Отыскание истины должно быть целью нашей деятельности; это — единственная цель, которая достойна ее. Несомненно, сначала мы должны постараться облегчить человеческие страдания, но — зачем? Отсутствие страданий — это идеал отрицательный, который вернее был бы достигнут с уничтожением мира. Если мы все более и более хотим избавить человека от материальных забот, так это затем, чтобы он мог употребить свою отвоеванную свободу на исследование и созерцание истины.
Однако истина иногда пугает нас. В самом деле, мы знаем, что она порой обманчива, что это — какой-то призрак, который на мгновение показывается перед нами только затем, чтобы беспрестанно исчезать, что надо гнаться за ней все дальше и дальше и что никогда невозможно достигнуть ее. А между тем, чтобы действовать, нужно остановиться (ἀνάγκη στῆναι [23]), как сказал какой-то грек — Аристотель или кто-то другой. Мы знаем также, как она бывает подчас жестока, и мы спрашиваем себя, не является ли иллюзия не только более утешительной, но и более надежной. Ведь она дает нам уверенность. Если бы исчезла иллюзия, осталась ли бы у нас надежда и хватило ли бы у нас мужества действовать? Так, запряженная на выездке лошадь, наверное, отказалась бы двигаться вперед, если бы ей предварительно не завязали глаза. И потом — чтобы отыскивать истину, нужно быть независимым, вполне независимым. Напротив того, если мы хотим действовать, если хотим быть сильными, нам бывает нужно соединяться. Вот почему многие из нас пугаются истины; они видят в ней причину слабости; и все же не надо бояться истины, потому что только она прекрасна.
Если я говорю здесь об истине, то нет сомнения, что я прежде всего хочу говорить об истине научной; но вместе с тем я хочу говорить и об истине моральной, по отношению к которой то, что зовется справедливостью, есть только один из видов. Кажется, что я злоупотребляю словами и под одним и тем же названием соединяю две вещи, не имеющие ничего общего; что научная истина, которая доказывается, ни под каким видом не может сближаться с истиной моральной, которая чувствуется.
Тем не менее я не могу отделять их, и те, которые любят одну, не могут не любить и другую. Для того чтобы найти одну, так же как и для того, чтобы найти другую, нужно постараться полностью освободить свою душу от предубеждения и пристрастия, нужно достигнуть абсолютной искренности. Эти оба рода истины, однажды открытые, приводят нас в одинаковое восхищение; и та и другая, лишь только их усмотрели, сияют одним и тем же светом, так что нужно или видеть их, или закрыть глаза. Наконец, обе они и привлекают нас и ускользают от нас; они никогда не фиксированы жестко: когда кто-нибудь подумает, что достиг их, — сейчас же увидит, что еще нужно идти, и тот, кто стремится постичь их, осужден никогда не знать покоя.
Следует прибавить, что тот, кто боится одной, побоится и другой; ибо такие люди во всяком деле прежде всего заботятся о последствиях. Одним словом, я сближаю две истины, потому что одинаковые мотивы заставляют нас любить их и одинаковые мотивы побуждают нас бояться их.
Если мы не должны бояться моральной истины, то тем более не следует страшиться истины научной. Прежде всего, она не может быть во вражде с моралью. У морали и науки свои собственные области, которые соприкасаются друг с другом, но не проникают друг друга. Первая показывает нам, какую цель мы должны преследовать; вторая — при данной цели — открывает нам средства к достижению ее. Следовательно, они никогда не могут оказаться в противоречии друг с другом, так как они не могут сталкиваться. Не может быть аморальной науки, точно так же, как не может быть научной морали.
Но если иные боятся науки, то главным образом потому, что она не может дать нам счастья. Это очевидно — она не может нам дать его, и можно спросить себя, не меньше ли страдает животное, чем человек. Но можем ли мы жалеть о том земном рае, где звероподобный человек был поистине бессмертен, потому что он не знал, что должен умереть? Если вкусили яблока, то никакое страдание не в силах заставить позабыть его вкус, и к нему возвращаются всегда. Могло ли быть иначе? Ведь это почти то же, что спрашивать, мог ли бы тот, кто видел, стать слепым и не чувствовать тоски по свету. Итак, человек не может быть счастлив наукой, но теперь он еще менее может быть счастлив без нее.
Но если истина есть единственная цель, которая заслуживает того, чтобы к ней стремиться, то можем ли мы надеяться достигнуть ее? Вот в чем позволительно сомневаться. Читатели моей книжки «Наука и гипотеза» уже знают, что я думаю об этом. Истина, которую нам позволено предвидеть, не совсем то, что большинство людей называют этим именем. Значит ли это, что наше самое законное и самое настойчивое стремление есть в то же время самое тщетное? Или же мы можем наперекор всему приближаться к истине с какой-нибудь стороны? Вот это и следует рассмотреть. Прежде всего, каким орудием располагаем мы для завоевания истины? Не может ли человеческий разум — или, вводя ограничение, разум ученого — быть до бесконечности разнообразным? Можно было бы написать много томов, все же не исчерпав этого предмета; я только слегка коснулся его на нескольких страницах. Что ум математика мало похож на ум физика или натуралиста, с этим согласятся все; но математики сами не похожи друг на друга; одни признают только неумолимую логику, другие обращаются к интуиции и в ней видят единственный источник открытий. Это может быть основанием для сомнения. Могут ли даже математические теоремы представиться в одном и том же свете столь несходным между собой умам? Истина, которая не является одной и той же для всех, есть ли истина? Но, всматриваясь ближе, мы видим, как эти столь различные между собой работники сотрудничают в одном общем деле, которое не могло бы совершаться без их содействия. И это уже ободряет нас.
Затем нужно исследовать те кадры, в которые кажется нам заключенной природа и которые мы называем временем и пространством. В «Науке и гипотезе» я уже показал, сколь относительно их значение; не природа навязывает их нам, а мы налагаем их на природу, потому что мы находим их удобными; но я говорил только о пространстве и главным образом о пространстве, так сказать, количественном, т. е. о тех математических отношениях, совокупность которых составляет геометрию. Необходимо показать, что о времени можно сказать то же, что и о пространстве, и что то же самое можно сказать и о «качественном пространстве»; в частности, необходимо исследовать, почему мы приписываем пространству три измерения. Поэтому да простят мне, если я еще раз вернусь к этим важным вопросам.
Не есть ли математический анализ, главным предметом которого является изучение этих пустых кадров, только бесполезная игра ума? Он может дать физику только удобный язык; не является ли это посредственной услугой, без которой, строго говоря, можно было бы обойтись; и даже не следует ли опасаться, что этот искусственный язык будет завесой, опущенной между реальностью и глазом физика? Далеко не так; без этого языка большая часть глубоких аналогий вещей осталась бы навсегда неизвестной для нас, и мы никогда не знали бы о той внутренней гармонии мира, которая, как мы увидим, есть единственная настоящая объективная реальность.
Наилучшее выражение этой гармонии — это закон; закон есть одно из самых недавних завоеваний человеческого ума; существуют еще народы, которые живут среди непрерывного чуда и которые не удивляются этому. Напротив, мы должны были бы удивляться закономерности природы. Люди просят своих богов доказать их существование чудесами; но вечное чудо — в том, что чудеса не совершаются беспрестанно. Потому-то мир и божественен, что он полон гармонии. Если бы он управлялся произволом, то что доказывало бы нам, что он не управляется случаем?
Этим завоеванием закона мы обязаны астрономии, и оно-то и создает величие этой науки, еще большее, чем материальное величие изучаемых ею предметов.
Итак, вполне естественно, что небесная механика была первым образцом математической физики; но потом эта наука развилась; она еще развивается и развивается очень быстро. Теперь уже необходимо изменить в некоторых пунктах ту картину, которую я набросал в 1900 г. и которая составила две главы «Науки и гипотезы». На конференции, состоявшейся на выставке в Сент-Луисе в 1904 г., я попытался измерить пройденный путь; читатель увидит дальше, каков был результат этого исследования.
Оказалось, что прогресс науки подвергает опасности самые устойчивые принципы — даже те принципы, которые рассматриваются как фундаментальные. Однако ничто не доказывает, что их не удастся сохранить; и если будет осознано только их несовершенство, они будут еще существовать в преобразованной форме. Движение науки нужно сравнивать не с перестройкой какого-нибудь города, где старые здания немилосердно разрушаются, чтобы дать место новым постройкам, но с непрерывной эволюцией зоологических видов, которые беспрестанно развиваются и в конце концов становятся неузнаваемыми для простого глаза, но в которых опытный глаз всегда откроет следы предшествовавшей работы прошлых веков. Итак, не нужно думать, что вышедшие из моды теории были бесплодны и не нужны.
Если бы мы остановились тут, мы нашли бы на этих страницах некоторые основания поверить в ценность науки, но еще больше оснований не верить в нее; и мы оставались бы еще под гнетом сомнения. Надо теперь изложить дело по существу.
Некоторые преувеличили роль условных соглашений в науке; они дошли до того, что стали говорить, что закон и даже научный факт создаются учеными. Это значит зайти слишком далеко по пути номинализма. Нет, научные законы — не искусственные изобретения; мы не имеем никаких оснований считать их случайными, хотя мы и не могли бы доказать, что они не таковы.
Но та гармония, которую человеческий разум полагает открыть в природе, существует ли она вне человеческого разума? Без сомнения — нет; невозможна реальность, которая была бы полностью независима от ума, постигающего ее, видящего, чувствующего ее. Такой внешний мир, если бы даже он и существовал, никогда не был бы нам доступен. Но то, что мы называем объективной реальностью, в конечном счете есть то, что общо нескольким мыслящим существам и могло бы быть общо всем[24]. Этой общею стороной, как мы увидим, может быть только гармония, выражающаяся математическими законами.
Следовательно, именно эта гармония и есть единственная объективная реальность, единственная истина, которой мы можем достигнуть; а если я прибавлю, что универсальная гармония мира есть источник всякой красоты, то будет понятно, как мы должны ценить те медленные и тяжелые шаги вперед, которые мало-помалу открывают ее нам.
Изучая труды великих и даже рядовых математиков, невозможно не заметить и не различить две противоположные тенденции — или скорее два рода совершенно различных умов. Одни прежде всего заняты логикой; читая их работы, хочется думать, что они шли вперед лишь шаг за шагом, по методу какого-нибудь Вобана, который предпринимает свою атаку против крепости, ничего не вверяя случаю. Другие вверяют себя интуиции и подобно смелым кавалеристам авангарда сразу делают быстрые завоевания, впрочем, иногда не совсем надежные.
Не предмет, о котором они трактуют, внушает им тот или другой метод. Если часто говорят о первых, что они аналитики, и если других называют геометрами, то это не мешает одним оставаться аналитиками даже тогда, когда они работают в геометрии, точно так же как другим быть геометрами, если даже они занимаются чистым анализом. Самая природа их ума делает из них сторонников логики или интуиции и они не в силах отрешиться от нее, когда приступают к новому предмету.
И не воспитание развило в них одну из этих двух склонностей и заглушило другую. Математиками родятся, а не делаются, и, по-видимому, также родятся геометрами или родятся аналитиками.
Мне хотелось бы привести примеры, и в них конечно не будет недостатка; но, чтобы подчеркнуть контраст, я хотел бы начать с крайнего примера; пусть мне простят, если я возьму для него двух еще находящихся в живых математиков.
Так, Мере хочет доказать, что двучленное уравнение всегда имеет корень, или, говоря просто, что всегда можно, разделить угол на части. Если есть истина, которую мы могли бы узнать непосредственной интуицией, то она здесь. Кто станет сомневаться, что угол всегда можно разделить на какое угодно число равных частей? Мере думает не так; в его глазах это предложение нисколько не очевидно, и чтобы доказать это, ему нужно несколько страниц.
Напротив, посмотрите на Клейна: он изучает один из самых абстрактных вопросов теории функций; требуется узнать, всегда ли существует на данной поверхности Римана функция, допускающая данные сингулярности. Что делает знаменитый немецкий геометр? Он заменяет поверхность Римана металлической поверхностью, электропроводность которой меняется по известным законам, и соединяет две точки ее с двумя полюсами элемента. Ток, говорит он, непременно пройдет, и распределение этого тока по поверхности определит функцию, особыми свойствами которой будут именно те, которые предусмотрены условием.
Без сомнения, Клейн знает, что он дал здесь лишь наглядный очерк; и все-таки он не задумался опубликовать его; вероятно, он надеялся найти здесь если не строгое доказательство, то по крайней мере как бы нравственную уверенность. Логик с ужасом отбросил бы подобную концепцию или — вернее — ему и не нужно было бы ее отбрасывать, потому что она никогда не могла бы возникнуть в его уме.
Позвольте мне еще сравнить двух людей, которые составляют гордость французской науки; они недавно умерли, но давно уже стяжали себе бессмертие. Я говорю о Бертране и Эрмите. Они воспитывались в одной школе и в одно и то же время; получили одно воспитание и подверглись одним и тем же влияниям; и однако какое различие — не только в их сочинениях, но и в их преподавании, в их манере говорить, в самой их внешности! Эти две личности запечатлелись в памяти всех их учеников неизгладимыми чертами; воспоминание о них еще свежо у всех тех, кто имел счастье слушать их лекции; нам легко восстановить его.
Когда говорил Бертран, он все время находился в движении; то он как будто боролся с каким-то внешним врагом, то движением руки чертил фигуры, которые он изучал. Очевидно, он видел их и хотел изобразить, поэтому он и прибегал к жесту. Что касается Эрмита, то это совершенная противоположность; глаза его как бы избегали соприкосновения с миром; не вне, а внутри искал он образ истины.
Между немецкими геометрами той же эпохи два имени пользуются особенной славой; это имена тех двух ученых, которые основали общую теорию функций, Вейерштрасса и Римана. Вейерштрасс все сводит к рассмотрению рядов и к их аналитическим преобразованиям; можно сказать, он превращает анализ как бы в продолжение арифметики; можно перелистать все его сочинения и не встретить в них ни одного чертежа. Напротив, Риман постоянно прибегает к помощи геометрии; каждая концепция его есть образ, который никто не может позабыть, раз его смысл понят.
Возьмем примеры более свежие. Ли был интуитивистом. При чтении его трудов могли возникнуть сомнения, но все они исчезали после беседы с ним; сейчас же было видно, что он мыслит в образах. Ковалевская была логиком.
У наших студентов мы замечаем те же самые различия; одни больше любят решать задачи «аналитически», другие — «геометрически». Первые не способны «представлять в пространстве», последние скоро утомились бы и запутались бы в длинных вычислениях. Оба рода умов одинаково необходимы для прогресса науки; как логики, так и интуитивисты создали великие вещи, которых не могли бы создать другие. Кто осмелится сказать, что, на его взгляд, было бы лучше, если бы Вейерштрасс никогда не писал, или что он предпочел бы, чтобы Римана не существовало? Итак и анализ, и синтез играют каждый свою законную роль. Но интересно поближе рассмотреть, какое место в истории науки отводится одному и какое — другому.
Интересная вещь! Если мы перечитаем сочинения древних, у нас явится склонность причислить всех их к интуитивистам. И однако природа всегда остается одной и той же; маловероятно, что она только в нашу эпоху начала создавать расположенные к логике умы.
Если бы мы могли снова вникнуть в ход тех идей, которые господствовали в их время, мы узнали бы, что многие из древних геометров по своему направлению были аналитиками. Например, Евклид воздвиг здание науки, в котором его современники не могли найти недостатка. В этом обширном построении — каждая часть которого все же была обусловлена интуицией — мы можем еще и теперь без особого труда признать творчество логика.
Изменились не умы, а идеи; интуитивные умы остаются все теми же, но их читатели потребовали от них больше уступок.
Какова же причина этой эволюции?
Нетрудно обнаружить ее. Интуиция не может дать нам ни строгости, ни даже достоверности — это замечается все больше и больше.
Приведем несколько примеров. Мы знаем, что существуют непрерывные функции, не имеющие производных. Ничто так не подрывает доверие к интуиции, как эта внушенная нам логикой теорема. Наши отцы не преминули бы сказать: «очевидно, что любая непрерывная функция имеет производную, потому что любая кривая имеет касательную».
Почему же интуиция может обмануть нас в этом случае? А потому, что когда мы стараемся вообразить кривую, мы не можем представить себе ее без толщины; то же самое — когда мы представляем себе прямую, мы видим ее в форме прямолинейной полосы известной ширины. Мы отлично знаем, что эти линии не имеют толщины; мы силимся вообразить их все более и более тонкими и таким образом приблизиться к пределу; до некоторой степени нам это удается, но мы никогда не достигнем этого предела.
Теперь ясно, что мы всегда будем в состоянии представить себе эти две узкие полосы — одну прямолинейную, другую криволинейную — в таком положении, что они будут слегка захватывать друг друга, не пересекаясь.
Таким образом, мы поневоле придем, — если не будем предупреждены строгим анализом, — к заключению, что кривая всегда имеет касательную.
Для другого примера я возьму принцип Дирихле, на котором основано так много теорем математической физики; теперь он доказывается самыми строгими, но очень длинными рассуждениями; напротив, прежде довольствовались одним кратким пояснением. Определенный интеграл, зависящий от произвольной функции, никогда не может обращаться в нуль. Отсюда заключали, что он должен иметь минимум. Недостаток этого рассуждения непосредственно очевиден для нас, потому что мы употребляем абстрактный термин «функция» и потому что мы освоились со всеми особенностями, которые могут иметь функции, когда это слово понимается в самом общем значении.
Но этого бы не было, если бы мы пользовались конкретными образами — если бы, например, смотрели на эту функцию как на электрический потенциал; можно было бы справедливо утверждать, что электростатическое равновесие может быть достигнуто. Однако, может быть, сравнение из физики возбудило бы некоторое смутное недоверие. Но если бы постараться перевести рассуждение на язык геометрии, средний между языком анализа и физики, то этого недоверия, без сомнения, не возникало бы и, таким образом, может быть, можно было бы еще теперь обмануть многих непредубежденных читателей.
Итак, интуиция не дает нам достоверности. Вот почему должна была возникнуть эволюция; теперь посмотрим, как она возникла.
Вскоре заметили, что строгость не могла бы иметь места в рассуждениях, если не ввести ее сначала в определения.
Долгое время предметы, которыми занимаются математики, были по большей части плохо определены; думали, что знают их, потому что представляли себе их при помощи чувств или воображения; но получался только грубый образ, а не ясная идея, на которой можно было бы строить рассуждение.
Вот сюда-то прежде всего логики и должны были направить свои усилия.
Точно то же произошло и для иррационального числа.
Смутная идея непрерывности, которой мы обязаны интуиции, разрешилась в сложную систему неравенств, касающуюся целых чисел.
Благодаря ей трудности при переходе к пределу или при рассмотрении бесконечно малых окончательно устраняются.
Теперь в анализе остаются только целые числа или конечные и бесконечные системы целых чисел, связанных между собой сетью отношений равенства или неравенства.
Математика, как говорят, арифметизировалась.
Прежде всего возникает вопрос: закончилась ли эта эволюция?
Достигли ли мы наконец абсолютной строгости? Ведь на каждой стадии эволюции наши предки также верили в то, что достигли ее. Если они ошибались, то не ошибаемся ли и мы подобно им?
Мы надеемся уже не прибегать в наших рассуждениях к интуиции; философы скажут нам, что это иллюзия. Чистая логика всегда приводила бы нас только к тавтологии; она не могла бы создать ничего нового; сама по себе она не может дать начало никакой науке.
Эти философы правы в одном смысле: для того чтобы создать геометрию или какую бы то ни было науку, нужно нечто другое, чем чистая логика. Для обозначения этого другого у нас нет иного слова, кроме слова «интуиция». Но сколько различных идей скрывается под одним и тем же словом?
Сравним такие четыре аксиомы:
1) Две величины, равные третьей, равны между собой.
2) Если теорема справедлива для 1 и если доказывается, что она справедлива для n + 1, когда справедлива для n, то она будет справедлива для всех целых чисел.
3) Если точка C лежит на прямой между A и B, а точка D между A и C, то точка D будет лежать между A и B.
4) Через одну точку можно провести только одну прямую, параллельную данной прямой.
Все четыре аксиомы должны быть приписаны интуиции, и однако же первая является выражением одного из правил формальной логики; вторая — настоящее синтетическое суждение à priori, это — основание строгой математической индукции; третья есть обращение к воображению; четвертая — скрытое определение.
Интуиция не основывается неизбежно на свидетельстве чувств; чувства скоро оказались бы бессильными; мы не можем, например, представить себе тысячеугольника и однако же интуитивно рассуждаем о многоугольниках вообще, а они включают в себя как частный случай и тысячеугольник.
Вам известно, что подразумевал Понселе под принципом непрерывности. То, что справедливо для действительной величины, говорил Понселе, должно быть справедливо и для мнимой; то, что справедливо для гиперболы, асимптоты которой действительны, должно быть поэтому справедливо и для эллипса, асимптоты которого мнимые. Понселе был одним из самых интуитивных умов в этом веке; он был страстным интуитивистом и чуть ли не гордился этим; он видел в принципе непрерывности одну из самых смелых своих концепций, и, однако, этот принцип не покоился на свидетельстве чувств — уподоблять гиперболу эллипсу было скорее противоречием этому свидетельству. Здесь имело место лишь какое-то поспешное инстинктивное обобщение, что, впрочем, я не хочу отстаивать.
Итак, мы имеем несколько родов интуиции; сначала обращение к чувствам и воображению; затем обобщение посредством индукции, так сказать, срисованное с приемов экспериментальных наук; наконец, мы имеем интуицию чистого числа, ту интуицию, из которой вышла вторая из только что приведенных мною аксиом и которая может дать начало настоящему математическому умозаключению.
Две первые не могут дать достоверности, выше я показал это на примерах; но кто станет серьезно сомневаться относительно третьей, кто станет сомневаться в арифметике?
В новейшем анализе, — если пожелаем взять на себя труд быть строгими, — находят место лишь силлогизмы и обращения к этой интуиции чистого числа, единственной интуиции, которая не может обмануть нас. Можно сказать, что ныне достигнута абсолютная строгость.
Философы приводят еще другое возражение: «То, что вы выигрываете в строгости, — говорят они, — вы теряете в объективности. Вы можете подняться к вашему логическому идеалу, только порвав те связи, которые соединяют вас с реальностью. Ваша наука непогрешима, но она может оставаться такою, только замыкаясь в свою раковину и запрещая себе всякое сношение с внешним миром. При малейшем же применении ей надо выходить оттуда».
Я хочу, например, доказать, что такое-то свойство принадлежит такому-то объекту, понятие которого кажется мне сначала неопределимым, потому что оно интуитивно. Я сначала затрудняюсь или бываю должен удовлетвориться приближенными доказательствами; наконец, я решаюсь дать моему объекту точное определение — то, которое позволяет мне установить это свойство безукоризненным образом.
«Что же после, — говорят философы, — ведь остается еще доказать, что отвечающий этому определению объект есть тот же самый, который открыт вам интуицией; или еще, что такой-то реальный и конкретный объект, сходство которого с вашей интуитивной идеей вы думаете узнать непосредственно, отвечает вашему новому определению. Только тогда вам будет можно утверждать, что он имеет данное свойство. Вы только переместили затруднение».
