В. И. Рич М. Б. Черненко НЕОКОНЧЕННАЯ ИСТОРИЯ ИСКУССТВЕННЫХ АЛМАЗОВ

Глава I С ЧЕГО ЭТО НАЧАЛОСЬ

Самое начало этой истории ведется обычно от года 1694-го.

Именно тогда, почти триста лет назад, в городе Флоренции, где была уже собственная академия наук — Дель Чименто, произошло событие, которое попало в историю, положив начало официальной летописи знакомства человека со странными свойствами алмаза. Флорентийские академики Аверани и Тарджиони на глазах своего герцога Козимо III Медичи, проявлявшего интерес к научным опытам, раскаляли драгоценные камни. С рубином у них ничего особенного не произошло, а алмаз… исчез. И это исчезновение было задокументировано. И были даже сохранены — и сохраняются до сих пор! — приборы, с которыми был поставлен этот несложный, с сегодняшней точки зрения, опыт: зажигательное стекло (то есть линза) величиной с тарелку и зажигательное стекло размером с блюдечко…

Событие — немного театральное, чуть таинственное: как-никак драгоценные камни. Однако действительное начало истории искусственных алмазов было не в эффектном опыте флорентийцев, а в скромной теории.


Первым человеком, который высказал правильное (хотя, разумеется, далеко не полное) суждение о химическом составе алмаза, был Исаак Ньютон, член одного из первых в мире научных обществ. Вначале оно не имело официального статуса, именовалось Незримой коллегией и находилось в Оксфорде. А в 1668 г. переехало в Лондон и стало всемирно известным Лондонским королевским обществом — английской академией наук.

Девиз общества «Nullius in verba» («Ничего со слов» — ничего на веру) означал отказ от догм, восходящих к библейским представлениям о природе. Труд одного из основателей коллегии, а впоследствии президента Лондонского королевского общества Роберта Бойля так и назывался — «Химик-скептик». В книге, уже самим названием отвергавшей прежние представления о природе веществ, Бойль ниспровергал господствующее учение, согласно которому все горючие и блестящие вещества содержат огонь, жидкие — воду, летучие — воздух, твердые — землю. «Если бы люди заботились об успехах науки более, чем о своей известности, — сурово пояснял Бойль, — легко было бы им понять, что высшая заслуга их состоит в производстве опытов, в собирании наблюдений, что не следует составлять теорий, не проверив предварительно, насколько они подтверждаются фактами…»

Нашему современнику покажутся несколько странными некоторые опыты, проделанные любознательными, скептическими и одновременно восторженными исследователями, ничего не принимавшими на веру, желавшими проверить своими руками любое утверждение из ученых трудов средневековья.

Например, известен такой эксперимент. Брали рог носорога, толкли его, из порошка делали кольцевую насыпь. В центр круга сажали паука. Согласно существовавшим тогда представлениям, толченый рог носорога обладал особыми свойствами, не позволяющими пауку преодолевать это препятствие.

Члены коллегии убедились, что паук преспокойно переползает через «волшебный» порошок. Проверки опытом не выдержала еще одна теория…

Однако опытная проверка тех или иных принятых ранее на веру утверждений не всегда приводила к правильным выводам. Выводы из наблюдаемых фактов были нередко весьма удивительными (с сегодняшней точки зрения).

Например, тот же Бойль считал первоматерией воду и был глубоко убежден, что ему удалось опытным путем доказать превращение ее в иные вещества.

В одном из опытов Бойль выращивал огурцы, тыкву и мяту без земли, простоев воде. При этом мята оказалась не менее душистой, чем выращенная на обычном огороде. Все это, по мнению Бойля, убедительно доказывало, что вода может превращаться во все прочие элементы.

В другом опыте Бойль нагревал свинцовые опилки. Если он нагревал их достаточно сильно, то свинец превращался в более тяжелое и ничуть не похожее на металл вещество желтого цвета. И это, по мнению экспериментатора, означало, что в свинец проникает «тонкая материя» — теплород.

«Ничего на веру» — это был лозунг эпохи, лозунг рождения эксперимента как средства познания мира. Доверие к опыту, отрицание авторитетов, чьи высказывания не подкреплялись наблюдениями и фактами, быстро двинуло вперед познание природы — ив целом, и в частностях. Одной такой частностью стал драгоценнейший камень алмаз…

Заметим, что Ньютон, автор универсальных законов механики, известных теперь каждому школьнику, занимался не только механикой, но и оптикой. Оптика — это не только очки или телескоп, это свет — одно из наиболее загадочных, сложных и, можно сказать, вездесущих явлений природы. Именно изучение света уже ц более близкие нам времена послужило основанием для создания теории относительности, объяснения устройства атома, вычисления размера галактик…

Ньютон проверил заново все, что было известно до него о природе света. И проделал огромное количество новых опытов.

Изучая прохождение света в различных телах, Исаак Ньютон не обошел и алмаз.

В любом труде, где так или иначе затрагивается углеродная природа алмаза, можно прочесть, что на горючесть алмаза указывал еще Ньютон. Как ни интересно подобное сообщение, исправно переходящее из книги в книгу и из статьи в статью, у него есть, по меньшей мере, один серьезный недостаток: оно вторично. Гораздо интереснее знакомство с самим первоисточником, ибо только он дает возможность проследить за ходом мысли великого челоьека. Вот что сказано в книге Ньютона «Оптика», изданной в 1704 г., а написанной, как установлено по ее рукописям, за двадцать лет до того, не позднее 1687 г. (значит: до флорентийских академиков):

«Если свет в телах распространяется быстрее, чем в пустоте, в отношении синусов, измеряющих преломление тел, то силы тел, заставляющие свет отражаться или преломляться, весьма точно пропорциональны плотности тел, за исключением маслянистых и серных, которые преломляют больше, чем другие тела той же плотности…

Хотя псевдотопаз, селенит, горный хрусталь, …обыкновенное стекло… и сурьмяное стекло — земляные каменистые щелочные твердые тела и воздух, который, вероятно, возникает из подобных же веществ при брожении, — субстанции, весьма отличающиеся одна от другой по плотности, однако по таблице их преломляющие силы находятся почти в одном и том же отношении к плотности… Также камфара, оливковое масло, льняное масло, терпентиновый спирт и амбра, которые суть жирные, серные и маслянистые тела, и алмаз, который, вероятно, есть также маслянистое сгустившееся вещество, обладают без значительных отклонений одинаковыми отношениями преломляющей силы к плотности».

