В августе 1942 года американцам Каннингему и Вернеру удалось получить около 1 мкг плутония. Через месяц, 10 сентября 1942 года, впервые было взвешено видимое количество искусственно изготовленного элемента: 2,77 мкг оксида плутония. Для этого специально были сконструированы микровесы с кварцевой нитью. В конце 1942 года уже имелось 500 мкг -- полмиллиграмма соли плутония. Это количество слишком мало даже для того, чтобы изготовить булавочную головку. Поразительна разработанная Каннингемом техника работы, ставшая основой ультрамикроанализа; необходимость работы с микроколичествами вещества заставила использовать совершенно новые формы искусства химического эксперимента. Лабораторный стол уступил место микроскопу. Почти все манипуляции пришлось проводить под стереомикроскопом. Обычные лабораторные стаканы и Колбы сократились до размеров тончайших капилляров с внутренним диаметром от 0,1 до 1 мм. В них помещали объемы жидкости от 10[-1] до 10[-5] мл и проводили химические реакции. Об этих работах значительной научной ценности по выделению и изучению 94-го элемента научный мир узнал только в послевоенные годы, когда с них была снята завеса секретности.
Основываясь на свойствах плутония, изученных ультрамикрометодами, был сделан смелый шаг: проектирование и постройка промышленных установок для изготовления и очистки этого делящегося элемента в масштабе 1:1000 000 000. Работа была начата в США в то время, когда еще не функционировал ни один реактор для синтеза плутония. Последний американцы запустили лишь 2 декабря 1942 года: под трибуной спортивного стадиона в Чикаго Энрико Ферми успешно поджег урановый котел, состоящий из слоев 6 т урана, 36,6 т оксида урана и 315 т чистейшего графита. В ход была пущена самоподдерживающаяся цепная реакция: управляемая, а следовательно, не разрушительная, как того боялись. Впервые "урановая машина" вырабатывала энергию, хотя сначала только 200 Вт. Также впервые в урановом реакторе образовывался элемент плутоний: элементы в реакторе искусственно превращались друг в друга в весомых количествах.
Для атомной промышленности США удачный эксперимент Ферми означал последний этап к осуществлению производства плутония в Хэнфорде. С невероятной поспешностью были установлены три гигантских урановых котла на южном берегу реки Колумбия. Атомный реактор Ферми работал, как часы. Когда в годы войны эти реакторы были запущены на полную мощность, они помимо большого числа радиоактивных изотопов вырабатывали ежедневно около 1,5 кг плутония. Кроме того, в процессе ядерного деления выделялось много энергии, которая не находила применения и лишь нагревала воду реки.
Когда американскому журналисту Вильяму Лоуренсу, автору нескольких популярных брошюр по атомной энергии, разрешено было побывать в Хэнфорде, увиденное поразило его. По его словам, не было никакого признака того, что в этом гиганте, построенном рукой человека, свирепствует космический огонь; что в его утробе происходит тот процесс созидания элементов, который, вероятно, протекал миллионы лет назад, когда возникали основы нашего мироздания. Все казалось каким-то нереальным. Установка работала в неестественной тишине, в которой можно было услышать биение собственного сердца.
Ферми использовал для своего реактора графит в качестве замедлителя. Немцы, как известно, предпочли тяжелую воду. Однако таким путем они не достигли цели. К тому же фашистская Германия была близка к гибели и не располагала теми мощными материальными и техническими средствами, которые имелись в США. Немецкая модель урановой машины не достигла критической массы; нельзя было получить 94-й элемент. Все другие работы по выделению атомного взрывчатого вещества уран-235 тоже не были закончены до конца войны. К счастью для народов, гитлеровская атомная бомба так и осталась страшным видением.
"Ад" и "безумие"
Благодаря точным ультрамикрохимическим работам ученые очень скоро стали располагать всеми основными физико-химическими данными для искусственного элемента плутония. Теперь исследователи с некоторой гордостью заявляют, что о плутонии известно больше, чем о каком-нибудь классическом элементе, скажем, железе.
Когда в конце 1943 года в США смогли "наскрести" несколько миллиграммов плутония, в Чикагском университете группа Гленна Сиборга и Альберта Гиорсо стала работать над синтезом и обнаружением других ближайших трансуранов -95- и 96-го. Они, несомненно, также должны образовываться в атомном реакторе в результате многократного захвата нейтронов ураном. Однако не было смысла выделять неизвестные элементы из продуктов деления до тех пор, пока не будут известны их химические и физические свойства. Поэтому Сиборг с сотрудниками хотели сначала получить эти трансураны при помощи циклотрона бомбардировкой плутония нейтронами или дейтронами. Между тем опыты, длившиеся месяцами, не давали каких-либо сдвигов. Появились сомнения в правильности использования методов разделения.
Прежние представления, согласно которым элементы 93, 94, 95 являются аналогами рения, осмия и иридия, то есть должны проявлять те же химические свойства, были разрушены с открытием нептуния и плутония: в этом месте периодическая система элементов была неверна! Экарений -- нептуний и экаосмий -- плутоний, как ни странно, совершенно не имели сходства с рением или осмием. Поэтому Сиборг предположил, что трансураны вместе с ураном относятся к новой группе элементов, являющихся преимущественно шестивалентными. Однако как ни привлекателен был этот вариант, как раз для него не было химических доказательств. Все операции, предпринятые для выделения полученных элементов 95 и 96, не приводили ни к чему, если исходить из их 6-валентности.
Сиборг вновь и вновь перепроверял свои представления. Быть может, аналогично 14 лантаноидам (редкоземельным элементам) существует также группа из 14 "актиноидов", которая следует за актинием и заканчивается 103-м элементом? В этом случае элементы 95 и 96 должны иметь электронные конфигурации, сходные с их "родственниками" -- европием (элемент 63) и гадолинием (элемент 64), то есть должны быть преимущественно трехвалентными.
Завороженная этой мыслью группа Сиборга рискнула сделать отважный прыжок в неизвестное. Они хотели, прежде всего, синтезировать элемент 96, чтобы на нем проверить свои представления. Летом 1944 года они бомбардировали 10 мг плутония -- больше не было -- альфа-частицами из циклотрона в Беркли:
[239]Pu + [4]He [242]X+ n
Опыт удался, удались и химическое разделение и идентификация элемента 96. Появилась актиноидная концепция Сиборга: актиноиды являются не чем иным, как экалантаноидами. Это следовало учитывать при размещении их в периодической системе. Так получилось, что 96-й элемент был открыт еще до 95-го. Однако химическое разделение обоих элементов долгое время казалось невыполнимым. Один сотрудник из группы в Беркли предложил назвать эти трансураны "пандемониум" (ад) и "делириум" (безумие). Разделение удалось только в 1945 году и лишь с помощью новой техники, которая основывалась на селективности только что разработанных ионообменных смол. Выделенный 96-й элемент назвали кюрием в честь Марии Кюри. Для 95-го элемента предложили название америций, исходя из его лантаноидного аналога -- европия. Когда позднее было получено первое видимое глазом количество искусственного элемента америция и его хотели запечатлеть на пленке, в Беркли отыскали подходящий для сравнения масштаб: маленькое игольное ушко. И все же оно было больше, чем количество америция, собранное на крошечном центрифужном стеклышке!
Чтобы получить следующие трансураны, нужно было располагать достаточно большими количествами америция и кюрия в качестве веществ для мишени. Вопрос касался не только их синтеза и выделения, но и лучевой защиты, ибо новые трансураны оказались крайне коварными радиоактивными веществами. Одним из опаснейших является плутоний вследствие его долго неисчезающий радиоактивности, а также способности задерживаться в человеческом организме. В 1 м[3] воздуха максимально допустимое содержание составляет 10[-9] г Pu. Если сравнить с синильной кислотой -- одним из сильнейших химических ядов, то ее предельно допустимая концентрация равна 11 мг на 1 м[3] воздуха. Поэтому при работе с этими искусственными элементами, ввиду их "радиотоксичности", первоочередной проблемой становится защита.
Синтезы элементов 97 и 98 заставили себя ждать. Затем их наконец получили. Сиборг, Гиорсо и Томсон в Беркли бомбардировали элементы 95 и 96 альфа-частицами большой энергии. Для мишеней были взяты миллиграммовые количества америция и даже микрограммовые количества кюрия, которые синтезировали искусственно в 1949/50 годах. Они были получены облучением соответственно плутония и америция в реакторе мощным потоком нейтронов. В урановом реакторе поток нейтронов во много раз интенсивнее, чем в циклотроне.
Два новых элемента увидели свет: 97-й -- берклий и 98-й - калифорний. Особенно тяжело досталось обнаружение 98-го элемента: из микрограммовых количеств кюрия образовывалось лишь около 5 000 атомов калифорния. Когда это стало известно, в университете в Беркли многие шутили: это количество значительно меньше, чем число студентов! Берклий так и остался очень редким элементом. Мировой запас и сегодня составляет лишь несколько миллиграммов. И все же благодаря изощренным методам анализа наука знает все наиболее существенные физико-химические константы этого искусственного элемента.
В настоящее время атомный реактор является основным источником получения элементов 94--98. Трансураны извлекают из отходов, образующихся после выгорания стержней из обогащенного урана, причем выделяют эти элементы в различных количествах. К этому мы еще вернемся. Значительно выше выходы продуктов деления средней массы, в которые превращается в реакторе уран-235. К ним относятся также искусственные элементы 43 и 61.
В 1945 году американские химики Марийский, Гленденин и Кориелл, используя новый ионообменник, впервые выделили заметные количества 61-го элемента. Все они вошли в историю науки как первооткрыватели этого элемента. Американцы предложили назвать его прометий, что символизировало бы отвагу человеческого духа и вместе с тем возможные опасности использования атомной энергии: ведь Прометей похитил у богов огонь, чтобы передать его людям.
Главный изотоп, прометий-147, радиоактивен и испускает слабое бета-излучение. Эти данные совпали с теоретическими предсказаниями. После того, как стали известны характерные свойства нового элемента, опыты по обнаружению его в природе, проводившиеся Эреметсе и другими учеными, имели некоторый успех. Работая в промышленном масштабе, финский химик выделил из 6 000 т апатита около 20 т оксидов редкоземельных элементов, а из них -- 3,8 кг смеси оксидов самария и неодима. После разделения на ионообменнике осталось целых 83 мг, которые испускали слабое бета-излучение. Эту фракцию Эреметсе исследовал в 1965 году и ее бета-спектр совпал со спектром прометия-147. По оценке Эреметсе, в концентрате, полученном из 6000 т апатита, должно содержаться 10[-11] г прометия. Кроме того, следы этого элемента были найдены также в урановой смолке. Предполагается, что природный прометий образовался захватом нейтронов 60-м элементом, неодимом, либо спонтанным делением урана-238, а также индуцированным делением урана-235. Однако такие природные "находки" не отвергают определения прометия, как искусственного элемента. Ведь ощутимые количества его и сегодня можно получить только из продуктов деления урана: мощные реакторы в 10 000 кВт дают ежедневно 1500 мг прометия-147. В 1959 году годовой выпуск прометия в США повысился уже до 650 г.
Изотоп технеция [99]Тс также удалось обнаружить в природе в виде следов. В 1 кг урановой руды нашли 10[-10] г изотопа. Технеций-99 возникает при спонтанном делении урана-238. Однако вряд ли кто-нибудь захочет получать его из урановых руд. В настоящее время располагают килограммовыми количествами технеция и получают его исключительно в ядерной промышленности. Еще в 1959 году английские химики сообщали, что они выделили 20 г этого искусственного элемента из 100 т отработанного реакторного топлива.
По новейшим исследованиям, плутоний уже нельзя называть искусственным элементом, ибо в 1971 году его обнаружили в природном редкоземельном минерале бастнезите, не содержащем урана. В 90 кг горной породы содержится 10[-14] г плутония-244, что было установлено с помощью масс-спектрографа. Это -- единственный изотоп 94-го элемента, который еще не совсем исчез с лица Земли за время ее существования. Другие изотопы плутония, которые сегодня в виде следов еще находятся в природных урановых рудах, имеют, как уже говорилось, искусственное происхождение.
По приблизительной оценке, вся земная кора толщиной в 16 км содержит около 1 кг плутония. Ввиду этого в таблице распространенности природных элементов плутоний занимает 90-е место -- между нептунием и францием. Таким образом, единственным источником плутония является также ядерная промышленность, которая дала уже многие тонны этого элемента.
Циклотроны и урановые реакторы все больше становятся современным философским камнем. С их помощью помимо большого числа известных радиоактивных элементов в значительных количествах синтезируются и новые -в граммах, килограммах и даже тоннах. В этой связи, естественно, возникает провокационный вопрос: нельзя ли производить также и золото в урановом реакторе?
Золото, полученное в атомном реакторе
В 1935 году американскому физику Артуру Демпстеру удалось провести масс-спектрографическое определение изотопов, содержащихся в природном уране. В ходе опытов Демпстер изучил также изотопный состав золота и обнаружил только один изотоп -- золото-197. Никаких указаний на существование золота-199 не было. Некоторые ученые предполагали, что должен существовать тяжелый изотоп золота, ибо золоту в то время приписывали относительную атомную массу 197,2. Однако золото является моноизотопным элементом. Поэтому желающим искусственным путем получить этот вожделенный благородный металл все усилия необходимо направить на синтез единственного устойчивого изотопа -- золота-197.