Это неточно; затруднение не перемещено, оно разделено. Предложение, которое нужно было обосновать, в действительности состояло из двух различных истин, которые не сразу были отличены друг от друга. Первая — математическая истина, и теперь она строго обоснована. Вторая — истина экспериментальная. Только опыт может научить нас, что такой-то реальный, конкретный объект отвечает или не отвечает такому-то абстрактному определению. Эта вторая истина не доказывается математически, но она и не может доказываться, точно так же, как не могут доказываться эмпирические законы физических и естественных наук. Было бы безрассудно требовать большего.
Но разве не большой шаг вперед — различить то, что долгое время неправильно смешивали?
Не значит ли это, что нужно совсем откинуть это возражение философов? Этого я не хочу сказать; сделавшись строгой, математическая наука получает искусственный характер, который поражает всех; она забывает свое историческое происхождение; видно, как вопросы могут разрешаться, но уже не видно больше, как и почему они ставятся.
Это указывает нам на то, что недостаточно одной логики; что наука доказывать не есть еще вся наука и что интуиция должна сохранить свою роль как дополнение — я сказал бы, как противовес или как противоядие логики.
Я уже имел случай указать то место, какое должна иметь интуиция в преподавании математических наук. Без нее молодые умы не могли бы проникнуться пониманием математики; они не научились бы любить ее и увидели бы в ней лишь пустое словопрение; без нее особенно они никогда не сделались бы способными применять ее.
Но теперь я хотел бы говорить прежде всего о роли интуиции в самой науке. Если она полезна для студента, то она еще более полезна для творческого ума ученого.
Мы ищем реальность, но что такое реальность?
Физиологи учат нас, что организмы образуются из клеточек; химики прибавляют, что сами клеточки образуются из атомов. Значит ли это, что эти атомы или клеточки составляют реальность или по крайней мере единственную реальность? Тот типичный способ, по которому упорядочиваются эти клеточки и который порождает единство индивидуума, не есть ли также реальность, гораздо более интересная, чем реальность отдельных элементов, и стал ли бы думать какой-нибудь натуралист, что он достаточно знает слона, если бы он всегда изучал это животное только под микроскопом?
Но в математике есть нечто аналогичное. Логик, так сказать, разлагает каждое доказательство на множество элементарных операций; когда рассмотрят одну за другой эти операции и констатируют, что каждая из них правильна, можно ли думать, что понят истинный смысл доказательства? Поймут ли его даже тогда, когда напряжением памяти будут в состоянии повторить это доказательство, воспроизведя все эти элементарные операции в том же порядке, в каком их разместил изобретатель?
Очевидно, нет, мы еще не овладеем всецело реальностью; то нечто, что создает единство доказательства, совсем ускользнет от нас.
Чистый анализ предоставляет в наше распоряжение много приемов, гарантируя нам их непогрешимость; он открывает нам тысячу различных путей, которым мы смело можем вверяться; мы уверены, что не встретим там препятствий; но какой из всех этих путей скорее всего приведет нас к цели? Кто скажет нам, какой следует выбрать? Нам нужна способность, которая позволяла бы видеть цель издали, а эта способность есть интуиция. Она необходима для исследователя в выборе пути, она не менее необходима и для того, кто идет по его следам и хочет знать, почему он избрал его.
Если вы присутствуете при шахматной партии, чтобы понять ее, вам недостаточно будет знать правила ходов фигур. Это только позволило бы вам знать, что каждый ход сделан по правилам игры, а это преимущество, конечно, не имело бы большой цены. Однако в таком положении был бы читатель математической книги, если бы он был только логиком. Совсем другое дело — понимать партию; это значит знать, почему игрок выдвигает одну фигуру раньше другой, которую он мог бы подвинуть, не нарушая правил игры. Это значит подметить скрытую мысль, которая делает из этого ряда последовательных ходов нечто вроде организованного целого. Тем более эта способность необходима для самого игрока, т. е. для изобретателя.
Оставим это сравнение и вернемся к математике. Посмотрим, что произошло, например, с идеей непрерывной функции. Вначале это был только чувственный образ, например образ непрерывной черты, проведенной мелом на черной доске. Потом мало-помалу она стала очищаться: скоро воспользовались ею для построения сложной системы неравенств, которая воспроизводила, так сказать, все черты первообраза; когда это построение было окончено, тогда освободили ее от «строительных лесов», отбросив то грубое представление, которое служило ей некоторое время подпорой, а теперь стало бесполезным; не осталось больше ничего, кроме самого построения, безупречного в глазах логика. Однако же если бы первообраз совершенно исчез из нашей памяти, как бы мы угадали, по какой прихоти были построены так, одно за другим, эти неравенства?
Вы найдете, может быть, что я злоупотребляю сравнениями; однако позвольте мне сделать еще одно. Вы, конечно, видели те тонкие соединения кремнистых игл, которые образуют скелет известных губок. Когда органическая материя исчезла, остается только хрупкое, изящное кружево. Правда, тут только кремнезем, но что интересно, так это та форма, которую принял этот кремнезем, и мы не можем понять ее, если мы не знаем живой губки, которая именно и придала ему такую форму. Так, старые интуитивные понятия наших отцов даже тогда, когда мы оставили эти понятия, придают еще форму логическим построениям, которыми мы заменили их.
Этот вид целого необходим для изобретателя; он одинаково необходим и для того, кто хочет действительно понять изобретателя; может ли логика дать нам его?
Нет; названия, которое дают ей математики, было бы достаточно для того, чтобы доказать это. В математике логика называется анализом, анализ же значит разделение, рассечение. Поэтому она не может иметь никакого другого орудия, кроме скальпеля и микроскопа.
Таким образом, логика и интуиция играют каждая свою необходимую роль. Обе они неизбежны. Логика, которая одна может дать достоверность, есть орудие доказательства; интуиция есть орудие изобретательства.
Но едва только я сформулировал этот вывод, как меня охватывает сомнение.
Вначале я различал два рода математических умов: одни — логики и аналитики, другие — интуитивисты и геометры. Но ведь и аналитики также были изобретателями. Имена, которые я привел в начале этой главы, избавляют меня от необходимости настаивать на этом.
Здесь есть какое-то, по крайней мере кажущееся, противоречие, которое необходимо разъяснить.
Прежде всего, думаем ли мы, что эти логики всегда шли от общего к частному, как, казалось бы, побуждали их к этому законы формальной логики? Но так они не могли бы расширить границы науки; научное завоевание можно делать только с помощью обобщения.
В одной из глав «Науки и гипотезы» я имел случай исследовать природу математического умозаключения; я показал, как это умозаключение, не переставая быть безусловно строгим, могло поднимать нас от частного к общему при помощи процесса, который я назвал математической индукцией.
Благодаря этому-то процессу аналитики и двигали вперед науку и если разобраться в самых деталях их доказательств, то можно в любой момент найти его там рядом с классическим силлогизмом Аристотеля.
Итак, мы уже видим, что аналитики — не просто искусные мастера силлогизмов, вроде схоластов.
С другой стороны, можно ли поверить тому, что они всегда шли шаг за шагом, не имея пред своими взорами той цели, которой они хотели достигнуть? Им нужно было угадывать дорогу, которая привела бы их к этой цели, они нуждались в путеводителе.
Этот путеводитель — прежде всего аналогия.
Например, одно из любимых рассуждений аналитиков основано на применении возрастающих функций. Известно, что оно помогло разрешению многих проблем; тогда в чем состоит роль изобретателя, который хочет применить его к новой проблеме? Нужно прежде всего, чтобы он признал аналогию этого вопроса с теми вопросами, которые были уже разрешены с помощью этого метода; потом нужно, чтобы он заметил, чем отличается этот новый вопрос от других, и чтобы он вывел отсюда те видоизменения, которым должен подвергнуться метод.
Но как подметить эти аналогии и различия?
В только что приведенном мною примере они почти всегда очевидны, но я мог бы подыскать другие примеры, где они гораздо более скрыты, и, для того чтобы открыть их, часто требуется незаурядная проницательность.
Чтобы не упустить из виду этих скрытых аналогий, т. е. чтобы иметь возможность изобретения, аналитики должны, без помощи чувств и воображения, иметь непосредственное ощущение того, что создает единство умозаключения, что, так сказать, создает его душу и внутреннюю жизнь.
Когда беседовали с Эрмитом, он никогда не прибегал к чувственному образу, и однако вы скоро заметили бы, что самые абстрактные сущности были для него живыми существами. Он не видел их, но чувствовал, что они не представляют собой искусственного подбора, что у них есть какой-то принцип внутреннего единства.
Но, скажут, здесь опять интуиция. Станем ли мы заключать отсюда, что сделанное вначале различение было только кажущимся, что есть только один род умов и все математики — интуитивисты, по крайней мере те, которые способны изобретать?
Нет, наше различение соответствует некоторой действительности. Выше я сказал, что есть несколько видов интуиции. Я сказал, насколько интуиция чистого числа — та, из которой может вытекать строгая математическая индукция, — отличается от чувственной интуиции, для которой работает воображение в собственном смысле.
Менее ли глубока, чем кажется с первого взгляда, пропасть, которая разделяет их? Окажется ли при внимательном рассмотрении, что эта чистая интуиция сама по себе не может обойтись без помощи чувств? Это дело психолога и метафизика, и я не стану обсуждать этот вопрос. Но довольно и того, что дело подлежит сомнению, чтобы я имел право признавать и утверждать существенное различие между двумя родами интуиции; у них не один и тот же объект и они, по-видимому, пользуются двумя различными способностями нашей души; можно сказать, что это два прожектора, наведенные на два чуждые друг другу мира.
Интуиция чистого числа, интуиция чистых логических форм как раз озаряет и направляет тех, кого мы назвали аналитиками.
Она-то и позволяет им не только доказывать, но еще и изобретать. Через нее-то они и подмечают сразу общий план логического здания, и это — без всякого вмешательства со стороны чувств.
Отказываясь от помощи воображения, которое, как мы видели, не всегда бывает непогрешимо, они могут двигаться вперед, не боясь ошибиться. Счастливы же те, которые могут обойтись без этой поддержки! Мы должны удивляться им; но как они редки!
Итак, среди аналитиков есть изобретатели, но их немного.
Большинство из нас, если бы захотели смотреть вдаль с помощью одной чистой интуиции, тотчас почувствовали бы головокружение. Наша слабость нуждается в более прочной поддержке, и, несмотря на исключения, о которых мы только что говорили, тем не менее верно то, что чувственная интуиция есть самое обыкновенное орудие изобретения в математике. По поводу последних моих размышлений выдвигается вопрос, для которого у меня нет времени ни решить его, ни даже изложить с надлежащими подробностями.
Уместно ли сделать новое разделение и отличать среди аналитиков тех, которые пользуются главным образом этой чистой интуицией, и тех, для которых на первом месте стоит формальная логика?
Например, Эрмит, которого я неоднократно упоминал, не может быть причислен к геометрам, которые применяют чувственную интуицию; но он также и не логик в собственном смысле этого слова. Он не скрывает своего отвращения к чисто дедуктивным процессам, которые исходят от общего и направляются к частному.
Пока мы не выходим из области сознания, понятие времени относительно ясно. Мы не только без труда отличаем настоящее ощущение от воспоминания прошлых ощущений или предвидения будущих, но мы вполне знаем, что мы хотим сказать, когда утверждаем, что из двух явлений сознания, которые у нас сохранились в памяти, одно было раньше другого или же что из двух предвидимых явлений сознания одно будет раньше другого.
Когда мы говорим, что два факта сознания одновременны, этим мы хотим сказать, что они глубоко проникают друг друга, так что анализ не может разделить их, не искажая их.
Порядок, в котором мы размещаем явления сознания, не терпит никакого произвола. Он предписан нам, и мы ничего не можем изменить в нем.
Я должен прибавить только одно замечание. Для того чтобы какая-нибудь совокупность ощущений сделалась воспоминанием, которое могло бы быть распределено во времени, нужно, чтобы она перестала быть актуальной, чтобы она утратила для нас значение своей бесконечной сложности, иначе она оставалась бы актуальной. Нужно, чтобы она, так сказать, кристаллизовалась вокруг центра ассоциаций идей, который будет как бы меткой. Только тогда мы можем распределять во времени наши воспоминания, когда они потеряют, таким образом, всякую жизненность, — подобно тому, как ботаник распределяет в своем гербарии цветы, когда они уже высушены. Но число меток может быть только конечным. При учете этого психологическое время было бы прерывным. Откуда же возникает представление, что между двумя некоторыми мгновениями существуют еще и другие мгновения? Мы распределяем наши воспоминания во времени, но мы знаем, что продолжают пребывать и пустые промежутки. Как это могло бы быть, если бы время не было формой, ранее существовавшей в нашем сознании? Как мы узнали бы о наличии пустых промежутков, если возбуждать наше сознание они в состоянии не иначе, как только через свое содержание?
Но это не все; мы хотим вложить в эту форму не только явления нашего сознания, но и явления, ареной которых служат другие сознания. Более того, мы хотим вложить в нее физические факты, то, чем мы заселяем пространство, которое ни одно сознание не воспринимает непосредственно. Это необходимо, потому что без этого наука не могла бы существовать. Одним словом, нам дано психологическое время, и мы хотим создать научное и физическое время. Здесь-то и начинается трудность, или скорее трудности, потому что их две.
Вот перед нами два сознания, как два непроницаемые друг для друга мира. По какому праву мы хотим заключить их в одну и ту же форму, измерить их одной и той же мерой? Не похоже ли это на то, что мы хотим мерить длину с помощью грамма или взвесить с помощью метра?
И потом, почему мы говорим об измерении? Мы, может быть, знаем, что такой-то факт предшествует такому-то другому, но не знаем, насколько он предшествует.
Итак, есть две трудности:
Первая. Можем ли мы преобразовать психологическое время, которое есть время качественное, во время количественное?
Вторая. Можем ли мы измерить одной и той же мерой факты, которые совершаются в различных мирах?
Первая трудность была замечена уже давно; она была предметом долгих дискуссий, и можно сказать, что этот вопрос разрешен.
Мы не имеем непосредственной интуиции равенства двух промежутков времени. Тот, кто думает, что обладает такой интуицией, обманут иллюзией.
Когда я говорю: от двенадцати часов дня до часа проходит то же время, что и от двух до трех, какой смысл имеет это утверждение?
При малейшем размышлении обнаруживается, что оно само по себе не имеет никакого смысла. Оно получит только тот смысл, какой мне угодно будет ему придать с помощью определения, допускающего конечно, известную степень произвола.
Психологи могли бы обойтись без такого определения; физики, астрономы — не могли бы; посмотрим, как они справились с этим.
Для измерения времени они пользуются маятником и принимают по определению, что все циклы колебаний этого маятника имеют равную длительность. Но это только первое приближение; температура, сопротивление воздуха, барометрическое давление изменяют ход маятника. Если бы мы избавились от этих причин, то добились бы гораздо большего приближения, но все же это было бы только приближение. Новые причины, которыми мы до сих пор пренебрегали, — электрические, магнитные или иные — не замедлили бы внести свои мало заметные возмущения.
В самом деле, самые лучшие часы время от времени требуют поправки, и эти поправки делаются с помощью астрономических наблюдений; уславливаются, что звездные часы отмечают один и тот же час, когда одна и та же звезда проходит через меридиан. Другими словами, именно звездные сутки, т. е. время оборота Земли, и есть постоянная единица времени. По новому определению, заменяющему то, которое было взято из колебаний маятника, допускается, что два полных оборота Земли вокруг своей оси имеют одинаковую длительность.
Однако астрономы не удовлетворились и этим новым определением. Многие из них думают, что морские приливы и отливы действуют как тормоз на наш земной шар и что вращение Земли становится все более и более замедленным. Таким образом, можно было бы объяснить видимое ускорение движения Луны, движение которой оказывалось быстрее, чем это допускает теория, потому что наши часы, т. е. Земля, отставали бы.
Все это, скажут, маловажно; без сомнения, наши измерительные инструменты несовершенны, но довольно и того, что мы можем представить некий совершенный инструмент. Этого идеала невозможно достигнуть, но достаточно будет понять его и, таким образом, ввести строгость в определение единицы времени.
К сожалению, этой строгости здесь нет. Какой же постулат мы неявно допускаем, когда для измерения времени мы пользуемся маятником?
Тот, что длительность двух идентичных явлений одна и та же; или, если угодно, что одни и те же причины требуют одного и того же времени, чтобы произвести одни и те же действия.
На первый взгляд это — хорошее определение равенства двух длительностей.
Однако будем осторожны. Не может ли случиться так, что в один прекрасный день опыт опровергнет наш постулат?
Объяснюсь: я предполагаю, что в некотором пункте мира происходит явление α, приводящее в конце известного времени к следствию α'. В другом пункте мира, весьма удаленном от первого, происходится явление β, которое влечет за собой следствие β'. Явления α и β одновременны, так же как и следствия α' и β'.
В позднейшую эпоху явление α повторяется почти в тождественных условиях, и одновременно в очень отдаленном пункте мира также повторяется почти в тех же условиях явление β.
Следствия α' и β' тоже повторяются. Я предполагаю, что следствие α' будет иметь место значительно раньше следствия β'.
Если бы опыт засвидетельствовал такую картину, наш постулат оказался бы опровергнутым.
В самом деле, опыт учил бы нас, что первая длительность αα' равна первой длительности ββ' и что вторая длительность αα' короче второй длительности ββ'. Напротив, наш постулат требовал бы, чтобы обе длительности αα' были равны между собой — точно так же, как и обе длительности ββ'. Равенство и неравенство, выведенные из опыта, были бы несовместимы с двумя равенствами, которые получены из постулата.
А можем ли мы утверждать, что только что высказанные мной гипотезы абсурдны? Они ничуть не нарушают закона противоречия. Без сомнения, они не могли бы осуществиться, не нарушив закона достаточного основания. Но, для того чтобы оправдать столь фундаментальное определение, я предпочел бы другую гарантию.
Но это не все.
В физической реальности следствие вызывает не одна причина; его возникновению способствует множество различных причин, причем нет никакого средства различить вклад каждой из них.
Физики стараются найти это различие; но они находят его лишь приближенно, и, какого бы прогресса они ни достигли, они всегда будут находить его только приближенно. Приближенно верно, что колебание маятника обусловлено единственно притяжением Земли; но, строго говоря, даже притяжение Сириуса влияет на маятник.
При этих условиях ясно, что причины, вызвавшие некоторое следствие, будут воспроизводиться всегда лишь приближенно.
А в таком случае нам следует изменить на постулат и наше определение. Вместо того чтобы говорить:
«Одним и тем же причинам требуется одно и то же время, чтобы произвести одни и те же следствия», мы должны сказать: «Почти идентичным причинам требуется почти одно и то же время, чтобы произвести почти одни и те же следствия».
Итак, наше определение есть не более чем приближенное.
Кроме того, как вполне справедливо замечает Калинон в недавнем мемуаре (Calinon A. Etude sur les diverses grandeurs. — Paris: Gauthier-Villars, 1897): «Одно из обстоятельств, сопровождающих любое явление, есть скорость вращения Земли; если эта скорость меняется, то при воспроизведении этого явления она составляет обстоятельство, которое уже не остается тождественным себе. Но предполагать, что эта скорость вращения постоянна, значит предполагать, что мы умеем измерять время».
Следовательно, наше определение еще не удовлетворительно; оно, конечно, не совпадает с тем, которое неявно принимают вышеупомянутые астрономы, когда они утверждают, что вращение Земли идет, все замедляясь.
Какой смысл имеет в их устах это утверждение? Мы можем понять это, только проанализировав те доводы, которые они приводят в пользу своего предложения.
Прежде всего они говорят, что приливное трение, производя теплоту, должно поглощать живую силу. Поэтому они ссылаются на принцип живых сил или принцип сохранения энергии.
Потом они говорят, что вековое ускорение Луны, вычисленное по закону Ньютона, было бы меньше, чем выведенное из наблюдений, если бы не вводили поправку на замедление вращения Земли.
Итак, они ссылаются на закон Ньютона. Другими словами, они определяют длительность следующим образом: время должно быть определено так, чтобы оправдывались закон Ньютона и закон живых сил.
Закон Ньютона есть истина экспериментальная; как таковая она только приближенна, а это указывает на то, что мы имеем пока еще только приближенное определение.
Если мы предположим теперь, что принимается другой способ измерения времени, то опыты, на которых основан закон Ньютона, тем не менее отчасти сохранят свой смысл. Только формулировка закона будет иной, потому что она будет выражена на другом языке; очевидно, она будет гораздо менее простой.
Поэтому определение, неявно принимаемое астрономами, может быть резюмировано так:
Время должно быть определено так, чтобы уравнения механики были возможно более просты.
Другими словами, нет способа измерения времени, который был бы истиннее другого; общепринятый способ измерения является только более удобным.
Мы не имеем права сказать о двух часах, что одни идут хорошо, а другие плохо; мы можем сказать только, что выгоднее положиться на показания первых.
На трудность, которую мы только что рассмотрели, как я сказал, часто указывалось; среди новейших работ, где затрагивается этот вопрос, я укажу, кроме небольшого сочинения Калинона, на курс механики Андрада.
Вторая трудность привлекала до сих пор гораздо меньше внимания; однако она вполне аналогична предыдущей; и даже с логической точки зрения я должен был бы прежде говорить о ней.
В двух различных сознаниях происходят два психологических явления; когда я говорю, что они одновременны, то что я хочу этим сказать?
Когда я говорю, что некоторое физическое явление, которое происходит вне всякого сознания, предшествует психологическому явлению или следует за ним, то что я хочу этим сказать?
В 1572 г. Тихо Браге заметил в небе новую звезду. Огромный взрыв произошел на некотором весьма отдаленном светиле; но он произошел задолго перед тем; потребовалось по меньшей мере двести лет, прежде чем свет, испущенный этой звездой, достиг нашей Земли. Стало быть, этот взрыв предшествовал открытию Америки.
Итак, когда я говорю это, когда я рассматриваю это гигантское явление, которое не имело, быть может, ни одного свидетеля, — потому что на спутниках этой звезды может быть не было обитателей, — когда я говорю, что это явление предшествовало образованию в сознании Христофора Колумба зрительного представления острова Эспаньолы, то что я хочу этим сказать?
Достаточно немного поразмыслить, чтобы понять, что все эти утверждения сами по себе не имеют никакого смысла.
Они получают смысл только в силу соглашения[26].
Прежде всего мы должны спросить себя, как могла явиться мысль ввести в один и тот же кадр столько непроницаемых друг для друга миров.
Мы хотим представить себе внешний мир, и только такой ценой мы надеемся узнать его.
Этим представлением мы никогда не будем обладать, мы знаем это: слишком велика наша немощь.
Мы хотим по крайней мере, чтобы можно было постигнуть тот бесконечный разум, для которого было бы возможно это представление — что-то вроде великого сознания, которое все видело бы и все распределяло бы в своем времени, подобно тому как мы распределяем в нашем времени то немногое, что мы видим.
Такая гипотеза очень груба и несовершенна, потому что этот высший разум был бы только полубогом, бесконечный в одном смысле, он был бы ограничен в другом, потому что он имел бы лишь несовершенное воспоминание о прошлом; и у него не могло бы быть другого, так как без этого все воспоминания были бы для него одинаково настоящими и для него не существовало бы времени.
Однако когда мы говорим о времени для всего, что происходит вне нас, не принимаем ли мы бессознательно эту гипотезу; не ставим ли мы себя на место этого несовершенного бога; и сами атеисты не ставят ли себя на то место, которое занимал бы бог, если бы он существовал?
То, что я сейчас говорил, может быть, показывает нам, почему мы постарались ввести в один и тот же кадр все физические явления. Но это нельзя считать определением одновременности, потому что этот гипотетический разум, если бы даже он существовал, был бы для нас непостижим.
