Прежнее натурфилософское понятие материи оказалось неверным в результате открытия явления радиоактивности. В естествознании появились новые диалектические представления о структуре материи и формах ее движения.

Современная алхимия?

При изучении радиоактивных явлений Резерфорд и другие ученые обнаружили, что радиоактивные элементы торий, радий и актиний выделяют газообразные продукты, называемые эманациями. Они также радиоактивны и через короткое время распадаются. Рамзай заинтересовался явлением радиоактивности, когда появилось сообщение о том, что радиоактивные эманации химически так же индифферентны, как и благородные газы. Ученый как раз находился в поисках благородного газа, для которого еще имелось свободное место в последней клетке нулевой группы. Его занимало также разрешение другой научной загадки. Стало известно, что гелий встречается не только в содержащем уран минерале клевеите, но также и во всех минералах, в состав которых входит уран. Какого-либо объяснения этому факту не было.

Рамзай совместно с Содди, который в 1903 году вернулся в Англию, попытались разрешить этот вопрос экспериментально. К началу 1903 года были впервые выделены лишь малые количества редкого радия. Во всем мире был один-единственный его источник: это профессор Гизель в Брауншвейге, для которого извлечение радия было нечто вроде хобби. Рамзай и Содди получили от него 30 мг этого элемента. Сначала выделение чистой эманации потерпело неудачу из-за неправдоподобно малых количеств, которые могли быть получены из миллиграммовых количеств соли радия. Наконец обоим исследователям удалось уловить в крошечные капилляры, доли кубического миллиметра эманации и отделить ее от газообразные составных частей воздуха путем конденсации. С помощью газоразрядной трубки объемом 4 мм[3], в которую были впаяны электроды, тонкие, как волос, ученые получили спектр эманации. Спектр состоял из ярких красных линий. Ученые окрестили новый газ нитон (сверкающий) за то, что он светился в темноте. Позднее это название было заменено на радон.

Для того чтобы охарактеризовать нитон как новый элемент и найти ему место в таблице, недоставало важных данных, прежде всего атомной массы. Надежда на то, что когда-либо они будут обладать достаточным количеством нитона для проведения такого рода опытов, исчезала; Рамзай и Содди прикинули, что для получения 1 л газа необходимо около 500 кг радия. Уже тогда представлялось безнадежным получить такое количество радия. В настоящее время мировой запас радия оценивается, в лучшем случае, тысячной долей этой величины, то есть составляет приблизительно 500 г.

В конце концов Рамзай с удивительной экспериментальной ловкостью определил-таки плотность нитона и смог рассчитать, исходя из нее, его атомную массу. Радон нашел свое место в последней свободной клетке группы благородных газов, после ксенона.

При анализе радиоактивных минералов ученые всегда получали гелий в качестве побочного вещества. Поэтому уже в 1902 году Резерфорд при толковании радиоактивного распада высказал предположение, что гелий является продуктом распада радия. При выяснении этого вопроса так же приходилось работать с минимальными количествами веществ. Вся аппаратура, изготовленная Рамзаем, отличалась крошечными размерами. Она состояла из капиллярных трубочек диаметром менее полумиллиметра. В такие "сосуды" Рамзай и Содди поместили очищенную эманацию радия, исследовали ее спектр и, к своему радостному изумлению, обнаружили, что через несколько дней стали вдруг видны линии гелия. Это было доказательством превращения радона в гелий. Рамзай сделал сообщение о сенсационном открытии 16 июня 1903 года на ежегодном собрании Химического промышленного общества в Брэдфорде. В том же месяце появилась статья Рамзая и Содди в научных журналах: "Опыты с радием и о выделении гелия из радия".

Таким образом, впервые было экспериментально доказано превращение одного элемента -- радия в другой -- гелий. Естественно, что пресса всего мира быстро оповестила об этом событии в сообщениях, откликах и комментариях. Ведь это было первое удачное превращение элементов, которого ожидали алхимики целые столетия. Конечно, не было недостатка и в скептических высказываниях. Рамзая и Содди упрекали в том, что их лаборатория настолько заражена гелием, что любой чувствительный спектроскоп всегда обнаружит следы привнесенного газа.

Научно-популярный журнал "Умшау" 4 февраля 1905 года, отдавая должное гениальному искусству экспериментаторов Рамзая Содди, все же отмечал: "...еще не настало время выбрасывать за борт испытанное старое и безоговорочно становиться на сторону учения о превращении элементов".

Еще в апреле 1904 года почтенный Клеменс Винклер через тот же журнал потребовал, чтобы вспомнили важнейшие основы химии: "Радиевый бум охватил сейчас весь мир и в наибольшей степени -- среду дилетантов; при виде этого всякого химика угнетает тот факт, что о радии, открытом уже шесть лет назад, можно сообщить лишь то что он очень похож на барий, что у него большая, чем у последнего, атомная масса и что он проявляет поразительное самопроизвольное излучение. Химические его особенности все еще почти не известны...".

Однако Рамзай и Содди в дальнейших опытах доказали надежность своего открытия. И надо отдать им должное -- ведь обнаружение столь малого количества вещества было исключительно сложным делом. Приблизительно из 1 г бромида радия (а таким количеством в то время никто не располагал) за год образуется лишь 0,02 мг гелия.

Вскоре уже не оставалось сомнения в том, что гелий является продуктом превращения радия. В ряду распада урана образуются радон и гелий из альфа-излучающего радия. Радиоактивный радон также распадается с испусканием альфа-лучей, то есть с отщеплением гелия. На основе этого можно считать, что гелий, заключенный в урановых рудах, получается за счет альфа-превращений урана и продуктов дальнейшего распада. Напомним, что альфа-лучи являются ядрами атомов гелия.

"Торий Х и ... глупость"

В самый разгар радиевого бума появилось известие об открытии еще одного радиоактивного элемента. Сначала об этом объявили английские научные журналы, затем, в марте 1905 года, в одной лондонской газете можно было прочесть под рубрикой "Новый элемент" следующее сообщение: "Скоро научную литературу привлечет новое открытие, которое встанет в один ряд со многими блестящими достижениями на Гауэр-стрит. Д-р Отто Хан, работающий в университетском колледже, открыл новый радиоактивный элемент, извлеченный из цейлонского минерала торианита; предполагается, что этот элемент обладает радиоактивностью, подобной торию, однако большей, по крайней мере, в 250 000 раз".

Это открытие имеет небольшую предысторию. В возрасте 25 лет Отто Хан принял приглашение сэра Вильяма Рамзая поработать некоторое время в Лондоне в его институте на Гауэр-стрит. Хан только что кончил совершенствоваться по органической химии и хотел за время пребывания за границей улучшить знание иностранного языка, крайне необходимое в его будущей деятельности. По прибытии в Лондон к профессору Рамзаю Хан рассказал о своем научном пути и попросил дать ему задание. После краткого размышления известный профессор сказал: "Вы будете работать по радиоактивности". Для химика-органика такое предложение было весьма неожиданным. На лекциях в Марбургском университете он не слышал ни единого слова о радиоактивности. Хан был достаточно честным чтобы не признаться Рамзаю, что он ничего в этом не понимает и не имеет никакого опыта в исследованиях по радиоактивности. Однако Рамзай был хорошим психологом: "Это как раз то, что нужно. У вас нет еще своего мнения, и потому вы можете подойти совершенно непредвзято к этим довольно непонятным вещам". Затем он в захватывающей форме познакомил своего подопечного с его исследовательскими задачами.

Англичанин добыл 5 ц редкого минерала, именуемого торианитом. Последний находили только на острове Цейлон, и даже там запасы его были скудны. Знали об этой породе, что она очень радиоактивна. Одна английская фирма уже перерабатывала ее для Рамзая. От 5 ц осталось 18 г белой соли -- в основном карбоната бария,-- которая должна была содержать все количество радия, вызывающего радиоактивность: это составляло около 9 мг. Рамзай предложил отделить ценный радий по методике мадам Кюри, а именно: перевести его в некоторые органические соли, с тем, чтобы определить их молекулярную массу. Таким путем он рассчитывал установить еще не уточненную атомную массу радия. Этими опытами должен был заняться Отто Хан.

С горячим энтузиазмом принялся молодой исследователь за эту вдохновляющую работу. За считанные месяцы ему удалось в несколько ступеней выделить источник радиоактивности. Однако, к удивлению его и Рамзая, этот радиоактивный элемент испускал не эманацию радия, а эманацию тория; их можно было прекрасно отличить друг от друга по периодам полураспада. Следовательно, это был не радий. Хан указывал, что новый радиоактивный элемент химически не отличается от тория, но значительно радиоактивнее. Поэтому он назвал его радиоторием.

Рамзай был в восторге от того, что в его институте опять открыт новый элемент, и готовился торжественно сообщить об этом событии. По традиции это могло произойти не иначе как в стенах высокоуважаемого Королевского общества. На заседании последнего, 16 марта 1905 года, Рамзай обнародовал открытие радиотория. Впервые имя Отто Хана связывалось с исследованиями радиоактивности, с которыми отныне ему предстояло иметь дело всю жизнь.

По рекомендации Рамзая Отто Хан написал письмо Эрнесту Резерфорду в Монреаль. Он очень хотел усовершенствовать свои познания в области радиоактивности и надеялся, что лучше всего это можно сделать в институте Резерфорда. Хан сообщил также известному физику, что он уже открыл новый радиоактивный элемент -- радиоторий. Однако именно это сообщение было принято в Монреале весьма сдержанно, как понял позднее Отто Хан. Новый радиоактивный элемент? Из ториевого минерала? За несколько лет до этого, в 1901 году, американец Баскервиль также решил, что обнаружил новый элемент каролиний в торийсодержащем монацитовом песке Северной Каролины. Сообщение оказалось ложным.

Сомнения Резерфорда поддержал его друг Болтвуд, профессор радиохимии в Йельском университете. Болтвуд написал Резерфорду в сентябре 1905 года, что "элемент" Хана представляет собой, вероятно, соединение уже известного радиоактивного элемента тория Х c... глупостью. Однако, когда Хан, оказавшись уже в Монреале, открыл еще несколько радиоактивных элементов, которые "прозевал" сам Резерфорд, физик только покачал головой: "У Хана особый нюх на открытие новых элементов".

Элемент и все же не элемент

Среди многочисленных открытий Отто Хана особенное значение имел радиоактивный элемент мезоторий. Это был второй после радия радиоактивный элемент, который можно было получать в заметных количествах промышленным путем. В качестве исходного материала использовали импортный монацитовый песок. Мезоторий нашел наиболее широкое применение в медицине -- как ценный заменитель все более дорожавшего радия: его излучение, как и излучение радия, могло излечивать злокачественные опухоли.

Долгое время врачи не знали, что собственно представляет собой мезоторий, хотя в его действии они и не сомневались. Поэтому Хан опубликовал подробное сообщение "О свойствах мезотория, получаемого в технике, и его дозировке", из которого все заинтересованные лица с удивлением смогли узнать, что новый препарат, собственно говоря, вовсе не является стопроцентной заменой радия. Первооткрыватель мезотория допускал, что в нем обычно содержится 25 % радия "в качестве примеси". Специалисты были поражены, ибо они ценили Хана как первую величину в радиохимии, и потому не могли поверить, что ему не удалось разделить мезоторий и радий.

Давая объяснения в газете "Хемикер цейтунг" от 3 августа 1911 года, Хан указывал, что получение мезотория в чистом виде нельзя осуществить, потому что радий и мезоторий обладают одинаковыми химическими свойствами, однако весьма заметно отличаются своими радиоактивными константами. Поэтому пришлось принять, что они -- разные элементы. Однако по химическим свойствам они абсолютно сходны, как если бы являлись одним и тем же элементом. Как объяснить такой факт?

Даже после появления теории радиоактивного распада явление радиоактивности оставалось для многих ученых непонятным, необъяснимым, просто сверхъестественным. Когда Отто Хан в 1907 году на защите своей диссертации говорил о том, что можно обнаружить 10[-10] радиоактивного вещества на основе его излучения, ему не поверил даже всеми уважаемый Эмиль Фишер -- первый нобелевский лауреат среди немецких химиков. Фишер высказал мнение, что, по его убеждению, нет более чувствительного прибора обнаружения, чем.... его собственный нос, который смог бы уловить некоторые вещества в еще меньших количествах. Конечно, не стоило особенно обижаться на критику Эмиля Фишера, ибо обычно он поддерживал и выдвигал работы Хана в Берлинском университете С другой стороны, Хан чувствовал порой, что многие сомневаются в перспективности радиоактивных исследований, даже пытаются их дискредитировать.

Остановимся несколько подробнее на особенно характерном случае, поскольку он весьма наглядно показывает, перед какой дилеммой стояли в то время многие ученые. Мы располагаем дословным описанием этого события -протоколами доклада и дискуссии, происходившего на заседании немецкого Бунзеновского общества по прикладной и физической химии в мае 1907 года в Гамбурге Председательствовал известный физико-химик, профессор Вальтер Нернст. Тема: "Радиоактивность и гипотеза распада атома".