Известия об успешных опытах по изготовлению искусственного золота всегда вызывали беспокойство в финансовых и правящих кругах. Так было во времена римских правителей, так осталось и теперь. Поэтому не удивительно, что сухой отчет об исследованиях Национальной лаборатории в Чикаго группы профессора Демпстера еще недавно вызвал возбуждение в капиталистическом финансовом мире: в атомном реакторе можно из ртути получить золото! Это -самый последний и убедительный случай алхимического превращения.
Началось это еще в 1940 году, когда в некоторых лабораториях ядерной физики начали бомбардировать быстрыми нейтронами, полученными с помощью циклотрона, соседние с золотом элементы -- ртуть и платину. На совещании американских физиков в Нэшвилле в апреле 1941 года А. Шерр и К. Т. Бэйнбридж из Гарвардского университета доложили об успешных результатах таких опытов. Они направили разогнанные дейтроны на литиевую мишень и получили поток быстрых нейтронов, который был использован для бомбардировки ядер ртути. В результате ядерного превращения было получено золото! Три новых изотопа с массовыми числами 198, 199 и 200. Однако эти изотопы не были столь устойчивыми, как природный изотоп -- золото-197. Испуская бета-лучи, они по истечении нескольких часов или дней снова превращались в устойчивые изотопы ртути с массовыми числами 198, 199 и 200. Следовательно, у современных приверженцев алхимии не было повода для ликования. Золото, которое вновь превращается в ртуть, ничего не стоит: это обманчивое золото. Однако ученые радовались успешному превращению элементов. Они смогли расширить свои познания об искусственных изотопах золота.
В основе "трансмутации", проведенной Шерром и Бейнбриджем, лежит так называемая (n, p) -реакция: ядро атома ртути, поглощая нейтрон n, превращается в изотоп золота и при этом выделяется протон р.
Природная ртуть содержит семь изотопов в разных количествах: 196 (0,146 %), 198 (10,02 %), 199 (16,84 %), 200 (23,13 %), 201 (13,22 %), 202 (29,80 %) и 204 (6,85 %). Поскольку Шерр и Бейнбридж нашли изотопы золота с массовыми числами 198, 199 и 200, следует полагать, что последние возникли из изотопов ртути с теми же массовыми числами. Например:
[198]Hg + n [198]Au + р
Такое предположение кажется оправданным -- ведь эти изотопы ртути являются довольно распространенными.
Вероятность осуществления какой-либо ядерной реакции определяется, прежде всего, так называемым эффективным сечением захвата атомного ядра по отношению к соответствующей бомбардирующей частице. Поэтому сотрудники профессора Демпстера, физики Ингрем, Гесс и Гайдн, пытались точно определить эффективное сечение захвата нейтронов природными изотопами ртути. В марте 1947 года они смогли показать, что изотопы с массовыми числами 196 и 199 обладают наибольшим сечением захвата нейтронов и потому имеют наибольшую вероятность превращения в золото. В качестве "побочного продукта" своих экспериментальных исследований они получили... золото! Точно 35 мкг, полученных из 100 мг ртути после облучения замедленными нейтронами в атомном реакторе. Это составляет выход 0,035 %, однако если найденное количество золота отнести лишь к ртути-196, то получится солидный выход в 24 %, ибо золото-197 образуется только из изотопа ртути с массовым числом 196.
С быстрыми нейтронами часто протекают (n, р)-реакции, а с медленными нейтронами -- преимущественно (n,()-превращения. Золото, открытое сотрудниками Демпстера, образовалось следующим образом:
[196]Hg + n [197]Hg* + (
[197]Hg* + e[-] [197]Au
Образующаяся по (n, ()-процессу неустойчивая ртуть-197 превращается в устойчивое золото-197 в результате К-захвата (электрона с К-оболочки своего собственного атома).
Таким образом, Ингрем, Гесс и Гайдн синтезировали в атомном реакторе ощутимые количества искусственного золота! Несмотря на это, их "синтез золота" никого не встревожил, поскольку о нем узнали лишь ученые, тщательно следившие за публикациями в "Физикл ревью". Отчет был кратким и наверняка недостаточно интересным для многих из-за своего ни о чем не говорящего заголовка: "Neutron cross-sections for mercury isotopes" (Эффективные сечения захвата нейтронов изотопами ртути). Однако случаю выло угодно, чтобы через два года, в 1949 году, чересчур ретивый журналист подхватил это чисто научное сообщение и в крикливо-рыночной манере провозгласил в мировой прессе о производстве золота в атомном реакторе. Вслед за этим во Франции произошла крупная неразбериха при котировании золота на бирже. Казалось, что события развиваются именно так, как представлял себе Рудольф Дауман, предсказавший в своем фантастическом романе "конец золота".
Однако искусственное золото, полученное в атомном реакторе, заставляло себя ждать. Оно никак не собиралось затоплять рынки мира. Кстати, профессор Демпстер в этом и не сомневался. Постепенно французский рынок капитала вновь успокоился. В этом не последняя заслуга французского журнала "Атомы", который в январском номере 1950 года поместил статью: "La transmutation du mercure en or" (Трансмутация ртути в золото).
Хотя журнал в принципе признавал возможность получения золота из ртути методом ядерной реакции, однако своих читателей он уверял в следующем: цена такого искусственного благородного металла будет во много раз выше, чем природного золота, добытого из самых бедных золотых руд!
Сотрудники Демпстера не могли отказать себе в удовольствии - получить в реакторе некоторое количество такого искусственного золота. С тех пор этот крошечный любопытный экспонат украшает Чикагский музей науки и промышленности. Этим раритетом -- свидетельством искусства "алхимиков" в атомную эру -- можно было полюбоваться во время Женевской конференции в августе 1955 года.
С точки зрения ядерной физики возможны несколько превращений атомов в золото. Мы наконец откроем тайну философского камня и расскажем, как можно сделать золото. Подчеркнем при этом, что единственно возможный путь -- это превращение ядер. Все другие дошедшие до нас рецепты классической алхимии ничего не стоят, они приводят лишь к обману.
Устойчивое золото, [197]Au, можно было бы получить путем радиоактивного распада определенных изотопов соседних элементов. Этому нас учит так называемая карта нуклидов, в которой представлены все известные изотопы и возможные направления их распада. Так, золото-197 образуется из ртути-197, излучающей бета-лучи, либо из такой ртути путем К-захвата. Можно было бы также получить золото из таллия-201, если бы этот изотоп испускал альфа-лучи. Однако этого не наблюдается. Как же получить изотоп ртути с массовым числом 197, которого нет в природе? Чисто теоретически его можно получить из таллия-197, а последний -- из свинца-197. Оба нуклида самопроизвольно с захватом электрона превращаются соответственно в ртуть-197 и таллий-197. Практически это была бы единственная, хотя и только теоретическая, возможность сделать золото из свинца. Однако свинец-197 тоже лишь искусственный изотоп, который надо сначала получить ядерной реакцией. С природным свинцом дело не пойдет.
Изотопы платины [197]Pt и ртути [197]Hg тоже получают только ядерными превращениями. Реально осуществимыми являются лишь реакции, в основе которых лежат природные изотопы. В качестве исходных веществ для этого подходят только [196]Hg, [198]Hg и [194]Pt. Эти изотопы можно было бы бомбардировать разогнанными нейтронами или альфа-частицами с тем, чтобы прийти к следующим реакциям:
[196]Hg + n [197]Hg* + (
[198]Hg + n [197]Hg* + 2n
[194]Pt + [4]He [197]Hg* + n
С таким же успехом можно было бы получить искомый изотоп платины из [194]Pt путем (n, ()-превращения либо из [200]Hg путем (n, () -процесса. При этом, конечно, нельзя забывать, что природное золото и платина состоят из смеси изотопов, так что в каждой случае приходится учитывать конкурирующие реакции. Чистое золото придется в конце концов выделять из смеси различных нуклидов и непрореагировавших изотопов. Процесс этот будет требовать больших затрат. От превращения платины в золото вообще придется отказаться из экономических соображений: как известно, платина дороже золота.
Другим вариантом синтеза золота является непосредственное ядерное превращение природных изотопов, например, по следующим уравнениям:
[200]Hg + р [197]Au + [4]He
[199]Hg + d [197]Au + [4]He
К золоту-197 привел бы также ((, р) -процесс (ртуть-198), ((, р) -процесс (платина-194) или (р, () либо (d, n)-превращение (платина-196). Вопрос заключается лишь в том, возможно ли это практически, а если да, то рентабельно ли это вообще по упомянутым причинам. Экономичной была бы только длительная бомбардировка ртути нейтронами, которые имеются в реакторе в достаточной концентрации. Другие частицы пришлось бы получать или ускорять в циклотроне -- такой метод, как известно, дает лишь крошечные выходы веществ.
Если природную ртуть подвергнуть в реакторе действию потока нейтронов, то кроме устойчивого золота образуется главным образом радиоактивное. Это радиоактивное золото (с массовыми числами 198, 199 и 200) имеет очень малую продолжительность жизни и в течение нескольких дней вновь превращается в исходные вещества с испусканием бета-излучения:
[198]Hg + n [198]Au* + p
[198]Au [198]Hg + e[-] (2,7 дня)
Исключить обратное превращение радиоактивного золота в ртуть, то есть разорвать этот Circulus vitiosus[69], ни в коем случае не удается: законы природы нельзя обойти.
В этих условиях менее сложным, чем "алхимия", кажется синтетическое получение дорогостоящего благородного металла -- платины. Если бы удалось направить бомбардировку нейтронами в реакторе так, чтобы происходили преимущественно (n, ()-превращения, то можно было бы надеяться получить из ртути значительные количества платины: все распространенные изотопы ртути -[198]Hg, [199]Hg, [201]Hg -- превращаются в устойчивые изотопы платины -- [195]Pt, [196]Pt и [198]Pt. Конечно, и здесь очень сложен процесс выделения синтетической платины.
Фредерик Содди еще в 1913 году предложил путь получения золота ядерным превращением таллия, ртути или свинца. Однако в то время ученые ничего не знали об изотопном составе этих элементов. Если бы предложенный Содди процесс отщепления альфа-и бета-частиц мог быть осуществлен, следовало бы исходить из изотопов [201]Tl, [201]Hg, [205]Pb. Из них в природе существует лишь изотоп [201]Hg, смешанный с другими изотопами этого элемента и химически неразделимый. Следовательно, рецепт Содди был неосуществим.
То, что не удается даже выдающемуся исследователю атома, не сможет, конечно, осуществить профан. Писатель Дауман в своей книге "Конец золота", вышедшей в 1938 году, сообщил нам рецепт, как превратить висмут в золото: отщеплением двух альфа-частиц от ядра висмута с помощью рентгеновских лучей большой энергии. Такая ((, 2()-реакция не известна и до настоящего времени. Помимо этого, гипотетическое превращение
[205]Bi + ( [197]Au + 2(
не может идти и по другой причине: не существует устойчивого изотопа [205]Bi. Висмут -- моноизотопный элемент! Единственный же природный изотоп висмута с массовым числом 209 может дать по принципу реакции Даумана -- только радиоактивное золото-201, которое с периодом полураспада 26 мин снова превращается в ртуть. Как видим, герой романа Даумана, ученый Баргенгронд, и не мог получить золото!
Теперь нам известно, как действительно получить золото. Вооруженные знанием ядерной физики рискнем на мысленный эксперимент: 50 кг ртути превратим в атомном реакторе в полновесное золото -- в золото-197. Настоящее золото получается из ртути-196. К сожалению, этого изотопа содержится в ртути только 0,148 %. Следовательно, в 50 кг ртути присутствует лишь 74 г ртути-196, и только такое количество мы можем трансмутировать в истинное золото.
Вначале будем оптимистами и положим, что эти 74 г ртути-196 можно превратить в такое же количество золота-197, если подвергнуть ртуть бомбардировке нейтронами в современном реакторе производительностью 10[15] нейтронов/(см[2]*с). Представим себе 50 кг ртути, то есть 3,7 л, в виде шара, помещенного в реактор, тогда на поверхность ртути, равную 1157 см[2], в каждую секунду будет воздействовать поток 1,16 * 10[18] нейтронов. Из них на 74 г изотопа-196 воздействуют 0,148 %, или 1,69 * 10[15] нейтронов. Для упрощения примем далее, что каждый нейтрон вызывает превращение [196]Hg в [197]Hg*, из которой захватом электрона образуется [197]Au.
Следовательно, в нашем распоряжении имеется 1,69 * 10[15] нейтронов в секунду для того, чтобы превратить атомы ртути-196. Сколько же это, собственно, атомов? Один моль элемента, то есть 197 г золота, 238 г урана, 4 г гелия, содержит 6,022 * 10[23] атомов. Приблизительное представление об этом гигантском числе мы сможем получить лишь на основе наглядного сравнения. Например, такого: представим себе, что все население земного шара 1990 года -- примерно 6 миллиардов человек -- приступило к подсчету этого количества атомов. Каждый считает по одному атому в секунду. За первую секунду сосчитали бы 6 * 10[9] атомов, за две секунды -- 12 * 10[9] атомов и т. д. Сколько времени потребуется человечеству в 1990 году, чтобы сосчитать все атомы в одном моле? Ответ ошеломляет: около 3 200 000 лет!
74 г ртути-196 содержат 2,27 * 10[23] атомов. В секунду с данным потоком нейтронов мы можем трансмутировать 1,69*10[15] атомов ртути. Сколько времени потребуется для превращения всего количества ртути-196? Вот ответ: потребуется интенсивная бомбардировка нейтронами из реактора с большим потоком в течение четырех с половиной лет! Эти огромные затраты мы должны произвести, чтобы из 50 кг ртути в конце концов получить только 74 г золота, и такое синтетическое золото надо еще отделить от радиоактивных изотопов золота, ртути и др.