Итак, надо искать что-то иное.
Обычные определения, которые годятся для психологического времени, нас уже не могли бы удовлетворить. Два одновременных психологических факта столь тесно связаны между собой, что анализ не может их разделить, не искажая их. То же ли самое бывает для двух физических фактов? Не ближе ли мое настоящее к моему вчерашнему прошлому, чем к настоящему Сириуса?
Говорили также, что два факта должны рассматриваться как одновременные, если порядок их последовательности может быть по желанию переставлен. Очевидно, что это определение не может быть пригодно для двух физических фактов, которые совершаются на больших расстояниях друг от друга, и, — что касается их, — непонятно даже то, что такое может представлять эта обратимость; впрочем, надо было бы определить сначала самую последовательность.
Итак, попытаемся отдать себе отчет в том, что подразумевается под одновременностью или предшествованием, а для этого разберем некоторые примеры.
Я написал письмо; потом это письмо было прочитано другом, которому я его послал. Вот два факта, имевшие ареной два различных сознания. В то время, как я писал это письмо, я обладал его зрительным образом, и в свою очередь мой друг получил тот же самый образ, читая это письмо.
Хотя оба эти фактора происходят в непроницаемых друг для друга мирах, я не колеблясь, смотрю на первый факт как на предшествовавший второму, потому что я верю, что он является причиной последнего.
Я слышу гром и заключаю, что произошел электрический разряд; я, не колеблясь, смотрю на это физическое явление как на предшествовавшее звуковому представлению, возникшему в моем сознании, потому что я верю, что оно было причиной последнего.
Следовательно, вот правило, которому мы следуем, — единственное правило, которому мы можем следовать: когда одно явление кажется нам причиной другого, мы смотрим на него как на предшествовавшее.
Итак, через причину мы определяем время; но очень часто два факта являются связанными постоянным соотношением, и тогда, как узнаем мы, какой из них — причина и какой — следствие? Мы допускаем, что предшествующий факт есть причина другого факта — последующего. Но тогда причину мы определяем через время. Как освободиться от этого petitio principii[27]? Мы говорим то post hoc, ergo propter hoc[28], то propter hoc, ergo post hoc[29], можно ли выйти из этого заколдованного круга?
Посмотрим же, не как достигают выхода из него, — ибо вполне достигнуть этого нельзя, — но как ищут этого выхода.
Я совершаю произвольный акт A и потом испытываю ощущение D, которое я считаю следствием акта A; с другой стороны, я заключаю на каком-нибудь основании, что это следствие не является непосредственным, но что вне моего сознания совершилось два факта B и C, свидетелем которых я не был, и совершились так, что B было следствием A, C — следствием B, и D — следствием C.
Но почему так? Если я имею основание считать четыре факта A, B, C, D связанными между собой причинной связью, то почему надо располагать их в причинном порядке ABCD и в то же время в хронологическом порядке ABCD скорее, чем во всяком другом?
Ясно, что в акте A я ощущал активность, тогда как, испытывая ощущение D, я пассивен. Поэтому я считаю A начальной причиной и D — конечным следствием; поэтому я и помещаю A в начале цепи и D в конце; но почему ставить B перед C, а не C перед B?
Когда предлагается такой вопрос, обыкновенно отвечают: хорошо известно, что B есть причина C, потому что всегда видят B происходящим прежде С. Оба эти явления, когда есть свидетель, протекают в известном порядке; если аналогичные явления происходят без свидетеля, то нет основания нарушать этот порядок.
Это так; но здесь надо быть осторожным; мы никогда не знаем физических явлений B и C непосредственно; то, что мы знаем, — это отношения B' и С', вызванные соответственно явлениями B и C. Наше сознание непосредственно говорит нам, что B' предшествует С', и мы принимаем, что B и C следуют в том же порядке.
Это правило на самом деле кажется весьма естественным, и однако его приходится часто нарушать. Мы слышим раскат грома только спустя несколько секунд после электрического разряжения облака. Из двух громовых ударов — одного отдаленного, другого близкого — не может ли первый предшествовать второму, хотя раскат второго мы услышали прежде раската первого?
Новая трудность: имеем ли мы достаточное право говорить о причине явления? Если все части Вселенной в известной степени взаимосвязаны, то любое явление будет не следствием единственной причины, а результатом бесконечного множества причин; оно, как часто говорят, есть следствие состояния Вселенной в предшествующий момент.
Как выразить правила, применяемые к столь сложным обстоятельствам? И однако только ценой учета этих обстоятельств правила могут стать общими и строгими.
Чтобы нам не растеряться в этой бесконечной сложности, сделаем более простое предположение; рассмотрим три светила, например Солнце, Юпитер и Сатурн, а для большей простоты будем считать их сжатыми в материальные точки и изолированными от остального мира.
Достаточно знать положения и скорости трех тел в данный момент, чтобы определить положения и скорости их в следующий момент, а следовательно, и в какой угодно момент. Положения их в момент t определяют их положения в момент t + h, а также их положения в момент t — h.
Даже более того; положение Юпитера в момент t, взятое вместе с положением Сатурна в момент t + а, определяет положение Юпитера и Сатурна в какой угодно момент. Совокупность положений, которые занимают Юпитер в момент t + ε и Сатурн, в момент t + a + ε, связана с совокупностью положений, которые занимают Юпитер в момент t и Сатурн в момент t + а, законами, столь же точными, как закон Ньютона, хотя и более сложными.
Но тогда почему же считать одну из этих совокупностей причиною другой, что привело бы к заключению об одновременности момента t Юпитера и момента t + а Сатурна?
Здесь могут иметь место только соображения удобства и простоты, которые и в самом деле очень важны.
Но перейдем к примерам менее искусственным; чтобы дать отчет в определении, которое неявно допускается учеными, посмотрим на их работу и поищем, на основании каких правил они определяют одновременность.
Я возьму два простых примера: измерение скорости света и определение долгот.
Когда астроном говорит мне, что такое-то звездное явление, видимое в его телескопе в настоящий момент, произошло, однако, пятьдесят лет тому назад, я пытаюсь понять, что он хочет сказать, и прежде всего спрашиваю у него, откуда он это знает, т. е. как он измерил скорость света.
Он начал с того, что принял скорость света постоянной и, в частности, одинаковой во всех направлениях. Это и есть постулат, без которого не могло бы быть произведено никакое измерение этой скорости. Этот постулат никогда нельзя будет проверить непосредственно на опыте; последний мог бы его опровергнуть, если бы результаты различных измерений не согласовывались между собой. Мы должны считать себя счастливыми тем, что этого противоречия нет и что те небольшие расхождения, которые могут возникнуть, легко объяснимы.
Во всяком случае этот постулат, согласующийся с законом достаточного основания, был принят всеми; для меня важно то, что он дает нам новое правило для отыскания одновременности, совершенно отличное от того, которое мы изложили выше.
Допустив этот постулат, посмотрим, как была измерена скорость света. Известно, что Рёмер пользовался затмениями спутников Юпитера и отыскивал, насколько событие опаздывало сравнительно с предсказанием.
Но как получалось это предсказание? При помощи астрономических законов, например закона Ньютона.
Нельзя ли было бы так же хорошо объяснить наблюдаемые факты, если бы приписать скорости света величину, несколько отличную от принятой, и допустить, что закон Ньютона является лишь приближенным? Пришлось бы только заменить закон Ньютона другим, более сложным.
Таким образом, для скорости света принимается такая величина, чтобы астрономические законы, совместимые с этой величиной, были по возможности наиболее простыми.
Когда моряки или географы определяют долготу, им приходится решать как раз ту проблему, которая занимает нас; они должны, не находясь в Париже, вычислять парижское время.
Как они делают это?
Или они берут выверенный в Париже хронометр. Качественная проблема одновременности сводится к количественной проблеме измерения времени. Мне не надо говорить о трудностях, присущих этой последней проблеме, потому что я достаточно настаивал на них выше.
Или же они наблюдают такое астрономическое явление, как затмение Луны, и допускают, что это явление замечается одновременно во всех точках земного шара.
Это не совсем верно, потому что распространение света не мгновенно; если бы требовалась абсолютная точность, то нужно было бы сделать поправку, применяя некоторое сложное правило.
Или же, наконец, они пользуются телеграфом. Прежде всего, ясно, что получение сигнала, например, в Берлине происходит позже отправления того же сигнала из Парижа. Это — правило причины и следствия, разобранное выше.
Но насколько позже? Обычно длительностью передачи пренебрегают и оба события считаются одновременными. Но, соблюдая строгость, следовало бы вводить еще небольшую поправку при помощи сложного вычисления; на практике она не вводится, потому что она была бы гораздо менее значительна, чем ошибки наблюдения; но этим не устраняется теоретическая необходимость ее учета с нашей точки зрения, т. е. с точки зрения строгого определения.
В конце этого исследования я хочу отметить два обстоятельства: 1) применяемые правила весьма разнообразны; 2) трудно отделить качественную проблему одновременности от количественной проблемы измерения времени; при этом безразлично, будем ли мы пользоваться хронометром или учитывать скорость передачи, например скорость света, ибо невозможно измерить скорость, не измерив времени.
Пора сделать выводы.
Мы не обладаем непосредственно ни интуицией одновременности, ни интуицией равенства двух промежутков времени.
Если мы думаем, что имеем эту интуицию, то это иллюзия.
Мы заменяем ее некоторыми правилами, которые применяем, почти никогда не отдавая себе в том отчета.
Но какова природа этих правил?
Нет правила общего, нет правила строгого; есть множество ограниченных правил, которые применяются в каждом отдельном случае.
Эти правила не предписаны нам и можно было бы позабавиться, изобретая другие; однако невозможно было бы уклониться от них, не усложнив сильно формулировку законов физики, механики и астрономии. Следовательно, мы выбираем эти правила не потому, что они истинны, а потому, что они наиболее удобны, и мы можем резюмировать их так:
«Одновременность двух событий или порядок их следования, равенство двух длительностей должны определяться так, чтобы формулировка естественных законов была по возможности наиболее простой. Другими словами, все эти правила, все эти определения — только плод неосознанного стремления к удобству».
В моих прежних статьях, посвященных пространству, я особенно останавливался на проблемах, выдвигаемых неевклидовой геометрией, оставляя почти совсем в стороне другие, более трудные для разрешения вопросы, как, например, вопросы, касающиеся числа измерений. Все геометрии, которые я рассматривал, имели, таким образом, общее основание — континуум трех измерений, — которое было одно и то же для всех и различалось лишь вычерчиваемыми в нем фигурами или результатами предпринимаемых в нем измерений.
В этом первоначально аморфном континууме можно вообразить сеть линий и поверхностей, затем можно условиться считать клетки этой сети равными между собой и только после такого условия этот континуум, сделавшись измеримым, становится евклидовым или неевклидовым пространством. Стало быть, из этого аморфного континуума может получиться или то или другое из двух пространств — так же, как на белом листе бумаги можно начертить либо прямую, либо круг.
В пространстве мы знаем прямолинейные треугольники, сумма углов которых равна двум прямым; но мы знаем также криволинейные треугольники, сумма углов которых меньше двух прямых. Существование одних не более сомнительно, чем существование других. Дать сторонам первых название прямых — значит принять евклидову геометрию; дать сторонам последних название прямых — значит принять неевклидову геометрию. Поэтому вопрос, какую геометрию следует принимать, равносилен вопросу: какой линии следует дать название прямой.
Очевидно, что опыт не может разрешить подобный вопрос; ведь мы, например, не обратимся к опыту за решением вопроса, как назвать прямую: АВ или CD. С другой стороны, я не могу также сказать, чтобы я не имел права дать название прямых сторонам неевклидовых треугольников, потому что они не отвечают вечной идее прямой, которой я обладаю по интуиции. Пусть я имею интуитивную идею стороны евклидова треугольника; но я также имею интуитивную идею стороны неевклидова треугольника. Почему я вправе прилагать название прямой к первой из этих идей, а не ко второй? В чем заключалось бы участие этих слогов в деле составления этой интуитивной идеи? Очевидно, когда мы говорим, что евклидова прямая есть истинная прямая и что неевклидова прямая не есть истинная прямая, мы просто хотим сказать, что первая интуитивная идея соответствует более замечательному объекту, чем вторая. Но как мы решаем, что этот объект является более замечательным? Это я исследовал в «Науке и гипотезе».
Мы видели там вмешательство опыта; если евклидова прямая более замечательна, чем неевклидова, то это прежде всего означает, что она мало отличается от некоторых замечательных естественных предметов, от которых сильно отличается неевклидова прямая. Но, скажут, определение неевклидовой прямой искусственно; попробуем на время принять его, мы увидим тогда, что два круга разных радиусов оба получат название неевклидовых прямых, тогда как относительно двух кругов одного и того же радиуса возможно, что один будет удовлетворять определению, а другой нет, и тогда, если мы перенесем одну из этих так называемых прямых, не деформируя ее, то она перестает быть прямой. Но по какому праву мы считаем равными две фигуры, которые евклидовы геометры называют двумя кругами одного и того же радиуса? Это мы считаем потому, что перенося одну из них без деформации, мы можем наложить ее на другую так, чтобы она совпала с последней. Но почему мы говорим, что это перенесение происходит без деформации? Этому невозможно дать достаточное обоснование. Среди всех постижимых движений есть такие, о которых евклидовы геометры говорят, что они не сопровождаются деформацией; но есть и другие, о которых неевклидовы геометры сказали бы, что они не сопровождаются деформацией. В первых, так называемых евклидовых движениях евклидовы прямые остаются евклидовыми прямыми, а неевклидовы прямые не остаются неевклидовыми прямыми; в движениях второго рода, или в движениях неевклидовых, неевклидовы прямые остаются неевклидовыми прямыми, а евклидовы прямые не остаются евклидовыми прямыми. Следовательно, не доказано, что было бы нелепо называть прямыми стороны неевклидовых треугольников; доказано только, что это было бы неосновательно, если бы продолжали называть движениями без деформации евклидовы движения; но так же можно было бы показать, что неосновательно было бы называть прямыми стороны евклидовых треугольников, если бы движениями без деформации назывались неевклидовы движения.
Теперь, что мы хотим сказать, когда говорим, что евклидовы движения суть истинные движения без деформации? Мы просто хотим сказать, что они более замечательны, чем другие; а почему они более замечательны? Потому что некоторые замечательные естественные тела — твердые тела — испытывают приблизительно такие движения.
И когда мы спрашиваем: можно ли себе представить неевклидово пространство? — то это значит: можно ли для нас представить себе мир, в котором были бы замечательные естественные предметы, представляющие приближенно форму неевклидовых прямых, и замечательные естественные тела, часто претерпевающие движения, приблизительно подобные неевклидовым движениям? Я показал в «Науке и гипотезе», что на этот вопрос надо ответить утвердительно.
Часто делалось замечание о том, что если бы все тела Вселенной начали одновременно и в одинаковой пропорции расширяться, то у нас не было бы никаких средств заметить это, потому что все наши измерительные инструменты увеличивались бы одновременно с самими предметами, для измерения которых они служат. После этого расширения мир продолжал бы свой ход и ничто не говорило бы нам, что произошло столь важное событие.
Другими словами, два мира, которые были бы подобны друг другу (понимая «подобие» в смысле третьей книги «Геометрии»), были бы совершенно неразличимы. Мало того: миры не только будут неразличимы, если они одинаковы или подобны, т. е. если можно перейти от одного к другому, меняя оси координат или меняя масштаб, служащий для измерения длин; они будут также неразличимы, если можно перейти от одного к другому путем какого бы ни было «точечного преобразования». Объяснюсь подробнее. Я предполагаю, что каждой точке одного соответствует одна и только одна точка другого и обратно; и, сверх того, пусть координаты одной точки будут непрерывными функциями, безразлично какими, координат соответствующей точки. Затем я предполагаю, что каждому предмету первого мира соответствует во втором предмет той же природы, помещающийся как раз в соответствующей точке. Я предполагаю, наконец, что это соответствие, осуществившееся в начальный момент, сохраняется на неопределенное время. Тогда у нас не было бы никакого средства отличить эти два мира один от другого. Когда говорят об относительности пространства, обычно понимают ее не в таком широком смысле, тогда как ее следовало бы понимать именно таким образом.
Если один из этих миров есть наш евклидов мир, тогда то, что обитатели его назовут прямою, будет наша евклидова прямая, а то, что обитатели второго мира назовут прямою, будет кривая, обладающая такими же свойствами по отношению к тому миру, который они населяют, и по отношению к тем движениям, которые они назовут движениями без деформации; потому их геометрией будет евклидова геометрия, но их прямая не будет наша евклидова прямая. Это будет своя прямая, преобразованная путем того точечного преобразования, которое позволяет переходить от нашего мира к их миру; прямые этих людей не будут наши прямые, но они будут иметь между собой те же самые отношения, как наши прямые между собой; вот в каком смысле я говорю, что их геометрией будет наша геометрия. Тогда, если мы захотим решительно объявить, что они ошибаются, что их прямая не есть истинная прямая, если мы не пожелаем признать, что подобное утверждение не имеет никакого смысла, то мы по крайней мере должны будем признать, что у этих людей нет каких-либо средств заметить свою ошибку.
Все это сравнительно легко для понимания, и я уже так часто повторял это, что считаю бесполезным дальше распространяться об этом предмете. Евклидово пространство не есть форма, наложенная на нашу чувственность, потому что мы можем вообразить себе неевклидово пространство; но оба пространства — евклидово и неевклидово — имеют одно общее основание, тот аморфный континуум, о котором я говорил вначале; из этого континуума мы можем извлечь то евклидово пространство, то пространство Лобачевского — так же как, реализуя соответствующее градуирование, мы можем из неградуированного термометра сделать либо термометр Фаренгейта, либо термометр Реомюра.
Тогда возникает вопрос: не является ли этот аморфный континуум, который наш анализ оставил существующим, формой, наложенной на нашу чувственность? Мы расширили бы тюрьму, в которой заключена наша чувственность, но это все-таки была бы тюрьма.
Эта непрерывность обладает известным числом свойств, свободных от всякой идеи измерения. Исследование этих свойств составляет предмет науки, разработанной несколькими великими геометрами, в особенности Риманом и Бетти, и получившей название Analysis Situs. В этой науке отвлекаются от всякой количественной идеи; например, если констатируется, что точка B лежит на некоторой линии между точками A и C, то довольствуются этим утверждением и не трудятся узнать, прямая ли линия ABC или кривая, равна ли длина АВ длине АС или вдвое больше ее.
Поэтому теоремы Analysis Situs имеют ту особенность, что они остались бы справедливыми, если бы фигуры чертились неискусной рукой, которая грубо искажала бы все пропорции и заменяла бы прямые более или менее извилистыми линиями. Выражаясь математически, они не менялись бы от какого бы то ни было «точечного преобразования». Часто говорили, что метрическая геометрия — геометрия количественная, тогда как проективная геометрия — геометрия чисто качественная; это не совсем верно: то, что отличает прямую от других линий, это — еще свойства, остающиеся в некоторых отношениях количественными. Следовательно, настоящая качественная геометрия есть Analysis Situs.
Те же самые вопросы, которые возникали по поводу истин евклидовой геометрии, снова возникают относительно теорем Analysis Situs. Можно ли их получить путем дедуктивного рассуждения? Не являются ли они скрытыми соглашениями? Или они суть экспериментальные истины? Являются ли они свойствами формы, наложенной на нашу чувственность или на наш разум?
Я просто замечу, что два последних решения исключают друг друга; это не всегда ясно сознавали. Мы не можем допустить одновременно, что невозможно представить себе пространство четырех измерений и что опыт доказывает нам, что пространство имеет три измерения. Экспериментатор ставит природе вопрос: то или другое? — И он не может ставить его, не представляя себе в то же время двух сторон альтернативы. Если бы невозможно было представить себе одну из этих сторон, то было бы бесполезно да и невозможно обращаться к опыту. Мы не нуждаемся в наблюдении для того, чтобы знать, что часовая стрелка не стоит на 15-м делении циферблата, потому что мы заранее знаем, что делений только 12, и мы не могли бы взглянуть на 15-е деление, чтобы проверить, находится ли там стрелка, потому что такого деления нет.
Заметим также, что здесь эмпирики свободны от одного из самых сильных возражений, какое можно направить против них, — от возражения, которое заранее делает совершенно напрасными все их усилия приложить свой тезис к истинам евклидовой геометрии. Эти истины строги, а всякий опыт может быть только приближенным. В Analysis Situs бывает достаточно и приближенных опытов, чтобы дать строгую теорему; например, если мы видим, что пространство не может иметь ни двух или менее двух измерений, ни четырех или более четырех измерений, то мы уверены, что оно имеет их три, ибо не может иметь два с половиной или три с половиной.
Из всех теорем Analysis Situs самая важная — та, которая выражается словами: пространство имеет три измерения. Этой теоремой мы сейчас займемся, причем поставим вопрос в таком виде: что мы хотим сказать, когда говорим, что пространство имеет три измерения?
В «Науке и гипотезе»[30] я выяснил, откуда у нас появляется понятие физической непрерывности и как из него могло возникнуть понятие математической непрерывности. Случается, что мы бываем способны отличать друг от друга два впечатления, не будучи в состоянии отличить каждое из них от одного и того же третьего. Так мы легко можем отличить вес 12 граммов от веса 10 граммов, тогда как невозможно отличить вес 11 граммов ни от того, ни от другого.
Подобное утверждение символически можно представить так:
A = В, B = C, A < C.
Это была бы формула физической непрерывности, как дает ее нам непосредственный опыт. Происходящее отсюда нетерпимое противоречие устраняется введением математической непрерывности. Эта последняя представляет собой лестницу с бесконечно большим числом ступеней (числа соизмеримые или несоизмеримые), причем эти ступени занимают по отношению друг к другу внешнее положение, а не захватывают друг друга, как это имеет место, сообразно с предыдущей формулой, между элементами физической непрерывности.
Физическая непрерывность есть, так сказать, неразрешенная (неразложенная на составные элементы) туманность, и самые совершенные инструменты не могли бы разрешить ее. Конечно, если бы мы определяли вес с помощью хороших весов, а не просто рукою, то мы бы отличили вес 11 граммов от весов 10 и 12 граммов, и тогда наша формула представилась бы так:
A < B, B < C, A < C.
Но между A и B и между В и С всегда нашлись бы такие новые элементы D и E, что
A = D, D = B, A < B; B = E, E = C, B < C;
трудность только передвинулась бы; туманность всегда оставалась бы неразрешенной; разрешить ее может только мышление — и математическая непрерывность есть именно туманность, разрешенная на отдельные звезды.
Однако до сих пор мы не вводили понятия о числе измерений. Что мы хотим сказать, когда говорим, что математическая непрерывность или физическая непрерывность имеет два или три измерения?
Нам надо прежде всего ввести понятие купюры, приспособляя это понятие сначала к исследованию физических непрерывностей. Мы видели, чем характеризуется физическая непрерывность; каждый элемент этой непрерывности состоит из совокупности впечатлений; может случиться: либо что один элемент не может быть отличен от другого элемента той же непрерывности, если этот новый элемент соответствует совокупности слишком мало разнящихся впечатлений, либо, напротив, что отличение возможно; наконец, может быть и так, что два элемента, неотличимые от одного и того же третьего, тем не менее могут быть отличены друг от друга.