Отто Хан сделал вводный доклад о теории радиоактивного распада и привел примеры последних данных по применению его в науке. Его коллега, венский радиохимик Лерх, дал слушателям иллюстрацию чувствительности радиоактивного излучения: "Количество радиоактивного элемента радия, необходимое для разрядки электроскопа за 1 с, оказывается, составляет 10[-10] г... Если же разделить 1 мг радия на всех живущих в мире людей -- около двух миллиардов -- то количества вещества, полученного каждым, хватило бы для опадания листочков пяти электроскопов за 1 с".

Это явно произвело впечатление на присутствовавших. Однако тут профессор неорганической химии Тамман, всемирно известный ученый, задал провокационный вопрос: "Меня поразило, что сегодня несколько раз говорилось о том, что эманация относится к благородным газам. Я не могу полностью к этому присоединиться, ибо для всех известных благородных газов до сих пор не было доказано, что они способны как-либо распадаться и могли бы считаться соединениями, а не элементами. Возникает вопрос: являются ли радиоактивные элементы вообще элементами, господа? Судя по тому, что мы знаем, радию нет места в периодической системе...".

Послышались возмущенные возгласы, однако можно было услышать и одобрение, порой легкий смех.

В качестве председательствующего Нернст наконец установил порядок и попытался уладить спор соломоновым решением: "Вся суть в определении. Можно дать такое определение: элемент, остающийся постоянным по своей массе, является элементом, а элемент претерпевающий радиоактивное превращение, не является элементом". Сегодня мы знаем, что такое обоснование неверно. Ученые, присутствовавшие на Бунзеновском чтении, тоже не слишком спешили согласиться с мнением Нернста.

Вновь взял слово Отто Хан: "Я хотел бы сначала ответить на вопрос о природе радиоактивной эманации. Вообще благородными газами называются такие газы, которые пока не удавалось ввести в реакцию даже с самыми энергичными реагентами. Эманацию радия пропускали над раскаленным магнием, над раскаленной медью, через самые различные реагенты, которые со всеми другими газами, кроме благородных, всегда приводили к образованию соединений. Эманация радия после пропускания через все системы была найдена неизмененной...".

Тамман прервал оратора: "Я все же не отнес бы их к числу благородных газов, ибо благородные газы не претерпевают реакции радиоактивного распада".

"... Вопрос в различии между радиоактивными эманациями и благородными газами,-- невозмутимо продолжал д-р Хан,-- возникает и отпадает со вторым вопросом профессора Таммана -- является ли радий элементом?.. Радий до сих пор считался элементом и считается таковым большинством исследователей, хотя он испускает лучи. Различия между ним и другими элементами только в степени устойчивости. Уран всегда рассматривался как элемент, а он тоже радиоактивен. Есть элементы, которые распадаются за три секунды, а есть такие, которые распадаются за тысячи миллионов лет, как торий и уран".

Во время дискуссии профессор Браунер из Праги предложил свою теорию: "Я представляю себе вопрос таким образом: если могут быть уже мертвые, вымершие элементы, которые более не существуют... почему не может быть короткоживущих элементов, которые когда-то существовали или хотя бы существуют и теперь, но в столь малых количествах, что еще не обнаружены их следы?"

На это Нернст немного насмешливо заметил: "Малоутешительной гипотезе коллеги Браунера о том, что существуют уже вымершие элементы, можно противопоставить более жизнерадостную: отдельные элементы еще не народились". Хотя это и была шутка, в словах Нернста заключалось зернышко будущей истины.

В оживленной дискуссии на заседании Бунзеновского общества речь зашла об истинно научной проблеме. Обычно открытие новых элементов вызывало воодушевление. Однако обнаружение столь большого числа радиоактивных элементов привело в конце концов к беспомощности и путанице. Причина состояла в том, что радиоактивные элементы уже нельзя было разместить в периодической системе. Оставались еще пустые клетки, но для радиоактивных элементов места больше не было. Их было слишком много. Уже было обнаружено 25 элементов и лишь первые из них -- уран, радий, полоний, торий, актиний -нашли свои законные места.

"Меня очень беспокоит вопрос, что же теперь делать со всеми этими радиоактивными элементами в периодической системе..."-- высказался профессор Браунер. С ним должны были согласиться все собравшиеся ученые.

Что же, гениально задуманная и многократно подтвержденная периодическая система элементов утратила свою справедливость для радиоактивных элементов? Уж не назревал ли "кризис в химии"? Либо эти новые радиоактивные вещества все же не были элементами? В элементарном характере радиоактивных веществ мало кто сомневался, хотя их превращения и были вначале непонятными. Беспокоило то, что их не удавалось разместить в периодической системе. Большинство открытых радиоактивных элементов распадались очень быстро и всегда образовывались в неизмеримо малых количествах, поэтому нельзя было и думать об определении их атомной массы, этой основы классификации. Несколько лет спустя положение стало еще более безысходным. Сотрудница Хана, физик Лиза Мейтнер, сообщила в сентябре 1909 года на заседании в Зальцбурге о новых продуктах дальнейшего распада. Дебаты грозили стать очень горячими, подобно тем, которые разразились на заседании Бунзеновского общества за два года до этого. Учитывая солидное число полученных радиоактивных элементов, известный физик Генрих Рубенс высказал сомнение: "Очень приятно и радостно, конечно, что семья радия вновь возросла. Однако со временем это становится немного тревожным и спрашиваешь себя, будет ли это размножение продолжаться?.."

Внести ясность смог бы только новый теоретический фундамент. Разрешить вопрос удалось лишь в 1913 году Фредерику Содди теорией изотопии элементов. Согласно ей, один и тот же элемент может состоять из нескольких разновидностей атомов, а именно изотопов, которые имеют различные атомные массы (массовые числа). Некоторые элементы являются чистыми, то есть состоят только из одного рода атомов с твердо определенной атомной массой. Смешанные элементы, напротив, имеют несколько различных по массе изотопов. Изотопы одного и того же элемента химически неразличимы друг от друга, следовательно, их нельзя разделить химическим путем. Однако у них есть вполне определенные физические различия, которые для радиоактивных элементов проявляются в типе распада и в характерном периоде полураспада. Конечно, теперь уже недостаточно было определения атомной массы, чтобы найти место для элемента в периодической системе. Только с введением для каждого элемента еще одной величины -- порядкового номера, позднее названного зарядом ядра, наступил, действительно, "порядок". Водород получил порядковый номер 1, уран как последний элемент - порядковый номер 92, в соответствии с числом электронов в их атоме. Однако оставалось не ясным, почему изотопы одного и того же элемента могут иметь различные массовые числа. Этот вопрос был разъяснен только 20 лет спустя.

Новая теория, которая вскоре была экспериментально подтверждена и дополнена, сразу разрешила имевшиеся проблемы: все открытые в последнее время радиоактивные элементы оказывались разновидностями уже известных элементов. Лишь совсем немногие являлись действительно новыми химическими элементами и, следовательно, могли претендовать на свое место в периодической системе. Радиоактивные эманации были не чем иным, как изотопами благородного газа радона. Радиоторий Хана является изотопом тория с массовым числом 218; открытый им же мезоторий -- изотопом радия с массовым числом 228. Следовательно, и радиоторий и мезоторий не представляют собой новых элементов в первоначальном смысле этого слова; это заблуждение простительно, если вспомнить, что теория атома в то время была еще весьма несовершенной.

Было также найдено объяснение неудачам, постигшим попытки разделения радия и мезотория. Этот процесс был попросту обречен на провал, ибо речь шла практически об одном и том же химическом элементе.

Долгожданная победа

XX век начался барабанным боем, который в 1903 году возвестил о возможности превращения радия в гелий. Однако, если быть исторически точным, то была не первая трансмутация, проведенная в XX столетии. За три года до этого, в марте 1900 года, когда еще почти ничего не было известно о радиоактивных превращениях, химик Фиттика из Марбурга поразил своих коллег удивительной статьей. В ней он с полной серьезностью утверждал, что ему удалось на опыте превратить фосфор в мышьяк. Отсюда Фиттика сделал вывод, что мышьяк вовсе не элемент, то есть его не следует помещать в периодическую систему. Мышьяк на самом деле является соединением фосфора, азота и кислорода: As (PN2O)2O3.

"Такое утверждение просто непостижимо,-- возмущался Клеменс Винклер, который своей оценкой уничтожил "открытие" Фиттики. -- Уже по меньшей мере тысячу лет получают мышьяк в технике и в больших масштабах переводят его из одного соединения в другое; до сих пор не было никаких сомнений в его элементарной природе. Несомненно, мышьяк действительно является элементом в современном смысле этого слова... Утверждение Фиттики основывается на колоссальной ошибке, и я весьма сожалею, что эту ошибку приходится обсуждать открыто".

А ведь этот Фиттика был не дилетантом, а профессором химии в Марбургском университете. Отто Хан во время своей учебы в 1897/98 годах "имел удовольствие" слушать лекции Фиттики по истории химии. Об этом он оставил нам исчерпывающие сведения, которые как-то характеризуют этого странного ученого. В своих воспоминаниях Хан писал, что Фиттика в лекциях ограничивался оглашением старых алхимических текстов. Очевидно, Фиттика сам не мог избежать влияния этих трактатов. Во всяком случае последние его работы в Марбурге, по словам Хана, касались только собственных опытов по превращению элементов, которые он проделывал в сумеречном состоянии, следовавшем за его эпилептическими припадками.

Винклер прочел первую работу марбургского профессора алхимии и подверг ее уничтожающей критике. Он указал на элементарные огрехи Фиттики: конечно, господин профессор Фиттика совсем не учел, что продажный фосфор содержит мышьяк... И тут гнев известного химика излился на ренегата. Словно Зевс с Олимпа, метал он громы и молнии на неверного подданного: "Создается впечатление,-- возмущался Винклер,-- что в неорганической химии теперь появилась опасная склонность ударяться в спекуляции. Немалой причиной является то, что искусство анализа приходит, к сожалению, в упадок. Я подчеркиваю -- "искусство", ибо между анализами может существовать различие, как между работой скульптора и каменотеса".

Однако ославленный химик не сразу признал себя побежденным. В "Хемикер цейтунг" выпусков 1900 и 1901 годов, которая одна лишь публиковала работы Фиттики, к тому же на видном месте, можно найти несколько сообщений, примечаний, уточнений, принадлежащих его перу. "Да, я действительно позволил себе выполнять алхимические опыты в Институте химии Марбургского университета,-- пытался оправдаться профессор Фиттика.-- По существу, мы сегодня еще алхимики, конечно, не в смысле искусства изготовления золота, а потому, что признаем возможность превращения металлов".

Далее Фиттика сообщал о новых удачных опытах по трансмутации, на манер древних алхимиков: о превращении элемента фосфора в сурьму, а также бора -в кремний. Однако после этого он обиженно отошел от дел, ибо нападки на его персону участились и он вызывал лишь насмешки своих коллег. Даже ссылки на его 28-летний стаж химика уже не могли помочь Фиттике. Его последнее выступление, которое опубликовала "Хемикер цейтунг" в ноябре 1901 года, звучало как заклятие: Фиттика обещал вскоре доказать, что большинство сегодняшних элементов не заслуживают вовсе этого названия! И если не он сам, то другие покажут это.

Однако вернемся к точной науке. Вернемся к Вильяму Рамзаю, который совместно с Содди действительно впервые указал на превращение элементов.

Когда в 1906 году Вильгельм Оствальд посетил англичанина в его лондонской частной лаборатории на Риджент-стрит, Рамзай тотчас же познакомил гостя с результатами своих новых опытов. Оствальд, который приобрел прочную славу как один из основоположников современной физической химии, слушал сообщение Рамзая с возрастающим удивлением. Вещи, излагаемые английским ученым "способны были поднять волосы дыбом у всякого правоверного химика", -- так комментировал Оствальд новейшее открытие своего коллеги в "Хемикер цейтунг" от 24 июля 1907 года в статье под заголовком "Трансмутация элементов".

Рамзай тщательно берег несколько белых кристалликов на часовом стекле. Если несколько крупинок этого вещества он помещал в пламя, то спектроскоп обнаруживал характерную красную линию элемента лития. Ну что же, ничего особенного, -- подумал Оствальд. Однако эту соль лития Рамзай получил действием эманации радия на раствор соли меди. Как ни поразительно это было, видимо, эманация, как своего рода философский камень, превратила медь в литий. В этом не было сомнения, ибо Рамзай был убежден, что принял все возможные меры предосторожности, чтобы избежать привнесения лития извне.

Через год, в июле 1907 года, после многих дальнейших опытов Рамзай опубликовал это открытие в английском журнале "Нейчур". Немецкий перевод дал журнал "Цейтшрифт фюр ангевандте хеми" 2 августа 1907 года под броским заголовком "Эманация радия. Превращение элементов". Научный мир был ошеломлен, ибо все знали, с какой скрупулезной точностью работает Рамзай. До сих пор его искусство экспериментатора вызывало к нему величайшее уважение. Что же, неужели действительно появился еще один пример превращения элементов с помощью радиоактивных веществ? Конечно, было достаточно критических высказываний, выражавших сомнение.

