Надо было идти вперед, и мы шли...
Жюль Верн
Сложно определить, что больше привлекало во все времена жадный человеческий разум в его стремлении познать мир — безбрежье космоса или таинственная бездна морских глубин. Однако если сегодня космические спутники Земли достигают края Солнечной системы, толща океана освоена человечеством всего в несколько сотен метров. И люди заплатили за это многими тысячами жизней. Так сложилась история человечества, что со своего сознательного становления в виде общественно значимой формации и, тем более, государственных образований вело бесконечные войны за раздел сфер влияния, территорий. А научившись строить корабли, данные претензии человека стали распространяться и на водные акватории. С данного момента взоры стратегов и полководцев Античности обратились к подводной войне. Однако в силу отсутствия специального снаряжения основные надежды они стали возлагать на ныряльщиков.
Первое свидетельство об использовании в древности этих людей датируются примерно 4000 годами до н.э. При раскопках в Египте (Абидос) были найдены печати фараона с изображениями ныряльщиков, рыб и лодок. Раннее упоминание в литературе о ныряльщиках можно обнаружить в «Илиаде» Гомера. Описывая крушение колесницы Гектора, он сравнил ее падение вперед с движением человека, ныряющего в воду.
Жители острова Родос (ныряльщики Леванта), владевшие искусством и секретом свободного ныряния, занимались подъемом ценностей с погибших кораблей. Их труд был настолько востребован, что, по свидетельству одного из античных современников, был разработан специальный закон, который устанавливал особое вознаграждение за работу ныряльщиков. Например, если глубина погружения составляла 7,3 метра, то человеку передавалась половина добычи, если 3,6 метра — 1 /3 от поднятых ценностей, 0,9 метра —1/10 часть.
О ныряльщиках-левантийцах упоминает Плутарх в повествовании об Антонии и Клеопатре (35 г. до н.э.). Он описывает, что когда Антоний, согласившись участвовать в ловле рыбы вместе с Клеопатрой, поручил одному из ныряльщиков насаживать добычу на крючок, все присутствующие были поражены огромным уловом. Однако на следующий день его первой добычей стала соленая высушенная рыба Клеопатра оказалась дальновиднее Антония. Прежде чем он отправил своих ныряльщиков под воду, туда ушли ее пловцы. Именно они и развенчали торжество Антония, который думал покорить царицу богатством своих водоемов.
Многочисленные исторические источники подтверждают, что за несколько веков до нашей эры ныряльщики не раз использовались в военном деле.
В Британском музее посетители могут видеть два уникальных ассирийских барельефа, относящихся к X веку до н.э. В Англию они привезены в 1847 году из дворца царя Ассур-Назир-Пала в Ниневии. Барельефы называются: «Беглецы, преследуемые ассирийскими стрелками, переплывают реку, ища убежища в крепости» и «Ассур-Назир-Пал и его армия переходят реку». Оба барельефа несут изображения плывущих воинов, к поясам которых привязаны бурдюки из козьих шкур, надутые воздухом. Учитывая, что надутый мешок подобной конструкции имеет плавучесть примерно 50 фунтов (22,7 кг), возникла версия, будто они использовались неопытными пловцами для преодоления водных преград. Но у ряда специалистов появились сомнения относительно данного вывода. Они заключались в том, что пловцы нарисованы ниже уровня поверхности воды и держат во рту козью ногу, значит, из мешков осуществлялось дыхание. Сразу появились еще два вопроса — для чего? Или для регулировки плавучести, или для пребывания под водой в автономном режиме? Однозначного ответа на данные вопросы не было найдено. Главным образом это связано с тем, что собственно описание кожаных бурдюков было приведено лишь в 77 году н.э. римским ученым Плинием Старшим (т.е. через 11 веков после появления барельефа). Думается, что на барельефах действительно изображены первые боевые пловцы, подвиги которых история не сохранила для нас. Тем не менее еще до Плиния Старшего их практические действия уже были известны.
В V веке до н.э. греческий ныряльщик Сциллий из г. Скионы вместе с дочерью Гидной (по другим источникам без нее) перерезали якорные канаты военных кораблей персидского царя Ксеркса Он якобы поднимал сокровища с одного из погибших кораблей по указанию царя и был им по окончании работ задержан. Но, воспользовавшись штормом, Сциллий покинул корабль Ксеркса, совершив фактически диверсию, а потом уплыл в сторону Артемизия. Действия ныряльщика обернулись трагедией для персидского флота. Во время шторма несколько кораблей Ксеркса были разбиты о берег и погибли.
В 415 году до н.э. греческий историк Фукидид и римский историк Тацит описали, как греческие ныряльщики разрушили подводные заграждения во время знаменитой осады Сиракуз (остров Сицилия) в 215—212 годах до из.
Последующие столетия прошли в упорном поиске способов обеспечения жизнедеятельности человека под водой. Только достаточно надежное оборудование могло способствовать успешному решению военных задач в подводном плавании. В 375 году до н.э. появился трактат древнеримского писателя Вегеция «О правилах военных», предназначенный для обучения римских когорт. Эта работа стала первым известным печатным трудом, где изображались боевые пловцы. В нем приводится описание и первого водолазного прибора примитивной конструкции. Кожаный шлем с трубкой плотно охватывал голову подводного пловца, имея прорези для глаз, закрытых прозрачным материалом. Собственно дыхательная трубка удерживалась на поверхности воды надутым воздухом мешком.
Работоспособность и возможности такого снаряжения рассчитать несложно. Если исходить, что площадь грудной клетки человека равна примерно 600 см кв., то на глубине 1,3 метра она будет испытывать внешнее гидростатическое давление воды равное 78 кг. Это делает дыхание атмосферным воздухом с поверхности невозможным, так как дыхательные мышцы человека могут преодолеть сопротивление на вдохе не более 100 мм рт. ст. (0,13 атм). Древние славяне еще в IV веке н.э. использовали тростниковые трубки для погружения в водоемы. Но глубина, с которой осуществлялось дыхание атмосферным воздухом, вряд ли превышала 20—30 см, и то при известной тренированности человека.
Тем не менее к пониманию этой простой истины человечество шло столетия. Заставить человека дышать через трубку на относительно большой глубине в разное время пытались Плиний (77 г. н.э., рукопись «Естественная история»), Леонардо да Винчи (1500), Валло в трактате о фортификации (1524), в издании на туже тему Б. Лорини (1597). Р. Флюдд в 1617 году опубликовал в одной из работ данные об аппарате, принцип действия которого также не отличался оригинальностью, так как он заключался в использовании дыхательной трубки, закрепленной на поверхности воды поплавком Автор прошел этот путь самостоятельно и убедился в его полной бесперспективности.
Поиск рациональных путей обеспечения жизнедеятельности человека под водой продолжался.
В 360 году до н.э. Аристотель в труде «Проблемата» упоминает об оригинальном дыхательном устройстве, или прообразе водолазного колокола. По его мнению, он представлял собой мешок с воздухом, который опускается к ныряльщику под воду и удерживается постоянно в вертикальном положении. Аристотель полагал, что подобным изделием пользовался Александр Македонский (Александр Великий) при осаде Тира По сути, это первое упоминание в известных рукописных материалах об оборудовании типа водолазный колокол.
Немецкий писатель Кьезер (1405) оставил в своих бумагах описание водолазного оборудования, состоящего из кожаной куртки и стального шлема с двумя стеклянными иллюминаторами. Костюм для лучшей герметизации был подбит губкой. Шлем соединялся кожаной трубкой с воздушным мешком. В анонимной рукописи на немецком языке, обнаруженной через 25 лет после заметок, оставленных Кьезером, был найден рисунок водолаза, одетого в очень похожее снаряжение.
Примерно в 1450 году известный итальянский математик Д. Мариано (Таккола) описал достаточно странного вида водолазное оборудование, которое представляло собой кожаный мешок, одетый на голову человека
Великий художник, математик, человек, обладавший широкими познаниями в области многих наук, Леонардо да Винчи (1452—1519) в записных книжках оставил человечеству оригинальные эскизы различного подводного снаряжения. Прежде всего, заслуживают внимания рисунки дыхательной трубки-шнорхеля, пловца в маске с воздушным мешком на груди, ручные плавники с искусственными перепонками между пальцами, достаточно полное описание водолазного костюма, балластных мешков, наполненных песком, которые опорожнялись при подъеме на поверхность воды. Кроме этого, в записях можно обнаружить эскизы спасательного оборудования. В течение длительного времени рисунки Леонардо да Винчи лежали невостребованными в архивной тиши и увидели свет только через несколько веков после его смерти.
Тем временем человеческая мысль не дремала. Желание продлить свою жизнь под водой всеми немыслимыми методами многих толкала на смелые и отчаянные поступки, граничащие, по мнению некоторых современников, с безумием
В 1538 году в г. Толедо на реке Тахо (Испания) прошли первые испытания водолазного колокола. Голландец Корнелиус ван Дреббель в 1620 году построил первую действующую подводную лодку. Через 40 лет немецкий физик Штурм изготовил водолазный колокол высотой 4 метра, свежий воздух в котором обеспечивался уникальным способом—разбитием закупоренных бутылок под водой. Штурм глубин становился предметом все более тщательного изучения многими талантливыми людьми своего времени.
