Глава V ДИАГРАММА ЛЕЙПУНСКОГО

Мы видим только то, что отражает свет. Предмет размером меньше длины световой волны увидеть нельзя, ибо он не может отразить ее. Длина световой волны — десятимиллионные доли сантиметра. Значит, увидеть обычную молекулу (размер которой немного меньше) — а тем более атом! — ни в какой оптический прибор в принципе невозможно.

Рентгеновы икс-лучи проникли сквозь промежутки между атомами твердых веществ, и физики, используя свойство интерференции — взаимного усиления и ослабления волн при наложении, заполучили первые «портреты» кристаллов с довольно ясными обозначениями атомов. Или, точнее, их мест в кристаллической решетке.

В 1913 г. англичане Уильям Генри Брэгг и его сын Уильям Лоуренс Брэгг предъявили ученому миру рентгенограмму с изображением внутреннего устройства алмаза.

Трудно было представить себе более простую конструкцию. Куб и тетраэдр — куб и трехгранная пирамида, каждая сторона которой есть равносторонний треугольник, — вот и все, что использовала природа, строя алмазный кристалл. Восемь атомов углерода в вершинах куба, шесть атомов по его сторонам — по одному в центре каждого квадрата. И еще четыре атома внутри куба — его как бы внутренний каркас. «Все продумано»: каждый атом соединен с четырьмя другими и находится на равном и очень близком расстоянии от каждого из них, что придает кристаллу колоссальную прочность. Отсюда твердость алмаза, его устойчивость к активнейшим химическим агентам. Отсюда же его огромная стойкость к нагреву.

Прошло еще несколько лет, и с помощью рентгеновских лучей были изготовлены портреты графита. Исследователи увидели фигуры, весьма далекие от классической красоты: конструкция оказалась похожей на слоеный пирог. В одном направлении атомы сидели совсем близко один к другому, в другом, перпендикулярном — далеко, в два с лишним раза дальше, чем в кристалле алмаза.

Отсюда — меньшая плотность (удельный вес графита много меньше) и несравнимо меньшая твердость. И гораздо большая податливость химическим воздействиям и нагреву.

Все это было дельно и полезно, все документально подтверждало принципиальную правоту Муассана, Хрущова, их единомышленников: без высокой температуры и высокого давления невозможно превратить графит в алмаз. Но без какой именно температуры? Без какого именно давления?

Сведения, которые должны были помочь ответить па эти вопросы, накапливались постепенно и довольно медленно.

В 1911 г. Вальтер Нернст измерил теплоемкость графита и алмаза. В 1912 г. была измерена теплота сгорания алмаза и графита; у алмаза она оказалась почти на 500 кал больше (по уточненным данным — та 200 кал/г-атом). В 1924 г. Лебо и Пикон выяснили, что при нагревании алмаза в вакууме до 1500° в течение часа никакого превращения в графит не происходит, что при 1800 — 1850° в графит превращаются четыре десятых подопытного алмаза, а при 2000° — уже девять десятых и притом не за час, а за полчаса.

Так, понемногу, приближалось время, когда уже могла появиться теория синтеза алмаза. И техника тоже приближалась к тому, чтобы согласиться считать эту проблем му не такой уж экзотической.


К началу XX в. статическое давление в несколько тысяч атмосфер стало более или менее обычным делом. А в свойствах веществ, подвергаемых таким давлениям, обнаружились такие интересные отклонения, нто опытами с высоким и сверхвысоким (больше 1000 атм) давлением занялись во всех промышленно развитых странах.

Под действием высоких давлений газы превращались в жидкости, жидкости — в твердые тела, а твердые тела становились еще более твердыми.

Обнаружилось также, что, приложив к реагирующим химическим веществам давление, можно во многих случаях резко ускорить реакцию. Более того, некоторые вещества, упорно не соединяющиеся в нормальных условиях, под давлением легко давали соединения.

Это явление представляло уже прямой практический интерес.

Одним из первых это понял профессор химии Фриц Габер из Высшего технического училища в городе Карлсруэ. Понял и сумел использовать: синтезировал аммиак из самых доступных, вездесущих веществ — воздуха и воды.

Со времен Лавуазье было известно, что воздух па четыре пятых состоит из азота, которому тот же Лавуазье дал его название, означающее «безжизненный». По инертности азот уступал только собственно инертным газам. Правда, в природе азот вступает в реакцию с кислородом воздуха во время грозы; природа подсказывала, что можно попытаться действовать так же — мощным электрическим разрядом.