В июле 1908 года мадам Кюри и ее сотрудница Гледич разгадали эту загадку: при воспроизведении опыта Рамзая можно было обнаружить литий, но лишь тогда, когда использовались приборы из обычного лабораторного стекла. В случае платинового оборудования проба на литий оказывалась отрицательной. Следы лития из стекла обманули даже опытного практика, Рамзая, так что ему почудилась трансмутация меди в литий.

Что поделать! Рамзай согласился, что превращение в элемент литий не подтвердилось. Однако в остальном он остался верен своему воззрению: в настоящее время принципиально осуществима трансмутация элементов. Возможность для такого превращения он видел в огромной энергии, заключенной в радиоактивном веществе. Если это подтвердится, писал Вильям Рамзай в своих "Опытах" вышедших в свет в 1908 году, то трансмутация элементов уже не покажется бессмысленной мечтой. Тогда окажется, что открыт философский камень; вполне вероятно, что осуществится и другая мечта средневековых философов, а именно: будет получен эликсир жизни, Высказывания такого рода не всегда вызывали сочувствие у собратьев по науке. Рамзая, как, впрочем, и Крукса, упрекали в том, что он хочет придать химии "средневековые черты". Это направление непременно должно было привести к кризису в химии.

Не поддаваясь таким высказываниям, сэр Вильям Рамзай разрабатывал дальше свою теорию. На общем заседании химического общества в Лондоне, 25 марта 1909 года, в докладе "Элементы и электроны" он объявил, что, с его точки зрения, все элементы отличаются только различным числом электронов и потому могут превращаться друг в друга. Нужно только либо отщепить, либо присоединить электроны.

Рамзай признался, что до последнего времени считал это воззрение утопией, ибо не знал, как его осуществить на практике. Теперь таким средством мы располагаем; по его мнению, это -- радиоактивное излучение, что подтверждается превращением радия в гелий. Рамзай доложил слушателям о своих самых последних экспериментах: попытке перевести серебро в другой элемент с помощью радиоактивного излучения. К сожалению, результат пока что был отрицательным. Рамзай умолчал о том, какой именно элемент он надеялся получить из серебра. Однако многим было ясно, что это могло быть лишь золото!

Было ли это желанной "реабилитацией" классической алхимии? Такой поворот был неожиданным -- ведь алхимия, казалось, давно была выброшена на свалку истории. Ее последние приверженцы, махнув рукой, сознавались, что тайна получения философского камня безвозвратно ушла из этого мира вместе с последним умельцем. А то, что было написано в старых алхимических рукописях, как известно, мало чего стоило.

И вот теперь наступила великая победа. Радиоактивность привела к возрождению алхимии -- так, по крайней мере, считали ее приверженцы. Высокочтимые ученые должны были признать, что химические элементы можно на практике превратить друг в друга.

Публикация Рамзая о "трансмутации" меди в литий вначале тоже послужила для современных алхимиков "доказательством" того, что обычные металлы ведут себя так же, как радиоактивные элементы. А уж к твердо установленному факту превращения радиоактивных элементов ничего не добавишь: образуется же радий из урана, который сам, проходя через ряд превращений, становится свинцом. Это ли не долгожданное подтверждение алхимического учения?

Истолкование радиоактивного превращения элементов было для поруганной алхимии вопросом чести. Принципиально было безразлично, превращается ли уран в радий, медь в литий или ртуть в золото. Старые и новые алхимики победно заявляли: ведь достаточно было нескольких миллиграммов радия, чтобы разрушить ту искусно созданную стену предрассудков, которая была воздвигнута против святого учения о превращении элементов.

"Забавно наблюдать, как в газетах и иллюстрированных еженедельниках в рубрике "Наука и техника" весьма осторожно подготавливают непосвященную публику к назревающему повороту",-- эти слова появились в 1908 году в статье одного из энтузиастов под вызывающим заголовком "Триумф алхимии. (Трансмутация металлов)". Приверженцы алхимии аргументировали в споре по-своему. Каждому, мол, известно, что наука развивается бурно. Следовательно, овладение произвольным превращением элементов является лишь вопросом времени, и тогда мы узнаем, как искусственно получить золото в любых количествах. Предсказание Гиртаннера было-де справедливым, однако оно относится к XX столетию, а не к XIX. А что такое сто лет по сравнению с почти трехтысячелетней историей алхимии?

Исследователи атома или алхимики?

Фредерик Содди, один из великих пионеров исследования атома, в докладе на заседании британских естествоиспытателей в 1913 году будто предугадал тайные чаяния алхимиков. "Нельзя считать невозможным превращение таллия или ртути в золото,-- писал исследователь радия.-- Проблема состоит лишь в том, чтобы удалить альфа-частицу из таллия либо альфа- и бета-частицы -- из ртути. Подобным же образом можно было бы получить золото из свинца, удалив из него одну бета-частицу и две альфа-частицы".

Таким образом, "рецепт", столь открыто предложенный Содди, сводился к простому, на первый взгляд, превращению атома с выделением альфа- или бета-излучения. Вопрос заключался лишь в том, можно ли это вообще осуществить на практике? Сам Содди считал, что для проведения таких превращений достаточно применения высокого электрического напряжения -порядка нескольких миллионов вольт. Однако в те времена еще не располагали такой энергией. Значит, следовало подождать с получением золота. Да и было ли это вообще целью исследователей атома?

Когда в 1903 году была впервые научно доказана реальность превращения элементов и вечно неисправимые спорщики кричали о триумфе алхимии, исследователей атома меньше всего волновала проблема искусственного получения золота. Обосновать явление радиоактивных превращений, сопровождающееся выделением огромных запасов энергии,-- вот в чем исследователи видели свою непосредственную задачу. Новые пути для ученых открыла знаменитая формула Эйнштейна Етс[2], полученная в 1905 году, которая объясняла взаимосвязь между энергией и массой. Из формулы следовало, что теоретически возможно из 1 г вещества при полном его превращении высвободить энергию в 25 миллионов киловатт. Это -- колоссальная величина. Такое количество энергии получается при сгорании 250 железнодорожных вагонов высокосортного каменного угля.

Ученые пытались ответить на вопрос, как можно осуществить превращение массы в энергию, иначе говоря: искусственно вызвать процесс радиоактивного распада. Им всегда приходилось брать в качестве примера радий. Содди очень метко сравнил бурлящий энергией атом радия с волшебной лампой Аладина из сказок 1001 ночи. Из радия тоже можно извлечь неиссякаемое богатство, если знать "фокус". Такое сравнение Содди привел, читая в 1908 году лекции в Глазго, которые в следующем году были напечатаны под названием "The Interpretation of Radium[54]".

Примечательно также предсказание Содди о том, что источники энергии урана "еще удивительнее", чем для радия. Надо только найти пути для искусственного инициирования и ускорения распада урана, который протекает в течение миллионов лет и потому не может использоваться. По мнению Содди, такой процесс будет осуществлен лишь тогда, когда мы сможем превращать элементы по нашему желанию. Совершенно поразительное высказывание, сделанное за тридцать лет до первого реального его осуществления.

Однако Содди в своих выступлениях в 1908 году не сомневался в том, что придет день, когда в лаборатории можно будет расщеплять и создавать элементы. Тогда энергия будет в избытке. Человечеству, которое способно превращать элементы, не потребуется зарабатывать хлеб в поте лица своего. Легко представить себе, что такие люди смогли бы сделать плодородными пустыни, растопить лед полюсов и превратить весь земной шар в рай.

Как мы видим, исследователи атома, современные "алхимики" XX века, всегда преследовали совсем иные цели, чем погоню за обманчивым золотом алхимии. Разрешить вопрос о превращении элементов как проблему ядерной физики -- вот их истинная задача. Однако этот вопрос рассматривался также с трезвой научно-практической стороны, о чем свидетельствует высказывание химика Вилли Марквальда. Процитируем строки из его доклада Немецкому химическому обществу в мае 1908 года: "Превратить неблагородные металлы в благородные было мечтой алхимиков. Мы узнали из свойств радиоактивных веществ, что если бы этот процесс удался, то при этом либо выделилось бы столько энергии, что по сравнению с этим цена полученного благородного металла стала бы незначительной; либо, наоборот, затраты энергии сделали бы облагораживание металла практически бессмысленным".

Глава 4

СОВРЕМЕННЫЕ АЛХИМИКИ -- УЧЕНЫЕ ИЛИ ШАРЛАТАНЫ?

Вдохновляющие открытия

"Теперь я знаю, как он выглядит..."-- обратился к своим сотрудникам Эрнест Резерфорд в один прекрасный день в начале 1912 года. На удивленный вопрос, что же, собственно, он имеет в виду, физик ответил: "...Атом!"

Видимо, Резерфорд открыл нечто значительное. Ведь до той поры ни один человек не имел истинного представления о том, что же такое атом. Сначала думали, что это своего рода биллиардный шар. После открытия электрона полагали, что это, скорее, электрически нейтральное образование, на поверхности которого размещены электроны, способные отщепляться. У Резерфорда тоже была своя точка зрения. Еще в мае 1911 года в работе, помещенной в лондонском "Философикл мэгэзин", он приписывал атому "центральный заряд". Ныне исследователь атома поразил своих сотрудников из Манчестерского университета новым вариантом: "Теперь я знаю, как выглядит атом в действительности: атом имеет ... ядро!"

Атомное ядро? Это было поистине нечто новое. К этому выводу Резерфорд пришел экспериментальным путем; основываясь на опытах своих сотрудников Гейгера и Марсдена, он бомбардировал платиновую фольгу альфа-частицами. При этом удалось показать, что приблизительно одна частица из 8 000 ударившихся о фольгу отклонялась, даже отбрасывалась назад. Что же могло задерживать частицу, имеющую значительную собственную массу и мчащуюся сквозь атомы со скоростью 15 000 км/с? Это могло быть только препятствие, которое было еще более плотным, чем альфа-снаряды, и при этом столь малым по размеру, что попадания были весьма редкими,-- а именно ядро атома.

Дальнейшие опыты привели Резерфорда к выводу, что ядро атома заряжено положительно и величина заряда ядра совпадает с порядковым номером соответствующего элемента. Следовательно, ядро является центром мощно сжатого заряда, в котором сконцентрирована вся масса атома. Здесь находится источник невообразимой атомной энергии! Уточненную теорию существования атомного ядра Резерфорд опубликовал в августе 1912 года в "Философикл мэгэзин". Известному исследователю атома вновь удалось прорваться сквозь застывшие теоретические представления, за которыми скрывалась тайна атома.

Датский физик Нильс Бор, ставший вскоре ведущим теоретиком в области атомного учения, подхватил мысли английского коллеги и в 1913 году в нескольких работах "On the Constitution of Atoms and Molecules[55]" высказал свои представления о новой модели атома. Атом состоит из положительно заряженного ядра, сосредоточившего в себе всю массу; ядро окружено электронами, число которых компенсирует заряд ядра и которым предписаны вполне определенные орбиты. Теперь представление об атоме становилось четким. Конечно должно было пройти некоторое время, прежде чем появились конкретные данные о строении атомного ядра. Однако уже сейчас можно было сделать ценные выводы. Источником радиоактивного излучения и местонахождением таинственной энергии атома могло быть только ядро. Напротив, за поглощение и излучение световых и рентгеновских лучей, а также за реакционную способность атомов ответственны электронные оболочки, находящиеся вокруг этого ядра. Ученые получили теперь отчетливые представления и о размерах атома: "измерив" диаметр атома, его оценили в 10[-8] см, то есть стомиллионной частью сантиметра. Неизмеримо крошечным было ядро, которое оказалось в десять тысяч раз меньше, чем весь атом.

Еще одно значительное открытие было сделано в эти годы в физической лаборатории Резерфорда в Манчестерском университете. Молодой сотрудник Г. Мозли, работавший у Резерфорда с 1910 года, занялся определением частот рентгеновского излучения, испускаемого различными химическими элементами. Волновая природа Х-лучей была установлена в 1912 году работами Макса Лауэ и физиков отца и сына Брэггов. Был также найден способ определения их длин волн при прохождении через решетки кристаллов. Отсюда можно было рассчитать частоту излучения.

Опыты Мозли заслуживают более подробного описания. Они могут дать некоторое представление о той классической простоте, с которой физики-экспериментаторы делали в то время фундаментальные открытия. Чтобы получить желаемое рентгеновское излучение, нужно было катодные лучи, возникающие в эвакуированной газоразрядной трубке, направить на антикатод, изготовленный из соответствующего элемента или его соединений. Уже эта проблема была практически не простой. Кроме того, Мозли предполагал брать один за другим различные антикатоды, чтобы легче было сравнивать спектры испускаемого рентгеновского излучения. Как это осуществить?

После многих попыток Мозли наткнулся на оригинальное решение. Он изготовил разрядную трубку из стеклянного цилиндра длиной около 1 м и диаметром 30 см. Эвакуировать воздух из трубки таких размеров было весьма затруднительно, учитывая маломощные вакуумные насосы того времени. Это удалось Мозли лишь после многих неудач. В трубку Мозли запаял рельсы игрушечной железной дороги! Пробы исследуемых веществ он поместил в маленькие вагончики, которые можно было передвигать взад и вперед и тем самым по желанию подвергать действию катодных лучей. Рентгеновское излучение, возникающее под воздействием последних, проходило через окошко, заклеенное фольгой, и падало на кристалл. Спектр рентгеновского излучения физик фиксировал непосредственно на фотопластинке.

