Германа. Он делал отчаянные усилия, чтобы пробиться к плоту сквозь мощные валы, которые относили его в сторону. Герман был превосходным пловцом, и хотя было совершенно очевидно, что он подвергался смертельной опасности, мы всей душой надеялись, что ему удастся догнать плот. Как ни напрягал свои силы Герман, он все более отставал от плота, и расстояние это увеличивалось с каждым порывом ветра. Было ясно, что ему уже не удастся сократить просвет.

Внезапно мы увидели, что Кнют бросился в волны, держа в одной руке спасательный круг, и поплыл изо всех сил навстречу Герману. Вот на гребне мелькнула его голова, а вот Герман поднялся на высокой волне. И вдруг мы увидели их рядом друг с другом, они пробились сквозь валы и держались теперь вдвоем за круг.

Тем временем мы поспешно принялись вчетвером выбирать трос, привязанный к спасательному кругу».

Оказывается, теплое экваториальное течение вблизи выглядит совсем не таким ласковым, как можно было бы подумать.

Когда экваториальное течение встречает на своем пути материк или группу больших островов, оно разбивается на ветви, движущиеся либо в северном, либо в южном направлении вдоль побережья. В Тихом океане часть вод северного экваториального течения в районе Филиппинских островов поворачивает на север и в виде теплого течения Куро-Сио проходит мимо Тайваня и южных островов Японии. Маленькая веточка Куро-Сио проникает через Цусимский пролив в Японское море и, остыв, замирает у берегов южного Сахалина. Главная же струя Куро-Сио переходит в теплое Северо-Тихоокеанское течение. Его воды текут на восток, пересекают океан по 40-й параллели и согревают побережье Северной Америки вплоть до Аляски.

Аналогичным образом у бразильских берегов разделяется на две ветви Южное Экваториальное течение Атлантического океана. Особенно интересна судьба его северной ветви. Пройдя, как сквозь решето, через гряду Малых Антильских островов, оно под названием Карибского огибает с запада Кубу и направляется на север через Флоридский пролив. Здесь его воды, соединившись с продолжением Северного Экваториального течения, образуют мощную струю Гольфстрима. Нередко морские течения сравнивают с реками, забывая при этом о масштабах. С какой же рекой можно сравнить Гольфстрим, воды которого несут в 25 раз больше воды, чем все реки мира, взятые вместе!

Этот поток теплой соленой воды, оторвавшись от берегов Северной Америки вблизи острова Ньюфаундленд и получив теперь новое название Северо-Атлантического течения, устремляется на северо-восток к берегам Европы. В виде Норвежского течения он проникает далеко на север, его ветви достигают Шпицбергена и делают незамерзающей южную часть Баренцева моря. В отдельные годы в связи с усилением Гольфстрима влияние его теплых вод ощущается вплоть до Новой Земли. Одна из ветвей Северо-Атлантического течения сворачивает круто на юг и соприкасается с Северным Экваториальным течением. Образуется замкнутый круг, внутри которого находится море без берегов — Саргассово море.

Индийский океан имеет еще более сложную систему теплых течений, на которую сильное влияние оказывают муссоны — ветры, дующие летом в одном направлении, а зимой в противоположном.

Кроме теплых, существуют также и холодные поверхностные течения. Самое крупное из них — течение Западных ветров — циркулирует в направлении с запада на восток в южном полушарии. Оно порождено постоянно дующими штормовыми ветрами, благодаря которым широкое кольцо Мирового океана получило у моряков образное и жутковатое название «Ревущие сороковые».

Происхождение большинства других холодных течений не связано с ветром. Так, Восточно-Гренландское течение представляет собой сток воды из Северного Ледовитого океана в Атлантику, а Перуанское течение в значительной мере обязано своим происхождением подъему глубинных холодных вод.

Знаменитый немецкий путешественник и ученый-энциклопедист Александр Гумбольдт, изучивший и в 1802 году описавший холодное Перуанское течение (иногда его называют также течением Гумбольдта), считал, что оно питается исключительно поверхностными холодными водами высоких широт южного полушария и приводится в движение постоянно дующими ветрами. Это мнение господствовало в науке несколько десятилетий, пока британское адмиралтейство и Лондонское королевское общество не объединили своих усилий для изучения океана. Ими был снаряжен и оборудован для научных исследований паровой корвет «Челленджер», экспедиция на котором (1872–1876) добилась необыкновенно плодотворных результатов и сделала немало важных открытий.

Хотя со времен «Челленджера» прошло целое столетие, ученые всех стран, когда дело касается Мирового океана, не могут обойтись без трудов этой экспедиции. В одном из 52 громадных, в зеленых переплетах с золотым тиснением на корешках томов этого труда помещено исследование гидролога Д. Бьюкенена, посвященное морским течениям. Д. Бьюкенен установил, что Перуанское течение обязано своим происхождением главным образом подъему глубинных вод. Они резко отличаются от воды поверхностного холодного течения Западных ветров по цвету, а также по содержанию солей азота и фосфора. Благодаря этим биогенным солям у западного побережья Южной Америки наблюдается бурное развитие растительного и животного планктона, которым питаются бесчисленные стаи перуанского анчоуса. За анчоусами охотятся тунцы и другие хищные рыбы, они же служат основной пищей миллионам гнездящихся здесь морских птиц. По подсчетам американских орнитологов, одни только птицы в районе Перуанского течения ежегодно поедают два с половиной миллиона тонн анчоусов. Это равно 10 процентам годового рыбного промысла всех стран мира. Вот какое невероятное количество биогенных солей поставляет из океанских глубин к поверхности Перуанское течение.


Главнейшие океанские течения.

Если поверхностные течения очевидны, то о глубинных прежде только догадывались. Одним из первых их исследователей был известный русский флотоводец и ученый С. Макаров. В 1878 году закончилась русско-турецкая война. Посольство России утвердилось в Константинополе. В узком, похожем на реку проливе Босфор стояло на якоре небольшое военное судно «Тамань». Целыми днями молодой капитан С. Макаров наблюдал, как мимо корабля из Черного моря в Мраморное проплывают обрывки водорослей и щепки: сходство пролива с рекой усугублялось постоянным течением. Он знал от турецких рыбаков, что их сети, поставленные в Босфоре, иногда по каким-то неизвестным причинам заносит в Черное море, и справедливо полагал, что на глубине пролива проходит противотечение. Чтобы проверить правильность своих догадок, С. Макаров придумал простое приспособление. Выйдя в Босфор на небольшой корабельной шлюпке, он опускал за борт тяжелый дубовый бочонок — анкерок, в котором моряки держат запас пресной воды (слово «анкер» значит «якорь»). Бочонок вполне оправдывал свое название: он начинал медленно тонуть, разматывая привязанный к нему трос, а шлюпку тем временем понемногу сносило в сторону Мраморного моря. Но вот ее движение замедлялось, потом она начинала двигаться в обратном направлении. С. Макарову все было ясно: затопленный анкерок, попав в струю глубинного течения, идущего из Мраморного моря в Черное, тащил за собой и шлюпку. Оставалось выяснить причину этого явления. По всей длине Босфора было сделано четыре тысячи измерений температуры и плотности воды на разных глубинах. Результаты исследования С. Макаров изложил в книге «Об обмене вод Черного и Средиземного морей». В ней причина глубинного течения объясняется разницей в плотности водных масс. Более соленая, а стало быть, более тяжелая средиземноморская вода на определенной глубине создает со стороны Мраморного моря большее давление, чем распресненная многочисленными реками вода той же глубины со стороны Черного моря. В результате возникает движение воды по дну Босфора.

В последние десятилетия благодаря развитию океанологии удалось изучить не только поверхностные, но и глубинные течения. Все они оказались завязанными в очень сложную систему. Выяснилось, в частности, что даже такие крупные потоки, как Гольфстрим и Куро-Сио, периодически то усиливаются, то ослабевают. Они изменяют также объем переносимой воды и ее температуру и даже могут отклоняться от постоянного направления, образуя временами огромные завихрения.

Подобные пульсации и другие изменения в морских течениях влекут за собой серьезные последствия. Мягкий, теплый климат Англии и западных берегов Норвегии обеспечивает именно Гольфстрим. Так, в Лондоне средняя температура января обычно держится около 5 градусов тепла, а в Москве, лежащей почти на той же широте, она равна 10 градусам мороза. На 60-м градусе северной широты находятся Берген, Осло и Ленинград. Средняя температура января в Бергене, расположенном на побережье океана, равна 2–3 градусам тепла. В Осло, где влияние Гольфстрима сказывается слабее, она ниже нуля, а в удаленном от Атлантики Ленинграде опускается до минус 8 градусов.

Изменения в интенсивности морских течений прямо или косвенно влияют на деятельность человека. В годы ослабления мощности Гольфстрима климат в Северной Европе становится более холодным, что отрицательно сказывается на урожае многих сельскохозяйственных культур, а стало быть, и на благосостоянии населения.

От ослабления и усиления пульсирующих струй теплого течения Куро-Сио зависит дальность миграции на север сельдей иваси — ценной промысловой рыбы Японского моря. При понижении температуры иваси не доходят до наших территориальных вод и их прибрежный лов прекращается.

За последнее десятилетие в области исследований морских течений советскими учеными было сделано крупнейшее открытие, в корне меняющее прежние представления о характере движения водных масс. Выяснилось, что Атлантическое пассатное течение вовсе не похоже на равномерно текущую реку. Вода в нем движется громадными водоворотами диаметром в десятки и даже сотни километров. Центр такого вихря перемещается в западном направлении сравнительно медленно, около 0,3 километра в час, но на периферии водоворота скорость течения значительно больше. Подобные вихри были обнаружены также на севере Тихого океана и в Гольфстриме. Время от времени гигантские вихревые спирали отрываются от основного течения. Тогда из них образуются самостоятельные кольца, или ринги, которые существуют по два-три года.

Морские течения хотя и кажутся разрозненными, на самом деле соединены в систему. Благодаря им во всей морской стихии происходит смешение вод океанов и морей и поддерживается их одинаковый солевой состав. Если бы не было течений, не было бы и единого Мирового океана.


Дыхание океана

В тихий и теплый летний день 1948 года на Мурманской биологической станции в губе Дельнезеленцовой Баренцева моря произошел случай, о котором и теперь помнят старейшие сотрудники. В этот день на станцию прибыл новый завхоз, впервые оказавшийся на море. Тем же рейсом поступило различное оборудование, среди которого были четыре ванны. Использовать их предполагалось не по прямому назначению, а в аквариальной для содержания подопытных морских животных, поэтому сливные отверстия в них забили пробками (о стеклянных аквариумах тогда и не мечтали).

Распорядившись сгрузить ванны на прибрежную гальку, завхоз пошел в административное здание.

Погода в тот день стояла солнечная, с берега дул тихий и ровный южный ветерок. На выходе из губы посреди пролива стояла на якоре лодка, с которой, низко склонившись над бортом и держа конец крепкой суровой нити, намотанной на палец, станционный сторож ловил треску. Случайно взглянув в сторону станции, он увидел, как прямо на него развернутым строем идут четыре белые ванны. Береговой ветерок гнал их к выходу в открытое море. Рыбаку пришлось спешно выбирать пеньковую веревку с большим камнем-«якорем» и спасать ванны: на выходе из пролива ходила изрядная зыбь, а глубина там метров семьдесят — утонут ванны, так уж не достанешь. Что же с ними произошло?

Именно то, что и должно было произойти. Начался прилив, и вода поднялась настолько, что ванны всплыли, их подхватил береговой ветер и погнал в море.

Вода в океане никогда не стоит на одном уровне, она регулярно то прибывает, заливая берег, то уходит, обнажая морское дно, по которому можно ходить как посуху. С приходом и уходом воды резко меняется весь пейзаж.

На Белом море эти изменения разительны. В прилив волны плещутся у самой кромки соснового бора, из воды не выступает ни один камень, а причаленные лодки пляшут на волне вдалеке от берега. В отлив же, чтобы добраться до воды и застрявших между камнями завалившихся на бок лодок, нужно пройти несколько десятков метров по скользким, покрытым водорослями валунам. В тех местах, где берег пологий, море в отлив уходит очень далеко, иногда за пределы видимого горизонта.

Это природное явление было замечено очень давно. В V веке до нашей эры о нем уже писал древнегреческий историк Геродот. Долгое время причины, вызывающие приливы, оставались непонятными. В древности их объясняли дыханием живущего в море божества Океана. Высказывались и другие фантастические предположения о природе приливов. Даже такой ученый, как И. Кеплер (1571–1630), установивший законы движения планет в солнечной системе, считал, что Земля (как и все прочие небесные тела) — живое существо, а люди и звери, подобно паразитическим насекомым, находят себе пищу, поселившись на коже этого крупного животного. И. Кеплер рассматривал приливы и отливы как следствие дыхания планеты.

Конечно, подобные фантастические и наивные теории не способны объяснить всю сложность механизма приливов. Дело в том, что величина приливов постоянно меняется. Размах колебаний, то есть разница между нижним и верхним стоянием воды, в течение нескольких дней постепенно нарастает, а затем начинает уменьшаться. Иногда этот размах становится необыкновенно большим.

Достойно всяческого удивления, что на эту особенность приливов ученые долгое время не обращали внимания. Между тем уже в весьма отдаленные времена простые жители приморских земель не только знали об особенностях приливов, но и связывали их с положением Луны. Древние финикийцы — лучшие мореплаватели античного мира — были убеждены, что три движения моря управляются Луной: одно из них можно наблюдать ежедневно, второе — ежемесячно, третье — ежегодно.

На островах Самоа еще задолго до прихода туда европейцев жители заранее очень точно высчитывали время приливов, руководствуясь положением и фазами Луны. На коралловых рифах у берегов Самоа в огромном количестве живут морские черви палоло — излюбленное лакомство самоанцев. Дважды в год (в октябре и ноябре) черви покидают риф и всплывают к поверхности моря, где их и ловят. Каждый раз палоло «приходит» среди ночи во время прилива на шестые сутки после полнолуния и потом еще две ночи подряд. На Самоа не было календаря, не велось летосчисления, но наблюдательные самоанцы к долгожданной ночи запасали сети и корзины и никогда не ошибались в сроках лова.

Из европейских ученых первым обратил внимание на связь приливов с движением Луны философ Р. Декарт (1596–1650). Он подметил, что время наступления приливов связано с положением нашего естественного спутника над горизонтом, а амплитуда зависит от фазы Луны. Связь между Луной и приливами он установил, а вот правильно объяснить ее не смог. Согласно теории Декарта Луна, проходя по небосводу, давит на воздух, окружающий Землю, а воздух, в свою очередь, давит на воду, заставляя ее понижаться.

Чтобы объяснить причину возникновения приливов, обратимся к открытому И. Ньютоном закону всемирного тяготения. Закон этот формулируется так: «Любые два тела (материальные точки) притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними». В соответствии с этим законом Земля и Луна взаимно притягиваются друг к другу. Земное притяжение удерживает нашего спутника на орбите — в противном случае он умчался бы в мировое пространство. Луна, в свою очередь, оказывает своим притяжением влияние на Землю. Приливы — одно из следствий лунного тяготения. Наша планета не точка, а шар диаметром (в плоскости экватора) 12 756 километров. Поэтому гравитационные силы Луны воздействуют на Землю неравномерно. В точке, для которой Луна находится в зените, лунное притяжение больше, чем в центре Земли, а в центре больше, чем на противоположном конце земного диаметра, для которого Луна находится в надире. Разница потенциалов лунного тяготения пропорциональна разнице квадратов расстояний от Луны до ближайшего к ней и до наиболее удаленного концов диаметра Земли.

