4. МОЖНО ЛИ ПАДАТЬ ТАК, ЧТОБЫ НИКОГДА НЕ УПАСТЬ?

Мы уже видели, что даже такие простые понятия, как вес и направление вниз, если в них вдуматься, позволяют сделать ряд интересных выводов. Теперь мы разберемся в том, что означает слово «падать». Казалось бы, и здесь все ясно и просто. Мы привыкли говорить, что какое-нибудь тело падает, когда оно под влиянием силы собственной тяжести летит вниз, на Землю. И мы, конечно, всегда уверены в том, что раз тело начало свое падение, то оно, рано или поздно, обязательно упадет на поверхность Земли. Вопрос только во времени. Если тело падает с небольшой высоты, то оно упадет быстро, а если с большой, то оно будет падать немного дольше. Вот и все.

Но на самом деле и здесь все происходит совсем не так просто, как кажется сначала, когда мы, не продумав явление до конца, полагаемся только на наш маленький житейский опыт. Житейский опыт, который сплошь и рядом нам помогает в жизни, здесь оказывается несостоятельным. Мы в этом убедимся, как только станем рассматривать явление падения тел так, как это делает наука, т. е. со всей строгостью и не упуская из внимания никаких «мелочей», которые часто приводят ученых к величайшим открытиям.

Изучением падения тел на Землю занимается наука о движении — механика. Основы этой науки заложили великие ученые Галилей и Ньютон, изучившие законы движения тел. Наш повседневный опыт часто отступает назад перед неоспоримыми доводами этой науки. Пример этому и дает как раз явление падения тел.

Великий итальянский ученый Галилей — первый исследователь законов движения тел (родился в 1564 году, умер в 1642 году)

Что говорит нам житейский опыт? Он говорит, что всякое тело, если оно падает, обязательно упадет вниз, на Землю. А вот механика учит, что падающее тело может никогда не упасть на Землю и даже при некоторых условиях вовсе улететь прочь от Земли.

Для того чтобы разобраться как следует в явлении падения тел, нам нужно познакомиться с двумя законами движения тел: с законом инерции и с законом сложения движений.

С проявлением закона инерции нам приходится сталкиваться на каждом шагу. Когда вагоновожатый трамвая быстро тормозит вагон, то все пассажиры испытывают обычно сильный толчок вперед. Кто из нас не знает этого случая? Такой толчок и происходит как раз вследствие закона инерции. Пока вагоновожатый не тормозит, мы, находясь в вагоне, катимся вперед с некоторой скоростью. Когда же вследствие торможения вагон сразу останавливается, то тело каждого пассажира в первое мгновение по закону инерции продолжает свое движение с прежней скоростью. В результате пассажиры наклоняются или падают вперед. И наоборот, если вожатый сразу дает большую скорость, то пассажиры наклоняются или падают назад, так как они имели до включения мотора меньшую скорость и стремятся по закону инерции ее сохранить.

Закон инерции тел формулируется так:

«Если какое-нибудь тело двигается по прямой линии с постоянной скоростью (т. е. проходит в равные промежутки времени одинаковые расстояния), то оно будет сохранять такое движение до тех пор, пока какая-нибудь сила это движение не изменит».

Второй закон — закон сложения движений — применяется в тех случаях, когда какое-либо тело участвует одновременно в двух разных движениях. Возьмем, например, человека в лодке, гребущего поперек реки с быстрым течением. В этом случае лодка имеет два различных движения. С одной стороны, сила гребца заставляет лодку двигаться поперек реки, а с другой, — течение воды в то же самое время увлекает ее вдоль реки. В результате лодка никогда не придет на другой берег прямо против того места, откуда она отчалила, течением ее снесет вниз, и чем сильнее это течение, тем дальше.

Чтобы лучше понять это, посмотрите на рисунок 6. Здесь буква А обозначает то место, откуда отчалила лодка. Если бы течения реки не было и лодка плыла лишь благодаря силе гребца, то она пристала бы к месту, обозначенному буквой Б, находящемуся на другом берегу прямо против места А. Но вода в реке все время течет в одну сторону и лодку относит вниз по течению. Если бы гребец совсем не греб, а пустил лодку плыть по воле волн, по течению, то лодка приплыла бы к месту, обозначенному буквой Г. На самом деле лодка участвует одновременно в обоих этих движениях и потому не придет ни к месту Б, ни к месту Г, а к месту В, которое находится на конце диагонали ВА прямоугольника АБВГ (рис. 6).