При расшифровке рентгеновских спектров различных материалов молодой исследователь получил весьма неожиданный результат: каждому элементу можно было приписать характеристическое рентгеновское излучение, частота которого прямо пропорциональна квадрату порядкового номера соответствующего химического элемента. Когда Мозли сопоставил частоты рентгеновского излучения элементов с порядковым номером оказалось, что они возрастают от элемента к элементу на постоянную величину. В декабре 1913 года в своей первой работе "О высокочастотных спектрах элементов", опубликованной в "Философикл мэгэзин", физик писал: "Мы получили доказательство, что атом обладает какой-то основной характеристикой, которая равномерно возрастает при переходе от одного элемента к другому. Эта величина может быть только зарядом положительного ядра".

Во второй статье в апреле 1914 года Мозли указал уже на всеобщую применимость новой закономерности: для всех элементов можно однозначно определить порядковый номер на основе их рентгеновского спектра. Даже трудноразделимые редкоземельные элементы, столь схожие друг с другом, что зачастую ученые не знали, какой порядковый номер им принадлежит в периодической системе, Мозли надеялся теперь классифицировать. Он с воодушевлением сообщал Резерфорду: "Я не сомневаюсь, что мне удастся каждый редкоземельный элемент засунуть в свою дырку". Действительно, с помощью открытой Мозли фундаментальной закономерности удалось ограничить число редкоземельных элементов до 14 -- элементы от 57 до 71-го.

Повсюду, где в периодической системе недоставало элементов, обнаруживались и пустоты в диаграмме Мозли: между 42-м элементом (молибденом) и 44-м (рутением), между 60-м (неодимом) и 62-м (самарием), между 71-м (лютецием) и 73-м (танталом), 74-м (вольфрамом) и 76-м (осмием). К этим еще не известным элементам с порядковыми номерами 43, 61, 72, 75 позднее добавились еще элементы с номерами 85, 87 и 91. Теперь их можно было бы очень точно обнаружить с помощью линий рентгеновского спектра. Все сделанные раньше сообщения о новых открытиях также можно было точно проверить с помощью закона Мозли. Английский физик нашел решающий критерий для классификации элементов. Бор высказал одобрение: "Работу Мозли по ее важности и значению можно поставить в один ряд с открытием периодической системы, в некотором отношении она даже более фундаментальна". Резерфорд присоединился к этому мнению. Французский химик Ж. Урбэн, открывший некоторые редкоземельные элементы и хорошо знавший всю сложность их природы, заявил, пораженный: "Закон Мозли заменяет несколько романтичную классификацию Менделеева точным научным понятием[56]".

Если атомы разлетятся на куски...

Удивительно, что при столь хвалебных гимнах имя Мозли нельзя найти в числе нобелевских лауреатов тех лет. О нем вообще не было слышно. Трагическая причина заставила замолчать этого молодого талантливого ученого. Борьба между империалистическими державами за новый раздел мира, спровоцированная самым разбойным их представителем -- германским монополистическим капитализмом, переросла в 1914 году в тяжелый кризис: разразилась первая мировая война. Эта война грубо вторглась в мирный труд интернациональной семьи исследователей атома. Мозли был призван на военную службу и погиб в 1915 году в боях за Галлиполис при Дарданедлах. Наука потеряла многообещающего талантливого ученого.

Мировая война велась с небывалым ожесточением, применялось новое оружие уничтожения -- ядовитые газы. Со времени изобретения динамита мир не знал другого такого средства, полученного в научных лабораториях, которое использовалось бы столь ужасным образом для уничтожения человеческих жизней. Это была война с применением оружия, разработанного на основе естественных наук. Однако уже в те годы ученые чисто теоретически размышляли о разрушительной силе гигантских размеров-- об атомной энергии. В статье Содди "Matter and Energy" ("Материя и энергия") 1912 года читаем: "Сильнейшие взрывчатые вещества, которые мы знаем, содержат едва ли миллионную часть той энергии, которая высвободится, если атомы разлетятся на куски". К счастью, рассуждал далее ученый, в наше время человечество не более компетентно в использовании атомной энергии, чем дикарь, который хочет запустить паровую машину, а не знает даже, как получить огонь.

Фредерик Содди нисколько не преуменьшал те трудности, которые стоят на пути человечества в деле использования на Земле атомного огня и возможности контроля над ним: "Вероятно, человечеству придется трудиться много лет, быть может, даже столетий, чтобы найти это средство; однако цель уже у всех на виду и исследователи идут к ней самыми разными путями". Разразившаяся первая мировая война поколебала веру Содди в достижение рая на земле с помощью ядерных сил: "Можно себе представить, как бы выглядела современная война, если бы было открыто такое взрывчатое вещество!".

Что делали другие исследователи атома во время войны? Отто Хан узнал войну со всеми ее ужасами на фронте; после откомандирования в специальную химическую часть он время от времени занимался научной работой. Хан советом и делом поддерживал свою сотрудницу Лизу Мейтнер, работавшую в химическом институте Общества кайзера Вильгельма в Берлин-Далеме. Совместно им удалось в 1918 году успешно закончить работу, начатую еще до войны и прерванную военной службой Хана, по поискам "праотца" радиоактивного элемента актиния. Было несомненно, что такой исходный элемент должен существовать, ибо актиний сам не является долгоживущим элементом. Учитывая период полураспада актиния, равный 13,5 годам. Хан пришел к выводу, что он давно бы "вымер", если бы постоянно не образовывался вновь из другого элемента.

Было сделано предположение, что неизвестный радиоактивный элемент следует искать в остатках после переработки урановой смолки; это блестяще подтвердилось. В этой весьма трудно растворимой породе, окрещенной в промышленности "серая нечисть". Хан и Мейтнер нашли долгожданный радиоактивный элемент. К удивлению, это оказался не просто неизвестный радиоактивный изотоп, а вообще новый химический элемент, который занял пустую клетку 91 в периодической системе. Элемент, столь упорно скрывавшийся от их преследований. Хан и Мейтнер в шутку называли абракадабра, теперь же они окрестили его протактинием.

А другие атомщики? Чем занимались они?

Рамзай, умерший в 1916 году, до конца оставался верен своей любимой идее о превращении элементов посредством радиоактивного излучения. Мимо него также не прошли волнения военных лет, Большой патриот Англии, он резко оборвал все прежние дружественные контакты с немецкими коллегами.

Резерфорд был подчеркнуто сдержанным. В 1916 году в лекции "Излучения радия" в Манчестерском университете он заявил: конечно, человечество стремится найти пути для использования мощных энергий, скрытых в радии; ведь из 1 кг радия за тысячелетия образовалось бы столько же энергии, сколько выделяется ее при сжигании 100 миллионов килограммов угля. Однако я надеюсь, продолжал ученый, что этот путь не будет найден до тех пор, пока люди не научатся жить в мире со своими соседями.

Резерфорду тоже пришлось отдать дань войне -- британское адмиралтейство пожелало, чтобы он стал научным экспертом по вопросам защиты кораблей от вражеских подводных лодок. Однако каждую свободную минуту физик использовал в своих собственных научных интересах. Он находился в оживленной переписке с Нильсом Бором: "Мне хотелось, чтобы Вы были рядом, для того, чтобы обсудить с Вами значение некоторых моих результатов по столкновению ядер,-- писал Резерфорд датскому теоретику 17 ноября 1917 года.-- Мне кажется, я получил поразительные результаты. Однако работа продвигается тяжело и медленно. Для старых глаз очень трудно подсчитывать слабые сцинтилляции". Резерфорд упорно бомбардировал атомную крепость своими альфа-лучами в надежде, что однажды атом признает себя побежденным. "Я надеюсь этим путем расщепить атом,-признается он в другом письме к Бору, датированном 9 декабря 1917 года. -- В одном случае я получил многообещающий результат". При столь радостных перспективах было понятно, что Резерфорд с нежеланием относился к своей военной службе. Когда однажды он получил порицание от адмиралтейства за опоздание на важное совещание, то отстранил все упреки: "Я был занят экспериментами, которые указывают на то, что атом можно искусственно расщепить. Если это так, то это гораздо важнее, чем вся ваша война!".

Из этих слов можно почти что сделать вывод, что исследователь находился у цели. Уж не нашел ли он способ высвобождать энергию атома путем его разрушения? Трезвый, чуждый всякой сенсации текст отчета Резерфорда от апреля 1919 года, опубликованный в июньском номере "Философикл мэгэзин", мог вызвать разочарование: "Столкновение альфа-частиц с легкими атомами -- IV. Аномальный эффект на азоте". Однако в основе этой статьи лежало еще одно фундаментальное открытие.

Мечты алхимиков сбываются

Эрнест Резерфорд с обычным упорством подвергал бомбардировке альфа-частицами различные элементарные газы и методом сцинтилляции измерял расстояния, на которые отбрасывались атомы, составляющие молекулы газов. Атомы азота в аппаратуре Резерфорда отбрасывались альфа-частицами на 9 см. Однако затем физик обнаружил частицы, которые пробегали расстояние в 28 см.

Он установил, что это были ядра водорода, называемые также протонами. Откуда они могли появиться? Резерфорд был совершенно уверен, что в опытах он исключил даже следы водорода. После некоторого раздумья ученый нашел единственно возможное объяснение: атом водорода получился из ядра атома азота, "разрушенного" ударом альфа-частицы. Дальнейшие опыты подтвердили правильность такого предположения.

Англичанин Вильсон использовал конденсационную камеру так, что в ней пути ядер атомов и других заряженных частичек стали видимыми для человеческого глаза в виде следов конденсации. В тех случаях, когда происходили превращения ядер, в камере наблюдали не обычный путь частичек, а разветвленный. Сотрудник Резерфорда, Блэкетт, сделал фотографии следов ядер. Ему пришлось проявить 23 000 снимков, чтобы найти 8, на которых была видна такая "развилка". Это говорило о необычайно низкой вероятности столкновения или превращения. В обнаруженных восьми случаях шло превращение, наблюдавшееся Резерфордом, которое он ошибочно принял за "разрушение". На самом деле процесс протекал в соответствии с уравнением:

[14]N + [4]He [17]O + p

Атом азота (N) с массовым числом 14 превращается с помощью альфа-частицы (ядра атома гелия) в атом кислорода (О) с массовым числом 17 (изотоп обычного кислорода) и протон (ядро атома водорода). Таким образом, впервые удалось искусственно превратить один элемент в другой, ибо обнаруженное ранее превращение радия или радона в гелий является процессом естественного радиоактивного распада. Сам Резерфорд рассчитал, что прошли бы тысячелетия, пока по этому уравнению получился бы лишь 1 мм[3] водорода. Однако процесс шел. С помощью радиоактивного излучения можно было превратить один элемент в другой. Конечно, оставалось неясным, ограничивается ли это превращение только некоторыми, а именно легкими элементами. Или в конце концов можно будет "получать" таким путем и благородные металлы, быть может, когда-нибудь даже в весомых количествах?

Такая постановка вопроса была правомерной. Ведь меньше чем за двадцать лет после открытия радиоактивности удалось основательно пересмотреть установившуюся в науке догму об элементах и атомах, которые дальше не распадаются и не могут быть превращены друг в друга. Теперь было достаточно оснований для того, чтобы вновь восторжествовали приверженцы столь гонимой алхимии...

20 лет исследований явления радиоактивности привели к открытию большого числа радиоактивных элементов, которые можно было подразделить на три ряда естественного радиоактивного распада: ряд урана -- радия, ряд урана -актиния и ряд тория. Со времени существования Земли начальные представители этих рядов превращались во множество радиоактивных изотопов. Среди них были изотопы нескольких новых элементов. Однако ни в одном из рядов последовательного радиоактивного распада золота нет.

Прошло несколько лет упорных исследований, пока было обнаружено, что соответствующие конечные продукты радиоактивных рядов, которые вначале называли радий G, актиний D и торий D, являются не чем иным, как свинцом. Однако был ли это тот же свинец, который получают из руды на предприятиях и применяют в промышленности и технике? Появившиеся сомнения рассеялись лишь тогда, когда определили его атомную массу, а затем, с помощью масс-спектрографических исследований, подтвердили, что речь идет о различных изотопах свинца:

радий G (свинец ряда урана) -- свинец-206

актиний D (свинец ряда актиния) -- свинец-207

торий D (свинец ряда тория) -- свинец-208

Свинец естественного происхождения состоит, как и большинство элементов, из смеси нескольких изотопов. Всего только 20 химических элементов являются моноизотопными, как золото, для которого в природе существует только один устойчивый изотоп ([197]Au). Поэтому золото обладает относительной атомной массой, численно равной 197,0.

