Глава 7. Крово- и лимфообращение

Доставка кислорода и питательных веществ к тканям и клеткам млекопитающих животных и человека, а также выведение продуктов их жизнедеятельности обеспечиваются кровью, циркулирующей по замкнутой сердечно-сосудистой системе, состоящей из сердца и двух кругов кровообращения: большого и малого. Большой круг кровообращения начинается от левого желудочка сердца, из которого артериальная кровь поступает в аорту. Пройдя по артериям, артериолам, капиллярам всех органов, кроме легких, она отдает им кислород и питательные вещества, а забирает углекислоту и продукты метаболизма. Затем кровь собирается в венулы и вены и через верхнюю и нижнюю полые вены поступает в правое предсердие.

Малый круг кровообращения начинается с правого желудочка сердца, откуда венозная кровь направляется в легочную артерию. Пройдя через легочные капилляры, кровь освобождается от углекислоты, оксигенируется и уже в качестве артериальной поступает через легочные вены в левое предсердие.

Физиология сердца

Свойства сердечной мышцы

Сердечная мышца обладает следующими свойствами:

1. автоматией – способностью сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом;

2. возбудимостью – способностью сердца приходить в состояние возбуждения под действием раздражителя;

3. проводимостью – способностью сердечной мышцы проводить возбуждение;

4. сократимостью – способностью изменять свою форму и величину под действием раздражителя, а также растягивающей силы или крови.

Автоматия

Субстратом автоматии в сердце является специфическая мышечная ткань, или проводящая система сердца, которая состоит из синусно-предсердного (синоатриального) (СА) узла, расположенного в стенке правого предсердия у места впадения в него верхней полой вены, предсердно-желудочкового (атриовентрикулярного^ узла, расположенного в межпредсердной перегородке на границе предсердий и желудочков. От атриовентрикулярного узла начинается пучок Гиса. Пройдя в толщу межжелудочковой перегородки, он делится на правую и левую ножки, заканчивающиеся конечными разветвлениями – волокнами Пуркинье. Верхушка сердца не обладает автоматией, а лишь сократимостью, так как в ней отсутствуют элементы проводящей системы сердца.

В нормальных условиях водителем ритма, или пейсмекером, является синоатриальный узел. Частота разрядов синоатриального узла в покое составляет 70 в 1 минуту. Атриовентрикулярный узел – это водитель ритма второго порядка с частотой 40 -50 в 1 минуту. Он берет на себя роль водителя ритма, если по каким-либо причинам возбуждение от СА не может перейти на предсердия при атриовентрикулярной блокаде или при нарушении проводящей системы желудочков. Если поражены все основные водители ритма, то очень редкие импульсы (20 имп/с) могут возникать в волокнах Пуркинье – это водитель ритма 3-го порядка.

Следовательно, существует градиент автоматии сердца, согласно которому степень автоматии тем выше, чем ближе расположен данный участок проводящей системы к синусному узлу.

Электрическая активность клеток миокарда и проводящей системы сердца

Потенциал действия кардиомиоцитов начинается с быстрой риверсии мембранного потенциала, составляющего -90 мВ и создаваемого за счет К+-потенциала, до пика ПД (+ 30 мВ) (рис.11). Это фаза быстрой деполяризации, обусловленная коротким значительным повышением проницаемости для Na+, который лавинообразно устремляется в клетку. Фаза быстрой деполяризации очень короткая и составляет всего 1 -2 мс. Начальный вход Na+ быстро инактивируется, однако деполяризация мембраны продолжается за счет активации медленных натрий-кальциевых каналов, а вход Са2+ приводит к развитию плато ПД – это специфическая особенность клеток миокарда. В этот период быстрые натриевые каналы инактивируются и клетка становится абсолютно невозбудима. Это фаза абсолютной рефрактерности. Одновременно происходит активация калиевых каналов, а выходящие из клетки ионы К+ создают фазу быстрой реполяризации мембраны.

Ускорение процесса реполяризации происходит за счет закрытия кальциевых каналов. В конце периода реполяризации постепенно закрываются калиевые каналы и реактивируются натриевые. Это приводит к восстановлению возбудимости кардиомиоцита и возникновению относительной рефрактерной фазы. Длительность ПД кардиомиоцита составляет 200–400 мс.

Калий-натриевый насос, создающий потенциал покоя или мембранный потенциал миокардиоцита, может быть инактивирован под действием сердечных гликозидов (препараты наперстянки, строфантина), которые приводят также к повышению внутриклеточной концентрации Na+, снижению интенсивности обмена внутриклеточного Са2+ на внеклеточный Na+, накоплению Са2+ в клетке. В результате сократимость миокарда становится больше. Ее можно увеличить и за счет повышения внеклеточной концентрации Са2+ и с помощью веществ (адреналин, норадреналин), ускоряющих вход Са2+ во время ПД. Если удалить Са2+ из внешней среды или заблокировать вход Са2+ во время ПД с помощью таких веществ – антагонистов кальция, как верапамил, нифедипин и др., то сократимость сердца уменьшается.

Клетки проводящей системы сердца и, в частности, клетки пейсмекера, обладающие автоматией, в отличие от клеток рабочего миокарда-кардиомиоцитов могут спонтанно деполяризоваться до критического уровня. В таких клетках за фазой реполяризации следует фаза медленной диастолической деполяризации (МДД), которая приводит к снижению МП до порогового уровня и возникновению ПД. МДД – это местное, нераспространяющееся возбуждение, в отличие от ПД, который является распространяющимся возбуждением.


Таким образом, пейсмекерные клетки отличаются от кардиомиоцитов:

1. низким уровнем МП – около 50 – 70 мВ

2. наличием МДД

3. близкой к пикообразному потенциалу формой ПД,

4. низкой амплитудой ПД – 30 – 50 мВ без явления риверсии (овершута).


Особенности электрической активности пейсмекерных клеток обусловлены целым рядом процессов, происходящих на их мембране. Во-первых, эти клетки даже в условиях «покоя» имеют повышенную проницаемость для ионов Na+, что приводит к снижению МП. Во-вторых, в период реполяризации на мембране открываются только медленные натрий-кальциевые каналы, так как быстрые натриевые каналы из-за низкого МП уже инактивированы. В клетках синоатриального узла в период реполяризации быстро инактивируются открытые калиевые каналы, но повышается натриевая проницаемость, на фоне которой и возникает МДД, а затем и ПД. Потенциал действия синоатриального узла распространяется на все остальные отделы проводящей системы сердца.

Таким образом, синоатриальный узел навязывает всем «ведомым» отделам проводящей системы свой ритм. Если возбуждение но поступает от главного пейсмекера, то «латентные» водители ритма, т. е. клетки сердца, обладающие автоматией, берут на себя функцию нового пейсмекера, в них также зарождается МДД и ПД, а сердце продолжает свою работу.

Возбудимость

Во время развития фаз ПД и сокращения сердечной мышцы меняется уровень ее возбудимости. Периоду быстрой реполяризации и плато, а также всему периоду сокращения сердечной мышцы соответствует фаза абсолютной рефрактерности (см. рис. 11), когда мышца абсолютно невозбудима и не отвечает даже па сверхпороговые раздражители. Ее длительность – 0,27 с. Концу периода реполяризации и фазе расслабления соответствует фаза относительной рефрактерности, когда возбудимость начинает восстанавливаться, но еще не достигла исходных значений. В этот период лишь сверхпороговые стимулы могут вызвать сокращение мышцы сердца. Длительность относительной рефрактерной фазы – 0,03 с. В период восстановления МП и в конце расслабления сердечная мышца находится в состоянии повышенной, или супернормальной, возбудимости. Эту фазу называют еще периодом экзальтации, когда сердечная мышца отвечает даже на подпороговые стимулы.

Рефрактерность обусловлена инактивацией быстрых натриевых каналов и соответствует развитию ПД, поэтому продолжительность рефрактерного периода, как правило, связана с длительностью ПД.

Местные анестетики, подавляя быстрые натриевые каналы и замедляя восстановление проницаемости после инактивации, вызывают удлинение рефрактерного периода, но не влияют на продолжительность ПД. Поскольку очередное сокращение возможно только по окончании периода абсолютной рефрактерности предшествующего ПД, сердечная мышца, в отличие от скелетной, не отвечает на повторные раздражения, т. е. она не способна к тетанусу.

Таким образом, длительная абсолютная рефрактерная фаза и короткая фаза супернормальной возбудимости сердечной мышцы исключают для нее состояние тетануса, которое бы мешало нагнетательной функции сердца, поэтому сердечная мышца работает в одиночном режиме.

Однако если повторное сверхпороговое раздражение нанести в фазу расслабления очередного сокращения, которое совпадает с периодом относительной рефрактерности, возникает внеочередное сокращение, или экстрасистола. В зависимости от того, где возникает новый, или «эктопический», очаг возбуждения, различают синусовую, предсердную и желудочковую экстрасистолы. Желудочковая экстрасистола отличается следующей за ней более продолжительной, чем обычно, компенсаторной паузой. Она появляется в результате выпадения очередного нормального сокращения. При этом импульсы, возникшие в синоатриальном узле, поступают к миокарду желудочков, когда они еще находятся в состоянии абсолютной рефрактерной фазы экстрасистолы. При синусовых и предсердных экстрасистолах компенсаторная пауза отсутствует.

Экстрасистолию могут вызвать также изменения ионного состава крови и внеклеточной жидкости. Так, снижение внеклеточной концентрации К+ (ниже 4 ммоль/л) повышает активность пейсмекера и приводит к активации гетерогенных очагов возбуждения и как следствие – к нарушению ритма. Большие дозы алкоголя, курение табака могут спровоцировать экстрасистолию. Гипоксия (недостаток кислорода в тканях) значительно изменяет метаболизм в кардиомиоцитах и может привести к появлению экстрасистол. В период полового созревания, у спортсменов в результате перетренировок также могут возникать единичные экстрасистолы. Экстрасистолию могут вызвать изменения со стороны вегетативной нервной системы и коры больших полушарий.

Если в норме частота сердечных сокращений колеблется от 60 до 80 в 1 мин, то ее урежение до 40 – 50 в 1 мин называется брадикардией, а учащение свыше 90- 100 – тахикардией. Брадикардия отмечается во время сна и у спортсменов в состоянии покоя, а тахикардия – при интенсивной мышечной деятельности и эмоциональном напряжении.

У некоторых молодых людей в норме наблюдаются изменения сердечного ритма, связанные с актом дыхания, – дыхательная аритмия, которая заключается в том, что частота сокращений сердца на вдохе увеличивается, а на выдохе и во время дыхательной паузы уменьшается.

При нарушении проводимости и возбудимости сердца происходят изменения ритма работы предсердий и желудочков, названные трепетанием и мерцанием (фибрилляция). При этом предсердия и желудочки сокращаются асинхронно с частотой от 300 до 600 в 1 минуту, возбуждение возникает в различных участках сердечной мышцы. Подобное нарушение ритма наблюдается при инфаркте миокарда, а также при отравлении фармакологическими препаратами (наперстянка, хлороформ, барий). У человека фибрилляция, как правило, приводит к смерти, если не принять срочные меры. Фибрилляцию можно прекратить непосредственным воздействием на сердце мощного электрического разряда (напряжением в несколько киловольт), после чего синхронность сокращений предсердий и желудочков восстанавливается.

Проводимость и сократимость

Между клетками проводящей системы и рабочим миокардом имеются тесные контакты в виде нексусов, поэтому возбуждение, возникшее в одном участке сердца, проводится без затухания (без декремента) в другой. Скорость распространения возбуждения от предсердий к желудочкам составляет 0,8–1,0 м/с. Проходя атриовентрикулярный узел, возбуждение задерживается на 0,04 с. Далее, распространившись по пучку Гиса и волокнам Пуркинье, возбуждение охватывает мускулатуру желудочков со скоростью 0,75–4,0 м/с.