Исторические источники свидетельствуют, что к 1675 году в России водолазы начали формироваться как профессиональная группа. В письме Патриарха Иоакима царю Алексею Михайловичу подчеркнуто, что «водолазные люди» на Руси активно используются на государственных и монастырских работах. В это лее время началось применение в практике подводных работ водолазного колокола.
Пройдет 44 года, и в 1719 году крестьянин подмосковного села Покровское (в последующем Покровское-Рубцово),
Ефим Никонов предложит первое автономное водолазное снаряжение. Одновременно русский самородок создал проект «потаенного судна» (т.е. подводной лодки) под названием «МОРЕЛЬ», с которого, по его замыслу, и должны были действовать подводные пловцы в изобретенном им оборудовании. Осенью 1720 года в присутствии царя прошли не совсем удачные испытания корабля. После второго погружения лодка не всплыла без дополнительной помощи. Аварийная ситуация еще более убедила Никонова в необходимости создания автономного водолазного снаряжения. Он предложил Адмиралтейств-коллегий простейший скафандр, который предполагался к использованию для скрытого покидания корабля под водой с целью выполнения работ и диверсий на неприятельских судах. Водолазы должны были выходить из лодки через специальную шлюзовую камеру, представлявшую собой, по сути, водолазный колокол. Описание снаряжения, говоря словами первоисточника, сводилось к следующим характеристикам:
«А для хода в воде под корабли надлежит сделать для каждого человека юхотных кож по два камзола с штанами, да на голову по обшитому или обивному кожею деревянному бочонку, на котором сделать против глаз окошки и убить свинцом скважинами и с лошадиными волосами, и сверх того привязано будет для грузу к спине по пропорции свинец или песок, и когда оное исправлено будет, то для действия к провертке и зажиганию кораблей сделать надобно инструменты особые...»
Шлем водолаза Никонова, задуманный им в виде бочонка, имел два окошка и мог быть дополнительно оборудован кожаным шлангом для дыхания отсечным воздухом из лодки «самотеком». Решение получалось оригинальным и простым как все великое. С целью обеспечения дыхания водолаз поднимался на палубу лодки. Из-за перепада давления по высоте, равной двум метрам, воздух поступал с хорошим напором под шлем Одновременно Никонов разработал автономное водолазное снаряжение. На спине и груди водолаза располагались мешки с воздухом. Разумеется, время пребывания под водой с таким аппаратом было небольшим и его использование могло сыграть, скорее всего, ни сколько военное значение, как психологическое.
После смерти Петра I финансирование проекта было продолжено, несмотря на преследующие его неудачи. Екатерина I, унаследовавшая престол, поддержала строительство нового судна Никонова «без всякого замедления», но после прихода на трон Петра II флот стал приходить в упадок. Никонов в 1728 году лишен звания корабельного мастера и под конвоем отправлен на астраханскую верфь, где исполнял обязанности водолазного специалиста, а потом и вовсе был удален от дел.
К тому времени на Руси в портах работали так называемые «вольные водолазы» со своим индивидуальным снаряжением Их услугами пользовались верфи и адмиралтейства. В начале XVIII века «вольные водолазы» начали организовывать первые бригады. Однако на флот водолазное снаряжение стало поступать только в 1861 году. А с апреля 1882 года в Кронштадте при минной части заработала первая в России водолазная школа. Ее основателем стал капитан 1-го ранга (в последующем адмирал) В.П. Верховский, а первым начальником — капитан-лейтенант Леонтьев. Но все эти события были еще впереди.
А тогда, в 1728 году, закончилась судьба уникального в своем роде первого изобретения, намного опередившего время, вспомнят о котором только в 1825 году. Почти 10 лет на Галерной верфи благодаря уму и прозорливости Петра I строилось судно русского самородка Никонова, представлявшее собой прообраз будущих субмарин. Через несколько веков с подводными диверсантами на борту они будут бороздить океанские глубины, представляя собой грозную и почти неуловимую силу. Но дело оказалось не окончено. Ибо необходимо было время, которое позволило бы подготовить не только технический интеллект цивилизации к созданию совершенно нового вида оружия войны на море, но разрешило и морально-психологический аспект проблемы.
Пройдет 50 лет после сооружения «потаенного судна» Никонова, и американцу Д. Бушеллу удастся построить аналогичную подводную лодку, но под водой она могла находиться 30 минут. В конце XVIII века (1797) появилось другое изобретение, явно претендовавшее на первый в истории вариант вентилируемого водолазного снаряжения, которое не является автономным, но о нем следует вспомнить. Создателем его стал немецкий инженер Клингерт. С этого момента появилась серия моделей оборудования подобного типа. В разное время варианты вентилируемого водолазного снаряжения предложат делать англичанин Август Зибе (1819) и кронштадский механик Гаузен (1829). Первый в 1837 году испытал мягкий скафандр, в котором жесткий шлем герметично соединялся с рубахой. Модель сразу стала популярной во многих странах мира.
С 1715 года получило развитие еще одно направление в водолазной технике. Талантливый изобретатель Д. Летбридж изготовил жесткий скафандр и опубликовал его описание в журнале «Джентльмене Магазин» (сентябрь 1749 года). К сожалению, чертежи устройства не сохранились. На протяжении последующих 150 лет было создано большое количество «панцирных скафандров», как их называли в начале XX века водолазные специалисты. Это модели капитана Роу (1726—1729), Тейлора (1838), Филипса (1856), Лафайета (1875), Таскера (1881), братьев Карманьол (1882), Хеменгера (1890—1893) и многих других. В течение XX века были разработаны десятки жестких скафандров, предназначенных для эксплуатации на глубинах до 600 метров. По сути, они представляют собой миниатюрные одноместные подводные аппараты, снабженные системой управления, навигации, связи, специальными инструментами для выполнения подводно-технических работ, а также, что особенно важно, автономной системой жизнеобеспечения акванавта, В свое время широкое распространение получили жесткие скафандры: «Джим» (глубина погружения — 457 м, автономность — 20 ч.), «ВАСП» (глубина погружения — 610 м, автономность — 36 ч.), «Спидер» (глубина погружения — 610 м, автономность — 72 ч.), «Мантис» (глубина погружения — 610 м, автономность — 72 ч.).
Однако специалисты продолжали поиск новых технических решений в создании более простого водолазного снаряжения.
В 1825 году В. Джемс изобрел первый автономный аппарат на сжатом воздухе для дыхания под водой. Снаряжение представляло собой закрытую рубашку с медным шлемом, имевшим окошки. Воздух в него подавался из специального металлического резервуара в виде цилиндрического пояса, закрепленного на теле водолаза. Автор изобретения рекомендовал свое детище для использования не только под водой, но и в шахтах, заполненных газом. К сожалению, ввиду ограниченного запаса воздуха время работы в нем оказалось небольшим. Поэтому в 1842 году француз Сандала попытался изготовить водолазное снаряжение с регенеративной системой очистки дыхательного воздуха от углекислого газа. Но идея дальше предложения развития не получила.
Русские изобретатели водолазного снаряжения не отставали от зарубежных коллег в поиске новых разработок. В. Вшивцев (1853) создал перспективный автономный водолазный аппарат, в котором дыхательный шланг имел клапана вдоха и выдоха. Данная конструкция будет усовершенствована и использована во многих более поздних моделях подводного снаряжения. В1861 году водолазы официально введены в штаты военных кораблей Российского императорского флота.
Конец XIX века ознаменовался большими успехами в создании подводного снаряжения. В это время российский флот в значительной степени перешел на отечественные образцы водолазного оборудования. Мичман Е.В. Колбасьев (1889) изобрел помпу для подачи водолазу, работающему на дне в вентилируемом снаряжении, воздух с поверхности воды. Врач Н.Я. Есипов совместно с инженером Л.А. Родионовым разработали и предложили к эксплуатации первый отечественный подводный фотоаппарат. Лейтенант Тверетдинов сконструировал в 1885 году электрический подводный фонарь. Российские специалисты в конце XIX века разработали несколько конструкций подводных ламп различной мощности. В 1893 году в России начались опыты с подводной фотографией. Этим занимались: лейтенанты Хотинский, Колбасьев, Костович, Кононов, врач Кронштадской водолазной школы Есипов, доктор Храбростин, мичман Серичевский, штурманский поручик Бровкин. В 1893 году российский бокс ^ля подводного фотографирования получил высокую оценку на Всемирной выставке в Чикаго, а потом в 1896 году на Всероссийской выставке в Нижнем Новгороде. Тогда же были продемонстрированы и подводные фотографии, а через четыре года они показаны на Петербургской выставке судоходства. «Но начинания русских подводных фотографов не получили известности за границей и были вскоре забыты и в самой России».
Целый ряд открытий и изобретений в области фундаментальных наук позволили разработать технологии, обеспечившие настоящий рывок в изобретении дыхательных аппаратов.
Французы Б. Рукейроль и О. Денеруз (1865) изготовили полуавтономный дыхательный аппарат на сжатом воздухе и специальную маску к нему. Данная конструкция представляла собой нечто похожее на современное шланговое водолазное оборудование. В 1873 году русский изобретатель мичман А. Хотинский создал автономный водолазный аппарат, в котором использовался резервуар, заполнявшийся кислородом и сжатым воздухом. Он был успешно применен на ремонтных работах в Кронштадтском доке. В это же время русский инженер А. Лодыгин пытался изготовить первый в мире автономный дыхательный аппарат (1871), в котором предполагалось использование искусственной дыхательной смеси (кислород-водород). Данная разработка предусматривала наличие специального прибора, позволявшего извлекать компоненты смеси из воды путем электролиза, а также резервуар-поглотитель углекислого газа А. Лодыгин явно опередил свое время. Пройдут десятилетия, и элементы данной схемы жизнеобеспечения человека под водой будут введены во многие перспективные разработки водолазного снаряжения.