Естественный свинец состоит из устойчивых изотопов: 204 (1,4 %), 206 (26,3 %), 207 (20,8 %) и 208 (51,5 %)[57]. Поэтому относительная атомная масса свинца вычисляется из различных вкладов отдельных изотопов и в среднем дает значение 207,2. В результате непрерывных радиоактивных превращений содержание свинца на Земле постоянно увеличивается. Сейчас на нашей планете свинца больше, чем было в момент ее образования.

Начальный представитель ряда урана -- природный изотоп [238]U -- распадается с периодом полураспада около 4,5 миллиардов лет. Поэтом образуются, помимо других, элементы 88 (радий), 86 (радон--эманация радия), 84 (полоний) и, наконец, 82 (свинец).

Естественный распад урана, протекающий с постоянным выделением энергии, нельзя искусственно ускорить. Должно пройти более 60 миллионов лет, чтобы из 1 кг урана в конце концов образовалось 10 г свинца. Когда физики-атомщики попытались форсировать это превращение, чтобы высвободить, быть может, огромные количества энергии в кратчайшее время, они, как известно, потерпели неудачу.

Значительно позднее, после открытия рядов радиоактивного распада, стало ясно, что и не будучи алхимиком, надо признать существование естественного распада радиоактивных элементов. Поэтому в 1919 году известие о первом искусственном, рукой человека проведенном, превращении атома стало сенсацией. Что же все-таки в конце концов, права алхимия? Напомним, что при искусственном превращении элемента азота в элемент кислород Резерфорд выбил из ядра атома протон. В качестве снаряда он в свое время использовал тяжелые альфа-частицы.

Согласно атомной модели Резерфорда -- Бора ядро атома состоит из определенного числа протонов, равного заряду ядра или порядковому номеру атома в периодической системе. Так, ядро атома свинца содержит 82 протона, ядро таллия--81, ядро ртути--80, ядро золота -- 79.

Как известно, еще в 1913 году Содди предложил "рецепт" для получения золота с помощью ядерной физики: золото можно было бы "сделать" из соседних элементов отщеплением (либо присоединением) одной и более альфа- либо бета-частиц или протона. Иначе говоря, полученный любым путем атом с 79 протонами является, безусловно, золотом. Немало людей в то время считали, что лучше было бы получить это золото искусственным превращением ядра на основе новейших данных Резерфорда: из таллия -- отщеплением 2-х протонов; из ртути--отщеплением 1-го протона: из свинца -- отщеплением 3-х протонов.

Если исходить из превращения, осуществленного английским физиком

[14]N + [4]He [17]O + p

из ртути должно получаться чистое золото, например, по уравнению: [196]Hg + [4]He [197]Au + 3p

Мы ни в коем случае не возьмемся утверждать, что физики преследовали именно такую цель, когда настойчиво бомбардировали альфа-лучами элемент за элементом, желая повторить на других атомах ядерное превращение, наблюдавшееся для азота. Однако последователи алхимии утверждали, что в один прекрасный день очередь дойдет и до ртути, хоть она и занимает в периодической системе только 80-е место[58].

Прогулки по свинцовым крышам

Строго говоря, естественный радиоактивный распад урана и радия до свинца не был целью алхимиков: из чрезвычайно редкого элемента радия, во много раз более ценного, чем золото, образуется обычный свинец! Вот если бы радиоактивный ряд был хотя бы "обратимым" и можно было бы так "активировать" свинец, чтобы он превратился в такие ценные элементы, как радий или, быть может, даже золото[59]? Вот это было бы по вкусу алхимикам!

В начале 1924 года такая отчаянная гипотеза получила новую пищу благодаря данным, опубликованным в специальной литературе. Некая Стефания Марацинеану, родом из Румынии, в бюллетене Румынской академии сообщала, что она открыла своего рода индуцированную искусственную радиоактивность. Под действием солнечных лучей свинец становился радиоактивным. Ученый мир был поражен. Еще никому не удавалось превратить устойчивые элементы в искусственно радиоактивные.

Чтобы экспериментально подтвердить свою поразительную научную находку, Марацинеану отправилась в Париж. Она получила место ассистента в Радиевом институте Марии Кюри и начала работать над диссертацией. При содействии астронома Деландра Стефании Марацинеану была даже предоставлена возможность доложить о результатах исследований форуму Парижской академии наук и опубликовать их в "Отчетах Парижской академии наук". Чтобы доказать правильность открытия, Марацинеану дошла до самых несообразных идей. Ей казалось недостаточным выставлять свинцовую жесть на солнце, чтобы потом выявить ее радиоактивность. В поисках такого превращения, для наиболее интенсивного воздействия солнечного света она залезла на древнюю крышу Парижской обсерватории и расставила там свои электроскопы чтобы делать измерения радиоактивности на месте. Конечно, для прохожих она представляла очень забавную картину!

Стефания Марацинеану систематически совершенствовала постановку экспериментов. Она испытывала куски свинцовой крыши и установила: свинец с южной стороны башни значительно активнее, чем с северной. Это она якобы доказала, обнаружив, хотя и слабое, альфа-излучение. Обратная сторона свинцовых черепиц, не подвергавшаяся воздействию солнца, во всех случаях не показывала активности.

Примечательно, что радиоактивность не исчезла в течение нескольких месяцев. У Марацинеану уже была готова теория об "обратном превращении" свинца в радиоактивный полоний и другие продукты распада; она лихо двигалась назад по радиоактивному ряду. Покровитель и поклонник Марацинеану, профессор Деландр, дополнил ее гипотезу: быть может, солнечные лучи могли вызвать взрывы в некоторых атомах. А если не только солнце? Если это то таинственное проникающее космическое излучение, о существовании которого уже известно с некоторых пор? Деландр обнародовал это на заседании Академии наук.

В конце 1928 года широко известный научно-популярный немецкий журнал "Умшау" с воодушевлением сообщил, что открытие Марацинеану обещает много научных и технических чудес. Теперь наконец можно будет провести обратное превращение свинца в другое, радиоактивное, вещество, а также превращать и другие металлы.

Превращать свинец в радий или даже в золото -- какие открывались перспективы! Что же можно обнаружить, если провести анализ свинцовых крыш, которые десятилетиями подвергались воздействию солнца? Когда в середине 1929 года Марацинеану опубликовала свои данные, удивление было полным: анализы показали присутствие ртути. Но, прежде всего, она нашла в свинце Парижской обсерватории... золото! До 0,001 %. Ибо, когда исследовательница взяла для спектральной пробы свинец с таким же содержанием золота, линии золота дали ту же интенсивность. Вывод: с течением времени часть свинца превратилась на солнечном свету в ртуть, а около одной тысячной процента -- в золото! Как предполагал еще Тиффро, солнечный свет каталитически воздействовал на "процесс созревания" золота. Не только в Мексике, но и во Франции тоже!

Открытие Марацинеану вызвало наконец критику коллег. Последние уже давно следили за ее публикациями, одни с ухмылкой, другие с неприязнью, и сочли, что наступил момент вступить в спор. Его начали французские ученые Фабри и Дюбрейль в январе 1930 года, которые заявили в "Отчетах": "По данным мадемуазель Марацинеану... предпринятые опыты по превращению свинца в золото, ртуть и гелий были осуществлены благодаря длительному действию солнечного излучения. Мы обязаны сообщить, что упомянутые опыты, проведенные нами, привели к совершенно противоположным результатам... Мы не смогли обнаружить даже следов золота и ртути в образцах свинца, взятого с крыш. Никакого различия между обеими сторонами свинцовых пластин мы не нашли".

Мадемуазель Марацинеану не хотела так легко сдаваться: как известно, в свинце всегда содержатся следы ртути: если Фабри и Дюбрейль не смогли найти естественную примесь ртути, это говорит не в пользу их добросовестности как аналитиков. На поверхности свинца, обращенной к солнцу, ртуть находится в еще больших концентрациях. Она образуется из "активированного свинца" (Pb*) с выделением альфа-излучения (добавим от себя: предположительно по уравнению: [206]Pb [202]Hg + [4]He).

Молодая исследовательница нашла защиту и помощь со стороны амстердамского профессора химии Смитса. Он попросил переслать ему две свинцовых плиты из Парижской обсерватории и подтвердил с помощью чувствительного электрометра Сциларда, что обращенная к солнцу поверхность свинца является радиоактивной. Обратная сторона, сообщил Смитc, практически неактивна. Поскольку другие исследователи тоже хотели получить такие образцы, то следовало опасаться, что крыша Парижской обсерватории больше не сможет служить ей защитой от непогоды. Однако все ограничилось одним испытанием. Исследовал Смитc и свинец с крыши одной из школ в Амстердаме, а также с полицейского управления города, и найденные величины, по-видимому, подтвердили гипотезу Марацинеану. Как Смитсу удалось безнаказанно добыть свои "опытные образцы", остается тайной.

Тут в научный спор вмешались другие ученые. Наконец в декабре 1929 года известный чехословацкий исследователь радиоактивности Бегоунек из Праги повторил опыты Марацинеану, хотя и был убежден в их бессмысленности. Он подвергал свинец воздействию солнечных лучей с июня по сентябрь 1929 года, то есть в период максимума солнечного излучения, даже во время повышенной солнечной активности, которая проявилась в июне с появлением двух солнечных пятен. Исследователь не нашел никакой индуцированной радиоактивности, никакой ртути, никакого золота. Бегоунек дал понять, что результаты Марацинеану были не чем иным, как "эффектами грязи".

Исследовательница отреагировала на такие предположения, как всегда, темпераментно. "Я полагаю, что электрометр господина Бегоунека менее чувствителен, чем мой",-- было одним из ее возражений. Бегоунек не заставил ждать ответа: "По-видимому, у мадемуазель Марацинеану совершенно ложные представления об атмосферной радиоактивности". Наконец он выдвинул решающий аргумент в дискуссии: следует учесть не только частицы радиоактивной пыли из воздуха, но также и значительную радиоактивность дождя и снега, которую никак нельзя удалить с поверхности свинцовых крыш "водой, мылом и щеткой", как это делала Марацинеану.

Борьба мнений по поводу активированного свинца Марацинеану длилась до конца 1930 года. Несмотря на некоторые попытки переубедить научный мир, румынская ассистентка не продвинулась ни на шаг вперед. Она вернулась в Бухарест и прекратила дальнейшие споры. В конце концов от нее отказался и ее покровитель, профессор Деландр, заявивший, что публикации Марацинеану ему тоже казались "слишком поспешными".

С тайной миссией

В 20-е годы умы ученых в гораздо большей степени, чем опыты Марацинеану, занимали иные эксперименты. Серьезные ученые намеревались получить золото с совершенно определенными целями, исключительно для "отечественных нужд".

Если рассмотреть сложившееся в то время положение, то причина этого станет ясной. "Мирный договор", заключенный в Версале в июне 1919 года между воюющими империалистическими государствами, принес немецкому народу усиление эксплуатации как со стороны собственных хозяев монополий, так и со стороны иностранного капитала. В апреле 1921 года репарационная комиссия союзников установила сумму репараций, которые должна была выплатить Германия: 132 миллиарда золотых марок! Чтобы достать такую убийственную сумму, немецкому хозяйству, сотрясаемому послевоенными кризисами, пришлось бы затратить десятилетия, 132 миллиарда марок! Это соответствовало 50 т золота!

Правые круги в Германии стремились направить недовольство народа против этих огромных военных контрибуций. Ученые, в свою очередь, например Фриц Габер, думали над тем, каким образом достать такую массу золота и освободить народ от тяжести репараций.

Каким образом? Конечно, был один еще не использованный источник невероятных количеств золота. Известный шведский ученый Аррениус, с которым Габер был в дружеских отношениях, оценил это количество в 8 миллиардов тонн золота. Если бы удалось добыть даже тысячную долю, все равно это в сто раз превысило бы количество золота, подлежащее уплате державам-победительницам.

Многие знали об этом сказочном сокровище, однако никто пока еще не смог его извлечь -- золото океанов. Поясним: речь идет не о сокровищах затонувших испанских кораблей, груженных золотом, а о золоте, присутствующем в виде малых примесей в морской воде. Весьма притягательной была мысль -- попросту извлекать это золото из моря, а не добывать его тяжелым трудом, как обычно! Тот самый физико-химик Габер, которому удалось азот воздуха превратить в аммиак, хотел теперь отважиться на попытку извлечь золото из моря. В начале 1920 года Габер сообщил об этом в кругу своих ближайших сотрудников. В полной секретности совершались приготовления к этому большому начинанию о котором остальной мир не должен был знать. Более трех лет до лета 1923 года, затратили Габер с сотрудниками, чтобы выяснить самые насущные проблемы: аналитически точно определить концентрации золота в морях и подтвердить эти данные статистически. Содержание золота оказалось невероятно малым. За 50 лет до этого, в 1872 году, англичанин Зонштадт впервые проанализировал морскую воду из бухты Айл оф Мэн и нашел там максимально 60 мг золота на тонну, то есть на кубический метр. Другие исследователи считали, что это значение завышено. Данные колебались от 2 до 65 мг. По-видимому, они зависели от того, в каком месте Мирового океана были отобраны пробы.