Геосфера Земли представляет собой монолит, и гравитационные силы Луны воздействуют на нее как на единое целое. Вода, заполняющая Мировой океан, способна перемещаться. Под влиянием лунного тяготения частицы воды, находящиеся ближе к Луне, приближаются к ней с большим ускорением, чем центр Земли. Поэтому они вытягиваются в направлении к Луне, образуя на поверхности океана водяной бугор. В точке океана, которая находится на противоположной по отношению к Луне стороне, гравитационное поле Луны имеет самый низкий потенциал. Здесь частицы воды приближаются к Луне с наименьшим ускорением. Поэтому вода океана в этом месте как бы отстает от геосферы, вытягиваясь бугром, направленным в сторону от Луны. Таким образом, в Мировом океане наблюдается сразу две точки с наиболее высоким уровнем воды. Расположены они на линии, проходящей через центры Луны и Земли, и находятся на противоположных концах земного диаметра. Нетрудно понять, что самый низкий уровень воды можно наблюдать на середине расстояния между точками наивысшего прилива.

Чтобы яснее представить себе сложные взаимоотношения между Луной и Землей с ее Мировым океаном, достаточно взглянуть на прилагаемый рисунок. Как и в большинстве иллюстраций подобного рода, на нем изображен так называемый «идеальный» случай. Земля имеет форму правильного шара, вся поверхность которого покрыта водой. На такой моментальной «фотографии» поверхность нашей планеты имеет форму водяного эллипсоида, внутри которого находится плотный шар. Благодаря суточному вращению Земли вершины водного эллипсоида постоянно перемещаются. Если установить на дне океана мерную линейку — футшток, можно проследить за изменением уровня воды. Начнем наблюдение в полную воду. Вскоре мы заметим, что поверхность океана начинает опускаться. Через 6 часов футшток покажет самый низкий уровень воды, после чего начнется ее прилив, который также будет продолжаться 6 часов, пока не достигнет наивысшей точки. Следующий прилив наступит через 24 часа после начала измерений. За это время футшток зарегистрирует два наивысших и два самых низких уровня стояния воды, разделенных промежутками в 6 часов.


Схемы образования приливов.

В реальных условиях такой цикл довольно значительно отклоняется от нашего «идеального» случая и продолжается не 24 часа, а на 50 минут дольше. Это зависит от того, что Луна вращается вокруг Земли. За те 24 часа, когда футшток проходит в суточном движении Земли полную окружность, Луна успевает продвинуться по небосводу примерно на 13 градусов. Вслед за ней и вершина водного эллипса отклонится на такой же угол. Чтобы «догнать» ее, футштоку как раз и понадобится 50 минут.

По этой причине происходит постоянное смещение приливов относительно времени суток. Если вчера полная вода была в полдень, то сегодня дневной прилив придется на 12 часов 50 минут, а завтра уже на 13 часов 40 минут.

В «идеальном» случае время наивысшего стояния воды должно соответствовать самому высокому положению Луны над горизонтом, однако приливные течения «не поспевают» за Луной. Им мешают такие серьезные препятствия, как материки и острова, а также неровности дна, поэтому приливная волна следует за Луной на некотором расстоянии, различном для каждого места морского побережья. Иногда эта разница составляет несколько часов. Таким образом, причина приливов в море получает свое убедительное объяснение и заключается в действии лунного притяжения.

Стало быть, если бы не было Луны, не было бы и приливов?

Ничего подобного, приливы все равно были бы, хотя и меньшие по величине. Нельзя забывать, что Солнце также притягивает земной шар. Вследствие огромного расстояния приливы, вызываемые Солнцем, примерно в 2,2 раза слабее лунных. Сами по себе они не наблюдаются, так как маскируются более мощными лунными приливами. Но на величину приливов Солнце оказывает значительное влияние. Когда Солнце и Луна располагаются на одной линии (это бывает в новолуние и в полнолуние), действие притяжения обоих светил складывается. В этот период наблюдаются сильные приливы и соответственно более низкие стояния воды в часы между приливами. Во время первой и последней четвертей лунных фаз сила притяжения Солнца вычитается из силы притяжения Луны. В результате уменьшается прилив в сторону Луны. В эти дни разница между уровнями воды в прилив и в отлив менее значительна. Дважды в течение лунного месяца наблюдаются высокие (сизигийные) и дважды низкие (квадратурные) приливы.

Не следует думать, что во время сизигиев вода в одной и той же местности всегда достигает одинакового уровня. На практике все оказывается гораздо сложнее. Луна, как известно, движется вокруг Земли не пр кругу, а по эллипсу, то приближаясь к Земле, то удаляясь от нее. Разница в расстоянии между ее перигеем и апогеем составляет величину более 42 тысяч километров. Понятно, что совпадение сизигия с нахождением Луны в перигее вызовет наиболее высокую приливную волну. По эллипсу движется и Земля вокруг Солнца, которое также при приближении Земли вызывает более сильные приливы. Изредка все эти условия совпадают. Тогда приливы (а соответственно и отливы) достигают наибольшей величины.

Характер приливов в разных частях Мирового океана неодинаков.

Иногда дневные приливы больше следующих за ними ночных. Иногда в силу ряда причин в течение суток наблюдается лишь один прилив и один отлив. Различна и амплитуда приливной волны.

Для практической деятельности человека, в частности для судовождения, очень важно наперед знать уровень воды в любое время суток и в любом месте. Для этого публикуют специальные таблицы приливов. Первые такие таблицы были составлены в 1870 году английским ученым У. Кельвином.

Величина и характер приливов в различных частях побережья Мирового океана зависят от конфигурации берегов, угла наклона морского дна и от ряда других причин. Наиболее типично они проявляются на открытом побережье океана. Проникновение приливных волн во внутренние моря затруднено, и потому амплитуда приливов в них невелика.

Узкие мелководные Датские проливы надежно заслоняют от приливов Балтийское море. Теоретические расчеты показывают, что амплитуда колебания высоты уровня воды в Балтике равна приблизительно 10 сантиметрам, но увидеть эти приливы практически невозможно, так как они полностью стираются колебаниями уровня воды под влиянием ветра или изменениями атмосферного давления. Знаменитые наводнения в Ленинграде не имеют никакого отношения к приливам. Они вызываются проходящими циклонами, причем уровень воды в восточной части Финского залива и в Неве поднимается иногда на 4–4,5 метра выше ординара.

Еще более надежно защищены от приливной волны наши южные моря — Черное и Азовское, сообщающиеся с водами Мирового океана через ряд узких проливов, и внутренние Эгейское и Средиземное моря. Если разница в уровне воды во время прилива и отлива на атлантическом берегу Испании вблизи Гибралтара достигала 3 метров, то в Средиземном море у самого пролива она равна лишь 1,3 метра. В остальных частях моря приливы еще менее значительны и обычно не превышают 0,5 метра. В Эгейском море и проливах Босфор и Дарданеллы приливная волна еще сильнее затухает. Поэтому в Черном море колебания уровня воды под влиянием приливов менее 10 сантиметров. В Азовском море, соединенном с Черным лишь узким Керченским проливом, амплитуда приливов близка к нулю.

По этой же причине очень невелики приливы и в Японском море — здесь они едва достигают 0,5 метра.

Если во внутренних морях величина приливов по сравнению с открытым побережьем океана уменьшена, то в заливах и бухтах, имеющих с океаном широкое сообщение, она возрастает. В такие заливы приливная волна входит свободно. Водные массы устремляются вперед, но, стесненные суживающимися берегами и не находя выхода, поднимаются вверх и заливают сушу на значительную высоту.

У входа в Белое море, в так называемой Воронке, приливы почти такие же, как и на побережье Баренцева моря, то есть равны 4–5 метрам. На мысе Канин Нос они даже не превышают 3 метров. Однако, входя в постепенно суживающуюся Воронку Белого моря, приливная волна становится все выше и в Мезенском заливе достигает уже десятиметровой высоты (в сизигий).


Набережная приморского городка Гонфлор на побережье Ла-Манша во время отлива. От парусника видны одни мачты.

Еще более значителен подъем уровня воды в самой северной части Охотского моря. Так, у входа в залив Шелихова уровень моря в прилив поднимается до 4–5 метров, в кутовой же (наиболее удаленной от моря) части залива возрастает до 9,5 метра, а в Пенжинской губе достигает почти 13 метров!

Очень велики приливы в Ла-Манше. На английском его побережье в маленьком заливе Лайм вода в сизигий поднимается до 14,4 метра, а на французском, у городка Гранвиль, даже на 15 метров.


Монастырь Сан Мишель на атлантическом побережье Франции при низкой воде. Во время прилива море заливает все видимое пространство.

Предельных величин приливы достигают на некоторых участках атлантического побережья Канады. В проливе Фробишера (он находится у входа в Гудзонов пролив) — 15,6 метра, а в заливе Фанди (вблизи границы США) — целых 18 метров.

Характер приливов в очень большой степени зависит от угла наклона морского дна. Стоя на крутом берегу, трудно уследить за подъемом или спадом уровня моря. Предположим, что в месте, где проводятся такие наблюдения, величина приливов равна 3 метрам. Таким образом, в среднем уровень воды будет изменяться на 8 миллиметров в минуту. Правда, скорость нарастания прилива неравномерна. Вначале, пока вода стоит около нижнего уровня, она поднимается очень медленно, затем прилив начинает постепенно нарастать. Наибольшей силы он достигает «вполводы». После этого нарастание становится все медленнее и затухает совершенно, когда вода достигает своей верхней границы.

Такова же динамика и отлива.

Наблюдателю, стоящему на крутом берегу в прилив, ничто не угрожает: по мере подъема воды он будет медленно подниматься вверх по скале или россыпи камней. Совсем иной будет картина прилива на широком пляже, обнажающемся при отливе на многие километры. С наступлением прилива необходимо быстро уходить в сторону берега. Здесь уровень воды изменяется не постепенно, а очень быстро и сопровождается иногда высокой крутой приливной волной, которая стремительно несется по отмели, сметая все на своем пути. И горе тому, кто зазевается на таком пляже во время прилива, — ему угрожает серьезная опасность.

Но не только новички забывают о коварстве приливов. Как-то я, уже довольно искушенный мореход, приехал на остров, расположенный в зоне высоких приливов, чтобы провести одно наблюдение. Подтянув повыше на берег лодку, я отправился по своим делам. Увлекшись работой, я совсем забыл о приливе и лодке, которую тем временем унесло. Вот и стал я «робинзоном» на долгие часы. Пришлось ждать, пока товарищи не хватились и не стали меня искать.

Кстати, так пропадает очень много всяких вещей, оставленных беспечными людьми в заливаемой зоне!

Не следует забывать и об отливах, о времени спада воды. Причалишь к берегу в полную воду, а через час тяжелая лодка оказывается уже на мели, как говорят, уже «обсохла». Теперь, чтобы вернуться на базу, нужно ждать следующего прилива, то есть полсуток.

Каждый, кто когда-то читал описание гибели корабля на рифах и отмелях, хорошо представляет себе картину этой трагедии. Судьба последних часов их жизни поразительно сходна. Судно, попавшее на отмель, внезапно становится беспомощным. Начинающийся отлив усугубляет сложность его положения; оно кренится и наконец валится на борт. При этом, как правило, в корпусе появляются пробоины, сквозь которые с наступлением прилива вода начинает заливать внутренние помещения, а волны довершают разрушение корабля.

Несчастье может произойти и необязательно при шторме или из-за ошибки штурмана, направившего судно на риф, а в порту в тихую погоду. Вот как описана гибель голландского теплохода «Биерум». Катастрофа произошла прямо у причала порта Харлинген (Голландия). «В день аварии команда оставила судно в порту пришвартованным к берегу, а сама отправилась по домам. В порту Харлинген наблюдаются периодические приливы, которые значительно повышают уровень воды (до 1,6 метра). В таких случаях следует обращать особое внимание на швартовку. Однако „Биерум“ был оставлен без всякого надзора…

…Во время очередного прилива, по мере подъема уровня воды у причала, швартовы, которыми „Биерум“ крепился к пристани, натянулись как струны, что привело к созданию опасного крена на левый борт. В какой-то момент на накрененном судне произошло смещение незакрепленных грузов и топлива. „Биерум“ потерял остойчивость и лег на борт». Так из-за пренебрежения к силам приливов в тихую погоду в закрытой гавани утонуло судно.

Иногда влияние морских приливов видно и на реках. Более тяжелая соленая вода по дну речного русла, подобно клину, стремительно движется против течения. Столкновение двух встречных потоков, морского и речного, вызывает образование крутого вала, получившего название бора. В реке Цаньтанцзян, впадающей в Восточно-Китайское море к югу от Шанхая, бор достигает высоты 7–8 метров, а крутизна волны равняется 70 градусам. Эта страшная водяная стена со скоростью 15–16 километров в час проносится вверх по реке, размывая берега и грозя потопить любое судно, вовремя не укрывшееся в спокойном затоне. На протяжении многих столетий китайцы приходили к берегам реки, чтобы полюбоваться этим грозным явлением, и даже устраивали здесь особые праздничные торжества, хотя радоваться было нечему — бор приносил много бед. Попытка умилостивить гигантскую волну, построив на берегу башню «Успокоение моря», успеха, естественно, не имела. Только в конце прошлого века, когда в устье Цаньтанцзяна соорудили систему дамб, вторжение приливной волны в реку было приостановлено.

Мощным бором славится и величайшая река Южной Америки — Амазонка. Там волна высотой 5–6 метров распространяется вверх по реке на 3 тысячи километров от океана. Небольшой по высоте бор наблюдается и у нас в реках, впадающих в Мезенский залив Белого моря.

Прежде приливно-отливные течения приводили лишь к разрушениям или создавали известные неудобства. Изучив их природу, человек начал подчинять себе и эту пока еще почти необузданную силу. Читатели, несомненно, обратили внимание на крупные заголовки в газетах от 29 декабря 1968 года: «Приливы служат человеку», «Кислогубская ПЭС дала ток». В этот день вступила в строй первая в СССР приливная электростанция (ПЭС). Сила морского прилива завертела турбину. Эта ПЭС пока еще полуэкспериментальная, ее проектная мощность всего 800 киловатт. Но у таких станций большое будущее. В отличие от речных они не будут оказывать такого сильного влияния на окружающую среду, не будут затоплены поля и лесные угодья, рыбы смогут продолжать размножаться, питаться и передвигаться, как и прежде.

Опыт, накопленный во время строительства приливной электростанции в Кислой губе, используется при проектировании Лумбовской ПЭС мощностью 320 тысяч киловатт, а впереди строительство ПЭС в Мезенском заливе Белого моря, мощность которой достигнет уже 14 миллионов киловатт.

Все ее турбины будет вращать океан своим дыханием — приливами.