Вторая половина XIX века ознаменовалась многими конструкциями подводного снаряжения, претендующими на оригинальность. Например, поручик Мамота разработал автономное снаряжение, предназначенное для военного применения. С его помощью молено было дышать атмосферным воздухом через специальную трубку или пользоваться кислородным баллоном. В 1877 году автономное водолазное снаряжение на сжатом воздухе разработал отечественный изобретатель И. Александровский. Он попытался воплотить его в чисто диверсионном средстве подводной войны под названием «Подводный тарантас». Транспортируя за собой тележку, груженную баллонами со сжатым воздухом, и взрывчатку, водолазы могли находиться под водой почти 3 часа
Однако дальше создания опытного образца и успешного его испытания проект не пошел.
Чуть позже на Западе (1879) англичанином Г. Флюссом была предложена удачная конструкция первого автономного кислородного аппарата с замкнутым циклом дыхания. Он состоял из маски, изготовленной из прорезиненной ткани, медного баллона, наполненного кислородом до давления 30 атм и дыхательного мешка. Для поглощения углекислого газа автор использовал раствор каустической соды, которым пропитывалась пакля, находившаяся в регенеративном патроне. Данная модель автономного дыхательного аппарата была реализована в конкретных конструкциях и успешно испытана фирмой «Зибе, Горман и К». Сначала устройство вместе с камерой поглотителя углекислого газа одевалось на спину водолаза. Несколько позлее дыхательный мешок перенесли на грудь, а камеру с баллоном оставили на спине.
Дыхательный аппарат Флюсса оказал на Западе серьезную конкуренцию ставшему традиционным скафандру. Однако возможность передвигаться под водой, словно рыба, все еще оставалось мечтой человека, поэтому разработчики водолазного снаряжения пошли привычным путем Они конструктивно объединили аппарат Флюсса со скафандром Зибе, предназначенным для передвижения по дну.
Успешная эксплуатация дыхательного аппарата Флюсса в шахтах Сиэма (1880) и Киллингворта (1882), в туннеле под рекой Северн и положительные отзывы о нем специалистов подтолкнули управляющего фирмы «Зибе, Горман и К°» Роберта Г. Девиса обратиться к Флюссу с предложением о модернизации модели. Последний к тому времени сам рекомендует ряд существенных усовершенствований созданного им дыхательного аппарата, которые были введены в новую конструкцию и сильно ее изменили.
Первоначально при эксплуатации аппарата водолаз вынужден был вручную открывать клапан баллона с целью наполнения дыхательного мешка кислородом. Девис изобрел автоматический клапан. В случае его выхода из строя в конструкции был предусмотрен байпас. С его помощью водолаз мог самостоятельно обеспечить себе дыхание под водой из прибора. Затем Девис усовершенствовал поглотитель углекислого газа и ввел в устройство стальные баллоны, выдерживающие давление кислорода 150 атм, а также модернизировал некоторые другие узлы изделия. Данная модель автономного дыхательного аппарата была реализована фирмой «Зибе, Горман и К» в ряде конструкций, успешно испытана и постоянно модернизировалась. Сначала устройство вместе с камерой поглотителя углекислого газа одевалось на спину водолаза. Несколько позже дыхательный мешок перенесли на грудь, а камеру с баллоном оставили на спине. Собственно дыхательный мешок Флюсе и Зибе, а потом и Горман стали изготавливать с поперечной перегородкой. В нижней его части располагался поглотитель углекислого газа. В верхней части мешка появились клапаны вдоха и выдоха, соединяющиеся гофрированными шлангами с мундштучной коробкой, на которой размещался загубник. В состав снаряжения был введен носовой зажим. Последующие доработки аппарата носили несущественное значение для его характеристик, за исключением усовершенствования узла химического поглотителя.
Большой помощью в решении данной проблемы стало изобретение в 1904 году Ж. Жобертом оксилита — препарата перекиси натрия. Он обеспечивал не только поглощение углекислого газа из дыхательной смеси, но и выделение кислорода Недостатком химиката являлась его неспособность с началом активной фазы обеспечить немедленное выделение достаточного количества кислорода. Для этого необходимо было примерно две минуты. Поэтому водолаз оказался вынужден предварительно заполнять дыхательный мешок кислородом из отдельного баллона, чтобы в последующем иметь возможность немедленно приступить к работе. Используя химические свойства оксилита, в 1907 году капитан Холл и морской хирург Риид создали дыхательный аппарат, напоминающий внешне открытый скафандр Зибе.
В 1911 году Девис сконструировал и начал выпускать аппарат, подобный модели Холла-Риида. Он состоял из водонепроницаемого дыхательного мешка в виде спасательного пояса. В нем располагалась камера с оксилитом. Мешок соединялся гофрированным шлангом с мундштуком. На поверхности воды пояс играл вспомогательную роль спасательного устройства. В 1906 году аппарат Девиса поступил на западный рынок под названием «Прото» марка 1. Несколько позлее, когда он уже активно использовался в ВМС Великобритании и ряде других стран для вывода личною состава из поврежденных подводных лодок (1911), ему присвоили марку «ПСАД» (подводный спасательный аппарат Девиса). Данная модель дыхательного аппарата нашла широкое применение не только на военном флоте, но и в горно-спасательном деле. Его эффективно использовали во время пожаров. Девис приспособил аппарат для авиаторов и альпинистов. Во время Первой мировой (Великой, второй Отечественной) войны (1914—1918) сухопутные войска применяли «ПСАД» для защиты от газовых атак противника. Истории суждено было развиваться дальше так, что скоро нашлось и другое применение индивидуальным дыхательным аппаратам. События, разворачивавшиеся на театре Первой мировой, или Великой войны, как ее называли современники, в значительной степени подтолкнули военную мысль к использованию в боевых действиях на море боевых пловцов-диверсантов.
В 1918 году итальянцы Рафаэль Россети и Рафаэль Паолуччи изготовили первую человекоуправляемую торпеду. С ее помощью они потопили югославский линейный корабль «Вирибус Унитис» в гавани порта Пола (Адриатическое море).
Однако командование не всех флотов тогда отреагировало должным образом на данный факт. Например, французы в процессе военного конфликта провели испытания устройства для автономного питания тяжелых скафандров. Оно получило название «аппарат Бутан» и было предназначено для самостоятельного покидания водолазом подводной лодки с целью нападения на корабли и береговые объекты противника. Скоро о проекте забыли. Нужно было время, за которое автономное водолазное снаряжение достигло бы вполне конкретного уровня, когда целесообразность подводной, диверсионной войны станет реальностью.
После Октябрьского переворота (1917) события в России относительно вопроса развитая водолазного дела получили серьезную поддержку на государственном уровне. В 1923 году за подписью Ф.Э. Дзержинского создан ЭПРОН (Экспедиция подводных работ особого назначения). Первоначально замысел состоял в ее использовании для поиска английского военного корабля «Принц» («Черный Принц»), погибшего под Балаклавой в шторм 02.11.1854 года. По косвенным свидетельствам, на его борту находился якобы огромный золотой запас, подъем которого со дна моря для советской власти имел огромное значение. Поэтому контроль над работами был возложен на ОГПУ, а ЭПРОН возглавил чекист АН. Захаров (Мейер). Надежды не оправдались, корабль оказался пуст. Но и по сей день кладоискателям не дает покоя его призрачное золото. ЭПРОН становится организацией, возглавившей все судоподъемные работы в СССР, а его коллектив с 30 человек постепенно увеличился до нескольких сот высококлассных специалистов. В связи с этим разработка автономных дыхательных аппаратов стала важной необходимостью в реализации поставленных перед ЭПРОНом задач.
Изначально автономное отечественное водолазное снаряжение создавалось только для экипажей подводных лодок, как средство спасения в аварийных ситуациях. Причиной этому послужила гибель в 1931 году ПЛ «Рабочий» (тип «Барс») со всем экипажем и АГ-21 (АГ-16 или «Металлист»). В последнем случае трагедия произошла летом 1931 года, когда эскадренный миноносец «Фрунзе» таранил лодку во время учений Черноморского флота, проходивших недалеко от Севастополя. После чрезвычайных происшествий с подводными лодками вышло специальное постановление Реввоенсовета. Предписывалось в кратчайшие сроки оснастить все подводные корабли средствами автономного спасения.
Но отечественного специального снаряжения, которое могло быть использовано для аварийного покидания субмарин, не было. Осенью 1931 года на вооружение советского военного флота стали поступать итальянские дыхательные аппараты-капюшоны Беллони и английские Девиса Большое распространение в спасательном деле получил индивидуальный спасательный аппарат Момсена. К сожалению, их эксплуатация выявила целый ряд серьезных недостатков снаряжения. Возникла острая необходимость в создании массовой серии аппаратов отечественного производства.