На стыке веков в Англии и США делались попытки экстрагировать золото из моря в промышленном масштабе. В 1908 году эту проблему пыталось разрешить акционерное общество под руководством Вильяма Рамзая. Вскоре в изобилии появились патенты по добыче золота из морской воды. Об удачах не было слышно. Все попытки заглохли в самом зародыше из-за очень малого содержания золота, а также присутствия многочисленных сопутствующих солей. Не было такого промышленного способа, который позволил бы отделить золото от сопутствующих веществ, то есть обогатить его и извлечь. Однако Габер хотел предпринять такую попытку. Как уже сказано, три года потратил он лишь на подготовку. Один только отбор проб воды из океанов оказался целой проблемой, ибо об этом не должны были узнать противники. Ведь после войны для Германии доступ к океанам был практически закрыт. Она должна была сдать не только военный флот, но и торговые корабли.

Не меньшего труда стоила разработка метода количественного определения золота. Для этой цели Габер предложил микроаналитический метод, который впервые позволял уловить очень малые количества золота. Он использовал способность небольших количеств свинца, осаждаемого из раствора в виде сульфида, увлекать при осаждении все золото, содержащееся в морской воде. После отделения осадка его восстанавливали и переплавкой переводили в свинцовый королек, который содержал золото и, быть может, серебро. Свинец удаляли прокаливанием, микроостаток сплавляли с бурой. В расплаве оставалось зернышко золота, размеры которого уже можно было установить под микроскопом. Из объема шарика и известной плотности золота определялась его масса. Такой процесс анализа должен был также служить основой производственного варианта для извлечения золота из морской воды. Габер предполагал сначала пропускать морскую воду через грубый предварительный фильтр, а затем, после добавления осадителя, просасывать через тонкий песчаный фильтр. Все эти и последующие операции предстояло проводить в открытом море.

После трех лет секретной работы над проблемой золота Габер уверовал в свое дело: если доверять его анализам, то вода океана содержала в среднем от 5 до 10 мг золота на кубический метр. Пришлось весьма осторожно ввести в курс дела судовые компании линии Гамбург -- Америка: будет ли рентабельным процесс извлечения золота, если придется на пароходах перерабатывать гигантские количества воды? Результаты были обнадеживающими: добыча нескольких миллиграммов золота на тонну морской воды покроет производственные затраты, а превышающие это количество 1 или 2 мг пойдут в прибыль. Осуществление проекта согласились финансировать такие концерны, как "Предприятие по выделению серебра и золота" (Degussa) во Франкфурте-на-Майне и "Банк металлов", сделавшие этот "широкий жест", вероятно, не только из патриотических побуждений. Габер мог создавать свою плавучую опытную лабораторию Он хотел планомерно объехать Мировой океан, чтобы исследовать, где же больше всего золота.

На перестроенной канонерке "Метеор", от которой остался только корпус и которую переоборудовали в "океанографическое исследовательское судно", искатели золота вышли в море в апреле 1925 года. Они должны были возвратиться из своего путешествия в начале июня 1927 года.

Циркулируя взад и вперед между побережьями Америки и Африки, экспедиция отобрала свыше 5000 проб воды, которые были отосланы в специальных запломбированных сосудах в институт в Берлин-Далеме. Еще несколько сот проб были получены с других кораблей из бухты Сан-Франциско и с побережий Гренландии и Исландии. Советские коллеги прислали Габеру образцы воды из Северного Ледовитого океана.

В мае 1926 года в докладе "Золото в морской воде" Фриц Габер впервые открыл тайну и сообщил о шансах получения золота из морской воды. Приведенный им баланс был уничтожающим: "Золота не будет!".

Результаты первых анализов оказались ...неверными! Вкрадись методические ошибки, сразу не обнаруженные, которые давали завышенное содержание золота. Слишком велика была вера в классическое химическое пробирное искусство. Вначале не было также навыков по разделению микроколичеств золота и серебра, в результате чего выделялось золото, содержащее серебро. Профессору Габеру потребовалось длительное время, чтобы найти самые существенные источники ошибок и исключить их. В конце концов с помощью усовершенствованного метода он мог определить с достоверностью даже миллионную часть миллиграмма (10[-9] г) золота. Совершенно не была учтена возможность занесения микроколичеств золота извне. Золото в виде следов присутствует повсюду: в реактивах, сосудах, посуде. Это -- небольшие количества, но их достаточно, чтобы исказить результат микроанализа и привести к нереально завышенным значениям.

В итоге вместо 5--10 мг золота в кубическом метре морской воды Габер нашел лишь тысячную долю: в среднем от 0,005 до 0,01 мг. Только у побережья Гренландии содержание золота возросло приблизительно до 0,05 мг/м[3]. Однако золото такой концентрации можно было найти лишь в воде, полученной после таяния пакового льда.

Габер исследовал также золотоносный Рейн, однако не под впечатлением сказания об исчезнувшем "рейнском золоте" Нибелунгов; скорее, он учитывал тот факт, что еще сто лет назад земля Баден добывала для чеканки своих монет золото на приисках этой реки. Габер нашел в среднем 0,005 мг золота на кубический метр воды. С хозяйственно-производственной точки зрения рейнское золото так же не представляло ничего привлекательного -- таково было мнение Габера. Конечно, с водой Рейна уплывает ежегодно почти 200 кг золота, растворенного в более чем 63 миллиардах кубических метров воды. Однако, кто его добудет? Золото в концентрациях (1--3)*10[-12], то есть 3 части золота на 1 000 000 000 000 частей речной воды. Габер не видел возможности для рентабельной переработки столь малых следов золота.

Разочарованный ученый считал, что, возможно, где-нибудь в океане и существуют пространства, в которых благородные металлы находятся в концентрациях, благоприятствующих их промышленному использованию. Габер смирился: "Я отказываюсь искать сомнительную иголку в стоге сена[60]".

Этот источник золота также оказался закрытым для человечества.

Волшебная лампа Адольфа Мите

"Подумать только, в гуще наших бедствий -- политических, хозяйственных и социальных -- появляется светлый луч, яркое сияние, утешение и надежда..." Такое поразительное высказывание можно было прочесть в популярной дрезденской газете в июле 1924 года. Только что сообщалось о конференции союзников в Лондоне, которая настаивала на скорейшей уплате репараций, и вот вдруг такая новость!

Причиной "яркого сияния" было золото, искусственно полученное золото. Ученый, известный до этого времени только в узком кругу специалистов, тайный советник Адольф Мите (из Высшей технической школы), стал вдруг знаменит своим открытием по превращению ртути в золото с помощью электрических разрядов.

Такое великое научное деяние совершилось как раз в нужный момент; это подчеркивалось в газетном сообщении: "Германия теперь овладела тайной и сможет откупиться от тяжести репараций; она сможет прокормить и одеть свой народ; золотой ключ откроет неслыханные перспективы..." Сообщения в прессе следовали одно за другим. Говорили о "победном шествии немецкого гения".

"Первое золото, изготовленное рукой человека".

"Золото из ртути -- всемирно-историческое достижение немецкой науки".

Однако слышались и голоса скептиков, призывавших к осторожности. Уже давно ходили слухи о горах искусственного золота, которые производились в полной тайне. Время от времени ученых поражали сообщениями, подобными тому, что появилось 19 января 1922 года в "Хемикер цейтунг" под заголовком: "Последние открытия и сообщения". Немецкий химик якобы получил искусственное золото в электрической печи. Во всяком случае так об этом доложил профессор Йельского университета Ирвин Фишер в своем докладе. "Хемикер цейтунг" с иронией комментировала: "По-видимому, все сообщения стремятся только к тому, чтобы доказать платежеспособность Германии".

Писатели-фантасты также давали пищу для представлений о штабелях искусственного золота, которые в тайне накапливает Германия. Шовинистический роман Рейнхольда Эйхакера, появившийся в 1922 году, назван: "Борьба за золото". Нас интересует лишь "научное" разрешение вопроса, предлагаемое автором. Герой романа, немецкий инженер Верндт, умеет улавливать энергию солнечного излучения, "ураганный поток квантов энергии", с помощью мачты из нового сплава алюминия длиной в 210 м; эта энергия, превращенная в несколько миллионов вольт, позволяет ему отщеплять от каждого атома свинца две альфа-частицы и одну бета-частицу. В мгновение ока Верндт фабрикует 50 000 т репарационного золота. Весь мир заполняется искусственным золотом.

Неужели пришел "конец золота" и справедливо все то, о чем так увлекательно поведал нам Рудольф Дауман в своем фантастическом романе, описывающем будущие события 1938 года? Немецкий профессор химии по имени Баргенгронд открывает в США способ получения золота путем атомного превращения, в результате чего за ним гоняется банда гангстеров. После дикого преследования удается вырвать у профессора его тайну: золото можно получить, если отщепить от висмута две альфа-частицы при помощи "ритмизированных О-лучей"-- очень жесткого рентгеновского излучения. Когда герою романа Даумана посчастливилось сконструировать мощные рентгеновские трубки, он начинает изготовлять золото центнерами. Капиталистические рынки золота рушатся, мировой биржевой крах приводит к обесцениванию золота. Но тут удается открыть, как отличить искусственное золото от природного. Это невозможно сделать химическим путем, а только физическими методами. Теперь искусственное золото ни с чем не спутаешь.

Отдадим должное фантазии авторов романов. Однако, если верить сенсационным газетным сообщениям июля 1924 года, то уже в 1924 году стало реальностью все то, о чем обычно пишут в утопических романах. Профессор Мите и его ассистент Штамрайх уже нашли долгожданный "арканум", тот самый тайный рецепт для получения философского камня, а с ним вновь открыли, как ртуть превратить в полновесное золото. Что же произошло?

Мите имел хорошую репутацию в кругах специалистов. Тайный советник считался одним из основателей цветной фотографии, сделал несколько открытий в области оптики и стал известен своим процессом изготовления искусственных драгоценных камней. А вот теперь к тому же он делает искусственное золото. В тот момент, когда ему посчастливилось сделать "открытие века", он руководил фотохимической лабораторией Высшей технической школы в Шарлоттенбурге. Мите всегда был немножко со странностями. Немногие его фотографии подтверждают это; они изображают пожилого человека с угрюмым сверлящим взглядом.

Уже в течение нескольких лет Мите занимался окрашиванием минералов и стекла под действием ультрафиолетовых лучей. Для этого он использовал обычную ртутную лампу -- эвакуированную тру6ку из кварцевого стекла, между электродами которой образуется ртутная дуга, излучающая ультрафиолетовые лучи.

Позднее Мите пользовался новым типом лампы, дававшим особенно высокий энергетический выход. Однако при длительной эксплуатации на ее стенках образовывались налеты, которые сильно мешали работе. В отслуживших ртутных лампах тоже можно было обнаружить такие налеты, если отогнать ртуть. Состав этой черноватой массы заинтересовал тайного советника, и вдруг, при анализе остатка от 5 кг ламповой ртути, он нашел ... золото! Золото из ртути?!

"Еще десять лет назад такое обстоятельство едва ли привлекло внимание,-- писал Мите в своем первом сообщении от 4 июля, опубликованном в журнале "Натурвиссеншафтен" 18 июля 1924 года.-- Тогда не верили в возможность превращения одного элемента в другой и сочли бы такой факт ошибкой. Сегодня мы не можем оставить это наблюдение без внимания ..." Мите уверял, что он долго колебался, сообщать ли об этом открытии из-за невероятности процесса, хотя "твердые данные" у него были еще в апреле этого года.

Мите раздумывал: возможно ли теоретически, чтобы в ртутной лампе ртуть в результате разрушения атома распадалась до золота с отщеплением протонов или альфа-частиц. Мите и его сотрудник Штамрайх проводили многочисленные опыты, завороженные идеей такого превращения элементов. Исходным веществом служила ртуть, перегнанная в вакууме. Исследователи полагали, что она не содержит золота. Подтвердили это также анализы известных химиков К. Гофмана и Ф. Габера. Мите попросил их исследовать ртуть и остатки в лампе, хотя не сообщил, какие цели он преследует.

Этой ртутью, по аналитическим данным свободной от золота, Мите и Штамрайх заполнили новую лампу, которая затем работала в течение 200 ч. После отгонки ртути они растворили остаток в азотной кислоте и увлеченно рассматривали под микроскопом то, что осталось в стакане: на покровном стекле сверкал золотисто-желтый агломерат октаэдрических кристаллов. Блестящий металл растворялся только в царской водке и давал все известные реакции "царя металлов". То было чистое золото! С этого времени его открыватели были глубочайшим образом убеждены, что они осуществили "распад атома ртути" до золота.

После появления выпуска "Натурвиссеншафтен" с "предварительным сообщением" Мите о сенсационной находке пресса дня под огромными заголовками сообщала об этом открытии и уже предсказывала возможные его последствия для мировой валюты. Репортеры постоянно осаждали фотохимическую лабораторию Высшей технической школы. У Мите теперь не было спокойной минутки; в редакциях ухмылялись: нельзя безнаказанно быть открывателем искусства изготовления золота.