Фрицу Габеру это представлялось не лучшим решением проблемы, и в 1904 г. он начал экспериментировать с водородом и азотом, подвергая их действию высоких давлений и температур в присутствии катализатора — железа. 500° и 200 атм оказались наиболее благоприятным сочетанием для образования аммиака (три атома водорода плюс один атом азота), и в 1913 г. в Германии начал работать первый в мире завод синтетического аммиака. Как нередко бывало и до, и после того, открытие использовали прежде всего в военных целях…

Однако аммиак все же нужен не только для изготовления взрывчатки, главным потребителем аммиака были и остаются заводы минеральных удобрений. Фиксация атмосферного азота, синтез аммиака — это было важнейшее практическое достижение физики и химии высоких давлений начала нашего века. Это была столь необходимая гарантия плодородия для всех цивилизованных стран, ибо доступные отныне азотные удобрения немедленно повышали урожайность пшеницы в три и в четыре раза. Любопытство флорентийских академиков XVII в. оборачивалось спустя три столетия хлебом насущным.

Здесь напрашивается, если относиться серьезно к самым крайним воззрениям в извечном споре о ценности наукй для человечества, «решающий» вопрос: зачем именно хотел Габер синтезировать свой аммиак, понимал ли он огромное значение этого и т. д. Читатель согласится, что суждения о таких вещах вообще довольно субъективны, через 70 лет — тем более. Доподлинно известно лишь то, что позже, в 1918 г., Фриц Габер сказал по этому поводу при вручении ему Нобелевской премии:

«Синтез аммиака, осуществленный в крупном масштабе, представляет собой реальный, быть может, наиболее реальный путь к удовлетворению важных народнохозяйственных нужд. Эта практическая польза не была предвзятой целью моих работ. Я не сомневался в том, что моя лабораторная работа даст не более чем научное выяснение основ и разработку опытных методов и что к этим результатам должно быть еще очень много приложено, чтобы обеспечить хозяйственные достижения в промышленном масштабе. Однако, с другой стороны, мне было бы трудно с такой глубиной изучать данный вопрос, если бы я не был убежден в хозяйственной необходимости химического успеха в этой области».


Следует признать вполне логичным, что практический успех принесли вначале давления в сотни, а не в тысячи атмосфер. Хотя бы потому, что поставить опыт при сотне атмосфер гораздо легче, чем при тысяче. Занималось этим больше людей, больше веществ вовлечено было в круг исследований, отсюда и больше была вероятность найти нечто практически полезное.

Однако наука вряд ли могла удовлетвориться одной только практической пользой. И нужен был человек, который ухватится за не очень понятную для большинства задачу — сделать удобные и надежные аппараты, способные поддерживать давление в тысячу и более атмосфер.

Эту задачу поставил перед собой в 30-х годах профессор физики Гарвардского университета Перси Уильям Бриджмен.

Тот же вопрос: думал ли он тогда об искусственных алмазах?

Позже, в 40-е годы, один английский физик обронил такую фразу: «В течение последних ста лет главным стимулом и основным побуждением к развитию техники высоких давлений было стремление синтезировать алмаз». Однако же никаких серьезных свидетельств тому, что профессор Бриджмен, рассчитывал сделать алмаз, яе существует. Достоверно одно — в 1908 г., получив докторскую степень, Бриджмен начал возиться с нехитрыми механизмами, довольно похожими на велосипедный насос.

Поршень, площадь которого примерно пятикопеечная монета, гонит в шину струйки воздуха не толще швейной иглы — примерно такой диаметр отверстия в ниппеле. Это — велосипедный насос, а у профессора Бриджмена давление, приложенное к широкой стороне ступенчатого поршня, повышалось на его другом, узком конце, входящем в узкий цилиндр. Если верхний поршень больше нижнего в 10 раз, то повысить давление можно тоже в 10 раз — за один прием. За, два — в сто раз, за три — в 1000 раз, за четыре… Просто!

Однако кажущаяся простота оборачивалась на деле непреодолимой сложностью конструкции. Как только число ступеней — цилиндров и поршней — превышало две, установка не желала работать.