Конструкторы, водолазные специалисты и врачи-физиологи СССР приступили к активным исследованиям в области разработок систем жизнеобеспечения под водой. В 1931—1932 годах для ВМФ создано автономное водолазное снаряжение типа «Э» (ЭПРОН). С середины 30-х годов XX века его стали называть — «легководолазным». Снаряжение постоянно совершенствовалось. Летом 1932 года подводники приступили к практическим тренировкам на открытой воде — и сразу появились первые успехи. Водолаз Л.Ф. Кобзарь в аппарате «Э-1» за 20 минут пересек под водой Южную бухту в Севастополе, а осенью 1932 года впервые в истории отечественного флота вышел из погруженной подводной лодки через торпедный аппаратом.
После 1932 года в эксплуатацию поступили аппараты с модификацией от «Э-1» до «Э-5». Два из них — «Э-3» и «Э-4» — приняты на вооружение экипажей подводных лодок ВМФ СССР. Кроме снаряжения типа «Э» советские легководолазы использовали аппараты ИПА, ВАП, ИПСА, ОСВОД-1 и 2. Два последних широко применялись на спасательных станциях во второй половине 30-х годов XX века. В1934 году разработан отечественный гидрокомбинезон. Его назначение состояло в защите тела водолаза от охлаждающего действия воды.
Широкое внедрение легководолазного дела на флоте привело к нехватке кадров, способных обеспечить подготовку личного состава. Это существенно препятствовало внедрению автономных средств спасения экипажей подводных лодок. Командование флота и руководство страны принимали активные меры для решения проблемы.
В начале 30-х годов XX века приступила к работе комиссия под председательством академика (1935) Л.А. Орбели (1882—1958). Ученые приступили к исследованию физиологических процессов, происходящих в организме человека при погружении под воду. Многие выводы комиссии были учтены при создании перспективных конструкций легководолазного снаряжения, таких, например, как ИПА-1, ИПА-2, а в 1936 году более совершенной модели — ИПА-3. Аппарат работал по замкнутой схеме дыхания: легкие — регенеративная коробка — дыхательный мешок — легкие. В дальнейшем специалисты советской школы подводной физиологии и медицины разработали современные методики обеспечения безопасности насыщенных погружении в автономном водолазном снаряжении. Кроме ЛА. Орбели значительный вклад в изучение особенностей функционирования человеческого организма в водной среде внесли академики К.М. Быков, Е.М. Крепе, Г.Н. Черниговский.
Большое развитие во второй половине 30-х годов XX века легководолазное дело получило на Черноморском флоте. С помощью аппаратов с замкнутым циклом дыхания моряки выполняли не только технические работы по осмотру винтов, днища кораблей, причальных стенок, но... играли под водой в шахматы и шашки, проводили спортивные состязания в скоростном плавании, включались и выключались из аппарата на глубине, проплывали через специальную трубу, уложенную на дне моря, имитируя выход из торпедного аппарата подводной лодки...
В 1941 году в Севастополе должна была начать функционирование легководолазная секция (до этого работал кружок) при флотской водной станции, но помешала война. Она внесла существенные коррективы в деятельность Черноморского флота, который одним из первых ранним утром 22.06.1941 года вступил в боевые действия против фашистской Германии.
01.09.1939 года — начало Второй мировой войны. Нужно было форсировать развитие легководолазного дела в СССР. В этом же году на вооружение ВМФ принят гидрокомбинезон марки ТУ-1. В 1939 году поступил на вооружение один из лучших образцов автономных водолазных аппаратов своего времени — ИСА-М, а затем ИСА-М-43, С этим снаряжением подводные пловцы советского ВМФ вступили в Великую Отечественную войну (1941—1945). После ее окончания в 1948 году был принят на вооружение ИСА-М-48. Однако вернемся несколько назад. В 1933 году произошло событие наиболее нас интересующее.
Французский инженер Ле Приер предложил для практических погружений под воду автономный дыхательный аппарат на окатом воздухе. Давление в его баллоне достигало 100—150 атм (10—15 мПа), что весьма близко к современному. Крупным недостатком конструкции являлось то, что количество подаваемого воздуха приходилось регулировать с помощью нажатия на шток клапана в зависимости от глубины погружения. И все-таки разработка казалась перспективной.
Другой французский изобретатель, Жорж Комайнес, приспособив аппарат отца, предназначенный для дыхания в загазованной атмосфере, к условиям работы под водой создал автономное устройство под названием «RC 35». Использование его модификации «GC 42» позволило Комайнесу в июле 1943 года близ Марселя погрузиться на глубину 53 метра! Это был мировой рекорд. Но несмотря на то что фирма Рене Комаинеса наладила серийный выпуск аппарата сразу в нескольких модификациях, он получил небольшое распространение в водолазном деле. Комайнес не завершил свои исследования в области разработки, а также создания дыхательных устройств на окатом воздухе. В качестве командира танка он погиб в Эльзасе в ноябре 1944 года. Франция явно проиграла, потеряв талантливого француза, который мог бы не за стальной броней добыть для нее мировую славу, а в глубинах океана.
Тем временем, пока французы проводили эксперименты, боевые итальянские пловцы, используя управляемые человеком торпеды, нанесли значительные повреждения английским линейным кораблям «Куин Элизабет» и «Вэлиент» в Александрии (Египет). Это был отсчет их действиям. Вторая мировая война (1939—1945) становилась отправной точкой в мощном развитии подводных диверсионных сил сразу нескольких флотов ведущих стран мира. Пока же наступил 1943 год. Год, когда Жак-Ив Кусто и инженер Эмиль Ганьян сделали прорыв в создании автономного подводного водолазного снаряжения, который до сих пор вряд ли до конца оценен современниками. Они разработали и испытали акваланг («водяные легкие») — аппарат, работающий на сжатом воздухе. С этого момента началась совершенно новая эпоха проникновения человека в «мир без солнца».
Принципиально новый дыхательный аппарат отличался от предыдущих моделей оригинальной конструкцией легочного автомата, устройства, обеспечивающего автоматическое уравновешивание давления воздуха на вдохе с окружающим давлением среды и дозирование при его подаче в легкие человека Редуктор устройства во многом повторял характеристики редуктора Рукероль-Денеруза, которым пользовался и Комайнес Конструкция оказалась уникальной по простоте и технологичной. Она требовала специфических операций при подготовке к работе. Редуктор типа «Кусто—Ганьян» получил развитие в модели «Мистраль», широко применявшейся в ВМФ Франции до 1989 года Единственным существенным недостатком дыхательного аппарата схемы Кусто — Ганьяна было и остается его низкая экономичность. Например, от 21% от общего объема кислорода в дыхательном воздухе гемоглобин крови человека успевает связать только пятую часть. Данное обстоятельство подтолкнуло ряд изобретателей к дальнейшему совершенствованию акваланга
В этом смысле примечательной разработкой является конструкция дыхательного аппарата с открытой схемой дыхания (т.е. выдохом в воду) итальянца Альберто Новелли. Ему удалось добиться экономии примерно одной трети располагаемого дыхательного воздуха Тем не менее дыхательный аппарат Новелли не нашел широкого применения в практике подводных погружений из-за громоздкости и ряда недоработок. В СССР первый воздушно-дыхательный аппарат с открытой схемой дыхания и совмещенными ступенями редуцирования (акваланг) создан в 1957 году. По техническому заданию Управления спасательной службы ЦК ДОСААФ его разработка была поручена инженерам А.И. Солдатенкову и Ю.В. Китаеву. В испытаниях акваланга участвовала одна из первых советских женщин-аквалангисток, подводный фотограф и охотник, автор нескольких книг о подводном мире Ольга Хлудова.
Вскоре автономный дыхательный аппарат был запущен в серийное производство под названием АВМ-1 (Автономный, воздушный морской, модель первая) или «Подводник-1». После проведения дополнительных конструкторских работ советские специалисты создали модификацию — АВМ-1м и АВМ-1м-3 (трехбаллонный вариант). Модернизированный аппарат АВМ-1м отличался от первой модели изменением конструкции и расположением лепесткового клапана выдоха, вместо двух вентилей КВМ-200 между баллонами был установлен один, а также пенопластовая вставка с целью уменьшения отрицательной плавучести. Легочный автомат модернизированной конструкции также имел ряд особенностей. Кроме этого на АВМ-1м шланги вдоха и выдоха изготавливались из более прочного материала.
Появление в СССР аквалангов АВМ-1 и АВМ-1м, «Украина», шланговых дыхательных аппаратов АВМ-3, ШАП-40, ШАП-62 стимулировали настоящий прорыв в области развития наук об океане, подводном спорте, спасательном деле. Практически сразу они стали использоваться в военном деле. Необходимо отметить, что в 50-е годы XX века акваланги были приняты на вооружение подразделений боевых пловцов и подводных диверсантов флотов мира. Однако их использование в специальных операциях не представлялось возможным в силу низкой экономичности дыхательных аппаратов и демаскирующего фактора — видимости при дыхании пузырей воздуха на поверхности и в толще воды. Тем не менее знание этого вида подводного снаряжения, умение им пользоваться считается обязательным при подготовке боевых пловцов и подводных диверсантов.
Поиск оптимальных конструкций дыхательных аппаратов продолжался во всем мире. Над их разработкой трудились талантливейшие специалисты многих отраслей науки и техники.