Таким образом, мышечная ткань сердца ведет себя как функциональный синцитий. Благодаря этой особенности сердце, в отличие от скелетной мышцы, подчиняется закону «все или ничего». Это означает, что на раздражение возрастающей силы, начиная от порогового, мышца сердца отвечает сразу возбуждением всех волокон, т. е. амплитуда сокращений одинакова. Если раздражитель подпороговый, то она совсем не реагирует. Однако если раздражать сердечную мышцу током возрастающей частоты, оставив его силу постоянной, то каждое увеличение частоты раздражителя вызовет возрастающее сокращение сердечной мышцы – феномен «treppe» – лестницы. Это явление можно объяснить попаданием каждого последующего импульса в фазу повышенной возбудимости и накоплением ионов Са2+ в области миофибрилл, что и дает усиление ответной реакции.

Сокращение сердца, как и у скелетных мышц, запускается ПД. Однако если у скелетной мышцы ПД составляет всего несколько миллисекунд и предшествует сокращению, то у сердечной ПД и фазы сокращения перекрывают друг друга. ПД заканчивается только после начала фазы расслабления. Это одна из особенностей электромеханического сопряжения сердечной мышцы. Другая особенность состоит в том, что существует взаимосвязь между внутриклеточным депо Са2+ и Са2+ внеклеточной среды. Как упоминалось выше, во время ПД Са2+ входит в клетку из внеклеточной среды и увеличивает длительность ПД, а значит, и рефрактерного периода, тем самым создаются условия для пополнения внутриклеточных запасов кальция, участвующего в последующих сокращениях сердца.

Сердечный цикл

Сократительная деятельность сердца связана с работой клапанов и давлением в его полостях. Эти изменения носят фазный характер и составляют основу сердечного цикла, длительность которого равна 0,8 с, но может меняться в зависимости от частоты сердечных сокращений. Чем больше частота сердечных сокращений, тем короче сердечный цикл и наоборот.

Сердечный цикл состоит из 3 основных фаз: систолы предсердий, систолы желудочков и общей паузы или диастолы. Систола предсердий длится 0,1 с, при этом атриовентрикулярные клапаны открыты, а полулунные закрыты, давление в предсердиях равно 5–8 мм рт.ст. Систола предсердий заканчивается закрытием атриовентрикулярных клапанов и начинается систола желудочков, ее длительность – 0,33 с. Систола желудочков, в свою очередь, делится на период напряжения и период изгнания крови. Период напряжения – 0,08 с. Он также состоит из 2 фаз: асинхронного сокращения – промежутка времени от начала возбуждения и сокращения кардиомиоцитов до закрытия атриовентрикулярных клапанов, после чего давление в полостях желудочков быстро растет до 60 – 80 мм рт.ст. и начинается фаза изометрического сокращения.

С моментом закрытия атриовентрикулярных клапанов совпадает возникновение I систолического тона сердца. При закрытых полулунных и атриовентрикулярных клапанах длина волокон не изменяется, а увеличивается только напряжение в полостях желудочков, в результате давление в них резко возрастает, становясь выше, чем в аорте и легочной артерии, полулунные клапаны открываются, а атриовентрикулярные остаются закрытыми, и кровь устремляется в эти сосуды. Начинается период изгнания крови, его длительность – 0,25 с. Он состоит из фазы быстрого изгнания и фазы медленного изгнания крови. Давление в желудочках составляет: в левом – 120–130 мм рт.ст., в правом – до 25 – 30 мм рт.ст.

Диастола желудочков, длящаяся 0,47 с, начинается с протодиастолического периода (0,04 с) – это промежуток времени от начала падения давления внутри желудочков до момента закрытия полулунных клапанов, после которого давление в желудочках продолжает падать, а атриовентрикулярные клапаны еще не открыты – это период изометрического расслабления желудочков.

Моменту закрытия полулунных клапанов соответствует воз-никновение II диастолического тона сердца. Как только давление в желудочках снизится до 0, открываются атриовентрикулярные клапаны и кровь из предсердий поступает в желудочки. Это период наполнения желудочков кровью, который длится 0,25 с и делится на фазы быстрого (0,08 с) и медленного (0,17 с) наполнения. Периоду наполнения, сопровождающемуся колебаниями стенок желудочков, соответствует возникновение III тона сердца. В конце фазы медленного наполнения наступает систола предсердий, в результате за 0,1 с «выжимается» около 40 мл крови из предсердий в желудочки (пресистолический период), что ведет к появлению IV тона сердца, после чего начинается новый цикл сокращения желудочков.

Итак, в результате сократительной деятельности сердца и работы клапанов возникают 4 тона сердца. Из них I – систолический длительностью 0,11 с и II – диастолический длительностью 0,07 с. Эти тоны можно прослушать и зарегистрировать. III тон соответствует началу наполнения желудочков и вибрации их стенок при быстром притоке крови, хорошо прослушивается у детей, его можно зарегистрировать. IV тон обусловлен сокращением предсердий, он только регистрируется.

За одну систолу при ритме сокращений 70 – 75 в 1 мин сердце выбрасывает в аорту 60 – 70 мл крови – это систолический объем крови (СО). Умножив его на число сердечных сокращений (ЧСС) в 1 мин, получим минутный объем крови (МОК), равный 4,5 -5,0 л, т. е. количество крови, выбрасываемое сердцем за 1 мин.


МОК= СО•ЧСС.

В покое не вся кровь во время систолы изгоняется из желудочков, остается «резервный объем», который может быть использован для увеличения сердечного выброса. В настоящее время рассчитывают величину сердечного индекса – это отношение МОК в л/мин к поверхности тела в м2. Для «стандартного» мужчины он равен 3 л/мин-м2.

Электрокардиография

Вокруг возбужденного сердца возникает электрическое поле, которое можно зарегистрировать с поверхности тела в виде электрокардиограммы. Электрические потенциалы прежде всего возникают в возбужденном синоатриальном узле. Этот участок становится электроотрицательным по отношению к невозбужденному, заряженному положительно. Это и приводит к появлению электрических потенциалов и дальнейшему их распространению по проводящей системе сердца, миокарду предсердий и желудочков.

Электрокардиограмма отражает процесс возникновения возбуждения и его проведение по сердцу, но не его сокращение. В нормальной электрокардиограмме различают пять зубцов: Р, Q, R, S, Т (рис.12). Возникновение зубца Р обусловлено распространением возбуждения в предсердиях – это алгебраическая сумма электрических потенциалов, возникающих в предсердиях. Зубец Q соответствует возбуждению сосочковых мышц. Зубец R – возбуждению оснований желудочков, зубец S – верхушки сердца. Зубец Т отражает процесс реполяризации желудочков и состояние метаболизма миокарда. Он очень изменчив и может искажаться при различного рода интоксикациях, например, при инфекциях (дизентерия и др.), отравлениях химическими ядами, при гипоксии, инфаркте миокарда, диабете.

Итак, различают предсердный комплекс, куда входит зубец Р, и сегмент PQ, а также желудочковый комплекс QRS и сегмент ST. Интервал PQ от начала зубца Р до начала зубца О отражает время проведения возбуждения от предсердий к желудочкам, в норме он равен 0,12–0,18 с.

При нарушении проведения импульсов из предсердий к желудочкам, вызванном или органическими изменениями в проводящей системе, или отравлением сердечными глюкозидами, увеличением содержания ионов К +, снижением МП, а также гипоксией возникает неполная атриовентрикулярная блокада. При этом не все импульсы периодически проводятся к желудочкам или их проведение задерживается, тогда интервал PQ становится больше 0,18 с.

При полном нарушении проводимости между предсердиями и желудочками возникает полная атриовентрикулярная блокада – предсердия и желудочки сокращаются независимо друг от друга: предсердия в синусном ритме, желудочки – в ритме пейсмекера 2-го или 3-го порядка.

Длительность комплекса QRS составляет 0,06–0,1 с. Его уширение является признаком нарушения внутрижелудочковой проводимости. Интервал ОТ составляет 0,36 с и зависит от частоты сердечных сокращений. Чем больше частота, тем короче интервал. Амплитуда зубцов ЭКГ следующая: Р‹0,25 мВ; 0‹1/47; R+S›0,6MB; Т= от 1/6 до 2/3R.

Для регистрации ЭКГ используют 3 стандартных биполярных отведения от конечностей (треугольник Эйнтховена), 1-е отведение: правая рука-левая рука; 2-е отведение: правая рука-левая нога; 3-е отведение: левая рука-левая нога. Кроме того, регистрируют 3 усиленных униполярных отведения: aVR – активный электрод на правой руке, aVL – активный электрод на левой руке, aVF – активный электрод на левой поте и 6 униполярных грудных отведений по Вильсону – V1-V6.

При биполярных отведениях по Эйптховеиу точки, от которых отводят потенциалы, совпадают с вершинами равностороннего треугольника, стороны которого и представляют собой оси отведений. С помощью треугольника Эйнтховена можно установить величину электродвижущей силы сердца, а значит, и высоту зубцов ЭКГ. Высота зубца R во 2-м отведении в нормограмме равна сумме зубца R в 1-м и 3-м отведении.

Сосудистая система

Классификация сосудов. Основы гемодинамики

По своим функциональным характеристикам сосуды большого и малого кругов кровообращения делятся на следующие группы:

1. Амортизирующие сосуды эластического типа. К ним относятся аорта, легочная артерия, крупные артерии. Их функция выражается в сглаживании (амортизации) резкого подъема артериального давления во время систолы. За счет эластических свойств этих сосудов создается непрерывный кровоток, как во время систолы, так и диастолы. Во время систолы одна часть кинетической энергии, создаваемой сердцем, затрачивается на продвижение крови, другая преобразуется в потенциальную энергию растянутых сосудов аорты и крупных артерий, образующих эластическую «компрессионную камеру». Во время диастолы потенциальная энергия растянутого сосуда снова переходит в кинетическую энергию движения крови. Благодаря этому эффекту и обеспечивается непрерывное течение крови.

2. Резистивные сосуды (сосуды сопротивления). К ним относятся средние и мелкие артерии, артериолы, прекапилляры и прекапиллярные сфинктеры. Эти сосуды имеют хорошо развитую гладкомышечную стенку, за счет которой просвет сосуда может резко уменьшаться и создавать большое сопротивление кровотоку. Этими свойствами особенно обладают артериолы, которые называют «кранами сосудистой системы».

3. Обменные сосуды. К ним относятся капилляры, в которых происходят обменные процессы между кровью и тканевой жидкостью.

4. Емкостные сосуды – это вены, благодаря своей растяжимости они способны вмещать 70 – 80% всей крови.

5. Артериовснозные анастомозы (шунты) – это сосуды, соединяющие артериальную и венозную части сосудистой системы, минуя капиллярную сеть.


Движение крови по кровеносным сосудам подчиняется законам гемодинамики, являющейся частью гидродинамики – науки о движении жидкостей по трубкам. Основным условием кровотока является градиент давления между различными отделами сосудистой системы.

Давление в сосудах создается работой сердца. Кровь течет из области высокого давления в область низкого. При движении ей приходится преодолевать сопротивление, создаваемое, во-первых, трением частиц крови друг о друга, во-вторых, трением частиц крови о стенки сосуда. Особенно велико это сопротивление в артериолах и прекапиллярах. Сопротивление (R) в кровеносном сосуде можно определить по формуле Пуазейля.


R=8lη/πr4

В соответствии с законами гидродинамики количество жидкости (крови), протекающей через поперечное сечение сосуда за единицу времени (мл/с), или объемная скорость кровотока (О), прямо пропорциональна разности давления в начале (P1) сосудистой системы – в аорте и в ее конце (Р2), т. е. в полых венах, и обратно пропорциональна сопротивлению (Д) току жидкости.


Q=(P1-P2)/R

В связи с замкнутостью кровеносной системы объемная скорость кровотока во всех ее отделах (во всех артериях, всех капиллярах, всех венах) одинакова. Зная объемную скорость кровотока, можно рассчитать линейную скорость или расстояние, проходимое частицей крови за единицу времени:


V = Q/πr2.