Да, это так, в век атома можно сделать золото. Однако процесс слишком дорог. Золото, полученное искусственно в реакторе, бесценно. Проще было бы продавать в качестве "золота" смесь его радиоактивных изотопов. Может быть, писатели-фантасты соблазнятся на выдумки с участием этого "дешевого" золота?
"Mare tingerem, si mercuris esset" (Я море бы превратил в золото, если бы оно состояло из ртути). Это хвастливое высказывание приписывали алхимику Раймундусу Луллусу. Предположим, что мы превратили не море, но большое количество ртути в 100 кг золота в атомном реакторе. Внешне неотличимое от природного, лежит перед нами это радиоактивное золото в виде блестящих слитков. С точки зрения химии это -- тоже чистое золото. Какой-нибудь Крез покупает эти слитки по сходной, как полагает, цене. Он и не подозревает, что в действительности речь идет о смеси радиоактивных изотопов [198]Au и [199]Au, период полураспада которых составляет от 65 до 75 ч. Можно представить себе этого скрягу, увидевшего, что его золотое сокровище буквально утекает сквозь пальцы. За каждые три дня его имущество уменьшается наполовину, и он не в состоянии это предотвратить; через неделю от 100 кг золота останется только 20 кг, через десять периодов полураспада (30 дней) -- практически ничего (теоретически это еще 80 г). В сокровищнице осталась только большая лужа ртути. Обманчивое золото алхимиков!
Тайна золотого медальона
Атомная физика дает также ответ на вопрос, возможны ли вообще с научной точки зрения те "превращения" других металлов в золото, которые раньше практиковали алхимики. Сегодня мы знаем, что превращение атомов в золото осуществляется только в случае трансмутации соседних элементов -- ртути и платины -- в устойчивое золото.
Все другие "процессы" получения золота -- превращением железа, олова, свинца, даже серебра -- заранее обречены на неудачу. Если при таких алхимических манипуляциях действительно "найдено" золото, то оно либо уже было, либо обогащено повторными переплавками. Чаще же всего его ловко примешивали с целью обмана. Нередко использовали и другие трюки для изготовления сплавов и металлических покрытий, поразительно похожих на золото.
Вспомним хотя бы латунь, которая в неокисленном состоянии обладает прекраснейшим золотым блеском. А тот, кто не поверит, что отливающая золотом бронза -- сплав меди (29) и олова (50) -- не является с точки зрения "ядерной физики" золотом, должен просто сложить заряды ядер отдельных компонентов: 50 + 29 79. Такой "расчет" сделал однажды один ученый-юморист. Сейчас в ювелирном промысле часто и вполне законным образом используют сплавы из других металлов, поразительно похожие на золото. Принц-металл -- так именуют латунь золотой окраски. Мангеймским золотом называют сплав меди, цинка и олова. Мозаичное золото, полученное из меди и цинка, имеет оттенок самородного золота. Металл Гамильтона применяют для "золочения" различных предметов. Однако наиболее известен тальми -- также сплав меди с цинком, имеющий прекрасную золотую окраску и чрезвычайную стойкость к коррозии.
Существуют, кроме того, минералы и химические соединения, сходные с золотом. Сюда относятся слюда с желтовато-золотым блеском, называемая в народе кошачьим золотом, и пирит (железный колчедан), имеющий металлический латунный блеск. Легендарное золотое сокровище короля Креза, должно быть, большей частью состояло из искрящегося пирита.
Совсем недавно, в 1974 году, канадским химикам удалось получить из ртути кристаллы с золотым блеском. Речь идет о соединении необычайного строения и состава: Hg1,85AsF6, арсенофториде ртути. Не "алхимия" ли это в лучшем, классическом смысле!
Могут справедливо возразить, что средневековые алхимики еще ничего не знали об атомной физике. У них не было ни сегодняшнего опыта, ни научно-технических средств. Сторонники алхимии считали, что существовали веские доказательства искусства алхимиков. Откуда же возникло золото, которое изготовлял Луллус по поручению английского короля Эдуарда? Если мы хотим развеять легенду о золоте древних умельцев, необходимо точно ответить на этот и другие вопросы.
Из какого источника черпал золото саксонский курфюрст Август, который занимался алхимией и оставил золотое сокровище в 17 миллионов талеров?
Что кроется за тайной золотого медальона, который преподнес алхимик Зейлер императору Леопольду I?
Что означает аргентаурум мистера Эмменса?
Пришло время ответить на эти вопросы...
В честь победы на море над французами в 1340 году английский король Эдуард III -- он царствовал с 1327 по 1377 год -- повелел чеканить специальные золотые монеты, так называемые нобли. До 1360 года нобли сохраняли провокационную надпись: "Король Англии и Франции". Монеты эти якобы были изготовлены из золота Раймундуса Луллуса.
Раймундус Луллус родился в 1235 году, умер уже в 1315-м, по другим источникам -- не позднее 1333-го. Он служил королю Эдуарду I, который царствовал до 1307 года. Это несомненно. С другой стороны, установлено, что нобли изготовлены из полновесного золота, а не из золота алхимиков. Выходит, что Луллус не мог сделать золото. В то же время исторически достоверно, что король Эдуард III собирал военные контрибуции путем повышения налогов и наложением долговых обязательств. Не стесняясь, он конфисковал золотые предметы из церквей и монастырей, налагал арест даже на символы коронации.
Семнадцать миллионов талеров золотом составило сокровище, которое оставил своим наследникам саксонский курфюрст Август. Он правил с 1553 по 1586 год. Август сам был алхимиком, и к тому же ему служил алхимик Шверцер. Свое золото Август якобы добыл тайным искусством.
Каково истинное происхождение этого золота? Аптекарь и историк Иоганн Христиан Виглеб тоже задал себе такой вопрос. Точный ответ мы находим в его "Историко-критическом исследовании алхимии или воображаемого искусства изготовления золота", появившемся в 1777 году. Для опровержения легенды о золоте алхимиков Виглеб перерыл исторические источники и обнаружил, что золотому сокровищу саксонского курфюрста есть весьма вероятное объяснение. В XV и XVI веках разработка серебряных руд в саксонских рудоносных горах достигла неожиданного расцвета. Из плодоносных рудников в Шнееберге, Фрайберге и Аннаберге добывали большие количества серебра. Десятая часть -так называемая десятина -- должна была принадлежать властителю. Еще такое же количество курфюрст получал с монетного двора за предоставленную привилегию чеканки монет. Исторически доказано, что за 1471 -- 1550 годы саксонские курфюрсты присвоили только из шнеебергских серебряных рудников более 4 миллиардов талеров.
В период правления курфюрста Августа серебряное изобилие рудоносных гор не уменьшилось. Поэтому, по мнению Виглеба, "уже не является загадкой, как Август после 33-летнего правления и столь же длительной эксплуатации рудников... смог оставить 17 миллионов талеров... Можно удивляться, что он не оставил больше". Шнеебергский пираргит содержал немалые количества золота, которое тоже извлекали. Шверцер, милостью курфюрста назначенный придворным алхимиком, имел особое пристрастие к этой серебряной руде и "трансмутировал" ее до тех пор, пока в плавильном тигле не начинало сверкать золото.
В 1677 году монах Венцель Зейлер опустил серебряный медальон весом 7 кг примерно на четыре пятых в удивительную жидкость и на глазах придворных императора Леопольда I превратил его в чистое золото. Никто и не думал тогда, что трюк Зейлера будет разгадан только через 250 лет. Конечно, и раньше отбирали пробы по несколько сантиметров с обеих сторон "границы трансмутации" для определения плотности. Эти зарубки можно увидеть и сейчас. Полученное неопределенное значение 12,6, правда, не совсем соответствовало плотности чистого золота (19,3), а скорее, сплаву серебра с золотом, содержащему 37 % золота. Однако такое предположение еще не давало ключа к тайне медальона.
В последующие годы отбор проб был запрещен, ввиду ценности медальона для истории искусства. Неизвестно было, как разгадать тайну, не отбирая проб для химического анализа. Только в 1931 году два химика из Института микроанализа Венского университета. Штребингер и Райф, смогли нарушить это табу. Они заверили, что используют для каждого анализа не более 10--15 мг. Ученые отобрали пробы без видимого повреждения медальона и установили состав сплава. Чувствительные методы микроанализа дали поразительный результат: медальон имеет совершенно однородный состав, а именно: 43 % серебра, 48 % золота, 7 % меди и небольшие количества олова, цинка и железа.
Как же удалось Зейлеру придать серебряному сплаву такой оттенок, что все приняли его за чистое золото? Ибо по результатам анализа стало совершенно ясно, что речь здесь идет об окрашивании, а не превращении металла.
Венские химики твердо решили окончательно разгадать тайну средневекового медальона. По их просьбе венский монетный двор изготовил сплав такого же состава. Штребингер и Райф погружали его образцы в самые различные кислоты и растворы солей, пока не открыли вновь рецепт Венцеля Зейлера. Холодная, наполовину разбавленная азотная кислота, которую хорошо умели готовить средневековые алхимики и использовали для разделения золота и серебра, сообщает погруженным в нее серебряным сплавам желаемый золотой блеск! В настоящее время такое травление или "желтое кипячение" относится к самым употребительным рабочим приемам ювелиров. Обработкой различными минеральными кислотами достигается желаемая окраска чистого золота в 24 карата.
Остается еще объяснить случай с американцем Эмменсом. Откуда возникло золото, которое добывал этот современный алхимик якобы из мексиканских серебряных долларов? Имелось серьезное подозрение, что Эмменс был связан с преступной бандой, переплавлявшей похищенные украшения и предметы искусства. Такая переплавка практиковалась еще испанцами, которые превращали в слитки золото ацтеков, не задумываясь над их художественно-исторической ценностью. Почему бы и Эмменсу не поступить так же, полагали в Нью-Йорке. "Алхимик", который как ремесленник изготовляет благородный металл,-- это ли не самый безопасный способ прикрытия?
Радиоактивное золото -- более ценное, чем природное
Обсуждая возможность искусственного получения золота из ртути, мы видели, что обратное превращение золота в ртуть не так уж невозможно. По существу, только благодаря капризу природы золото существует как природный элемент. Причина того, что золото естественным путем не превращается в ртуть, заключается в несколько большей устойчивости ядра [197]Au по сравнению с [197]Hg -- всего на 1 МэВ. Если бы, наоборот, [197]Hg обладала бы большей устойчивостью, то вообще не существовало бы природного золота. Слитки из искусственного золота превращались бы в лужу ртути.
Весть о том, что золото пытались в научных целях превратить в другой элемент, например в ртуть, наверняка привела бы в недоумение тайных приверженцев алхимии. Каковы причины такой "алхимии навыворот"?
Одно время в измерительной технике особое значение приобрел изотоп ртути с массовым числом 198. Этот изотоп требовался в очень чистом виде. Выделить его из природной ртути либо не удавалось, либо нельзя было из-за огромных затрат. Оставался лишь один путь. Нужно было получить ртуть-198 искусственно, а для этого требовалось золото. Почему же для науки свет клином сошелся на этой ртути?
Метр -- это одна сорокамиллионная часть окружности Земли по экватору. Так раньше учили в школе. С 1889 года в Париже хранится эталон метра -стержень из сплава платины с иридием. Однако этот эталон является искусственной мерой, которая может изменяться. В поисках постоянного, естественного стандарта длины вскоре нашли другую единицу: один метр соответствует 1553164,1 длинам волн красной спектральной линии кадмия, равных 6438 А (1 А 10[-10] м). При помощи такого стандарта достигли довольно высокой точности, достаточной для многих целей. Во время второй мировой войны британские конструкторы приборов для воздушной и морской навигации в целях секретности использовали лишь величины на основе красной линии кадмия.
Однако новая мера длины все же не соответствовала самым высоким требованиям. Кадмий -- смешанный элемент, и каждый из его изотопов дает красную спектральную линию, длина волны которой чуть-чуть отличается от других. Поэтому еще в 1940 году американские физики Вайнс и Альварес предложили производить отнесение к зеленой линии спектра ртути-198 с длиной волны 5461 А. Эта линия резко ограничена и абсолютно монохроматична. Вайнс и Альварес бомбардировкой золота нейтронами в циклотроне в течение месяца получили ртуть-198 в количествах, необходимых для спектрального анализа. Образовавшийся изотоп ртути они отделяли накаливанием. Его пары конденсировали в крошечных капиллярах.
После второй мировой войны в США в продажу поступили первые ртутные лампы Mercury-198 Lamps. Они содержали 1 мг ртути-198, которая была получена из золота в атомном реакторе. Другие государства вскоре также стали выпускать требуемый изотоп ртути. С 1966 года его получают в ГДР, в Центральном институте ядерных исследований в Россендорфе. В тамошнем атомном реакторе химики получили около 100 мг ртути-198 с изотопной чистотой 99 % из 95 г чистого золота в результате его 1000-часовой бомбардировки нейтронами:
[197]Au + n [198]Au* + (
[198]Au* [198]Hg + e[-]
На основе такого нового стандарта длины метр был вновь "перемерен". Он составляет 1831249,21 длин волн зеленой линии изотопа 198Hg. В настоящее время ртуть-198 опять-таки вытеснена изотопом благородного газа криптона -[86]Kr, оранжевая линия которого длиной 6058 А более воспроизводима. Один метр соответствует 1650763,73 длинам волн излучения атомов криптона-86 в вакууме.