Рис. 6. Пример сложения движений

То, что мы сказали о движении лодки, можно применить и к любому другому телу (предмету). Это и есть закон сложения движений; формулируется он так:

«Если какое-нибудь тело имеет одновременно два движения, направленных перпендикулярно друг другу, то действительное его движение будет направлено по диагонали прямоугольника, образованного этими движениями».

Рассмотрим теперь, помня эти два закона движения, явление падения тел.

Допустим, что мы, стоя на балконе какого-нибудь здания, бросаем вниз камень. Если мы выпустим этот камень из рук, не сообщив ему никакого толчка, то он упадет прямо вниз. Отметим на земле место его падения.

Если мы теперь повторим опыт, но на этот раз не просто выпустим камень из рук, а бросим его вперед, прочь от здания, то он упадет уже не на прежнее место, а дальше от здания. И чем с большей силой мы бросим этот камень, тем дальше от основания здания он упадет.

Мы можем также выстрелить из винтовки; и в этом случае пуля, подобно камню, также упадет на Землю, но упадет на расстоянии нескольких километров от нас.

Причину всего этого нетрудно понять. Если бы Земля не притягивала камень, то, по закону инерции, камень после полученного им толчка должен был бы продолжать лететь по тому же самому направлению и с той же самой скоростью, которые мы ему сообщили с толчком. Но в действительности на камень действует еще сила тяжести, всегда направленная отвесно вниз. И если бы нашего толчка не было, то камень падал бы вертикально, по закону земного тяготения. При толчке же камень получает одновременно два движения: он летит от нашего толчка вперед, параллельно земной поверхности, а от действия силы тяжести летит вниз. В результате происходит сложение этих двух движений и действительное движение камня будет направлено по диагонали. Это сложение показано на рисунке 7. Для простоты на рисунке взято расстояние, пролетаемое телом за одну секунду времени; это расстояние в механике называется скоростью. Тогда у нас вместо сложения движений получается сложение скоростей. Остальное ясно из чертежа и не требует дальнейших пояснений.

Рис. 7. Сложение движений при падении горизонтально брошенного тела

Нетрудно сообразить, что чем больше будет горизонтальная скорость (по направлению вперед), тем более пологим будет действительное движение тела. Наоборот, чем больше будет скорость падения, тем действительное движение тела будет направлено более круто по отношению к поверхности Земли.

Когда мы говорили о законе сложения движений, мы предполагали, что скорости обоих движений, в которых участвует тело, остаются постоянными в течение всего времени движения тела.

В этом случае траектория (так называют линию, по которой движется тело) тела будет прямолинейная, как это и было показано на рисунке 7. Но практически мы знаем, что траектория горизонтально брошенного тела всегда постепенно загибается и становится все круче и круче к поверхности Земли. Объясняется это тем, что когда тело падает, то скорость его падения с течением времени увеличивается. Это делается особенно ощутительным, когда падение тела происходит с большой высоты и проходит значительное время, пока оно упадет на Землю. В течение этого времени скорость горизонтального полета тела изменится очень незначительно (только из-за сопротивления воздуха). Но зато скорость его падения сильно возрастет. Поэтому если вначале траектория тела идет полого, то в дальнейшем она будет становиться все более и более крутой. Рисунок 8 поясняет это. В месте А тело получило толчок и в то же время начало падать. Вначале скорость падения была мала. Поэтому, пролетев в течение одной секунды в горизонтальном направлении расстояние АБ, тело в вертикальном направлении пролетело сравнительно небольшое расстояние АВ. В результате сложения движений тело пришло в место Г.

Рис. 8. Траектория горизонтально брошенного тела при длительном его падении

На рисунке видно, что тело двигалось в первый момент броска полого по отношению к поверхности Земли. Посмотрим теперь движение этого же тела в конце его падения также в течение одной секунды. В этом случае горизонтальная скорость движения тела осталась почти без изменения, но зато скорость его падения сильно возросла. Благодаря этому за одну секунду тело успело пролететь вниз значительно большее расстояние А1Б1. В результате сложения движений можно видеть, что тело прилетит в место Г1. Рисунок 8 ясно показывает, что в конце своего падения тело летит значительно более круто по отношению к поверхности Земли, чем в начале.