В отличие от объемной, линейная скорость изменяется по ходу сосудистого русла и обратно пропорциональна суммарному по-перечному сечению всех сосудов данного калибра. Самое узкое место в сосудистой системе – это аорта, поэтому она имеет самую большую линейную скорость кровотока – 50 – 60 см/с. В артериях она равна 20 – 40 см/с, в артериолах – 5 мм/с, в венах – 7 – 20 см/с; самый широкий суммарный просвет, в 500 – 600 раз превышающий диаметр аорты, имеют капилляры, поэтому линейная скорость в них минимальная – 0,5 мм/с.

Помимо объемной и линейной скорости кровотока, существует еще один гемодинамический показатель – время кругооборота крови – это время, в течение которого частица крови пройдет и большой и малый круг кровообращения, оно составляет 20- 25 с.

У здорового человека в возрасте 20 – 40 лет в плечевой артерии оно равно 110 – 120 мм рт.ст. Во время диастолы АД снижает-

Основным гемодинамическим показателем является артериальное давление (АД), уровень которого по ходу сосудистого русла падает неравномерно (рис. 13) и зависит от ряда факторов, главный из которых – работа сердца. Во время систолы АД повышается – это систолическое, или максимальное, давление.

Диастолическое, или минимальное, давление, равное 70 – 80 мм рт.ст. Разницу между систолическим и диастолическим давлением составляет пульсовое давление – 40 мм рт.ст. Различают еще среднее давление, или равнодействующую изменений давления во время систолы и диастолы. Оно равно 100 мм рт.ст. АД прежде всего зависит от работы сердца. Остановка сердца приводит к быстрому падению АД до 0.

На уровень давления влияет количество циркулирующей крови. При кровопотере давление снижается. АД зависит также от эластичности сосудистой стенки. Поэтому у пожилых людей (после 50 лет) в связи с потерей эластичности сосуда АД повышается до 140/90 мм рт.ст.

Сопротивление сосуда, которое изменяется в зависимости от его просвета, влияет на уровень АД. Так, прием сосудосуживающих препаратов приводит к увеличению сопротивления в сосуде и повышению АД.

Увеличение вязкости крови повышает артериальное давление, уменьшение – снижает.

Возраст определяет величину АД. У новорожденных систолическое давление равно 70 – 80 мм рт.ст, у ребенка первых лет жизни – 80- 120, подростка – 110–120, у взрослого человека 20–40 лет 110/70–120/80, после 50 лет 140–150/90 мм рт.ст. Физические упражнения повышают давление до 180 мм рт.ст. и более, особенно систолическое. Во время сна давление падает на 15 – 20 мм рт.ст.

Прием пищи, эмоции повышают систолическое давление. На уровень АД влияет положение тела в пространстве, так как сосудистая система находится в поле силы тяжести. В вертикальном положении давление, создаваемое работой сердца, складывается с гидростатическим давлением. Поэтому давление в сосудах, расположенных ниже сердца, больше чем давление в сосудах, расположенных выше сердца. При горизонтальном положении эти различия нивелируются. Так, в вертикальном положении в сосудах стопы, т. е. на 125 см ниже сердца, гидростатическое давление составляет 90 мм рт.ст. Сложив его со средним АД, получим: 100 + 90= 190 мм рт.ст. В артериях головного мозга (на 40 см выше сердца) АД снижается на 30 мм рт.ст., составляя 100–30 = 70 мм рт.ст.

В настоящее время существуют два способа измерения АД. Первый – кровавый, прямой, применяется в остром эксперименте на животных, второй – бескровный, непрямой, используется для измерения давления на плечевой артерии у человека.

На кривой давления (рис.14), записанной на сонной артерии животного, различают волны 3 порядков: волны первого порядка, или пульсовые, обусловленные деятельностью сердца, волны второго порядка, или дыхательные, вдох сопровождается понижением АД, а выдох – повышением.

По мере снижения давления в манжетке, звуковые явления, создаваемые завихрениями крови в еще пережатой артерии, про-слушиваются достаточно хорошо. Затем они исчезают, так как сосуд открыт как во время систолы, так и во время диастолы, препятствий для прохождения крови нет. Момент исчезновения тонов Короткова соответствует диастолическому, или минимальному, давлению.

Артериальный пульс

Артериальный пульс – это ритмические колебания стенки артерии, связанные с повышением давления во время систолы. Деятельность сердца создает два вида движения в артериальной системе: пульсовую волну и пульсирующее течение крови, или линейную скорость кровотока (в артериях она не более 50 см/с).

Пульсовая волна возникает в аорте во время фазы изгнания крови и распространяется со скоростью 4–6 м/с. Периферических артерий мышечного типа (например, лучевой) она достигает со скоростью 8–12 м/с. С возрастом эластичность артерий снижается и скорость распространения пульсовой волны (СРПВ) возрастает. Она может увеличиваться при повышении АД в связи с увеличением напряжения сосудистой стенки. СРПВ претерпевает значительные изменения под действием лекарственных препаратов.

Артериальный пульс можно зарегистрировать с помощью приборов сфигмографов. Кривая пульса называется сфигмограммой.

Различают центральный пульс – пульс на аорте и прилегающих к ней артериях (сонной, подключичной) и периферический – пульс на лучевой, бедренной и других артериях.

На кривой центрального пульса (рис.15) имеется восходящая часть – анакрота, обусловленная повышением давления и растяжением стенки артерии в начале фазы изгнания. В конце периода изгнания перед закрытием полулунных клапанов происходит внезапное падение давления в аорте, при этом регистрируется выемка, или инцизура. Далее происходит захлопывание полулунных клапанов и возникает вторичная волна повышения давления. Ей соответствует дикротический подъем, или зубец, после которого регистрируется катакрота – спад пульсовой кривой, обусловленный диастолой сердца и падением давления в желудочках.

Центральный пульс отличается от периферического, тем что, начиная от вершины подъема кривой, может регистрироваться систолическое плато, образованное ударной и остаточной систолической волнами.

На кривой периферического пульса анакротический подъем более медленный, дикротический зубец менее выражен и является результатом интерференции центральных и периферических волн.

Артериальный пульс отражает состояние сердечно-сосудистой системы и имеет несколько характеристик: частоту, ритм, быстроту, амплитуду, напряжение и форму. Частота пульса у здорового человека соответствует частоте сердечных сокращений. В покое она равна 60 -80 в 1 минуту. Если пульс менее 60 в 1 минуту – это брадикардия, более 80 – тахикардия. Повышение температуры тела на 1°С сопровождается учащением пульса на 8 ударов в 1 минуту.

Ритм пульса может быть правильным – это ритмичный пульс или неправильным – аритмичный (например, дыхательная аритмия).

Быстрота пульса отражает скорость, с которой происходит повышение давления в артерии во время подъема пульсовой волны и снижение во время ее спада. Различают быстрый и медленный пульс, оба вида пульса наблюдаются при патологии аортальных клапанов и аорты.

Амплитуда пульса – это амплитуда колебаний стенки сосуда, зависящая от систолического объема сердца, а также от эластичности сосудов: чем они более эластичны, тем меньше амплитуда пульса.

Напряжение пульса определяется тем сопротивлением стенки артерии, которая противодействует нажиму давящего пальца. Различают твердый и мягкий пульс. При высоком АД пульс становится твердым, «проволочным».

По форме пульс может быть дикротическим или анакротическим в зависимости от степени выраженности дикротического зубца.

Микроциркуляция

Термином «микроциркуляция» обозначают ток крови и лимфы по мельчайшим кровеносным и лимфатическим сосудам, питающим любой орган, а также транспорт воды, газов и различных веществ (в том числе и лекарственных) между микрососудами и интерстициальным пространством.


Микрососуды – это главное звено сосудистой системы. Они выполняют целый ряд функций:

1. Участвуют в перераспределении крови в организме в зависимости от его потребностей.

2. Создают условия для обмена веществ между кровью и тканями.

3. Играют компенсаторно-приспособительную роль при воздействии экстремальных факторов среды – переохлаждение, перегревание и др.


В состав внугриорганного микроциркуляторного русла входят следующие сосуды: артериолы, прекапилляры, или метаартериолы, прекапиллярные сфинктеры, капилляры, посткапиллярные венулы, венулы и артериовенозные анастомозы. К кровеносным сосудам, расположенным в интерстициальном пространстве, примыкают замкнутые лимфатические капилляры и мелкие лимфатические сосуды.

Совокупность всех вышеперечисленных элементов микроциркуляторного русла называется микроциркуляторной единицей, или «модулем» (рис.16). Артериолы аметром 70 мкм, содержат кольцевой слой гладких мышц, сокращение которых создает значительное сопротивление кровотоку, поэтому их называют резистивными сосудами. Их функция – регуляция уровня АД в артериях. При уменьшении просвета артериолы АД в артериях увеличивается, при увеличении падает. И. М. Сеченов. Схема артериовенозного назвал артериолы «кранами сосудистой системы».

Прекапилляры, или метаартериолы, имеют диаметр от 7 до 16 мкм. В них отсутствуют эластические элементы, но их мышечные клетки обладают автоматией, т. е. способностью спонтанно генерировать импульсы. Их особенность – большая чувствительность к химическим веществам, в том числе к сосудосуживающим и сосудорасширяющим.

Каждый прекапилляр заканчивается прекапиллярным сфинктером. Это последнее звено, в котором встречаются гладкомышечные клетки. От состояния сфинктера зависит число открытых и закрытых капилляров и появление так называемых «плазменных» капилляров, по которым протекает только плазма без форменных элементов, например, после кровопотери, при малокровии. Прекапиллярные сфинктеры также находятся преимущественно под контролем гуморальных факторов и химических веществ, растворенных в крови. Так, хорошо известный антагонист кальция – нифедипин (коринфар), а также бета-адреноблокатор – анаприлин (обзидан) расширяют прекапиллярные сфинктеры, улучшают капиллярную фильтрацию и снижают артериальное давление.

Капилляры – самое важное звено в системе микроциркуляции, это обменные сосуды, обеспечивающие переход газов, воды, питательных веществ из сосудистого русла в ткани и из тканей в сосуды. Всего у человека 40 млрд капилляров. Капилляры – это тончайшие сосуды диаметром 5 – 7 мкм и длиной от 0,5 до 1,1 мм. Они тесно примыкают к клеткам органов и тканей, образуя обширную обменную поверхность, равную 1000 – 1500 м2, хотя в них и содержится всего 200 – 250 мл крови. Капилляр не имеет сократительных элементов, у него 2 оболочки: внутренняя – эндотелиальная и наружняя – базальная, в которую впаяны клетки-перициты.


Различают три типа капилляров:

1. Соматический – эндотелий капилляра не имеет фенестр и пор, а базальный слой непрерывный (капилляры скелетных и гладких мыщц, кожи, коры больших полушарий). Капилляры данного типа непроницаемы или почти непроницаемы для крупных молекул белка, но хорошо пропускают воду и растворенные в ней минеральные вещества.

2. Висцеральный – имеет фенестрированный эндотелий и сплошную базальную мембрану. Этот тип капилляров расположен в органах (почки, кишечник, эндокринные железы), секретирующих и всасывающих большие количества воды с растворенными в ней веществами.

3. Синусоидный – это капилляры с большим диаметром, между эндотелиоцитами имеются щели, базальная мембрана прерывиста или может полностью отсутствовать. Через их стенки хорошо проникают макромолекулы и форменные элементы крови. Такого типа капилляры находятся в печени, костном мозге, се-лезенке.


Количество функционирующих капилляров зависит от состояния органа. Так, в покое открыто только 25 – 35% всех капилляров. Кровь поступает в капилляр под давлением 30 мм рт.ст., а выходит под давлением 10 мм рт.ст. и течет по капилляру с очень маленькой скоростью, всего 0,5 мм/с, что создает благоприятные условия для протекания обменных процессов между кровью и тканями.