Промежуточный продукт синтеза ртути-198--радиоактивное золото-198-также нашел применение. Этот изотоп излучает бета-лучи и распадается с периодом полураспада 65 ч до устойчивого изотопа [198]Hg. В настоящее время его используют как лекарственный препарат -- в мелкодисперсном состоянии в виде золотого золя. Оно применяется для получения радиограмм органов человеческого тела и для лечения раковых опухолей. Для этой цели его впрыскивают в соответствующие ткани. Каждый атом золота действует как маленькая рентгеновская трубка и убивает раковые клетки в строго ограниченной области. Такая терапия гораздо целесообразнее, чем облучение больших поверхностей. Радиоактивное золото значительно менее вредно, чем рентгеновские лучи. Весьма наглядны также случаи исцеления при обработке лейкозов, болезненном увеличении числа белых кровяных шариков. В борьбе с бичом рака искусственное радиоактивное золото уже оказало человечеству неоценимые услуги.
Современная наука вне всякого сомнения скажет: превращение элементов -да, превращение в золото -- нет! Для чего? Сегодня золото растрачивают, не задумываясь, для синтеза других элементов, представляющих интерес для науки. Золото используют, чтобы искусственно получить изотопы франция и астата -элементов, которые, как известно, нельзя получить из природных источников. Здесь также алхимию ставят с ног на голову. Франций получают из золота, которое в современных ускорителях бомбардируют ионами кислорода или неона:
[197]Au + [22]Ne [212]Fr + [4]Не + 3n
Астат образуется путем превращения золота при обстреле последнего разогнанными ядрами углерода:
[197]Au + [12]С [205]At + 4n
Вот, каким "дорогим" стало золото для современной науки: она не стремится получить его искусственно, а, скорее, использует как "сырье" для синтеза других элементов.
Глава 7
ИССЛЕДОВАНИЯ И ОТВЕТСТВЕННОСТЬ - СЕГОДНЯ И В БУДУЩЕМ
Политика бомбы
Получение атомной энергии и производство искусственных элементов в атомном реакторе представляют лишь одну сторону новой эпохи научно-технического прогресса. Ибо, к сожалению, "атомный век" начался не с создания атомных электростанций, то есть с мирного использования ядерной энергии, которая служит лишь благу человечества.
6 августа 1945 года. Ранним утром этого дня один-единственный самолет пролетел на большой высоте над Хиросимой. Во второй мировой войне этот крупный японский город избежал американских бомбежек. В то утро, в самом начале девятого часа, американский бомбардировщик типа В-29 сбросил свой смертоносный груз. Всего одна бомба на парашюте медленно и незаметно приближалась к центру города. Она взорвалась на высоте около 500 м. Начался кромешный ад. Вслед за молнией взрыва, которая на километры осветила ярким светом пространство вокруг, появился огненный шар гигантских размеров. Огромное грибовидное облако заклокотало, поднимаясь вверх более чем на 15 км. Это адское зрелище сопровождалось длительным, ужасающим, неслыханным дотоле громыханием.
Одна-единственная атомная бомба из урана-235 уничтожила целый японский город. Сила ее взрыва в пересчете составила почти 20000 т тринитротолуола, что соответствовало 2000 тех больших десятитонных бомб, которые во вторую мировую войну превращали в золу и щепки целые жилые кварталы.
Те, кого пощадили огонь и взрывная волна, стали жертвами радиоактивного излучения, которое создало новый вид гибели: лучевую смерть. Жители Хиросимы, пережившие первые моменты адского ужаса, после длительных мучений погибали от коварной лучевой болезни. В 1945 году из числа населения Хиросимы погибло 141 000 человек, в 1946 году к ним добавилось еще 10 000. С тех пор атомная смерть находит год за годом все новые жертвы среди японцев. Потомки тех несчастных, которые 6 августа 1945 года подверглись действию смертоносных лучей первой атомной бомбы, страдали, страдают и сейчас телесными уродствами. Опасаться следует также лучевых повреждений генетического аппарата.
9 августа 1945 года еще одна американская атомная бомба опустошила город Нагасаки. В этой бомбе в качестве взрывчатого вещества использовался искусственный элемент плутоний, который оправдал свое наименование, явившись посланцем царства смерти. Сбрасывание обеих атомных бомб военными США явилось преступным экспериментом по отношению к беззащитному гражданскому населению. К тому времени уже не было никакой военной необходимости в применении такого оружия.
После поражения фашизма и окончания второй мировой войны мир не стал более миролюбивым. Холодная война, эта вызывающая игра сил Соединенных Штатов по отношению к Советскому Союзу и развивающемуся социалистическому лагерю, стала принимать опасные формы эскалации. Во всех политических стычках США брали на себя роль мирового жандарма и выставляли "пугало" атомной бомбы. У Советского Союза оставался один ответ на эту дерзкую политику силы: как можно скорее положить конец американской монополии на атомную бомбу.
25 декабря 1946 года в Европе была пущена первая "урановая машина". И. В. Курчатову и его сотрудникам удалось запустить первый советский атомный реактор. Через два с половиной года Советский Союз испытал первую атомную бомбу. Реакционные круги США сразу же начали разжигать настоящую атомную истерию. Однако такое провокационное поведение далеко не всегда встречало одобрение в капиталистическом мире. Когда Отто Хан узнал об успешном советском опытном взрыве, он сразу же отметил: "Это -- хорошая весть; если Советская Россия будет тоже иметь атомную бомбу, тогда не будет войны".
Предложения Советского Союза о немедленном запрещении атомной бомбы игнорировались США. В январе 1950 года президент США Трумэн открыто заявил: "Я дам указания продолжать развертывание атомного оружия, в том числе так называемой водородной бомбы, или "сверхбомбы". Сообщение Трумэна явилось сигналом к весьма опасной гонке атомного вооружения. Ведь американский президент санкционировал создание термоядерной бомбы.
То, что непрерывно протекает на Солнце и поддерживает его существование -- превращение водорода и его изотопов в гелий с выделением энергии, совершается в водородной бомбе молниеносно и с величайшей разрушительной силой. Однако для запуска такого процесса требуются температуры от 50 до 100 миллионов градусов, которых на Земле можно достичь кратковременно лишь с помощью атомной бомбы в качестве "спички".
В 1954 году в американском научном журнале "Физикл ревью" появилось несколько публикаций творческой группы Сиборга и Гиорсо о вновь открытых элементах с порядковыми номерами 99 и 100. Эти сообщения содержали неясные формулировки, в которых умалчивалась определенная информация. В истории научных публикаций такой случай был необычным. Основания для утаивания стали известны лишь в 1955 году, когда была приоткрыта завеса над происхождением этих элементов.
До 1 ноября 1952 года в Тихом океане находился идиллический островок, называемый Элугелаб. Он относился к атоллу Эниветок из группы Маршальских островов. В тот день остров Элугелаб прекратил свое существование. Он взлетел на воздух в результате первого американского термоядерного испытания под кодовым названием "Майк". Сила взрыва составила 3 Мт, то есть три миллиона тонн тринитротолуола. Это соответствует общей взрывной силе всех бомб, сброшенных во вторую мировую войну, и примерно в 200 раз превышает взрывное действие хиросимской бомбы! Ударная волна взрыва была зарегистрирована сейсмическими станциями всего мира; это было первое землетрясение, спровоцированное человеком. Там, где находился остров Элугелаб, на дне Тихого океана зиял кратер диаметром 1,5 км и глубиной 150 м.
Беспилотные самолеты пролетали сквозь взрывное облако и собирали радиоактивную пыль для научных исследований. Позднее были переработаны центнеры коралловой породы с окружающих островов. В этих остатках термоядерного взрыва в декабре 1952 года американские ученые нашли 99-й элемент, а спустя некоторое время, в марте следующего года -- 100-й элемент, теперь именуемые эйнштейнием и фермием. Нейтронная молния "Майк'а" -нейтронную дозу оценивают в 10[22] нейтронов/см[2] -произвела превращение элементов нового рода. При этом из урана поджигающей бомбы образовались изотопы урана с необычайно большим содержанием нейтронов, которые, многократно претерпев бета-распад, превратились в конце концов в изотопы элементов 99 и 100. Если бы этот процесс захотели провести в исследовательском реакторе с интенсивностью потока в 10[13] нейтронов/см[2] то потребовалось бы 30 лет, чтобы достичь требуемой дозы нейтронов. "Майк" совершил это в миллионную долю секунды.
Странно и почти безответственно звучит "благодарность" ученых, открывших эти элементы, которую они выразили научной лаборатории в Лос-Аламосе -- фабрике атомных бомб США.
В августе 1953 года была взорвана первая советская водородная бомба. Военные и политики США испытали немалый страх, когда их специалисты доложили, что Советский Союз уже располагает "сухой" транспортабельной водородной бомбой с зажигательным веществом -- дейтеридом лития. Бомба США, взорванная в ноябре 1952 года, была, напротив, нетранспортабельным чудовищем в 65 т, непригодным для военного использования.
На это США ответили секретным "сверхоружием" и в марте 1954 года подожгли первую так называемую трехступенчатую бомбу (Fission-Fusion-Fission Bomb[70]). Поджигателем для собственно водородной бомбы служило обычное атомное взрывчатое вещество. То и другое было окружено оболочкой из урана-238, который также становится делимым под действием быстрых нейтронов взорвавшейся Н-бомбы. Многоступенчатые бомбы обладают неслыханной разрушительной силой, которая может достигать 50 Мт и более. С таким сверхоружием можно одним ударом опустошить целые страны и континенты.
Ужасающее действие водородной бомбы не ограничивается ее взрывной силой, превышающей силу атомной бомбы в тысячу раз. Она вызывает излучения, интенсивность которых не знает себе равных на Земле и является смертельной для всех живых существ в радиусе действия бомбы. Когда же активность несколько снижается, остаются достаточно опасные продукты деления, которые попадают на поверхность Земли вместе с радиоактивными осадками и заражают большие пространства. Особенно опасны долгоживущие радиоактивные изотопы, такие, как углерод-14, проникающий в биосферу, цезий-137 и более всего стронций-90. Радиоактивный стронций проникает с пищей в организм, накапливается в костях и неизбежно вызывает рак. Еще страшнее генетические дефекты, вызываемые радиоактивным излучением, которые приводят к изменению наследственного аппарата и повреждению потомства.
Лауреат Нобелевской премии по химии и лауреат Международной Ленинской премии, американский ученый Лайнус Полинг[71], который всем своим авторитетом борется за запрещение атомного оружия, весьма наглядно представил опасность радиоактивных осадков: одна чайная ложка стронция-90, если ее разделить поровну между всеми людьми, вызовет их гибель в течение немногих лет. Полинг рассчитал, что одна сверхбомба при своем взрыве выбрасывает в атмосферу нашей планеты в тысячу раз большее количество стронция-90.
Вынужденный считаться с военным давлением Советский Союз не потерял из виду главной цели: мирное использование атомной энергии, служащее для блага человека. Первая атомная электростанция, пущенная в июле 1954 года, и первый атомный корабль -- советский ледокол "Ленин" -- красноречиво говорят об этом.
Борьбу с опасной игрой империалистов США атомным оружием как средством политического давления и нажима, против безответственного испытания Н-бомбы, которое угрожает дальнейшему существованию человечества, вели и ведут не только Советский Союз и страны социалистического лагеря, но и представители капиталистического мира, такие, как Фредерик Жолио-Кюри, Лайнус Полинг, Альберт Швейцер, Отто Хан. Особенно убедительным было в 1957 поду воззвание 18-ти западногерманских атомщиков во главе с Ханом, Вейцзекером и Гейзенбергом, которые протестовали против военного использования атомной энергии, против опасности атомной войны и снаряжения ФРГ атомным оружием. Ежегодные Пагуошские конференции также стали важным событием. Именитые ученые встречаются здесь, чтобы обсудить вопросы разоружения и борьбы с злоупотреблениями атомной энергией.
Сегодня, благодаря обязательствам, взятым на себя Советским Союзом и другими социалистическими государствами, имеются соглашения по запрещению испытаний ядерного оружия в атмосфере, в космическом пространстве и под водой, а также договоренности по вопросам нераспространения атомного оружия. Это, к сожалению, еще не значит, что опасность атомной войны устранена. Овладение превращением элементов используется во вред военно-промышленным комплексом США -- для изобретения еще более страшных видов оружия. Последним порождением этого безумия вооружения является нейтронная бомба США, разработанная в качестве нового атомного средства массового уничтожения. В процессе превращения водорода и его атомов в гелий изобретателям этого "малокалиберного" ядерного оружия удалось обратить 80 % энергии взрыва в сверхбыстрые нейтроны, которые уничтожают все живое, а материальные ценности оставляют практически неповрежденными.
Мощные демонстрации протеста объединяют миролюбивое человечество в борьбе против" нейтронной бомбы и ее использования в войсках НАТО.
Успехи исследований в Дубне и Беркли
Открытие последних трех актиноидов--элементов 101, 102 и 103 удалось совершить с 1955 по 1961 годы. Чтобы осуществить синтез 101-го элемента из эйнштейния, в США в 1955 году было использовано все имеющееся количество 99-го элемента: 10[9] атомов -- Около 10[-13] г! Это количество было получено обстрелом плутония нейтронами в специально изготовленном испытательном реакторе. После бомбардировки мишени из эйнштейния ядрами гелия в 60-дюймовом циклотроне в Беркли смогли уловить буквально 17 атомов нового 101-го элемента -- менделевия. Трудность постановки эксперимента с несколькими атомами невообразимо велика. Однако их удалось обнаружить. Это было продемонстрировано всем окружающим весьма впечатляюще: каждый раз, когда был "пойман" атом менделевия, в лаборатории Калифорнийского университета в Беркли раздавался пожарный сигнал. Американские ученые позволили себе такую шутку: счетчик они присоединили к пожарной сирене. Это продолжалось до тех пор, пока не вмешалась пожарная служба и запретила "хулиганство".