Свое суждение Ньютон подтверждал добытыми в опытах цифрами:

«Воздух 5 208

Гипс (селенит) 5 386

Стекло 5 436

Горный хрусталь 5 410»

Но:

«Оливковое масло 12 607

Льняное масло 12 819

Терпентиновый спирт 13 222

Амбра (янтарь) 13 654

Алмаз 14556…»

Редактор и автор комментария к русскому изданию «Оптики», увидевшему свет в 30-х годах XX в., академик С. И. Вавилов сопроводил это место в работе Ньютона следующим замечанием: «По преломляющей способности алмаза Ньютон, таким образом, угадал углеродную природу алмаза».

«Угадал углеродную природу» это в наше время можно так пояснить открытие великого англичанина. Но сам Ньютон ничего еще не мог знать об углеродной природе алмаза — само понятие «углерод» еще не было сформулировано в те времена. Но, конечно же, вывод Ньютона был столь же смел, сколь и логичен: если десятки «каменистых» тел обладают преломляющей способностью около 5000, а «маслянистые» жидкости и твердый алмаз — 12 000—14 000, то единственное твердое тело, попавшее в компанию жидких, должно быть не чем иным, как «сгустившимся маслянистым веществом».

Теперь мы знаем, что алмаз — действительно, если пользоваться терминологией XVII в., «сгустившееся маслянистое вещество». Гениальное предвидение!

Да, но как быть с первой частью той же фразы, в которой Ньютон предполагает, что воздух есть, вероятно, разредившееся каменистое щелочное вещество — сродни стеклу или, скажем, горному хрусталю? Ведь это предположение базируется на том же самом основании — близости величины преломляющей силы, что и предположение о горючей природе алмаза. А на самом деле воздух состоит главным образом из других элементов. Общее в стекле и воздухе только некоторое, сравнительно небольшое количество кислорода, которое никак не определяет близости оптических свойств воздуха и стекла.

Получается, что из одинаковых фактов с помощью одного и того же логического рассуждения Ньютон вывел два следствия, одно из которых оказалось неверным. Не означает ли это, что неправомерны оба вывода и что подтверждение одного из них — чистая случайность, не имеющая ничего общего с логикой предсказаний?

Наверное, все же не означает! То, что Ньютон написал о воздухе неверно, но это никак не опровергает правильности того, что он сказал об алмазе. Просто подмеченная им закономерность — отнюдь не универсальная, не абсолютная истина. И распространение ее на свойства газов, подчиняющихся совершенно иным законам, чем жидкие и твердые Тела, было, гсак потом обнаружилось, неправомерным.

Все это нисколько не умаляет проницательности вывода об алмазе, точно так же, как не бросает тень на гениальность Ньютона то, что его законы механики не учитывают релятивистских эффектов — околосветовых скоростей и т. п.

И все это, вероятнее всего, не имеет прямого отношения к эффектнейшему эксперименту ученых флорентийцев, у которых алмаз, разогретый собранным в пучок солнечным лучом, исчез: скорее всего никто, кроме самого Исаака Ньютона, еще не знал о рукописи «Оптики».

Толкование результатов этого опыта должно казаться сегодня чересчур уж неопределенным (что значит «исчез»?). Но надо примириться с ним, ибо в те времена оно не могло быть ни иным, ни более точным, оно вполне соответствовало возможностям науки своего времени.


Но можно ли поверить, что опыты с алмазом не делал никто и никогда до флорентийских академиков?

Трудно представить себе, чтобы алхимики раннего средневековья — арабы, итальянцы, немцы, французы, испанцы, потратившие столько труда на бесконечные попытки изготовить золото, серебро и философский камень, исследовавшие с этой целью тысячи самых разных веществ, не обратили внимания и на алмаз, не попытались разложить алмаз на «составные части», воздействуя на него кислотами и щелочами, холодом и жаром.

И если сегодня об этом ничего не известно, то самым вероятным объяснением кажется не отсутствие фактов, а отсутствие сведений о них. По совершенно естественной причине — научно-техническая информация была поставлена в те времена, увы, довольно плохо. А сведения вроде того, что еще лет за сто до Ньютона Боэтиус де Бута, придворный медик австрийского императора Рудольфа II, предсказал горючие свойства алмаза на том основании, что алмаз прилипает к смоле, — к сожалению, недостоверны. Если и следует упоминать о них сегодня, то лишь по двум причинам: первая — научные истины прорезаются не сразу, им органически присуще что-то вроде инкубационного периода, что-то вроде времени вызревания; вторая — эти сведения по-прежнему привлекательны, как и всякий любопытный курьез. Принимать же всерьез историю с придворным медиком и ей подобные вряд ли имеет смысл. Много ли отыщется веществ, не прилипающих к смоле?


Как бы мы сейчас ни оценивали предположение Ньютона и чем бы мы его ни считали — обоснованным утверждением или необоснованной догадкой, факт остается фактом: естествоиспытателям в XVIII в. было известно, что великий Ньютон считал алмаз горючим веществом.

И в то же время вполне вероятно, что еще более, нежели обнаруженные Ньютоном особенности преломления света (или же обнаруженное, возможно Боэтиусом, прилипание к смоле), нежели эти косвенные улики, общее мнение ученых о горючести самого драгоценного камня основывалось на опыте флорентийских академиков, известие о котором распространилось, конечно, по разным странам. Несколько повторяясь, можно сказать, что вполне мыслимо и то, что опыт этот проделывали неоднократно, но что не попало в историю — то не попало, теперь уж ничего не поделаешь.