Посткапиллярные венулы – это первое звено емкостной части микроциркуляторного русла. Наряду с эндотелиальными и гладкомышечными клетками в стенке вен появляются соединительно-тканные элементы, придающие ей большую растяжимость. Диаметр этих сосудов составляет от 12 мкм до 1 мм, давление – 10 мм рт.ст., скорость кровотока – 0,6–1 мм/с. Посткапиллярные венулы наряду с капиллярами относят к обменным сосудам, через стенку которых способны проходить высокомолекулярные вещества.


Артериовенозные анастомозы, или шунты – это сосуды, соединяющие артериолу с венулой, минуя или в обход капиллярной сети. Они находятся в коже, легких, почках, печени, имеют гладкомышечные элементы и, в отличие от других сосудов, большое количество рецепторов и нервных окончаний, обеспечивающих регуляцию кровотока. Основные функции анастомозов заключаются:

1. в перераспределении крови к работающему органу,

2. оксигенации венозной крови;

3. поддержании постоянной температуры в данном органе или участке тела – терморегуляторная функция;

4. увеличении притока крови к сердцу.


В системе микроциркуляции различают два вида кровотока: 1. Медленный, транскапиллярный, преобладает в состоянии покоя, обеспечивает обменные процессы. 2. Быстрый, юкстакапиллярный, через артериовенозные анастомозы, преобладает в состоянии функциональной активности, например, в мышцах при физической нагрузке. Так, 1 мл крови проходит через капилляры за 6 ч, а через артериовенозные анастомозы – всего за 2 с.

Транссосудистый обмен веществ

В механизме перехода веществ через сосудистую стенку в межтканевое пространство и из межтканевого пространства в сосуд играют роль следующие процессы: фильтрация, реабсорбция, диффузия и микропиноцитоз.

Фильтрация и реабсорбция основаны, с одной стороны, на разности гидростатического давления в капилляре и в окружающих тканях, с другой – на разности онкотического давления плазмы крови, создаваемого белками, и онкотического давления в тканях. Кровь поступает в артериальную часть капилляра под давлением 30 мм рт.ст. – это гидростатическое давление. В межклеточной жидкости оно составляет около 3 мм рт.ст. Онкотическое давление плазмы крови равно 25 мм рт.ст., а межклеточной жидкости – 4 мм рт.ст. В артериальном конце капилляра способствует фильтрации гидростатическое давление (30 мм рт.ст. -3 мм рт.ст. = 27 мм рт.ст. – это фильтрационное давление). В то же время препятствует фильтрации онкотическое давление, однако оно остается таким же в венозной части капилляра и способствует реабсорбции, т. е. переходу веществ из межтканевого пространства в капилляр (25 мм рт.ст. – 4 мм рт.ст. = 21 мм рт.ст. – реабсорбционное давление). Сниженное гидростатическое давление (10 мм рт.ст.) не играет решающей роли и не мешает реаб-сорбции. Значит, в венозной части капилляра способствует реабсорбции онкотическое давление. Фильтрация увеличивается при общем повышении артериального давления, расширении резистивных сосудов во время мышечной деятельности, изменении положения тела (переходе из горизонтального в вертикальное), увеличении объема циркулирующей крови после вливания питательных растворов. Фильтрация возрастает также при снижении онкотического давления (при снижении количества белка в плазме – гипопротеинемии). Увеличивают реабсорбцию падение АД, кровопотеря, сужение резистивных сосудов, повышение онкотического давления.

Некоторые вещества, такие, например, как кинины, гистамин, выделяющиеся при аллергических реакциях, воспалении и ожогах, могут повысить проницаемость капилляров, способствовать выходу жидкости в интерстициальное пространство и возникновению отеков. Однако в связи с малой растяжимостью интерстициального пространства и удалением лишней жидкости через лимфатические сосуды отеки встречаются не так часто, как могли бы быть в действительности. В среднем из капилляра в ткани фильтруется около 20 л жидкости в сутки, а реабсорбируется, т. е. возвращается из тканей в венозную часть кровеносной системы – около 18 л, остальные 2 л идут на образование лимфы.

Диффузия основана на градиенте концентрации веществ по обе стороны капилляра. Преимущественно с помощью диффузии из сосуда в ткани попадают лекарственные препараты, кислород. Для кислорода имеется большой градиент парциального давления: в артериальной части капилляра – 100 мм рт.ст. и в тканях – 0 мм рт.ст., что создает условия для перехода кислорода в ткани. Через стенку капилляра свободно диффундируют жирорастворимые вещества, например, такие как спирт. Другие растворенные в воде вещества ограничены величиной пор в сосуде. Через маленькие поры хорошо проходят вода, NaCl, но хуже глюкоза и другие вещества; через большие поры, расположенные в основном в посткапиллярных венулах, могут проходить крупные молекулы белка и, в частности, иммунные белки.

Следующий механизм переноса веществ – это микропиноцитоз. В отличие от фильтрации и диффузии, это активный транспорт с помощью везикул, расположенных в эндотелиальной клетке, способной «узнавать» циркулирующие в крови молекулы и адсорбировать их на своей поверхности. После чего везикулы захватывают молекулы веществ и транспортируют их на другую поверхность капилляра. С помощью микропиноцитоза переносятся, например, гамма-глобулины, миоглобин, гликоген.

Движение крови в венах

Вены обладают большей растяжимостью, чем артерии, благодаря незначительной толщине мышечного слоя, поэтому они способны вмещать 80% всего количества крови, играя роль депо крови. Основная функция венозной системы – это возврат крови к сердцу и наполнение его полостей во время диастолы. Скорость течения крови в периферических венах составляет 6–14 см/с, в полых венах – 20 см/с.


Движению крови в венах и возврату крови к сердцу способствует ряд факторов:

1. Главный фактор – это градиент давления в начале и конце венозной системы, равный 2 -4 мм рт. ст.

2. Остаточная сила сердца – vis a tergo – играет роль в движении крови по посткапиллярным венулам.

3. Присасывающее действие самого сердца во время диастолы – давление в полостях сердца в эту фазу равно 0 мм рт.ст.

4. Отрицательное давление в грудной полости. Во время вдоха особенно повышается градиент давления между брюшными и грудными венами, что приводит к увеличению венозного притока к последним.

5. Наличие в венах клапанов, препятствующих обратному току крови от сердца.

6. «Мышечный насос» – сокращение скелетных мышц и сдавливание вен, проходящих в их толще, при этом кровь выдавливается по направлению к сердцу.

7. Перистальтика кишечника, способствующая движению крови в венах брюшной полости.

Венозное давление

Кровь течет по венам под низким давлением. В посткапиллярных венулах оно равно 15 – 20 мм рт.ст., а в мелких венах – уже 12- 15 мм рт.ст., в венах, расположенных вне грудной полости, – 5 -9 мм рт.ст.; в полых венах – от 1 до 3 мм рт.ст. Часто давление в венах измеряется в миллиметрах водного столба (1 мм рт.ст. = 13,6 мм вод.ст.). Давление в венах, расположенных вблизи грудной клетки, например в яремной вене, в момент вдоха может быть отрицательным. Поэтому при ранениях шеи необходимо опасаться засасывания атмосферного воздуха в вены и развития воздушной эмболии.

Различают также центральное венозное давление (ЦВД), или давление в правом предсердии, влияющее на величину венозного возврата крови к сердцу, а значит, и на систолический объем. ЦВД у здорового человека в покое составляет 40–120 мм вод.ст., увеличиваясь к вечеру на 10 – 30 мм вод.ст. Кашель, натуживание кратковременно могут увеличить ЦВД (выше 100 мм рт.ст.). Вдох сопровождается уменьшением ЦВД вплоть до отрицательных величин, а выдох – увеличением. Минимальное среднее давление в правом предсердии составляет 5–10 мм вод.ст., максимальное – 100 – 120 мм вод.ст.

Существует определенная зависимость между ЦВД и количеством притекающей к сердцу крови. При снижении ЦВД от 0 до 4 мм рт.ст. венозный приток возрастает на 20 – 30%. Еще большее снижение ЦВД приводит к спадению вен, впадающих в грудную клетку, а приток крови к сердцу при этом не возрастает. И наоборот, повышение ЦВД хотя бы на 1 мм рт.ст. снижает приток крови на 14%. Можно искусственно увеличить возврат крови к сердцу с помощью внутривенных вливаний кровезаменителей, которые приведут к повышению ЦВД.

Венный пульс

В периферических венах пульсовые колебания давления крови отсутствуют и отмечаются лишь в венах, расположенных около сердца, например яремной вене. Они передаются ретроградно и отражают изменения давления в правом предсердии. На кривой венного пульса – флебограмме (рис.17), зарегистрированной на яремной вене, различают три положительные волны: волна а – связана с сокращением правого предсердия, вторая положительная волна с, обусловлена выпячиванием атриовентрикулярного клапана в правое предсердие в начале систолы желудочков и толчком пульсирующей сонной артерии. Затем наблюдается быстрое падение кривой.

Первая отрицательная волна х (коллапс) связана с разряжением в предсердиях в начале систолы желудочков и усиленным притоком крови из вены. После провала начинается третья положительная волна v – вентрикулярная, совпадающая с фазой изометрического расслабления, при этом атриовентрикулярный клапан еще не открыт, кровь переполняет предсердие и затрудняет отток крови из вен в предсердие. Далее следует вторая отрицательная волна у, отражающая фазу быстрого наполнения кровью желудочка и быстрого опорожнения вен. Изменения венного пульса наблюдаются, например, при недостаточности трехстворчатого клапана.

Нейрогуморальная регуляция кровообращения

Регуляция деятельности сердца

Сердце – это мощный насос, перекачивающий по кровеносным сосудам около 10 т крови в сутки. Организм испытывает на себе за свою жизнь все невзгоды окружающей среды, и чтобы помочь ему адаптироваться к новым условиям, сердце также должно перестроить свою работу. Это достигается за счет деятельности ряда регуляторных механизмов.


Условно их можно разделить на 2 группы:

1. внутрисердечные

2. внесердечные, или экстракардиальные.

Внутрисердечные механизмы регуляции

Эти механизмы делятся на 3 группы:

1. внутриклеточные

2. гемодинамические (гетеро- и гомеометрические)

3. внутрисердечные периферические рефлексы.


Внутриклеточные механизмы регуляции имеют место, например, у спортсменов. Регулярная мышечная нагрузка приводит к усилению синтеза сократительных белков миокарда и появлению так называемой рабочей (физиологической) гипертрофии – утолщению стенок сердца и увеличению его размеров. Так, если масса нетренированного сердца составляет 300 г, то у спортсменов она увеличивается до 500 г.

Гемодинамические, или миогенные, механизмы регуляции обеспечивают постоянство систолического объема крови. Сила сокращений сердца зависит от его кровенаполнения, т. е. от исходной длины мышечных волокон и степени их растяжения во время диастолы. Чем больше растянуты волокна, тем больше приток крови к сердцу, что приводит к увеличению силы сердечных сокращений во время систолы – это «закон сердца» (закон Франка- Стерлинга). Такой тип гемодинамической регуляции называется гетерометрическим.

Она объясняется способностью Са2+ выходить из саркоплазматического ретикулума. Чем больше растянут саркомер, тем больше выделяется Са2+ и тем больше сила сокращений сердца. Этот механизм саморегуляции включается при перемене положения тела, при резком увеличении объема циркулирующей крови (при переливании), а также при фармакологической блокаде симпатической нервной системы бета-симпатолитиками.

Другой тип миогенной саморегуляции работы сердца – гомеометрический не зависит от исходной длины кардиомиоцитов. Сила сердечных сокращений может возрастать при увеличении частоты сокращений сердца. Чем чаще оно сокращается, тем выше амплитуда его сокращений («лестница» Боудича). При повышении давления в аорте до определенных пределов возрастает противонагрузка на сердце, происходит увеличение силы сердечных сокращений (феномен Анрепа).