Менделевий является последним из элементов, полученных в циклотроне. Для синтеза следующих элементов просто-напросто нет достаточного исходного материала. Все большие трудности создавало для ученых одно неприятное свойство трансуранов: их самопроизвольное деление и все уменьшающийся период полураспада. За то время, которое требовалось для получения в реакторе исходного элемента в весомых количествах, он успевал в значительной мере исчезнуть в результате начавшегося распада. Прекрасным примером может служить фермий-257-- наиболее тяжелый известный изотоп, который удалось получить. Период полураспада фермия-257 составляет 97 дней, что позволило считать его подходящим исходным веществом для получения трансфермиевых элементов. Однако при облучении в мощном реакторе из фермия-257 образуется только короткоживущий фермий-258, который самопроизвольно делится за считанные микросекунды. После этого малорадостного открытия надежда ступенчатого получения последующих трансуранов путем захвата нейтронов быстро исчезла. Исследователи дошли до такой точки, когда для синтеза следующих трансуранов требовалось попросту придумать что-то новое.
Имелся лишь один выход. Нужно было использовать те трансураны, которые можно было добыть в больших количествах, прежде всего -- это плутоний. Надеялись также получить в достаточных количествах кюрий и калифорний после многолетнего облучения в реакторе. Конечно, используя трансураны с меньшим зарядом ядра, необходимо было испытать более тяжелые снаряды. Нейтроны и альфа-частицы являлись уже недостаточно мощными. Подходящими по массе снарядами были ядра кислорода, азота, углерода, бора и неона, полученные с помощью новых ионных источников. Безусловно, ускорить тяжелые частицы до необходимой энергии возможно только с помощью высокоэффективных ускорителей. Начиная с середины 50-х годов американские физики все свои надежды возлагали на новый линейный ускоритель тяжелых ионов HILAC, а в последнее время -- на еще более мощный Super-HILAC. Их советские коллеги использовали оправдавшие себя ускорители частиц У-200 и У-300. В испытании находится новый циклотрон У-400, который способен ускорить до больших энергий даже ядра урана.
Также с середины 50-х годов длится спор между американскими и советскими физиками по поводу того, кто же первым синтезировал и точно идентифицировал элементы с 102 по 105. До сего времени нет единства в вопросе приоритета и названии новых элементов: 102-- жолиотий (по советскому представлению) или нобелий (по американским предложениям): 103 -резерфордий или лоуренсий: 104 -- курчатовий или резерфордий: 105 -нильсборий и ханий?
Причина таких разногласий заключается, несомненно, в том, что американская группа ученых не могла больше претендовать на приоритет. Со времени основания Объединенного института ядерных исследований (ОИЯИ) в Дубне, в 1956 году, решающие импульсы в исследовании трансуранов исходили от советских ученых. С тех пор прогресс в этой специальной отрасли определяли советские исследователи под руководством физика Г. Н. Флерова и его коллеги Ю. Ц. Оганесяна. ОИЯИ в Дубне стал одновременно символом социалистической научной интеграции. В этом институте работают исследователи из всех социалистических стран; они все более широко участвуют в существенных открытиях в ядерной физике.
Все началось со 102-го элемента. В Стокгольме в 1957 году подобрался коллектив из американских, английских и шведских физиков. Эта группа считала, что получила изотопы элемента 102, названного ими нобелием, в результате бомбардировки кюрия ядрами углерода. Несколько позже Флеров объявил об удачном синтезе 102-го элемента, осуществленном на циклотроне Института атомной энергии в Москве, путем обстрела плутония-241 ядрами кислорода. Исследователи из Беркли не отставали и также сообщили об успешной идентификации 102-го элемента. Однако все приведенные данные и факты противоречили друг другу. Поэтому американцы стали называть новый элемент не нобелием, a no believium, что в вольном переводе означает "не верю". Физики в Дубне в течение ряда лет систематически дорабатывали эти результаты с тем, чтобы разъяснить противоречия. Только в 1963 году им удалось получить однозначные доказательства. Флеров и его сотрудники смогли безупречно синтезировать 102-й элемент из урана и ионов неона:
[238]U + [22]Ne [256]Х + 4n
Физикам пришлось выдумывать изощренные методы разделения, измерения и идентификации для того, чтобы вообще обнаружить новый элемент. Ведь он довольно быстро прощается с этим миром, обладая периодом полураспада всего лишь 8 с.
Когда ученые из Беркли смогли располагать 3 мкг калифорния, конечно, в виде смеси различных изотопов, они решились на синтез следующего элемента -103-го. Эти 3 мкг калифорния в течение трех лет бомбардировали в линейном ускорителе ядрами атома бора. Было мало надежды на благоприятный результат. Из 100 миллиардов ядер бора только одно могло проникнуть в ядро калифорния, однако ядро нового атома в 99 % случаев должно было снова распасться в результате самопроизвольного деления. Американцы рассчитали, что из 100 000 слияний только одно должно было образовать ядро с 103 протонами -- искомый элемент 103.
В 1961 году группа из Беркли сочла, наконец, что идентифицировала несколько атомов одного из изотопов 103-го элемента. Через несколько лет в Дубне советские исследователи, синтезировали из америция-243 и ионов кислорода другой изотоп. Они сразу же исправили прежние данные своих американских коллег. Кто же прав? Одна проблема, по крайней мере, еще до сих пор не разрешена: как называть 103-й элемент? Лоуренсий или резерфордий?
С особенным нетерпением ожидалось открытие 104-го элемента -- первого представителя трансактиноидов. Согласно актиноидной теории, элемент 104, будучи экагафнием, должен был бы обладать свойствами, сходными с гафнием или цирконием. В 1964 году коллективу ОИЯИ в Дубне под руководством Флерова удался большой бросок. После бомбардировки плутония-242 ионами неона впервые были обнаружены атомы 104-го элемента -- курчатовия:
[244]Pu + [22]Ne [260]X + 4n
До сих пор новый способ его физико-химической идентификации считается мастерским, ибо образовавшийся изотоп самопроизвольно распадается с периодом полураспада всего лишь 0,1 с. Поэтому требовались необыкновенно быстрые действия для того, чтобы химически доказать, что 104-й элемент следует отнести к группе четырехвалентных элементов, вместе с гафнием и цирконием. В Дубне это удалось подтвердить с помощью остроумной экспериментальной техники. Для этой цели использовалась летучесть галогенидов при повышенных температурах: синтезированные атомы 104-го элемента, отброшенные из мишени в результате радиоактивного выброса, подвергали хлорированию при 350 °С. Пропускаемый газообразный хлор смешивали с парами трихлорида кюрия, тетрахлорида циркония и пентахлорида ниобия. Далее эти хлориды оседали на различных участках термохроматографической колонки, в зависимости от того, был ли это три-, тетра- или пента-хлорид. Хлорид 104-го элемента сконденсировался на том же месте, что и тетрахлорид циркония.
Американцы, которые тоже были близки к открытию 104-го элемента, получили его в виде изотопа, излучающего альфа-частицы, при бомбардировке калифорния-249 ядрами углерода. Образующийся из него в результате изотоп 102-го элемента можно было безупречно идентифицировать на основании его характеристического рентгеновского излучения. Закон Мозли подтвердился еще в одном случае. 105-й элемент получен группой Флерова уже в 1967 году в результате ядерной реакции америция с ионами неона. Но по уравнению
[243]Am + [22]Ne [260]Х + 4 (5)n
образовывался лишь один атом за час. Такого скудного выхода было недостаточно, чтобы окончательно подтвердить открытие. Только в начале 1970 года из Дубны пришло известие о точной идентификации элемента 105. В том же году добились успеха Гиорсо с сотрудниками. В Беркли они синтезировали изотоп 105-го элемента путем бомбардировки 60 мкг калифорния ядрами азота:
[249]Cf + [15]N [260]Х + 4n
Элемент 105, будучи аналогом тантала, должен быть пятивалентным. Это удалось безупречно доказать дубнинским исследователям с помощью техники хлорирования, уже испытанной на 104-м элементе.
Сверхтяжелые элементы на островке устойчивости
Теоретическое и экспериментальное изучение устойчивости ядра дало советским физикам повод для пересмотра применявшихся до сих пор методов получения тяжелых трансуранов. В Дубне решили пойти новыми путями и взять в качестве мишени свинец и висмут.
Ядро, как и атом в целом, имеет оболочечное строение. Особой устойчивостью отличаются атомные ядра, содержащие 2--8--20-28--50--82--114--126--164 протонов (то есть ядра атомов с таким порядковым номером) и 2--8--20--28--50--82--126--184--196-- 228--272--318 нейтронов, вследствие законченного строения их оболочек. Только недавно удалось подтвердить эти воззрения расчетами с помощью ЭВМ. Такая необычная устойчивость бросилась в глаза, прежде всего, при изучении распространенности некоторых элементов в космосе. Изотопы, обладающие этими ядерными числами, называют магическими. Изотоп висмута [209]Bi, имеющий 126 нейтронов, представляет такой магический нуклид. Сюда относятся также изотопы кислорода, кальция, олова. Дважды магическими являются: для гелия -- изотоп [4]Не (2 протона, 2 нейтрона), для кальция -[48]Са (20 протонов, 28 нейтронов), для свинца -[208]Pb (82 протона, 126 нейтронов). Они отличаются совершенно особой прочностью ядра.
Используя источники ионов нового типа и более мощные ускорители тяжелых ионов -- в Дубне были спарены агрегаты У-200 и У-300, группа Г. Н. Флерова и Ю. Ц. Оганесяна вскоре стала располагать потоком тяжелых ионов с необычайной энергией. Чтобы достичь слияния ядер, советские физики выстреливали ионами хрома с энергией 280 МэВ в мишени из свинца и висмута. Что могло получиться? В начале 1974 года атомщики в Дубне зарегистрировали при такой бомбардировке 50 случаев, указывающих на образование 106-го элемента, который, однако, распадается уже через 10[-2] с. Эти 50 атомных ядер образовались по схеме:
[208]Pb + [51]Cr [259]X
Немного позднее Гиорсо и Сиборг из лаборатории Лоуренса в Беркли сообщили, что они синтезировали изотоп нового, 106-го, элемента с массовым числом 263 путем обстрела калифорния-249 ионами кислорода в аппарате Super-HILAC.
Какое имя будет носить новый элемент? Откинув прежние разногласия, обе группы в Беркли и Дубне, соперничающие в научном соревновании, пришли на этот раз к единому мнению. О названиях говорить еще рано, сказал Оганесян. А Гиорсо дополнил, что решено воздержаться от всяких предложений о наименовании 106-го элемента вплоть до прояснения ситуации.
К концу 1976 года дубнинская лаборатория ядерных реакций закончила серию опытов по синтезу 107-го элемента; в качестве исходного вещества дубнинским "алхимикам" послужил "магический" висмут-209. При обстреле ионами хрома с энергией 290 МэВ он превращался в изотоп 107-го элемента:
[209]Bi + [54]Cr [261]X + 2n
107-й элемент самопроизвольно распадается с периодом полураспада 0,002 с и, кроме того, излучает альфа-частицы.
Найденные для 106- и 107-го элементов периоды полураспада 0,01 и 0,002 с заставили насторожиться. Ведь они оказались на несколько порядков больше, чем предсказывали расчеты ЭВМ. Быть может, на 107-й элемент уже заметно влияла близость последующего магического числа протонов и нейтронов -- 114, повышающая устойчивость? Если это так, то была надежда получить и долгоживущие изотопы 107-го элемента, например обстрелом берклия ионами неона. Расчеты показали, что образующийся по этой реакции изотоп, богатый нейтронами, должен был бы обладать периодом полураспада, превышающим 1 с. Это позволило бы изучить химические свойства 107-го элемента -- экарения.
Самый долгоживущий изотоп первого трансурана, элемента 93 -нептуний-237,-- обладает периодом полураспада 2 100 000 лет; самый устойчивый изотоп 100-го элемента -- фермий-257-- только 97 дней. Начиная с 104-го элемента периоды полураспада составляют лишь доли секунды. Поэтому, казалось, что нет абсолютно никакой надежды обнаружить эти элементы. Для чего же нужны дальнейшие исследования? Альберт Гиорсо, ведущий специалист США по трансуранам, высказался однажды в этой связи: "Причиной для продолжения поисков дальнейших элементов является просто-напросто удовлетворение человеческого любопытства -- а что же происходит за следующим поворотом улицы?" Однако это, конечно, не просто научное любопытство. Гиорсо давал все же понять, как важно продолжение такого фундаментального исследования.
В 60-е годы теория магических ядерных чисел приобретала все большее значение. В "море неустойчивости" ученые отчаянно пытались найти спасительный "островок относительной устойчивости", на который могла бы твердо опереться нога исследователя атома. Хотя этот островок до сих пор еще не открыт, "координаты" его известны: элемент 114, экасвинец, считается центром большой области устойчивости. Изотоп-298 элемента 114 уже давно является особым предметом научных споров, ибо, имея 114 протонов и 184 нейтрона, он представляет собой одно из тех дважды магических атомных ядер, которым предсказывают длительное существование, Однако, что же означает длительное существование? Предварительные расчеты показывают: период полураспада с выделением альфа-частиц колеблется от 1 до 1000 лет, а по отношению к самопроизвольному делению -- от 108 до 10[16] лет. Такие колебания, как указывают физики, объясняются приближенностью "компьютерной химии".