Правда, сами Аверани и Тардшиони считали, что алмаз не сгорел, а исчез. И это их утверждение надлежало проверить. Предстояло (ничего на веру!) повторить опыт.

Это произошло через восемьдесят пять лет после того, как Ньютон написал «Оптику»; на этот раз экспериментатором был Антуан Лоран Лавуазье — опыт становился средством познания мира не только у суровых британцев, от которых французы всегда отличались несколько более легкомысленным характером.

В отличие от Ньютона, родившегося в небогатой фермерской семье, будущий знаменитый химик никогда не знал бедности. Прадед Лавуазье был деревенским почтальоном, но уже дед подыскал должность поприбыльней — окружного прокурора. В то далекое время в таких делах господствовали простота и прямолинейность: должности официально продавались, а затем наследовались. Отец Антуана Лорана был уже прокурором при верховном суде и переселился в Париж.

Окончив аристократический коллеж Мазарини, Антуан Лоран Лавуазье стал учиться в университете. Но не химии и не физике, а юриспруденции, как и полагалось в семье. Что же касается химии, то ее он изучал самостоятельно, в свободное от занятий и других дел время: это было ему интересно.

Антуану было мало должности прокурора, которую он, безусловно, мог наследовать у отца. Мало и того, что к 30 годам он становится носителем звания «советник-секретарь двора, финансов и короны Франции». Мало положения пайщика генерального откупа.

Все время, остающееся у него от коммерческих и финансовых дел, он отдает науке. Изучает физику, математику, химию, геологию, минералогию, метеорологию. Ищет наилучший способ уличного освещения. Едет с экспедицией в Лотарингию собирать материалы для минералогической карты. Становится членом Парижской Академии наук. Опровергает теорию о превращении воды в землю. Опровергает теорию флогистона.

Чтобы понять, каков был, в принципе, ход его мыслей, обратимся к сочинению, написанному двадцатипятилетним Лавуазье двести лет назад (1768). Вот отрывок из него:

«Мы ежедневно соединяем кислоту со щелочью, но каким образом происходит соединение этих двух веществ? Располагаются ли молекулы, образующие кислоту, в порах молекул щелочей?.. Или же кислота и щелочь имеют различные грани, которые могут сливаться друг с другом путем простого контакта на манер магдебургских полушарий? Каким способом кислота и щелочь в отдельности сцеплены с водой? Это простое разделение на части или же это есть реальное соединение, допустим, части одного с частью другого или части одного с многими частями другого? Наконец, откуда происходит этот воздух (газ), который выделяется столь бурно в момент соединения?.. Существовал ли этот воздух первоначально в обеих смесях? Был ли он там каким-то образом связан… или же этот воздух, так сказать, искусственный и является продуктом соединения?..»

Можно ли быть уверенным, что это — не речь современного человека, стремящегося разбудить в своих слушателях мысль, подвести их к величайшему искусству анализа фактов и извлечения выводов, к поискам объяснений по существу?

«Если спросить химию обо всех этих различных предметах, то она ответит нам пустыми ссылками па имена, аналогиями, повторениями, которые не содержат никакой идеи, которых единственное действие сводится к тому, что они приучают ум удовлетворяться словами».

Научные интересы Лавуазье были столь же разнообразны, как его коммерческие предприятия. Нередко он одновременно вел несколько разных исследований. Этому способствовал, безусловно, неугомонный характер ученого. Но была тому и еще одна серьезная причина: чтобы поставить опыт, нужна аппаратура, и тем более сложная, чем сложней опыт. А чтоб эту аппаратуру изготовить, нужно время. Отсюда неизбежные паузы в любом большом исследовании и необходимость заполнения их другими работами. Одну из пауз он и заполнил знаменитыми теперь опытами с гигантским по тем временам зажигательным стеклом — опытами, которые вовсе не имели целью получить какое-нибудь новое вещество или изобличить в несоответствии истине какую-либо освященную высоким именем средневековую теорию. Опыты эти можно сравнить с действиями детей, когда они уже не удовлетворяются своим «почему?» и задаются следующим по порядку вопросом: «А что произойдет с этим предметом, если я буду его..?».

Лавуазье подставил слово «нагревать».

Что произойдет с различными веществами, если я буду нагревать их? Не сжигать, а именно нагревать? Под колпаком, все сильнее и сильнее…

Только в наше время можно в полной мере оценить проницательность Лавуазье, который еще ничего не знал даже о том, «каким образом происходит соединение» химических веществ, но, тем не менее, взялся утверждать, что «были бы получены поразительные результаты, которые открыли бы ученым новое направление их деятельности и привели бы к совершенно неизвестному порядку вещей». Так написал он в представленной академии в августе 1772 г. статье «Размышление о применении зажигательного зеркала».

Почему зеркала? Да потому, что никакого более мощного источника высоких температур, кроме солнечных лучей, собранных в пучок зажигательным зеркалом или стеклом, тогда не было.

Не ограничиваясь подачей «размышления» в письменной форме, он принялся размышлять над тем, как сделать такое зажигательное стекло или зеркало, которое могло бы собрать как можно больше солнечных лучей и как можно лучше сконцентрировать их в одной точке.

Как и всегда, прежде чем приступить к какому бы то ни было важному исследованию, Лавуазье первым делом досконально обдумывает предстоящие работы и прикидывает, что для них понадобится. Откупщик Лавуазье скрупулезен не только в своих финансовых делах, на которые ему каким-то непостижимым образом тоже хватает времени (во всяком случае, богатство свое он непрерывно приумножает), — дела научные он вершит с не менее завидным тщанием.