Еще недавно строительство приливной электростанции казалось фантастикой, теперь у фантастики размах пошире. Вот один из проектов использования приливов на благо человеку. Во время прилива холодные воды Охотского моря через пролив Невельского устремляются в Японское море и способствуют его охлаждению. В отлив же теплые воды Японского моря поступают в Охотское. Если в этом месте разгородить моря плотиной с широкими воротами, то можно искусственно направлять приливы лишь в одну сторону. Ворота будут открываться тогда, когда вода движется из Японского моря в Охотское. Как полагают, выполнение этого проекта значительно изменит климат Дальнего Востока. Уменьшение притока холодных вод в Японское море приведет к значительному потеплению всех его берегов. Постепенно «прогреется» и южная часть Охотского моря.

Приливное перемещение водных масс имеет глобальное значение. Течения, вызванные притяжением Луны и Солнца, встречают на своем пути сопротивление материков, островов и морского дна. В результате трения постепенно замедляется вращение нашей планеты вокруг своей оси. Правда, абсолютная величина замедления на первый взгляд совсем незначительна.

Расчеты показали, что в начале нынешней эры сутки были короче всего лишь на 0,035 секунды.

О замедлении вращения нашей планеты свидетельствуют и палеонтологические исследования. Английский ученый Д. Уэллс, изучая вымершие девонские кораллы, обнаружил на их скелетах как суточные, так и годовые кольца нарастания. Оказалось, что в среднем девоне, то есть около 380 миллионов лет назад, наша Земля за год успевала повернуться вокруг своей оси 400 раз. Именно такое количество суточных колец нарастания в год имеется у каждого ископаемого коралла. Так как согласно астрономической теории устойчивости планетных движений продолжительность времени года остается практически неизменной, длина суток 380 миллионов лет назад была равна всего 21 часу 42 минутам.

Таким образом, приливы выполняют роль своеобразного тормоза. Если расчеты верны, земные сутки со временем увеличатся и станут по продолжительности равны лунному месяцу. Тогда наша Земля будет постоянно обращена одной стороной к Луне, как это уже произошло с Луной по отношению к Земле. Водные бугры прекратят свой бег, и приливы перестанут существовать. Правда, это идеализированная картина. На самом деле за счет солнечных приливов Земля стремится повернуться одной стороной также и к Солнцу.

Пессимистическая перспектива будущности приливов не остановила смелого начинания трех молодых людей, работавших в англо-американской организации по изучению моря. Путешествуя на яхте по Тихому океану, они обнаружили в нескольких сотнях километров к югу от архипелагов Фиджи и Тонга небольшой коралловый риф, не обозначенный ни на одной карте. Главная прелесть находки заключалась в том, что дважды в сутки во время отлива риф обнажался и становился островом. Предприимчивые путешественники незамедлительно решили воспользоваться этим обстоятельством и провозгласили на рифе свободную и независимую республику Минерва. Так как новое государство дважды в сутки скрывалось под водой, его первый (и последний!) президент Моррис Девис предложил надстроить риф, используя в качестве материала песок и обломки кораллов. Планы превращения рифа в свайный «город будущего» были неожиданно нарушены вмешательством Тубоу IV, нынешнего правителя королевства Тонга, который заявил, что риф исконная территория (а дважды в сутки акватория) Тонга. Он отказался признать республику Минерва в качестве суверенного государства и послал туда военный катер. Всем трем гражданам новоиспеченной страны пришлось срочно покинуть облюбованный риф.


Волны

Мóря без волн не бывает, его поверхность всегда колеблется. Иногда это лишь легкая рябь на воде, иногда ряды гребней с веселыми белыми барашками, иногда грозные валы, несущие тучи брызг. Даже самое спокойное море «дышит». Его поверхность кажется совершенно ровной и блестит как зеркало, но берег лижут тихие, едва заметные волны. Это океанская зыбь, вестник далеких штормов.

Для научных, а главное, для практических целей о волнах нужно знать все: их высоту и длину, скорость и дальность их передвижения, мощность отдельного вала и энергию волнующегося моря. Нужно знать глубину, на которой еще ощущается волновое движение воды, и высоту заброса волнами брызг.

Первые измерения волн Средиземного моря сделал в 1725 году итальянский ученый Луиджи Марсильи. На рубеже XVIII и XIX веков регулярные наблюдения за морскими волнами и их измерения проводились во время дальних плаваний по Мировому океану русскими капитанами И. Крузенштерном, О. Коцебу и В. Головиным. Этим мореплавателям и ученым приходилось довольствоваться ограниченными техническими возможностями того времени и самим разрабатывать и применять методику исследований.

В наши дни волны изучаются с помощью сложных и очень точных приборов, действующих автоматически и выдающих информацию в виде столбцов готовых цифровых данных.

Проще всего измерять волны вблизи берега на мелком месте. Для этого достаточно воткнуть в дно футшток. Имея в руках хронометр и записную книжку, легко узнать высоту волны и время между подходом двух волн. При помощи нескольких таких мерных линеек можно определить также длину волны и, таким образом, вычислить ее скорость. В открытом море дело значительно осложняется. Для этой цели приходится устраивать сложное сооружение, состоящее из большого поплавка, который затапливают на некоторую глубину и укрепляют на длинном тросе с помощью мертвого якоря. Затопленный поплавок служит местом прикрепления все той же мерной линейки. Показания такой установки не отличаются высокой точностью, кроме того, она имеет еще один существенный недостаток: наблюдатель все время должен находиться вблизи от футштока, тогда как волны и ветер стремятся отнести его корабль в сторону. Во времена парусного флота держать судно на одном месте практически было невозможно, и потому высоту волн измеряли на ходу. С этой целью в мерную линейку превращали мачту одного из двух участвовавших в измерениях кораблей, которые на небольшом расстоянии следовали друг за другом. Наблюдатель, стоя на корме переднего корабля, следил, как гребень закрывает от него мачту второго судна, и таким образом оценивал высоту волны.


Волнение 5 баллов.

В начале этого века измерение высоты волн начали производить с помощью очень чувствительного барометра (альтиметра). Этот прибор точно регистрирует подъем и опускание судна на волнах, но он, к сожалению, ощущает также и всякие помехи, в частности перепады барометрического давления, которые быстро наступают и неоднократно повторяются при сильном ветре.

Гораздо точнее реагируют на волнение манометры, лежащие на дне. При прохождении волны давление над прибором меняется, а сигналы по проводам поступают на сушу или регистрируются прямо на дне самописцем. Правда, таким способом можно измерять высоту волн только на мелководье, где глубина сравнима с высотой волн. На больших глубинах в соответствии с законом Паскаля давление выравнивается и с увеличением глубины все меньше зависит от высоты волн.

Очень точные и разнообразные данные о волнах получаются в результате обработки стереоскопических фотоснимков поверхности океана. Для этого две синхронно работающие фотокамеры помещают на разных мачтах одного судна, на концах крыльев низко летящего над морем самолета или даже на двух самолетах, идущих параллельным курсом. Путем фотограммометрической обработки снимков восстанавливают рельеф моря в момент фотографирования. Получается как бы картина застывших волн. На этом парадоксальном макете волнующегося, но неподвижного моря производят любые нужные измерения.

Главная сила, вызывающая волнения, — это ветер. В тихую погоду, особенно по утрам, поверхность моря кажется зеркальной. Но стоит подняться хотя бы самому слабому ветру, как за счет трения воздуха о поверхность воды в нем возникают завихрения. В результате образования вихрей над гладкой водной поверхностью давление становится неравномерным, что приводит к ее искажению — появляется рябь. За вершинами ряби процесс вихреобразования усиливается, и в конце концов это приводит к образованию волн, распространяющихся в направлении ветра.

Слабый ветер вызывает возмущение лишь тончайшего слоя воды; волновой процесс при этом определяется поверхностным натяжением. При усилении ветра, когда длина волнышек достигает примерно 17 миллиметров, сопротивление поверхностного натяжения оказывается преодоленным и волны становятся гравитационными. В этом случае ветру приходится вести борьбу с действием силы тяжести. Если ветер переходит в шторм, волны достигают гигантских размеров.

Еще долго, после того как ветер уляжется, море продолжает волноваться, образуя зыбь. В зыбь также превращаются ветровые волны, когда они выходят за пределы области, где свирепствует ураган. Низкие и длинные волны зыби незаметны в открытом море. Подойдя к отмели, они делаются выше и короче, образуя у берега мощный прибой. На обширной акватории океана то там, то здесь всегда бушует буря. Волны зыби разбегаются от нее во все стороны на огромное расстояние, и потому у океанских берегов накат никогда не прекращается.

При обтекании волновой поверхности потоками воздуха возникают инфразвуки, которые академик В. Шулейкин назвал «голосом моря». Инфразвуки, зарождаясь над волнами в результате срыва вихрей с гребней волн, распространяются в воздухе со скоростью звука, то есть быстрее волн. Из-за низкой частоты «голос моря» слабо поглощается атмосферой и на большом расстоянии может быть уловлен специальными приборами. Эти инфразвуковые сигналы служат предупреждением о приближающемся шторме.

Высота волн в открытом море может достигать значительной величины, и зависит она, как это было уже сказано, от скорости ветра. Самая высокая волна, которую удалось измерить в Атлантическом океане, оказалась равной 18,3 метра.

В 1956 году в юго-западной части Тихого океана на советском судне «Обь», совершающем регулярные научные рейсы в Антарктику, также были зарегистрированы волны высотой 18 метров. В тайфунах Тихого океана отмечены грандиозные волны тридцатиметровой высоты.

Человеку, стоящему на палубе судна в бушующем море, волны кажутся очень крутыми, нависающими подобно стенам. На самом деле они пологие. Обычно длина волны в 30–40 раз больше ее высоты, лишь в редких случаях соотношение высоты волны к ее длине равно 1:10. Таким образом, наибольшая крутизна волн в открытом море не бывает больше 18 градусов.

Длина штормовых волн не превышает 250 метров. В соответствии с этим скорость их распространения достигает 60 километров в час. Волны зыби, как более длинные (до 800 метров и более), катятся со скоростью около 100 километров в час, а иногда и еще быстрее.

Нужно иметь в виду, что с этой гигантской скоростью перемещается не водная масса, образующая волну, а лишь ее форма, более строго — энергия волны. Частица воды в волнующемся море совершает не поступательные, а колебательные движения. Причем колеблется она одновременно в двух направлениях. В вертикальной плоскости ее колебания объясняются различием в уровнях между гребнем волны и ее подошвой. Они возникают под воздействием гравитационных сил. Но так как при опускании гребня до уровня подошвы вода отжимается в стороны, а при его вздымании возвращается на прежнее место, то частица воды невольно совершает колебательные движения также и в горизонтальной плоскости. Сочетание того и другого движений приводит к тому, что фактически частицы воды движутся по круговым орбитам, диаметр которых у поверхности равен высоте волны. Точнее, они описывают спирали, поскольку под воздействием ветра вода получает также и поступательное движение, благодаря которому, как было сказано, возникают морские течения.

Только скорость движения частиц по орбитам значительно превышает скорость перемещения центров этих орбит в направлении ветра.

Колебательные движения частиц воды быстро убывают с глубиной.

Когда высота волны равна 5 метрам (средняя высота волн при шторме), а длина 100 метрам, то уже на глубине 12 метров диаметр волновой орбиты водных частиц равен 2,5 метра, а на глубине 100 метров — всего 2 сантиметра.

Короткие крутые волны меньше возмущают глубинные воды, чем волны длинные и пологие. Чем длиннее волна, тем глубже ощущается ее движение. Иногда рыбаки, ставившие свои ловушки для омаров в Ла-Манше на глубине 50–60 метров, после шторма находили в них полукилограммовые камни. Ясно, что это не были шутки омаров: камни в ловушку закатывают глубинные волны. На некоторых подводных фотографиях дна вплоть до глубины 180 метров можно видеть песчаную рябь, образовавшуюся в результате колебательных движений придонных слоев воды. Значит, и на такой глубине еще ощущается волнение поверхности океана.

Под влиянием ветра в поверхностных слоях моря накапливается огромное количество энергии, которая пока никак не утилизируется. Штормовые волны высотой 5 метров и длиной 100 метров на каждом метре своего гребня развивают мощность свыше трех тысяч киловатт, а энергия квадратного километра бушующего моря измеряется миллиардами киловатт в секунду. Если будет найден способ использования энергии волнового движения океана, человечество навсегда избавится от угрозы энергетического кризиса. А пока эта грозная сила приносит людям одни неприятности. Речь идет совсем не о таких пустяках, как морская болезнь, хотя многие испытавшие ее не разделяют это мнение. Штормовые волны, даже очень пологие, представляют собой грозную опасность для современных океанских судов, крен которых во время качки достигает такой величины, что судно может перевернуться.


Легкий ветер, рябь на воде.

Примеров тому несчетное множество. Л. Титов в своей книге «Ветровые волны на океанах и морях» приводит данные о жертвах, поглощенных морем 5–8 декабря 1929 года.

В течение четырех дней 10–12-балльный шторм бушевал у берегов Европы. В первые же сутки громадная волна перевернула у берегов Англии пароход «Дункан» водоизмещением 2400 тонн. Затем был залит волнами и затонул у берегов Голландии плавучий док водоизмещением 11 тысяч тонн. В волнах Ла-Манша затонули со всем экипажем два парохода водоизмещением 5 и 8 тысяч тонн, погиб со всем экипажем английский пароход «Волумниа» водоизмещением 6600 тонн, а также еще несколько десятков маленьких судов. Даже огромные трансатлантические лайнеры были сильно потрепаны.

В такую погоду иногда не выдерживают даже привычные к морским невзгодам матросы, можно представить себе, каково же приходится простым пассажирам, о переживаниях которых очень хорошо сказал Редьярд Киплинг: «Если в стеклах каюты зеленая тьма, и брызги взлетают до труб, и встают поминутно то нос, то корма, а слуга, разливающий суп, неожиданно валится в куб, если мальчик с утра не одет, не умыт и мешком на полу его няня лежит, а у мамы от боли трещит голова, и никто не смеется, не пьет и не ест, — вот тогда нам понятно, что значат слова: сорок Норд, пятьдесят Вест!»

Теперь многие океанские суда оборудованы успокоителями качки. В случае необходимости из подводной части корпуса выдвигаются четыре крыла, похожие на плавники рыбы. В нескольких местах на судне установлены измерители крена, и их показания по проводам поступают в специальное счетно-решающее устройство, которое и управляет движением подводных крыльев. Стоит судну чуть накрениться на борт, как крылья приходят в движение. Повинуясь сигналам, каждое из них поворачивается на определенный угол, и их совместные действия выравнивают положение корпуса.

Работа успокоителей несколько замедляет скорость хода, но не дает судну валиться с борта на борт, хотя от килевой качки они, к сожалению, не избавляют.

В практике судовождения для успокоения разбушевавшегося моря с древних времен использовался довольно простой, но очень верный прием. Известно, что вылитая за борт маслянистая жидкость мгновенно растекается по поверхности и сглаживает волны, а также снижает их высоту. Наилучшие результаты дает животный жир, например китовая ворвань. Менее вязкие растительные и минеральные масла действуют значительно слабее.

Механизм воздействия маслянистых жидкостей на волны был разгадан академиком В. Шулейкиным. Он установил, что даже тонкий слой масляной пленки поглощает значительную часть энергии колебательных движений воды.

По этой же причине волнение уменьшается во время сильного ливня или града, а также в зоне плавучих льдов.

Лед, град и дождевые капли задерживают орбитальные движения водных частиц и «гасят» волнение. В настоящее время в связи с необходимостью заботиться о чистоте океана выливание за борт бочек с маслом уже не практикуется.