Однако ученый подчеркивал в "Берлинер локаль анцейгер": "Хотелось бы сразу в корне пресечь мнение, что открытое нами искусство получения золота позволяет добывать золото в любых желаемых количествах. Это невозможно...". Над такими словами понимающе посмеивались -- даже тогда, когда Мите назвал цену искусственного золота, рассчитанную из расхода материалов и энергии: 20 миллионов марок за 1 кг. Обычная товарная цена 1 кг чистого золота составляла тогда 3000 марок. Эти оговорки не принимались всерьез: конечно, ведь процесс сейчас разработан в лабораторном масштабе: несомненно, он будет вскоре значительно удешевлен. Открытием Мите заинтересовались электрические концерны, и не зря. Сам же он сделал патентную заявку на свой процесс!

Реакция прессы была однозначной: 3 августа берлинская "Иллюстрирте цейтунг" на первой странице напечатала большой портрет Мите с подписью "Алхимик". Подозреваем, что господин тайный советник не без удовольствия купался в лучах своей славы. В лаборатории он установил мемориальную доску, чтобы оповестить следующие поколения о месте и дате первого превращения ртути в золото.

Отклик коллег был двояким. Ф. Габер и К. Гофман, которых даже в газетах именовали свидетелями удачного превращения, письменно отказались участвовать в опытах. Вероятно, они опасались за свою научную репутацию: искусство алхимии было слишком сомнительным. К тому же Габер был недоволен скрытничеством Мите: пересланные им пробы были засекречены, да и в публикациях Мите совершенно не было конкретных данных. Однако, по понятным причинам, известный ученый все же заинтересовался этим новым источником золота. Габер начал повторять опыты Мите. Физико-химика занимала, прежде всего, научная сторона проблемы: распад нерадиоактивного элемента, стоящего в периодической системе вблизи радиоактивного, в соседний элемент, который случайно оказался столь желанным золотом. "Это было поразительное и невероятное наблюдение,-- говорил Габер позднее, оценивая задним числом "открытие" Мите и Штамрайха,-- однако какое-то неопределенное чувство говорило все же в его пользу".

За границей не менее заинтересованно следили за победными сообщениями о превращении ртути. Известный лондонский журнал "Нейчур" напечатал высказывание Содди от 16 августа 1924 года. Исследователь атома напомнил, что он уже давно предсказывал возможность превращения ртути в золото на основе современный представлений о строении атома. Сложность же состояла в том, чтобы обнаружить такое превращение; до сих пор оно было достигнуто лишь в невесомых количествах для других элементов, и только путем ядерных превращений. Поразительно, если Мите действительно обнаружил весомые количества искусственно получаемого элемента, который можно химически идентифицировать. Однако Содди не думал, что золото образовалось путем отщепления альфа-частицы или протона. Скорее можно говорить о поглощении электрона: если последний обладает достаточно большой скоростью, чтобы пронзить электронные оболочки атомов и внедриться в ядро, тогда могло бы образоваться золото. При этом порядковый номер ртути (80) уменьшается на единицу и образуется 79-й элемент -- золото!

Теоретическое высказывание Содди подкрепило точку зрения Мите и всех тех исследователей, которые твердо уверовали в "распад" ртути до золота. Однако не учли того обстоятельства, что в естественное золото может превратиться лишь один изотоп ртути с кассовым числом 197. Только переход

[197]Hg + e[-] [197]Au

может дать "настоящее" золото.

Существует ли вообще изотоп [197]Hg? Относительная атомная масса этого элемента 200,6, называвшаяся тогда атомным весом, позволила предполагать, что имеется несколько его изотопов. Ф.В. Астон, исследуя каналовые лучи, действительно нашел изотопы ртути с массовыми числами от 197 до 202, так что такое превращение было вероятным. По другой версии, из смеси изотопов [200,6]Hg могло образоваться и [200,6]Au, то есть один или несколько изотопов золота с большими массами. Это золото должно было бы быть тяжелее. Поэтому Мите поспешил определить относительную атомную массу своего искусственного золота и поручил это лучшему специалисту в этой области -- профессору Гонигшмидту в Мюнхене.

Конечно, количество искусственного золота для такого определения было весьма скудным, однако большего у Мите пока не было: королек весил 91 мг, диаметр шарика 2 мм. Если сравнить его, другими "выходами", которые получал Мите при превращениях в ртутной лампе -- они в каждом опыте составляли от 10[-2] до 10[-4] мг,-- это был все же заметный кусочек золота. Гонигшмидт и его сотрудник Цинтль нашли для искусственного золота относительную атомную массу 197,2 +- 0,2. Значит, "другого" золота не получилось.

Постепенно Мите снял "секретность" со своих опытов. 12 сентября 1924 года журнал "Натурвиссеншафтен" опубликовал сообщение из фотохимической лаборатории, в котором впервые были приведены экспериментальные данные и более подробно описана аппаратура. Выход тоже стал известен: из 1,52 кг ртути, предварительно очищенной вакуумной перегонкой, после 107-часового непрерывного горения дуги длиной в 16 см, при напряжении от 160 до 175 В и токе в 12,6 А Мите получил целых 8,2 * 10[-5] г золота, то есть восемь сотых миллиграмма! "Алхимики" из Шарлоттенбурга уверяли, что ни исходное вещество, ни электроды и провода, подводящие ток, ни кварц ламповой оболочки не содержали аналитически определимых количеств золота.

Иностранная конкуренция

В тот день, 5 декабря 1924 года, большая физическая аудитория Высшей технической школы в Шарлоттенбурге была набита битком. Немецкое общество технической физики собралось на заседание, в программе которого значилось: "Профессор А. Мите: Об образовании золота из ртути (с демонстрациями)". Так многообещающе гласило объявление. Тайный советник Мите впервые публично выступил перед представителями науки. Его слушали с большим вниманием.

Докладчик сообщил, что в последние недели он менял постановку опытов. Лучше всего работа шла с обычными ртутными разрядными трубками. Однако пока не известны точные условия, при которых из ртути образуется золото. Повторяя предыдущие опыты, Мите вдруг совсем не нашел золота. Выход тоже сильно колебался. До сих пор ему удавалось получить, самое большее, десятую миллиграмма золота из 1000 г ртути. Мите объявил своим слушателям, что вскоре предстоит разрешить основополагающий вопрос: удается ли превратить всю ртуть в золото или только малую часть? Объявленные "демонстрации" привлекли много любопытных, которые не заглядывали обычно на научные собрания. Ведь не каждый день показывают, как сделать золото. Именно этого, вероятно, ожидали, прочитав объявление. Мите, специалист по фотографии, представил только цветные диапозитивы: фотографии золота, которое он "искусственно" получил из ртути, вдобавок фотографию агатовой ступки с первой полученной пробой золота "исторический экспонат", как гордо отметил оратор. Такое золото, сфотографированное при 300-кратном увеличении и спроецированное на стену, импонировало. При демонстрациях лишь немногие поникали, что речь идет о крошечных кристалликах.

В заключение своих изъяснений Мите призвал слушателей и всех ученых убедиться в истинности превращения ртути в золото: опыты эти может проделать всякий, ибо условия для этого есть в каждой лаборатории. Обычную ртутную лампу можно включить повсюду. Конечно, следует вооружиться некоторым терпением, так как не каждый опыт дает положительные результаты. Эксперименты такого рода надо ставить как можно скорее, поскольку следует опасаться, что заграницей ушли гораздо дальше в вопросе изготовления золота.

Мите намекнул на известие, которое он недавно получил. Германское посольство в Токио сообщало, что исследователи из Берлин-Шарлоттенбурга не одиноки в своих попытках получения золота из ртути. Научный работник Нагаока экспериментировал в Токио над превращением ртути с помощью электрических разрядов высокого напряжения. Мите и Штамрайх могли бы позавидовать благоприятным условиям работы японца. Нагаока проводил опыты с напряжением в несколько миллионов вольт вместо смехотворных 175 В Мите. Слой ртути пробивался искровым разрядом длиной в 120 см. Однако берлинский экспериментатор мог утешиться: выход золота был не выше, чем у него.

Оказывается, в Соединенных Штатах тоже не дремали. Вскоре после того как стали известны опыты Мите, Нью-Йоркскому университету было поручено изучить основы процесса превращения ртути для оценки возможностей его технического воплощения. Интерес американской общественности был разбужен. Финансовые и банковские воротилы Уолл-стрита, хранившие самые большие в мире запасы золота, стали опасаться, что где-либо скопятся еще более мощные, чем в Форт-Ноксе, количества золота, да к тому же еще и искусственного. На горизонте показался призрак золотой инфляции.

В качестве представителя перепуганной "империи доллара" слово взял научно-популярный развлекательный журнал "Сайнтифик америкэн". Журнал объявил конкурс и предоставил денежные средства для научных экспериментов, чтобы установить истину как в интересах науки, так и для государственных финансов.

В Нью-Йоркском университете исследованиями руководил профессор Шелдон. Он проверял опыты Мите и сам искал оригинальные решения вопроса, как из ртути приготовить золото. Чикагский университет сообщал, что собирается проводить опыты с потоком электронов. Сотрудники университета предполагали бомбардировать атомы со скоростью в тысячу раз большей, чем в ртутной лампе Мите.

Вероятно, самая сумасшедшая идея в "стране неограниченных возможностей" пришла в голову тому изобретателю, который -- если верить сообщениям того времени -- подготовлял гигантский проект, используя огромные водные мощности Ниагарского водопада, этот фантаст хотел превратить 35 миллионов лошадиных сил в электрическую энергию и воздействовать ею на несколько сот килограммов ртути, чтобы получить из нее чистое золото. Америка была воодушевлена. Критические голоса требовали прекращения этого широко задуманного предприятия, но их заставили умолкнуть. Раздавались требования непременно провести "эксперимент века", даже если это приведет к падению курса доллара на Нью-Йоркской бирже. Многочисленные зеваки расположились на смотровых башнях, построенных вокруг Ниагарского водопада. Они хотели принять участие в зрелище, увидеть, как человек проникает в "процесс божественного созидания" и сам создает золото. Как же окончится этот спектакль?

Ответ дает точная наука

Многие химики, объединенные в Немецкое химическое общество с осуждением смотрели на чужака Мите, который собирался сделать карьеру за их счет. Однако одним недоверием нельзя было изобличить Мите, а получить доказательства можно было, только имея надежную информацию. Поэтому "алхимиков" из Шарлоттенбурга пригласили сделать отчет перед обществом об их выдающихся работах. Что это -- реверанс перед алхимией?

Если прочесть протокол заседания от 15 июня 1925 года, то ощущаешь необычайную напряженность, в которой протекало это собрание. Председатель, Макс Боденштейн, приветствовал многочисленных присутствующих, быстро обсудил внутренние вопросы общества, чтобы вслед за этим перейти к главному. Затем место на кафедре занял Мите и начал говорить "об образовании золота из ртути". После этого Штамрайх должен был доложить об "обнаружении образования золота из ртути". На этот раз не было других докладов, которые обычно освещают многие стороны химических исследований, В этот день, 15 июня 1925 года, на повестке дня общества стоял лишь один вопрос: искусство делать золото. Мите доложил о своих новейших достижениях. Повысился выход золота в равномерно работающих дуговых лампах. Он сообщил, что в исследовательской лаборатории всемирно известной фирмы Сименса были также начаты самостоятельные опыты. У Сименса исследователи Думе и Лотц определили, что золото образуется даже при пропускании через ртуть тока достаточной силы.

Примечательно, что в последовавшей за этим дискуссии практически не выражались сомнения, а скорее тихое, безмолвное удивление. В этом была немалая вина Фрица Габера. Он повторял опыты Мите и теперь сообщил, что, как и его коллега, обнаружил золото. Габер не мог не поздравить господина Мите с этим "научным достижением, самым замечательным за последние десятилетия". Другие ученые заглушили свои сомнения: тайный советник Габер считался авторитетом в химической науке, его способ определения микроколичеств золота должен быть неуязвимым.

Однако вскоре наступил перелом. Подозрений у химиков возникало тем больше, чем больше признаний делал Мите. Золото то образуется, и всегда в минимальных количествах, то снова не образуется. Никакой пропорциональности не обнаруживается, то есть количества золота не возрастают с увеличением содержания ртути, повышением разности потенциалов, при большей длительности работы кварцевой лампы. Получалось ли действительно искусственно то золото, которое обнаруживали? Или оно уже присутствовало раньше? Быть может, Мите -такая же жертва самообмана, как и его предшественники-алхимики, которые, сами того не ведая, обогащали незначительные примеси золота?

Источники возможных систематических ошибок в методе Мите проверяли несколько ученых из химических институтов Берлинского университета, а также из лаборатории электрического концерна Сименса. Химики прежде всего детально изучили процесс перегонки ртути и пришли к удивительному заключению: даже в перегнанной, казалось бы, не содержащей золота ртути всегда имеется золото! Оно либо появлялось в процессе перегонки, либо оставалось растворенным в ртути в виде следов, так что его нельзя было сразу обнаружить аналитически. Только после длительного стояния или при распылении в дуге, вызывавшем обогащение, оно вдруг вновь обнаруживалось. Такой эффект мог вполне быть принят за образование золота.

Эти новые факты уже в августе 1925 года привели коллег из университета к выводу: "Образование золота из ртути, по данным Мите и Штамрайха, по меньшей мере, плохо воспроизводится". Когда путем многократной перегонки в высоком вакууме была действительно получена ртуть, не содержащая золота, то с ней в ртутной лампе золота совсем не образовывалось.