Первым делом составляется проект будущего прибора. Его делает под непосредственным руководством Лавуазье опытный инженер де Берньер. Прибору придаются внушительные размеры; достаточно сказать, что диаметр будущей линзы 120 см. Летом 1772 г. аппарат готов. Его устанавливают в парижском Саду инфанты.

Двояковыпуклая линза собрана из двух выпукло-вогнутых чечевиц. Радиус кривизны — 240 см. «Тело» линзы — пространство между чечевицами — заполнено спиртом. Все сооружение помещается на раме. Рама, в свою очередь, опирается на подставку, укрепленную на платформе. Для точной фокусировки на платформе установлена еще одна, меньшая линза.

Сохранились не только чертежи аппарата, но и рисунок, запечатлевший один из опытов. Велись также подробнейшие протоколы, позволяющие довольно точно представить себе все происходившее.

…Погожие августовские дни. Чистое небо, яркое солнце. Слабый ветер чуть шевелит кружева на атласных камзолах собравшихся любителей и покровителей науки, цветные ленты на шляпах их почтенных супруг. Таинственно поблескивают линзы в металлических оправах.

К помосту, на котором стоит предметный стол для испытываемых веществ, подходит, подтянутый и оживленный, член королевской Академии наук, генеральный откупщик господин де ла Вуазье. Он переговаривается со своими коллегами и дает указания служителю.

Проходит несколько минут. Причудливое сооружение разворачивают продольной осью к солнцу. Служитель нажимает на рычаги, регулирует винты, и в центре предметного стола обозначается ослепительный кружок — здесь фокус линзы.

В фокус линзы помещают кусок песчаника — попросту говоря, булыжник с парижской мостовой. Через шесть минут он белеет, но не плавится и не разрушается.

Под луч кладут черный ружейный кремень. Кремень разлетается на куски. Сразу же плавятся в фокусе линзы железные опилки…

В другой раз на подставку из песчаника помещают кусочек золота в 24 карата (больше 4 г). И сконцентрированный линзой солнечный луч сразу же превращает его в блестящую круглую каплю.

Только кварц выдерживает такой сильный жар да еще платина.

Потом служитель приносит кусочек фосфора. Потом кусок древесного угля…

Но вот на предметном столе появляется сверкающий под лучами солнца кристаллик.


Случайно или не случайно появился он здесь? Почему генеральный откупщик решил подвергнуть испытанию именно бриллиант — драгоценнейший из камней?

Не может быть сомнений в том, что Лавуазье имел для этого достаточно веские основания. Путь науки лежал через непроходимые дебри предрассудков, и сама возможность посрамить невежество как можно заметней, как можно эффектней не могла не привлекать — тем более, что экспериментатор был не очень стеснен в средствах. «Во все времена люди связывали идею совершенства со всем, что представляется редким и ценным, и они себя убедили, что все, что стоит дорого, что вне их возможностей, что трудно добываемо, должно якобы сочетать в себе редкие качества… Драгоценные камни тоже удостоились этого энтузиазма, и не прошло еще ста лет с тех пор, как им приписывались чудодейственные свойства. Одни медики рекомендовали принимать их внутрь при некоторых болезнях и вводили их в свои рецептурные формулы; другие уверяли самих себя, что достаточно носить их в кольцах, амулетах и т. д., и ожидали от них исключительного действия на живой организм. Многие физики, опередившие свой век, все же в большей или меньшей степени разделяли эти предубеждения. Даже сам Бойль, знаменитый Бойль, подобно своим современникам, приписывал драгоценным камням лечебные свойства…»

Это было написано Лавуазье незадолго до опытой, о которых идет здесь речь. И, конечно же, развенчать «идею совершенства» на примере столь заметном не могло не казаться ему весьма соблазнительным делом.

Так появился на предметном столе бриллиант.

Лавуазье поднялся на помост, еще раз проверил прибор и подал знак служителю. Служитель чуть сдвинул вправо — вслед ушедшему солнцу — большую линзу, потом малую линзу. Сконцентрированный линзами солнечный луч уперся в сосуд с алмазом, кристалл вспыхнул ярким сиянием.

Когда сияние погасло, бриллиант вроде бы исчез.

Исчез?

Лавуазье подошел к столу, вскрыл сосуд — и зрители услышали свист ворвавшегося в колбу воздуха: алмаз не исчез, но сгорел. Сгорел совершенно так же, как горят уголь или фосфор, поглотив часть находившегося под колпаком воздуха.

В то время Лавуазье не мог еще определить, что именно получается от горения алмаза, — он еще не умел отличать кислород от углекислого газа, или, говоря языком тех дней, дефлогистированный воздух от связанного воздуха.


И в те же примерно времена, когда шли опыты с зажигательным прибором в Саду инфанты, откупщик Лавуазье добился возведения стены вокруг всего Парижа. Уклониться от уплаты пошлин за ввозимый в город товар стало совершенно невозможно.

Если теперь, двести лет спустя, мы отдаем дань уважения этому человеку за сделанное им в науке, то тогда крестьяне, везшие на рынок в Париж снедь и не имевшие понятия ни о мудрых физических материях, ни об опытах прославленных академиков, вряд ли произносили имя Лавуазье с почтением. Если оно было им известно, то скорее всего они сопровождали его упоминание иными, довольно выразительными словами, имеющимися и во французском языке.

После победы Французской революции все двадцать восемь откупщиков были гильотинированы на площади в Париже. Это произошло 8 мая 1794 г.

Противоречива личность Лавуазье — великого ученого и заурядного в своих устремлениях буржуа. Но что касается того предмета, о котором речь в этой книжке, то Антуан Лоран Лавуазье сделал ощутимый шаг вперед по сравнению со своими предшественниками. Он доказал, что алмаз горит.


Итак, в 1772 г. драгоценнейший из драгоценных камней, можно сказать, царь драгоценностей, был низведен в куда более скромное общество, ибо Лавуазье, доказав, что алмаз горит, как зауряднейшие химические вещества: сера, или фосфор, или уголь, — тем самым уравнял их в правах.