В 1965 году американский инженер Брюс Р. Бодель запатентовал новый вид дыхательного аппарата под названием «искусственные жабры». Преимущества его оказались очевидны. Он автономен, действие аппарата не ограничено по времени, что само по себе вызвало огромный интерес к разработке. Кроме этого, конструктивно изделие получилось легким и компактным. Аппарат Боделя похож по принципу действия на образец кислородного подводного снаряжения, но в отличие от него отпала необходимость в баллоне с кислородом, а также патроне с химопоглотителем (ХПИ), т.к. в последнем случае для связывания углекислоты использовалась окружающая пловца вода. Сущность предложенного метода заключалась в очистке выдыхаемого воздуха от углекислого газа, выделяемого непосредственно в воду, и наполнении дыхательной смеси кислородом непосредственно из окружающей среды.
Конструктивно аппарат состоит из трубчатого элемента, изготовленного из материала, обладающего хорошей газопроницаемостью. В него подается очищаемый воздух. Из-за разницы парциальных давлений кислорода и углекислого газа в воде и воздухе последний, проходя по трубчатому элементу, насыщается кислородом, растворенным в воде. В это время углекислый газ переходит из воздуха в воду. Бодель не раскрыл секрет своего изобретения в способе повышения давления выдыхаемого воздуха и его автоматической регулировки с увеличением глубины. Несмотря на появление совершенно новой конструкции и принципа дыхания, заложенных в аппарат Боделя, по неизвестным причинам он так и не составил конкуренцию аквалангу. Модернизация и разработка последнего активно шла во всех странах мира.
Появились однобаллонные, трех-, четырехбаллонные акваланги. Технический дайвинг потребовал оснащения человека под водой дополнительными узлами систем жизнеобеспечения. В схему дыхания вводится принцип раздельной ступени редуцирования. Дыхательный автомат располагается в загубнике акваланга — вторая ступень регулятора. Первой ступенью регулятора является редуктор. Он предназначен понижать давление воздуха в баллоне аппарата от максимального значения (150—300 атм) до установочного по техническим условиям конструкции (6—8 атм). Широкую популярность в мире получили однобаллонные аппараты с повышенной емкостью: 12, 15, 18 литров и давлением до 300 атм (30 мПа).
Для зарядки аквалангов стали применять специальную смесь с повышенным содержанием кислорода типа «NITROX». При пользовании подобными аппаратами возникла необходимость коррекции режима декомпрессии, а также строгого учета возрастания его парциального давления с увеличением глубины погружения. Оно должно быть не более 1,6 атм. Это связано с тем, что содержание кислорода в смеси «NITROX» составляет до 40% (в обычном воздухе его находится 21%). Однако наиболее часто используется обогащенный кислородом воздух на 32% (EANx 32) и 36% (EANx 36). Кроме этого ограничение по глубине погружения на «NITROX» связано с тем, что на ее значении более 66 метров может наступить кислородное отравление, так как уровень токсичности кислорода становится опасен для жизни водолаза. У некоторых специалистов вызывает беспокойство пожароопасность оборудования, работающего на «NITROX» в силу повышенного содержания кислорода в дыхательной смеси.
Таким образом, для продолжительного спуска на большие глубины возникла необходимость частично заменить кислород и азот в дыхательной смеси на другой газ. Им стал нейтральный гелий, который обеспечил безопасность погружения на 120 метров, а сама смесь называется «ТРИМИКС». Но и здесь возникла проблема. На больших глубинах при применении смеси возникает мало изученное явление синдрома высокого давления (СВД). Собственно содержание гелия в «ТРИМИКС» зависит от глубины погружения. В связи с этим разработана линейка специальных смесей, применяемых в спусках под воду.
Разработка новых технологий позволила успешно решить и вопрос антикоррозийного покрытия легированной стали, из которой, как правило, изготавливаются баллоны дыхательных аппаратов. Началось использование для них более легких материалов — алюминиевых сплавов, стеклопластика. В последнем случае удалось добиться снижения веса акваланга на 50%. В конце 60-х годов XX века баллоны из однонаправленного стеклопластика были изготовлены в СССР (B.C. Гуменюк, Б.Л. Бигула — Киев). Во время испытаний они разрушились при давлении воздуха более 420 атм (42 мПа), что явилось высоким показателем. В других компонентах подводного снаряжения вместо резины стал применяться силикон, обладающий более высокими эксплутационными характеристиками. В практику погружений под воду введено обязательное использование компенсаторов плавучести, специальных электронных приборов, микрокомпьютерной техники, оборудования типа «водолазный мозг».
В течение последующих десятилетий конца второй половины XX века в СССР создана серия отечественных воздушно-дыхательных аппаратов с открытой схемой дыхания и раздельными ступенями редуцирования. Конструктор А.И. Гнамм (соавторы: В. Прокудин Д.Р. Димант, А.В. Кожнев, И.Я. Землянский, А.П. Дахно, В.Ф. Прокудин и др.) изготовил легководолазный аппарат «Украина-2». Как и его предшественник под тем же названием — «Украина», — акваланг получил большое распространение в подводном спорте (изготовитель Луганский завод горноспасательной техники, совр. ОАО «Завод горноспасательной техники «Горизонт»). Всего было выпущено около 50 000 аквалангов «Украина». Из них 1500 аппаратов поставлено на экспорт. «Украина» была одним из самых популярных советских аквалангов в 60-х годах XX века. С его помощью миллионы соотечественников открыли для себя подводный мир. Технические возможности акваланга позволили отечественным спортсменам-подводникам установить десятки всесоюзных и 22 мировых рекорда.
На базе модификации «Украины-2» (выпускался с выносным манометром высокого давления и без него) был разработан шланговый аппарат «АСВ», затем его автономный вариант — «Юнга», предназначенный для начального обучения подводному плаванию и выполнению несложных технических работ под водой. Позже разработан акваланг «Украина-3».
В 80-х годах XX века появилось семейство нового типа аквалангов АВМ с раздельными ступенями редуцирования, как в автономном варианте исполнения, так и смешанном — возможностью использовать шланговое оборудование. Это аппараты: АВМ-5, АВМ-6, АВМ-7 и АВМ-7с, АВМ-8, АВМ-9, «Подводник-2», АВМ-12—1. Акваланг АВМ-5, применение которого возможно как в шланговом, так и автономном варианте, стал основным видом легководолазного снаряжения с открытой схемой дыхания в ВМФ СССР, а потом России и стран СНГ. На вооружение спецподразделений флота поступила его модификация АВМ-5АМ. Аппарат имел антимагнитное исполнение, баллоны емкостью 2x10 л, которые были изготовлены из нержавеющей стали, имели рабочее давление 150 атм (15 мПа) и были покрыты стеклотканью. В 90-х годах XX века АВМ-5 снят с производства.
В 1984 году отечественными специалистами разработан аппарат АВД-10. Он предназначен для аварийно-спасательных работ на глубинах до 20 метров в условиях низких температур. Совместно с АВД-10 используется индивидуальный гидрокостюм, имеющий автоматическую систему подогрева. Несколько позже в серию запущен воздушно-дыхательный аппарат АВП-1 (1988) предназначенный для обеспечения дыхания человека в условиях, наоборот, высоких температур. Учитывая данное обстоятельство, в комплекте с ним используется термостойкий костюм типа ТСК-75.
В начале 70-х годов XX века в СССР на базе Харьковского физико-технического института низких температур создан новый тип автономного дыхательного устройства — криогенный дыхательный аппарат с открытой схемой дыхания АК-3 (авторские свидетельства №478489, 503152, 505141). Он предназначался для работы на глубинах до 45 метров с использованием сжиженного воздуха или воздушно-кислородной смеси, которая сохранялась при температуре —140°С в сосудах Дьюара. АК-3 был изготовлен из нержавеющего, немагнитного материала. Запас жидкой дыхательной смеси позволял находиться под водой почти в четыре раза дольше, чем при использовании сжатого воздуха, и составлял 6900 литров при пересчете на газовое состояние.
По мнению разработчиков АК-3, проведенные испытания аппарата в барокамере с имитацией глубины 60 метров в пресной и морской воде с экспозицией ее величины 45 метров и при температурах 0—24°С показали его значительные преимущества перед аквалангом. Несомненно, перспективная разработка криогенного дыхательного аппарата не получила дальнейшее развитие, хотя представляла интерес и с точки зрения боевого подводного плавания. Его антимагнитная конструкция и большое время экспозиции под водой позволяли эффективно осуществлять противоминные работы. Относительная сложность устройства АК-3 и, видимо, трудоемкость обслуживания стали причиной исключения аппарата из перечня серийных моделей. Отечественные специалисты продолжали совершенствование автономных дыхательных систем жизнеобеспечения под водой традиционной конструкции на сжатом воздухе. Однако, несмотря на их надежность, советские акваланги заметно уступали зарубежным образцам в области дизайна, оперативного введения в их конструкции новых композиционных материалов и ноу-хау разработок. Впрочем, это касалось и ряда других видов отечественного подводного снаряжения.
В то же время за рубежом были созданы и быстро развили успех в разработке различных видов водолазного оборудования десятки фирм, из перечня которых сразу выделились лидеры: Spiro, Sporasub, Beuchat, Tusa, Agualung, U.S. Divers, Scubapro. С начала 90-х годов XX века их изделия заполнили рынки государств бывшего СССР и Восточной Европы, пользуясь спросом не только у любителей подводного плавания, но и у профессионалов. И все же, несмотря на широкое распространение акваланга во всех сферах подводной деятельности человека, ведущие зарубежные фирмы продолжали разработку более перспективного вида автономного снаряжения с закрытой или полузамкнутой схемой дыхания. Наконец, именно это оборудование более всего интересовало военных специалистов в области использования боевых пловцов и подводных диверсантов.