После этого, если A и B суть два различимых элемента непрерывности C, то можно найти ряд элементов
E1, E2, …, Еn
принадлежащих той же самой непрерывности С и притом таких, что каждый из них неотличим от предыдущего; так E1 будет элементом, неотличимым от A, а Еn — от B. Поэтому можно будет переходить от A к B непрерывным путем, в то же время не выходя из C. Если это условие выполнено для двух любых элементов A и B непрерывности C, то мы можем сказать, что эта непрерывность С односвязна.
Теперь выделим некоторые из элементов C, которые могут или все быть отличены друг от друга, или же могут сами образовать одну или несколько непрерывностей. Совокупность элементов, таким образом произвольно выбранных из всех элементов C, даст то, что я назову купюрой или купюрами.
Возьмем снова на C два любых элемента A и В. Тогда или можно будет найти еще ряд элементов
E1, E2, …, Еn
таких, чтобы: 1) все они принадлежали С; 2) чтобы каждый из них был неотличим от следующего; E1 неотличим от A и Еn — от B; 3) кроме того, чтобы каждый из элементов Е отличался от каждого из элементов купюры. Или же, напротив, во всех рядах E1, E2, …, Еn, удовлетворяющих первым двум условиям, будет содержаться элемент E, неотличимый от одного из элементов купюры. В первом случае мы можем идти от A к B непрерывным путем, не выходя из С и не встречая купюр; во втором случае это невозможно.
Итак, если для любых двух элементов A и B непрерывности C всегда находит себе место первый случай, мы скажем, что C остается односвязной, несмотря на купюры.
Следовательно, если мы известным, впрочем произвольным, образом выберем купюры, то может случиться, что непрерывность или останется, или не останется односвязной; в последнем случае мы скажем, что она разделена купюрами.
Нельзя не заметить, что все эти определения основаны единственно на том простом факте, что две совокупности впечатлений то могут, то не могут быть различаемы.
Если для разделения непрерывности достаточно бывает рассматривать в качестве купюр известное число элементов, отличимых друг от друга, то говорят, что эта непрерывность одного измерения; если же, напротив, для разделения непрерывности необходимо брать в качестве купюр систему элементов, которые сами образуют одну или несколько непрерывностей, то мы скажем, что эта непрерывность многих измерений.
Если для разделения непрерывности C достаточно купюр, образующих одну или несколько непрерывностей одного измерения, то мы скажем, что C есть непрерывность двух измерений; если достаточно купюр, образующих одну или несколько непрерывностей самое большее двух измерений, то мы скажем, что C есть непрерывность трех измерений, и т. д.
Чтобы оправдать это определение, надо посмотреть, так ли геометры вводят понятие трех измерений в начале своих работ. Что же мы видим? Чаще всего они начинают с определения поверхностей как пределов объемов или частей пространства, линий как пределов поверхностей, точек как пределов линий и утверждают, что тот же самый процесс не может идти дальше.
Здесь та же идея; чтобы разделить пространство, нужны купюры, которые называются поверхностями; чтобы разделить поверхности, нужны купюры, которые называются линиями: чтобы разделить линии, нужны купюры, которые называются точками; дальше идти нельзя, и точка не может быть разделена, точка не есть непрерывность; тогда линии, которые можно делить купюрами, не представляющими собой непрерывностей, будут непрерывностями одного измерения; поверхности, которые можно делить купюрами — непрерывностями одного измерения, — будут непрерывностями двух измерений; наконец, пространство, которое можно делить купюрами — непрерывностями двух измерений, — будет непрерывностью трех измерений.
Таким образом, определение, которое я только что дал, по существу не отличается от обычных определений; я только хотел сообщить ему форму, применимую не к математической непрерывности, а к физической, которая одна только доступна для представления, и вместе с тем хотел сохранить всю его точность.
Впрочем, видно, что это определение приложимо не только к пространству, что во всем том, что воспринимается нашими чувствами, мы встречаем характерные признаки физической непрерывности, что и допускает возможность одной и той же классификации; легко было бы найти примеры непрерывностей четырех, пяти измерений в смысле предыдущего определения; эти примеры возникают в уме сами собой.
Наконец, я мог бы изложить, если бы у меня было на это время, как наука, о которой я говорил выше и которую Риман назвал Analysis Situs, учит нас различать непрерывности одного и того же числа измерений и как классификация этих непрерывностей опирается по-прежнему на рассмотрение купюр.
Из этого понятия произошло понятие математической непрерывности многих измерений тем же способом, каким физическая непрерывность одного измерения произвела математическую непрерывность одного измерения. Формула
A > C, A = B, B = C,
которая резюмировала грубые данные опыта, содержала в себе нетерпимое противоречие. Чтобы избавиться от него, нужно было ввести новое понятие, впрочем, принимая во внимание существенные свойства физической непрерывности многих измерений. Математическая непрерывность одного измерения допускает единственную шкалу с бесконечным числом ступеней, которые соответствуют разным соизмеримым или несоизмеримым значениям одной и той же величины. Для того чтобы получить математическую непрерывность n измерений, достаточно взять n подобных шкал, ступени которых будут соответствовать различным значениям n независимых величин, называемых координатами. Таким образом, получится изображение физической непрерывности n измерений, и это изображение — насколько это возможно — будет верным, если только не желают допустить существование того противоречия, о котором я говорил выше.
Теперь, по-видимому, решен вопрос, который мы поставили себе вначале. Когда мы говорим, что пространство имеет три измерения, то мы, скажут нам, подразумеваем, что совокупность точек пространства удовлетворяет определению, которое мы только что дали для физической непрерывности трех измерений. Удовлетвориться этим значило бы предположить, что мы знаем, что такое совокупность точек пространства или даже что такое одна точка пространства.
А это не так просто, как кажется. Все думают, что знают, что такое точка; и мы даже полагаем, что нет нужды в ее определении именно потому, что мы слишком хорошо знаем ее. Конечно, нельзя требовать от нас умения определить ее, потому что при переходе от определения к определению необходимо должен наступить момент, когда приходится остановиться. Но когда же следует остановиться?
Прежде всего, остановка произойдет тогда, когда дойдем до предмета, который поддается восприятию наших чувств или который можно себе представить; тогда определение станет бесполезным; ребенку ведь не определяют барана, ему говорят: вот баран.
Но тогда мы должны спросить себя, возможно ли представить себе точку пространства. Те, которые отвечают «да», не думают, что на самом деле они представляют себе белую точку, начерченную мелом на черной доске, или черную точку, сделанную пером на белой бумаге, и что они могут представить себе только предмет или — лучше — те впечатления, которые этот предмет может производить на их чувства.
Когда они стараются представить себе точку, они представляют себе те впечатления, которые возбуждаются весьма малыми предметами. Нет необходимости прибавлять, что два различных предмета, хотя бы и весьма малые, могут производить совершенно различные впечатления, но я не останавливаюсь на этой трудности, которая потребовала бы некоторого обсуждения.
Однако дело не в этом; недостаточно представлять себе какую-то точку, нужно представить себе такую-то точку и иметь средство отличать ее от другой точки. И в самом деле, для того чтобы мы могли применить к непрерывности то правило, которое я изложил выше и благодаря которому можно узнать число ее измерений, мы должны опереться на тот факт, что два элемента этой непрерывности то могут, то не могут быть различены. Следовательно, нужно, чтобы мы могли в некоторых случаях представлять себе такой-то элемент и отличать его от другого элемента.
Вопрос состоит в том, чтобы знать: одинаковы ли точка, которую я представлял себе час тому назад, и точка, которую я представляю себе теперь, или они различны. Другими словами, как нам узнать, является ли той же самой точка, занимаемая предметом A в момент α, что и точка, занимаемая предметом B в момент β, или — еще лучше — что это значит?
Я сижу в своей комнате, предмет лежит на моем столе; я не двигаюсь с места в продолжение одной секунды, никто не касается предмета; мне хочется сказать, что точка A, которую занимал этот предмет в начале этой секунды, тождественна с точкой В, которую он занимал в конце; но это совсем не так: от точки A до точки B — 30 километров, потому что предмет принимал участие в движении Земли. Будь предмет мал или велик, мы не можем узнать, не переменил ли он абсолютное положение в пространстве; и не только мы не можем утверждать этого, но самое это утверждение не имеет никакого смысла и во всяком случае не может соответствовать никакому представлению.
Но тогда мы можем спросить себя, изменилось ли относительное положение предмета по отношению к другим предметам, и прежде всего — по отношению к нашему телу; если впечатления, производимые на нас этим предметом, не изменились, то мы будем склонны думать, что это относительное положение также не изменилось; если впечатления изменились, то мы решим, что этот предмет переменил либо состояние, либо относительное положение. Остается выбрать одно из двух решений. В «Науке и гипотезе» я выяснил, как мы пришли к различению перемен положения. Впрочем, в дальнейшем я опять возвращусь к этому. Итак, мы приходим к знанию того, осталось ли относительное положение предмета по отношению к нашему телу тем же самым или нет.
Если теперь мы видим, что два предмета сохранили свое относительное положение по отношению к нашему телу, то мы заключаем, что относительное положение этих двух предметов по отношению друг к другу не изменилось; но мы приходим к такому заключению лишь путем косвенного рассуждения. Единственная вещь, которую мы знаем непосредственно, — это относительное положение предметов по отношению к нашему телу.
И тем более только в силу косвенного рассуждения мы верим (и еще сама эта вера обманчива), будто знаем, изменилось ли абсолютное положение предмета.
Словом, система координатных осей, к которым мы естественно относим все внешние предметы, — это система осей, неизменно связанная с нашим телом, которую мы и носим всюду с собой.
Невозможно представить себе абсолютное пространство; когда я хочу представить себе одновременно предметы и самого себя в движении в абсолютном пространстве, в действительности я представляю себя неподвижным наблюдателем движения вокруг меня различных предметов и человека, который находится вне меня, но которого я условно называю «я».
Будет ли трудность разрешена, если условимся все относить к этим осям, связанным с нашим телом? Знаем ли мы на этот раз, что такое точка, определенная таким образом своим относительным положением по отношению к нам? Многие ответят «да» и скажут, что они «локализуют» внешние предметы.
Что это значит? Локализовать предмет — значит просто представить себе те движения, которые нужно было бы сделать, чтобы достигнуть его; объяснюсь подробнее: дело не в том, чтобы представлять себе самые движения в пространстве, но только те мускульные ощущения, которыми сопровождаются эти движения и которые не предполагают предсуществование понятия пространства.
Если мы предположим, что два различных предмета последовательно займут одно и то же относительное положение по отношению к нам, то впечатления, которые вызовут в нас эти два предмета, будут весьма различны; мы локализуем их в одной и той же точке просто потому, что нужно сделать одни и те же движения, чтобы достигнуть их; кроме того, не видно, что еще они могли бы иметь общего.
Но при данном предмете можно вообразить многие различные виды движений, которые одинаково позволяли бы достигнуть его. Тогда, если мы представим себе точку, представляя ряд мускульных ощущений, которыми сопровождались бы движения, позволяющие достигнуть этой точки, то мы будем иметь много совершенно различных способов представлять себе одну и ту же точку. Если мы не захотим довольствоваться этим решением, если пожелаем ввести рядом с мускульными ощущениями, например, зрительные ощущения, то будем иметь еще один или два способа представлять себе ту же самую точку, и трудность только увеличится. Относительно всех способов возникает такой вопрос: почему мы думаем, что все эти столь различные между собой представления все же воспроизводят одну и ту же точку?
Другое замечание: я только что сказал, что мы естественно относим внешние предметы к нашему собственному телу; что мы, так сказать, всюду носим с собой систему осей, к которым мы относим все точки пространства, и что эта система осей как бы неизменно связана с нашим телом. Следует заметить, что строго говорить о неизменно связанных с нашим телом осях можно было бы только при условии, если бы различные части нашего тела сами были неизменно связаны друг с другом. Так как этого нет, то прежде чем относить внешние предметы к этим фиктивным осям, мы должны предположить, что наше тело может быть снова приведено в то же самое положение.
В «Науке и гипотезе» я указал на ту первенствующую роль, которую играют движения нашего тела в генезисе понятия пространства. Для существа совершенно неподвижного не было бы ни пространства, ни геометрии; напрасно вокруг него перемещались бы внешние предметы; перемены в его впечатлениях, вызванные этими перемещениями, это существо приписывало бы не изменениям положения, а простым изменениям состояния; у такого существа не было бы никаких средств различить эти два рода изменений, и это различие, основное для нас, для него не имело бы никакого смысла.
Движения, которые мы сообщаем нашим членам, в результате вызывают перемену впечатлений, производимых внешними предметами на наши чувства; другие причины также могут вызвать эту перемену, но мы научаемся отличать изменения, производимые собственными нашими движениями, и легко распознаем их по двум причинам: 1) потому что они суть движения волевые; 2) потому что они сопровождается мускульными ощущениями.
Таким образом, мы естественно подразделяем изменения, которым могут подвергаться наши впечатления, на две категории, которым я, быть может, дал неподходящее название: 1) изменения внутренние — волевые и сопровождающиеся мускульными ощущениями; 2) изменения внешние — противоположного характера.
Мы замечаем затем, что среди внешних изменений есть такие, которые могут быть исправлены благодаря внутреннему изменению, которым все приводится в первоначальное состояние; и есть другие, которые не могут быть исправлены таким образом (так, когда внешний предмет переместился, мы можем, перемещаясь сами, занять по отношению к этому предмету то же самое относительное положение и таким образом восстановить совокупность первоначальных впечатлений; если же этот предмет не переместился, но изменил свое состояние, то это становится невозможным). Отсюда новое различие между внешними изменениями: те, которые могут быть исправлены указанным способом, мы назовем изменениями положения, а другие — изменениями состояния.
Предположим, например, шар, одно полушарие которого будет синим, а другое — красным; сначала он обращен к нам синим полушарием; потом он повертывается к нам красным полушарием. Затем вообразим шарообразный сосуд, содержащий в себе синюю жидкость, которая вследствие химической реакции становится красной. В обоих случаях ощущение красного сменяет ощущение синего; наши чувства испытали одни и те же впечатления, последовавшие в одном и том же порядке, и однако же эти два изменения мы рассматриваем как совершенно различные; первое есть перемещение, второе — изменение состояния. Почему?
Потому что в первом случае мне достаточно обойти вокруг шара, чтобы занять место против красного полушария и таким образом восстановить первоначальное ощущение красного.
Сверх того, если бы два полушария вместо того, чтобы быть красным и синим, были желтым и зеленым, то в какой форме тогда сообщалось бы мне вращение шара? Раньше красный цвет следовал за синим, а теперь зеленый следует за желтым; а между тем я говорю, что оба шара испытывали одно и то же вращение, что и тот и другой повернулись вокруг своей оси; но ведь я не могу сказать, чтобы зеленый цвет был в том же отношении к желтому, как, красный к синему; почему же тогда я пришел к заключению, что оба шара подверглись одному и тому же перемещению? Очевидно, потому, что как в том, так и в другом случае я могу восстановить первоначальное ощущение, обойдя вокруг шара и делая одни и те же движения; а что я выполнил одни и те же движения, это я знаю потому, что я испытал одни и те же мускульные ощущения; следовательно, для того чтобы знать это, мне нет нужды раньше знать геометрию и представлять себе движения моего тела в геометрическом пространстве.
Другой пример. Перед моим глазом перемещается предмет: изображение его сначала было в центре сетчатки, потом оно образуется на краю ее; прежнее ощущение передавалось мне нервным волокном, примыкающим к центру сетчатки; новое ощущение передается мне другим нервным волокном, исходящим от края сетчатки; эти два ощущения качественно различны, иначе, как бы мог я различить их? Тогда почему я прихожу к тому заключению, что эти два качественно различных ощущения представляют одно и то же перемещающееся изображение? Это потому, что я могу следовать глазом за предметом, волевым и сопровождающимся мускульными ощущениями перемещением глаза отводить изображение в центр сетчатки и таким образом восстанавливать первоначальное ощущение.
Предположим, что изображение красного предмета перешло из центра сетчатки A на край ее B, затем что изображение синего предмета также переходит из центра сетчатки A на край ее B; я буду думать, что эти два предмета подверглись одному и тому же перемещению. Почему? Потому что и в том и в другом случае я могу восстановить первоначальное ощущение, для чего я должен буду совершить одно и то же движение глаза, и я буду знать, что мой глаз совершил одно и то же движение, потому что я испытал одни и те же мускульные ощущения.
Если бы я не мог двигать глазом, то на каком основании я допускал бы, что ощущение красного в центре сетчатки так относится к ощущению красного на краю сетчатки, как ощущение синего в центре к ощущению синего на краю? Я имел бы только четыре качественно различные ощущения, и если бы спросили меня, связаны ли они отношением, которое я только что высказал, то вопрос показался бы мне смешным — все равно, как если бы меня спросили, существует ли аналогичное отношение между слуховым ощущением, осязательным ощущением и обонятельным ощущением.
Теперь рассмотрим внутренние изменения, т. е. такие, которые произведены волевыми движениями нашего тела и сопровождаются мускульными изменениями; они дадут место следующим двум замечаниям, аналогичным тем, которые мы только что сделали относительно внешних изменений.
1) Я могу предположить, что мое тело перенесено из одного пункта в другой, сохраняя при этом ту же самую позу; таким образом, все части этого тела сохранили или снова приняли то же самое относительное положение, хотя абсолютное положение их в пространстве изменилось; я могу также предположить, что не только место моего тела переменилось, но что его поза стала другой, например, что мои руки, которые только что были сложены, теперь вытянуты.
Итак, я должен различать простые перемены места без изменения позы и изменения позы. И те и другие являются мне в виде мускульных ощущений. Как же я прихожу к различению их? Благодаря тому, что первые могут служить для исправления внешнего изменения, последние же не могут; в крайнем случае они могут дать лишь несущественную поправку.
Это последнее обстоятельство я буду сейчас объяснять так, как я объяснял бы его тому, кто уже знаком с геометрией; но не следует заключать отсюда, что для того, чтобы делать это различие, надо уже знать геометрию; прежде чем я познакомлюсь с ней, я констатирую факт (так сказать, экспериментально), не будучи в состоянии объяснить его. Но чтобы различать эти два рода изменения, мне не нужно объяснять факт, мне достаточно констатировать его.
Как бы то ни было, объяснить его нетрудно.
Предположим, что внешний предмет переместился; если мы хотим, чтобы различные части нашего тела снова заняли по отношению к этому предмету свое первоначальное относительное положение, нужно, чтобы эти различные части заняли равным образом свое первоначальное относительное положение по отношению друг к другу. Только те внутренние изменения, которые удовлетворят этому последнему условию, будут в состоянии исправить внешнее изменение, произведенное перемещением этого предмета. Таким образом, если относительное положение моего глаза по отношению к моему пальцу изменилось, то я могу отвести глаз в его первоначальное относительное положение по отношению к предмету и восстановить таким образом первоначальные зрительные ощущения; но тогда изменится относительное положение пальца по отношению к предмету и осязательные ощущения не будут восстановлены.
2) Равным образом мы констатируем, что одно и то же внешнее изменение может быть исправлено двумя внутренними изменениями, соответствующими различным мускульным ощущениям. И здесь я могу констатировать это, не зная геометрии; я не нуждаюсь и ни в чем другом; но я буду объяснять факт, пользуясь геометрическим языком. Чтобы перейти из положения A в положение B, я могу воспользоваться несколькими путями. Одному из этих путей будет соответствовать один ряд мускульных ощущений S; другому будет соответствовать другой ряд мускульных ощущений S", которые вообще будут совершенно иными, потому что в действие будут приведены другие мускулы.
Почему я должен считать эти два ряда S и S" соответствующими одному и тому же перемещению AВ? Потому, что эти два ряда способны исправить одно и то же внешнее изменение. За исключением этого, они не имеют ничего общего.
Рассмотрим теперь два внешних изменения α и β, которые представляют, например, вращение шара, наполовину синего и наполовину красного, и вращение шара, наполовину желтого и наполовину зеленого; эти два изменения не имеют ничего общего, потому что одно воспринимается нами как переход от синего к красному, а другое — как переход от желтого к зеленому. С другой стороны, рассмотрим два ряда внутренних изменений S и S"; они также не имеют ничего общего. И, однако, я говорю, что α и β соответствуют одному и тому же перемещению и что S и S" также соответствуют одному и тому же перемещению.
Почему? Очень просто — потому, что S может исправить β так же, как α, и потому, что α может быть исправлено посредством S" так же, как посредством S. Тогда возникает вопрос: если я констатировал, что S исправляет α и β и что S" исправляет α, то уверен ли я в том, что S" исправляет также β? Только опыт может открыть нам, подтверждается ли этот закон. Если бы он не подтверждался по крайней мере приближенно, то не было бы геометрии, не было бы пространства, потому что нам не для чего было бы классифицировать внешние и внутренние изменения, как я это только что делал, и отличать, например, изменения состояния от изменения положения.
Интересно посмотреть, какова была во всем этом роль опыта. Опыт показал мне, что некоторый закон подтверждается приближенно. Он не открыл мне, ни как существует пространство, ни что последнее удовлетворяет условию, о котором идет речь. В самом деле, я знал до всякого опыта, что пространство или удовлетворит этому условию, или нет; я не могу также сказать, чтобы опыт научил меня, что геометрия возможна; я прекрасно вижу, что геометрия возможна, потому что она не содержит в себе противоречия; опыт научил меня только тому, что геометрия полезна.
Хотя двигательные впечатления, как я только что объяснил, имели преобладающее влияние в генезисе понятия пространства, так что это понятие никогда бы не возникло без них, но интересно исследовать также роль зрительных впечатлений и установить, сколько измерений имеет «визуальное пространство», применив с этой целью к указанным впечатлениям определение § 3.
Первое затруднение налицо; рассмотрим ощущение красного цвета, возникающее в некоторой точке сетчатки; и, с другой стороны, — ощущение синего цвета, возникающее в той же самой точке сетчатки. Нам нужно некоторое средство, чтобы узнать, что эти два качественно различных ощущения имеют нечто общее. По соображениям, изложенным в предыдущем параграфе, мы могли узнать это только из движений глаза и из тех наблюдений, к которым они приводили. Если бы глаз был неподвижен или если бы мы не сознавали своих движений, то мы не могли бы узнать, что у этих двух качественно различных ощущений есть что-нибудь общее; мы не могли бы усмотреть в них то, что наделяет их геометрическим характером. Поэтому зрительные ощущения без мускульных ощущений не имели бы ничего геометрического, так что можно сказать, что нет чистого визуального пространства. Для того чтобы устранить это затруднение, рассмотрим только однородные ощущения, например ощущения красного (цвета), различающиеся друг от друга только той точкой сетчатки, в которой они возникают. Ясно, что у меня нет никакого основания делать столь произвольный выбор из всех возможных зрительных ощущений, чтобы соединить в одном и том же классе все ощущения одного и того же цвета, в какой бы точке сетчатки они ни возникали. Я никогда не подумал бы об этом, если бы не был научен раньше — тем способом, который мы только что видели, — отличать перемены состояния от перемен положения, т. е. если бы мой глаз был неподвижен. Два ощущения одного и того же цвета, возникающие в двух разных частях сетчатки, представлялись бы мне качественно различными, как и два ощущения разных цветов.
Ограничиваясь ощущениями красного, я, таким образом, налагаю на себя искусственное ограничение и систематически пренебрегаю главной стороной вопроса; но благодаря только этой уловке я и могу анализировать визуальное пространство, не примешивая к нему двигательного ощущения.