Покажем теперь, что стоит только сообщить камню достаточно большую начальную скорость, как он, хотя и будет все время падать, никогда не упадет на Землю! Нам придется при этом учесть также то обстоятельство, что Земля — шар, а не плоскость.

Рис. 9. Падение камня при разных начальных скоростях

Пусть (рис. 9) буква А обозначает выбранное нами место на земной поверхности, а буква О — земной центр. Мы бросаем камень из места Б, находящегося на некоторой высоте над местом А. Если мы просто отпустим камень без всякого толчка, то он упадет вниз — в место А. Но если мы, бросая камень, толкнем его, то он упадет уже в другое место — А1, лежащее в стороне от места А. Чем сильнее мы будем толкать камень, тем дальше он будет падать. Буквы А2, А3 и А4 обозначают место падения камня при различных (по силе) толчках камня. При этом мы замечаем, что все траектории падения камня — не прямые линии, а кривые; сначала они идут полого, а затем, по мере приближения к Земле, все круче и круче. Происходит это, как мы уже знаем, потому, что скорость падения камня в полете постепенно возрастает под действием силы тяжести.

Теперь уже нетрудно сообразить, глядя на рисунок 9, что при достаточно большой начальной скорости камня его траектория должна превратиться в окружность, и тогда произойдет то, о чем говорит заголовок этой главы. Камень будет падать и вместе с тем оставаться все время на одном и том же расстоянии от земной поверхности.

Величину начальной скорости, которая превращает траекторию брошенного камня в окружность, можно вычислить, пользуясь законами механики. Она оказывается равной примерно восьми километрам в секунду. Эту скорость обычно называют круговой скоростью.

Если начальная скорость тела меньше круговой, то тело рано или поздно упадет на Землю. Если она равняется круговой скорости, то тело будет двигаться по окружности вокруг Земли. При скорости от восьми до одиннадцати километров в секунду тело будет двигаться по замкнутой кривой, напоминающей вытянутый круг и называемой эллипсом (рис. 10). Но если горизонтальная скорость брошенного тела сделается больше одиннадцати километров в секунду, то это тело улетит совсем прочь от Земли (рис. 11).

Рис. 10. Замкнутая кривая — эллипс

Этот факт не раз был использован в художественной литературе для изображения полетов на Луну и на другие планеты. Так, в фантастическом романе писателя Жюля Верна «Из пушки на Луну» описывается полет нескольких человек на Луну в пушечном ядре. Хотя многое из того, что описано в этой книге, представляет лишь смелую выдумку автора, сама возможность оторваться от Земли и улететь на другие планеты не выдумана, а основана на правильном расчете.

Рис. 11. Воображаемая стрельба из пушки, установленной на горе, снарядами, летящими с огромной скоростью. При скорости восемь километров в секунду снаряд не падает на Землю, двигаясь по круговому пути. При скорости одиннадцать километров в секунду снаряд улетает прочь от Земли

Нужно, однако, заметить, что такую скорость, как восемь — одиннадцать километров в секунду, очень трудно получить при помощи артиллерийских орудий[1]. Самые лучшие дальнобойные орудия дают начальную скорость не больше чем два километра в секунду, т. е. в четыре раза меньше, чем круговая скорость. К тому же при таких больших скоростях необходимо учитывать и сопротивление воздуха, которое в этом случае сильно возрастает. Уже при тех скоростях, которые имеют современные самолеты, приходится принимать все меры, чтобы по возможности уменьшить сопротивление воздуха; частям самолетов придают так называемую «обтекаемую» форму — гладкую, без малейших выступов. А ведь круговая скорость в десятки раз больше скорости боевого самолета.

При такой скорости полета в результате трения о воздух всякое тело должно сильно нагреваться. Уже у обыкновенных артиллерийских снарядов головная часть сильно нагревается. При скоростях же порядка круговой скорости тело должно в течение нескольких секунд нагреться до 3 000 и более градусов, расплавиться и сгореть. Вот почему не удается построить пушку, которая могла бы выстрелить на Луну.