Весьма обнадеживающие значения периодов полураспада предсказывают для следующего островка устойчивости -- элемента 164, двисвинца. Изотоп 164-го элемента с массовым числом 482 -- также дважды магический: его ядро образуют 164 протона и 318 нейтронов.
Науку интересуют и просто магические сверхтяжелые элементы, как, например, изотоп-294 элемента 1 10 или изотоп-310 элемента 126, содержащие по 184 нейтрона. Диву даешься, как исследователи вполне серьезно жонглируют этими воображаемыми элементами, будто они уже существуют. Из ЭВМ извлекаются все новые данные и сейчас уже определенно известно, какими свойствами -ядерными, кристаллографическими и химическими -- должны обладать эти сверхтяжелые элементы. В специальной литературе накапливаются точные данные для элементов, которые люди, быть может, откроют лет через 50.
В настоящее время атомщики путешествуют по морю неустойчивости в ожидании открытий. За их спинами осталась твердая земля: полуостров с естественными радиоактивными элементами, отмеченный возвышенностями тория и урана, и далеко простирающаяся твердая земля со всеми прочими элементами и вершинами свинца, олова и кальция. Отважные мореплаватели уже давно находятся в открытом море. На неожиданном месте они нашли отмель: открытые 106 и 107-й элементы устойчивее, чем ожидалось.
В последние годы мы долго плыли по морю неустойчивости, рассуждает Г. Н. Флеров, и вдруг, в последний момент, почувствовали землю под ногами. Случайная подводная скала? Либо песчаная отмель долгожданного островка устойчивости? Если правильно второе, то у нас есть реальная возможность создать новую периодическую систему из устойчивых сверхтяжелых элементов, обладающих поразительными свойствами.
После того, как стала известна гипотеза об устойчивых элементах вблизи порядковых номеров 114, 126, 164, исследователи всего мира набросились на эти "сверхтяжелые" атомы. Некоторые из них, с предположительно большими периодами полураспада, надеялись обнаружить на Земле или в Космосе, по крайней мере в виде следов. Ведь при возникновении нашей Солнечной системы эти элементы так же существовали, как и все прочие.
Следы сверхтяжелых элементов -- что следует под этим понимать? В результате своей способности самопроизвольно делиться на два ядерных осколка с большой массой и энергией эти трансураны должны были бы оставить в находящейся по соседству материи отчетливые следы разрушения. Подобные следы можно увидеть в минералах под микроскопом после их травления. С помощью такого метода следов разрушения можно в настоящее время проследить существование давно погибших элементов. Из ширины оставленных следов можно оценить и порядковый номер элемента -- ширина трека пропорциональна квадрату заряда ядра. "Живущие" еще сверхтяжелые элементы надеются также выявить, исходя из того, что они многократно испускают нейтроны. При самопроизвольном процессе деления эти элементы испускают до 10 нейтронов.
Следы сверхтяжелых элементов искали в марганцевых конкрециях из глубин океана, а также в водах после таяния ледников полярных морей. До сих пор безрезультатно. Г. Н. Флеров с сотрудниками исследовал свинцовые стекла древней витрины XIV века, лейденскую банку XIX века, вазу из свинцового хрусталя XVIII века. Сначала несколько следов самопроизвольного деления указали на экасвинец-- 114-й элемент. Однако, когда дубнинские ученые повторили свои измерения с высокочувствительным детектором нейтронов в самом глубоком соляном руднике Советского Союза, то положительного результата не получили. На такую глубину не могло проникнуть космическое излучение, которое, по-видимому, вызвало наблюдавшийся эффект.
В 1977 году профессор Флеров предположил, что он наконец обнаружил "сигналы нового трансурана" при исследовании глубинных термальных вод полуострова Челекен в Каспийском море. Однако число зарегистрированных случаев было слишком мало для однозначного отнесения. Через год группа Флерова зарегистрировала уже 150 спонтанных делений в месяц. Эти данные получены при работе с ионообменником, заполненным неизвестным трансураном из термальных вод. Флеров оценил период полураспада присутствовавшего элемента, который он еще не смог выделить, миллиардами лет.
Другие исследователи пошли иными путями. Профессор Фаулер и его сотрудники из Бристольского университета предприняли эксперименты с аэростатами на большой высоте. С помощью детекторов малых количеств ядер были выявлены многочисленные участки с зарядами ядер, превышающими 92. Английские исследователи считали, что один из следов указывает даже на элементы 102...108. Позднее они внесли поправку: неизвестный элемент имеет порядковый номер 96 (кюрий).
Как же попадают эти сверхтяжелые частички в стратосферу земного шара? До настоящего времени выдвинуто несколько теорий. Согласно им, тяжелые атомы должны возникать при взрывах сверхновых звезд либо при других астрофизических процессах и достигать Земли в виде космического излучения или пыли -- но только через 1000 -- 1 000 000 лет. Эти космические осадки в настоящее время ищут как в атмосфере, так и в глубинных морских отложениях.
Значит, сверхтяжелые элементы могут находиться в космическом излучении? Правда, по оценке американских ученых, предпринявших в 1975 году эксперимент "Скайлэб", такая гипотеза не подтвердилась. В космической лаборатории, облетавшей Землю, установили детекторы, поглощающие тяжелые частички из космоса; обнаружены были лишь треки известных элементов. Лунная пыль, доставленная на Землю после первой посадки на Луну в 1969 году, не менее тщательно обследовалась на присутствие сверхтяжелых элементов. Когда нашли следы "долгоживущих" частичек до 0,025 мм, некоторые исследователи сочли, что их можно приписать элементам 110-- 119.
Аналогичные результаты дали исследования аномального изотопного состава благородного газа ксенона, содержащегося в различных образцах метеоритов. Физики высказали мнение, что этот эффект можно объяснить лишь существованием сверхтяжелых элементов. Советские ученые в Дубне, которые проанализировали 20 кг метеорита Алленде, упавшего в Мексике осенью 1969 года, в результате трехмесячного наблюдения смогли обнаружить несколько спонтанных делений. Однако после того, как было установлено, что "природный" плутоний-244, некогда являвшийся составной частью нашей Солнечной системы, оставляет совершенно сходные следы, интерпретацию стали проводить осторожнее.
Атомная масса 500. Где границы вещественного мира?
В июле 1976 года, как будто специально к 200-летнему юбилею США, мир облетело сообщение, которое отметили как научную сенсацию высшего порядка. Америка открыла элемент 126 с относительной атомной массой 350! Первый представитель гипотетических суперактиноидов, к которым должны принадлежать элементы от 122 до 153, был найден. Его назвали бисентениум -- в честь 200-летия независимости США. Открывателями, прославившими себя, оказались Роберт Джентри из Национальной лаборатории в Ок-Ридже и несколько сотрудников из Калифорнийского государственного университета.
Многие годы Джентри занимался "радиоактивными нимбами", присутствующими в различных минералах и называемыми также ореолами. Последние образуются в результате альфа-излучения радиоактивных атомов, которое разрушает кристаллическую решетку. Можно измерить размеры этих нимбов под микроскопом и затем оценить энергию альфа-частиц. Еще в 1935--1940 годах австрийский физик Иозеф Шинтльмейстер бился над разрешением той же проблемы. Он был одержим идеей о наличии неизвестных элементов в минералах типа слюды. Его особенно интересовали плеохроические нимбы, которые возникают вследствие радиоактивных включений. Некоторые из нимбов были так велики, что должны были вызываться альфа-излучением с необычно большой энергией. Позднее профессор Шинтльмейстер работал в Россельдорфе и продолжал поиски, хотя и безрезультатные, этих загадочных альфа-излучений. До последнего времени он неустанно обменивался научными мыслями с профессором Флеровым.
Неизвестно, знал ли Джентри о работах Шинтльмейстера. Однако он шел по тому же следу. В биотите с Мадагаскара Джентри обнаружил неожиданно большие нимбы -- гигантские ореолы. Они должны были возникнуть под действием альфа-частиц с энергией 14 МэВ. Однако среди известных нуклидов нельзя обнаружить альфа-излучателей такого рода. Джентри и его сотрудники считали, что такие гигантские нимбы можно объяснить распадом сверхтяжелого элемента.
Американцы сняли рентгеновские спектры предполагаемых сверхтяжелых элементов индуцированием потоком протонов и приписали найденные значения элементу 126, а также элементам 116, 124 и 127. Такая смелость задела за живое ученых всего мира. Несколько исследовательских групп устремились перепроверять ошеломляющие данные Джентри. Особенно велики в этом заслуги сотрудников Института ядерной физики имени Макса Планка (Гейдельберг) под руководством профессора Повха. В конце 1976 года последовало разочарование. Повх хладнокровно объявил, что американцы стали жертвой как эффекта загрязнений, так и неправильной интерпретации данных рентгеноспектроскопии. Все рентгеновские полосы, отнесенные к сверхтяжелым элементам, на самом деле происходят от обычных элементов, главным образом от церия. "На такие ошибки надо смотреть философски,-- утешал Повх.-- Тот, кто неустанно всю свою жизнь ищет какую-либо вещь, вдруг верит в то, что он ее действительно нашел. Со мной как-то произошло то же самое".
С тяжелым сердцем начал Джентри сам развенчивать свое "открытие". В конце концов он подверг бомбардировке в синхротроне тот же кусок биотита, в котором он в свое время якобы находил бисентениум. Таким путем Джентри хотел получить рентгеновские линии, отнесение которых не подвергалось бы критике коллег. На этот раз Джентри уже не нашел никаких указаний на сверхтяжелые элементы с порядковыми номерами от 105 до 129. Не нашел и тогда, когда повысил чувствительность определений до 5*10[8] атомов в каждом гигантском ореоле.
Островок устойчивости, неясно возникший было на горизонте, оказался на этот раз миражем. Как и 40 лет назад, нашли лишь... ложные трансураны. Однако для пессимизма пока повода не было. Имеется сообщение 1977 года: исследователи Института ядерной физики в Орсей (Франция) нашли неизвестную естественную радиоактивность в чистом гафнии и в гафниево-циркониевых минералах. Источником ее должен быть новый сверхтяжелый элемент, который может содержаться в количестве 10[-13] г в 1 г исходного вещества. Естественно, французы пока не высказываются, какой именно это трансуран и как его называть.
Следовательно, несмотря на все неудачи, поиски неизвестных сверхтяжелых элементов продолжаются. Наука неизменно стремится продвинуться до крайних пределов периодической системы. Если не удастся найти сверхтяжелые элементы на Земле или в Космосе, тогда надо хотя бы получить их искусственно, а путь для этого, известен: превращение других элементов.
Еще в 1971 году английские ученые сочли, что они первыми вступили на легендарный "островок устойчивости". После анализа вольфрама, 56-го элемента, который в течение одного года подвергался бомбардировке притонами с огромной энергией в 24 ГэВ в синхротроне CERN, они обнаружили спонтанно распадающийся тяжелый трансуран -- экартуть, элемент 112. По мнению первооткрывателей, атомы вольфрама приобрели столь высокую энергию, что был превзойден порог кулоновского взаимодействия: два ядра вольфрама слились с образованием нового атомного ядра -- элемента 112. Потребовалось некоторое время, чтобы обнаружить ошибку. Вновь виновна в ней была грязь. Таинственная самопроизвольно распадающаяся примесь являлась калифорнием -- 98-м, а не 112-м элементом. До сих пор является загадкой, откуда "вылезло" это загрязнение.
Несмотря на такие превратности судьбы, ученые упорно стремятся соединить друг с другом ядра тяжелых атомов для получения сверхтяжелых элементов. Считается, что следует, соединив последовательно ускорители тяжелых ионов, достичь такой мощности, чтобы даже ядра урана смогли преодолеть порог кулоновского отталкивания и слиться друг с другом. Из двух атомов изотопа урана [238]U должен образоваться [476]Х, то есть 184-й элемент с относительной атомной массой, близкой к 500. Конечно, было бы уже хорошо, если при такой "реакции с избытком" можно было получить хотя бы устойчивые элементы 164 или 114.
Элемент со злополучной атомной массой 500 уже однажды был описан в "литературе": черный, блестящий ком материи размером с яблоко весил центнер. Он состоял из металла с атомной массой 500. Этот сверхтяжелый металл был выплавлен в специальных автоклавах при давлении 50 000 МПа и температуре 1 000 000 °С путем ступенчатого присоединения к урану гелия. Этого вещества, взятого на кончике ножа, было достаточно, чтобы электростанция работала в течение нескольких месяцев... во всяком случае писатель Доминик в 1935 году так описывает синтез и свойства элемента с "атомной массой 500" в романе с тем же названием. С тех пор такие представления бытуют в головах читателей фантастики. Сегодня ставится тот же вопрос: возможен ли синтез элемента с такой атомной массой или при этом мы выскочим за пределы периодической системы?