И еще одна трудность — и тоже кардинальная — была с материалами, потому что подвергать вещества высокому давлению предстояло в каком-то замкнутом объеме, в какой-то камере, и ее надо было из чего-то сделать. А у самой прочной стали есть свой предел прочности, после которого сталь разорвется и камера высокого давления вместе с исследуемым, веществом разлетится по лаборатории, как разорвавшаяся бомба.

Прошло несколько лет, прежде чем Бриджмену удалось сконструировать аппарат, в котором на 1 см2 поверхности испытуемого вещества приходилось около 15 т.

Теперь началось самое интересное.


Доктор Бриджмен, которому в тот год исполнилось тридцать два, притащил в лабораторию дюжину сырых яиц. Это было самым началом его опытов со столь основательной «машиной» — десяток тысяч атмосфер! — поэтому, при желании, можно даже притянуть к характеристике названного предмета исследования (куриных яиц) латинское выражение ab ovo — от яйца, в смысле «с самого начала».

Полетела в ящик для мусора скорлупа, прозрачным яичным белком наполнили стальную облатку камеры высокого давления.

С лязгомг захлопнута тяжелая крышка пресса. Гудит мотор компрессора, нагнетающего масло в гидравлическую систему. Медленно ползет Стрелка манометра: 100, 200, 500, 1000, 2000, 3000, 4000, 5000, 6000… Стоп!

Замолк компрессор. Через несколько минут Бриджмен откупорил первую камеру.

Вместо сырого белка перед ним был вареный. Твердый, белый, упругий белок — как из крутого яйца!

Одну за другой ставит лаборант под поршень камеры облатки с белком. Раз за разом белок свертывается — при комнатной температуре. Все куриные яйца реагируют на давление однозначно.

На следующий день в лаборатории Бриджмена «готовят мясо». Точнее, подвергают высокому давлению мясной белок коллаген.

Результат получается точно таким же: белок свертывается.

Бриджмен: решает испытать органическое вещество искусственного происхождения, идет в химическую лабораторию, советуется с коллегами и возвращается к себе со склянкой бесцветной жидкости — изопрена.

Опять лязгают дверцы пресса, опятз? гудит компрессор, и после окончания опыта Бриджмен задумчиво раскатывает в пальцах упругий комок чего-то прозрачного, больше всего похожего на каучук. Он мог бы воскликнуть: «Синтетический полимер!», но термин этот еще не был в употреблении в 20-х годах. А в статье об удивительном поведении органических веществ под давлением Бриджмен написал так: «Природа этих процессов да сих пор совершенно не разгадана, но результаты опытов во всяком случае наводят на мысль, что давление во многих органических соединениях может вызвать необратимые реакции».

Разгадывать природу «этих процессов» — полимеризацию органических веществ под давлением — предстояло другим. А Бриджмен решил испытать под прессом фосфор (есть ли другое вещество, легче перестраивающее свою структуру?).

Белый фосфор прозрачен и мягок, похож на воск и почему-то светится в темноте; достаточно слегка нагреть его в любой пробирке, и он тут же превращается в темнокрасный порошок — вещество, довольно заурядное.

Может быть, под давлением произойдет…

К удивлению Бриджмена, красный фосфор ни во что иное превращаться под давлением не стал.

Тогда он принялся за белый.

Много раз белый фосфор превращался у него в красный, словно и не было никаких атмосфер. Но однажды, доведя давление до 12 000, Бриджмен извлек из камеры нечто новое: темные, почти черные крупинки с металлическим блеском, гораздо тяжелее, чем красный (не говоря уж про белый) фосфор. И не только блеском походили они на металл: черный фосфор хорошо проводил тепло и электричество.

Неметалл превратился в металл. Изменились не только свойства. Изменилась внутренняя структура вещества.

Над многими еще веществами колдовал потом Бриджмен. Пожалуй, самые неожиданные свойства обнаружило под давлением самое обычное и, вместе с тем, самое загадочное вещество — обыкновенная вода.

Бриджмен пробовал замораживать воду, одновременно сжимая ее. И вот в одном из опытов, когда температура в камере понизилась до — 20°, а давление повысилось почти до 2000 атм, вода превратилась в необыкновенный лед, который не всплывал, а тонул в воде. (Если бы такой лед получался сам по себе, в обычных условиях, на нашей планете, по всей вероятности, некому было бы ставить с ним опыты.)