Но это еще не означало, что стало известно, из чего алмаз сделан природой. «Обладает таким-то свойством» — еще не значит «состоит из того-то». И до этого «состоит из…» должно было пройти гораздо больше времени, чем это может представиться нашему современнику, который пожелал бы сегодня сделать самостоятельно следующий логический шаг после опытов Лавуазье.

Прошло еще сорок с лишним лет до следующего, такого самоочевидного опыта. А пока… еще маленький шаг вперед, даже не шаг — просто эпизод. Два года спустя после эффектнейших экспериментов с линзой тот же Лавуазье, на чьей столбовой дороге алмаз никогда не лежал, поставил другие опыты.

Во-первых, он нагревал ртутную известь (на сегодняшнем языке — окись ртути, HgO) с углем. И у него получались металлическая ртуть плюс «связанный воздух».

Во-вторых, он сильно нагревал ту же ртутную известь без добавления чего-либо. И у него получались снова металлическая ртуть плюс иной воздух, о котором Лавуазье написал так: «Этот воздух, будучи весьма отличен от связанного воздуха, находится в состоянии, более пригодном для дыхания, более горючем и, следовательно, более чистом, даже чем тот воздух, в котором мы живем».

Из этих двух серий опытов, проделанных в 1774 и 1775 гг., Лавуазье заключил: «Поскольку уголь исчезает полностью при оживлении ртутной извести и поскольку из этой операции получаются лишь ртуть и связанный воздух, приходится заключить, что начало, которое до сих пор именовали связанным воздухом, есть результат соединения с углем порции чрезвычайно удобовдыхаемого воздуха».

Вот и все. Но если наш современник на этом месте, может быть, снисходительно улыбнется, возьмет авторучку и напишет:

2HgО + C = 2Hg + CО2,

то пусть он вспомнит, что дело происходило двести с лишним лет назад, когда даже самого понятия «углерод» еще не существовало!

Заметим еще раз, что для самого Лавуазье и его коллег все это не имело ровно никакого отношения к интересующим нас алмазам, и пойдем дальше.


Дальше — о следующем шаге.

Его сделал Смитсон Теннант, химик из Кембриджа, который в возрасте двадцати четырех лет был уже признанным ученым и состоял в Лондонском королевском обществе.

В 1791 г. Теннант подтвердил мнение Лавуазье о составе «связанного воздуха», выделив из него чистый уголь. А спустя шесть лет он поставил опыт, который отдает той же театральностью, что и легендарное «действо» флорентийских академиков, — в золотом сосуде с селитрой Теннант сжег равные по весу порции угля, графита и алмаза.

И во всех трех случаях у него образовались одинаковые порции все того же «связанного воздуха».

После этого, казалось бы, вопрос, из чего «сделан» алмаз, наконец, совершенно прояснился. Кстати, во многих книгах так и написано: Теннант доказал, что алмаз состоит из углерода.

И тем не менее это не так. То, что в золотом горшке вместо сгоревшего алмаза очутился «связанный воздух», еще не значило ни для самого Теннанта, ни для его современников, что этот «связанный воздух» и есть весь бывший загадочный кристалл. Тогдашним ученым, например, не была известна причина поразительного блеска алмазов — и искать ее было естественно тоже в некоем веществе, еще не обнаруженном.

И если обратиться теперь не к эксперименту, а к рассуждению — непременной составляющей познания во все времена, никак не противоречащей принципу «ничего на веру», то для конца XVIII в. естественным было такое рассуждение: нет ли в алмазе, помимо угля, еще какой-то субстанции? Наверное, горючей, коль скоро она создает столь волшебное сверкание граней. И не есть ли эта субстанция «горючий воздух» — водород?

На эти вопросы Теннант не ответил — алмазом он больше не занимался. В наше время он известен главным образом тем, что в 1808 г. открыл в платине из бразильских россыпей два вещества, занявших впоследствии самостоятельные клетки менделеевской таблицы, — иридий и осмий. В алмазной же истории наступает — уже в который раз — перерыв. И достаточно долгий. Только через 17 лет с составом алмаза будет на самом деле покончено.


Любое открытие, даже самое, казалось бы, неожиданное, объективно обусловлено — утверждение достаточно неоригинальное. Что касается алмазов, то, прежде чем был открыт «дефлогистированный воздух» Пристли, он же «райский воздух» Шееле, он же «весьма удобовдыхае-мый воздух» Лавуазье, определить состав углекислого газа, который получался при сгорании алмазов, не мог никто, будь он хоть трижды гением.

Следующая, не менее тривиальная истина: кроме объективной возможности нужна еще субъективная, нужен еще тот человек, который придет… и совершит открытие. И пока этот человек не приступит к делу, руководствуясь какими-то своими, нередко довольно туманными для всех остальных соображениями, никакого открытии не происходит, пусть, казалось бы, все для него давно готово.

И вопрос, из чего же «сделан» алмаз, вполне мог оставаться невыясненным еще весьма и весьма долго — до тех времен, пока алмазы (уже в XIX и XX вв.) не стали нужны технике, а не только богатым красавицам и вельможам.

Но этого не произошло, ибо появился тот самый человек, личность. Безусловно, весьма яркая личность!

Хемфри Дэви родился в 1778 г. в маленьком английском городе Пензансе в семье резчика по дереву. Вот несколько параграфов его характеристики, составленной позже многочисленными биографами.

Во-первых, исключительная память. Все биографы сообщают об одном из любимых занятий малолетнего Хемфри: забравшись на базарной площади на телегу, наизусть рассказывать оттуда на радость собиравшейся вокруг детворе исторические романы, которыми он в те времена зачитывался. (Кстати, любовь к публичным выступлениям, определенная склонность к внешним эффектам сохранились у Дэви на всю жизнь. Может быть, в какой-то степени именно этому его свойству мы обязаны продолжением истории алмаза.).