Вообразим линию, проведенную на сетчатке и разделяющую поверхность ее на две части; оставим в стороне ощущения красного, возникающие в точках этой линии, или ощущения, которые слишком мало разнятся от них, чтобы можно было их отличить. Совокупность этих ощущений образует род купюры, которую я обозначу через C; ясно, что достаточно этой купюры, чтобы разделить совокупность возможных ощущений красного, и что если я возьму два ощущения красного, возникающие в двух точках, расположенных по одну и по другую сторону линии, то я не могу перейти от одного из этих ощущений к другому непрерывным путем, не переходя в известный момент через ощущение, принадлежащее данной купюре.
Поэтому, если купюра имеет n измерений, то вся совокупность моих ощущений красного, или, если угодно, полное визуальное пространство, будет иметь n + 1 измерение.
Теперь я различаю ощущения красного, возникающие в какой-нибудь точке купюры C. Совокупность этих ощущений образует новую купюру C'. Ясно, что эта купюра разделит купюру C, если понимать слово «разделит» в том же самом смысле.
Следовательно, если купюра C' имеет n измерений, то купюра C будет иметь n + 1, а полное зрительное пространство n + 2 измерения.
Если бы все ощущения красного, возникающие в одной и той же точке сетчатки, рассматривались как тождественные, то купюра C', сводясь к одному элементу, имела бы 0 измерений, а визуальное пространство имело бы 2 измерения.
Однако очень часто говорят, что глаз сообщает нам ощущение третьего измерения и позволяет до некоторой степени узнавать расстояние до предметов. Если пытаются проанализировать это ощущение, то констатируют, что оно сводится или к осознанию схождения глазных осей, или к осознанию того усилия при аккомодации, которое делает ресничный мускул для того, чтобы привести изображение в фокус.
Поэтому два ощущения красного цвета, возникающие в одной и той же точке сетчатки, будут рассматриваться как тождественные только в случае, если они сопровождаются тем же ощущением схождения и тем же ощущением усилия при аккомодации — или по крайней мере ощущениями схождения и аккомодации, настолько мало отличающимися, что их нельзя распознать.
Поэтому купюра С' сама является непрерывностью, а купюра C имеет более одного измерения.
Но именно опыт учит нас, что когда два зрительных ощущения сопровождаются одним и тем же ощущением схождения, они сопровождаются также одним и тем же ощущением аккомодации.
Тогда, если мы образуем новую купюру С" из всех тех ощущений купюры С', которые сопровождаются известным ощущением схождения, то по предыдущему закону они все будут неразличимы и могут рассматриваться как тождественные; поэтому С" не будет непрерывностью и будет иметь 0 измерений; а так как С" разделяет С', то отсюда следует, что C' имеет одно измерение, C — два и полное визуальное пространство — три измерения.
Но было бы то же самое, если бы опыт показал нам обратное и если бы известное ощущение схождения не всегда сопровождалось одним и тем же ощущением аккомодации? В таком случае два ощущения, возникающие в одной и той же точке сетчатки и сопровождающиеся одним и тем же ощущением схождения, — два ощущения, которые, следовательно, принадлежали бы оба купюре С", — могли бы тем не менее быть различимы, потому что сопровождались бы двумя различными ощущениями аккомодации. Поэтому С" было бы в свою очередь непрерывностью и имело бы (по меньшей мере) одно измерение; тогда C' имело бы два измерения, C — три, а полное визуальное пространство имело бы четыре измерения.
Можно ли сказать, что именно опыт научает нас тому, что пространство имеет три измерения, что именно, исходя из экспериментального закона, нам пришлось приписать ему три измерения? Но мы произвели здесь только, так сказать, физиологический опыт; и если бы даже достаточно было приспособить для глаз стекла подходящей конструкции, чтобы нарушить согласие между ощущениями схождения и аккомодации, то скажем ли мы, что достаточно надеть такие очки — и пространство будет иметь четыре измерения и что оптик, который построил бы их, придал бы пространству еще одно измерение? Очевидно, нет; мы можем только сказать: опыт научил нас, что удобно приписывать пространству три измерения. Но визуальное пространство есть только часть пространства, и в самом понятии этого пространства есть нечто искусственное, как я выяснил это вначале. Истинное пространство есть пространство моторное; им-то мы и займемся в следующей главе.
Изложим вкратце полученные результаты. Мы задались целью исследовать, какой смысл имеют слова: пространство имеет три измерения. Прежде всего мы спросили себя, что такое физическая непрерывность и когда можно сказать, что она имеет n измерений. Если мы рассматриваем различные системы впечатлений и сравниваем их между собой, то мы часто убеждаемся, что две из этих систем впечатлений не могут быть различены (что обыкновенно выражается словами, что они слишком близки одна к другой и что наши чувства слишком грубы для того, чтобы мы могли различать их), и, сверх того, мы констатируем, что две из этих систем иногда могут быть отличены одна от другой, хотя они неотличимы от одной и той же третьей. Если это так, то говорят, что совокупность этих систем впечатлений образует физическую непрерывность C. И каждая из этих систем будет называться элементом непрерывности C.
Сколько измерений имеет эта непрерывность? Возьмем сначала из C два элемента A и B и предположим, что существует ряд элементов Σ, принадлежащих непрерывности С, таких, что A и B суть два крайних члена этого ряда и что каждый член ряда неотличим от предыдущего. Если можно будет найти такой ряд Σ, то мы скажем, что A и В связаны между собой; а если в C два каких угодно элемента связаны между собой, мы скажем, что C односвязна.
Теперь выберем вполне произвольно на непрерывности C некоторое число элементов. Совокупность этих элементов будет называться купюрой. Среди рядов Σ, которые связывают A с B, мы будем различать ряды, один элемент которых будет неотличим от одного из элементов купюры (мы скажем, что это — ряды, которые пересекают купюру), и ряды, все элементы которых будут отличимы от всякого элемента купюры. Если все ряды Σ, связывающие A с B, пересекают купюру, то мы скажем, что A и В отделены друг от друга купюрой и что купюра разделяет C. Если невозможно найти на C два элемента, которые были бы отделены друг от друга купюрой, то мы скажем, что купюра не разделяет С.
Если, по установлении этих определений, непрерывность C может быть разделена купюрами, которые сами не образуют непрерывность, то эта непрерывность C имеет только одно измерение; в противном случае она имеет несколько измерений. Если для того, чтобы разделить C, достаточно купюры, образующей непрерывность одного измерения, то C будет иметь два измерения; если достаточно купюры, образующей непрерывность двух измерений, то C будет иметь три измерения, и т. д.
Благодаря этим определениям всегда можно будет узнать, сколько измерений имеет любая физическая непрерывность. Остается только найти физическую непрерывность, которая была бы так сказать эквивалентна пространству так, чтобы каждой точке пространства соответствовал элемент этой непрерывности и чтобы точкам пространства, очень близким друг к другу, соответствовали неразличимые элементы. Тогда пространство будет иметь столько измерений, сколько и эта непрерывность.
Переход через эту физическую непрерывность, доступную представлению, неизбежен, потому что мы не можем представить себе пространство, и это по многим основаниям. Пространство есть математическая непрерывность, оно бесконечно, а мы можем представлять себе только физические непрерывности и конечные предметы. Различные элементы пространства, которые мы называем точками, все сходны между собой, а для того чтобы применить наше определение, нам нужно уметь отличать один элемент от другого, по крайней мере если они не слишком близки. Наконец, абсолютное пространство есть бессмыслица, и нам с самого начала приходится относить его к системе осей, неизменно связанных с нашим телом (которое мы должны предполагать всегда приведенным в одно и то же положение).
Затем я постарался образовать с помощью наших зрительных ощущений эквивалентную пространству физическую непрерывность; это, без сомнения, легко, и этот пример в особенности пригоден для исследования числа измерений; это исследование дало нам возможность видеть, в какой степени можно говорить, что «визуальное пространство» имеет три измерения. Однако это решение не полно и искусственно — я уже объяснил почему, и не к визуальному, а к моторному пространству надо нам приложить свои усилия.
Потом я напомнил, каково происхождение различия, которое мы делаем между изменениями положения и изменениями состояния.
Среди изменений, происходящих в наших впечатлениях, мы различаем сначала изменения внутренние — волевые и сопровождающиеся мускульными ощущениями — и изменения внешние, характер которых противоположен.
Мы констатируем возможность того, что внешнее изменение будет исправляться внутренним изменением, которое восстанавливает начальные ощущения. Внешние изменения, которые можно исправить посредством внутреннего изменения, называются изменениями положения; внешние изменения, которые нельзя исправить таким образом, называются изменением состояния. Внутренние изменения, способные исправить внешнее изменение, называются перемещениями всего тела; прочие — изменениями позы.
Теперь пусть α и β будут два внешних изменения, α' и β' — два внутренних изменения. Положим, что α может быть исправлено или посредством α' или посредством β' и что α' может исправить как α, так и β; тогда опыт учит нас, что и β' может исправить β. В таком случае мы скажем, что α и β соответствуют одному и тому же перемещению, равно как α' и β' соответствуют одному и тому же перемещению.
Если так, то мы можем вообразить физическую непрерывность, которую мы назовем непрерывностью или группой перемещений и которую определим следующим образом. Элементами этой непрерывности будут внутренние изменения, способные исправить внешнее изменение. Два из этих внутренних изменений α' и β' будут рассматриваться как неразличимые; 1) если они по природе таковы, т. е. если они слишком близки друг к другу; 2) если α' может исправить то же самое внешнее изменение, какое исправляется третьим внутренним изменением, по природе неотличимым от β'. Во втором случае они будут неразличимы, так сказать, в силу соглашения, т. е. если условимся не принимать в расчет тех обстоятельств, которые могли бы создать их различие.
Наша непрерывность теперь вполне определена, потому что мы знаем ее элементы и выяснили себе, при каких условиях они могут рассматриваться как неразличимые. Таким образом, мы имеем все, что необходимо для того, чтобы применить наше определение и определить, сколько измерений имеет эта непрерывность. Мы узнаем, что она имеет шесть измерений. Следовательно, непрерывность перемещений не эквивалентна пространству, потому что число измерений здесь другое; она только родственна пространству.
Откуда же мы знаем, что эта непрерывность перемещений имеет шесть измерений? Мы знаем это из опыта.
Легко было бы описать опыты, благодаря которым мы могли бы прийти к такому результату. Мы бы увидели, что в этой непрерывности можно брать купюры, которые, разделяя ее, оставались бы непрерывностями; что можно разделять эти купюры другими купюрами второго порядка, которые еще остаются непрерывностями, и что пришлось бы остановиться только после купюр шестого порядка, которые уже не были бы непрерывностями. Согласно нашим определениям это значило бы, что группа перемещений имеет шесть измерений.
Это было бы легко, сказал я, но это было бы довольно длинно; и не оказалось ли бы это несколько поверхностно? Эта группа перемещений, как мы видели, родственна пространству и можно было бы вывести из нее пространство, но она не эквивалентна пространству, потому что она не имеет того же числа измерений; и когда мы покажем, как может образоваться понятие этой непрерывности и как можно вывести отсюда понятие пространства, тогда можно будет всегда спросить себя, почему пространство трех измерений нам гораздо более привычно, чем эта непрерывность шести измерений, и, следовательно, усомниться в том, что именно таким окольным путем образовалось в человеческом уме понятие пространства.
Что такое точка? Как мы узнаем, тождественны ли две точки пространства или различны? Или, другими словами, что значит, когда я говорю: «предмет A находился в момент α в точке, в которой находится предмет B в момент β».
Такова проблема, которую мы поставили перед собой в предыдущей главе, § 4. Как я уже выяснил, речь идет не о сравнении положений предметов A и B в абсолютном пространстве; в последнем случае вопрос, очевидно, не имел бы никакого смысла; речь идет о сравнении положений этих двух предметов относительно осей, неизменно связанных с моим телом; при этом всегда предполагается, что это тело приведено в одну и ту же позу.
Я предполагаю, что между моментами α и β я не двигал ни своего тела, ни своего глаза, о чем мне дает знать мое мускульное чувство. Я не двигал также ни головой, ни рукой, ни кистью. Я устанавливаю, что в момент α впечатления, которые приписывались мною предмету A, сообщались мне: иные — одним из волокон моего зрительного нерва, иные — одним из нервов моего пальца, передающих чувство осязания; я устанавливаю, что в момент β мне сообщились другие впечатления, которые я приписываю предмету B, одни — тем же самым волокном зрительного нерва, другие — тем же самым осязательным нервом.
Здесь мне необходимо остановиться для пояснения; откуда я узнал, что впечатление, которое я приписываю A, и впечатление, которое я приписываю В, — впечатления качественно различные — передаются мне одним и тем же нервом?
Следует ли предполагать — если взять, например, зрительные ощущения, — что A производит два одновременных ощущения, одно чисто световое a и другое цветовое a' что B производит также одновременно световое ощущение b и цветовое b', что если эти различные ощущения передаются мне одним и тем же волокном сетчатки, то a тождественно с b, но что вообще цветовые ощущения a' и b', произведенные различными телами, различны? В этом случае тождество ощущения а, сопровождающего a' с ощущением b, сопровождающим b' именно и свидетельствовало бы о том, что все эти ощущения переданы мне одним и тем же волокном.
Какова бы ни была эта гипотеза, — и хотя я склонен предпочесть ей другие, значительно более сложные, — достоверно, что мы каким-то образом узнаем, что есть нечто общее между этими ощущениями а + а' и b + b', без чего у нас не было бы никаких средств узнать, что предмет B занял место предмета А.
Итак, я, не останавливаясь больше на этом, возвращаюсь к только что сделанному предположению: пусть я констатировал, что впечатления, которые я приписываю В, передаются мне в момент β теми же самыми зрительными и осязательными нервами, которыми в момент α были переданы мне впечатления, приписанные мною А. Если это так, то мы, не колеблясь, признаем, что точка нахождения B в момент β тождественна с точкой нахождения A в момент α.
Я только что высказал два условия тождественности этих точек: одно относится к зрению, другое — к осязанию. Рассмотрим их в отдельности. Первое условие необходимо, но не достаточно. Второе — сразу и необходимо и достаточно. Всякий, кто знаком с геометрией, легко истолковал бы это следующим образом. Пусть О — точка сетчатки, где в момент α образуется изображение тела A; пусть M — точка пространства, занимаемая этим телом A в момент α; пусть W — точка пространства, занимаемая телом B в момент β. Для того чтобы это тело B образовало свое изображение в О, не необходимо, чтобы точки M и М' совпадали: так как зрение действует на расстоянии, то достаточно, чтобы три точки О, M, М', лежали на прямой линии. Поэтому условие, чтобы два предмета давали свое изображение в О, есть необходимое, но не достаточное для того, чтобы точки M и М' совпадали. Пусть теперь P есть точка, занижаемая моим пальцем, и пусть палец остается в ней неподвижным. Так как осязание не может действовать на расстоянии, то если тело A касается моего пальца в момент α, это значит, что M и P совпадают; если B касается моего пальца в момент β, это значит, что М' и P совпадают. Следовательно, совпадают M и М'. Поэтому-то условие, что если A касается моего пальца в момент α, то B касается, его в момент β, является одновременно необходимым и достаточным для того, чтобы M и М' совпадали.
Но раз мы еще не знакомы с геометрией, мы не можем рассуждать так; мы можем только констатировать опытным путем, что может быть выполнено первое условие, относящееся к зрению, без выполнения второго условия, относящегося к осязанию, но что второе условие не может быть выполнено без того, чтобы не было выполнено первое.
Предположим, что опыт научил бы нас противоположному. Это возможно, и в этом предположении нет ничего нелепого. Итак, пусть мы констатировали опытным путем, что условие, относящееся к осязанию, может быть выполнено, хотя не выполнено условие зрения, и что, напротив, условие зрения не может быть выполнено без того, чтобы не было выполнено условие осязания. Ясно, что если бы это было так, то мы пришли бы к заключению, что осязание может действовать на расстоянии, а зрение на расстоянии не действует.
Но это не все; до сих пор я предполагал, что для определения места предмета я пользуюсь только глазом и одним пальцем; но совершенно так же я мог бы воспользоваться и другими средствами, например всеми другими моими пальцами.
Я предполагаю, что мой первый палец получает в момент α осязательное впечатление, которое я приписываю предмету A. Я делаю ряд движений, соответствующий ряду мускульных ощущений S. Следом за этими движениями в момент α' мой второй палец получает осязательное впечатление, которое я приписываю также A. Потом в момент β, в то время как я остаюсь неподвижным, о чем мне дает знать мое мускульное чувство, тот же самый второй палец опять передает мне осязательное впечатление, которое я приписываю на этот раз предмету B; затем я делаю ряд движений, соответствующий ряду мускульных ощущений S'. Я знаю, что этот ряд S' есть обратный ряду S и соответствует противоположным движениям. Я знаю это потому, что многократные прежние опыты часто показывали мне, что если я последовательно делаю два ряда движений, соответствующие S и S', то первоначальные впечатления восстанавливаются, т. е. два ряда взаимно компенсируются. Если так, то должен ли я надеяться, что в момент β', когда окончится второй ряд движений, мой первый палец получит осязательное впечатление, приписываемое предмету B?
Чтобы ответить на этот вопрос, тот, кто был уже знаком с геометрией, стал бы рассуждать таким образом. Есть вероятность, что предмет A не пошевелился между моментами α и α', а также предмет B — между моментами β и β'; допустим это. В момент α предмет A занимал некоторую точку пространства M. Но в этот момент он касался моего первого пальца, и так как осязание не действует на расстоянии, то мой первый палец был также в точке М. Затем я сделал ряд движений S и в конце этого ряда в момент α' констатировал, что предмет A касается моего второго пальца. Я заключил отсюда, что этот второй палец находился тогда в M, т. е. что движениями S второй палец был приведен на место первого. В момент β предмет B пришел в соприкосновение с моим вторым пальцем; так как я не шевелился, то этот второй палец остался в M; поэтому предмет B пришел в M; по предположению он не двигается до момента β'. Но между моментами β и β' я сделал движения S'; так как эти движения обратны движениям S, то они должны в результате привести первый палец на место второго. В момент β' первый палец, следовательно, будет в M; и так как предмет B также находится в M, то этот предмет B коснется моего первого пальца. Таким образом, на предложенный вопрос надо ответить утвердительно.
Мы, не знакомые еще с геометрией, не можем рассуждать таким образом, но мы констатируем, что это предположение обыкновенно осуществляется, а исключения мы всегда можем объяснить тем, что предмет A между моментами α и α' или предмет B между моментами β и β' пошевелился.
Но не мог ли бы опыт дать противоположный результат — и явился ли бы этот последний сам по себе нелепым? Очевидно, нет. Как бы мы поступили в том случае, если бы опыт дал этот противоположный результат? Сделалась ли бы невозможной всякая геометрия? Ничуть! Мы ограничились бы заключением, что осязание может действовать на расстоянии.
Когда я говорю, что осязание не действует на расстоянии, зрение же действует на расстоянии, то это утверждение имеет только следующий смысл. Для того чтобы узнать, занимает ли В в момент β точку, которую занимал A в момент α, я могу пользоваться множеством различных критериев; в один входит мой глаз; в другой — мой первый палец, в третий — мой второй палец и т. д. Так вот, достаточно, чтобы критерий, относящийся к одному из моих пальцев, был удовлетворен, чтобы были удовлетворены все прочие критерии; но этого не достаточно, чтобы был удовлетворен критерий, относящийся к глазу. Вот смысл моего утверждения; я ограничиваюсь утверждением экспериментального факта, который обыкновенно подтверждается.
В конце предыдущей главы мы сделали анализ визуального пространства; мы видели, что для того, чтобы создать это пространство, нужно ввести ощущения сетчатки, ощущение схождения глазных осей и ощущение аккомодации; что если бы два последних ощущения не были всегда в согласии между собой, то визуальное пространство имело бы четыре измерения вместо трех и что, с другой стороны, если бы вводились только ощущения сетчатки, то получилось бы «чистое визуальное пространство», которое обладало бы только двумя измерениями. С другой стороны, рассмотрим тактильное пространство, ограничиваясь ощущениями только одного пальца, т. е. вообще совокупностью положений, которые может занимать этот палец. Это тактильное пространство, которое мы подвергнем анализу в следующем параграфе и о котором поэтому я попрошу позволения пока не распространяться, имеет три измерения. Почему пространство в собственном смысле имеет столько же измерений, сколько тактильное пространство, и более, чем чистое визуальное пространство? Потому, что осязание не действует на расстоянии, тогда как зрение действует на расстоянии. Эти два утверждения имеют только один и тот же смысл, и мы сейчас видели, каков он.
Теперь я возвращусь к тому пункту, которого я только слегка коснулся, чтобы не прерывать исследования. Откуда мы знаем, что впечатления, произведенные A на нашу сетчатку в момент α и B — в момент β, переданы нам одним и тем же волокном сетчатки, хотя эти впечатления качественно различны? Я высказал простую гипотезу, но прибавил, что другие, значительно более сложные, кажутся мне более вероятными. Вот в чем состоят эти гипотезы, о которых я уже упоминал. Откуда мы знаем, что имеют нечто общее впечатления, произведенные красным предметом A в момент α и синим предметом B в момент β, если эти два предмета образовали свое изображение в одной и той же точке сетчатки? Можно отбросить простую гипотезу, которую я высказал выше, и допустить, что эти два качественно различных впечатления переданы мне двумя различными, хотя и смежными, нервными волокнами.
Тогда каким средством обладаю я для того чтобы знать, что эти волокна смежны? Вероятно, мы не имели бы никакого средства, если бы глаз был неподвижен. Движения глаза научили нас, что отношение между ощущением синего в точке A и ощущением синего в точке B сетчатки то же, что между ощущением красного в точке A и ощущением красного в точке В. Они действительно показали нам, что те же самые движения, соответствующие тем же самым мускульным ощущениям, осуществляют переход от первого ко второму или от третьего к четвертому. Я не останавливаюсь на этих соображениях, которые, очевидно, находятся в связи с вопросом о местных знаках, поднятым Лоце.
Итак, я умею распознавать тождественность двух точек — точки, занимаемой A в момент α, и точки, занимаемой B в момент β, но при условии, что между моментами α и β я остаюсь неподвижным. Этого недостаточно для нашей цели. Предположим же, что я совершил в промежутке между этими двумя моментами какое-нибудь движение; как я узнаю, тождественна ли точка, занимаемая A в момент α, точке, занимаемой B в момент β? Я предполагаю, что в момент α предмет A находился в соприкосновении с моим первым пальцем и что в момент β предмет B также касается этого первого пальца; но в то же время мое мускульное чувство сообщило мне, что в промежутке мое тело пошевелилось. Выше я рассмотрел два ряда мускульных ощущений S и S' и сказал, что иногда приходится рассматривать два подобных ряда S и S' как обратные друг другу вследствие того, что мы часто наблюдали восстановление наших первоначальных ощущений, когда эти два ряда следуют один за другим.
Пусть мое мускульное чувство сообщило мне, что между моментами α и β я пошевелился, но так, что я последовательно почувствовал два ряда мускульных ощущений S и S', которые я считаю обратными; тогда я сделаю еще вывод — как если бы я не шевелился, — что точки, занимаемые A в момент α и В в момент β, тождественны, если я констатирую, что мой первый палец касается A в момент α и В в момент β.