Удивительными изменениями свойств вещества под высоким давлением интересовался в те времена, конечно, не только Бриджмен.

В 1930 г. в аспирантуру харьковского Физико-технического института (УФТИ) был принят тридцатилетний физик Леонид Федорович Верещагин. Тема работы аспиранта Верещагина: как будет вести себя твердое тело, подвергнутое давлению в десятки тысяч атмосфер. (К этому времени Бриджмен был уже профессором Гарвардского университета. Как раз в 1930 г. вышла его книга «Физика высоких давлений». Никаких ссылок на исследования по физике высоких давлений в СССР в ней, естественно, не имеется. Принятого теперь выражения «сверхвысокое давление» в те годы тоже еще не употребляли.) Для исследований Верещагину понадобились аппараты высокого давления. Их тоже не было, или они были плохими. И Верещагин, как до него Бриджмен, занялся аппаратами.

Проблем хватало. Совершенно ненадежен был в те времена главный аппарат высокого давления — тот самый «насос» с двойным поршнем, именуемый мультипликатором и работающий хорошо только один раз — при повторных сжатиях поршень выходил из строя. Даже для лаборатории это было не так уж хорошо, для завода же не годилось совершенно.

Потом — течи. Уже флорентийские академики, пытавшиеся сжимать воду еще в XVII в., знали, что вода внезапно перестает держаться в сосуде, где ее сдавливают, находит, где ей просочиться. Можно сказать, что одновременно с техникой высоких давлений родилась задача уплотнения, «пробки» и все достижения техники высоких давлений всегда были связаны с изобретением новых, все более хитроумных затычек, не дающих сжимаемому веществу ускользнуть из сосуда. (Собственно говоря, мультипликаторы потому и выходили из строя, что при каждом ходе поршня истиралось их уплотнение.)

Первым большим успехом Верещагина и было новое уплотнение, вернее новая его конструкция.

Заметим, что все это пока не имело ни малейшего отношения к алмазам. И что об их существовании аспирант Верещагин (потом — научный сотрудник, потом — профессор) ни тогда, ни в последующие лет двадцать, возможно, и не вспоминал.

По-иному складывалось дело и, главное, интерес к его возможному «окончательному» результату в Ленинграде, где в 30-е годы физики тоже начали усиленно заниматься высоким давлением. Обстановку, в которой это происходило, можно хорошо представить себе по воспоминаниям сотрудника Ленинградского физико-технического института Наума Моисеевича Рейнова.

«…Главной в довоенные годы была для меня работа по генератору и высоковольтным устройствам. В летнее время — экспедиции, изучение космических частиц и спектров солнца. К тому же еще — изобретательство. Казалось бы, хватит. Но тут появляется искуситель — Н. Н. Семенов. С 1931 г. он — директор Института химической физики, который помещается через квартал от физтеха. И Семенов говорит, что у него есть очень интересная работа — изучение влияния высоких давлений на протекание органических реакций. Исследования при таких давлениях должны дать очень интересные результаты для физики, для химии и для химической физики. Эти результаты можно будет использовать в промышленности…

Семенов говорил мягко, почти как сам Иоффе. И я согласился.

Исследовательскую группу возглавлял Юлий Борисович Харитон. В нее входили сотрудники его лаборатории, среди них Овсей Ильич Лейпунский и я…

Начали, конечно, с разработки аппаратуры сверхвысоких давлений. Приборов, работающих при давлении 10 — 20 тыс. атмосфер, у нас тогда не производилось. (Их вообще еще нигде не производили.) Конструирование установок для сверхвысоких давлений в предшествующие годы упиралось в целый ряд теоретических трудностей. Главная трудность была в том, как достичь равномерного давления в камере. Однако как раз в это время американский физик Бриджмен опубликовал работу, где излагал очень интересную схему аппарата — принципиально новую. Мы за эту схему сразу ухватились и вскоре создали установку для исследования газов при давлениях до 12 000 атмосфер и температурах до 450° С.

Затем разработали и построили установку, состоящую из большого пресса на 40 тонн, мультипликатора для предварительного сжатия жидкости до 3000 атмосфер и из деталей, позволяющих проводить опыты с газом.