Внутрисердечные периферические рефлексы относятся к третьей группе механизмов регуляции. В сердце независимо от нервных элементов экстракардиального происхождения функционирует внутриорганная нервная система, образующая миниатюрные рефлекторные дуги, в состав которых входят афферентные нейроны, дендриты которых начинаются на рецепторах растяжения на волокнах миокарда и коронарных сосудов, вставочные и эфферентные нейроны (клетки Догеля I, II и III порядка), аксоны которых могут заканчиваться на миокардиоцитах, расположенных в другом отделе сердца. Так, увеличение притока крови к правому предсердию и растяжение его стенок приводит к усилению сокращения левого желудочка. Этот рефлекс можно заблокировать с помощью, например, местных анестетиков (новокаина) и ганглиоблокаторов (беизогексония).

Эфферентный нейрон внутрисердечной рефлекторной дуги может быть общим с эфферентным нейроном парасимпатического нерва (п. vagus), который иннервирует сердечную мышцу.

Внесердечные (эстракардиальные) механизмы регуляции Эти механизмы также работают по рефлекторному принципу, в них главную роль играют парасимпатическая нервная система (п. vagus) и симпатическая нервная система (n. sympaticus).

Рефлекторная дуга экстракардиального рефлекса начинается от механорецепторов предсердий – А-рецепторов, реагирующих на сокращение мускулатуры предсердий и их напряжение, и Врецепторов, возбуждающихся в конце систолы желудочков и реагирующих на пассивное растяжение мускулатуры предсердий (увеличение внутрисердечного давления). От этих рецепторов начинаются афферентные пути, которые представлены миелинизированными волокнами, идущими в составе блуждающего нерва.

Другая группа афферентных нервных волокон отходит от свободных нервных окончаний густого субэндокардиального сплетения безмякотных волокон, находящихся под эндокардом. Они идут в составе симпатических нервов. Афферентные волокна, идущие в составе блуждающего нерва, достигают продолговатого мозга, где находится центр блуждающего нерва. Его называют ингибирующим сердечным центром, в нем расположены первые, или преганглионарные, нейроны, регулирующие работу сердца. Аксоны этих нейронов, составляющих блуждающий нерв, достигают сердца, в их окончаниях выделяется ацетилхолин, который через Н-холинорецепторы передает возбуждение на интрамуральный нейрон, или ганглий. В нем находится второй нейрон – постганглионарный, аксон которого иннервирует проводящую систему сердца и коронарные сосуды, контактируя с М – холинорецепторами.

Волокна правого блуждающего нерва иннервируют синоатриальный узел, левого – атриовентрикулярный. Блуждающий нерв не иннервирует желудочки.

Симпатические нервы равномерно иннервируют все отделы сердца, включая желудочки. Первые нейроны находятся в боковых рогах грудных сегментов спинного мозга (Т1–Т5). Их преганглионарные волокна прерываются в шейных и верхних грудных симпатических узлах и звездчатом ганглии, где находятся вторые нейроны, от которых отходят постганглионарные волокна, выделяющие в своих окончаниях адреналин и но радреналин. Контактируя с бета-адренорецепторами, они передают свои влияния на сердечную мышцу.

Характер влияний блуждающих и симпатических нервов на работу сердца

Различают четыре типа влияний блуждающего и симпатического нервов на работу сердца:

1. инотропное – на силу сердечных сокращений (инос-сила);

2. хронотропное – на частоту сердечных сокращений (хронос-время);

3. батмотропное – на возбудимость сердечной мышцы;

4. дромотропное – на проводимость импульсов по сердечной мышце.


Впервые тормозное влияние блуждающих нервов на работу сердца было показано братьями Вебер в 1845 г. Раздражение периферического конца перерезанного блуждающего нерва приводит к уменьшению амплитуды сердечных сокращений, т. е. к отрицательному инотропному эффекту, урежению сердечных сокращений – отрицательному хронотропному, уменьшению возбудимости и проводимости – отрицательному батмотропному и дромотропному эффектам. Сильное раздражение блуждающего нерва вызывает остановку сердца в диастоле. Механизм отрицательного влияния блуждающего нерва на частоту сердечных сокращений можно представить в виде цепочки следующих друг за другом процессов: стимуляция блуждающего нерва выделение в его окончаниях ацетилхолина взаимодействие с М-холинорецепторами увеличение проницаемости мембраны клеток пейсмекера для ионов К+ и уменьшение для Са2+ замедление МДД увеличение мембранного потенциала отрицательный хронотропный эффект. При сильном раздражении блуждающего нерва может возникнуть гиперполяризация клеток синоатриального узла и полная остановка сердца.

При продолжающемся раздражении блуждающего нерва прекратившиеся сокращения могут вновь восстановиться – это феномен ускользания сердца из-под влияния блуждающего нерва. Отрицательное влияние блуждающего нерва на сердце может быть снято с помощью атропина – блокатора М-холинорецепторов. Кроме того, ацетилхолин очень быстро разрушается ферментом ацетилхолинэстеразой (АХЭ), поэтому эффект нерва кратковременный.

Существует такое понятие, как тонус вагуса – это постоянное тормозное влияние блуждающего нерва на сердце, особенно в состоянии покоя, т. е. в ночное время («ночь – царство вагуса»). Наличие тонуса блуждающего нерва доказывается полной денервацией сердца, после чего оно будет работать чаще, чем до денервации.

Впервые влияние симпатического нерва на сердце было описано братьями Цион (1867 г.), Раздражение периферического конца перерезанного симпатического нерва оказывает на сердце положительный ино-, хроно-, батмо-, дромотропный эффект. При этом цепь процессов такова: стимуляция симпатического нерва выделение в его окончаниях норадреналина взаимодействие с бета-адренорецепторами на мембране клеток синоатриального узла повышение проницаемости для Na+ и Са2+ уменьшение МП ускорение МДД положительный хронотропный эффект. Положительное влияние симпатической нервной системы на сердце можно уменьшить или устранить с помощью бета-блокаторов, например обзидана. Свое влияние симпатические нервы, в отличие от блуждающего, оказывают не в покое, а при физическом или эмоциональном напряжении, в экстремальной ситуации. При чрезмерной активности симпатической нервной системы могут появиться эктопические очаги возбуждения в сердце, что приведет к возникновению экстрасистол.

И. П. Павлов (1887 г.) обнаружил в составе симпатического нерва волокна, раздражение которых увеличивало силу сердечных сокращений, не изменяя при этом их частоту. Эти волокна были названы усиливающим, или трофическим, нервом, так как стимулировали обменные процессы и питание сердечной мышцы.

В настоящее время стало известно, что при раздражении нервов, иннервирующих сердце, в синаптическую щель, помимо основных медиаторов, выделяются и другие биологически активные вещества, в частности пептиды. Они обладают модулирующим действием в отношении основного медиатора. Так, опиоидные пептиды (энкефалины и эндорфины) угнетают эффекты раздражения блуждающего нерва, а пептид дельта-сна усиливает вагусную брадикардию.

Гуморальная регуляция деятельности сердца

На работу сердца прежде всего влияют медиаторы ацетилхолин, выделяющийся в окончаниях парасимпатических нервов, он тормозит деятельность сердца, а также адреналин и норадреналин – медиаторы симпатических нервов, оказывающие на сердце положительный ино- и хронотропный эффекты. Ацетилхолин был открыт Отто Леви в 1921 г. в эксперименте на изолированных сердцах лягушки.

Положительное, подобное адреналину, влияние на сердце было отмечено у дофамина. Кортикостероиды, ангиотензин, серото)1ин оказывают положительный инотропный эффект.

Глюкагон, активируя аденилатциклазу, увеличивает силу и частоту сердечных сокращений. Тироксин и трийодтиронин оказывают положительный хронотропный эффект, кортикостероиды и ангиотензин – положительный инотропный.

Аденозин расширяет коронарные сосуды, увеличивает коронарный кровоток в 6 раз, оказывая положительное инотропное и хронотропное влияние на сердце.

Ионы Са2+ увеличивают силу сокращений и повышают возбудимость сердечной мышцы за счет активации фосфорилазы. Передозировка ионов Са2+ вызывает остановку сердца в систоле.

Небольшое повышение концентрации ионов К+ в крови (до 4 ммоль/л) снижает МП и увеличивает проницаемость для этих ионов. Возбудимость миокарда и скорость проведения возбуждения при этом возрастают. Если увеличить концентрацию К+ в 2 раза, то возбудимость и проводимость сердца резко снижаются и может произойти его остановка в диастоле. Если ионов К+ недостает (гипокалиемия), что наблюдается при приеме диуретиков, которые выводят вместе с водой и К+, то возникает аритмия сердца и, в частности, экстрасистолия, поэтому одновременно с диуретиками необходимо принимать препараты, сберегающие К+ (например, панангин).

Предсердия вырабатывают атриопептид, или натрийуретический гормон, в ответ на растяжение их стенок. Он расслабляет гладкомышечные клетки мелких сосудов, повышает диурез, выделяет натрий с мочой (натрийурез), уменьшает объем циркулирующей крови, подавляет секрецию ренина, тормозит эффекты ангиотензина II и альдостерона, снижает артериальное давление.

Регуляция тонуса сосудов

Механизмы, регулирующие сосудистый тонус, можно условно разделить:

1. на местные, периферические, регулирующие кровоток в отдельном органе или участке ткани независимо от центральной регуляции

2. центральные, поддерживающие уровень АД и системное кровообращение.

Местные регуляторные механизмы

Они реализуются уже на уровне эндотелия сосудов, который обладает способностью вырабатывать и выделять биологически активные вещества, способные расслаблять или сокращать гладкие мышцы сосудов в ответ на повышение АД, а также механические или фармакологические воздействия. Эндотелий сосуда рассматривается как эндокринная железа, способная выделять свой секрет, который затем действует на гладкую мышцу сосуда и изменяет ее тонус. К веществам, синтезируемым эндотелием, относится расслабляющий фактор (ВЭФР) – нестабильное соединение, одним из которых может быть оксид азота (NO), другое вещество – эндотелии, вазоконстрикторный пептид, полученный из эндотелиоцитов аорты свиньи. Он состоит из 21 аминокислотного остатка, выделяется в ответ на различные физиологические и фармакологические воздействия.

Если полностью денервировать сосуд, он хотя и расширится, но будет сохранять некоторое напряжение своей стенки за счет базального, или миогенного, тонуса гладких мышц. Этот тонус создается благодаря автоматии гладкомышечных клеток сосудов, которые имеют нестабильно поляризованную мембрану, облегчающую возникновение спонтанных ПД в этих клетках. Увеличение АД растягивает клеточную мембрану, что увеличивает спонтанную активность гладких мышц и приводит к повышению их тонуса. Базальный тонус особенно выражен в сосудах микроциркуляторного русла, преимущественно в прекапиллярах, обладающих автоматией. Он поддерживается также за счет химической информации как от эндотелия сосудистой стенки при ее растяжении, так и от различных веществ, растворенных в крови, т. е. находится преимущественно под влиянием гуморальной регуляции.

Центральные механизмы регуляции

Эти механизмы обеспечиваются волокнами, иннервирующими сосудистую стенку, а также влияниями центральной нервной системы.

Вазоконстрикторный эффект симпатических нервов был впервые показан А. Вальтером (1842 г.) на плавательной перепонке лягушки, сосуды которой расширились при перерезке седалищного нерва, содержащего в себе симпатические волокна, и Клодом Бернаром (1851 г.), перерезавшим на шее у кролика с одной стороны симпатический нерв. В результате сосуды уха на стороне перерезки нерва расширились, а ухо стало красным и горячим. Раздражение периферического конца перерезанного симпатического нерва привело к резкому сужению сосудов, а ухо стало бледным и холодным.

Для сосудов брюшной полости главный вазоконстриктор – это чревный нерв, в составе которого проходят симпатические волокна. Значит, симпатический нерв – основной вазоконстриктор, поддерживающий тонус сосудов на том или ином уровне в зависимости от количества импульсов, поступающих по его волокнам к сосуду. Свое влияние на сосуды симпатический нерв оказывает через норадреналин, выделяющийся в его окончаниях, и альфа-адренорецепторы, расположенные в сосудистых стенках, в результате происходит сужение сосуда.