Массу неприятностей, иногда переходящих в настоящие бедствия, волны приносят берегу. Даже молы, дамбы и волноломы не всегда оберегают гавани. Они надежно закрывают вход относительно коротким штормовым волнам, но пологие зыбины высотой всего 30–40 сантиметров проникают в гавань беспрепятственно, и тогда вся вода в ней приходит в движение. Суда, стоящие на якоре, начинают беспорядочно дергаться, поворачиваться корпусом то поперек, то против ветра, сталкиваются между собой. А те, что стоят у причала, рвут швартовы.

При приближении к берегу волна изменяет свою форму и высоту, так как начинает «чувствовать» дно. С этого момента ее передний склон становится все круче и круче, делается совершенно отвесным, наконец гребень начинает нависать вперед и обрушивается на отмель каскадом брызг и пены.

На больших глубинах в волновой процесс вовлекаются значительные массы воды даже при не очень высокой волне. Когда такая волна выходит на мелководье, масса воды уменьшается, энергия же, если пренебречь потерями на трение, остается прежней, при этом амплитуда волны должна увеличиться. Частицы воды, образующие волну, при подходе к берегу изменяют орбиту своего движения: из круговой она постепенно становится эллипсообразной с большой горизонтальной осью. У самого дна эти эллипсы настолько вытягиваются, что частицы воды начинают двигаться горизонтально взад и вперед, неся с собой песок и камни. Каждый, кто купался во время прибоя, знает, как больно эти камни бьют по ногам. Если прибой достаточно силен, он несет с собой валуны, способные сбить человека с ног.

В беду могут попасть даже люди, находящиеся на суше.

В 1938 году ураганные волны навсегда унесли с берега Англии около 600 человек. В 1953 году при аналогичных обстоятельствах в Голландии погибло 1500 человек.

Не менее трагичные последствия вызывают так называемые одиночные барические волны, возникающие в результате резкого перепада атмосферного давления. Пройдя несколько сотен, а то и тысяч километров от места зарождения, такая волна неожиданно обрушивается на берег, все смывая на своем пути. В 1900 году одиночная волна, обрушившаяся на побережье североамериканского штата Техас, в одном только городе Гальвестоне унесла в море 6 тысяч человек. От такой же волны в 1932 году погибло 2500 человек — более половины жителей маленького кубинского городка Санта-Крус-дель-Сур. В сентябре 1935 года барическая одиночная волна высотой 9 метров накатилась на берег Флориды, унеся с собой 400 человеческих жизней.

Давно известно, что даже самые грозные силы природы человек может использовать с выгодой для себя.

Так, жители Гавайских островов, разгадав характер накатных волн прибоя, сумели «оседлать» их. Возвращаясь с рыбной ловли, они приближаются к зоне бурунов, ловко ставят лодку на гребень волны, которая в считанные минуты выносит их на берег.


Чтобы устоять на гребне волны, требуется смелость и умение.

Катание на прибойных волнах — это также и старинный национальный спорт островитян. Из широкой, двухметровой длины доски с закругленными краями изготовляется водная лыжа. Пловец ложится на нее и гребет руками в сторону моря. Преодолеть таким способом накат очень трудно, но местные жители хорошо знают места так называемых разрывных течений и умело ими пользуются.

Разрывные течения представляют собой побочный результат прибоя, благодаря которому уровень воды у самого берега несколько повышается. Скопившаяся вода стремится уйти обратно в море, но ее оттоку препятствуют новые набегающие волны. До бесконечности это продолжаться не может, рано или поздно нагонные воды разрывают в отдельных местах волны прибоя и быстрым узким потоком устремляются навстречу им в открытое море.

Неопытный пловец, попав в разрывное течение и видя, что его уносит от берега, старается плыть навстречу, но вскоре устает и тогда легко становится жертвой моря.

Между тем спастись очень легко, для этого достаточно проплыть несколько метров не к берегу, а вдоль него и выйти из опасной зоны.

Спортсмены на досках по разрывным течениям за несколько минут уходят за пределы бурунов и там поворачивают обратно. Уловив момент, когда гребень разрушающейся волны начинает расти, покрываясь белой пеной, отважный пловец устремляется на него и встает на доске в полный рост. Ловко управляя своим спортивным снарядом, он стремительно несется на гребне волны, окруженный потоками клокочущей пены. Этот вид спорта привился также и в Австралии, где пловцы на досках не только развлекаются — ими спасено много людей, которые подверглись нападениям акул или начали тонуть.


Цунами

В ночь на 5 ноября 1952 года жители рыбацких поселков, расположенных по берегам северной группы Курильских островов и южной оконечности Камчатки, проснулись от сильных толчков землетрясения. Полураздетые, они выскакивали на холод из грозивших обрушиться домов. Как всегда в таких случаях, бесновались охваченные паникой домашние животные, звенела бьющаяся посуда, по крышам грохотали кирпичи обваливавшихся печных труб. Разрушения были значительные, но не катастрофические: где дала трещину стена жилого дома, где развалилась печь. В одной из бухт на Камчатке сползло с прибрежной скалы в море деревянное здание засолочного цеха. Во многих местах скалистого побережья произошли обвалы, местами образовались оползни.

Через несколько минут толчки прекратились, и успокоившиеся люди стали возвращаться в свои постели. Они прислушивались к ночной тишине, опасаясь новых подземных толчков, но никому не приходило в голову, что неотвратимая беда надвигается совсем не оттуда, откуда ее ждали. А она даже не надвигалась, а неслась со скоростью самолета. Примерно через полчаса после начала землетрясения со стороны океана послышался гул, участникам войны он напоминал канонаду дальней артиллерийской подготовки. Шум нарастал, и через несколько минут в предрассветной мгле выросла гигантская волна. Со страшной силой водяной вал обрушился на низкие берега, неся смерть и разрушение, а затем столь же стремительно откатился, унося с собой обломки. Несколько поселков было смыто в море за считанные минуты.

К счастью, гул приближающейся волны был услышан заранее. Многие жители поселков по сигналам пожарных колоколов снова покинули свои дома и успели спастись от потопления на ближайших сопках. Однако это удалось не всем, стремительно катившийся вал обгонял убегавших людей. Один из уцелевших свидетелей катастрофы инженер Г. Дымченко, находившийся в поселке на юго-восточном побережье Камчатки, так вспоминает события этой ночи: «Примерно в 70 метрах от меня на берегу лежала шлюпка. Я подбежал к ней уже по колено в воде — настолько быстро надвигалась волна, и едва успел прыгнуть в шлюпку, как ее подхватило волной и понесло к горам. Отразившись от сопок, волна отхлынула и смыла с косы, где помещался рыбацкий поселок, все обломки и мою шлюпку».

Эта волна имела небольшую высоту и скорость, поэтому значительная часть построек устояла. Собравшиеся на горах люди, которым менее чем за час пришлось пережить ужасы землетрясения и наводнения, решили, что все их испытания остались позади. Так полагал и Г. Дымченко: «Я считал, — пишет он, — что катастрофа кончилась. Через 10–15 минут после того, как первая волна отхлынула, я заметил, что со стороны океана в бухту движется как бы огромное ледяное поле, покрытое снегом. Я не успел подумать, откуда же здесь могло появиться ледяное поле и почему оно движется против ветра, как оказалось, что это вторая волна, гораздо большей высоты — около 10 метров и, главное, гораздо большей скорости. Когда я увидел вблизи от себя такую громадину и понял, что белая она оттого, что несла с собой массу водяной пыли, которая издали казалась снегом, тогда я подумал, что теперь все кончено — это смерть!»

Все же Г. Дымченко повезло: через четыре часа, проведенные в ледяной воде, его подобрал спасательный катер. На острове Парамушир вторая волна разрушила все здания нижней прибрежной части поселка, уцелели лишь стены каменного домика радиостанции. Все постройки, расположенные выше 10 метров над уровнем океана, уцелели. Скорость второй волны была настолько велика, что перед ней двигалась «воздушная подушка» — волна сжатого воздуха, которая распахивала в домах двери и выбивала стекла из окон.


Буря.

Не впервые в этих местах происходило подобное стихийное бедствие.

Известный ученый и путешественник первой половины XVIII века Степан Крашенинников первым описал такое событие:

«…Около Авачи… и на Курильской лопатке, и на островах было страшное земли трясение с чрезвычайным наводнением, которое следующим образом происходило: октября 6 числа помянутого 1737 года пополуночи в третьем часу началось трясение и с четверть часа продолжалось волнами так сильно, что многие камчатские юрты обвалились и балаганы попадали. Между тем учинился на море ужасный шум и волнение и вдруг взлилось на берега воды в вышину сажени на три, которая, ни мало не стояв, збежала в море и удалилась от берегов на знатное расстояние. Потом вторично земля всколебалась, воды прибыло против прежнего, но при отливе далеко она збежала, что моря видеть невозможно было. В то время усмотрены в проливе на дне морском между первым и вторым Курильскими островами каменные горы, которые до того никогда не виданы, хотя трясение и наводнение случались и прежде. С четверть часа после того последовали валы ужасного и несравненного трясения, а при том взлилось воды на берег в вышину сажен на 30, которая по-прежнему, ни мало не стояв, збежала в море. От сего наводнения тамошние жители совсем разорились, а многие бедственно скончали живот свой».

Обстоятельства обеих катастроф, как видно из описаний, совершенно одинаковы. Только С. Крашенинников, наверное, несколько преувеличил высоту волны, ведь 30 саженей — это почти 55 метров. Волна такой высоты была бы рекордной.

Обращает на себя внимание строгая последовательность событий: сначала — землетрясение, через некоторое время на берег налетает высокая волна, а вслед за ней вторая, еще более страшная. Связь между этими явлениями далеко не случайна, так как второе порождается первым. Японцы, которые часто страдают от подобного стихийного бедствия, дали ему название цунами. Это слово стало теперь международным термином для обозначения одиночных океанских волн, вызванных сейсмическими причинами. В случае подводного землетрясения или извержения вулкана дно моря начинает колебаться, и эти колебания передаются воде. Волны кругами разбегаются от эпицентра. Небольшой высоты (от 1 сантиметра до 5 метров в месте возникновения, но чаще 0,3–0,6 метра) и значительной длины (обычно порядка 100–200 километров), волны незаметны в открытом океане, но, подойдя к берегу, как это происходит с ветровыми и барическими волнами, они становятся круче, а главное, выше, достигая порой высоты 10–30, а то и 50 метров.

Скорость распространения цунами может быть и 50 и 1000 километров в час и изменяется пропорционально квадратному корню от глубины моря. В среднем, прокатываясь по океану, волна развивает скорость 700–800 километров в час, то есть не уступает скорости современных пассажирских самолетов. При достаточной силе землетрясения волны цунами могут ощущаться на огромном расстоянии от эпицентра.

16 августа 1906 года произошло землетрясение в городе Вальпараисо (Чили). Образовавшаяся волна, имея среднюю скорость 749 километров в час, за 23 часа 30 минут прошла 17 600 километров и обрушилась на Гавайские острова. Понятно, что при такой быстроте волны, не зная заранее о ее приближении, спастись трудно. К тому же из-за рокового стечения обстоятельств (а может быть, это объяснимая, но пока не разгаданная закономерность?) землетрясение часто происходит в ночные часы, когда большинство людей мирно спит.

Здесь уже не раз упоминался вулкан Кракатау, находящийся в Зондском проливе Индонезийского архипелага. Во время его знаменитого взрыва 27 августа 1883 года, кроме массы пепла и сильнейшего землетрясения, зародилась волна высотой 30–40 метров. В течение нескольких минут все поселки, расположенные на низких берегах западной части Явы и юга Суматры, были смыты в море, погибло 30 500 человек. Со скоростью 556 километров в час волны цунами прокатились через Индийский и Тихий океаны, достигнув берегов Африки, Австралии и Америки. Даже в Атлантическом океане, несмотря на его изолированность и удаленность, в некоторых местах (Панама, Франция) отмечался небольшой подъем воды.

В результате цунами 15 июня 1896 года на побережье японского острова Хонсю было разрушено 10 тысяч домов и погибло 27 тысяч жителей.

1 ноября 1755 года произошло землетрясение в Атлантическом океане невдалеке от Пиренейского полуострова. Страшные разрушения произвело оно в столице Португалии Лиссабоне. До сих пор в центре города возвышаются руины величественного здания женского монастыря Кармо, которое так и не удалось восстановить. Вскоре после землетрясения море отступило, а затем на город обрушилась волна высотой 26 метров. Многие жители, спасаясь от падающих обломков зданий, покинули узкие улицы города и собрались на широкой набережной. Набежавшая волна смыла в море 60 тысяч человек. Лиссабон расположен на нескольких высоких холмах, и потому он не был целиком затоплен, но по низменным местам море проникло в глубь суши до 15 километров.


Руина монастыря Кармо служит жителям Лиссабона напоминанием о трагедии 1 ноября 1755 года.

Цунами нельзя отнести к регулярным явлениям, но они случаются далеко не редко. В Японии регистрация волн цунами началась с 684 года. За это время крупные разрушительные волны (не считая мелких, не имевших серьезных последствий) обрушивались на Страну восходящего солнца 82 раза, то есть в среднем каждые 15 лет.

На Гавайских островах бедствие случается значительно чаще — раз в 4 года. С 1819 года там зарегистрировано 38 цунами.

После наблюдений, сделанных С. Крашенинниковым, цунами навестили Камчатку и Курильскую гряду еще 13 раз.

По данным советского сейсмолога А. Святловского, в бассейне Тихого океана цунами отмечались также на Алеутских, Филиппинских, Марианских островах, на ряде атоллов, у берегов Индии и по берегам обеих Америк. От цунами страдали также страны, расположенные на атлантическом побережье Европы, Азорские, Антильские острова и Венесуэла. В бассейне Средиземного моря волны цунами были зарегистрированы в Италии, Греции и Турции.

Мировая статистика за последнее тысячелетие насчитывает свыше 350 цунами, хотя, несомненно, их было значительно больше. Во многих случаях они обрушивались на пустынные берега, где их никто не мог наблюдать. При наиболее трагичных ситуациях после прихода и ухода волн свидетелей просто не оставалось. Наконец, далеко не везде была налажена регистрация цунами и велась соответствующая документация. У народов Океании и Новой Гвинеи, как известно, письменности вообще не было, а от волн цунами эти районы, несомненно, страдали в прежние столетия не меньше, чем в настоящее время.

Хотя в большинстве случаев цунами обязаны своим происхождением сейсмической активности земной коры, непосредственные причины, вызывающие образование волн, могут быть различными. Чаще всего они возникают в результате разрывов коры или смещения ее частей. Вследствие внезапного подъема или опускания значительного участка морского дна происходит быстрое изменение объема водного бассейна, и в воде возникают упругие волны, которые распространяются со скоростью около полутора километров в секунду. Выйдя на поверхность, они вызывают моретрясение, особенно сильное над эпицентром. Известны случаи, когда в такой район попадали следовавшие своим курсом суда, которые при этом испытывали резкие удары и толчки. Нередко капитан, введенный в заблуждение неожиданным ударом в открытом море, принимает его за столкновение с подводной скалой, не нанесенной на навигационные карты. Он немедленно определяет географические координаты опасного для плавания места, но посланные для проверки гидрографические суда не находят там никаких подводных препятствий.