Автономное водолазное кислородное снаряжение с замкнутой схемой дыхания теоретически позволяло использовать 100% запаса кислорода. Но последний взрывоопасен при соединении с маслом, а под высоким давлением нес патологическую угрозу здоровью человека. Данное явление впервые было обосновано в докладе Поля Бэра, сделанном им во Французской академии наук в феврале 1873 года. Оно получило название «эффект Поля Бэра», или гипероксии. Его симптомами является усиленное потоотделение, тошнота, расстройство зрения, судороги, потеря сознания и смерть. Поэтому в силу токсичности кислорода при его давлении около 1,7 атм данное оборудование используют, как правило, на глубинах не более 20 метров. На больших ее значениях у человека возникает тяжелое поражение—кислородное отравление, получившее в патофизиологии название «эффекта Лоррена-Смита». Учитывая данное обстоятельство, были разработаны нормы безопасности при дыхании чистым кислородом Причем за рубежом они гораздо жестче, чем в отечественном ВМФ. В американском военном флоте, например, парциальное давление кислорода, работающего в аппарате, принято считать рекомендуемым величине 1,6 атм, тогда как в российском оборудовании подобного типа — 3,0 атм. К отечественным разработкам автономного кислородно-регенеративного снаряжения относятся модели аппаратов типа ИДА. За рубежом их называют рециркуляционными (rebreathers).
В ИДА-51, ИДА-57, ИДА-59, ИДА-64 для дыхания применяется чистый кислород с последующей его регенерацией через химический поглотитель по замкнутому циклу. Кроме этого типа снаряжения существуют еще три: аппараты полузамкнутого режима работы, функционирующие на предварительно приготовленных газовых смесях, аппараты полузамкнутого типа, действующие на газовых смесях, приготавливаемых самим аппаратом, и аппараты замкнутого цикла, работающие на газовых смесях, приготавливаемых также самим аппаратом. Само снаряжение имеет различные варианты технического исполнения.
Допустимое время работы водолаза под водой при дыхании чистым кислородом
Примечание. При выполнении тяжелой работы на глубинах 10—20 метров необходимо обязательно учитывать индивидуальную предрасположенность водолаза к токсическому действию кислорода.
В снаряжении с замкнутым циклом дыхания, например, в аппарате ИДА-59 может использоваться второй баллон с азотно-гелио-кислородной смесью, и даже дополнительный третий баллон с гелием. Он применяется для выхода с аварийной подводной лодки на глубинах более 100 метров (ИСП-60). В качестве регенеративного вещества для этих аппаратов, как правило, используется гранулированный известковый химический поглотитель (ХПИ-ГОСТ 6755—53) или вещество О-3. ХПИ представляет собой зерна размером 2,5—5,5 мм.
Один килограмм ХПИ способен связать около 100 литров углекислого газа. Данные конструкции дыхательного снаряжения более экономичны и перспективны. В ряде аппаратов с замкнутым циклом дыхания используются и другие специальные регенеративные вещества, которые не только поглощают, но и выделяют кислород (вещество О-3).
Наиболее приемлемыми в военном деле принято считать автономное снаряжение с закрытой схемой дыхания и автоматической регулировкой состава дыхательной смеси. Оно экономично, позволяет сравнительно длительное время работать на большом диапазоне глубин без демаскирующих признаков. В различное время боевыми советскими пловцами и подводными диверсантами использовались аппараты специального назначения: ИДА-63, ИДА-64, ЛВЧ-57, ИДА-57, ИДА-59П, ИДА-85, АДА-61, ИДА-74, ТП, АКА-60, ИДА-66 и другие. Из отечественного снаряжения подобного типа в боевом подводном плавании в 90-х годах XX века наибольшее распространение получил аппарат ИДА-71, входящий в комплект оборудования СЛВИ-71.
Разновидностью снаряжения с замкнутым циклом дыхания являются аппараты с полузамкнутым режимом работы. Их используют на глубинах 60—100 и более метров. Дыхание осуществляется по схеме: газ из баллона подается через дюзу и блок с химическим поглотителем, потом в дыхательный мешок, а оттуда при вдохе в легкие человека. Во время выдоха газовая смесь вновь проходит через химический поглотитель, где происходит ее очистка от углекислого газа, и поступает в дыхательный мешок. Туда же подается дыхательная смесь из баллона. Ее избыток стравливается в окружающую пловца водную среду. Выравнивание давления в дыхательном мешке с окружающим осуществляется с помощью байпаса, а парциальное давление кислорода поддерживается в пределах 0,02—0,12 мПа.
Конструктивно в аппараты это типа могут входить весьма сложные узлы. Это различного рода программные устройства, автоматически регулирующие оптимальный состав газовой смеси в соответствии с глубиной погружения, датчики кислорода и дыхательной смеси, исполнительные механизмы, поддерживающие ее состав на заданном уровне. Разработка, модернизация дыхательных аппаратов полузамкнутого типа — предмет постоянной заботы отечественных и зарубежных производителей («Дженерал Электрик», «Биомарин», «Бекман Инструменте», «Драгер»).
Большой популярностью за рубежом пользуется аппарат, выпускаемый с 1996 года немецкой фирмой «DRAEGER» модели «ATLANTIS» (модификация — «Dolphin»), работающий на предварительно приготовленной газовой смеси. Его применяют не только боевые пловцы спецподразделений, но и любители подводного плавания. Эта же фирма производит аппарат с полузамкнутым циклом дыхания модели М-100М, в котором используется механизм автоматической коррекции газовой смеси. В государствах Юго-Восточной Азии широко распространен аппарат типа «FIENO» японской фирмы «GRAND BLEU», действующий на предварительно подготовленной газовой смеси, однако дальнейшее его производство находится под вопросом.
Среди различных зарубежных моделей аппаратов, работающих по замкнутому циклу дыхания с автоматическим механизмом коррекции дыхательной газовой смеси, можно выделить новейшую разработку известной шотландской фирмы «DIVEX» — «STEALH». Аппарат рассчитан на глубину погружения около 100 метров. Его дисплей позволяет контролировать текущее среднее парциальное давление кислорода в диапазоне глубин, время погружения, давление кислорода и компонента в баллонах, степень разряженности аккумуляторов, используется система аварийной сигнализации.
Заметный интерес у специалистов вызывает аппарат «МК-5Р», работающий по замкнутой схеме дыхания и имеющий трижды дублированную систему электроники, автоматически поддерживающую парциальное давление кислорода в дыхательной смеси. По американским данным, этот ребризер является одним из самых совершенных в современной водолазной технике, при создании которого было получено несколько уникальных патентов. Достаточно отметить, что в нем успешно проведено 24-часовое непрерывное погружение! Видимо, оно являлось рекламным, так как по техническим характеристикам аппарата время пребывания с ним под водой составляет примерно 12 часов.
Среди подводных пловцов, выбирающих снаряжение в строгом соответствии «цена—качество», получил известность ребризер «Azimunh». От других конструкций профильных аппаратов его отличает наличие двух баллонов с газом—основного и резервного. Система обеспечения дыхания пловца может осуществляться по открытому циклу и полузамкнутому. Выпускается аппарат, работающий на нитроксе и с использованием гелио-кислородных смесей. В последнем случае возможно погружение до 120 метров. Чаще всего данная модель дыхательного аппарата применяется с полузамкнутым циклом дыхания. В этом случае глубина погружения достигает 30 метров, а время пребывания под водой около 2 часов 30 минут. Вес комплекта на поверхности равен 27 кг (в воде нейтрален). Важной особенностью ребризера является значительная плавучесть жилета, достигающая 25 кг. Аппарат может быть использован террористами при выполнении профильных задач.
Некоторые конструкторы дыхательных аппаратов специализируются в разработке легких и сверхлегких приборов, имеющих двойное назначение. Они пока не получили широкого распространения, но являются перспективными
В Японии создан оригинальный малогабаритный дыхательный аппарат весом,. 1,8 кг (в воде — 0,5 кг). Это новое направление в создании устройства, обеспечивающего дыхание под водой, сразу привлекло внимание специалистов многих стран и частных производителей В конструкцию аппарата введены два легко заменяющихся баллончика объемом 50 см куб, и рабочим давлением кислорода 190 атм (19 мПа). После использования баллончиков их можно заменить в специализированных магазинах.
В конструкцию дыхательного аппарата включен патрон, содержащий регенеративное вещество весом 170 грамм Оно очищает выдыхаемый человеком воздух от углекислого газа и выделяет кислород. Патрон также можно заменять на новый, как и баллончики. Опытные погружения определили условия эксплуатации аппарата: на глубине около 5 метров его работоспособность ограничена примерно 10 минутами. Данные показания являются относительными, так как продолжительность пребывания под водой зависит от физическою состояния человека, легочной вентиляции, температуры окружающей среды, опыта и возможности замены баллончиков и патрона поглотителя не выходя на берег.
Малые габариты и вес, простота обслуживания и невысокая цена привлекут внимание к дыхательному аппарату многих неискушенных людей, не ставящих перед собой серьезных целей в подводном плавании. Однако, учитывая более высокий уровень маскировки работы аппарата, чем у акваланга, малые габариты (300 x 300 x 80 мм) и массу, он пригоден для скрытого переноса и может быть использован при диверсионной и террористической деятельности, главным образом на пресноводных водоемах.