Эта установка обладала оригинальными особенностями. Мы могли заполнять капилляр исследуемым газом при 150 атмосферах. При объеме капилляра в 3 см3 это позволяло производить опыты при давлениях до 20 000 атмосфер. Мы могли в этой установке отделять газ от жидкости и подогревать газ в процессе опыта при сверхвысоких давлениях. По стеклянному капилляру, в котором находился исследуемый газ, давление распределялось равномерно во всех направлениях, и поэтому работа проводилась в условиях полной безопасности.

Такой микрометодикой были научены при высоких давлениях реакции газов с твердыми телами, затем каталитические реакции на тонких проволочках, газовая коррозия металлов, растворимость газов в твердых телах, сжимаемость газов, теплоотдача и т. д.

Были проведены опыты по разложению метилового спирта при 8000 ат и 350° С. Опыты показали, что с повышением давления растет скорость образования диметилового эфира, увеличивается скорость разложения и выход метана и СO2 (вследствие реакции водорода и СО с метиловым спиртом).

При помощи той же микрометодики проведены были исследования поведения коллоидных растворов под давлением. Оказалось, что с повышением давления значительно ускоряется застудневание коллоидов гидрата окиси железа, но образование некоторых других гидратов замедляется…

Все это было удивительно интересно, мы очутились в мире новых, никому не известных явлений, происходящих в веществе…»

Итак, исследовательская группа, в которую входил Лейпунский, занималась изучением действия высокого давления на различные вещества и имела в своем распоряжении оборудование, на котором можно было доводить давление до 20000 атм при 2000° — весьма солидные по тем временам величины. Разве не самым естественным было бы попытаться использовать, это обстоятельство для изготовления алмаза? Наверное, нет. Им казалось, что правильнее было бы начать дело с другой стороны — с расчетов.

И вот, взявшись за эту работу, Овсей Ильич Лейпунский «вычислил» алмяз…


Он начал с того, с чего начинает каждый берущийся за новое дело, — с анализа всего, что было к тому времени сделано десятками, если не сотнями его предшественников.

Среди многих твердо установленных фактов, относящихся к делу, один был более всего огорчителен для изготовителей алмазов: при сгорании 1 г графита выделяется меньше тепла, чем при сгорании 1 г алмаза. Это значит, что на создание 1 г графита израсходовано природой меньше энергии, чем на создание 1 г алмаза. А это, в свою очередь, значит, что беспорядочному сонму углеродных атомов, разгоняемых энергией тепла, гораздо проще сложиться в графит, чем построиться в алмаз.


В любой точке пирамиды, горы или лестницы любой предмет менее устойчив, чем внизу, у основания, потому чт6 только внизу ему уже некуда деться, из любого же другого места он готов скатиться. Или, на языке физики: чем выше поднято тело, тем большая потенциальная энергия запасена в нем. Оно может лежать на пятом этаже как угодно долго, но раз вы единожды его туда затащили, то как только вы уберете то, что это тело удерживает, — в данном случае балки перекрытия и настил пола — оно немедленно само по себе окажется на следующем энергетическом уровне — на четвертом этаже… И так далее. Если убрать все преграды сразу, то названное тело не медля возвратится в свое первоначальное положение — туда, откуда оно было поднято, может быть, лет пять — десять назад, если это был, к примеру, старинный бабушкин рояль. Причем возвратится самопроизвольно: запасенная потенциальная энергия не убывает с течением времени; это весьма важно!

Место атомов углерода в графите можно уподобить нижнему, место в алмазе — верхнему положению рояля.

Чтобы они — атомы углерода — оказались наверху (алмаз), нужно затратить энергию. В любом из возможных положений по дороге к верхнему они сами по себе стремятся занять нижнее положение (быть графитом).

Для того чтобы вычислить, как заставить углеродные атомы подняться на этот энергетический верх, нужны были численные значения физических свойств углерода при разных давлениях и температурах. В том числе при тех, которые еще не были достигнуты. Лейпунский отыскал удобный (изящный, как утверждают математики) способ перебросить мостик расчета от известных значений к неизвестным, но совершенно необходимым для решения задачи. Это было первым успехом.

Вторым успехом было нахождение той температуры, при которой атомы углерода должны перестроиться из графитного строя в алмазный. Ее удалось вычислить, можно сказать, вообще без математики. Лейпунский задался вопросом, который теперь (после него, как всегда!) покажется само собой разумеющимся: не будет ли графит превращаться в алмаз при той самой температуре, при которой алмаз полнее всего превращается в графит? Разве вода замерзает не при тех же условиях, при которых лед тает? Расчет подтвердил и это простейшее предположение; еще один пример простоты сложных вещей.