От тряски иногда выходит из строя машина или рулевое управление. Повреждения могут быть нанесены даже корпусу корабля. 24 сентября 1952 года в Тихом океане погибло японское научное судно «Кайе Мару 5», на борту которого находилась группа вулканологов, намеревавшихся исследовать эпицентр подводного землетрясения. Судя по нескольким обломкам, оставшимся от экспедиционного судна, можно предположить, что оно было разбито мощным ударом той самой упругой волны, которая, собственно говоря, и порождает цунами на поверхности океана.

Изменение объема водного бассейна может произойти и в результате извержения подводного вулкана, когда из его жерла выбрасывается масса лавы и газов. Хотя при этом не происходит ни разрывов, ни сдвигов коры, но возникают ее сотрясения, также порождающие цунами.

Каждому, конечно, приходилось наблюдать за кругами, расходящимися по воде от брошенного в нее камня. Чем брошенный камень больше, тем выше получаются волны и тем дальше они бегут. Можно себе представить, каково было последствие падения в океан выброшенных вулканом горных пород объемом около одного кубического километра. Такой случай произошел в 1792 году все в той же Японии, причем от волны цунами, достигавшей высоты 9 метров, погибло 15 тысяч человек.

Изредка цунами вызываются не сейсмическими причинами, а падением в воду обломков скал, оторвавшихся в результате выветривания горных пород. В 1930 году на Мадейре оторвался от скалы и упал в море с высоты 200 метров огромный обломок, подняв волны высотой до 15 метров. В 1934 году произошел скальный обвал в Норвегии. Три миллиона тонн обломков одновременно низверглись с полукилометровой высоты. В узком фьорде поднялась волна 37 метров высотой, она снесла ближайший поселок и забросила небольшие рыбацкие суда на сотню метров от берега.

Если падение в море скал так же трудно предугадать, как падение кирпича с верха здания на тротуар, то приближение цунами, вызванное сейсмическими явлениями, вполне возможно предвидеть и вовремя оповестить о нем жителей побережья.

Когда на морском дне происходит извержение вулкана или землетрясение, одновременно с волнами цунами возникают сейсмические волны, которые распространяются гораздо быстрее первых. Вот почему при цунами подъему уровня воды всегда предшествуют более или менее сильные подземные толчки. Обычно промежуток времени между началом землетрясения и приходом первой волны исчисляется 10–15 минутами.

Если эпицентр расположен достаточно далеко, приход волны может затянуться до часа. Вторым сигналом приближающегося цунами служит отступление моря. Заметив, что после землетрясения начался неурочный или необычайно большой спад воды, нужно немедленно подняться на возвышенность. При очень большой удаленности эпицентра землетрясения можно и не заметить спада, в таком случае волна цунами налетит совершенно неожиданно.

Теперь во всех сейсмически активных районах, где имеется угроза образования волн цунами, создана специальная служба предупреждения. С помощью чувствительных сейсмографов, расположенных в разных пунктах побережья, определяется место эпицентра землетрясения и его сила. В населенные пункты, куда ожидается приход волны, дают знать об этом по радио или телефону. Существуют и местные автоматически работающие установки. В Японии и на Гавайских островах, где цунами случаются наиболее часто, служба предупреждения уже не раз имела возможность оказать населению неоценимую услугу, вовремя подав тревожные сигналы о несущейся к берегам смертоносной волне.

Глава 6. Земля, море, воздух

Океан и атмосфера

Всей своей поверхностью Мировой океан соприкасается с атмосферой.

Естественно, что на рубеже этих стихий между ними происходит интенсивный обмен.

В обоих направлениях перемещаются газы, влага и тепло. Механическая энергия движущихся масс воздуха передается воде, вызывает волны и морские течения.

В атмосфере в виде паров находится около 13 тысяч кубических километров воды. Этот постоянный фонд влаги все время пополняется за счет испарения с поверхности моря и расходуется, выпадая на поверхность планеты в виде осадков. Общая масса воды, которую океан отдает атмосфере, составляет около 355 тысяч кубических километров в год. Обратно же, из воздуха в море, возвращается только 320 тысяч кубических километров. Остальная вода (35 тысяч кубокилометров), прежде чем вернуться в океан, проходит сложный цикл на суше.

Таким образом, только одна десятая часть того огромного количества влаги, которое испаряется с поверхности Мирового океана, орошает леса и поля, а девять десятых циркулируют в замкнутой системе море — атмосфера.

Величина испарения прямо пропорциональна количеству поступающего солнечного тепла, поэтому в тропической зоне в атмосферу уходит больше воды, чем возвращается в океан. В умеренных и высоких широтах, начиная примерно с 40-го градуса, осадки превышают испарение.

Как известно, газы лучше растворяются в холодной, чем в теплой воде. В своем труде «Введение в геохимию океана» академик А. Виноградов сравнивает Мировой океан с грандиозным воздушным насосом, который поглощает газы в холодных областях и отдает часть их в тропиках. В результате вертикальных конвекционных течений растворенные в воде газы пронизывают всю толщу океанской воды, вплоть до дна глубочайших впадин.

По подсчетам того же ученого общий объем газов, растворенных в Мировом океане, примерно в три раза больше всего объема его вод.

В нижних слоях атмосферы воздух состоит из 78 процентов азота и 21 процента кислорода (кроме того, в нем имеются инертные газы, водород и углекислота, в сумме составляющие 1 процент объема). Растворимость разных газов в воде неодинакова; так, кислород растворяется в ней значительно легче азота, поэтому объемное соотношение кислорода к азоту в океанических водах равно 1:2, а не 1:4, как в воздухе.

Кислород, растворенный в водах Мирового океана, полностью обеспечивает потребность морских организмов, за его счет происходит также окисление органических и минеральных продуктов. Тем не менее в воде постоянно имеются излишки кислорода, который улетучивается в атмосферу. Особенно обильно он поступает в атмосферу в местах произрастания морских растений, в первую очередь одноклеточных планктонных водорослей.

Ученые предполагают, что весь кислород воздушной оболочки нашей планеты образовался за счет фотосинтеза и его наличие в атмосфере поддерживается зелеными растениями. Как известно, в текущем столетии в результате роста городов и промышленных предприятий площадь суши, занятая зелеными растениями, резко сократилась. Особенно катастрофически уменьшаются лесные массивы, дающие львиную долю кислорода, синтезируемого наземной растительностью.

В этой связи роль океана в регенерации воздушной оболочки Земли еще более возрастает.

Мировой океан не только обогащает атмосферу кислородом, но и способствует удалению из нее углекислого газа, который образуется в результате дыхания живых организмов и как одно из следствий разрушения горных пород и вулканической деятельности. Относительное количество этого вещества в воздухе ничтожно и равно (по объему) 0,03 процента. Однако роль его в становлении глобальных климатических условий и для нормального развития жизни совершенно несоразмерна со столь малой величиной. Дело в том, что углекислота атмосферы задерживает тепловое излучение Земли. При уменьшении ее в атмосфере климат становится холоднее, а при увеличении наступает потепление. Согласно одной из гипотез уменьшение углекислоты в атмосфере наполовину послужило в прошлом причиной наступления оледенения. Если же количество углекислого газа в воздушной оболочке Земли возрастет, то увеличится так называемый парниковый эффект, который вызовет перегрев.


Водоросли обогащают морскую воду кислородом.

Угроза эта вполне реальна. В текущем столетии содержание углекислого газа в атмосфере вследствие сжигания большого количества органического топлива и за счет сокращения лесов уже увеличилось на 13 процентов. К счастью, на нашей планете существует океан, который постоянно извлекает из воздуха углекислый газ; в настоящее время его в морской воде содержится в 60 раз больше, чем в атмосфере. В море углекислый газ претерпевает сложные химические превращения, и в конечном итоге значительная его часть при посредстве некоторых организмов, строящих себе скелеты, связывается и входит в состав малорастворимой соли — углекислого кальция, — накапливающейся на дне в виде осадочных известковых пород.

В умеренных и полярных зонах из-за низкой температуры вода насыщена углекислотой не до предела.

Вследствие этого известковые отложения здесь постепенно разрушаются, и продукты распада углекислого кальция поступают в общий круговорот веществ. На мелководье же тропических морей вода пересыщена углекислым газом, что создает условия для долговременного сохранения накопившихся известковых напластований.

Запас извести служит важнейшим буфером для стабилизации климата нашей планеты. Стоит только ему слегка похолодать, как область тропической зоны несколько сужается и часть запасов известковых отложений начинает разлагаться. Это приводит к увеличению углекислого газа в обменной системе океан — атмосфера и усиливает парниковый эффект. В результате наступающего потепления тропическая зона снова расширяется.

В данном случае, как и в поддержании баланса кислорода, роль океана трудно переоценить. Именно благодаря ему возможно осуществление динамического равновесия важнейших для жизни газов в планетарном масштабе.

Не менее грандиозна роль океана в стабилизации температуры, как повседневной, так и на протяжении всей геологической истории Земли. Океан непосредственно воздействует на температуру атмосферы. Воздух сам по себе мало нагревается солнечными лучами, а получает тепло либо от нагретой земли, либо от поверхности океана. Поскольку теплоемкость воды значительно выше теплоемкости воздуха, то нагревание атмосферы происходит гораздо быстрее, чем остывание воды. Так, если при выравнивании температуры на стыке двух стихий поступивший холодный воздух подогревается теплым морем на 6 градусов, верхний стометровый слой воды остынет лишь на одну десятую градуса.

Видный советский ученый академик В. Шулейкин сравнил взаимоотношения океана и атмосферы с тепловой машиной. Главным условием работы такой машины служит разница температур. Чтобы привести в действие паровую машину, необходимо нагреть в котле воду до кипения. Полученный пар поступает в цилиндр, где он, расширяясь, передвигает поршень и производит работу. Но так паровая машина может работать только при условии, что температура наружной среды будет ниже температуры котла; в противном случае пар из него вообще не выйдет.

В приведенном примере наружная среда служит тем холодильником, который не менее необходим для работы паровой машины, чем котел, где кипятят воду.

Природные тепловые машины, работающие в океане и атмосфере, также имеют свои нагреватели и холодильники.

Академик В. Шулейкин различает два рода таких «машин».

Для первого из них нагревателем служит тропическая зона океана, а холодильником — две полярные области. С работой этой природной тепловой машины мы уже познакомились ранее, когда речь шла о пассатном течении, которое приводится в действие постоянным движением тропического воздуха и сложными зональными циркуляциями тропосферы более высоких широт.

Здесь важно отметить, что нагреватель и холодильники этой тепловой машины находятся каждый на своем месте. В результате производимой ими работы направление переноса тепла не меняется.

Для второго рода тепловой машины Земли зимой нагревателем служит поверхность океана, а холодильником — материки. В теплую пору года роль холодильника выполняет океан, а к материкам переходит функция нагревателя. Деятельность машины второго рода порождает переменчивую по направлению муссонную циркуляцию воздуха.

Когда говорят о силе ветра, то на самом деле имеют в виду его скорость. Чем она выше, тем ветер сильней. В метеорологических сводках в соответствии с показаниями приборов точно измеренные скорости ветра выражаются в количестве метров за секунду, но на практике силу ветра обычно оценивают в баллах. Каждый балл соответствует двум-трем метрам в секунду. Если сила ветра достигает 9 баллов, его уже называют штормом, а при 12 баллах — ураганом. Существует еще термин «буря», которым обозначают любой очень сильный ветер, независимо от количества баллов.

При движении воздуха над сушей неровности рельефа, леса и другие препятствия тормозят его скорость, и потому наиболее сильные бури обычно свирепствуют над морем или вблизи морского побережья.

Выше уже было сказано, что любой ветер вызывается разницей в атмосферном давлении. Если такая разница существует постоянно, ветер никогда не прекращается.

Таков пассат, сила и направление которого практически неизменны в течение круглого года. Муссоны меняют направление дважды в год, в соответствии с сезонными колебаниями температуры.

Кроме того, в атмосфере над разными частями поверхности нашей планеты периодически возникают временные локальные повышения и понижения давления, которые также порождают ветры. Однако они движутся не по прямой, соединяющей между собой точки с наибольшим и наименьшим давлениями, а отклоняются от нее вследствие вращения Земли вокруг своей оси. В результате в северном полушарии вокруг центра низкого давления такие ветры описывают круги, направленные против часовой стрелки, — это циклоны. Вокруг точки с самым высоким давлением воздух движется по часовой стрелке и называется антициклоном.

В южном полушарии направление этих ветров обратное.

Зарождение, развитие и перемещение циклонов и антициклонов оказывают самое существенное воздействие на погоду. Циклон, как правило, сопровождается сильным ветром с дождем или снегом, антициклон несет с собой маловетреную ясную погоду. Бури, вызванные глубокими циклонами, подчас обрушиваются на морское побережье, оставляя после себя страшные разрушения. На море они разгоняют гигантские волны, топят корабли. Известно немало случаев, когда сильная буря вносила свои коррективы в ход исторических событий.

Именно буря помогла Греции в 492 году до нашей эры избежать завоевания персидскими войсками. Неожиданно налетевшая, она разметала и утопила 300 кораблей с войсками персов, которые уже подошли к самым берегам Греции. Трудно сказать, в каком направлении развивалась бы античная цивилизация, если бы царю Дарию удалось захватить и поработить древнюю Элладу.

Точно так же монгольскому хану Хубилаю не удалось завоевать Японию, так как сильнейшая буря разметала по морю монгольский флот, большинство завоевателей утонуло.

В умеренных поясах планеты сильные бури случаются относительно редко; в тропическом океане они разыгрываются по нескольку раз в год. До тех пор пока жители Европы не заходили на своих кораблях достаточно далеко на юг, они не были знакомы с самыми мощными циклонами.


Начинается буря.

Аборигены же тропических районов Атлантического и Тихого океанов, не раз испытавшие на себе губительную силу стремительных вихрей, боялись и обожествляли их.

Индейцы разных племен Центральной Америки и островов Карибского бассейна называли сильные бури близкими по созвучию словами. У народов майя бог штормов носил имя Хунракен, в Южной Гватемале бога грома и молнии величали Хуракане, гвианские индейцы именем Юракан называли дьявола, на многих Антильских островах словом «хуракан» обозначался вообще злой дух.

Американские индейцы хорошо знали, что приход циклона сопровождается обильными осадками. Для засушливых районов это было долгожданное событие.

Те же майя, почитавшие в качестве главного бога солнце, отдавали должное и Хунракену как властелину водной стихии.

В его честь ежегодно совершались торжественные обряды с приношением человеческих жертв, в воды священного колодца бросали множество драгоценностей.

Уже во время первого плавания Христофора Колумба испанцы познакомились с заморским богом бурь, имя которого вошло теперь во все европейские языки.

Отсюда и английское «харрикейн» и русское «ураган».

В бассейне Тихого океана для обозначения сильной бури, вызванной тропическим циклоном, обычно употребляется слово «тайфун» от китайского «тай-фу», что переводится как «большой ветер».

Зародившиеся в тропиках циклоны обладают колоссальной энергией. По мнению специалистов, в урагане средней силы высвобождается такое количество энергии, которое эквивалентно взрыву полумиллиона атомных бомб. Соразмерно велика и разрушительная сила такой бури. Общий ущерб от сильного циклона оценивается миллионами и миллиардами долларов.