Такое решение еще не вполне достаточно, как это сейчас будет видно. В самом деле, посмотрим, сколько измерений оно побуждало бы нас приписывать пространству. Я хочу сравнить две точки, занимаемые A и B в моменты α и β, или (что то же самое, потому что я предполагаю, что мой палец касается A в момент α и B — в момент β) я хочу сравнить две точки, занимаемые моим пальцем в два момента α и β. Единственное средство, которым я располагаю для этого сравнения, есть ряд мускульных ощущений Σ, которым сопровождались движения моего тела между этими двумя моментами. Различные мыслимые ряды Σ, очевидно, образуют физическую, непрерывность, число измерений которой очень велико. Условимся, как я это сделал раньше, не считать различными два ряда Σ и Σ + S + S', когда два ряда S и S' будут взаимно обратными в том смысле, какой я придал этому слову выше; несмотря на такое условие, совокупность различных рядов Σ образует еще физическую непрерывность, число измерений которой будет меньше, но будет еще очень велико.
Каждому из этих рядов Σ соответствует точка пространства: таким образом, двум рядам Σ и Σ' будут соответствовать две точки M и М'. Средства, которыми мы располагаем до сих пор, позволяют нам узнать, что M и М' неразличимы в двух случаях: 1) если Σ тождествен с Σ'; 2) если Σ' = Σ + S + S', причем S и S' взаимно обратимы. Если бы во всех других случаях мы считали M и М' различными, то совокупность точек имела бы столько измерений, сколько и совокупность различных рядов Σ, т. е. гораздо больше 3.
Для тех, кто уже знаком с геометрией, легко было бы уяснить это следующим образом. Между рядами мыслимых мускульных ощущений есть такие, которые соответствуют рядам движений, при которых палец не шевелится. Я говорю, что если не считать различными ряды Σ и Σ + σ, где ряд σ соответствует таким движениям, при которых палец не шевелится, то совокупность рядов составит непрерывность трех измерений, но если ряды Σ и Σ' считать различными, исключая тот случай, когда Σ' = Σ + S + S', где S и S' обратимы, то совокупность рядов составит непрерывность более чем трех измерений.
В самом деле, пусть мы имеем в пространстве поверхность A, на этой поверхности линию B, на этой линии точку M; пусть C0 — совокупность всех рядов Σ; пусть C1 — совокупность всех таких рядов Σ, что в конце соответствующих движений палец находится на поверхности A; пусть также C2 и C3 — совокупности таких рядов Σ, что в конце палец оказывается на B и в M, Прежде всего, ясно, что C1 составит купюру, которая разделит C0, и что C2 будет купюрой, которая разделит C1, и C3 — купюра, которая разделит C2. Отсюда следует, по нашим определениям, что если C3 есть непрерывность n измерений, то C0 будет физической непрерывностью n + 3 измерений.
Пусть же Σ и Σ' = Σ + σ будут два ряда, входящие в состав C3; для обоих в конце движений палец находится в M; отсюда следует, что в начале и в конце ряда σ палец находится в той же точке M; следовательно, ряд σ — один из тех рядов, которые соответствуют движениям, когда палец не шевелится. Если Σ и Σ + σ не считать различными, то все ряды C3 сольются в один, поэтому C3 будет иметь 0 измерений и C0, как я хотел доказать, будет иметь 3 измерения. Если же, напротив, Σ и Σ + σ я не считаю сливающимися (исключая тот случай, когда σ = S + S', где S и S' обратимы), то ясно, что C3 будет содержать в себе множество рядов различных ощущений, ибо при полной неподвижности пальца тело может принимать много различных положений. Тогда C3 образует непрерывность и C0 будет иметь более трех измерений, а это я и хотел доказать.
Не будучи еще знакомы с геометрией, мы не можем рассуждать таким образом; мы можем только констатировать. Но тогда возникает вопрос, как, еще не зная геометрии, мы научились отличать от других те ряды σ, где палец остается неподвижным; ведь в самом деле, только установив это различие, мы получим возможность рассматривать Σ и Σ + σ как тождественные, а только при таком условии, как мы видели, можно прийти к пространству трех измерений.
Мы научились различать ряды σ, потому что часто бывает, что когда мы совершили движения, которые соответствуют этим рядам мускульных ощущений σ, тогда осязательные ощущения, переданные нам нервом пальца, который мы назвали первым пальцем, продолжаются, и эти движения не изменяют их. Опыт учит нас этому, и только он один мог научить нас этому.
Ряды мускульных ощущений S + S', образованные соединением двух обратных рядов, мы отличали потому, что они сохраняли совокупность наших впечатлений; если теперь мы различаем ряды σ, так это потому, что они сохраняют некоторые из наших впечатлений. (Когда я говорю, что ряд мускульных ощущений S «сохраняет» одно из наших впечатлений A, то я хочу сказать, что мы устанавливаем, что если испытываем впечатление A, а потом мускульные ощущения S, то мы еще будем испытывать впечатление A после этих ощущений S.)
Выше я сказал — часто бывает, что ряды σ не изменяют осязательных впечатлений, испытываемых нашим первым пальцем; я сказал — часто, но не сказал — всегда; это мы выражаем на нашем обычном языке, говоря, что осязательное впечатление не изменилось бы, если бы палец не пошевелился, при условии, что предмет A, который соприкасался с этим пальцем, также не пошевелился. Ранее знакомства с геометрией мы не можем дать этого объяснения; мы, можем только констатировать, что впечатление удерживается часто, но не всегда.
Но уже достаточно того, что оно часто удерживается, чтобы ряды σ представились нам примечательными, чтобы нам пришлось причислить к одному и тому же классу ряды Σ и Σ + σ и затем не считать их различными. При этих условиях, как мы видели, они произведут физическую непрерывность трех измерений.
Вот, следовательно, пространство трех измерений, порожденное моим первым пальцем. Каждый из моих пальцев породит ему подобное. Останется исследовать, как мы пришли к тому, что рассматриваем их как тождественные визуальному пространству и тождественные геометрическому пространству.
Но прежде чем идти дальше, мы остановимся на одном размышлении; по предыдущему мы узнаем о точках пространства или — более общо — о конечном положении нашего тела только при посредстве рядов мускульных ощущений, открывающих нам те движения, которые перевели нас из некоторого начального положения в это конечное положение. Но ясно, что это конечное положение будет зависеть, с одной стороны, от этих движений, а с другой стороны, от того начального положения, из которого мы вышли. Эти движения открываются нам нашими мускульными ощущениями; но нам неоткуда узнать о начальном положении; мы ничем не можем отличить его от всех других возможных положений. Вот что ясно доказывает существенную относительность пространства.
Итак, мы пришли к сравнению двух непрерывностей C и С', которые произведены, например, одна при посредстве моего первого пальца D, другая при посредстве моего второго пальца D'. И та и другая из этих двух непрерывностей имеют три измерения. Каждому элементу непрерывности C или, если угодно, каждой точке первого осязательного пространства соответствует ряд мускульных ощущений Σ, которые заставляют меня переходить из некоторого начального положения в некоторое конечное положение[31]. Сверх того, одна и та же точка этого первого пространства будет соответствовать Σ и Σ + σ, если σ представляет собой ряд, о котором мы знаем, что он не вызывает движения со стороны пальца D.
Также и каждому элементу непрерывности C или каждой точке второго тактильного пространства соответствует ряд ощущений Σ', и одна и та же точка будет соответствовать Σ' и Σ' + σ, если σ' представляет собой ряд, который не вызывает движения со стороны пальца D'.
Итак, различать ряды σ и σ' нас заставляет то обстоятельство, что первые не изменяют осязательных впечатлений, испытываемых пальцем D, а вторые сохраняют впечатления, которые испытывает палец D'.
И вот что мы констатируем: вначале мой палец D' испытывает ощущение A'; я делаю движения, которые вызывают мускульные ощущения S; мой палец D испытывает впечатление A; я делаю движения, которые вызывают ряд ощущений σ; мой палец D продолжает испытывать впечатление A, потому что таково характерное свойство рядов σ; затем я делаю движения, которые вызывают ряд мускульных ощущений S', обратный S в том же смысле, какой мы дали этому слову выше. Тогда я констатирую, что мой палец D' испытывает снова впечатление A' (разумеется, для этого нужно, чтобы S был выбран надлежащим образом).
Это значит, что ряд S + σ + S', сохраняющий осязательные впечатления пальца D', есть один из тех рядов, которые я обозначил через σ'. Обратно, если взять какой-нибудь ряд σ', то S' + σ' + S будет одним из тех рядов, которые мы обозначаем через σ.
Итак, если S надлежаще выбран, то S + σ + S' будет рядом σ' и, варьируя σ всеми возможными способами, можно получить все возможные ряды σ'.
Не будучи еще знакомы с геометрией, мы ограничиваемся констатацией этого, но вот как объяснили бы факт те, кто знает геометрию.
Сначала мой палец D' находится в точке M в соприкосновении с предметом a, который сообщает ему впечатление A'; я делаю движения, соответствующие ряду S, я сказал, что этот ряд должен быть надлежаще выбран; я должен произвести этот выбор так, чтобы эти движения приводили палец D в точку, первоначально занимаемую пальцем D', т. е. в точку M; таким образом, этот палец D будет соприкасаться с предметом a, который сообщит ему впечатление А.
Потом я делаю движения, соответствующие ряду σ; среди этих движений, по предположению, положение пальца D не меняется, следовательно, этот палец остается в соприкосновении с предметом a и продолжает испытывать впечатление А. Наконец, я делаю движения, соответствующие ряду S'. Так как S' обратен S, то эти движения приведут палец D' в точку, которую раньше занимал палец D, т. е. в точку М. Если, как это можно предположить, предмет a не пошевелился, то этот палец D окажется в соприкосновении с этим предметом и снова испытает впечатление A', что и требовалось доказать.
Посмотрим, что отсюда вытекает. Я рассматриваю ряд мускульных ощущений Σ; этому ряду будет соответствовать одна точка M первого тактильного пространства. Теперь возьмем два ряда S и S', взаимно обратные, о которых мы только что говорили. Ряду S + Σ + S' будет соответствовать одна точка N второго тактильного пространства, потому что какому-нибудь ряду мускульных ощущений, как мы сказали, соответствует одна точка либо в первом, либо во втором пространстве.
Я намерен рассматривать две определенные таким образом точки M и N как соответствующие друг другу. Что дает мне право на это? Для того чтобы это соответствие было допустимо, нужно, чтобы при существовании тождества двух точек M и М', соответствующих в первом пространстве рядам Σ и Σ', было также тождество двух соответствующих точек N и N' второго пространства, т. е. тождество двух точек, соответствующих двум рядам S + Σ + S' и S + Σ' + S'. И мы сейчас увидим, что это условие выполнено.
Сделаем сначала одно замечание. Так как S и S' взаимно обратимы, то S + S' = 0, следовательно,
S + S' + Σ = Σ + S + S' = Σ,
или еще
Σ + S + S' + Σ' = Σ + Σ';
но из этого не следует, чтобы S + Σ + S' = Σ, потому что, хотя мы и воспользовались знаком сложения для того, чтобы представить последовательность наших ощущений, однако ясно, что порядок этой последовательности не безразличен; поэтому мы не можем, как в обыкновенном сложении, менять порядок членов; короче говоря, наши операции ассоциативны, но не коммутативны.
Если так, то для того, чтобы Σ и Σ' соответствовали той же самой точке М = М' первого пространства, необходимо и достаточно, чтобы Σ' = Σ + σ тогда будем иметь
S + Σ' + S' = S + Σ + σ + S' = S + Σ + S' + S + σ + S'.
Но мы только что констатировали, что S + σ + S' есть один из рядов σ'. Следовательно, получим
S + Σ' + S' = S + Σ + S' + σ',
а это значит, что ряды S + Σ' + S' и S + Σ + S' соответствуют одной и той же точке N = N' второго пространства, что и требовалось доказать.
Итак два наших пространства соответствуют друг, другу, точка — точке; они могут быть «преобразованы» одно в другое; они изоморфны; как мы пришли к заключению об их тождестве?
Рассмотрим два ряда σ и S + σ + S' = σ'. Я сказал, что часто, но не всегда, ряд σ сохраняет осязательное впечатление A, испытываемое пальцем D; а также часто (но не всегда) бывает, что ряд σ' сохраняет осязательное впечатление A', испытываемое пальцем D'. И я констатирую, что очень часто (т. е., гораздо чаще, чем то, что я сейчас назвал «часто») бывает, что если ряд σ сохранил впечатление A пальца D, то ряд σ' сохраняет в то же самое время впечатление A' пальца D'; и обратно — что если первое впечатление изменилось, то изменилось и второе. Это бывает очень часто, но не всегда.
Мы объясняем этот экспериментальный факт, говоря, что неизвестный предмет a, который вызывает ощущение A в пальце D, тождествен с неизвестным предметом a', который вызывает ощущение A' в пальце D'. И в самом деле, когда первый предмет шевелится, о чем нам дает знать исчезновение впечатления A, второй также шевелится, потому что впечатление A' также исчезает. Когда первый предмет остается неподвижным, неподвижным остается и второй предмет. Если эти два предмета тождественны, то — так как первый находится в точке M первого пространства, второй же в точке N второго пространства, — это значит, что эти две точки тождественны. Вот как мы пришли к представлению о тождестве этих двух пространств; или — лучше — вот, что мы хотим сказать, когда говорим, что они тождественны, Сказанное только что о тождестве двух тактильных пространств избавляет нас от исследования вопроса о тождестве тактильного пространства и пространства визуального, так как он рассматривался бы тем же самым способом.
Можно подумать, что я скоро дойду до заключений, согласных с идеями эмпириков. Действительно, я старался изложить роль опыта и проанализировать те экспериментальные факты, которые оказывают влияние на происхождение пространства трех измерений. Но какова бы ни была важность этих фактов, есть одно обстоятельство, которого нам не следует забывать и на которое, впрочем, я не один раз обращал внимание. Эти экспериментальные факты сбываются часто, но не всегда. Очевидно, это не значит, что пространство часто, но не всегда имеет три измерения.
Я хорошо знаю, что легко отделаться от этого; если факты не подтверждаются, то это легко объяснить тем, что внешние предметы не остались неподвижными. Если опыт удается, то говорят, что он дает нам сведения о пространстве; если он не удается, то сваливают вину на внешние предметы, говоря, что они не остались неподвижными; другими словами, если он не удается, то применяют искусственный прием.
Эти ухищрения законны; я вполне согласен с этим; но раз они есть, то мы знаем, что свойства пространства не суть экспериментальные истины в собственном смысле этого слова. Если бы мы захотели оправдать другие законы, то могли бы также достигнуть этого, пользуясь другими аналогичными ухищрениями. Разве мы не могли бы всегда оправдывать эти ухищрения теми же самыми доводами? В крайнем случае нам могли бы сказать: «ваши ухищрения без сомнения законны, но вы злоупотребляете ими; к чему так часто заставлять двигаться внешние предметы?».
Словом, опыт не доказывает нам, что пространство имеет три измерения; он доказывает, что удобно приписывать ему три измерения, потому что именно таким образом число ухищрений сводится к минимуму[32].
Прибавлю, что опыт всегда заставлял нас приходить в соприкосновение только с пространством представлений, которое является физической непрерывностью, а не с геометрическим пространством, которое есть непрерывность математическая. Самое большее, он мог бы научить нас, что удобно наделять геометрическое пространство тремя измерениями, чтобы оно имело столько же измерений, сколько и пространство представлений.
Эмпирический вопрос может представиться в другом виде. Можно ли воспринимать явления физические, например механические явления, иначе, чем в пространстве трех измерений? Если нет, то мы имели бы, таким образом, объективное экспериментальное доказательство, так сказать, не зависящее от нашей физиологии, от наших способов представления.
Но это не так; я не стану рассматривать здесь вопрос полностью, а ограничусь тем, что напомню разительный пример, который дает нам механика Герца.
Известно, что великий физик не верил в существование сил в собственном смысле слова; он полагал, что видимые материальные точки подчинены некоторым невидимым связям, соединяющим их с другими невидимыми точками и что именно действие этих невидимых связей мы и приписываем силам.
Но это только одна часть его идей. Вообразим систему, составленную из n материальных — видимых или невидимых — точек; это даст всего-навсего 3n координат; будем рассматривать их как координаты единственной точки в пространстве 3n измерений. Эта единственная точка была бы принуждена оставаться на поверхности (какого-нибудь числа измерений, которое меньше 3n) в силу тех связей, о которых мы только что говорили; для того чтобы передвинуться на этой поверхности с одного места на другое, точка всегда избирала бы кратчайший путь; это был бы единственный принцип, который резюмировал бы всю механику.
Что бы ни думать об этой гипотезе — прельщаться ли ее простотой, возмущаться ли ее искусственностью, — достаточно одного того факта, что Герц мог придумать ее и считать ее более удобной, чем наши обычные гипотезы, чтобы доказать, что наши обычные идеи, и в частности три измерения пространства, ничуть не необходимо навязываются механику.
Следовательно, опыт сыграл только одну роль, он послужил поводом. Но тем не менее эта роль была очень важна, и я счел необходимым отметить ее. Эта роль была бы бесполезна, если бы существовала априорная форма, налагаемая на наше чувственное восприятие в виде пространства трех измерений.
Существует ли эта форма, или, если угодно, можем ли мы представить себе пространство более чем трех измерений? И, прежде всего, что означает этот вопрос? В прямом смысле слова ясно, что мы не можем представить себе ни пространства четырех, ни пространства трех измерений; прежде всего, мы не можем представить себе их пустыми, и так же мы не можем представить себе какой-нибудь предмет ни в пространстве четырех, ни в пространстве трех измерений: 1) потому что оба эти пространства бесконечны, и мы не могли бы представить себе фигуру в пространстве, т. е. часть в целом, не представляя себе целого, а это невозможно, потому что это целое бесконечно; 2) потому что оба эти пространства суть математические непрерывности, а мы можем представить себе только физическую непрерывность; 3) потому что оба эти пространства однородны, а те кадры, в которые мы заключаем наши ощущения, будучи ограниченными, не могут быть однородными.
Итак, поставленный вопрос можно понимать только одним образом можно ли вообразить, что при различных результатах опытов, которые были изложены выше, мы должны были бы приписывать пространству более чем три измерения — вообразить, например, что ощущение аккомодации не всегда находится в согласии с чувством схождения глазных осей или же что те опыты, о которых мы говорили в § 2 и результат которых мы выразили в словах «осязание не действует на расстоянии», привели бы нас к обратному заключению.
И тогда очевидно: да, это возможно; в момент, когда воображают опыт, тем самым воображают два противоположных результата, которые он может дать. Это возможно, но и трудно, потому что нам надо преодолеть множество ассоциаций идей, являющихся плодом долгого личного опыта и еще более долгого родового опыта. Не эти ли ассоциации (или по крайней мере те из них, которые мы унаследовали от предков) составляют ту априорную форму, чистую интуицию которой мы будто бы имеем? Тогда я не вижу, почему же признавать ее неподчиняющейся анализу и лишать меня права искать ее происхождение.
Когда говорят, что наши ощущения «протяженны», то можно под этим подразумевать только одну вещь — это то, что они всегда оказываются ассоциированными с идеей известных мускульных ощущений, соответствующих тем движениям, которые позволяли бы достигнуть вызывающего их предмета, другими словами, которые позволяли бы защищаться от этих предметов. И именно потому, что эта ассоциация полезна для самозащиты организма, и является она столь древней в истории вида, именно поэтому она кажется нам извечной. Тем не менее это только ассоциация — и можно вообразить, что она нарушена; так что нельзя говорить, что ощущение не может войти в сознание без того, чтобы не войти в пространство, но можно сказать, что оно в действительности не входит в сознание без того, чтобы не войти в пространство, т. е. без того, чтобы эта ассоциация не захватила его.
Я не могу также понять, когда говорят, что идея времени логически следует за пространством, потому что мы можем представить себе время только в виде прямой; это почти то же, что сказать: время логически следует за обработкой полей, потому что обычно его представляют вооруженным косой. Что нельзя представить себе одновременно различные части времени, это само собой понятно, потому что существенное свойство этих частей — именно не быть одновременными. Но это не значит, что нет интуиции времени. Если бы было так, то не было бы также и интуиции пространства, потому что ведь и его невозможно представить себе в собственном смысле слова — по причинам, которые я высказал. То, что мы представляем себе под названием прямой, есть грубый образ, который так же плохо походит на геометрическую прямую, как и на время.
Почему говорят, что всякая попытка приписать пространству четвертое измерение всегда приводит последнее к одному из трех других? Это легко понять. Рассмотрим наши мускульные ощущения и те «ряды», которые они могут образовывать. Вследствие многочисленных опытов идеи этих рядов ассоциированы между собой в очень сложную связь, наши ряды классифицированы. Пусть позволят мне для удобства речи выразить мою мысль очень грубым и даже неточным способом; а именно — я говорю, что наши ряды мускульных ощущений классифицированы в трех классах, соответствующих трем измерениям пространства. Конечно, эта классификация на самом деле гораздо сложнее, но достаточно будет и этого, чтобы сделать понятным мое рассуждение. Если я пожелаю вообразить четвертое измерение, то я предположу другой ряд мускульных ощущений, составляющий часть четвертого класса. Но так как все мои мускульные ощущения уже были причислены к одному из трех предсуществующих классов, то я могу представить себе только ряд, принадлежащий к одному из этих трех классов, так что мое четвертое измерение сводится к одному из трех других.
Что это доказывает? То, что надо было бы прежде уничтожить прежнюю классификацию и заменить ее новой, где ряды мускульных ощущений были бы разложены на четыре класса. Трудность исчезла бы.
Иногда ее представляют в более разительном виде. Предположим, что я заперт в комнате между шестью непроницаемыми перегородками, образуемыми четырьмя стенами, потолком и полом; мне невозможно будет выйти из нее и вообразить, что я выхожу из нее. — Простите, не можете ли вы вообразить, что открывается дверь или что две из этих стен раздвигаются? — Но, конечно, ответят, нужно предположить, что эти стены остаются неподвижными. — Да, но очевидно, что я-то имею право шевелиться; и тогда стены, предполагаемые нами в абсолютном покое, будут относительно меня в относительном движении. — Да, но подобное относительное движение не может быть каким угодно, когда предметы в покое, — относительное движение их относительно каких-нибудь осей есть движение неизменного твердого тела; кажущиеся же движения, которые вы воображаете, не согласуются с законами движения неизменного твердого тела. — Да, но ведь только опыт научил нас законам движения неизменного твердого тела; ничто не помешало бы вообразить, что они различны. Короче говоря, чтобы представить себе, что я выхожу из своей тюрьмы, мне надо только представить себе, что стены кажутся раздвигающимися, когда я двигаюсь.
Поэтому я думаю, что если мы под пространством разумеем математическую непрерывность трех измерений, хотя бы аморфную, так это ум создает его, но создает не из ничего, ему нужны материалы и модели. Эти материалы и модели предсуществуют в нем. Но нет такой единственной модели, которая бы предписывалась ему; за ним выбор; он может выбирать, например, между пространством четырех и пространством трех измерений. В чем же тогда роль опыта? Он дает уму указания, согласно которым последний делает свой выбор.
Другое дело: откуда является у пространства его количественный характер? Он вытекает из той роли, которую играют в его происхождении ряды мускульных ощущений. Эти ряды могут повторяться, и именно от повторения их происходит число; пространство бесконечно именно потому, что они могут повторяться бесконечно. И наконец, мы видели в конце § 3, что именно поэтому пространство относительно. Итак, именно повторяемость и дала пространству его существенные свойства; но повторяемость предполагает время; этого достаточно, чтобы сказать, что время логически предшествует пространству.