Однако для нашей темы вопрос о сопротивлении воздуха не имеет большого значения, так как нас интересуют движения Луны и Земли, т. е. небесных тел, которые двигаются не в воздухе, а в межпланетном пространстве, где воздуха нет и, следовательно, нет никакого сопротивления движению, но где действуют те же самые законы механики, что и на Земле. Кроме того, вместо выстрела из пушки для межпланетных полетов гораздо целесообразнее применить ракетный снаряд. Такой снаряд может двигаться в безвоздушном пространстве и развивать огромные скорости. При этом ракета набирает скорость постепенно, то есть более или менее плавно, а не сразу, толчком, как артиллерийский снаряд при выстреле.

Основы теории полета ракет были разработаны и применены к расчету межпланетных полетов знаменитым русским ученым Константином Эдуардовичем Циолковским.

Но только 4 октября 1957 года человечеству удалось впервые осуществить эти смелые идеи. В этот день начал свой полет вокруг Земли первый советский искусственный спутник, или, короче, спутник I. Так его стали называть, не переводя новое для них слово на свой язык, народы всего мира. Начиная с этого дня человек начал планомерное освоение космического пространства, то есть пространства, лежащего далеко за пределами атмосферы Земли. Наряду с естественным спутником Земли — Луной — теперь в небе движутся искусственные спутники, сделанные человеческими руками.

Искусственные спутники с замечательной точностью подтвердили правильность всех расчетов ученых о законах движения тел, о которых мы недавно говорили. Советские инженеры и ученые заставили спутники летать на высоте в сотни километров от земной поверхности со скоростью, в точности равной круговой скорости. На тех больших высотах, где летают спутники, атмосферы почти нет. Поэтому ее действие очень незначительно. Тем не менее она немного тормозит движение спутников. Они постепенно теряют высоту. И, в конце концов, попав в более плотные слои атмосферы, они сильно нагреваются и сгорают как «падающие» звезды.

Если спутник запустить на еще бóльшую высоту, то он вовсе не будет испытывать никакого торможения со стороны атмосферы и тогда он станет вечным спутником Земли, подобно Луне. Это ясно из того, что законы движения одинаковы для всех тел окружающего нас мира независимо от их размеров.

Успешным запуском в СССР искусственных спутников Земли ученые впервые получили средство для непосредственного исследования верхних слоев атмосферы и космического пространства. Последующие запуски спутников в течение Международного геофизического года позволили расширить число важнейших научных опытов, проводимых в космическом пространстве, и еще глубже понять многие процессы, происходящие в верхней атмосфере и космосе.

Впервые в истории человечества летательные аппараты, созданные и запущенные человеком, совершили столь длительные полеты. Пройденный первыми искусственными спутниками путь вокруг земного шара по своей протяженности в сотни раз превышает расстояние от Земли до ее естественного спутника — Луны. Конечно, это еще только начало открытого советской наукой великого пути исследований, ведущего в необъятные глубины Вселенной. Но первый шаг в космос уже сделан запуском советских спутников и недалеко то время когда сделанные человеческими руками маленькие небесные тела полетят на Луну, на Марс и другие планеты.

Советскими учеными, инженерами и рабочими были созданы межконтинентальные баллистические ракеты, при помощи которых были запущены искусственные спутники. Успешное разрешение этой задачи было обеспечено высоким уровнем развития науки и техники в СССР, четкой и организованной работой научно-исследовательских институтов, конструкторских бюро и промышленных предприятий.

Располагая столь мощным средством, как межконтинентальная баллистическая ракета, Советский Союз, неуклонно следующий политике мира, использовал это замечательное достижение для целей науки, произведя в соответствии с программой Международного геофизического года запуск искусственных спутников Земли.

Советские люди под руководством Коммунистической партии своим вдохновенным трудом превратили казавшуюся далекой мечту в реальное достижение наших дней.

В первые же дни появления советских спутников в советской печати были широко опубликованы их подробные технические описания, помещены фотоснимки спутников и научной аппаратуры, систематически сообщались подробные данные об их движении для наблюдения в различных частях земного шара. Советские искусственные спутники Земли стали доступны для наблюдения всем ученым, всем научным организациям, миллионам людей на земном шаре.

Запуск в СССР искусственных спутников Земли неизмеримо расширил границы мировой науки, расширил возможности познания человеком окружающей его Вселенной. Трудно переоценить этот крупнейший вклад Советского Союза в сокровищницу мировой науки и культуры.

Загрузка...