И вот на письменном столе Лейпунского появился график — диаграмма состояния углерода при различных давлениях и температурах. Кривые показывали: для превращения графита в алмаз нужно, кроме двухтысячеградусного жара, давление не меньше 60 — 70 тыс. атм. Лучше всего что-нибудь около 100 тыс… В сотни раз больше, чем могло быть у тех, кто пытался изготовить алмаз. И Лейпунскому пришлось заканчивать свои расчеты довольно грустными словами в их адрес:

«…Выяснилось прискорбное обстоятельство: все попытки изготовления алмаза были сделаны в условиях, при которых графит является более устойчивой твердой фазой, чем алмаз».

Более того: «Большинство описанных опытов было произведено в то время, когда еще даже не было ясно, что устойчивее в земных условиях — графит или алмаз».


Ни у Каразина, ни у Муассана, ни у Хрущова, ни у многочисленных их последователей и авторов патентованных технологий не могло быть ничего похожего на 100 тыс. атм. А у Крукса, который устраивал взрывы в стальной бомбе, высокое давление было слишком непродолжительным, а значит, слишком мала (хоть и не равна нулю — заметим это!) была вероятность попасть в цель, которая раскрывается только на доли секунды…

Ну, а что же все-таки было у всех тех, кто объявлял, что алмаз сделан?

Кое у кого была, наверное, заурядная фикция. Например, у господина Карабачека и его шефов из «ИГ Фарбен». А честные ученые в конце XIX и начале XX в. — у них просто не было еще средств для точного определения вещества в тех микроскопических дозах, в которых они добывали свои кристаллы.

Чаще всего это были, очевидно, комбинации окислов и карбидов — титана, алюминия, кремния. И титан, и алюминий, и кремний обязательно присутствовали в исходных материалах или в самой аппаратуре исследователей. Комбинация окислов и карбидов могла получаться такой, что у нее оказывались «подходящими к алмазу» и удельный вес, и твердость (примерно как у корунда). И при сжигании карбидов получался углерод. Почти чистый…

Вот как было сказано об этом в 1939 г. у Лейпунского:

«…Чтобы быть уверенным в получении алмаза, кристаллизацию необходимо производить:

1) при таких давлениях, когда алмаз является более устойчивой фазой, чем графит;

2) при достаточно малых скоростях, чтобы не проявились преимущества графита как кинетически более вероятной фазы;

3) при таких температурах, когда возможны перестройки в кристаллической решетке, чтобы в случае образования графита последний мог перейти в алмаз.

Перестройки в решетке алмаза начинаются с 1700 — 1800°, и при этой температуре нет оснований ожидать, что решетка графита будет устойчивее. Поэтому температура в 2000° К является минимальной для получения алмаза из графита в твердой фазе, причем опыт должен производиться при таком давлении, когда алмаз при этой температуре устойчивее графита, т. е. при давлении порядка 60 000 ат.

Техника высоких давлений в настоящее время позволяет поддерживать в течение длительного времени давление 50 000 ат… Дальнейшее увеличение этого предела до 60 000 — 70 000 ат, по-видимому, осуществимо, хотя оно потребует очень большого труда при подборе соответствующих твердых сплавов. Нагрев графитовой массы до 2000° при большом давлении представляет меньшие трудности и может быть осуществлен изнутри. Но все же опыт при 60 000 — 70 000 ат является опытом будущего, хотя, может быть, и весьма недалекого.

Давление, необходимое для кристаллизации алмаза в области его устойчивости, может быть уменьшено, если удастся понизить температуру, при которой возможна кристаллизация. Известно, что наличие среды, являющейся растворителем для твердой фазы или вступающей с ней в нестойкие химические соединения, может значительно облегчить рекристаллизацию…

С принципиальной точки зрения, в железе можно выкристаллизовать алмазы (или вызвать рост внесенной затравки) при температуре 1500 — 1700° К, для чего потребуется давление порядка 45 000-50 000 ат.

Такой опыт находится в пределах возможностей техники сегодняшнего дня…

Алмаз может оказаться устойчивее графита и при небольших давлениях, если поверхностная энергия алмаза меньше поверхностной энергии графита. При этом условии для кристаллов очень малых размеров суммарная (т. е. объемная + поверхностная) энергия алмаза будет меньше, чем энергия графита, т. е. очень мелкие кристаллы алмаза будут устойчивее очень мелких кристаллов графита.