Я не говорил до сих пор о роли известных органов, которым физиологи основательно приписывают выдающееся значение. Я имею в виду полукружные каналы. Многочисленные опыты достаточно показали, что эти каналы необходимы для нашего чувства ориентировки; но физиологи не вполне согласны между собой: предложены две противоположные теории, одна — теория Маха — Делажа, другая — Циона.
Цион — физиолог, прославивший свое имя важными открытиями относительно инервации сердца; однако я не могу разделять его идеи в вопросе, который нас занимает. Не будучи физиологом, я не решаюсь критиковать опыты, которые он направил против противоположной теории Маха — Делажа; однако мне кажется, что они не убедительны, потому что в большинстве из них давление изменялось во всем канале, тогда как — физиологически — изменяется разность давлений на двух концах канала; в других опытах органы были глубоко повреждены, что должно было изменить их функции.
Впрочем, это маловажно; если бы опыты были безупречны, то они могли бы убедительно говорить против старой теории — но не в пользу новой. В самом деле, если я хорошо понял теорию, то мне будет достаточно изложить ее, чтобы стало понятно, что невозможно вообразить опыт, который подтверждал бы ее.
У трех пар каналов была бы единственная функция — извещать нас, что пространство имеет три измерения. Японские мыши имеют только две пары каналов; по-видимому, они думают, что пространство имеет только два измерения, и обнаруживают это мнение удивительнейшим образом; они строятся в круг, причем каждая из них прячет свой нос под хвост предыдущей, и, построившись таким образом, они начинают быстро кружиться. Миноги, обладая только одной парой каналов, думают, что пространство имеет только одно измерение, но их проявления менее беспорядочны
Очевидно, что подобная теория неприемлема. Назначение органов чувств — извещать нас о тех изменениях, которые происходят во внешнем мире. Было бы непонятно, для чего творец дал бы нам органы, назначение которых беспрестанно кричать нам: помни, что пространство имеет три измерения, потому что число этих трех измерений не подлежит изменению.
Следовательно, мы должны вернуться к теории Маха — Делажа. Нервы каналов могут сообщать нам о разности давления на двух концах одного и того же канала, и, следовательно:
1) о направлении вертикали по отношению к трем осям, неизменно связанным с головой;
2) о трех слагающих ускорения поступательного движения центра тяжести головы;
3) о центробежных силах, развивающихся вследствие вращения головы;
4) об ускорении вращательного движения головы. Из опытов Делажа вытекает, что это последнее показание есть и самое важное — без сомнения, потому, что нервы менее чувствительны к разности давления самой по себе, чем к резким изменениям этой разности. Таким образом, тремя первыми показаниями можно пренебречь.
Зная ускорение вращательного движения головы в каждый момент, мы бессознательным интегрированием выводим отсюда окончательную ориентацию головы, отнесенную к некоторой исходной ориентации, принятой за начало. Следовательно, полукружные каналы, подобно мускульным ощущениям, помогают нам узнавать о сделанных нами движениях. Поэтому, когда выше мы говорили о ряде S или о ряде Σ, мы должны были бы сказать, что это были не только ряды мускульных ощущений, но ряды мускульных ощущений и ощущений, происходящих от полукружных каналов. Кроме этого добавления, нам не пришлось бы ничего изменять в предыдущем.
В этих рядах S и Σ ощущения полукружных каналов, очевидно, занимают весьма важное место. Однако их одних не было бы достаточно, потому что они могут извещать нас только о движениях головы, но ничего не говорят нам об относительных движениях туловища или членов по отношению к голове. Кроме того, кажется, что они извещают нас только о поворотах головы, но не об испытываемых ею поступательных движениях.
Несомненно, вам неоднократно задавали вопрос: для чего нужна математика? Не являются ли все эти тонкие построения, которые мы полностью черпаем из своего ума, искусственным плодом нашей прихоти?
Я должен установить различие между людьми, задающими подобные вопросы. Люди практические требуют от нас только способов наживы денег. Эти люди не заслуживают ответа. Скорее следовало бы их спросить, для чего накапливают они богатства и нужно ли тратить время на их приобретение и пренебрегать искусством и наукой, которые только и делают наш дух способным наслаждаться, et propter vitam vivendi perdere causam[33].
К тому же наука, созданная исключительно в прикладных целях, невозможна; истины плодотворны только тогда, когда между ними есть внутренняя связь. Если ищешь только тех истин, от которых можно ждать непосредственных результатов, то связующие звенья ускользают и цепь распадается.
Люди, относящиеся с полным презрением к теории, тем не менее, не колеблясь, извлекают из нее постоянные выгоды; если бы они лишились этих выгод, то это быстро остановило бы прогресс, и мы застыли бы в косности, подобно Китаю.
Но не будем больше говорить об этих неисправимых практиках. Рядом с ними существуют люди, стремящиеся исключительно к познанию природы, которые обращаются к нам с вопросом, в состоянии ли мы оказать им помощь в более глубоком понимании природы.
Чтобы ответить этим людям, нам достаточно только указать на два уже воздвигнутых монументальных сооружения — небесную механику и математическую физику.
Нет сомнения, — с нами согласятся, что эти сооружения стоят положенного на них труда; но этого не достаточно.
Математика преследует троякую цель. Она должна давать орудие для изучения природы. Но это не все: она преследует цель философскую, и — я решаюсь сказать — эстетическую.
Математика должна помогать философу углубляться в понятия числа, пространства и времени.
Люди, посвященные в ее тайны, вкушают наслаждения, подобные тем, которые дает нам живопись и музыка. Они восторгаются изящной гармонией чисел и форм; они приходят в восхищение, когда какое-нибудь новое открытие раскрывает перед ними неожиданные перспективы. Разве в наслаждениях, испытываемых этими людьми, нет эстетического характера, несмотря даже на то, что чувства в этих состояниях не принимают никакого участия? Правда, только немногие избранные призваны к тому, чтобы вполне вкусить эти наслаждения. Но разве это не имеет места и в случае наиболее благородных искусств?
Поэтому я, не колеблясь, скажу, что математика заслуживает развития сама по себе и что теории, которые не могут быть применимы в физике, должны развиваться так же, как и другие. Если бы даже цели физики и цели эстетики не совпадали между собой, мы не должны были бы приносить в жертву ни тех, ни других. Более того, эти два рода целей неразделимы, и лучшее средство достигнуть одних — это преследовать другие или, по крайней мере, никогда не упускать их из виду. Я постараюсь доказать это, точно определяя сущность взаимного отношения между чистой наукой и ее приложениями.
Математик не должен быть простым поставщиком формул для физика; между ними необходимо более тесное сотрудничество.
Математическая физика и чистый анализ не только граничат друг с другом, как две державы, сохраняющие отношения доброго соседства, но они проникают друг в друга и имеют одну и ту же душу. Это станет более понятным, когда я укажу, что приобретает физика от математики и чем, наоборот, математика пользуется от физики.
Физик не может обращаться к аналитику с требованием открыть ему какую-либо новую истину. В лучшем случае аналитик мог бы помочь ему предугадать ее.
Уже давно никто не помышляет больше опережать опыт или строить целое мироздание на основании нескольких незрелых гипотез. От всех этих построений, которыми наивно удовлетворялись еще столетие тому назад, ныне не осталось ничего, кроме развалин.
Итак, все законы выводятся из опыта. Но для выражения их нужен специальный язык. Обиходный язык слишком беден, кроме того, он слишком неопределенен для выражения столь богатых содержанием точных и тонких соотношений.
Таково первое основание, по которому физик не может обойтись без математики; она дает ему единственный язык, на котором он в состоянии изъясняться.
Точно определенный язык — вещь весьма не безразличная. Возьмем пример из области той же физики. Неизвестный изобретатель слова «теплота» ввел в заблуждение целые поколения. Теплоту стали рассматривать как вещество (просто потому, что она была названа именем существительным) и стали считать ее неуничтожаемой.
Но, с другой стороны, тот, кто ввел в науку слово «электричество», снискал незаслуженную честь подарить физике новый закон — закон сохранения электричества, который, благодаря чистой случайности, оказался точным; так, по крайней мере, было до настоящего времени.
Писатели, украшающие язык и относящиеся к нему как к объекту искусства, этим самым делают из него орудие более гибкое, более приспособленное для передачи всех оттенков мысли. Так и аналитик, преследующий чисто эстетические цели, содействует созиданию языка, более приспособленного к тому, чтобы удовлетворить физика.
Это еще не все. Закон вытекает из опыта, но он следует из него не непосредственно. Опыт индивидуален, а закон, который из него извлекается, имеет характер общности. Опыт бывает только приближенным; закон является точным или, по крайней мере, имеет притязание на точность. Опыт всегда осуществляется в сложных условиях — формулировка закона исключает их; это называется «исправлением систематических погрешностей». Словом, чтобы вывести закон из опыта, необходимо обобщать; этой необходимости подчиняется даже наиболее осмотрительный наблюдатель.
Но каким образом строить эти обобщения? Каждая частная истина, очевидно, может быть широко истолкована бесчисленным множеством способов. Из тысячи путей, открывающихся перед нами, необходимо сделать выбор, по крайней мере предварительный; кто будет руководить нами в этом выборе?
Этим руководителем может быть только аналогия. Но как неопределенно это слово! Человек с примитивным мировоззрением знает только грубые аналогии, действующие на чувства, аналогии в красках и звуках. Он не стал бы думать, например, об установлении связи между светом и лучистой теплотой.
Но кто же научил нас познанию истинных, глубоких аналогий таких, которых не видит глаз, но которые отгадывает разум?
Этому научил нас математический ум, который пренебрегает содержанием, чтобы иметь дело только с чистой формой. Это он научил нас называть одним и тем же именем все сущности, отличающиеся только своим содержанием; он научил нас называть одним именем, например, умножение кватернионов и умножение целых чисел.
Если бы кватернионы, о которых я только что упомянул, не нашли столь скорого применения у английских физиков, многие без сомнения увидели бы в них только праздное мечтание; но все же они, научая нас сближать то, что по внешнему виду так различно, сделали нас более способными проникать в тайны природы.
Таковы услуги, которых физик должен ожидать от анализа. Но для того, чтобы эта наука могла их ему оказать, ей необходимо развиваться самым широким образом, без непосредственной заботы о пользе; необходимо, чтобы математик работал, как артист. Мы обращаемся к нему только с одной просьбой — помочь нашему зрению, помочь нам отыскать путь в развертывающемся перед нами лабиринте. Но всего лучше видит тот, кто поднялся всех выше. Примеров множество; я ограничусь только наиболее разительными.
Первый пример покажет нам, как бывает достаточно изменить язык, чтобы заметить обобщения, которых раньше никто не подозревал.
В то время, когда закон Ньютона заменил закон Кеплера, было известно только эллиптическое движение. По отношению к этому движению оба закона разнятся между собой только по форме; можно перейти от одного к другому простым дифференцированием.
Но между тем из закона Ньютона можно путем непосредственного обобщения вывести все эффекты возмущений и всю небесную механику. Напротив, если бы сохранился способ выражения, данный Кеплером, то никто не стал бы рассматривать возмущенные орбиты планет — эти сложные кривые линии, для которых никто никогда не писал уравнения, — как естественные обобщения эллипса. Весь прогресс наблюдений послужил бы только усилению веры в хаос.
Второй пример также заслуживает подробного размышления.
В то время, когда Максвелл начал свои труды, законы электродинамики, принятые до него, объясняли все известные явления. Он приступил к работе не потому, чтобы какой-либо новый опыт ограничил значение этих законов. Но рассматривая их под новым углом зрения, Максвелл увидел, что уравнения становятся более симметричными, если в них ввести некоторый член, хотя, с другой стороны, этот член был слишком мал, чтобы вызвать явления, который могли бы быть оценены прежними методами.
Известно, что априорные взгляды Максвелла ждали своего экспериментального подтверждения в течение двадцати лет; если вам больше нравится другое выражение, — Максвелл опередил опыт на двадцать лет. Как он достиг этого триумфа?
Это произошло благодаря тому, что Максвелл был глубоко проникнут чувством математической симметрии; могло ли это быть, если бы до него другие не искали этой симметрии ради ее собственной красоты?
Это произошло благодаря тому, что Максвелл привык «мыслить векторами». Но векторы вошли в анализ через посредство теории мнимых величин. А те, кто изобрел мнимые величины, нисколько и не подозревали, что ими воспользуются для изучения реального мира: на это указывает достаточно ясно самое название этих величин.
Максвелл, быть может, и не был искусным аналитиком, но эта опытность была бы для него бесполезным и стеснительным бременем. Зато он в высшей степени обладал внутренним чувством математических аналогий. Вот почему он стал хорошим математическим физиком.
Пример Максвелла учит нас еще и другому.
Как следует нам обращаться с уравнениями математической физики? Должны ли мы просто выводить из них все следствия и рассматривать их как неощущаемые реальности? Нет, далеко не так. Главным образом они должны нас учить тому, что можно и что следует в них изменять. Только таким образом мы можем извлечь из них что-либо полезное.
Третий пример покажет нам, каким образом можем мы заметить математические аналогии в ряду явлений, с физической точки зрения не состоящих ни в кажущемся, ни в реальном соотношении такого рода, чтобы законы одного из этих явлений помогали нам догадываться о законах другого.
Одно и то же уравнение Лапласа встречается в теориях ньютоновского тяготения, движения жидкостей, электрического потенциала, в теории магнетизма, в теории теплопроводности и еще во многих других.
Что отсюда следует? Эти теории кажутся изображениями, скопированными одно с другого; они взаимно освещают одна другую, заимствуя друг у друга свой язык. Спросите у специалистов по теории электричества, не радуются ли они изобретению понятия о силовом потоке, внушенного гидродинамикой и теорией теплоты. Итак, математические аналогии не только дают нам возможность предчувствовать физические аналогии, но не перестают быть полезными и в том случае, когда последние оказываются ошибочными.
Резюмируем сказанное. Цель математической физики заключается не только в том, чтобы облегчить физику вычисление некоторых постоянных или интегрирование некоторых дифференциальных уравнений.
Она состоит еще в том, чтобы знакомить физика со скрытой гармонией вещей, показывая их ему под новым углом зрения.
Из всех сторон анализа наиболее возвышенны, наиболее, так сказать, прозрачны как раз те, которые будут наиболее плодотворны в руках, умеющих ими пользоваться.
Посмотрим теперь, чем анализ обязан физике.
Нужно было бы окончательно забыть историю науки, чтобы не помнить, что стремление познать природу имело самое постоянное и самое счастливое влияние на развитие математики.
Во-первых, физик ставит перед нами проблемы, решения которых он ждет от нас. Но задавая нам эти проблемы, он тем самым уже щедро оплачивает услугу, которую мы ему можем оказать, если нам удастся их разрешить.
Я позволю себе продолжить сравнение с изящными искусствами. Если бы чистый математик забыл о существовании внешнего мира, то он уподобился бы художнику, который умеет гармонически сочетать краски и формы, но у которого нет моделей. Его творческая сила скоро иссякла бы.
Числа и символы могут образовать бесконечное множество сочетаний. Как нам выбрать из этого множества те сочетания, которые заслуживали бы нашего внимания? Подчинимся ли мы исключительно руководству нашей прихоти? Эта прихоть, которая к тому же сама скоро выдохлась бы, увлекла бы нас, без сомнения, далеко друг от друга, и мы скоро перестали бы понимать друг друга.
Но это еще менее важная сторона вопроса.
Физика, без сомнения, помешает нам впасть в заблуждение, но она предохранит нас от еще более грозной опасности; она воспрепятствует нам безостановочно вращаться в одном и том же кругу. История показывает, что физика не только побуждала нас к выбору из целого множества представлявшихся нам проблем; она также ставила перед нами такие проблемы, о которых мы без нее никогда и не подумали бы.
Как ни разнообразна фантазия человека, природа еще в тысячу раз богаче. Чтобы следовать за нею, нам приходится вступать на пути, на которые мы не обращали внимания; а эти пути приводят нас часто к вершинам, откуда мы открываем новые кругозоры. Что может быть более полезно!
О математических символах можно сказать то же, что о физических реальностях. Только сравнивая различные стороны вещей, мы будем в состоянии понять их внутреннюю гармонию, которая одна только прекрасна и, следовательно, достойна наших трудов.
Первый пример, какой я приведу, настолько стар, что могло бы явиться искушение его забыть. Тем не менее он важнее всех прочих.
Единственный естественный предмет математической мысли есть целое число. Непрерывность была внушена нам внешним миром. Она, без сомнения, изобретена нами, но изобрести ее нас вынудил внешний мир.
Без него не было бы анализа бесконечно малых. Все математическое знание свелось бы к арифметике или к теории подстановок.
Но мы, напротив, посвятили изучению непрерывности почти все наше время, почти все наши силы. Кто пожалеет об этом? Кто станет считать, что это время и эти силы были потеряны?
Анализ развертывает перед нами безграничные перспективы, о которых не подозревает арифметика. Он показывает нам с одного взгляда грандиозный ансамбль, распорядок которого прост и симметричен, напротив того — в теории чисел, где царит непредвиденность, взор встречает препятствия на каждом шагу.
Вам, без сомнения, скажут, что вне целого числа нет строгости, а следовательно, нет математической истины, что оно скрывается всюду и что нужно стараться разоблачить его покровы, хотя бы для этого пришлось обречь себя на нескончаемые повторения.
Но мы не будем столь строги; мы будем признательны непрерывности, которая, если даже всё исходит из целого числа, одна только была способна извлечь из него так много.
Нужно ли напоминать, как Эрмит получил поразительные результаты от введения непрерывных переменных в теорию чисел? Таким образом, подверглась вторжению область целого числа в собственном смысле, и это вторжение водворило порядок в царстве хаоса.
Всем этим мы обязаны непрерывности, а следовательно, физической природе.
Ряд Фурье является ценным инструментом, постоянно употребляемым в анализе. Благодаря именно этому средству оказалось возможным изображать прерывные функции. Но Фурье изобрел его, имея целью решение одной физической проблемы, касающейся распространения тепла. Если бы не была естественным образом поставлена эта проблема, никогда бы не решились отдать должное прерывности и долго бы еще смотрели на непрерывные функции как на единственные истинные функции.
Благодаря этому понятие функции значительно расширилось и получило у некоторых аналитиков-логиков непредвиденное развитие.
Эти аналитики пустились в области, где царствует наиболее чистая абстракция, и удалились от реального мира настолько, насколько это возможно. Однако повод к этому им был доставлен физической проблемой.
Вслед за рядом Фурье в область анализа вошли другие аналогичные ряды. Они вошли в ту же дверь: они были придуманы в прикладных целях.
Теория уравнений второго порядка с частными производными имела подобную же историю. Она развивалась главным образом через физику и для нее. Она может принимать множество форм, ибо для определения неизвестной функции недостаточно одного подобного уравнения: необходимо добавить дополнительные так называемые граничные условия; отсюда вытекает много разных проблем. Если бы аналитики предались своим естественным стремлениям, они знали бы из них только одну — ту самую, которая рассмотрена, Софьей Ковалевской в ее знаменитом мемуаре[34]. Все множество других проблем осталось бы неизвестным.
Каждая физическая теория — теория электричества, теория теплоты — представляет нам эти уравнения под новым видом. Итак, можно сказать, что без них мы не знали бы уравнений с частными производными.
Бесполезно было бы множить примеры. Сказанного достаточно, чтобы вывести такое заключение: когда физики требуют от нас решения проблемы, они не бремя возлагают на нас, но, напротив, заслуживают нашей благодарности.
Но это не все. Физика не только дает нам повод к решению проблем; она еще помогает нам найти к этому средства. Это происходит двояким путем.
Во-первых, она дает нам предчувствие решения; во-вторых, подсказывает нам ход рассуждений.
Выше я уже говорил об уравнении Лапласа, которое встречается во множестве весьма далеких друг от друга физических теорий. Его же находим мы в геометрии (в теории конформного преобразования) и в чистом анализе (в теории мнимых величин).
Таким образом, аналитик, изучающий функции комплексных переменных, кроме обычного своего орудия — геометрического представления, — находит ряд физических образов, которые он может использовать с таким же успехом.
Благодаря этим образам он в состоянии сразу видеть то, что было бы лишь постепенно обнаружено путем чистой дедукции. Так, он соединяет разрозненные элементы решения и путем некоторого рода интуиции догадывается о том, что будет доказано лишь впоследствии.
Догадка предшествует доказательству! Нужно ли указывать, что именно так были сделаны все важные открытия?
Сколько истин позволяют нам предчувствовать физические аналогии, оправдать которые путем строгого рассуждения мы были бы не в состоянии!
Вот пример. Математическая физика употребляет множество разложений в ряды. Никто не сомневается в сходимости этих рядов, несмотря на отсутствие математической достоверности. Будущие исследователи одержат здесь несомненные победы.
С другой стороны, физика дает нам не только решения; в известной мере она дает нам и метод рассуждения. Достаточно напомнить, как Клейн воспользовался свойствами электрических токов при исследовании одного вопроса, относящегося к поверхностям Римана. Правда, рассуждения этого рода не строги в том смысле, в каком термин «строгость» употребляется аналитиками.
В связи с этим можно поставить вопрос: как может физик удовлетворяться доказательством, которое не достаточно строго с точки зрения аналитика?
По-видимому, не может быть двух степеней строгости; либо строгость налицо, либо ее нет; там, где ее нет, не может быть и умозаключения. Мы лучше поймем этот кажущийся парадокс, вспомнив те условия, при которых число находит применение к явлениям природы.
В чем, вообще говоря, источник затруднений, с которыми встречаются требования точности? На них почти всегда натыкаются в то время, когда хотят доказать, что такая-то величина стремится к такому-то пределу или что известная функция непрерывна, или что она имеет производную.
Но числа, которые физик измеряет в опыте, всегда бывают известны ему лишь приближенно; с другой стороны, произвольная функция всегда сколь угодно мало отличается от некоторой прерывной функции, и в то же время она также сколь угодно мало отличается от непрерывной функции.
Поэтому физик может по произволу предполагать изучаемую функцию прерывной или непрерывной, имеющей производную или не имеющей ее; у него нет оснований опасаться стать в противоречие с каким бы сто ни было опытом, ни современным, ни будущим. При такой свободе он, понятно, смеется над трудностями, удерживающими аналитика.
Он всегда может рассуждать так, как если бы все функции, входящие в его выкладки, были целыми многочленами.
Итак, беглый взгляд, достаточный для физики, не есть то умозаключение, к которому стремится анализ. Отсюда не следует, что первый не был в состоянии помочь отыскать второе. В форму строгих доказательств превращено столь много физических заключений, что теперь это превращение делается легко. Я мог бы привести множество примеров, если бы не опасался утомить внимание читателя.
Я надеюсь, что мною сказано достаточно для оправдания мысли: чистый анализ и математическая физика могут приносить друг другу пользу без какой-либо жертвы со своей стороны; каждая из этих наук должна радоваться всякому возвышению другой.
Правительства и парламенты должны считать астрономию одной из самых дорогих наук: самый малый инструмент стоит сотни тысяч франков, самая небольшая обсерватория — миллионы; каждое затмение влечет за собой дополнительные кредиты. И все это — ради светил, которые так далеки, которые совершенно чужды нашим избирательным распрям и, вероятно, никогда не примут в них никакого участия. Для этого нашим политическим деятелям надо сохранять остатки идеализма, смутное влечение к величественному. По правде говоря, я думаю, что на них немало клевещут. Следует ободрить их, показать им ясно, что этот инстинкт не обманывает их, что они не обмануты своим идеализмом.