Во-вторых, сильнейшее стремление к учебе. Семнадцатилетний Дэви составил себе план самообразования:

1. Теология, или религия, изучаемая через природу. Этика, или нравственные добродетели, изучаемые через откровение.

2. География.

3. Моя профессия: ботаника, фармакология, учение о болезнях, анатомия, хирургия, химия.

4. Логика.

5. Языки: английский, французский, латынь, греческий, итальянский, испанский, еврейский.

6. Физика.

7. Астрономия.

8. Механика.

9. Риторика и ораторское искусство.

10. История и хронология.

11. Математика…

И эту программу Дэви выполнял — по крайней мере, в области естественных наук.

В-третьих, пристрастие к экспериментам. Особенно к экспериментам с необычными средствами. Дэви будет одним из первых испытывать действие электрического тока на разные вещества — и так совершит не одно открытие.

В-четвертых, оригинальность (экстравагантность? несолидность?). Чего стоит, например, попытка Дэви, уже знаменитого ученого, сконструировать батарею из электрических скатов! К сожалению, батарея садилась раньше, чему сэру Хемфри удавалось ее к чему-нибудь подключить.

Но до батареи из рыб было еще далеко. А пока что маленький Хемфри, по единодушному свидетельству современников, решительно предпочитал школьным занятиям чтение исторических романов, бег взапуски, рыбную ловлю и, особенно, изготовление фейерверков. (Упоминание о нерадивом отношении Дэви к урокам никоим образом не направлено против устоев педагогики. Разумеется, не из каждого лоботряса и прогульщика может получиться великий ученый. Это случается редко — наверное, так же редко, как превращение в великого ученого примерного ученика со средним баллом 5 в школьном аттестате.)

Хемфри Дэви мало что вынес из школы, и тем не менее детские годы прошли отнюдь не без пользы для будущего ученого.

По соседству с семейством Дэви жил шорник, который в свободное от изготовления хомутов и выделки ремней время изучал сочинения Франклина и Вольта и повторял их опыты с электричеством. И Хемфри, сбегая с уроков, проводил у соседа целые дни. В мастерской крепко пахло кожами и можно было часами смотреть на искры, с треском срывающиеся со смоляного диска вольтова электрофора и наполняющие воздух загадочным электрическим флюидом.

И пусть эти немудреные опыты в мастерской соседа-шорника были не более чем увлекательной игрой — она оказалась для Дэви тем самым главным, что может и должен получить человек в детстве и что даже в наш просвещенный век далеко не всегда дает школа.

А отец, видя, что сын с грехом пополам одолевает школьные прописи и совсем отбился от рук, принял решение — отдать его в закрытую школу-пансионат. Но надеждам отца не суждено было сбыться и тут. В закрытой школе Хемфри не мог, правда, устраивать фейерверки и сбегать с уроков, но и овладевать школьной премудростью он совсем не стремился. Новое увлечение охватило его: он сочинял стихи. По отзывам современников, стихи юного Дэви были не так уж хороши; среди друзей, однако, они создавали ему вполне достаточную для мальчишки славу.


Детство кончилось сразу: умер отец — и семья лишилась достатка. Надо было зарабатывать на жизнь, и родственники устроили Хемфри в ученики к аптекарю.

Может быть, с высот XX в. место аптекарского ученика, занятое семнадцатилетним Дэви, кажется не слишком завидным. Но в XVIII в., как и в XX, производство лекарств было одной из важнейших отраслей химического производства. (Другой было изготовление пороха. Кстати, во Франции должность «управителя селитр и по-рохов» занимал не кто иной, как Антуан Лоран Лавуазье.) Но, в отличие от XX в., наука и производство еще не успели — по крайней мере, в этой части — заметно обособиться, подчиняясь закону разделения труда. И аптекарь был одним из наиболее образованных людей того времени. Он не только знал свойства многих сотен, а то и тысяч веществ минерального, животного и растительного происхождения. Он знал действия, которые они производят в разных количествах и соединениях на человеческий организм. И, кроме того, он умел собственными руками изготовлять лекарства.

Старательный и сообразительный ученик мог приобрести в аптеке не только солидные знания, но и прекрасные навыки экспериментатора. Кое-чего стоило и уменье читать и писать по-латыни, которое тоже можно было приобрести в аптеке. Латынь оставалась языком науки — пережиток времен безраздельного владычества католической церкви в средневековых университетах. Поэтому не будем считать случайностью, что десятки аптекарских учеников в XVIII, да и в XIX в. выросли в ученых.

По крайней мере, двое из них сыграли немалую роль в истории алмаза.

Первым из двух был Хемфри Дэви.

Он уже подумывал об университете, когда судьба привела его в аптеку, открыв перед ним шкафы и полки с бесценными сокровищами. Во все биографии Дэви попала фраза аптекаря, у которого Дэви служил: «Можно было подумать, что он питается соляной кислотой, нашатырем, содой — столько он их извел». Доподлинно известно, что Дэви не довольствовался опытами в аптеке: жертвами его экспериментаторского пыла нередко бывали платья сестры, внезапно покрывавшиеся дырами от кислоты.

Вечно занятый человек успевает больше, это — правило почти баз исключений. Именно здесь, в аптеке, Хем-фри Дэви составил и принялся выполнять свою грандиозную программу самообразования.

Прошло несколько лет упорнейшего труда, и ученик аптекаря стал образованным человеком и видным, как сказали бы сейчас, специалистом. И Дэви рекомендовали в Пневматический институт — недавно открывшееся в Клифтоне под Бристолем заведение, предназначенное для получения различных газов и испытания их действия на человека.

Двадцати лет, в 1798 г., Хемфри Дэви отправился туда и привез свое сочинение: «Опыт исследования о природе теплоты и света». Сочинение не особенно интересовало его новых шефов — им нужна была работа, и молодому Дэви поручили исследовать азот — не очень интересный газ.