Однако эксперимент, в котором можно было бы реализовать это соотношение, следует проводить в условиях, когда исключена возможность рекристаллизации, а тогда ход кристаллизации будет определяться кинетическими соотношениями, а не термодинамическими…

В области, где графит более устойчив, чем алмаз, получение алмаза не является невозможным, так как во всяком случае алмаз термодинамически более устойчив, чем жидкий или газообразный углерод (при р>рнасыщ.). Здесь решающую роль должна играть кинетика образования зародышей и роста кристаллов алмаза и графита.

Если образование зародыша алмаза менее вероятно, чем образование зародыша графита, то очень существенно наличие готовой алмазной затравки.

Попытки кристаллизации в присутствии алмазной затравки из газовой фазы и из раствора производились при низкой температуре и дали отрицательный результат. Так, Руфф пытался наращивать алмаз из сплава при 800°, но при этом растворимость углерода в сплаве была ему неизвестна. Подобный опыт — в особенности кристаллизации из раствора — не представляется все же безнадежным, если взять хороший растворитель, например железо.

Трудность такого опыта заключается в надлежащем подборе температуры кристаллизации. Для возможности роста кристалла необходимо некоторое пересыщение раствора. При этом небольшое пересыщение для алмаза будет более значительным для графита, так как равновесная концентрация растворенного или газообразного углерода над графитом меньше, чем над алмазом, поскольку алмаз менее устойчив. А так как вероятность образования зародыша растет с величиной пересыщения, то пока идет медленный рост кристалла алмаза, на нем может образоваться зародыш графита, который направит дальнейшую кристаллизацию по пути образования графита.

Следовательно, температура алмаза должна быть такова, чтобы, с одной стороны, пересыщение раствора над ним было достаточно велико для обеспечения кристаллизации с нужной скоростью, а с другой стороны, чтобы пересыщение относительно графита было достаточно мало, чтобы во нремя роста алмаза не образовался зародыш графита.

Условия для эксперимента очень трудные, но, может быть, не безнадежные…

В той случае, когда вероятность образования зародышей алмаза сравнима с вероятностью образования зародышей графита, путем закалки можно получить небольшие кристаллики алмаза. Если в опытах Муассана были получены алмазы, то их количество составляло 10-4 по весу от имевшегося в железе графита (на основании данных Руффа). Эту цифру можно в данном случае рассматривать как примерную величину отношения вероятностей образования зародышей алмаза и графита.

Исходя из этой величины, мы могли бы ожидать, что при опытах с жидким углеродом в 10 г графита должен содержаться 1 мг алмаза. Однако анализ застывшего расплавленного угля не обнаружил наличия алмаза.

Впрочем, может быть, этот путь не безнадежен при осуществлении достаточно быстрой закалки. Уголь плавится при 4000° К, и при этой температуре уже само излучение вызывает быстрое охлаждение. Так, например, для капель диаметром в 1 см начальная скорость охлаждения имеет величину порядка 2500° в 1 сек и для охлаждения капли до 2500° К, т. е. до температуры, при которой рекристаллизация алмаза в графит уже затруднена, требуется около 2 сек. Дальнейшее увеличение скорости закалки представляет большие трудности, но тем не менее попытки в этом направлении следует рассматривать как один из возможных путей.

Наконец, известный интерес могут представлять попытки получения больших кристаллов из малых путем спекания, подобно тому, как изготовляют вольфрамовые стержни, изделия из твердых материалов и т. д. Так, например, Дельтер наблюдал спекание кусочков алмаза при 2000°…».

Заканчивалась работа О. И. Лейпунского таким заключением.

«1. Ввиду того, что графит представляет собой кинетически более выгодный путь кристаллизации углерода, чем алмаз, единственным надежным путем изготовления алмаза является кристаллизация или рост уже имеющихся кристалликов в области термодинамической устойчивости (при высоких давлениях) при температуре, когда возможна рекристаллизация графита.

Для этого необходимо усовершенствование техники получения высоких давлений и подбор среды для кристаллизации.