Выявилось еще одно обстоятельство. Использованные материалы, в том числе кабели, идущие к электродам, и сами электроды,-- все содержало следы золота. Габер, который это установил, смог показать, что "превращение" ртути в золото практически происходило до тех пор, пока пары ртути извлекали золото из материала электродов

По мнению Фрица Габера, вполне можно было ошибиться приняв обнаруженные в таких опытах следы золота за искусственно полученные. Он привел в качестве примера своего сотрудника обнаружившего при каких-то аналитических исследованиях следы золота, которые другие не находили. Этот аналитик имел привычку часто снимать или сдвигать свои очки в золотой оправе. Затем он теми же руками брал крошечный кусочек чистого свинца, чтобы поместить его в тигель для пробирного анализа. Такой "ошибки" было достаточно, чтобы обнаружить микропримеси золота в свинце. Габер установил также, что золото в измеримых концентрациях переносится воздухом. Он профильтровал несколько сотен литров воздуха из помещений своего института через целлюлозу, пропитанную солью свинца, и аналитически обнаружил золото. После этого Габер стал проводить перепроверку данных Мите только в тех помещениях, где никогда не работали с золотом или вообще не проводили никаких опытов. Кроме того, его сотрудники должны были предварительно тщательно очистить эти помещения, даже заново их покрасить.

При минимальных концентрациях золота, лежавших на пределах точности определения, первоочередной проблемой становилась опасность увлечения посторонних следов золота. Следовательно, ошибка возможна, разъяснял Габер. Такая ошибка исключена, если будет обнаружено, что количество найденного золота нарастает, притом пропорционально взятому количеству ртути и длительности опыта. Лишь в этом случае результатам можно доверять.

Исследователи лаборатории акционерного общества "Сименс и Хальске" в Берлине, которые, как и Габер, усердно выискивали какое-либо пропорциональное увеличение выхода золота, в конце концов заявили, что удалось установить только одну "пропорциональность": с возрастанием числа найденных источников ошибок и их устранением в опытах количество золота все больше уменьшалось!

Да, с искусственным золотом из "волшебной лампы Мите" дела были плохи. На совещании физиков в Данциге в сентябре 1925 года Мите дали это почувствовать, после того как он сделал обзор своих работ. Началась горячая дискуссия. Физики тоже перестали верить в трансмутацию ртути.

Несколько позже, в ноябре 1925 года, на научном съезде в Берлине Мите горько жаловался, как много драгоценного времени приходится затрачивать на то, чтобы экспериментальным путем опровергнуть обвинение в загрязнении ртути золотом. Ведь тайный советник все еще верил в свои результаты, все еще клялся, что образовалось искусственное золото.

10 мая 1926 года Немецкое химическое общество вновь разослало приглашения на "заседание алхимиков"-- так вполне можно было его назвать, ибо четыре доклада касались опытов Мите. "Изобретатель" тоже присутствовал, но лишь в качестве гостя. Ему собирались дать слово только в дискуссии, для того чтобы он мог защищаться. На этот раз ветер подул уже не в ту сторону, что год назад на заседании, посвященном этой же теме.

Докладчики -- профессора и исследователи из институтов Берлинского университета, из исследовательской лаборатории концерна Сименса, а также Фриц Габер из Института химии и электрохимии Общества кайзера Вильгельма -сообщали о своих опытах, которые во всех случаях привели к отрицательным результатам. Для некоторых ученых это не было новостью. Габер привлек новые данные еще 3 марта 1926 года на заседании Общества кайзера Вильгельма в Берлине в докладе "К вопросу о превращаемости химических элементов". Кроме того, в специальном журнале появилась его статья под заголовком: "О мнимом образовании искусственного золота из ртути".

На заседании Химического общества доклад Габера был убедительным. Он доложил, что все эксперименты после исключения источников ошибок дали отрицательные результаты, и заключил: "Таким образом, мы окончательно прекращаем все опыты по трансмутации как бесперспективные".

Загнанный в тупик вопросами химиков Мите должен был открыть происхождение тех 91 мг "искусственного" золота, которые послужили для определения относительной атомной массы. По сравнению с теми миллионными долями грамма, которые он обычно обнаруживал, это было необычайно большое количество. Как получил он это золото? Мите признался, что золото было добыто из ртути старых разрядных ламп. Он тогда полагал, что ртуть из ламп по своей природе не может содержать золота. После такого объяснения Габер не смог сдержать недовольства: как это Мите позволил себе послать такие остатки для определения атомной массы. Конечно, это было природное золото. Поэтому относительная атомная масса "искусственного" золота столь отлично совпала с данными для природного элемента!

К концу заседания Габер нашел несколько утешительных слов для разочарованного алхимика: "Только благодаря невероятно трудоемким работам господ Мите, Штамрайха и Нагаока стал известен тот неожиданный факт, что в ртути и других металлах, находящихся в природе, содержится благородный металл. По этой причине их усилия, безусловно, не пропали даром для химической науки... На основании их опытов мы пришли к абсолютной уверенности, что при использовании указанных здесь средств золота не образуется".

Было ли это уже концом? Скорее всего, нет. Некоторые вопросы оставались открытыми. Все еще существовало убедительное заявление физиков-атомщиков, согласно которому такая трансмутация возможна с точки зрения атомной теории. Как известно, при этом исходили из предположения, что изотоп ртути [197]Hg поглощает один электрон и превращается в золото. Однако такая гипотеза была опровергнута сообщением Астона, появившемся в журнале "Нейчур" в августе 1925 года. Специалисту по разделению изотопов удалось с помощью масс-спектрографа с повышенной разрешающей способностью однозначно охарактеризовать линии изотопов ртути. В результате выяснилось, что природная ртуть состоит из изотопов с массовыми числами 198, 199, 200, 201, 202 и 204. Следовательно, устойчивого изотопа [197]Hg вовсе не существует! Если бы бомбардировка ртути электронами действительно давала золото, то оно должно было бы иметь более высокую относительную атомную массу, чем природное, по меньшей мере 198. К такому выводу пришел Астон. Однако такие неизвестные изотопы золота были бы, по всей вероятности, неустойчивыми. Если бы они образовались, то их очень легко было бы обнаружить по радиоактивности.

Следовательно, нужно считать, что получить естественное золото-197 из ртути обстрелом ее электронами теоретически невозможно и опыты, направленные на это, можно заранее рассматривать как бесперспективные. Это в конце концов поняли исследователи Харкинс и Кей из Чикагского университета, которые взялись было за превращение ртути с помощью сверхбыстрых электронов. Они бомбардировали ртуть (охлаждаемую жидким аммиаком и взятую в качестве антикатода в рентгеновской трубке) электронами, разогнанными в поле 145 000 В, то есть имеющими скорость 19 000 км/с. Аналогичные опыты проделывал и Фриц Габер при проверке опытов Мите. Несмотря на весьма чувствительные методы анализа, Харкинс и Кей не обнаружили и следов золота. Вероятно, полагали они, даже электроны со столь высокой энергией не в состоянии проникнуть в ядро атома ртути. Либо образовавшиеся изотопы золота столь неустойчивы, что не могут "дожить" до конца анализа, длящегося от 24 до 48 ч.

Таким образом, представление о механизме образования золота из ртути, предложенное Содди, было сильно поколеблено. Попытки других толкований с точки зрения ядерной физики также наткнулись на непреодолимое препятствие. В ртутной лампе, кроме золота, находили также и серебро, часто в больших количествах. С позиций теории строения атома образование серебра (заряд ядра 47) из ртути (заряд ядра 82) нельзя объяснить. До сих пор были известны лишь радиоактивные превращения одного элемента в другой, непосредственно соседствующий в периодической системе. В своем заключительном слове, обращенном к Мите, Габер говорил: "Возникновение серебра из ртути означало бы новый тип превращения элементов -- распад ядра на две половины". О таком "делении ядра" еще не мечтали даже теоретики атома.

В докладе в марте 1926 года Габер сказал: "Решение алхимических проблем остается пока на том самом месте, до которого довел их Резерфорд, а именно на превращениях атомов в ничтожных количествах, которые находятся далеко за порогом химической чувствительности". Однако, никто не может считать,-- к такому примечательному заключению пришел Габер,-- что это невозможно, раз это не удавалось никому. Быть может, с дальнейшей разработкой технических источников тока и более полным овладением высокими напряжениями будет подготовлена почва для более успешных опытов.

Чего же достигли американцы в использовании мощных энергии Ниагарского водопада с целью превращения ртути в золото? Широко задуманный эксперимент закончился неудачей. Гигантские энергии с необычайной силой вырвались на свободу и разрушили всю установку. Золота не получили. Исторического подтверждения этого происшествия найти невозможно, поскольку речь идет лишь о фантастической картине писателя Ганса Доминика, нарисованной им в утопическом романе, который был выпущен в 1927 году.

Вернемся к точной науке. Какие результаты получил профессор Шелдон из Нью-Йоркского университета при проверке опытов берлинца Мите? Сначала Шелдон проводил эксперименты с теми ртутными лампами, которые продавали в Америке. Он заполнял их ртутью, совершенно не содержащей золота. Поскольку в этих экспериментах золото не было обнаружено, Шелдон специально попросил прислать ему из Германии одну из тех ртутных ламп, которые использовал Мите. И здесь успеха не было... В ноябре 1925 года журнал "Сайнтифик америкэн" смог заверить всех заинтересованных лиц, что "финансовая основа цивилизованного мира не находится в опасности".

Несмотря на последние неутешительные результаты, у тайного советника Мите нашлось много последователей. Профессор Смитс из Химического института Амстердамского университета с 1924 по 1928 год гонялся за сходным призраком. Он хотел подобно Мите в его опытах с ртутью добиться распада атома свинца. По его мнению, при этом должны были возникнуть таллий и ртуть, быть может, с образованием альфа-излучения. Эта гипотеза сближала его, как уже известно, с уроженкой Румынии, Марацинеану.

Смитс не пожелал идти по следам алхимиков. Он обосновал свое решение следующим образом: "Я начал со свинца, ибо предполагал, что, быть может, конечный продукт самопроизвольных радиоактивных превращений можно искусственно возбудить для дальнейшего распада. Изучение свинца привлекает еще и потому, что уже самая незначительная трансмутация до ртути очень чувствительно улавливается спектральным путем; этот же метод, как известно, совершенно непригоден для обнаружения малых следов золота в ртути".

Смитс и его сотрудник Карсен сконструировали специальную кварцевую свинцовую лампу, которая содержала расплавленный свинец, и опубликовали фотографию этого прибора, напоминающего конструкции алхимиков. Они обнаружили искомую спектральную линию ртути и потому были убеждены, что произошло превращение элементов:

[206]Pb* [202]Hg + [4]He

Исследователи, проверявшие эти опыты, справедливо указывали, что Смитс и Карсен делали те же ошибки, что Мите и Штамрайх: они не учитывали следов других металлов, присутствовавших или привнесенных. Нидерландские исследователи в ответ уверяли, что их свинец совершенно не содержал ртути...

Алхимические патенты

"Продуктивность" алхимиков в XX веке можно проследить не только по книгам и журналам, но, как это ни странно, и по патентам. Нам, привыкшим к тому, что в патентах, прежде всего, отражены научно-технические достижения, это кажется весьма удивительным.

Речь идет исключительно о патентах, взятых за пределами Германии; немецкое патентное бюро в Берлине всегда отказывало в признании заявок, которые пытались защитить истинно алхимический процесс. При заявке немецкого патента уже тогда на первом плане стояла практическая реализуемость, то есть производственное использование. В других промышленных государствах, таких, как Англия и Франция, возможно было в то время зарегистрировать, как бы невероятно это ни звучало, процессы для получения золота из малоценных металлов. Эти страны проверяли патентные заявки только на формальное соответствие. Такой консервативный принцип имеет свои преимущества: до следующих поколений доходят некоторые забавные "открытия", среди них -несколько патентов для получения золота. Средневековые алхимики хранили свои тайны с величайшей тщательностью, а потом уносили их с собой в могилу. Алхимики XX века так же стремились обеспечить себе привилегии, но вполне современным способом -- с помощью патента.

Вот некоторые из них на выбор. В 191 1 году некая Мария Ру получила от английского и французского патентных бюро патент на "процесс трансмутации металлов". Мадам Ру, вероятно, ученица Тиффро, хотела ускорить процесс образования золота, столь медленно протекающий в природе. Из кремниевой кислоты и оксида железа (ржавчины), восстановленного до металлического железа при высоких температурах, она получала серебро и золото. Так, во всяком случае, говорится в описании английского патента No 26356.

Через двадцать лет, в 1930 году, англичане выдали патент (No 306048), защищавший получение золота и серебра из железных и стальных опилок. Изобретателем этого единственного в своем роде процесса был итальянец Вольпато. Он считал, что при действии на железо сильного магнитного поля скорость обращения электронов возрастает столь сильно, что они уже "не знают", принадлежат ли атомам железа или атомам золота.

Загрузка...