В наше время уже можно осуществить опыты по ускорению атомов урана до необходимого порога энергии для термоядерного синтеза; для этого можно было бы использовать мощнейшие ускорители тяжелых ионов--UNILAC в Дармштадте, У-400 в Дубне, Super-HILAC в Беркли. Может показаться, что реализация синтеза элемента с массовым числом 500 существенно приблизилась. Когда в 1977 году впервые на UNILAC'e ядра урана с энергией 1785 МэВ были направлены навстречу друг другу, то ожидались истинные чудеса. Физики напряженно склонились над первыми ядерными треками, появившимися на детекторах. Начало вырисовываться оригинальное явление: деление урана на четыре обломка. Оба ядра урана раскололись на две части. Однако сверхтяжелых элементов нельзя было обнаружить.
Граница синтеза элементов оценивается где-то около 200-го элемента. Здесь в будущем должна закончиться периодическая система. Элементы с более высоким порядковым номером не должны существовать: большое число протонов в ядре мгновенно привело бы к захвату ближайших к ядру элементов и в заключение к гибели всего атома. В результате могут образовываться ядра с меньшим зарядом, а часть атома превратилась бы в энергию излучения.
Мы знаем, что фермий-257 является самым тяжелым изотопом, который существует в весомых количествах. Он имеет удобный для практики период полураспада, равный почти ста дням. Этот изотоп мог бы служить в качестве мишени. Поэтому при использовании сильно разогнанных ионов фермия-257, теоретически возможен процесс термоядерного синтеза, приводящий к элементу 200, относительная атомная масса которого равна 500:
[257]Fm + [257]Fm [500]X + 14n
Для 200-го элемента уже есть имя: бинилнилий. Международный союз теоретической и прикладной химии (ИЮПАК.) давно пытается воодушевить ученых на единообразное наименование химических элементов. Тогда не будет тех спорных вопросов, которые появились в последнее время. Начиная с элемента 100 наименования складываются из готовых слогов: "нил" для нуля, "ун" для единицы, "би" для двух и суффикс. Тогда элемент 114 назывался бы просто унунквадий, а элемент 200 -- бинилнилий. И никто бы больше не спорил, должен ли элемент 105 называться ханием или нильсборием. Его название уннилпентий. Однако, к огорчению ИЮПАК, еще никто из ученых ни в Дубне, ни в Беркли не последовал этому предложению. Значит, шансы на введение в химию такого "дремучего" языка малы. По мнению Сиборга, ему приятнее сказать "элемент 114", чем "унунквадий", на котором язык сломаешь...
Однако, будет ли когда-нибудь в достаточном количестве фермий-257 -основа для получения бинилнилия, то есть, по-старому, элемента 200? Это вполне оправданный вопрос. Ведь из 1 т плутония в мощном реакторе образуется максимально 1 мкг фермия-257, и то после 10-летней бомбардировки нейтронами! Если не удастся получить большие количества фермия другими путями, то придется отказаться от столь заманчивого синтеза элемента с относительной атомной массой 500.
Больше надежд сулят опыты по синтезу элементов, лежащих близко к островку устойчивости. Так, взаимодействие плутония-244 с дважды магическим кальцием 48 должно было бы привести к элементу 114:
[244]Pu + [48]Са [290]X + 2n
Правда, здесь не получится сверхустойчивого изотопа-298 элемента 114. Однако специалисты ожидают, что изотоп с массовым числом 290 будет также иметь довольно большую продолжительность жизни. Сейчас соответствующие опыты планируются как в Дубне, так и в Беркли. Решающим препятствием до сих пор являлась скудость запасов исходных веществ: в природном кальции присутствует лишь 0,18 % кальция-48, и он должен длительно обогащаться. В настоящее время мировой запас кальция-48 составляет всего несколько граммов. Плутоний-244 тоже необходимо сначала "инкубировать" в реакторе в достаточном количестве.
Однако при всем оптимизме физикам ясно: даже с помощью самых мощный ускорителей тяжелых ионов никогда нельзя будет получить весомые количества сверхтяжелых элементов... Но это не останавливает ученых. Им необходимо знать, куда ведет дорога "за ближайшим уличным поворотом". Действительно, куда же ведет этот путь?
Если повнимательнее присмотреться к истории открытия элементов, богатой ошибками и разочарованиями, то, возможно, появятся сомнения в успехе такой тяжкой погони за "сверхтяжелыми" элементами: не будут ли вновь открыты ложные трансураны? Быть может, он вовсе и не существует, этот далекий "островок устойчивости"? Отто Хан неоднократно подчеркивал, что он постоянно искал не то, что находил. Пусть же ученые в своем путешествии по "морю неустойчивости" откроют в конце концов нечто сногсшибательное! По этому поводу Сиборг заявил: "Если обнаружится, что теория верна, тогда для исследователя откроется совершенно новый мир химии и физики, в сравнении с которым все предыдущие попытки покажутся бесцветными".
Искусственные элементы в исследовании Космоса
Для чего нужны трансураны, а также другие искусственные элементы? Стоят ли они действительно таких огромных затрат для их исследования и производства?
Технеций (Тс), первый искусственный элемент в периодической системе, завоевал широкие области применения. В настоящее время его получают в килограммовых количествах из радиоактивных отходов атомной промышленности. Когда в Соединенных Штатах было начато коммерческое производство и использование технеция, то цена за 1 г за несколько лет упала с 17 000 до 90 долларов. Теперь технеций применяют в медицине как ядерное фармацевтическое средство для радиографии различных органов с целью проверки их функциональной деятельности. Таким путем можно диагностировать также раковые заболевания. Вводимый для этого изотоп [99]Тс, вследствие малого периода полураспада, равного 6 ч, приходится изготовлять в изотопном молибденовом генераторе непосредственно перед использованием.
Поговаривают о технеции как о возможном катализаторе для химической промышленности. Однако самые большие его достоинства заключаются в защите от коррозии. Пертехнаты являются мощными ингибиторами коррозии. Такое открытие сделал американец Картледж в начале 1955 года. Он обнаружил, что добавка уже 0,00005 % технеция прекращает коррозию стали и железа в воде.
Прометий (Pm), второй искусственный элемент, также приобрел значение в технике. Бета-излучатель прометий-147 в качестве заменителя радия применяют для изготовления фосфоресцирующих веществ, которые используют, например, для контрольных приборов на борту самолетов. Прометий нужен также для измерения радиоактивным методом толщины фольги и листового стекла. Однако наиболее важным применением этого элемента является его способность быть источником ядерной энергии: он, как все радиоактивные бета-излучающие элементы, ионизирует пограничный слой полупроводников, в результате чего возникает ток. Такое явление называют бетавольтэффектом. Оксид прометия-147 массой в 24 г, запрессованный под давлением в платиновую капсулу, дает энергию в 8 Вт. В настоящее время изготовляют минибатареи из прометия-147 размером не более двухкопеечной монеты. Длительность их работы ограничена лишь периодом полураспада изотопа. Последний составляет два с половиной года.
Альфа-излучающие трансураны по своей природе способны выделять значительную тепловую энергию. Поэтому препараты кюрия сильно фосфоресцируют и такого термического свечения достаточно для того, чтобы их можно было сфотографировать в темноте в собственном излучении.
Водные растворы, содержащие несколько миллиграммов соли кюрия на литр, закипают сами собой. Они выглядят, как искрящееся шампанское,-завораживающее зрелище. При работе такие растворы необходимо непрерывно охлаждать. Таблетки из нескольких граммов оксида кюрия постоянно раскалены, температура их поверхности выше 1200 °С!
Когда в 1947 году впервые получили кюрий в "значительных" количествах, этот мировой запас состоял из крошечной пылинки гидроксида кюрия, едва видимой невооруженным глазом. В настоящее время кюрий получают в килограммовых количествах. По своей удельной теплотворной способности, равной 123 Вт/г, кюрий-242 с периодом полураспада 162 дня превосходит все другие трансураны. Кюрий-244 выделяет лишь 2,9 Вт/г, но зато обладает большей продолжительностью жизни (период полураспада 17,6 лет). Плутоний-238, выделяющий энергию в 0,46 Вт/г, имеет почтенный период полураспада в 88 лет.
Из этих альфа-излучателей с помощью термоэлементов получают ток. При установке таких термоионных изотопных батарей целиком руководствуются их назначением. Если желательны долгоживущие источники энергии, например для измерительных или запускаемых в космос приборов, для снабжения током светящихся буев и автоматических метеостанций либо для обогрева одежды водолазов или космонавтов, то предпочтителен кюрий-244 или плутоний-238. Если же, напротив, требуется на короткое время выработка больших количеств энергии, то выгоднее батарея из кюрия-242.
Обычно атомные батареи применяют повсеместно в тех случаях, где эти носители энергии могут проявить свои поразительные свойства: они занимают минимальный объем, не нуждаются в уходе и надежны даже в экстремальных условиях. Предпочтительнее всего использовать их в космических путешествиях. Когда 4 октября 1957 года в СССР был выведен на орбиту первый искусственный спутник Земли, то его химические батареи могли давать энергию в течение 23-х дней. После этого мощность их была исчерпана. Напротив, батареи из радиоактивных нуклидов имеют совершенно иные резервы мощности.
В 1961 году такая батарея типа SNAP (System for nuclear auxiliar Power[72]) впервые установлена США на борту навигационного спутника "Транзит". Поставщиком энергии служил плутоний-238, теплота которого термоэлектрически превращалась в ток. С тех пор в космических полетах не раз использовали атомные батареи, Советский Союз -- в спутниках типа "Космос". В США, например, метеоспутник "Нимбус", который вращается вокруг Земли с мая 1968 года, имеет батарею на плутоний-238 мощностью 60 Вт. Американский лунный зонд "Сарвейор", который в 1966 году передал по радио на Землю первый химический анализ лунного грунта, обладал энергетической установкой в 20 Вт, питаемой 7,5 г кюрия-242.
Известной стала мини-электростанция SNAP 27, мощность которой (73 Вт) обеспечивается 4,3 кг плутония-238. Ее размеры составляют 45 X 40 см. 12 ноября 1969 года астронавты "Аполлона 12" установили SNAP 27 на Луне. Из соображений безопасности на время космического полета американские космонавты закрепили плутониевый стержень, имеющий температуру 700 °С, на наружной стенке лунного корабля. Только после посадки они поместили его внутрь генератора.
SNAP 27 сразу стали давать электрический ток, а позднее -- снабжать энергией оставленную на Луне измерительную аппаратуру.
Еще раньше, при первой посадке на Луну, американцы использовали источники энергии из плутония-238. Такие батареи помещали в измерительные приборы, и они гарантировали их безупречную работу, даже при тех резких перепадах температур, которые существуют на спутнике нашей Земли. В полетах космических кораблей "Аполлон" источник энергии из 570 г плутония-238 обеспечивал регенерацию питьевой воды. С его помощью американские астронавты могли ежедневно регенерировать 8 л воды. Исследовательский корабль "Луноход", спущенный на поверхность Луны Советским Союзом в ноябре 1970 года, был обеспечен радиоактивными изотопами для регулировки температуры.
Источники энергии, снабженные долгоживущими изотопами, особенно необходимы для космических зондов, находящихся в "дальних странствиях" к удаленным планетам. Поэтому американские зонды "Викинг", которые были высажены на Марс в июле и сентябре 1976 года с целью поисков там разумной жизни, имели на борту два радиоизотопных генератора для обеспечения энергией спускаемого аппарата. Космические станции вблизи Земли, такие, как "Салют" (СССР) и "Скайлэб" (США), получают энергию от солнечных батарей, питаемых энергией Солнца. Однако зонды для Юпитера нельзя оснащать солнечными батареями. Излучения Солнца, которое получает зонд вблизи далекого Юпитера, совершенно недостаточно для обеспечения прибора энергией. Кроме того, при космическом перелете Земля -- Юпитер требуется преодолеть огромные межпланетные расстояния при продолжительности полета от 600 до 700 дней. Для таких космических экспедиций основой удачи является надежность энергетических установок.
Поэтому американские зонды планеты Юпитер -- "Пионер 10", который стартовал в феврале 1972 года, а в декабре 1973 года достиг наибольшего приближения к Юпитеру, а также его преемник "Пионер II"--были оснащены четырьмя мощными батареями с плутонием-238, помещенными на концах кронштейнов длиной в 27 м. В 1987 году "Пионер 10" пролетит мимо самой удаленной от Земли планеты -- Плутона, а затем это первое земное космическое тело покинет нашу Солнечную систему, имея на борту химический элемент, искусственно полученный на Земле.
Перспективно применение искусственных элементов для снабжения энергией сердечных регуляторов. От таких батарей требуется, чтобы они периодически посылали сердечной мышце электрические импульсы. Применявшиеся до сих пор химические батареи неизмеримо больше атомных по размерам и работают только два-три года. Продолжительность работы атомных сердечных регуляторов с плутонием-238 оценивают не менее чем в десять лет. Следовательно, при неблагоприятных обстоятельствах пациент с больным сердцем должен подвергаться хирургическому вмешательству каждые десять лет. К атомным регуляторам предъявляются особенно жесткие требования по технике безопасности, чтобы ни при каких обстоятельствах чрезвычайно токсичный плутоний не смог вырваться наружу. В 1970 году французские врачи имплантировали двум людям сердечные регуляторы, которые весили всего по 40 г. Требуемую мощность в 200 мкВт обеспечивали 150 мг плутония-238. С тех пор эти регуляторы поддерживают сердечную деятельность обоих пациентов. Столь убедительный успех создал целую медицинскую школу. Медики имплантируют сердечные регуляторы из плутония-238 или прометия-247, в последние годы также в Советском Союзе и Польше.