Система предупреждения, которая теперь налажена во всех странах, расположенных на пути тропических циклонов, оказалась вполне действенной. Статистика показывает, что за последнее столетие число человеческих жертв от ураганов и тайфунов неуклонно уменьшается. Однако опасность еще не миновала. Так, шторм, который обрушился на прибрежные районы Бангладеш в ночь с 12 на 13 ноября 1970 года, поднял такую волну, что в ней утонуло сразу около 400 тысяч человек.

В результате подъема воды, вызвавшего наводнение, уничтожение запасов продовольствия, страшной жары и начавшихся эпидемий погибло еще свыше 200 тысяч человек.

Зона действия разрушительного ветра в циклоне обычно относительно невелика и в Атлантическом океане она, как правило, не превышает 50 километров, но в некоторых ураганах расширяется до тысячи километров. Наиболее мощные тайфуны Тихого океана могут достигать разрушительной силы на фронте в 1500 километров и более. Сила ветра, с которой он давит на перпендикулярную к нему поверхность (динамическое давление), растет пропорционально квадрату скорости. Так, при скорости 100 километров в час динамическое давление будет равно 55 килограммам на квадратный метр, а с возрастанием скорости в два раза давит на ту же площадь с силой 280 килограммов.

Ураганный ветер наносит страшный ущерб сельскому хозяйству, уничтожая посевы полевых культур, сбивая плоды и даже ломая и вырывая с корнем фруктовые деревья. Под воздействием ветра рушатся строения, в первую очередь деревянные и высокие здания из любого материала.

В ночь с 27 на 28 сентября 1955 года ураган «Жанет», проходя над маленьким мексиканским городком Четумаль, оставил после себя только четыре здания, да и те находились в плачевном состоянии. Все спасшиеся жители остались без крова.

Первый ураган XX века, прошедший через Кубу и атлантическое побережье США, принес страшные разрушения небольшому городу Гальвестону (штат Техас). Ветер и наводнение полностью уничтожили половину зданий, а оставшиеся нуждались в восстановлении. Множество жителей погибло под обломками домов и утонуло.

Дабы предупредить повторение подобной катастрофы, в 1904 году Гальвестон оградили со стороны моря высокой каменной стеной. Обломки старого города засыпали пятиметровым слоем песка и щебня и проложили новые улицы на недосягаемой для наводнения высоте. Все это, к сожалению, оказалось бесполезным. В сентябре 1961 года здесь пронесся ураган «Клара», о котором газеты писали следующее: «Гальвестон выглядит громадным призраком. Из 75 тысяч жителей там осталось всего лишь 15 тысяч. Ураган разрушил электростанцию. Некоторые районы города сплошь залиты водой».

Удивляться этому не приходится — специалисты считают, что в среднем урагане за сутки выпадает около 20 миллиардов тонн воды. В рекордных случаях во время тропического циклона на каждую единицу площади выпадает за сутки столб воды высотой 2500 миллиметров, это в 4–5 раз больше годовой суммы осадков для Москвы.

Кроме ветра, ливней и волн, циклоны рождают также и смерчи, которые на побережье тропической Америки называют торнадо (от испанского «торнадос», что значит «вращающийся»). Правда, они могут возникать и независимо от циклонов и тогда действуют сами по себе.


Смерч.

Природа этого явления еще до конца не разгадана.

Так, зарождение смерча на море можно наблюдать во время грозы. Неожиданно из тучи вниз выпячивается темный крутящийся вал, напоминающий хобот. Навстречу ему из моря поднимается так же вращающийся столб воды, и вскоре они соединяются. Диаметр смерча колеблется от 25 до 100 метров и более; высота от поверхности моря до тучи 800–1500 метров.

Бешено вращающийся столб воды, водяной пыли и пара иногда медленно, а иногда быстро передвигается с места на место. Измерения атмосферного давления внутри столба показали, что оно обычно значительно ниже, чем в центре циклона. Скорость вращающейся смеси «стенки» столба доходит до 800 километров в час, а продолжительность существования измеряется минутами, за которые смерч успевает пройти до сотни километров.

Если торнадо возникают во время урагана, то они образуются в его передней полусфере или же по краям фронта; торнадо такого рода могут быть весьма свирепыми. Но наибольшей разрушительной силой обладают смерчи, не связанные в своем происхождении с ураганами.

Подобно циклонам, смерчи северного полушария вращаются против часовой стрелки, а южного — по часовой.

Наиболее благоприятные условия для зарождения торнадо складываются по берегам Мексиканского залива, откуда они нередко выходят на сушу и несут разрушения и гибель людей.

Помимо механического воздействия, вихревые потоки действуют подобно гигантскому насосу, всасывая в себя и поднимая в воздух самые разнообразные, подчас очень тяжелые предметы.

Нередко захватываются вместе с водой и обитатели моря. Отсюда, по-видимому, и возник миф о дожде из рыб.

В 1933 году на Дальнем Востоке жители села Кавалерова, расположенного в 50 километрах от моря, после сильного дождя обнаружили на своих полях… медуз. В этом месте, очевидно, распался смерч. В 1975 году один из жителей села Куприянова Амурской области, застигнутый на улице смерчем, был поднят в воздух и лишь случайно закончил свой полет благополучно — угодил в траншею с силосной массой на другом конце поселка.

Осенью 1920 года в одной из сельских школ штата Канзас (США) смерч «высосал» из класса учительницу вместе со всеми учениками, а также школьную мебель. Потерявшая сознание учительница пришла в себя посреди степи и увидела бежавших к ней учеников, но не всех: тринадцать детей погибли.

Смерчевые вихри возникают также и на суше: в пустыне они вбирают в себя песок, в поле посевы, в лесу ломают и выкорчевывают деревья. Как правило, все это происходит в жаркое летнее время.

Крайне редко наблюдаются смерчи в полярных странах. 3 февраля 1958 года с дизель-электрохода «Обь» моряки наблюдали смерч вблизи острова Диксон. Гигантский столб высотой около километра был похож на белую дымящуюся трубу, которая медленно двигалась по ледяному полю, засасывая снизу снег и выдувая его через верхний раструб.

Ураганы и тайфуны, несущие с собой разрушение и смерть, долгое время оставались загадочными. Причины, объясняющие их возникновение, установить было просто невозможно из-за отсутствия быстрой и надежной связи. Большинство свидетелей тропических циклонов считали, что этот ветер дует огромным фронтом.

Так полагал и известный американский ученый Б. Франклин. Он жил в Филадельфии и 27 октября 1743 года собирался наблюдать лунное затмение. Однако шторм нагнал под вечер множество туч, которые скрыли Луну от наблюдения. Через несколько дней он был крайне удивлен, получив письмо от своего брата из Бостона. В этом городе, находящемся немного севернее Филадельфии, во время лунного затмения никакой бури не было, она началась лишь через несколько часов после него. Если же учесть скорость, с которой двигалась буря, расстояние от Филадельфии до Бостона она должна была пройти менее чем за час. В чем дело? Сопоставив конкретную скорость ветра и путь, который за это время успел пройти циклон, Б. Франклин почти разгадал его природу.

И все же решающее открытие в науке об ураганах было сделано только в 1821 году, и вовсе не ученым, а торговцем.

Молодой американец У. Редфилд занимался изготовлением в своей мастерской конской сбруи и седел, а для реализации товара время от времени разъезжал по стране. Он был пытливым человеком, много читал и интересовался самыми разными проблемами — от стеклодувного дела до миграций птиц. Будучи сыном моряка, большую часть свободного времени отдавал чтению книг о море и плаваниях. Однажды во время очередной коммерческой поездки У. Редфилд увидел, что во многих местах лес повален недавно прошедшим ураганом.

От наблюдательного глаза молодого человека не скрылась одна важная особенность в положении поверженных деревьев: на пути его следования они лежали как бы гигантским кругом, с вершинами, повернутыми против часовой стрелки. Ему стало ясно, что во время урагана ветер с бешеной скоростью носится по кругу, а сам круг более медленно передвигается с места на место.

Так была разгадана природа циклонов.

С самолета в стратосфере или с искусственного спутника Земли циклон выглядит как обычная спираль с темным пятном («глазом») в центре. Обычно внетропический циклон захватывает огромные пространства и достигает в поперечнике 2–3, а то и 4 тысяч километров.


Фотография циклонов, сделанная со спутника.

Диаметры тропических циклонов меньших размеров и равны примерно 200–500 километрам. Но разница между ними не только в размерах, но, что наиболее существенно, и, в перепадах давления.

Известно, что в среднем на уровне моря нормальное давление равно 1013 миллибарам, что соответствует 755 миллиметрам ртутного столба. Обычно в центре внетропического циклона давление падает совсем незначительно, всего до 1000, реже до 970 и только в очень глубоких циклонах до 950 миллибар. Последняя величина считается весьма обычной для тропического циклона, в котором давление может падать еще ниже, до 900 миллибар. В рекордном случае (тайфун 1958 года по имени «Ида») давление в центре упало до 877 миллибар.

Таким образом, во внетропическом циклоне перепад давления между «глазом» и периферией составляет 15–40 миллибар, причем точки с наименьшим и наивысшим давлениями удалены друг от друга на 1–2 тысячи километров. В тропическом же циклоне они отстоят друг от друга всего на сотню километров, а разница в давлении колеблется от 60 до 100 миллибар и более. В результате в тропическом циклоне создается огромный градиент давления. К центру такого циклона, где наблюдается самое глубокое разрежение, устремляются массы воздуха. Отклоняясь от прямого пути под влиянием суточного вращения Земли, воздушные потоки начинают бешено крутиться вокруг центра, достигая ураганных скоростей. Самые сильные порывы ветра наблюдаются в непосредственной близости от «глаза», где перепады давления подчас равны одному миллибару на километр. При этом сам «глаз» представляет собой сравнительно небольшой круг, внутри которого ветра практически нет, тогда как вокруг бушует ураган.

Скорости ветра, измеренные вблизи центра тропического циклона, нередко поражают невероятными величинами.

В 1955 году ураган по имени «Джаннет» прошел над столицей Мексики. Прибор для определения скорости ветра (анемометр), установленный на здании аэропорта, показал 280 километров в час.

Кстати, спустя немного времени он был сорван усилившимся ветром, скорость которого, вероятно, превысила 360 километров в час. Не удалось измерить скорость ветра во время урагана 1935 года, промчавшегося по побережью Флориды. Но если судить по причиненным им разрушениям, она достигала 400 километров в час.

Нет нужды перечислять жертвы ураганов и масштабы причиненных ими бедствий; о них каждый, наверное, читал в прессе.

Начиная с XVI века в бассейне Карибского моря, где ураганы случаются наиболее часто, их иногда стали называть по имени того святого, на день которого они приходились. Так, на острове Пуэрто-Рико до сих пор памятны ураганы «Святая Анна» (26 июля 1825 года) и «Святой Филипп» (13 сентября 1876 года). Последний христианский святой почему-то невзлюбил этот остров и спустя 52 года вновь навестил его (в тот же день, отчего ураган получил название «Святой Филипп II»).

С 1941 года синоптики, вдохновленные примером героя романа Д. Стюарта «Шторм», стали давать разрушительным циклонам женские имена (правда, в последние годы появились и мужские). Смысл этого нововведения состоит в том, что при передаче информации об урагане по радио или телеграфу имена не так легко спутать, как числа. Теперь в бюро погоды США заранее составляют (в алфавитном порядке) список женских имен на четыре года вперед. Как только служба погоды обнаруживает в тропической зоне зарождение циклона, ему дают очередное имя и начинают внимательно следить за новорожденной богиней ветра.

Очень часто циклон угасает, так и не набрав силы. В таком случае вместе с ним умирает и его имя. Спустя четыре года этим же именем может быть назван другой циклон.

Если же циклон в процессе своего развития превращается из младенца в грозную фурию, присвоенное ему имя продолжает жить и после его распада. Оно надолго остается в памяти людей как символ разрушительной силы.

Тезка такого циклона может появиться не ранее чем через десять лет.

Поведение урагана до известной степени напоминает движение запущенного волчка: он бешено вращается вокруг своей оси и при этом сравнительно медленно перемещается по прямой или искривленной линии. Вследствие неравномерности атмосферного давления над обширными акваториями океана и под влиянием отклоняющих сил вращения Земли тропический циклон в начале своего существования, как правило, начинает перемещаться в западном направлении со скоростью 20–25 километров в час. Постепенно он все более и более отклоняется в направлении высоких широт, а затем поворачивает на северо-восток (в северном полушарии) или на юго-восток. Его поступательная скорость все время возрастает и порой достигает 50–65 километров в час. К этому времени скорость его вращения замедляется, и он прекращает свое существование.

Тем не менее, даже зная эту общую закономерность движения циклонов, трудно предугадать конкретный путь каждого из них, так как на практике они часто выписывают крайне замысловатые кривые, движутся зигзагами, останавливаются и неожиданно поворачивают в обратном направлении.

Когда циклон 1854 года потопил у берегов Крыма эскадру союзников, директор парижской астрономической обсерватории Урбан Жан Жозеф Леверье решил проследить за перемещением бури, чтобы при подобных случаях заранее предупреждать капитанов о приближающейся опасности. Французский ученый был превосходным математиком. За несколько лет до Крымской войны он по небольшим отклонениям в движениях планеты Уран установил, что еще дальше от Солнца должна находиться следующая планета солнечной системы.

Имея в своем распоряжении всего лишь перо и бумагу и даже не поднимая головы к небу, У. Леверье установил точное положение этой планеты на небосводе, а берлинский астроном И. Галле, пользуясь указаниями У. Леверье, увидел ее в свой телескоп. Так был открыт Нептун.

Теперь У. Леверье захотел вычислить «орбиту» циклона. Собрав необходимые сведения, он составил первую в мире синоптическую карту. От западной части Средиземного моря линия протянулась через Италию и Балканский полуостров. Только через двое суток ветер ворвался в Балаклавскую бухту.

Значит, имея в своем распоряжении телеграф, о приближении бури можно предупреждать заранее.

По предложению У. Леверье французское правительство организовало систему предсказания погоды по телеграфу. Вскоре к Франции стали присоединяться другие страны.

С 1872 года синоптические карты начали составлять в России.

В настоящее время обмен информацией о зарождении и путях следования бурь осуществляется в очень широком масштабе во всем мире. Пользуясь периодически передающимися по радио сводками погоды и картами, каждый капитан так прокладывает путь своего корабля, чтобы по возможности избежать встречи с опасным циклоном.

В океане, где ветер почти не встречает препятствий на своем пути, предсказания погоды обычно бывают более точными. Над материками на направление и скорость ветра воздействует множество факторов, которые далеко не всегда можно учесть, и потому в предсказания погоды на суше часто вкрадываются ошибки. Остается надеяться, что метеорологи научатся так же точно предсказывать погоду, как теперь предсказываются приливы. В настоящее время в прогнозах погоды вполне закономерно допускаются приближенные сведения. Недаром в серьезной книге Э. Мамедова и Н. Павлова «Тайфуны» список слов, наиболее употребительных в синоптической метеорологии, начинается с «about» (около) и кончается «within» (в пределах).

Чтобы закончить рассказ о взаимоотношениях океана и атмосферы, необходимо сказать несколько слов о некоторых мнимых и действительно существующих таинственных явлениях.

В «Правде» от 7 марта 1978 года под заголовком «Опять Бермудский треугольник» была опубликована небольшая заметка корреспондента газеты в Нью-Йорке Т. Колесниченко. «Говорят, что в наш век не осталось тайн, кроме тайны Бермудского треугольника.