Если вазоконстрикторный эффект симпатической нервной системы носит общий системный характер, то вазодилататорный является чаще местной реакцией. Нельзя утверждать, что парасимпатическая нервная система расширяет все сосуды. Известны лишь несколько парасимпатических нервов, расширяющих сосуды только тех органов, которые они иннервируют. Так, раздражение барабанной струны – веточки парасимпатического лицевого нерва – расширяет сосуды подчелюстной железы и увеличивает в пей кровоток.

Вазодилататорный эффект был получен при раздражении других парасимпатических нервов: языкоглоточного, расширяющего сосуды миндалин, околоушной железы, задней трети языка; верхнегортанного нерва – веточки блуждающего нерва, расширяющего сосуды слизистой гортани и щитовидной железы; тазового нерва, расширяющего сосуды органов малого таза. В окончаниях вышеперечисленных нервов выделялся медиатор ацетилхолин (холинергические волокна), который контактировал с М-холинорецепторами и вызывал расширение сосудов.

Среди симпатических волокон есть холинергические, в окончаниях которых выделяется не норадреналин, а ацетилхолин, их раздражение вызывает не сужение, а расширение сосудов таких органов, как сердца и скелетных мышц, и эффект от раздражения блокируется атропином.

Стимуляция задних корешков спинного мозга в эксперименте приводит к расширению сосудов данного сегмента тела. Раздражая кожу, например, горчичниками, можно получить местное расширение сосудов и покраснение данного участка кожи по типу аксон-рефлекса, реализуемого в пределах двух разветвлений одного аксона и без участия центральной нервной системы.

Гуморальная регуляция сосудистого тонуса

Гуморальная регуляция просвета сосудов осуществляется за счет химических, растворенных в крови веществ, к которым относятся гормоны общего действия, местные гормоны, медиаторы и продукты метаболизма. Их можно разделить на две группы: сосудосуживающие и сосудорасширяющие вещества.

К сосудосуживающим веществам относятся: гормоны мозгового слоя надпочечников – адреналин и норадреналин. Адреналин в малых дозах (1 х 10–7 г/мл) повышает АД, суживая сосуды всех органов, кроме сосудов сердца, мозга, поперечно-полосатой мускулатуры, в которых находятся бета-адренорецепторы. Норадреналин – сильный вазоконстриктор, взаимодействующий с альфа-адренорецепторами.

Разнонаправленный характер влияния катехоламинов (адреналина и норадреналина) на гладкие мышцы сосудов объясняется наличием разных типов адренорецепторов – альфа и бета. Возбуждение альфа-адренорецепторов приводит к сокращению мускулатуры сосудов, а возбуждение бета-адренорецепторов – к ее расслаблению. Норадреалин контактирует в основном с альфаадренорецепторами, а адреналин – и с альфа и с бета. Если в сосудах преобладают альфа-адренорецепторы, то адреналин их суживает, а если преобладают бета-адренорецепторы, то он их расширяет. Кроме того, порог возбуждения бета-адренорецепторов ниже, чем альфа-рецепторов, поэтому в низких концентрациях адреналин в первую очередь контактирует с бета-адренорецепторами и вызывает расширение сосудов, а в высоких – их сужение.

Вазопрессин, или антидиуретический гормон – гормон задней доли гипофиза, суживающий мелкие сосуды и, в частности, артериолы, особенно при значительном падении артериального давления.

Альдостерон – минералокортикоид – гормон коры надпочечников, повышает чувствительность гладких мышц сосудов к вазоконстрикторным агентам, усиливает прессорное действие ангиотензина II.

Серотонин – образуется в слизистой кишечника и в некоторых отделах головного мозга, содержится в тромбоцитах, суживает поврежденный сосуд и препятствует кровотечению. Он оказывает мощное сосудосуживающее влияние на артерии мягкой мозговой оболочки и может играть роль в возникновении их спазмов (приступы мигрени).

Ренин – образуется в юкстагломерулярном комплексе почки, особенно много при ее ишемии.Он расщепляет альфа-2 – глобулин плазмы – ангиотензиноген и превращает его в малоактивный декапептид – ангиотензин I, который под влиянием фермента дипептидкарбоксипептидазы превращается в очень активное сосудосуживающее вещество – ангиотензин II, повышающее АД (почечная гипертония). Ангиотензин II – мощный стимулятор выработки альдостерона, повышающего содержание в организме Na+ и внеклеточной жидкости. В таких случаях говорят о работе ренин-ангиотензин-альдостероновой системы или механизма. Последний имеет большое значение для нормализации уровня кровяного давления при кровопотере.

Эндотелии – вырабатывается эндотелием сосудов, оказывает сосудосуживающий эффект при снижении АД.

Ионы Са2+ суживают сосуды.

К сосудорасширяющим веществам относятся: медиатор ацетилхолин, а также так называемые местные гормоны. Один из них – гистамин – образуется в слизистой оболочке желудка и кишечника, в коже, скелетной мускулатуре (во время работы) и в других органах. Содержится в базофилах и тучных клетках поврежденных тканей и выделяется при реакциях антиген-антитело. Расширяет артериолы и венулы, увеличивает проницаемость капилляров.

Брадикинин выделен из экстрактов поджелудочной железы, легких. Он расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез, увеличивает проницаемость капилляров.

Простагландины, простациклины и тромбоксан образуются во многих органах и тканях. Они синтезируются из полиненасыщенных жирных кислот арахидоновой и линолевой. Простагландины (PG) – это гормоноподобные вещества. Разные группы и подгруппы этих веществ оказывают различный эффект на сосуды. Так, PGA, и PGA2 вызывают расширение артерий чревной области. Медуллин (PGA2), выделенный из мозгового вещества почек, снижает АД, увеличивает почечный кровоток, выделение почками воды, Na+ и К +. Простагландины PGE расширяют сосуды при внутриартериальном введении и тормозят выделение норадреналина из окончаний симпатических нервов. PGF суживают сосуды и повышают АД. Тромбоксан оказывает сосудосуживающий эффект.

Продукты метаболизма – молочная и пировиноградная кислоты оказывают местный вазодилататорный эффект.

СО2 расширяет сосуды мозга, кишечника, скелетной мускулатуры.

Аденозин расширяет коронарные сосуды.

NO (оксид азота) расширяет коронарные сосуды.

Ионы К+ и Na+ расширяют сосуды.

Центры кровообращения

Образования, имеющие отношение к центрам кровообращения, располагаются на разных уровнях центральной нервной системы.


Спинальный уровень

Спинальный уровень регуляции сердечной деятельности находится в боковых рогах (Т15) спинного мозга – это симпатические преганглионарные нейроны. В звездчатом симпатическом ганглии локализованы постганглионарные симпатические нейроны, аксоны которых иннервируют сердечную мышцу. Раздражение вышеперечисленных структур стимулирует сердечную деятельность.

Сосудистый тонус регулируется центрами, расположенными в боковых рогах спинного мозга, – это симпатические пре-ганглионарные нейроны, пара- и превертебральные ганглии – постганглионарные нейроны.

Если перерезать у животного спинной мозг между последним шейным и первым грудным сегментами, то в первый момент про-изойдет резкое падение АД, но через неделю кровяное давление восстанавливается за счет деятельности симпатических центров боковых рогов спинного мозга, приобретающих при гипоксии, вызванной кровопогерей, самостоятельное значение.


Бульварный уровень.

В продолговатом мозге находится главный центр регуляции сердечной деятельности (ингибирующий центр), состоящий из группы нейронов, относящихся к ядру блуждающего нерва и оказывающих на сердце тормозное влияние, а также группы нейронов, связанных со спинальными (стимулирующими) центрами. Кроме того, в продолговатом мозге располагается главный сосудодвигательный центр. Прессорные нейроны локализованы преимущественно в латеральных областях продолговатого мозга, депрессорные – в медиальных.


Гипоталамический уровень.

Раздражение передней группы ядер вызывает торможение сердечной деятельности и вазодилататорный эффект, раздражение задней группы – стимуляцию работы сердца и вазокопстрикторный эффект.

Корковый уровень обеспечивает регуляцию сердечной деятельности и сосудистых реакций (условных и безусловных) в ответ на внешние раздражения. Стимуляция некоторых отделов коры больших полушарий вызывает различные реакции со стороны сердечно-сосудистой системы. При раздражении моторной и премоторной зон коры возникают преимущественно прессорные реакции и ускорение ритма сердечных сокращений. Стимуляция поясной извилины приводит к депрессорному эффекту, а раздражение некоторых точек около орбитальных областей островка височной коры вызывает как прессорные, так и депрессорные реакции.

Рефлекторная регуляция деятельности сердца и сосудистого тонуса

Рефлекторные влияния на деятельность сердца и тонус сосудов могут возникать при раздражении различных рецепторов, расположенных как в самом сердце и сосудистой системе, так и в различных органах.


Условно все сердечно-сосудистые рефлексы можно разделить на собственные и сопряженные.

1. Собственные рефлексы берут свое начало в самом сердце или в кровеносных сосудах и заканчиваются на сердце и сосудах.

2. Сопряженные рефлексы начинаются в других органах и заканчиваются на сердце и сосудах.


Собственные рефлексы можно разделить:

1. на рефлексы с сердца на сердце

2. рефлексы с сосудов на сердце и сосуды.


Так, при повышении давления в правом предсердии и устье полых вен происходит возбуждение барорецепторов этих зон, затем стимуляция симпатических центров спинного мозга и рефлекторная тахикардия, при этом сердце выбрасывает больше крови, в результате давление в правом предсердии снижается (рефлекс Бейнбриджа).

В группе рефлексов с сосудов на сердце и сосуды выделяют два главных рефлекса: аортальный и синокаротидный. Повышение артериального давления приводит к возбуждению барорецепторов дуги аорты. Далее возбуждение по депрессорному, или аортальному, нерву, открытому И. Ф. Ционом и К. Людвигом (1866 г.), достигает продолговатого мозга, где находятся центры сердечной деятельности (центр блуждающего нерва) и сосудодвигательный центр. Импульсы по центробежным эфферентным волокнам блуждающего нерва поступают к сердцу и тормозят его работу. Одновременно происходит расширение сосудов, получивших импульсацию по вазодилататорам из сосудодвигательного центра продолговатого мозга. Брадикардия и расширение сосудов приводят к падению давления. При снижении артериального давления в аортальной зоне частота импульсов, идущих в продолговатый мозг по депрессорному нерву, уменьшается. Это тормозит центр блуждающего нерва, увеличивает тонус симпатических нервов и рефлекторно повышает артериальное давление.

Вторая сосудистая рефлексогенная зона была описана Г. Герингом (1923 г.). Раздражение барорецепторов каротидного синуса в области бифуркации сонной артерии на наружную и внутреннюю при повышении артериального давления приводит к возбуждению синокаротидного нерва, идущего в составе языкоглоточного нерва. Далее импульсы достигают центра блуждающего нерва и сосудодвигательного центра в продолговатом мозге, затем происходят те же изменения деятельности сердца и просвета сосудов, что и при аортальном рефлексе.

К сопряженным рефлексам (с органов на сердце) относится рефлекс Гольца – это рефлекторная брадикардия вплоть до полной остановки сердца в результате стимуляции механорецепторов брюшины и органов брюшной полости при ударе в эпигастральную область. Центростремительные пути этого рефлекса проходят в составе чревного нерва в спинной и продолговатый мозг, где они достигают ядер блуждающего нерва и по его эфферентным волокнам – сердца.

Урежение частоты сердечных сокращений на 10–20 в 1 минуту можно получить при надавливании на глазные яблоки – это также вагальный рефлекс Даньини-Ашнера.