На конец 90-х годов XX века существовало более 60 серийных моделей водолазного снаряжения, работающего по замкнутому или полузамкнутому циклу дыхания. Многие аппараты продолжают выпускаться в модернизированном варианте. В них используется кислород, гелиокислородная смесь, реже азотно-гелио-кислородная. Дыхательные аппараты замкнутого и полузамкнутого цикла размещаются, на спине или груди подводного пловца. Несмотря на применение отдельных образцов подобного снаряжения в дайвинге, значительного распространения оно пока не получило в виду высокой стоимости, сложности устройства и его обслуживания, необходимости специальной, дорогостоящей подготовки. Чаще данное оборудование используется при выполнении специфических задач под водой, когда необходимы работы на больших глубинах или в особых условиях, а нередко исходя из обоих указанных соображений. Подводные диверсанты и боевые пловцы часто действуют на гораздо меньших значениях глубин.
Исходя из необходимости опробования новых технологий и исследования особенностей поведения организма человека во время пребывания под водой и в замкнутом пространстве, с 1962 года начались работы по созданию подводных стационарных лабораторий. Огромный интерес к экспериментам проявили военные ведомства ряда ведущих морских держав. Были рассмотрены и профинансированы некоторые проекты, имеющие большое значение для боевого подводного плавания.
Первым успешно испытал подводное убежище американский инженер Эдвин Линк. Постепенно им были «обжиты» глубины от 10 до 60 метров. «Несмотря на некоторую тесноту, условия жизни в подводном домике совсем неплохие: светло, тепло, а это главное. Энергия для отопления и освещения подается по кабелю с обслуживающего судна. Оттуда по шлангам непрерывной струйкой поступает сжатый в семь раз плотнее обычного — искусственный воздух (глубина 60 метров. — А.Ч.). В нем 94,6 процента гелия и 3,6 процента кислорода. Можно поговорить по телефону с надводными наблюдателями, поделиться своими впечатлениями. Правда, от телефона вскоре пришлось отказаться. В сгущенном гелиевом воздухе на большой глубине речь человека становится нечленораздельной...». Исследователь пробыл в подводном жилище 92 часа 32 минуты.
После удачного эксперимента Линка начался настоящий бум Подводные дома строит Жак-Ив Кусто («Диоген», Марсельская бухта, 1962 г., «Морская звезда», дно коралловой лагуны Шааб-Руми — Красное море, 1963 г., «Преконтинент-2» («Ракета»), 1965 г., «Преконтинент-3», глубина 110 метров у мыса Ферра), снова Эдвин Линк с двумя помощниками. Он первый преодолел 100-метровую глубину (Багамские острова, Атлантический океан, 1964 г.). В июле 1964 года приступили к обживанию подводного дома, установленного на вершине вулкана (26 миль юго-западнее Бермудских островов), первооткрыватель «эффекта насыщения» Джордж Бонд и четверо его коллег. В 60-х годах XX века эксплуатировались под водой лаборатории «Глокэс» (Англия), «Ихтиандр-66» (СССР), «Гидролаб» (США), «Гидролаб» (Куба, Чехословакия), «Медуза-1» (Польша), «Пермон-3» (Чехословакия), «Хеброс» (Болгария)... В 1962—1969 годах под водой работали 30 подводных домов-лабораторий, была проделана огромная научно-техническая работа, проведены уникальные опыты практически во всех областях жизни человека под водой.
В 1965 году на глубину 61 метр установлен «Силэб-2»—наиболее совершенная станция 60-х годов XX века. В ней поселились 10 американских акванавтов во главе с космонавтом Скоттом Карпентером Впервые при обеспечении жизнедеятельности лаборатории и AM проведения экспериментов в интересах военных специалистов к работам был привлечен дельфин Таффи (вес 120 кг, длина тела 2,1 м), которого тренировал Росс. Животное выполняло задачу защиты акванавтов от хищников во время их выхода из подводного дома Таффи доставлял спасательные концы аквалангистам, переправлял послания с обеспечивающего судна и почту, тяжелые запасные части (дельфин мог транспортировать контейнеры весом до 360 кг), инструменты, продовольствие, нырял на глубины до 180 метров, длительное время работал в открытом море на удалении от берега 2—3 км. За заслуги дельфин был официально избран почетным членом Ассоциации почтовых работников США.
Кроме Таффи в эксперименте принимали участие морские львы Сэм и Сюзи. Но это были не специально подготовленные животные, а «аборигены», как их называли акванавты. Любопытство львов оказалось столь велико, что они не уплывали от подводного дома далее ночью. Мирно засыпали рядом с его корпусом и наутро с удовольствием работали с биологами, пытавшимися их приручить. Животные оказались сообразительными. Например, Сэм очень быстро научился следовать за подающим сигналы водолазом. Он близко подпускал к себе людей, разрешал дотрагиваться, заныривал во входную шахту подводного дома и вдыхал гелио-кислородную смесь. Важность данного эксперимента заключалась в том, что дикое животное самостоятельно пошло на контакт с человеком, проявило желание работать сними могло в любое время уплыть в открытый океан, но не делало этого.
При проведении работ на более совершенной станции «Силэб-3» планировалось продолжить эксперименты с использованием морских животных. Но в процессе эксперимента погиб акванавт, и испытания пришлось прервать.
В 1968 году в Германии приступил к работе первый немецкий подводный дом-лаборатория «Гельголанд». Это оказался наиболее длительный в мире проект, продолжавшийся до конца 70-х годов XX века. В Советском Союзе тагоке было проведено несколько экспериментов по изучению жизни человека в подводных стационарных сооружениях. Последовательно реализованы проекты: «Спрут», «Садко», «Черномор-1», «Черномор-2» и «Черномор-2М». Особенности жизнедеятельности человеческого организма под водой в условиях повышенного давления и ограниченной среды обитания продолжали интересовать ученых самых разных профессий и военных специалистов.
Значительный вклад в дело освоения морских глубин внесли советские патофизиологи, психологи, врачи и водолазы. Данное обстоятельство особенно важно подчеркнуть, так как многие десятилетия XX века достижения отечественных специалистов и водолазов в покорении глубин широко не освещались. В значительной степени это было связано с закрытостью информации. Одной из первых работ, приоткрывших завесу тайны над направлениями развития отечественного водолазного дела, стала книга контр-адмирала Н.П. Чикера «Служба особого назначения» (М., Изд. ДОСААФ. 1975 г.). Наконец, именно закрытость информации в бывшем СССР относительно отечественных достижений по проникновению человека на максимальные глубины нанесла стране существенный моральный ущерб, ибо позволила соответствующим специалистам на Западе причислять себя к лидерам по ряду направлений в этом вопросе.
Наиболее активно кампания была развернута в декабре 1962 года, когда швейцарский математик, профессор Цюрихского университета Ганс Келлер совершил погружение в Калифорнийском заливе на глубину 311 метров. При этом его напарник — английский журналист Петер Смолл, основатель Британского подводного клуба, погиб. Не вернулся на поверхность моря и аквалангист Крис Уиттекер, пытавшийся прийти коллегам на помощь. Состав газовых смесей, применявшихся при погружении, был засекречен. Сам Г. Келлер самоуверенно заявил: «…Моя цель достичь тысячеметровой глубины». XX век закончился, а мечта эта так и не сбылась.
Коснемся штрихом достижения отечественных специалистов в области покорения глубин. Назовем имена людей, которыми по праву можем гордиться.
1932 год. В обычном вентилируемом снаряжении, на основе эпроновских методик и по таблицам декомпрессии, разработанными Л.А. Белецким и К.А. Павловским, водолаз А.Д. Разуваев опустился на рекордную по тем временам глубину —100 метров.
1935 год. И.Т. Чертан, Н.А. Максимец, В.Г. Хмельник покорили 110-метровый рубеж.
1936 год. И.Т. Чертан, П.К. Спач опустились на 117 метров.
1937 год, В.М. Медведев установил ошеломляющий рекорд — 150 метров (по другим данным — 126 метров). Даже подводные лодки не решались в то время погружаться на такие глубины.
1938—1939 годы. Рекорд В.М. Медведева повторили В.Е. Соколов, Н.Н. Солнцев, Б.А. Иванов, Л.Ф. Кобзарь, Н.Н. Выскребенцев.
1938 год. Используя гелиокс, В.Е. Соколов, Н.Н. Солнцев, Б.А. Иванов, Л.Ф. Кобзарь, Н.Н. Выскребенцев покорили глубину 157 метров. Спусками руководили начальник балаклавской водолазной школы, человек-легенда, почетный гражданин Балаклавы Ф.А. Шпакович и главный врач ЭПРОНа К.А. Павловский.
1939—1940 годы. Намного опередив зарубежных специалистов, эпроновцы опустились на глубину около 200 метров. Даже на современном уровне водолазного дела — это незаурядная задача. Огромная заслуга в ее решении принадлежит академику Л.А. Орбели и созданной им школе водолазной медицины. В 1939 году в ВМА им С.М. Кирова под руководством ученого проводились имитационные спуски водолазов с использованием ГКС. В результате достигнута глубина 157 метров. И только в 1945 году в США было создано гелиево-кислородное снаряжение, позволившее американцам погрузиться на глубину 160 метров.
1949 год. Создано глубоководное водолазное снаряжение ГК-300. Разработаны режимы декомпрессии при подъеме водолазов с глубин около 200 метров. В 1950 году ГК-300 под наименованием ГКС-ЗМ официально принято на вооружение ВМФ СССР.