Эту шутку вновь подтвердили вполне серьезные обстоятельства: во время тренировочного полета исчез американский бомбардировщик КА-6, пилотируемый капитан-лейтенантом Полом Смитом. На борту находился также штурман лейтенант Ричард Ленард. Самолет, попав в зону Бермудского треугольника, сразу же потерял связь с авианосцем „Джон Кеннеди“. Поиски, как обычно в этом районе, не дали результатов».

Дурная слава за участком акватории Атлантического океана, условно ограниченным треугольником, в вершинах которого находятся полуостров Флорида, остров Пуэрто-Рико и Бермудские острова, установилась в середине нашего века, когда в этом районе участились случаи таинственной гибели кораблей и самолетов.

До конца 40-х годов каждое исчезновение рассматривалось просто как отдельный необъяснимый несчастный случай, какой мог произойти в любой точке Мирового океана. Однако концентрация катастроф в одном сравнительно небольшом участке невольно обратила на себя внимание авиакомпаний, судовладельцев, страховых обществ, следственных органов и прессы.

Первые же попытки произвести учет несчастных случаев с морскими и воздушными кораблями, происшедшими в этом районе, дали ошеломляющие результаты.

Оказалось, что еще во время первого плавания Христофора Колумба команда его кораблей была сильно смущена необычным поведением стрелки компаса, странным ночным светом в отдалении и, наконец, смертельно напугана гигантским снопом огня, упавшим в море. Как известно, X. Колумб благополучно вернулся в Европу, но грозное проявление таинственной силы как будто служило предупреждением всем, кто попытается проникнуть в злополучный Бермудский треугольник.

Когда собрали воедино все сведения о таинственных происшествиях, случившихся в этой части Атлантического океана за последние двести лет, получилась вполне убедительная картина враждебных действий какой-то неопознанной силы, не оставляющей никаких свидетелей, никаких очевидцев.

Вначале в проклятом треугольнике начали пропадать корабли, причем не находили даже их обломков. В период с 1781 по 1812 год здесь исчезли при невыясненных обстоятельствах четыре американских военных судна. Потом с кораблей стали пропадать люди. 6 ноября 1840 года лондонская газета «Таймс» поведала читателям о весьма странном происшествии, случившемся по другую сторону Атлантического океана. Недалеко от порта Нассау (Багамские острова) появилось большое французское судно «Розали», шедшее под всеми парусами, с полными трюмами груза, но… без команды! «Розали» была в полной исправности, не пострадали ни груз, ни навигационные приборы, ни судовая документация. Каюты были аккуратно прибраны, и только в одной из них обнаружили беспорядочно разбросанные предметы дамского туалета. В качестве интересной подробности газета сообщала о единственном живом существе на «Розали» — полумертвой от голода канарейке. Никто никогда не узнал, при каких обстоятельствах исчезли экипаж и пассажиры злосчастного парусника.

В 1872 году весь мир был взволнован сообщением о бригантине «Мэри Селест», которая, подобно «Розали», шла по океану под всеми парусами, не имея на борту ни одного человека. Капитан Бриггс, его жена, маленькая дочь и восемь членов команды, по-видимому, совсем не подозревали о грозящей им опасности. Они, очевидно, собирались позавтракать: на столе оставались хлеб, масло, бекон, яйца и кофе. Когда на покинутое судно взошли моряки с «Деи Гратиа», обнаружившие опустевшую «Мэри Селест», то кофе в чашках якобы еще не успел остыть, на плите варилась какая-то пища. Швейная машинка жены капитана была открыта, и на ней стояла бутылочка с машинным маслом. На постели капитана лежали игрушки, словно с ними только что играл ребенок. Продолжали мерно тикать часы, но все навигационные приборы, а также документы (кроме судового журнала) исчезли. Не было и единственной спасательной шлюпки. Весь груз (1700 баррелей спиртных напитков), а также полугодовой запас пресной воды и продовольствия остались в полной неприкосновенности.

В 1881 году английское судно «Элен Остин» встретило в море шхуну, которая была брошена экипажем, хотя полностью сохраняла свои мореходные качества. С «Элен Остин» на шхуну был высажен небольшой спасательный экипаж, и оба судна взяли курс на Ньюфаундленд. В тумане суда потеряли друг друга, а когда они встретились вновь, на шхуне не было ни души — спасательный экипаж бесследно исчез.

Подобных примеров можно привести великое множество. Все они чрезвычайно похожи друг на друга: судно исправно, груз на месте, погода благоприятная, но команда исчезла без следа. Иногда на покинутом корабле можно обнаружить безгласных свидетелей трагедии — певчих птиц, кошек и собак. Вместе с тем участились случаи бесследного исчезновения судов.

Когда появились радиопередатчики, положение не изменилось к лучшему, напротив того, оно стало еще более загадочным. 13 апреля 1925 года радисты всех судов, находящихся в районе Бермудского треугольника, приняли сигнал SOS, переданный с японского парохода «Раифуку Мару». Отчаянный голос взывал: «Это как удар кинжалом! Скорее на помощь! Скорее, нам не спастись!» Радист толком не мог объяснить, что происходит с несчастным «Раифуку Мару» в это тихое апрельское утро. Связь с пароходом внезапно оборвалась, и больше никто ничего о нем не узнал.

Легенды повествуют, что жертвами неведомой силы становились то большие корабли, то маленькие яхты и моторные лодки, а с 1945 года в роковом треугольнике начали исчезать и самолеты. Первой такой жертвой стало девятнадцатое звено бомбардировщиков-торпедоносцев ВВС США, состоявшее из пяти боевых машин типа «Эвенджер». Они вылетели 5 декабря в обычный тренировочный полет и должны были вернуться на базу через два часа. Первое донесение командира звена лейтенанта Чарльза Тейлора поступило за полчаса до предполагаемого момента возвращения. Вместо того чтобы запросить разрешение на посадку, он взволнованно сообщил, что звено попало в аварийную обстановку. «Очевидно, мы сбились с курса. Мы не видим земли, мы не можем определить свое местонахождение», — сообщил он. Командно-диспетчерский пункт распорядился, чтобы самолеты держали курс прямо на запад. Метеорологические условия для полета можно было считать идеальными, солнце клонилось к закату. Получив приказ, Ч. Тейлор долго не отвечал, а потом взволнованно сообщил, что он не знает, где запад, не видит солнца, что все компасы вышли из строя и даже океан выглядит не так, как обычно. После этого связь стала ненадежной, сообщения Ч. Тейлора были отрывочны и еле слышны. На выручку летчикам в место их предполагаемого нахождения вылетела гигантская летающая лодка типа «Мартин Маринер» с экипажем из 13 человек. Через двадцать минут полета с самолета-амфибии поступило сообщение о том, что они приближаются к заданному району, но пока ничего необычного не обнаружили, затем связь с ними навсегда оборвалась. Спасатели исчезли так же бесследно, как и спасаемые. Триста самолетов и двадцать одно судно приняли участие в поисковых операциях, но никаких следов катастрофы обнаружено не было. На всех пропавших самолетах имелись мощные автоматически работающие радиостанции, надувные плоты и индивидуальные спасательные средства. Летающая лодка могла сесть на воду при любой волне, и тем не менее двадцать семь человек и шесть самолетов исчезли. Они погибли без всяких видимых причин, на воде не осталось ни обломков, ни спасательных жилетов, ни масляных пятен.

Ровно через год (день в день!) 5 декабря 1946 года Бермудский треугольник снова напомнил о себе. На этот раз жертвой стала шхуна «Сити Белл», которую обнаружили в море без экипажа невдалеке от Багамских островов. На судне не удалось найти никаких повреждений, спасательные шлюпки висели на своих местах.

После этого таинственные исчезновения военных самолетов, подводных лодок, танкеров, авиалайнеров, грузовых судов и других морских и воздушных кораблей приняли угрожающие масштабы. Особенно большие потери понесли военно-воздушные и военно-морские силы США. К числу жертв Бермудского треугольника были причислены также и две атомные подводные лодки — «Трешер» и «Скорпион», погибшие вне пределов особо опасной зоны, но все же в достаточной близости от нее. Положение стало нетерпимым, и началось усиленное расследование причин различных таинственных происшествий в этой части океана.

Было высказано несколько гипотез, которые потребовали серьезной проверки в экспериментальных и природных условиях. Так, предполагалось, что излучаемые волнующимся морем ультразвуки могут достигать такой силы, что люди не выдерживают их воздействия и лишаются рассудка. В состоянии умопомешательства они бросаются за борт, стараясь избежать невыносимой вибрации, исходящей от резонирующего корабля, который после этого еще долго может носиться по воле ветра и течений. Самолеты и подводные лодки, попав в зону ультразвуковой вибрации, превращаются в огромные мышеловки. Покинуть их невозможно, и экипаж погибает вместе с кораблем.

Эта гипотеза многое удачно объясняла, но при первой же проверке оказалась совершенно несостоятельной. Ультразвуки моря не приносят организму человека никакого вреда, они даже не ощущаются без специальных приборов. Выше уже говорилось, что это явление было детально изучено советским ученым академиком В. Шулейкиным и вошло в науку под названием «голос моря».

Одно время казалось, что загадку Бермудского треугольника разрешили американские космонавты, которые открыли в этом районе поразительную аномалию в форме водной поверхности океана. Оказалось, что уровень моря здесь понижен на целых 25 метров. Образуется как бы гигантская воронка, в которой, по-видимому, и гибнут попавшие туда корабли. Высказывалось предположение, что над водной впадиной расположена и огромная воздушная яма, куда проваливаются самолеты. Но так рассуждать могут только люди, далекие от науки. Вот что говорит по этому поводу известный советский ученый академик Л. Бреховских: «Местное понижение уровня океана примерно на 25 метров в районе Пуэрто-Риканской впадины (то есть в юго-западном углу Бермудского треугольника. — Д. Н.) действительно имеет место. Оно вызвано гравитационными аномалиями из-за наличия глубокой впадины в дне океана. Расчеты показывают, что равновесной здесь является совсем не сферическая форма поверхности воды, а поверхность именно с таким местным понижением уровня. Следовало бы ожидать мощные потоки, завихрения и другие необычные явления, как раз если бы поверхность океана здесь имела другую форму — без впадины».

Неудачной оказалась также идея отнести все несчастья в Бермудском треугольнике за счет сейсмики.

Было высказано предположение, что дно океана в этом месте периодически разверзается, туда устремляется вода и засасывает с собой корабли и подводные лодки, почему от них и не остается никаких обломков. В этот момент в воздухе над океаном будто бы возникают нисходящие потоки — антисмерчи, в которых погибают самолеты. Правда, эта теория никак не объясняла пропажу команды с кораблей, но все же стояла на реалистической почве. Тем не менее и она не подтвердилась. Любое, даже небольшое по силе движение земной коры немедленно регистрируется десятками постоянно работающих сейсмических станций. Ни разу исчезновение самолета или судна не совпало с землетрясением на дне моря.

Неповинны в гибели людей и кораблей также и морские течения, которые действительно достигают в этом районе необычайной силы. В 1969 году исследовательский батискаф «Бен Франклин» под командованием Жака Пикара погрузился у берегов Флориды на глубину 400 метров и вместе с водами Гольфстрима пересек весь Бермудский треугольник. В пути велись различные научные наблюдения, но ничего необычного, таинственного и грозного замечено не было. В районе Бермудского треугольника проводилось немало научных работ с бортов американских и советских исследовательских судов; в частности, здесь изучались открытые в 1970 году советскими океанологами гигантские вихри по краям мощных морских течений. Но и водяные вихри, учитывая наблюдающуюся в них скорость течений, не могли быть причиной каких-либо катастроф.

Автор этой книги во время одного из научных рейсов исследовательского судна «Академик Курчатов» также побывал в знаменитом треугольнике и принял участие в добывании глубоководных животных со дна Пуэрто-Риканской впадины. Никто из участников экспедиции не обнаружил в зловещей зоне ничего сверхъестественного. В соответствии с программой велись обычные исследования океана. Свободные от вахт члены экипажа проводили матчи на первенство судна по волейболу.

Когда все попытки дать чудесам Бермудского треугольника рациональное объяснение потерпели неудачу, стали выдвигаться самые невероятные гипотезы. В Тихом океане к востоку от Японии вдруг обнаружилась вторая таинственная и грозная зона, получившая зловещее название «Море дьявола».

Кому-то пришло в голову, что люди, суда и самолеты «испаряются» под воздействием гигантского атмосферного лазера (как раз в это время физики начали проводить первые опыты с лазерными лучами). Не были оставлены без внимания и потусторонние силы. Одни утверждали, что происшествия в районе Бермудского треугольника дело рук подводных людей — потомков жителей Атлантиды, утонувшей много веков назад. Другие обвиняли во всем инопланетян. В течение 20 лет специальная комиссия военно-воздушных сил США собирала сведения о так называемых неопознанных летающих объектах.

Однако все 12 618 свидетельских показаний не были признаны убедительными, и правительство приостановило эту работу.

Тем не менее большее по сравнению с другими районами количество морских и воздушных аварий в районе Бермудского треугольника вполне объяснимо. Выше уже говорилось, что весь этот район характеризуется сложными гидрометеорологическими условиями. Его часто навещают тропические циклоны, торнадо и грозы. Обломки кораблей и самолетов быстро уносятся от места катастрофы мощными течениями. Отсюда и создается иллюзия бесследного исчезновения.

Частота аварий сопряжена также и с большой загрузкой водных и воздушных путей, насыщенностью эфира радиосигналами, ухудшающими слышимость. Замечено, что число бедствий возрастает в период рождественских каникул, когда люди на личных яхтах и самолетах спешат на Багамские острова, чтобы провести праздники на берегу теплого моря, а потом возвращаются обратно.

Общее количество таинственных происшествий действительно поражает воображение, но, когда каждое из них подвергается тщательному анализу, многое становится понятным. В значительной мере дурная слава Бермудского треугольника возникла в результате неточной или неполной информации, порождающей всякого рода домыслы и слухи. Сотрудник библиотеки Аризонского университета (США) Лоуренс Куше собрал огромное количество газетных и журнальных вырезок, а также просмотрел отчеты следственных комиссий и завел на каждый случай таинственного исчезновения людей или кораблей в Бермудском треугольнике специальное «дело». В опубликованной им книге приведено множество примеров, развенчивающих «тайну».

Выяснилось, что шхуна «Розали», якобы найденная в 1840 году у Багамских островов без экипажа, но с канарейкой в клетке, вообще никогда не существовала. В документах страхового общества Ллойда имеется упоминание о другом судне с похожим названием — «Россини». Оно, как и мифическая «Розали», шло из Гамбурга в Гавану и село на мель около Багамских островов. Экипаж и пассажиры были спасены. Весь миф о таинственной «Розали» порожден единственной заметкой в «Таймс», причем автор ее не имел достаточной информации и спутал название.

Бригантина «Мэри Селест» была обнаружена невдалеке от берегов Старого Света. Последняя запись в вахтенном журнале сделана 24 ноября 1872 года, когда судно находилось в 100 милях к востоку от Азорских островов. Экипаж с «Мэри Селест» в самом деле пропал при неизвестных и довольно таинственных обстоятельствах, но к Бермудскому треугольнику его исчезновение не имеет никакого отношения. Несмотря на явное противоречие элементарной логике, легенды неизменно связывают «Мэри Селест» именно со зловещим треугольником.