Рефлекторные изменения работы сердца и повышение артериального давления наблюдаются при болевых раздражениях кожи (экстерорецепторов), внутренних органов (интерорецепторов), при эмоциях, мышечной работе.

Методы исследования сердечно-сосудистой системы

Фонокардиография – метод регистрации тонов (1,2,3,4), а в патологии – шумов сердца посредством преобразования с помощью микрофона звуковых колебаний в электрические.

Баллистокардиография – метод регистрации движений тела человека, обусловленных сокращением сердца и выбросом крови в крупные сосуды.

Динамокардиография – метод регистрации смещений центра тяжести грудной клетки, отражающих движения сердца в грудной клетке и перемещение массы крови из полостей сердца в сосуды.

Векторкардиография – регистрация изменений направления электрической оси сердца, обладающей свойствами векторной величины с помощью электронно-лучевой трубки.

Эхокардиография – регистрация ультразвуковых колебаний, отраженных от различных поверхностей сердца. Позволяет судить о расстоянии между различными структурами, находящимися в радиусе ультразвукового луча, об изменениях размеров сердца, движении клапанов.

Реография – запись изменений сопротивления тканей проходящему через них электрическому току. Вследствие увеличения кровенаполнения тканей (при систоле) происходит повышение их электропроводности и уменьшение электрического сопротивления. Уменьшение кровенаполнения (при диастоле) приводит к обратным явлениям. По форме реограмма напоминает кривую объемного пульса. Реография используется для определения изменений регионарного сосудистого тонуса, скорости кровотока и скорости распространения пульсовой волны.

Плетизмография – регистрация изменений объема органа, связанных с колебаниями его кровенаполнения. Во время систолы приток крови к органу увеличивается, происходит и увеличение его объема. Во время диастолы наблюдаются обратные явления. Плетизмография используется для оценки тонуса периферических сосудов, изменений систолического объема крови, определения скорости распространения пульсовой волны. С помощью метода окклюзионной плетизмографии можно измерить объемную скорость кровотока.

Коронарное кровообращение

Коронарный кровоток составляет 250 мл/мин, или 4–5% от МОК. При максимальной физической нагрузке он может возрастать в 4–5 раз. Обе коронарные артерии отходят от аорты. Правая коронарная артерия снабжает кровью большую часть правого желудочка, заднюю стенку левого желудочка и некоторые отделы межжелудочковой перегородки. Левая коронарная артерия питает остальные отделы сердца. Отток венозной крови от левого желудочка осуществляется преимущественно в венозный синус, открывающийся в правое предсердие (75% всей крови). От правого желудочка кровь оттекает по передним сердечным венам и венам Тебезия непосредственно в правое предсердие. При ослаблении сердечной деятельности или сократительной способности миокарда возможен обратный кровоток из полостей сердца в коронарные сосуды с помощью сосудов Вьессана и вен Тебезия.

Внутренний слой стенки коронарных сосудов продуцирует эластин, способствующий образованию атеросклеротических бляшек. Средний слой вырабатывает кейлоны, тормозящие продукцию эластина. Нарушение выработки кейлонов приводит к образованию атеросклеротических бляшек.

Коронарный кровоток зависит от фаз сердечного цикла. Во время систолы интенсивность коронарного кровотока (особенно в миокарде левого желудочка) снижается, а во время диастолы возрастает. Это связано с периодическим сжатием мускулатурой сердца коронарных сосудов во время систолы и расслаблением во время диастолы. Для миокарда характерны высокая объемная скорость кровотока и большая растяжимость коронарных сосудов.

Коронарный кровоток зависит от давления в аорте. При повышении давления в аорте коронарный кровоток увеличивается, при снижении – уменьшается.

Повышение артериального давления в правой половине сердца препятствует венозному оттоку крови из коронарных сосудов и уменьшению кровотока по ним – «легочное сердце» (при воспалении легких, туберкулезе легких).

Регуляция коронарного кровотока

Гипоксия – один из важнейших факторов, регулирующих коронарный кровоток. Сердечная мышца экстрагирует из притекающей крови О2 (60–70%). Потребление кислорода миокардом составляет 4–10 мл на 100 г его массы в 1 минуту, при повышении нагрузки на сердце оно возрастает, но не за счет увеличения экстракции О2 , а за счет увеличения коронарного кровотока. Снижение О2 на 5% приводит к расширению коронарных сосудов. При аноксии (прекращении доставки О2 к сердцу) его сокращения постепенно ослабевают, полости сердца расширяются и через 6–10 минут наступает остановка сердца, которая вначале сопровождается биохимическими изменениями: падением содержания АТФ и креатинфосфата, накоплением лактата, который не расщепляется до СО2 и воды. После 30-минутной аноксии наступают структурные необратимые нарушения в мышце сердца: 30 минут – это предел реанимации. При удушье предел реанимации короче (8–10 мин), так как возникают необратимые изменения головного мозга.

Увеличение МОК приводит к улучшению коронарного кровотока.

Несильное раздражение симпатических нервов улучшает метаболизм сердечной мышцы и коронарный кровоток, сильное раздражение вызывает констрикторный эффект на сосудах сердца и боли в сердце.

Стимуляция парасимпатических нервов (блуждающего нерва) приводит к слабому расширению коронарных сосудов и одновременно к отрицательному инотропному эффекту, ухудшению коронарного кровотока и к смерти, особенно ночью, когда превалирует тонус блуждающего нерва.

Положительный хронотропный эффект (тахикардия) уменьшает коронарный кровоток, положительный инотропный эффект улучшает коронарный кровоток.

Адреналин и норадреналин увеличивают коронарный кровоток, ацетилхолин – уменьшает, брадикинин, простагландины – расширяют коронарные сосуды и улучшают в них кровоток. Аналогичное положительное влияние оказывает аденозин, молочная кислота, СО2, Н+ ионы, Са2+, NO (окись азота). Передозировка ионов К+ ухудшает коронарный кровоток и приводит к остановке сердца.

Лимфатическая система

Лимфатические сосуды – это дренажная система, по которой тканевая жидкость оттекает в кровеносное русло. Лимфатическая система человека начинается с замкнутых, в отличие от кровеносных, лимфатических капилляров, пронизывающих все ткани, за исключением эпидермиса кожи, центральной нервной системы, паренхимы селезенки, хрящей, плаценты, хрусталика и оболочек глазного яблока.

Диаметр лимфатического капилляра – 20–40 мкм, его стенка состоит из одного слоя эндотелия и связана с помощью коллагеновых волокон с окружающей соединительной тканью, что препятствует спадению стенок лимфатического капилляра при изменении внутритканевого давления. Через стенку лимфатического капилляра хорошо проходят электролиты, углеводы, жиры и белки.

Далее капилляры переходят во внутриорганные мелкие лимфатические сосуды. Выйдя из органа, последние пронизывают один или два лимфатических узла – «фильтры», задерживающие наиболее крупные частицы, находящиеся в лимфе.

Затем лимфатические сосуды соединяются в более крупные стволы, образующие правый и грудной лимфатический протоки. Грудной проток собирает 3/4 лимфы всего тела, за исключением правой половины головы и шеи, правой руки и правой половины грудной клетки, которые питаются правым лимфатическим протоком. Оба протока впадают в подключичные вены. В лимфатических сосудах имеются клапаны. Участок лимфососуда между двумя клапанами называется лимфангионом. Это морфофункциональпая единица лимфатической системы, состоящая из мышечной «манжетки» и двух клапанов – дистального и проксимального. Лимфатические сосуды – это система коллекторов, представляющих собой цепочку лимфангионов.

Лимфатические сосуды могут спонтанно сокращаться с частотой от 10 до 20 в 1 мин. Эти сокращения представляют собой последовательные, ритмические сокращения лимфангионов, напоминающие сердечный цикл, в котором имеется систола и диастола. В результате происходит перемещение лимфы по сосудам.

Движению лимфы способствуют дыхательные движения, сокращения мышц, сердца, перистальтика кишечника.

Лимфатические сосуды находятся в состоянии тонуса, который поддерживается местными гуморальными и нервными механизмами.

Функции лимфатической системы

Лимфатическая система выполняет следующие функции:

1. Возврат белков, электролитов и воды из интерстиция в кровь. За одни сутки в кровоток лимфа возвращает 100 г белка. При массивной кровопотере увеличивается поступление лимфы в кровь. При перевязке или закупорке лимфатического сосуда развивается лимфатический отек ткани (скопление жидкости в тканях).

2. Резорбтивная функция. Через поры в лимфатических капиллярах в лимфу проникают коллоидные вещества, крупномолекулярные соединения, лекарственные препараты, частицы погибших клеток. В последние годы при лечении тяжелых воспалительных процессов и раковых заболеваний используют эндолимфотерапию, т. е. введение лекарственных препаратов непосредственно в лимфатическую систему.

3. Барьерная функция осуществляется за счет лимфоузлов, задерживающих инородные частицы, микроорганизмы и опухолевые клетки (метастазирование в лимфоузлы).

4. Участие в энергетическом и пластическом обмене веществ. Лимфа приносит в кровь продукты метаболизма, витамины, электролиты и другие вещества.

5. Участие в жировом обмене. Жиры из кишечника после их всасывания поступают в лимфатические сосуды, затем в кровеносную систему и в жировые депо в виде хиломикронов.

6. Иммунобиологическая функция. В лимфоузлах образуются плазматические клетки, вырабатывающие антитела. Там же находятся Т- и В-лимфоциты, отвечающие за иммунитет.

7. Участие в обмене жирорастворимых витаминов (А, Е, К), которые сначала всасываются в лимфу, а затем в кровь.

Лимфообразование

Лимфа образуется в результате перехода (резорбции) интерстициальной жидкости с растворенными в ней веществами в лимфатические капилляры, которые вновь переходят в кровеносную систему. Транспорт жидкости с растворенными в ней веществами можно представить в виде следующей схемы: кровеносное русло-›интерстиций-›лимфатические сосуды-жровеносное русло.

Из 20 л жидкости, выходящей из кровеносного русла в интерстициальное пространство, 2–4 л в виде лимфы по лимфатическим сосудам возвращается в кровеносную систему.


К факторам, способствующим лимфообразованию, относятся:

1. Разность гидростатического давления в кровеносном сосуде, межтканевом пространстве и лимфатическом капилляре. Так, повышение артериального давления в капилляре способствует фильтрации жидкости из капилляра в ткань и лимфатический сосуд. Давление лимфы в области грудного протока составляет 11 – 12 мм вод.ст. При форсированном дыхании оно возрастает до 35 – 40 см вод.ст.

2. Разность онкотического и осмотического давления в кровеносном сосуде и межтканевом пространстве. Повышение онкотического давления плазмы снижает образование лимфы.

3. Состояние проницаемости эндотелия кровеносных и лимфатических капилляров. Очень проницаемы капилляры печени, поэтому большая часть лимфы образуется в печени, после чего она поступает в грудной проток. Макромолекулы и частицы диаметром 3 – 50 мкм проникают через эндотелий с помощью пиноцитоза (белки, хиломикроны).

Нервная регуляция лимфообразования

Лимфатические сосуды имеют как адренергическую, так и холинергическую иннервацию, представленную в местах расположения клапанов и при переходе сосуда малого калибра в более крупный. Роль нервных влияний состоит в модуляции спонтанных ритмических сокращений лимфангиона. Возбуждение симпатической нервной системы приводит к сокращению лимфангиона, а парасимпатических – в основном к расслаблению.

Гуморальная регуляция лимфотока и лимфообразования

Адреналин – усиливает ток лимфы по лимфатическим сосудам брыжейки и повышает давление в грудной полости.

Гистамин – усиливает лимфообразование за счет увеличения проницаемости кровеносных капилляров, стимулирует сокращение гладких мышц лимфангионов.

Гепарин – действует на лимфатические сосуды так же, как и гистамин.

Серотонин – сокращает просвет грудного протока.

АТФ – тормозит спонтанные сокращения грудного протока и брыжеечных лимфососудов.