С упорством и изобретательностью Дэви искал способы соединять безынициативный азот с агрессивным кислородом. Он получил и отделил один от другого многочисленные окислы азота. Все они ядовиты. Не раз двадцатилетний Дэви выходил из лаборатории, пошатываясь, и тут же падал без сознания.

Его упорство было вознаграждено. В один прекрасный день 1799 г. у него получилось какое-то странное соединение азота с кислородом: бесцветное, не обладавшее почти никаким запахом, оно вызывало у человека, подышавшего им, небольшое головокружение и судорожный смех. Никто до Дэви «веселящего» действия закиси азота не обнаруживал.


…Семь клеточек в периодической системе заполнены элементами, открытыми замечательным английским химиком, но ни одно открытие не приносило ему такой популярности, можно смело сказать — славы, как первое.

Дэви немедленно получил приглашение в только что основанный Королевский институт. Он стал любимцем публики, посещающей публичные лекции, — па ее глазах он творил чудеса. Он сделался едва ли не самым известным в Лондоне, если не считать короля, человеком — удовольствие вдохнуть веселящего газа и почувствовать легкое газовое опьянение непременно должна была испытать каждая светская дама.

Дэви не отказывался от приятной чести быть кумиром общества, но в то же время, пользуясь своим новым положением, углубился в серьезнейшие исследования электричества. Со времени первого знакомства с ним кое-что изменилось. Уже существовала первая электрическая батарея — источник длительного постоянного тока, вольтов столб.

В 1807 г. Дэви, разложив электрическим током от сильной батареи дотоле неразложимые «земли» — едкое кали и едкий натр, получил два новых химических элемента — калий и натрий. В следующем 1808 г. электричество помогло ему разложить четыре «щелочные земли» и открыть еще четыре новых элемента — кальций, магний, барий и стронций.


Слава химика Дэви начала греметь по всей Европе. А поскольку эти события происходили в то время, когда Англия вела беспрерывное промышленное и торговое соперничество с континентальной Францией, имя Дэви котировалось настолько высоко, что его чествовали как полководца. В 1812 г. король Британии пожаловал безродному фермерскому внуку рыцарство, как было оно некогда пожаловано другому безродному англичанину — фермерскому сыну Исааку Ньютону.


В то время, когда Дэви купался в лучах славы, тот, кому предстояло вписать вместе с ним следующую страницу в эту историю, был известен разве что своей матери, сестрам да нескольким знакомым.

Майкл Фарадей — рабочий-переплетчик, бедняк, интересующийся науками и посещающий публичные лекции (университет явно не для него). То, что кажется ему достойным внимания, он тщательно записывает.

29 февраля 1812 г. Фарадею достался билет на лекцию знаменитого Дэви о хлорном газе. Фарадей записал ее целиком и назавтра, под впечатлением слышанного, переплел свою запись со тщанием мастера, делающего работу для себя, и послал ее недосягаемому лектору с письмом, в котором робко высказал надежду добиться когда-нибудь чести — помогать ученому в его работе.

Прочитав письмо и подивившись как добросовестности изложения своей лекции, так и искусному переплету, Дэви пригласил переплетчика к себе.

В помощники он его не взял, но и не оставил знакомства без последствий — стал посылать Фарадею книги в переплет.

Многие биографы Фарадея пишут, что прошел целый год между днем знакомства и тем днем, когда он, наконец, стал работать у Дэви. И что все это время Фарадей исполнял лишь мелкие поручения Дэви, который, вероятно, хотел поближе присмотреться к будущему помощнику.

Существует и несколько иная версия: будто бы сэр Хемфри показал письмо и переплетенные лекции одному из своих друзей и спросил: «Что прикажете с ним делать?». И будто бы тот посоветовал: «Позовите парня и предложите ему мыть бутылки для опытов. Если согласится, берите — из него будет толк. Если нет — гоните».

Было так на самом деле или нет — сказать теперь трудно.

Так или иначе, Майкл Фарадей добился своего, хоть и не без помощи случая. При опытах с легко взрывающимся хлористым азотом Дэви поранил глаза и не мог писать. Он вызвал Фарадея к себе и диктовал ему результаты опытов, которые тот заносил в лабораторный журнал. И Дэви имел возможность еще раз убедиться в сообразительности и исполнительности молодого человека.

1 марта 1813 г. Майкл Фарадей получил официальное письмо — приглашение от сэра Хемфри и на следующий день стал лаборантом в Королевском институте. Диплома для занятия этой должности в те годы не требовалось, и претендентов на нее было, вероятно, не так уж много.

Пройдет двенадцать лет, и Дэви рекомендует Фарадея на пост директора лабораторий Королевского института. А пока что молчаливый лаборант помогал своему блестящему патрону готовить эксперименты и впитывал все новые и новые порции знания, представавшего перед ним теперь не в виде публичных опытов, бьющих на эффект, а в буднях труда и в маленьких открытиях, из которых слагается наука.

Осенью 1814 г. Дэви принял приглашение ученых и академий многих стран и решил совершить турне по континенту — в Англии так называют прочие европейские страны.

Его сопровождали: супруга — леди Дэви (по свидетельствам современников, не слишком умная, довольно вздорная и чопорная дама) и Майкл Фарадей — секретарь и слуга.

Известно, что Фарадей чуть не отказался от поездки, ибо считал, что бедняк должен быть щепетильнее, чем кто-либо другой. Уговорила его принять предложение мать, твердо знавшая, что никакая работа не зазорна, если это полезная работа. Необразованная миссис Фарадей, вероятно, догадывалась о зависимости между новыми впечатлениями и научным творчеством, не поддающейся строгим формулировкам. И кто знает: если бы не ока, когда пришлось бы Майклу повидать мир.


В багаже знаменитого ученого и его пока еще никому не известного секретаря-слуги был вместительный кофр, в котором помещались все необходимые для исследований приборы. Историки науки утверждают, что это была первая в мире передвижная лаборатория.