Вся история с «Элен Остин» и покинутой шхуной (без названия), случившаяся в 1881 году, всплыла на свет лишь в 1944 году. О ней впервые повествуется в «Рассказах астролога», опубликованных Рупертом Голдом. Автор не указал источника полученной информации о столь непонятном и загадочном происшествии в море, а пресса 1881–1882 годов хранит полное молчание. Если у этой странной истории нет начала, то имеется несколько концов. Ряд авторов продолжили рассказ с того места, на котором остановился Р. Голд. Согласно одной из версий на найденную шхуну пытались поместить новую спасательную команду, но матросы взбунтовались. По другой версии второй спасательный экипаж все-таки был пересажен на шхуну. Затем суда потеряли друг друга во время шторма, и ни шхуны, ни членов ее последнего экипажа больше никто никогда не видел.

Как удалось установить, странные речи радиста с «Раифуку Мару» объясняются тем, что он плохо владел английским языком. Сигналы SOS были приняты пассажирским пароходом «Хомерик», который подошел на близкое расстояние к накренившемуся и неуправляемому японскому грузовому судну. Никого из членов экипажа не было видно ни на тонущем корабле, ни в воде. Очевидно, все они погибли в высоких волнах еще до того, как «Хомерик» приблизился к месту катастрофы. Причина гибели «Раифуку Мару» оказалась весьма банальной — он не вынес борьбы со штормом.

В 1945 году о поведении тропических циклонов знали еще очень мало. Когда на авиабазе вблизи Майами был тихий вечер и светило солнце, девятнадцатое звено самолетов, находившихся совсем близко, попало в зону шторма. Солнце скрылось в тучах, море было очень бурным. Из 14 членов экипажей пяти бомбардировщиков-торпедоносцев 12 были курсантами, проходившими обучение по программе усовершенствования, командир звена Ч. Тейлор был недавно переведен из другой части и плохо знал район и условия полетов в нем. На маршруте при одном из разворотов он потерял ведомых и вернулся за ними, но при этом сбился с курса. Растерявшиеся пилоты начали рыскать в разных направлениях в поисках земли и отклонялись все далее на север. В конце концов у них кончилось горючее, и самолеты один за другим упали в море или спустились на воду, но из-за сильной волны не смогли воспользоваться надувными плотами и другими спасательными средствами. Спасательный отряд на гидросамолете погиб в результате взрыва на борту, который был виден с одного из проходящих судов.

Поиски, предпринятые на другой день, результатов не дали, так как сильный шторм и высокие волны разбросали все обломки, а Гольфстрим умчал их на север.

О таинственном исчезновении экипажа с «Сити Белл» известно из заметки, помещенной в «Нассау гардиан» от 5 декабря 1949 года. Сенсация быстро распространилась и овладела умами обывателей. По-видимому, никто не обратил внимания на сообщение той же газеты от 7 декабря, где говорилось, что семь человек со шхуны «Сити Белл» подобраны в море спасательным катером.

Итак, часть происшествий, которые приписываются таинственной силе Бермудского треугольника, произошла в других частях Мирового океана. В ряде случаев корабли и самолеты гибли во время шторма, что могло случиться (и случается) также и вне пределов Бермудского треугольника или «Моря дьявола». Экипаж некоторых покинутых кораблей потом обнаруживался.

Ряд таинственных и загадочных случаев исчезновения людей и кораблей на поверку оказались плодом фантазии. Что же в таком случае остается от пресловутого Бермудского треугольника?

Почти ничего. Просто-напросто это участок океана с интенсивным движением водного и воздушного транспорта и очень сложными гидрометеорологическими условиями.

По мере проникновения человека в океан раскрываются все новые и новые стороны его жизни. Многое из того, что мы знаем о строении дна, о течениях, об особенностях биологии моря, пока известно лишь в первом приближении. Людям вообще свойственно проявлять повышенный интерес к различным таинственным явлениям. Хорошо, если этот интерес способствует раскрытию тайн природы. Гораздо хуже, когда умышленно или в силу недостатка знаний из непонятных происшествий создаются противоестественные мифы.

Можно с уверенностью сказать, что миф о роковом Бермудском треугольнике на 90 процентов создан теми недобросовестными журналистами, для которых сенсация гораздо дороже истины.

Полная опасностей и приключений жизнь моряков породила множество мифов, поверий и примет, большинство из которых связано с дурными предзнаменованиями, но все они в конце концов найдут свое объяснение.


Море и суша

Взаимодействие между воздушной и водной средой осуществляется по всей огромной поверхности Мирового океана, в то время как его непосредственные контакты с сушей происходят лишь вдоль сравнительно узкой береговой полосы материков и островов.

В вечной борьбе этих двух стихий океан выступает как подвижное и активное начало, ведущее наступление по всему фронту, тогда как суша занимает пассивную, оборонительную позицию. В результате воздействия прибоя и приливных течений постоянно происходит размывание берегов, формирование пляжей и террас. Размыв берегов, особенно скалистых, идет крайне медленно. Прибой бомбардирует отвесные скалы песком и камнями и в конце концов выдалбливает в них ниши и пещеры. По мере их углубления берег все больше и больше нависает над водой, а затем обрушивается в море, увеличивая количество обломков для дальнейшей бомбардировки скалы.

В местах действия прибоя скалы, уходящие в воду, обычно имеют причудливые очертания. По берегам Адриатики известно немало пещер и гротов, проникнуть в которые можно только со стороны моря из-под воды. Призрачный свет, проходящий внутрь пещеры через водяной светофильтр, окрашивает там все предметы в голубые тона, лица пловцов кажутся мертвенно бледными. Свежий воздух поступает в такую пещеру в краткие моменты между двумя большими волнами.

Примером разрушительной деятельности моря может служить маленький островок Гельголанд. В 1079 году площадь острова (измерявшаяся впервые) была равна 900 квадратным километрам. Современный Гельголанд — это, по сути дела, скала, возвышающаяся над морем на 60 метров. Ее площадь равна всего половине квадратного километра. Вокруг острова множество мелей, которые образовались в результате разрушения его берегов бурным Северным морем.


Остров Гельголанд.

До начала нашего века море ежегодно отрывало у Гельголанда примерно квадратный километр территории.

Только крайне важное стратегическое положение острова в системе германской обороны в двух мировых войнах спасло его от окончательного разрушения, так как были приняты самые решительные меры для сохранения этой крепости.

Мягкие илистые и песчаные берега размываются еще быстрее. От высоких глинистых обрывов северо-восточной Англии каждый год море отрывает 1–4 метра берега. Со времен римского владычества море продвинулось здесь в глубь суши на 4–5 километров.

В 1696 году на западе Дании в маленьком городке Аггере построили церковь. Она стояла в 650 метрах от берега, но море постепенно все ближе и ближе подбиралось к ее фундаменту. В 1858 году остатки церкви были поглощены волнами.

В густонаселенной Европе всегда не хватало земли.

Еще в начале нашей эры народы, населявшие берега Северного моря, строили для защиты от волн длинные земляные дамбы и плотины. Под их защитой жили крестьяне, возделывая поля. И сейчас вдоль низменного побережья Нидерландов и соседних стран на 1600 километров протянулись защитные сооружения. Все они требуют постоянного восстановления, потому что атаки моря не прекращаются ни на минуту. Время от времени плотина оказывается прорванной, и тогда наступает бедствие для всей страны. О подобных трагедиях в глубокой древности известно из летописей.

Самая старая запись датируется 839 годом, когда в результате сильного урагана море вторглось на поля и уничтожило более двух с половиной тысяч деревень и хуторов. В 1170 году Северное море отвоевало здесь огромную территорию, от которой теперь остались лишь возвышающиеся над водой две цепи Западных и Восточных Фризских островов. До 1290 года на месте нынешнего большого залива Зюйдер-Зее, на берегу которого стоит Амстердам, тоже была суша. Последнее большое наводнение в этом районе было вызвано мощным ураганом в 1953 году. Вода прорвала дамбы и ринулась внутрь страны. На отдельных участках глубина достигала 5–9 метров. Сравнительно небольшое число жертв при этой катастрофе объясняется только хорошей службой предупреждения и оповещения. Материальные же убытки были огромными: одних разрушенных и сильно поврежденных зданий насчитывалось 150 тысяч.

В тропической зоне океана многие участки побережья защищены от разрушения живым барьером из кораллов. Рифообразующие коралловые полипы создают на некотором расстоянии от берега столь плотные поселения, что они выполняют роль волнолома.

Между берегом и рифом образуется лагуна со спокойной водой.

Однако и кораллы не всегда могут сопротивляться силе волн. В октябре 1972 года газеты всего мира сообщили о тайфуне «Биби», свирепствовавшем в приэкваториальной зоне Тихого океана. Он произвел страшные разрушения на островах Фиджи, погибло много рыбаков в море. Но больше всего пострадал атолл Фунафути из архипелага Эллис, через который прошел центр циклона.

Фунафути представляет собой цепь длинных изогнутых кос и маленьких островков, образующих кольцо неправильной формы с диаметром около 20 километров.

До нашествия «Биби» это был процветающий оазис в соленой морской пустыне посреди Тихого океана. Всюду виднелись рощи кокосовых пальм, по лагуне сновали долбленые лодки. На главном острове в единственном поселке Фонгафали мирно проживало все население атолла — около 900 человек. Здесь аборигены выращивали на своих огородах бананы, таро, маниоку и другие растения. По вечерам и молодежь и старики собирались под крышей единственного цементного строения на острове. Начинались танцы и песни. Ритмичная музыка звучала на фоне постоянного наката — океанские волны с шумом разбивались о коралловые рифы, окружавшие атолл. Таким Фунафути увидела в 1971 году советская экспедиция на судне «Дмитрий Менделеев».

«Биби» не пощадил ничего. Штормовые волны за несколько часов разрушили коралловые барьеры и стали перекатываться через остров, смывая хижины и огороды. Чтобы спастись, многие островитяне привязывали себя к стволам пальм, но и это не помогало. Ветер валил пальмовые рощи, волны довершали разрушение. Когда тайфун умчался, Фунафути нельзя было узнать. Мало того, что погибла почти вся растительность, в одних местах волны намыли новые островки и косы, в других же на месте суши появились широкие протоки.

Конфигурация берега изменяется и в относительно тихую погоду. Сложные, пока еще недостаточно изученные процессы происходят на пологих песчаных и галечных берегах. Подчиняясь движениям волн, песчинки и камешки непрерывно перемещаются. Море одновременно и сортирует их по размеру, и перекатывает с одного места на другое. В результате образуются наносы, пляжи, дюны.

Неискушенному наблюдателю кажется, что под воздействием волн отдельные частицы грунта лишь катаются взад и вперед, но, как показали исследования, они перемещаются в строго определенном направлении и даже довольно быстро. Если волна набегает на берег под острым углом, вместе с ней наискосок вдоль берега перемещаются и камешки. При откате воды они устремляются в море под прямым углом. И так шаг за шагом частицы перемещаются вдоль берега. Наблюдения за специально окрашенными камешками показали, что они могут передвигаться со скоростью до 700 метров в сутки, а при усилении волнения и благоприятном его направлении даже до 180 метров в час.

Каждый, кто отдыхал на Черноморском побережье Кавказа, знает, что хорошие пляжи имеются там далеко не всюду, а старожилы помнят, что еще в 30-х годах широкая лента пляжей тянулась без перерывов вдоль всего района Сочи. За последние десятилетия море изменило характер этого берега. Во время штормов пляж приходит в движение, и своеобразная «каменная река» начинает двигаться на юго-восток. За год через каждую точку берега волны проносят около 30 тысяч кубометров гальки. Удивительные изменения сочинских берегов были вызваны постройкой нового порта, который изменил природное направление волн в этом районе. Теперь за просчеты в проекте приходится расплачиваться искусственным намыванием пляжей.

Из этого примера видно, что изучение взаимоотношений моря и суши имеет первостепенное практическое значение. Известный советский специалист в области морской геологии профессор В. Зенкович так расценивает возможности современной науки. «До недавнего времени, а именно до середины 40-х годов, в арсенале науки было очень мало сведений о динамике морских берегов. Несмотря на важность изучения этой проблемы для мореплавания и для портостроения, в довоенные годы ею почти никто не занимался. Там, где изменения профиля дна имеют практическое значение (вблизи портов или берегоукрепительных сооружений), состав наносов бывает обычно известен.

В таких местах по характеру волнения мы можем предсказывать интенсивность перемещения наносного материала разной крупности по профилю и прогнозировать перестройку дна».

Наступление океана на сушу выражается не только в разрушении берегов. В процессе эволюции Земли, как это уже говорилось выше, воды периодически заливали сушу. Ископаемые остатки морских организмов исследователи находят почти повсеместно, на всех материках и островах. Лишь незначительная часть современной суши, по-видимому, никогда не была морским дном. В Европе это север Скандинавии, Кольский полуостров и небольшой участок на западе Пиренейского полуострова. В Азии имеются два таких незатоплявшихся участка — Индостан и пространство на севере Сибири между реками Анабара и Оленек. В Южной Америке океан покрывал в разные периоды истории Земли весь юг и запад материка, а также большую часть территории бассейна среднего и нижнего течения Амазонки. Северная Америка заливалась им целиком. В Австралии океан периодически вторгался то в восточную, то в западную часть, то на север. Незатоплявшимся остался лишь треугольник с вершиной на берегу Тиморского моря и основанием вдоль побережья Большого Австралийского залива.


Белым цветом отмечены участки суши, которые, по-видимому, никогда не заливались океаном.

Только в Африке по обе стороны от экватора имеется обширная территория, добраться до которой океану никогда не удавалось. Уцелела от нашествия океанских вод маленькая Исландия. Возможно, от трансгрессии убереглись также Антарктида и Гренландия, но с уверенностью утверждать это нельзя, так как они покрыты мощными ледниковыми щитами, под которыми надежно укрыты следы их исторического прошлого.

В сложных взаимоотношениях между Мировым океаном и материками огромную роль в качестве промежуточного звена играет атмосфера. Океан через ее посредство осуществляет воздействие на погоду и на общее формирование климата. По воздуху переносится на сушу вода, испарившаяся с поверхности океана. Этим же путем происходит обмен теплом между ним и материками.

Циркуляция воды способствует эрозии суши, разрушению горных пород, выносу их в моря и накоплению осадков на морском дне. Если путем непосредственного воздействия на береговую линию море отвоевывает у суши около полутора кубических километров твердых материалов ежегодно, то реки всего мира за год выносят в океан 12 кубических километров камней, песка и ила.

Единство во взаимодействии и взаимосвязанности трех стихий — воды, земли и воздуха — было подмечено еще в античное время. Об этом свидетельствуют многочисленные мифы, сложившиеся на заре развития цивилизации. Один из них, излагающий идею о неразрывном союзе Земли и Воды, послужил темой для известного полотна Рубенса. Аллегорические персонажи, олицетворяющие сушу и море, лишь слегка касаются друг друга. Нептун, стоящий одной ногой в своей родной стихии, и смело вышедшая на берег моря богиня Кибела — великая мать всего живущего на Земле — заключили неразрывный союз, приносящий прекрасные плоды. Но между ними вечно льется пресная вода, как бы отделяющая друг от друга единое, но несоединимое.

Загрузка...