Изотоп плутония [238]Pu оправдал себя и для других медицинских целей. Он служит источником энергии для "искусственного сердца" -- насоса для крови, спасителя жизни при остановке кровообращения. Элемент плутоний все больше делается похожим на двуликого Януса -- он в равной мере может внушать как надежды, так и страх.
Калифорний: в поисках наркотиков и золота
В 1950 году трансурановый элемент калифорний (Cf) появился на свет в количестве нескольких атомов. В настоящее время планируется и осуществляется "производственная программа" для получения его миллиграммовых количеств. Мировой запас калифорния составляет несколько граммов, вероятно, никак не более 5 г. Калифорний невероятно дорог. Один грамм его стоит около 10 миллионов долларов. Какие же свойства, несмотря на это, делают этот изотоп столь необходимым?
Калифорний-252 имеет период полураспада 2,6 года. При этом самопроизвольно делится 3 % всех атомов и при каждом делении выделяется четыре нейтрона. Вот именно такая нейтронная эмиссия и делает калифорний-252 столь интересным, ибо 1 г в секунду выделяет 2,4 биллиарда (10[12]) нейтронов. Это соответствует нейтронному потоку среднего ядерного реактора! Если бы такое нейтронное излучение захотели получить классическим путем из радиево-бериллиевого источника, то для этого потребовалось бы 200 кг радия. Столь огромного запаса радия вообще не существует на Земле. Даже такое невидимое глазом количество, как 1 мкг калифорния-252, дает более 2 миллионов нейтронов в секунду. Поэтому калифорний-252 в последнее время используют в медицине в качестве точечного источника нейтронов с большой плотностью потока для локальной обработки злокачественных опухолей.
Во многих случаях калифорний может теперь заменить атомный реактор, например для таких специальных аналитических исследований, как нейтронная радиография или активационный анализ. С помощью нейтронной радиографии просвечиваются детали самолетов, части реакторов, изделия самого различного профиля. Повреждения, которые обычно невозможно обнаружить, теперь легко находят. Для этой цели в СССР и США разработана транспортабельная нейтронная камера с калифорнием-252 в качестве источника излучения. Она позволяет вести работу вне зависимости от стационарного атомного реактора. В борьбе с преступностью в США такая нейтронная камера показала свой превосходный "нюх". Таблетки ЛСД и марихуана, спрятанные в патронных гильзах, были сразу обнаружены. С помощью рентгеновских лучей контрабандные наркотики найти не удавалось.
Более распространено использование калифорния в нейтронно-активационном анализе. Под этим имеется в виду высокочувствительный метод анализа, пригодный в особенности для определения следов элементов. Исследуемые вещества подвергают облучению потоком нейтронов, в результате чего образуются искусственные радиоактивные изотопы. Интенсивность их излучения является мерой содержания составных частей примесей. При (n, ()-реакциях можно с помощью гамма-спектроскопии высокой точности изящным методом измерить интенсивность гамма-излучения, специфическую для каждого нуклида, а по интенсивности найти содержание определяемого элемента.
В настоящее время общепринято активировать материал пробы в атомном реакторе. Однако все более предпочтительными становятся небольшие переносные источники нейтронов. Они позволяют проводить нейтронно-активационный анализ на месте. Убедительным примером является изучение состава поверхности Луны и удаленных от Земли планет. При поисках рудных месторождений, находящихся в недоступных местах на Земле и на дне моря, применяют точечные источники нейтронов. Для разведывания месторождений нефти используют зонды буровых скважин с калифорнием-252.
В активационном анализе чувствительность чрезвычайно высока. Могут быть обнаружены ничтожные количества -- 10[-10]-- 10[-13] г исследуемого вещества. Для некоторых элементов чувствительность еще выше. Например, с помощью активационного анализа удается обнаружить даже 10[-17] г, то есть около 250 00 атомов.
Умер ли Наполеон 1 в ссылке естественной смертью? На этот вопрос, неоднократно подвергавшийся обсуждению, был получен однозначный ответ лишь 140 лет спустя. В качестве "вещественного доказательства" послужила прядь волос французского императора, которая была срезана у него 5 мая 1821 года на острове св. Елены, через день после его смерти. Она хранилась из поколения в поколение несколькими почитателями в качестве драгоценного сувенира. Судебные медики обнаружили, что император стал жертвой отравления. С помощью активационного анализа было установлено, что в волосах Наполеона содержится мышьяка в 13 раз больше нормы. Из различного содержания мышьяка на отдельных участках роста волос можно было установить даже время, когда начали ему подмешивать в пищу яд.
В настоящее время уже не является загадкой происхождение античных мраморных статуй, поскольку стало известно, что для различных древних мраморных каменоломен характерно присутствие определенных примесных элементов. Исследования красящих пигментов картин с помощью активационного анализа оказались весьма ценными для их датирования. Следы посторонних примесей в свинцовых белилах -- весьма распространенной краске -- совершенно характерно изменяются с течением времени. Сходное поведение обнаружено также для других художественных красок. С тех пор, как появился нейтронно-активационный анализ, исчезли все возможности для подделки картин старых мастеров.
Неоценимое преимущество этого метода проявляется в особенности при исследовании ценных старинных произведений искусства, ибо испытание не связано абсолютно ни с каким разрушением. При других современных методах анализа, как, например, рентгенофлюоресцентном или спектральном, неизбежно хотя бы поверхностное повреждение изучаемого объекта.
Золото и серебро также можно прекрасно определять путем активационного анализа, причем как в микро-, так и в макроколичествах. Знаменитый медальон Венцеля Зейлера остался бы в настоящее время неповрежденным, если бы его тайна была раскрыта с помощью этого метода. Активационный анализ, предназначенный прежде всего для следов элементов, был применен и для макроскопических определений. Используя небольшие потоки нейтронов [10[3] нейтронов/(см[2]*с) вместо обычных 10[9 ]-- 10[14]], можно определить основные составные части сплава, например содержание золота и серебра в золотой монете. Хорошую службу оказывают здесь источники нейтронов на основе калифорния-252.
Таким образом, в настоящее время вполне возможно определить состав или же подлинность исторических монет из благородных металлов без их разрушения. Теперь можно было бы изобличить даже фальшивомонетчиков древности. Когда папа Григорий IX отлучил от церкви римского императора и короля Сицилии Фридриха II, он кроме всего прочего обвинил его в подделке монет. Это легко было обнаружить для серебряных динаров, пущенных в обращение Фридрихом II, ибо они имели лишь посеребренную поверхность. А как же обстояло дело с известными золотыми августалами (которые приказал чеканить Фридрих) -монетами большой нумизматической ценности? Обладали ли они предписанным содержанием благородного металла в 20,5 карата, что составляло 85,5 % золота? На этот вопрос долгое время нельзя было ответить, ибо никто не решался пожертвовать немногими коллекционными монетами для традиционного анализа. Нейтронная активация без повреждения монет дала доказательство того, что августалы XIII века соответствовали требуемому составу, то есть являлись подлинными.
В прежние времена выпуск фальшивых монет был строго наказуем. В 1124 году английский король Генрих I приказал жестоко изувечить сто мастеров монетного двора по подозрению в подмене серебра в монетах на олово. В настоящее время, с 1971 года, эти мастера должны считаться реабилитированными, хотя и слишком поздно: активационный анализ безупречно доказал, что серебряные монеты, вызывавшие подозрения, содержат требуемые количества металла.
Нейтронно-активационный анализ помогает геологам при поисках месторождений золота и серебра. В Советском Союзе в Ташкентском институте ядерной физики разработаны методы гамма-спектроскопического определения содержания золота в скальных породах при помощи бурового зонда, снабженного Cf-источником. Благородные металлы, заключенные в руде или в горных породах, активируются нейтронами. При этом образуются радиоактивные изотопы серебра или золота, которые можно легко различить, зная их период полураспада, а также расположение линий их гамма-спектров. Интенсивность полос дает сведения о содержании металла: в природных породах можно таким путем определить 10[-9] % золота и серебра. Не остается незамеченной даже малейшая пылинка золота.
Проблемы производства трансуранов
Из числа трансуранов особый интерес представляют плутоний, америций, кюрий и калифорний. Как же обстоит дело с их получением? Настолько ли доступны эти искусственные элементы, чтобы можно было рекомендовать их использование?
Когда в 1966 году американское космическое ведомство запустило лунный зонд "Сарвейор", имевший на своем борту атомную энергетическую установку с 7,5 г кюрия, то лишь посвященные знали, как трудно было получить такое количество кюрия. Пришлось в течение четырех месяцев в мощном реакторе бомбардировать нейтронами 77 г америция-241 стоимостью в 20 000 долларов, а затем перерабатывать полученные продукты.
Еще более дорогостоящими оказались опыты американцев по получению транскюриевых элементов, прежде всего желанного калифорния-252. Для его ступенчатого синтеза надо, чтобы каждый атом плутония, полученный в реакторе, захватил суммарно 13 нейтронов. Однако при этом образуется множество других делящихся нуклидов, так что максимальный выход калифорния-252 составляет 0,05 %. Следовательно, из 1 кг плутония после многолетнего облучения в мощном реакторе можно получить в лучшем случае 0,5 г калифорния-252. Однако для поддержания мощности такого специального реактора требуется ежемесячно менять дорогостоящие стержни из урана-235. Этим объясняется колоссальная цена на 1 г калифорния: 10 миллионов долларов.
В 1972 году США располагали этим одним граммом. Для того, чтобы его можно было перевозить, потребовался специальный резервуар. Такая "упаковка" выглядела необычно: диаметр ее около 3 м, высота 4 м и масса 50 т. Вот в таком "бронированном сейфе" с многослойными стенками из парафина, свинца, бетона и стали и хранится сокровище из калифорния стоимостью в 10 миллионов долларов. Однако все это устройство -- не для защиты от воров, а для защиты от радиации. Без такой "упаковки" этот грамм калифорния стал бы смертельно опасным из-за испускания нейтронов и вызвал бы повсюду радиоактивность, индуцированную нейтронами.
Из обзора за 1971 год следует, что с июля 1969 года по июль 1971 года в обоих мощных реакторах -- в Ок-Ридже и Брукхэвене (США) -- получены следующие количества трансуранов: 50 г кюрия-244; 54 мг калифорния-252; 0,4 мг эйнштейния-253; 5*10[8] атомов фермия-257 (невесомое количество).
Неудивительно, что при таких скудных выходах ведутся поиски других методов производства трансуранов -- более быстрых, дешевых, выдающих продукт в больших количествах. Американцы, искони обладающие понятием "большого бизнеса", создали грандиозный план: ожидать 5 или 10 лет получения 1 г калифорния они не в состоянии; они хотели одним махом получить 10 г... с помощью взрыва атомной бомбы!
После некоторых предварительных опытов в июле 1969 года американцы решились на грандиозный эксперимент, получивший кодовое название "Хатч[73]". Место действия -- испытательный полигон департамента атомной энергии США для подземных испытаний ядерного оружия в Неваде. Местность там в результате многочисленных ядерных взрывов выглядит как лунный кратер. В эксперименте "Хатч" на 600-метровой глубине взорвалась атомная бомба взрывной силы в 2000 кт тринитротолуола и образовала подземный кратер. За 10[-7] с бомба выделила 4,5*10[25] нейтронов/см[2] -- в 10 миллиардов раз больше, чем мощнейший реактор. Когда спустя некоторое время снизилась радиоактивность, первые партии рискнули на планерах высадиться на месте взрыва, чтобы подготовить почву для бурения. Редкие трансураны находились в застывшем конгломерате сплавившихся пород весом около 150 000 т. Чтобы их добыть, потребовались бы "горнорудные" разработки. Это -- безнадежное предприятие, и потому американцы ограничились буровой пробой в 100 г. Из нее они извлекли 10[10] атомов фермия-257 -- исходного вещества для получения 200-го элемента с относительной атомной массой 500. Это количество в сто раз превышало полученное до сих пор в мощном реакторе. По приближенной оценке всего при "Хатч"-взрыве было синтезировано 0,25 мг фермия-257, которые, увы, как и те вожделенные 10 г калифорния, оказались рассеянными в твердой породе. Они и сегодня еще находятся там, если только не распались.
Эксперимент "Хатч", а также другие опытные взрывы натолкнули американских специалистов в 1972 году на далеко идущие планы. При помощи двух термоядерных взрывов, следующих в кратчайшее время один за другим, можно было бы перескочить через "барьер синтеза" фермия-258. Тогда можно было бы синтезировать высшие трансураны прежде, чем вновь распадется этот весьма короткоживущий промежуточный продукт. Вторая нейтронная молния должна была бы также перескочить через естественное самопроизвольное деление других трансуранов. С помощью такого "двойного выстрела" надеялись получить весомые количества сверхтяжелых элементов, находящихся вблизи порядкового числа 114. Но и до сих пор эти "процессы синтеза" остаются лишь теорией. Ведь между СССР и США существуют весьма важные политические соглашения об ограничении подземных ядерных испытаний. Несмотря на это, американцы пытаются выдвинуть на первый план научные перспективы такого двойного взрыва: поскольку реакции между тяжелыми ионами не привели к цели, это -- единственная возможность достигнуть островка устойчивости.
Радиоактивные "отходы" в настоящее время являются главным источником для получения синтетических элементов. Из остаточных растворов после переработки отработанного ядерного горючего получают технеций и прометий, а также искусственные трансураны. На долю нептуния, америция и кюрия приходятся соответственно количества 500, 100 и 20 г на тонну выгорания. Таким образом, регенерационные установки в атомной промышленности служат не только для необходимого устранения опаснейших продуктов деления, но и для получения ценных нуклидов.