1951 год. Освоена рабочая глубина 200 метров.
1956 год. На шесть лет, опередив Г. Келлера, отечественные специалисты и водолазы без рекламной шумихи покорили глубину 300 метров! В рекордном погружении с использованием системы ГКС-ЗМ участвовали П.Я. Порожавский, B.C. Шалаев, А.Л. Ковалевский, А.Д. Лимбендс и другие. Это был фантастический прорыв в истории освоения глубин, однозначно подтвердивший высокий уровень водолазного дела в бывшем СССР. За создание систеллы ГКС-ЗМ группе специалистов ВМФ СССР присуждена Государственная премия (А.Ф. Маурер, С.Е. Буленков, З.С. Гусинский, Н.Т. Коваль, И.А. Александров, Н.А. Максимихин, И.И. Выскребенцев). Для обеспечения спусков на большие глубины понадобилась разработка и строительство кораблей соответствующего класса (пр.527 (527М), 532 (532А), 530, 537, ГКВ-10471).
Пройдут десятилетия, и в середине 90-х годов XX века в одном из институтов ВМФ будет проведен уникальный эксперимент, не имеющий аналогов в мире. Капитан 1-го ранга А. Храмов погрузился на глубину 500 метров, проведя в барокамере под давлением 50 атм (5 мПа). 12 суток. Находясь в непростых условиях функционирования человеческого организма, офицер регулярно погружался в гидротанк (отсек, заполненный водой). Эксперимент проводился в интересах снятия патофизиологами показаний физического состояния человека и испытания специального водолазного снаряжения. По окончании эксперимента декомпрессия испытуемого водолаза длилась в течение 23 суток!
За профессиональный и человеческий подвиг А. Храмов был удостоен звания Героя России.
Наш экскурс в историю и современность, в краткой форме затрагивающий развитие индивидуальных средств жизнеобеспечения под водой, вряд ли можно закончить, не коснувшись старой мечты человека жить в водной среде как рыба. Более полувека большие коллективы специалистов различного направления работают над этим вопросом, но их исследования являются, как правило, секретными. В 1962 году, выступая на Лондонском конгрессе КМАС, Жак-Ив Кусто высказал смелую мысль о том, что сказка о человеке-амфибии может стать былью. По его мнению, «человек-подводный» не будет нуждаться в воздухе или его смесях. Легкие заполнит жидкий пластик, а кислород, необходимый для дыхания, он сможет добывать из воды с помощью искусственных жабр или устройства заменяющего их.
Вскоре все человечество облетела весть, что материал, способный подтолкнуть решение фантастической задачи, создан фирмой «Транспарент Пейпер» и применен на практике Вольтером Роббом На пресс-конференции в аудитории исследовательского центра фирмы «Дженерал электрик» ученый продемонстрировал пораженным зрителям опыт. В сосуд с водой был помещен куб сделанный из гибкой пленки, внутрь которого ассистенты Робба посадили хомяка. Стенки маленького подводного домика пропускали только кислород, а углекислый газ диффундировал в обратную сторону.
Увлеченные идеей создания «человека подводного» предприняли попытку приблизиться к решению проблемы жизни под водой и отечественные ученые. В одном из сибирских институтов человек целый месяц прожил в изолированной кабине Кислород для дыхания поставляла пресноводная одноклеточная водоросль хлорелла. Успешные опыты с животными в этой области провели киевские ученые В. Козак, М. Иродов, В. Демченко. Они поместили белую мышь в сосуд с водой, где было растворено не менее 15% кислорода, и установили его под давление 6—8 атм (0,6—0,8 мПа). И мышь... задышала водой без искусственного вмешательства.
А в конце 60-х годов XX века произошел существенный прорыв в области создания «человеко-рыбы». Американский акванавт Френсис Фалейчик в течение 4 часов дышал жидкой средой, обогащенной кислородом! За рубежом предприняли попытки заставить животных дышать под водой голландский физиолог профессор Лейденского университета доктор Иоганнес Кильстра, американец Лампьер и физиолог профессор Лундтского университета Лундгрен.
И. Кильстра приступил к невероятным опытам еще в 1959 году. Он заполнял легкие собаки раствором, близким по составу изотоническому, т.е. содержащему ту же концентрацию солей, что и кровь, но не оказывающего разрушающего воздействия на альвеолы. Далеко не все эксперименты закончились удачными. Тем не менее ряд фаз опытов сопровождался достаточно хорошим состоянием собаки, что позволяло говорить о необходимости дальнейших исследований в этой области, что воодушевило ученого. Поэтому в середине 70-х годов XX века он приступил к экспериментам над людьми. Первоначально Кильстра заполнил испытуемому человеку только одно легкое раствором солей, а затем полагал сделать это и с другим легким.
Говоря об этих уникальных опытах, раскрывающих необыкновенные способности человека, следует отметить, что все они были связаны не с глубоководными погружениями и исследованием способности землян жить под водой. Прежде всего, они выполнялись в интересах разработки терапевтических методов лечения хронических заболеваний дыхательных путей человека. Однако ничто не мешает использовать исследования в интересах развития теории и практики жизни человека под водой. Но в данном случае неизбежно оперативное вмешательство в его организм. В этом случае возникает не только физиологический барьер, но и психологический. Моральный аспект проблемы может оказаться не менее сложным.
Известный французский исследователь океана Клод Риффо по этому поводу осторожно заметил: «Самое же главное — человек после такой операции никогда не сможет дышать на поверхности». Конечно, трудно взять на себя смелость сказать, как поступят люди через полвека или через столетие. Но как ни стремителен был ход прогресса, вряд ли люди согласятся оплатить приспособление к среде такой ценой. Человек так и не стал птицей, хотя после полета Икара прошли тысячелетия. И вряд ли наши правнуки превратятся в рыб».
Тем не менее попытки заставить человека дышать под водой без специальных аппаратов с запасом дыхательной смеси продолжались.
Инженер Вальдемар Эйрес (США) создал искусственные жабры, потратив на это около 10 лет. Используя оригинальный аппарат, он почти час находился под водой у поверхности, проводя эксперименты рядом с побережьем одного из нью-йоркских пляжей. Чуть позже соотечественники Вальдемара Эйреса из американского морского Биохимического центра—Джозеф и Целия Бонавертура—разработали конструкцию искусственных жабр, которые могли извлекать кислород из морской воды. Принципиальной особенностью аппарата являлось использование гемоглобина, которым пропитывалась уретановая губка (она используется при изготовлении мягкой мебели). При прохождении морской воды через нее происходит выделение из губки посредством гемоглобина растворенного кислорода. В последующем, с помощью вакуума или слабого электрического тока, он извлекается из своеобразного фильтра. По мнению специалистов, обладая малыми габаритами и весом, аппарат представлял собой перспективную конструкцию.
Не прекращал размышлять над идеей жизни человека под водой и создатель акваланга Жак-Ив Кусто. «Акваланг — примитивное средство, недостойное современного уровня науки...» — говорил известный исследователь океана. Кусто стал сторонником хирургического варианта превращения человека в «амфибию». Он считал перспективным вживление в его тело миниатюрных дыхательных аппаратов, действующих как искусственные жабры. Через них кислород должен был поступать в кровь, минуя легкие. Последние следовало заполнить нейтральной, не сжимаемой жидкостью, а функциональную деятельность дыхательного центра в головном мозгу затормозить.
В середине 60-х годов XX века ученые начали проводить эксперименты, отчасти подтверждающие гипотезу Кусто. Сотрудники Вестминстерского госпиталя (Лондон) Дю Хойл, С. Фельдман и Д. Блекберн ввели кислород непосредственно в кровь животных, исключив легочное дыхание. Делалось это опосредованно через перекись водорода, один кубический сантиметр которого каждую минуту впрыскивался в аорту кошки. В организме животного перекись водорода постепенно разлагалась на воду и кислород. Количество последнего оказалось вполне достаточно, чтобы полностью «выключить» легкие кошки из процесса легочной вентиляции.
Однако несмотря ни на что, проблем с жизнью человека под водой было и остается очень много. И чем больше ученые углублялись в их разрешение, тем больше возникало вопросов. Думается, что ответы на них обязательно будут найдены. И XXI век станет веком покорения гидрокосмоса человеком-амфибией. А XX век уже остался в истории человечества веком выхода землян в космос
1 мая 2008 года в передаче «Невероятно, но факт» обнародована потрясающая информация. У сына чернобыльского ликвидатора Бондырева родился сын Володя, у которого в возрасте 14 лет... появились жабры. Однажды, когда мальчик заплыл далеко в море у берегов Турции и стал тонуть, они заработали, и ребенок задышал под водой. Специалисты считают это феноменом патологической мутации, наступившей в результате чернобыльской катастрофы (1986). Молодой человек стесняется своих способностей и постоянно носит на шее шарф, скрывая жабры. В прямом эфире он говорил, что может дышать под водой носом и ртом (интервью показало несколько украинских каналов).
Как хочется, чтобы к тому времени, когда человек научится жить под водой, на планете исчезли войны. Ибо величайшее изобретение человечества неизбежно будет поставлено на вооружение военных флотов. Возможности подводных пловцов-диверсантов, разведчиков, минеров несоизмеримо возрастут. Резко расширится спектр их боевого применения. По силам станет возможность выполнения таких операций, о которых сегодня и мечтать трудно. А подводная война приобретет жесткий, бескомпромиссный характер.