2. В области, где алмаз менее устойчив, чем графит, возможными путями являются:

а) наращивание алмаза из раствора, содержащего углерод;

б) закалка расплавленного угля (также при высоком давлении);

в) спекание алмазной пудры».

Вряд ли теперь, спустя тридцать шесть лет после выхода научного журнала со статьей об этом сугубо теоретическом исследовании («Успехи химии», 1939, № 10), можно со всей достоверностью доказать, кто ее читал, а кто, может быть, и не читал. Так что вернемся к твердо установленным фактам, относящимся к нашему предмету.

Всего через несколько месяцев после выхода в свет статьи Овсея Ильича Лейпунского «Об искусственных алмазах» фирмы «Карборундум», «Нортон» и «Дженерал электрик» заключили пятилетнее соглашение с профессором Перси Уильямом Бриджменом. Фирмы предоставляли средства. Профессор Бриджмен брался за разработку аппаратуры для синтеза алмазов.

Уже под давлением в десять е небольшим тысяч атмосфер многие вещества вели себя необычно. Еще более необычных и многообразных превращений ждали исследователи от давлений, превышающих нормальные не в десятки, а в сотни тысяч раз. Но до начала 30-х годов этого просто не могло быть, независимо от желаний, устремлений, изобретательности или таланта. Техника не может перепрыгивать через свои возможности, и в нашем случае суть состояла в том, что до 30-х годов просто не существовало еще материала, необходимого для устройства аппаратов сверхвысокого давления.

Об этом материале, изобретенном, кстати, совсем для других целей, не раз еще пойдет речь дальше. Сделаем поэтому небольшую паузу и проследим мысленно как бы главную линию создания материалов для машинной индустрии — станового хребта нашей цивилизации.

Если не останавливаться на механизмах, изготовленных в основном из дерева (а таких было немало, и сослужили они человечеству довольно долгую и верную службу), то можно сказать, что сначала машины делали в основном из чугуна. До нашего времени дошло слово «чугунка» — так называли в России железную дорогу.

Затем в ход пошли конструкционные углеродистые стали.

Для обработки этих сталей понадобились, естественно, инструменты из материала более твердого, чем тот, что следовало обработать. Тогда появились легированные быстрорежущие стали — с добавлением к железу вольфрама и кобальта. Вольфрам и кобальт, образуя с железом двойные карбиды, упрочняли сталь, увеличивали ее стойкость к нагреву — не давали резцам «садиться» при работе.

Инструменты из быстрорежущей стали тоже надо было обрабатывать… Чем-то, естественно, более твердым, чем быстрорежущая сталь.

Тогда в ответ на эту настоятельную потребность техники появился принципиально новый материал — твердые сплавы. И новая отрасль техники — порошковая металлургия, спекающая из металлических порошков эти новые материалы. Несколько забегая вперед, можно утверждать, что только после повсеместного распространения твердых сплавов могла возникнуть истинная (техническая, производственная, экономическая) необходимость в еще более твердом материале. И что таковым мог быть — в пределах известного науке и технике — только алмаз.

Но здесь нам важнее другая, названная выше сторона дела: техническая возможность изобрести аппарат для синтеза алмаза появилась только после создания твердых сплавов. (Один из примеров диалектики науки и техники, как, впрочем, и более широкого круга вещей и явлений: предыдущее нуждается в последующем, как и последующее в предыдущем, — одно без другого либо невозможно, либо бессмысленно.)


Твердые сплавы, способные выдержать температуру в несколько тысяч градусов, появились почти одновременно в Европе и в Америке. Они были спечены из карбидов вольфрама и кобальта. В Америке сплав назвали карболоем, в Европе — видием, от немецкого wie Diamant («как алмаз»). Так что и названием своим новый материал сразу же оказался как бы привязан к алмазу.

Бриджмен и его сотрудники конструировали все новые камеры и устройства, передающие давление исследуемому веществу. Дело двигалось медленно: карболой непривычен, свойства его еще плохо изучены. Но так или иначе, а к концу 30-х годов в распоряжении Бриджмена был уже аппарат, в котором давление удавалось поднимать до 130 000 атм при 1000° тепла. Подопытное вещество сжималось в нем с четырех сторон тетраэдральными наковальнями из карболоя. В этом аппарате группе Бриджмена удалось синтезировать минерал гранат, в том числе ярко-красный гранат — пироп, естественный спутник природных алмазов в кимберлитовых трубках…

Загрузка...