Поколесив по Франции, путешественники отправились в Италию. Там, в Генуе, вволю полюбовавшись старинными крепостями, они бродили у моря и наблюдали за рыбаками, разгружающими обильный улов. Просто так? Ни в коем случае! Именно здесь Дэви приходит в голову мысль разложить воду на водород и кислород с помощью электрических скатов. Опыт не удается, ничего не поделаешь…

Через несколько дней они прибыли во Флоренцию. Не следует забывать, что вместе с ними прибыла и леди Дэвн, которой Фарадей уже достаточно обязан неприятными минутами: эта дама желала видеть в нем слугу. Едва не вспыхнул конфликт, и Дэви с трудом удалось потушигь его. Стремясь хоть на несколько дней разрядить накалившуюся обстановку, он предложил отправиться в академию.

Залы флорентийской академии Дель Чименто многое повидали.

Здесь хранятся рукописи Галилео Галилея и телескоп, которым он открыл спутники Юпитера. Здесь ставил опыты, которые до сих пор повторяют во всех школах (торричеллиева пустота), Эванджелиста Торричелли, ученик Галилея.

Но потом здесь стало тихо, работа заглохла. Книги и приборы пылились на полках уже не один десяток лет.

В один из весенних дней 1814 г. тишина пустынных залов была нарушена. В академию Дель Чименто прибыл блистательный член Лондонского королевского общества сэр Хемфри Дэви.

И вот из пыльных шкафов извлекли отличные старые колбы итальянских мастеров-стеклодувов. Из закоулков академических шкафов появился зажигательный прибор, с помощью которого, как говорят, удивили некогда своего герцога ученые флорентийцы.

Дэви и его секретарь Фарадей установили зажигательный прибор на площадке перед дворцом — на том самом месте, где когда-то в лучах солнца, собранных увеличительным стеклом, исчез алмаз.

Наглухо запаянная колба наполнена чистым кислородом — Дэви добыл его, разлагая воду электричеством от вольтова столба. Внутри на платиновой подставке укреплен бриллиант. Фарадей навел на него зажигательное стекло, и вскоре над сверкающим камнем показался дымок. Колбу пришлось отставить в сторону. Потом Фарадей снова ставит ее прямо в фокус линзы…

И вскоре алмаз внутри колбы вспыхнул и пропал.

Пока сэр Хемфри с удовольствием принимал поздравления и обменивался любезностями с хозяевами, Фарадей разобрал аппарат, осторожно уложил массивные стекла в обитые бархатом и замшей ящики.

А на следующее утро, к великому неудовольствию леди Дэви, уже приказавшей упаковать свои туалеты и нанять экипаж для дальнейшего путешествия, ее супруг объявил, что он намерен задержаться во Флоренции.

Спектакль прошел успешно, но это теперь нисколько его не интересует. Алмаз в кислороде горит. Подумаешь, новость! Это давно знает любой студент.

А что будет, если накалить драгоценный камень в хлорине? Если в нем есть гидроген, как считают многие химики, то он образует с хлорином едкий газ…


В квадратном дворике академии Дель Чименто снова появляются два англичанина. Носильщики-итальянцы медленно несут за ними охваченный широкими ремнями кофр, битком набитый стеклом и химикалиями. Проходит несколько часов — ив одной из выходящих во двор комнат возникает настоящая лаборатория. Клубы желто-зеленого газа бушуют в пузатых колбах. Один за другим наполняет сэр Хемфри хлорином три сосуда. Три других сосуда он наполняет оксигеном — кислородом.

Первой в фокус линзы попадает колба, наполненная хлорным газом. На дне ее, поблескивает маленький прозрачный камень. Фарадей регулирует положение линзы, кристалл ослепительно сверкает; проходит минута, другая — кристалл сверкает по-прежнему. Прошел час, потом два, на небе появились облака. Опыт пришлось прекратить, записав, что в хлорном газе алмаз под действием собранных линзой солнечных лучей не загорается.


Ночью во Флоренции было облачно, но к утру небо прояснилось.

И едва солнце поднялось поближе к зениту, Дэви с Фарадеем уже снова колдовали у линзы. На этот раз тщательно взвешенный кристалл алмаза был помещен в большой Сосуд с кислородом, вес которого до и после наполнения газом тоже, разумеется, был определен самым тщательным образом.

Как и следовало ожидать, теперь алмаз не смог оказать большого сопротивления жгучему солнечному лучу, сфокусированному линзой на его сверкающей грани. Он задымился, начал темнеть, почернел, вспыхнул — и исчез. Сгорел.

Когда сосуд остыл, исследователи долго рассматривали его на свет, стараясь обнаружить хоть каплю влаги, хоть легкое помутнение стенок, — если бы в алмазе содержался водород, он должен был соединиться с кислородом, образовав воду. Но сосуд был идеально прозрачен.

К вечеру весы дали точный и определенный ответ: после сожжения алмаза в кислороде сосуд не содержал ничего, кроме углекислоты и некоторого количества кислорода.

Но Дэви не успокоился и послал Фарадея за новыми алмазами.

Следующие два дня стояла на редкость ясная погода. И Дэви воспользовался этим обстоятельством в полной мере. Еще несколько раз они превращали мелкие бриллианты в невидимый газ, растворяли его, взвешивали и тщательно записывали результаты каждого опыта.

Только на пятый день Дэви велел Фарадею запаковать приборы в кофр.

Исследование закончилось, прибавить к нему было нечего. Драгоценнейший из драгоценных камней оказался не просто химическим родственником самых обыкновенных горючих веществ, как фосфор или уголь. Он оказался просто тем же самым углем! Вернее, уголь и алмаз оказались двумя лицами одного и того же вещества.


А всего через девять лет после опытов Дэви и Фарадея уже была предпринята первая зарегистрированная в истории науки попытка превратить уголь в алмаз.

Загрузка...