Недостаток или отсутствие ионов Са2+ в крови тормозит сокращения лимфатических сосудов. Гипоксия и наркоз подавляют активность сосудов.

Состав лимфы

В организме содержится 1,5 – 2 л лимфы. Ее удельный вес 1010–1023, рН 8,4–9,2. Осмотическое давление немного выше, чем плазмы, онкотическое ниже, так как в лимфе меньше белка. Общий белок составляет 25–56,1 г/л, альбумины – 15,0–40,0 г/л, глобулины 10,0–16,0 г/л, фибриноген – 1,5–4,6 г/л. Содержание белка значительно варьирует в зависимости от проницаемости кровеносных капилляров: 60 г/л – в печени, 30 – 40 г/л – в желудочно-кишечном тракте. Липиды в виде хиломикронов составляют у голодного животного 626 мг%, а после приема пищи лимфа приобретает белый цвет и похожа на молоко («млечный сок»). В лимфе много хлора – 92,0–140,7 ммоль/л и бикарбонатов – 114,3–137,5 ммоль/л. Она содержит ферменты диастазу и липазу. В лимфе имеются в основном лимфоциты, количество которых варьирует в течение суток от 1 до 22 х 109/л, мало моноцитов и гранулоцитов. Эритроциты отсутствуют, при повышении капиллярной проницаемости эритроциты могут появиться в лимфе, тогда она приобретает кровянистый вид.

Лейкоцитарная формула лимфы (по Б. Н. Ткаченко): лимфоциты – 90%, моноциты – 5%, сегментоядерные нейтрофилы – 1%, эозинофилы – 2%, другие клетки – 2%, тромбоциты – 5–35х109 л. В связи с тем, что лимфа содержит фибриноген, она может свернуться. Время свертывания лимфы составляет 10- 15 минут.

Фармакологическая коррекция нарушений некоторых физиологических показателей системы кровообращения

Средства, влияющие на возбудимость, проводимость сердечной мышцы и ритм сердечных сокращений

Сердечный ритм зависит от автоматии, возбудимости и проводимости сердечной мышцы. Аритмии – нарушения ритма деятельности сердца. Они могут возникать вследствие повышения или угнетения автоматии в синоатриальном узле, а также в результате повышения автоматии или в эктопическом, или в латентном водителе ритма. Увеличение автоматии синоатриального узла называется синусовой тахикардией, уменьшение – синусовой брадикардией.

Одной из причин возникновения аритмий может быть так называемый «механизм повторного входа возбуждения» (reentrумеханизм), который имеет место при пароксизмальной тахикардии, мерцании и трепетании предсердий и желудочков, экстрасистолии.

Нарушение проводимости – наиболее частая причина возникновения аритмий, включает в себя замедление или блокаду проведения импульсов, о которых говорилось выше.

Для лечения аритмий используют антиаритмические препараты, которые по механизму действия делят на пять групп.

К первой группе относят препараты с мембраностабилизирующим действием (уменьшают проницаемость клеточной мембраны и нарушают транспорт К+, Na+ и Са2+, блокируют ацетилхолин). Эти вещества угнетают автоматию клеток синоатриального узла и эктопических водителей ритма, снижают возбудимость волокон Пуркинье и миофибрилл, уменьшают скорость проведения импульсов через атриовентрикулярный узел и волокна Пуркинье, увеличивают продолжительность ПД и абсолютной рефрактерной фазы. К этой группе препаратов относят хинидин, новокаинамид, ритмодан и др. Их принимают при мерцательной аритмии, трепетании предсердий, пароксизмальной тахикардии, частой предсердной и желудочковой экстрасистолии, желудочковой тахикардии.

Препараты К+ – панангин, аспаркам, хлорид калия приводят к снижению мембранного потенциала миоцитов и уменьшению скорости проведения импульсов в миофибриллах. Их назначают при аритмиях, связанных с гипокалиемией, и при аритмиях, вызванных передозировкой дигиталиса.

Ко второй группе антиаритмических препаратов относят лидокаин, мекситил, пропафенон и др. В отличие от хинидина, эти препараты уменьшают рефрактерный период, повышают скорость проведения импульсов, не влияя на сократимость миокарда. Кроме того, они обладают местноанестезирующим действием и показаны при остром инфаркте миокарда. Их используют для лечения желудочковой экстрасистолии и профилактики фибрилляции желудочков сердца.

Антиаритмические препараты третьей группы – это блокаторы бета-адренергических рецепторов. Они уменьшают автоматик) предсердий и желудочков, снижают атриовентрикулярную и внутрижелудочковую проводимость, укорачивают время реполяризации. Их назначают при желудочковой экстрасистолии, трепетании и мерцании предсердий. К препаратам этой группы относят обзидан, оксипренолол, аптин, вискен.

Антиаритмические препараты четвертой группы обладают антиаритмическими свойствами, не влияя на мембраны за счет блокады постганглионарной симпатической передачи импульсов. Они укорачивают ПД и абсолютный рефрактерный период. Представителем этой группы является препарат кордарон. Его назначают при пароксизмальных аритмиях, синусной тахикардии, трепетании предсердий, желудочковой тахикардии и экстрасистолии.

К пятой группе антиаритмических препаратов относят антагонисты кальция, например верапамил (изоптин, финоптин). Он тормозит трансмембранный ток Са2+ внутри сердечной клетки, уменьшает спонтанную активность синоатриального узла.

Средства, влияющие на сократимость сердечной мышцы

МОК зависит от силы сердечных сокращений и, в частности, от величины систолы. При сердечно-сосудистой недостаточности, возникающей, например, при декомпенсированных пороках сердца, сила сердечных сокращений и систолический выброс крови уменьшаются, диурез падает, наступают явления застоя и отеки, нарушается доставка кислорода к тканям, возникает цианоз и одышка.

К препаратам, влияющим на сократимость сердечной мышцы при явлениях сердечно-сосудистой недостаточности, относятся сердечные гликозиды, содержащиеся в ряде растений: разные виды наперстянки (Digitalis), горицвета (Adonis vemalis), ландыша (Convallaria majalis), строфанта (Strophanthus gratus) и др. В клинике используются следующие препараты, содержащие в своем составе сердечные гликозиды: дигитоксин, дигоксин, адонизид, коргликон, строфантин К.


Под влиянием терапевтических доз сердечных гликозидов наблюдается:

1. усиление и укорочение систолы,

2. удлинение диастолы, длительный отдых необходим для восстановления сократительной способности миокарда. В результате ритм сердца замедляется, улучшается приток крови к желудочкам, увеличивается систолический объем крови. Замедление ритма сердца связывают с возбуждением центра блуждающего нерва, получившего информацию от сосудистых рефлексогенных зон аорты и легочной артерии, которые раздражались при усилении под действием гликозидов пульсовой волны;

3. улучшение тканевого обмена сердечной мышцы и понижение возбудимости проводящей системы сердца замедляют атриовентрикулярную проводимость и проводимость по пучку Гиса. Вызываемое гликозидами усиление сокращений миокарда способствует изгнанию крови из желудочков, лучшей оксигенации тканей, уменьшению застойных явлений и снятию отеков.


Большие дозы сердечных гликозидов могут вызвать чрезмерное угнетение проводимости сердечной мышцы и полную блокаду сердца. При этом сердце будет сокращаться в более редком ритме атриовентрикулярного узла, который может прерываться экстрасистолией и даже полной остановкой сердца. На ЭКГ это будет проявляться в уменьшении величины зубца Т, укорочении интервала QRST, увеличении интервала P-Q и расстояния между циклами (R-R), а также брадикардией.

Средства, улучшающие коронарный кровоток и метаболизм миокарда

Коронарный кровоток обеспечивает сердечную мышцу кислородом. Нарушение кровоснабжения и метаболизма миокарда является одной из причин ишемической болезни сердца (ИБС), приступов стенокардии, инфаркта миокарда. Действие лекарственных препаратов должно быть направлено на повышение способности коронарной системы доставлять кровь в ишеминизированный участок сердца, уменьшение потребности миокарда в кислороде и на устранение болей в области сердца (антиангинальное действие). В число этих препаратов входят органические нитраты, антагонисты кальция, бета-адреноблокаторы и спазмолитические средства.

Основной представитель группы органических нитратов – это нитроглицерин и его современные лекарственные формы: нитросорбит, нитрогранулог, сустак, нитронг, оказывающие пролонгированное действие. В отличие от нитроглицерина, они пред-назначены не для купирования приступа стенокардии, а для его профилактики. Нитроглицерин используется в основном сублингвально (эффект наступает через 1–2 мин).

Нитроглицерин действует на центральную гемодинамику, тормозит влияние симпатической нервной системы на сосудистый тонус, выступая в качестве периферического вазодилататора. Он оказывает прямое расширяющее действие на коллатерали коронарных артерий, в результате улучшается коронарный кровоток. Препарат уменьшает венозный приток крови к сердцу, при этом снижается давление в правом предсердии и системе легочной вены, уменьшается периферическое сосудистое сопротивление, в результате нагрузка на миокард и его потребность в кислороде становятся меньше, коронарный кровоток улучшается и исчезает болевая импульсация от ишемического очага в сердечной мышце – боли прекращаются.

Средства, нормализующие кровяное давление

Гипотензивные препараты.

К ним относятся вещества, снижающие системное артериальное давление.


По механизму действия они делятся на три группы:

1. нейротропные средства, ингибирующие влияния симпатической нервной системы на сосудистый тонус

2. миотропные средства, влияющие непосредственно на гладкую мускулатуру сосудов

3. средства, влияющие на гуморальную регуляцию сосудистого тонуса.


К первой группе относят также препараты:

1. влияющие на сосудодвигательные центры головного мозга (клофелин, метилдофа, гуанфацин)

2. блокирующие проведение нервных импульсов на уровне вегетативных ганглиев (бензогексоний, пентамин)

3. блокирующие пресинаптические окончания адренергических нейронов – симпатолитические средства (октадин, резерпин)

4. угнетающие альфаи бета-адренорецепторы (фентоламин, тропафен, анаприлин).


Ко второй группе миотропных средств относят некоторые спазмолитические препараты (папаверин, но-шпа), но они оказывают слабое гипотензивное действие и назначаются в сочетании с другими средствами, а также периферические вазодилататоры (апрессин, миноксидил).

К третьей группе гипотензивных средств относят антагонисты кальциевых каналов (нифедипин), агонисты (открыватели) калиевых каналов, повышающие мембранный потенциал, приводящие к гиперполяризации мембраны и снижению возбудимости клетки (кромакалим).

Блокаторы ангиотензин-конвертирующего фермента (каптоприл, эналаприл) и антагонисты альдостерона (спиронолактон) относят к новой группе гипотензивных препаратов.

В лечении гипертонической болезни помимо гипотензивных средств используют диуретики, антигипертензивное действие которых основано на уменьшении объема циркулирующей плазмы крови и ослаблении вазоконстрикторного эффекта симпатической нервной системы на сосудистую стенку.


Гипертензивные препараты.

Для повышения АД при гипотепзии используют кардиотонические препараты (строфантин), симпатомиметические (норадреналин, мезатон и др.), дофа-минергические (дофамин), аналептические (камфора, кордиамин). Наиболее эффективным является ангиотензинамид – экзогенный лиганд ангиотензиновых рецепторов.

Средства, влияющие на метаболизм сосудистой стенки и ее проницаемость

Для лечения заболеваний периферических сосудов, нарушения их проницаемости при заболеваниях вен с застойными и воспалительными явлениями, трофических язвах, ангиопатиях используют ангиопротекторы – вещества, улучшающие микроциркуляцию, нормализующие проницаемость сосудов, уменьшающие отечность тканей сосудов, улучшающие метаболизм сосудистой стенки. К ним относятся препараты пармидин, трибенозид, троксевазин и препараты группы витамина Р. Механизм действия ангиопротекторов основан на их ингибирующем влиянии на активность гиалуронидазы, торможении биосинтеза простагландинов, антибрадикининовом действии.

Загрузка...