Можно было бы, конечно, рассказать им о морском деле, важность которого признается всеми и для которого необходима астрономия. Но это значило бы обращать внимание на менее важную сторону вопроса.
Астрономия полезна, потому что она возвышает нас над нами самими; она полезна, потому что она величественна; она полезна, потому что она прекрасна, — вот что надо говорить. Именно она являет нам, как ничтожен человек телом и как он велик духом, ибо ум его в состоянии объять сияющие бездны, где его тело является лишь темной точкой, в состоянии наслаждаться их безмолвной гармонией. Так приходим мы к сознанию своей мощи. Здесь никакая цена не может быть слишком дорогой, потому что это сознание делает нас сильнее
Но прежде всего я хотел бы показать вам, в какой степени астрономия облегчила дело других наук, приносящих более непосредственную пользу, облегчила тем, что сообщила нашей душе способность понимать природу.
Можете ли вы представить себе, насколько ниже стояло бы человечество, если бы, живя под небом, постоянно покрытым облаками, как небо Юпитера, оно никогда не знало бы звезд? Думаете ли вы, что в таком мире мы стали бы тем, что мы есть? Я согласен, что под этим мрачным небосводом мы были бы лишены солнечного света, необходимого для таких организмов, как обитающие на Земле. Но, если угодно, допустим, что эти облака фосфоресцируют, рассеивая приятный и постоянный свет: раз мы стоим на пути гипотез, ничего не стоит ввести одну лишнюю. Итак, я повторяю свой вопрос: полагаете ли вы, что в таком мире мы стали бы тем, что мы есть?
Звезды шлют нам не только видимый и грубо ощущаемый свет, действующий на наше телесное око; от них исходит также иной, более тонкий свет, проясняющий наш ум. Я попытаюсь обнаружить перед вами его действия. Вы знаете, что представлял собою человек на Земле за несколько тысяч лет до нашего времени, и что представляет он теперь. Один, окруженный природой, где все для него было тайной, смущаемый каждым неожиданным проявлением непостижимых для него сил, он был неспособен видеть в мировом процессе что-либо кроме произвола; он относил все явления к действию множества мелких духов, своенравных и взыскательных, и чтобы воздействовать на мир, он старался склонить их к себе средствами, подобными тем, которые употребляются с целью снискать расположение министра или депутата. Даже его неудачи не просвещали его, подобно тому как проситель, которого выпроводили, еще не бывает обескуражен до такой степени, чтобы прекратить свои искания.
В настоящее время мы уже не обращаемся к природе с просьбами: мы приказываем ей благодаря тому, что мы открыли некоторые из ее тайн и ежедневно открываем новые. Мы приказываем ей во имя законов, которых она не может не принять, ибо это ее законы; мы не обращаемся к ней с нелепым требованием изменить эти законы — мы первые готовы подчиняться им. Naturae non imperatur nisi раrendo[35].
Какому изменению должен был подвергнуться наш ум, чтобы перейти от одного состояния к другому! Можно ли думать, что он переродился бы столь быстро без влияния уроков небесных светил, под тем вечно облачным небом, которое я только что предложил? Возможно ли было бы превращение или, по крайней мере, не сделалось ли бы оно гораздо более медленным?
Это астрономия прежде всего открыла нам существование законов. Халдеи, которые раньше других народов стали смотреть на небо с некоторым вниманием, ясно заметили, что это множество светящихся точек представляет собой не рассеянную толпу, блуждающую по воле случая, а дисциплинированную армию. Без сомнения, законы этой дисциплины не были ясны для них, но гармонического зрелища звездной ночи было достаточно для того, чтобы дать им впечатление упорядоченности, и это уже много значило. Гиппарх, Птолемей, Коперник, Кеплер разложили эту упорядоченность на отдельные элементы, и, наконец, почти излишне вспоминать, как Ньютоном был высказан самый старый, самый точный, самый простой, самый общий из всех законов природы.
И тогда, наученные этим примером, мы стали пристальнее всматриваться в наш земной мирок и, под кажущимся беспорядком, нашли и здесь гармонию, которую открыло нам изучение неба. Здесь та же упорядоченность, то же подчинение неизменным законам; но эти законы более сложны, одни из них кажущимся образом противоречат другим, и непривычный глаз увидел бы здесь лишь хаос и царство случая или произвола. Если бы мы не знали звезд, то, быть может, некоторые смелые умы стремились бы предвидеть физические явления; но они терпели бы постоянные неудачи, возбуждая тем лишь насмешку толпы. Так и теперь на наших глазах обманываются иногда метеорологи, и некоторые люди смеются над этим.
Сколько раз физики могли пасть духом от множества испытываемых неудач, если бы в них не поддерживал веры блестящий пример успеха астрономов! Этот успех показывал им, что природа подчинена законам; им оставалось лишь узнать эти законы: для этого им нужно было только терпение, и они имели право требовать, чтобы скептики оказали им доверие.
Мало того. Астрономия не только открыла нам существование законов; она научила нас, что эти законы непреложны, что идти против них невозможно. Сколько времени понадобилось бы нам для усвоения этой мысли, если бы мы знали только земной мир, где каждая элементарная сила всегда представляется нам как бы в борьбе с другими силами? Астрономия открыла нам, что законы беспредельно точны, и если мы выражаем их лишь приближенно, то это потому, что плохо знаем их. Аристотель, наиболее ученый ум древности, еще допускал участие случая, случайности и, по-видимому, думал, что законы природы — по крайней мере на Земле — определяют лишь общие черты явлений. Как много содействовала возрастающая точность астрономических предсказаний тому, чтобы осудить это ошибочное воззрение, которое сделало бы природу непостижимой!
Но, быть может, эти законы имеют лишь местное значение, меняясь от одной точки к другой, подобно законам, которые создают люди? То, что истинно в одном уголке Вселенной, например на Земле или в нашей небольшой Солнечной системе, быть может, стало бы ложным несколько далее? А в таком случае можно спросить себя: законы, зависящие от пространства, не зависят ли также от времени, не являются ли они просто как бы навыками, следовательно, преходящими и эфемерными? На этот вопрос отвечает опять-таки астрономия. Посмотрите на двойные звезды: все они описывают конические сечения; таким образом, всюду, куда только достигает телескоп, беспредельно простирается область подчинения закону Ньютона. Все в этом законе, включая и самую простоту его, поучительно для нас. Сколько сложных явлений содержится в двух строчках, составляющих его выражение! Люди, не знающие небесной механики, могут составить представление об этом хотя бы по объему трактатов, посвященных этой науке. Но в таком случае позволительно надеяться, что за сложностью физических явлений точно так же скрывается некоторая простая причина, неизвестная до сих пор.
Итак, именно астрономия открыла нам, в чем состоят общие черты явлений природы. Но в числе этих черт есть одна, которая тоньше всех и важнее всех. Я позволю себе остановиться на ней.
Как понимали мировой порядок древние, например Пифагор, Платон или Аристотель? Это был или неизменный, раз навсегда установленный тип, или идеал, к которому мир стремится приблизиться. Так думал еще Кеплер, например, когда он отыскивал связь между расстояниями планет от Солнца и пятью правильными многогранниками. В этой идее не было ничего нелепого, но она была бесплодна, потому что природа не такова. Не кто иной, как Ньютон, показал нам, что закон есть лишь необходимое соотношение между настоящим состоянием мира и состоянием, непосредственно следующим. Все другие законы, открытые позднее, дают то же самое: это — в итоге — дифференциальные уравнения. Именно астрономия дала нам первую модель, без которой мы, конечно, очень долго витали бы в заблуждениях.
Она же прочнее всего внушила нам не доверять видимости. В тот день, когда Коперник показал, что то, что считалось наиболее устойчивым, находится в движении, а что считалось подвижным, покоится, тогда обнаружилось, как могут быть обманчивы детские рассуждения, являющиеся прямыми следствиями непосредственных данных наших чувств. Его идеи восторжествовали, конечно, не без труда. Но после этого торжества уже нет такого застарелого предрассудка, от которого мы не в силах были бы освободиться. Как оценить приобретенное таким образом новое оружие?
Древние считали, что все существует для человека. Надо думать, что эта иллюзия очень упорна, потому что с ней постоянно приходится бороться. Тем не менее надо от нее отрешиться, иначе пришлось бы навсегда остаться близорукими, неспособными видеть истину. Чтобы понимать природу, надо уметь, так сказать, выйти из себя и созерцать ее с нескольких различных точек зрения, иначе мы всегда будем знать лишь одну ее сторону. Но не может выйти из себя тот, кто все относит к себе. Кто же освободил нас от этой иллюзии? Те, кто показал нам, что Земля есть лишь одна из самых малых планет Солнечной системы и что сама Солнечная система — только незаметная точка в беспредельных пространствах звездной Вселенной.
В то же время астрономия научила нас не пугаться больших чисел. Это было необходимо не только для познания неба, но и для познания Земли; и это было не столь легко, как представляется нам теперь.
Попробуем мысленно вернуться в былое и представить себе, что подумал бы древний грек, если бы ему сказали, что красный свет соответствует четыремстам миллионам миллионов колебаний в секунду. Без всякого сомнения, подобное утверждение показалось бы ему чистой нелепицей, и он никогда бы не подумал заняться его проверкой. В настоящее время гипотеза уже не покажется нам нелепой только оттого, что она заставляет нас воображать объекты, значительно большие или меньшие в сравнении с теми, которые доступны нашим чувствам. Мы уже не понимаем тех сомнений, которые останавливали наших предков и мешали им открыть некоторые истины просто потому, что они пугались этих истин. А это произошло оттого, что мы видели беспредельное расширение небесной сферы; оттого, что мы знаем, что Солнце отстоит на 150 миллионов километров от Земли и что расстояния до наиболее близких звезд еще в сотни тысяч раз больше этого. Привыкнув к созерцанию бесконечно большого, мы стали способны понимать бесконечно малое. Благодаря полученному воспитанию, наше воображение может смотреть в лицо истине, подобно орлу, чей глаз не ослепляется Солнцем.
Итак, не имел ли я права сказать, что именно астрономия сообщила нашей душе способность понимать природу; что под небом, вечно облачным, лишенным звезд, самая Земля была бы для нас навсегда непостижима; что мы видели бы здесь лишь произвол и беспорядок и что, не зная мира, мы не могли бы подчинить его себе. Какая же наука могла быть более полезна? Говоря так, я становлюсь на точку зрения тех, кто ценит лишь практические применения. Это, конечно, не моя точка зрения. Напротив, если я удивлюсь завоеваниям техники, то это прежде всего потому, что они, освобождая нас от материальных забот, дадут некогда всем досуг созерцать природу. Я не говорю: наука полезна потому, что она научает нас создавать машины; я говорю: машины полезны, потому, что, работая для нас, они некогда оставят нам больше времени для научных занятий. Наконец, не безразлично отметить, что между двумя точками зрения нет несогласия и что если человек преследует бескорыстную цель, то прочее ему приложится.
Огюст Конт где-то сказал, что тщетно было бы стараться узнать состав Солнца, так как это знание не могло бы принести никакой пользы для социологии. Как он мог быть так близорук? Не видели ли мы только что, как благодаря именно астрономии человечество перешло, — употребляя его способ выражения, — от фазы теологической к фазе позитивной. В этом-то он отдавал себе отчет, так как это был факт. Но как он не понимал, что подлежащее еще осуществлению не менее значительно и должно принести не меньше выгод! Физическая астрономия, которую он, по-видимому, осуждает, начала уже приносить нам плоды и принесет еще много других — ведь она родилась только вчера.
Прежде всего, мы узнали природу Солнца, которую основатель позитивизма хотел сделать запретной для нас, и нашли там вещества, существующие на Земле, которые мы раньше здесь не замечали: например, гелий, газ, почти столь же легкий, как водород. Это уже было первой ошибкой Конта. Но мы обязаны спектроскопии гораздо более драгоценными сведениями: на самых отдаленных звездах она открывает нам все те же вещества. Можно было поставить вопрос: не произошли ли земные элементы благодаря случайности, которая, сблизив более мелкие индивидуумы, произвела более сложное построение, носящее у химиков имя атома? Не могли ли в других областях Вселенной другие случайные встречи произвести построения, совершенно отличные? Мы знаем теперь, что это не так, что законы нашей химии — общие законы природы, и что они ничем не связаны со случайностью, поселившей нас на Земле.
Но, скажут, астрономия дала другим наукам все, что могла, и теперь, когда небо предоставило орудия, позволяющие изучать земную природу, оно могло бы без вреда закрыться навечно. После того, что сказано, есть ли надобность отвечать на это возражение? Можно было бы рассуждать так в эпоху Птолемея; и тогда уже верили в полноту знания, между тем почти все знание было еще впереди.
Небесные тела — грандиозные лаборатории, гигантские тигли, о каких не мог бы грезить ни один химик. Там царствуют температуры, осуществление которых невозможно для нас. Одна беда — что они слишком далеки; но телескоп приблизит их к нам, и тогда мы увидим, каково на них состояние вещества. Какой счастливый случай для физика и химика!
Вещество представится нам здесь в тысяче различных состояний — от разреженных газов, по-видимому, образующих туманности, сверкающих светом какого-то таинственного происхождения, вплоть до раскаленных звезд и планет, столь близких к нашей и все же отличных от нее. Возможно, даже, что некогда небесные тела откроют нам что-нибудь о происхождении жизни. Это кажется безумной грезой, и я совершенно не вижу, как она могла бы осуществиться; но разве сто лет тому назад не показалась бы безумной грезой и химия небесных тел?
Однако ограничим наши взгляды менее отдаленными горизонтами. У нас впереди обязательства, менее гадательные и все же очень привлекательные. Если прошлое много дало нам, то мы можем быть уверены, что будущее даст еще больше.
В итоге трудно поверить, в какой степени вера в астрологию оказалась полезной для человечества. Ежели Кеплер и Тихо Браге могли существовать, то это благодаря тому, что они продавали наивным королям предсказания, основанные на сочетаниях звезд. Если бы эти владетели не были столь легковерны, то мы, быть может, продолжали бы думать, что природа подчинена произволу, и до сих пор коснели бы в невежестве.
Прошедшее и будущее физики. Каково современное состояние математической физики? В чем состоят проблемы, к постановке которых она пришла? Каково ее будущее? Стоит ли ее развитие у поворотной точки? Предстанут ли десять лет спустя цель и методы этой науки пред нашими ближайшими преемниками в том же освещении, как перед нами, или, напротив, нам придется быть свидетелями коренного преобразованиям. Таковы те вопросы, которые мы вынуждены задать, приступая сегодня к нашему исследованию.
Если поставить их легко, то ответить на них трудно. Если бы мы почувствовали искушение вступить на рискованный путь предсказаний, то этому искушению легко было бы оказать противодействие, вспомнив все те нелепости, какие произносились сто лет тому назад самыми выдающимися учеными в ответ на вопрос: чем будет наука в XIX веке. Они считали свои предсказания смелыми; но какими робкими находим мы их теперь, после того как события произошли! Поэтому не ждите от меня пророчеств.
Но если я, подобно благоразумному врачу, отказываюсь делать прогноз, то все же не могу освободить себя от краткого диагноза: да, в самом деле имеются признаки серьезного кризиса, и нам как будто следует ждать близких перемен. Однако не будем чересчур беспокоиться. Мы уверены, что больная не умрет; мы можем даже надеяться, что этот кризис будет благотворным, ибо история прошлого, по-видимому, дает в этом гарантию. Действительно, такой кризис происходит не в первый раз, и чтобы его понять, надобно вспомнить предыдущие. Поэтому простите, если я сделаю несколько кратких исторических замечаний.
Физика центральных сил. Как мы знаем, математическая физика родилась из небесной механики: эта последняя породила ее в конце XVIII века, в ту пору, когда сама она только что достигла полного развития. В течение первых лет дитя поразительно походило на мать.
Вселенная, изучаемая астрономами, состоит из масс, несомненно очень огромных, но разделенных столь необъятными расстояниями, что нам они представляются просто материальными точками; эти точки притягивают друг друга с силой, обратно пропорциональной квадрату расстояния, и это притяжение есть единственная сила, влияющая на их движения. Но если бы наши чувства были достаточно утонченны, чтобы показать нам все детали строения тел, изучаемых физиками, то картина, которая открывалась бы нам, едва ли отличалась бы от той, которую наблюдает астроном. И здесь мы увидели бы материальные точки, отделенные друг от друга расстояниями, огромными сравнительно с их размерами, и описывающие орбиты согласно определенным законам. Эти бесконечно малые звезды не что иное, как атомы. Как настоящие звезды, они притягиваются или отталкиваются между собой, и это притяжение или отталкивание, направленное по прямой, их соединяющей, зависит только от расстояния. Закон, согласно которому эта сила меняется в зависимости от расстояния, быть может, не есть закон Ньютона, но он аналогичен ему; вместо показателя степени 2 мы имеем здесь, вероятно, другой показатель, и именно от этой перемены показателя происходит все разнообразие физических явлений, многообразие качеств и ощущений, весь мир, окружающий нас, мир красок и звуков, словом — вся природа.
Такова первоначальная концепция во всей ее чистоте. Остается лишь искать в различных случаях, какое значение следует приписать показателю степени, чтобы описать все наблюдаемые факты.
По этому образцу, например, Лаплас построил свою изящную теорию капиллярности; он рассматривает капиллярность просто как частный случай действия сил притяжения или, как он говорит, всемирного тяготения, и никто не изумляется, находя ее в середине одного из пяти томов небесной механики. Позднее Брио полагал, что он проник в последнюю тайну оптики, доказывая, что атомы эфира притягиваются обратно пропорционально 6-й степени расстояния; и даже сам Максвелл в одном месте говорит, что атомы газов отталкиваются обратно пропорционально 5-й степени расстояния. Мы имеем показатель 6 или 5 вместо 2, но, во всяком случае, показатель налицо.
Между теориями этой эпохи только одна представляет исключение — теория Фурье, относящаяся к распространению тепла; здесь есть, конечно, атомы, взаимодействующие на расстоянии; они передают друг другу тепло, но они не притягиваются, они не двигаются с места. С этой точки зрения теория Фурье должна была представляться его современникам и даже ему самому несовершенной и предварительной.
Изложенная концепция не лишена величия; она была привлекательной, и многие из наших современников не отказались от нее окончательно; они знают, что последних элементов вещей нельзя достигнуть иначе, как терпеливым распутыванием сложного узла, который дают нам наши чувства, что идти вперед нужно шаг за шагом, не пропуская ни одной промежуточной ступени, что наши предшественники заблуждались, думая достигнуть цели одним переходом; однако они верят, что когда мы придем к этим последним элементам, мы опять найдем здесь величественную простоту небесной механики.
Эта концепция отнюдь не была бесполезна; она оказала нам неоценимую услугу, так как помогла получить точную формулировку одного из фундаментальных понятий — понятия физического закона. Поясню мою мысль. Как понимали закон древние? Для них это была внутренняя гармония, так сказать, — статическая и неизменная; или же это была как бы модель, которой природа стремится подражать. Для нас же закон — нечто совсем иное: это — постоянное соотношение между тем, что происходит сегодня, и тем, что будет завтра; словом, это есть дифференциальное уравнение.
Такова идеальная форма физического закона; и впервые в нее был облачен закон Ньютона. Если впоследствии эта форма прочно обосновалась в физике, то это произошло благодаря возможно более точному копированию ньютонова закона, т. е. благодаря подражанию небесной механике. В этом и состоит мысль, которую я старался провести в шестой главе.
Физика принципов. Однако настал день, когда концепция центральных сил оказалась уже недостаточной, и это был первый из кризисов, упомянутых мною.
Как тогда поступили? Отказались от попыток проникнуть в детали строения Вселенной, от изоляции составных частей этого огромного механизма, от анализа каждой отдельной силы, действующей на эти части, и удовлетворились тем, что взяли в качестве руководства некоторые общие принципы, значение которых как раз состоит в том, что они освобождают нас от этих кропотливых исследований. Как же это возможно? Пусть перед нами какая-то машина; нам видны лишь ее первое и последнее колесо, а все передачи, все промежуточные колеса, передающие движение от одного колеса к другому, скрыты внутри и ускользают от нашего взгляда; мы не знаем, производится ли передача при помощи зубчатых колес или ремней, при помощи шатунов или еще как-нибудь иначе. Разве мы скажем, что мы не в состоянии ничего понять в этой машине до тех пор, пока нам не позволят ее разобрать? Конечно, нет, ведь принцип сохранения энергии дает нам возможность решить самый интересный вопрос: мы легко устанавливаем, что выходное колесо вращается в десять раз медленнее входного, поскольку оба эти колеса нам видны; отсюда мы можем заключить, что пара сил, действующая на первое, будет уравновешивать в десять раз большую пару, приложенную ко второму. Для этого нет никакой нужды проникать в механизм такого равновесия и узнавать, каким образом силы будут уравновешиваться внутри машины; достаточно знать, что это уравновешивание не может не произойти.
Ту же самую услугу может оказать нам принцип сохранения энергии по отношению к Вселенной. Это — тоже машина; она гораздо сложнее всех машин, применяемых в технике, и почти все ее составные части глубоко скрыты от нас; но наблюдая движение тех, которые для нас видимы, мы можем при помощи этого принципа сделать выводы, которые остаются справедливыми, каковы бы ни были детали невидимого механизма, приводящего их в движение.
Принцип сохранения энергии (или принцип Майера) есть, без сомнения, самый важный, но не единственный. Имеются другие, из которых мы можем извлечь ту же пользу. Это именно:
принцип Карно, или принцип рассеяния энергии[37];
принцип Ньютона, или принцип равенства действия и противодействия;
принцип относительности, согласно которому законы физических явлений должны оставаться теми же как для неподвижного наблюдателя, так и для наблюдателя, увлекаемого равномерным поступательным движением, так что мы не имеем и не можем иметь никакого средства различить, находимся ли мы в таком движении или нет;
принцип сохранения массы, или принцип Лавуазье.
Я добавил бы еще принцип наименьшего действия.
Приложение этих пяти или шести общих принципов к различным физическим явлениям является достаточным средством узнать то, на познание чего мы можем разумно рассчитывать. Наиболее замечательный пример этой новой математической физики есть, несомненно, электромагнитная теория света, созданная Максвеллом. Что такое эфир, как расположены его молекулы, притягиваются они или отталкиваются? Мы об этом ничего не знаем; но мы знаем, что эта среда одновременно передает как световые возмущения, так и возмущения электрические; мы знаем, что эта передача должна совершаться в соответствии с общими принципами механики, и этого оказывается достаточно, чтобы вывести уравнения электромагнитного поля.
Эти принципы суть результат опытов, обобщенных в сильной степени; но, по-видимому, сама их общность придает им высокую степень достоверности. Действительно, чем они более общи, тем чаще представляется случай проверять и контролировать их, и результаты проверок, накопляясь, принимая самые разнообразные, самые неожиданные формы, в конце концов уже не оставляют места сомнению.
Полезность старой физики. Таков второй период истории математической физики, и мы еще не вышли за его пределы. Скажем ли мы, что первый период был бесполезен, что в течение пятидесяти лет наука шла неправильным путем и что нам остается лишь забыть все огромные усилия, заведомо обреченные на неудачу вместе с ошибочной концепцией? Ни в коем случае. Неужели вы думаете, что второй период мог бы наступить, минуя первый? Гипотеза центральных сил содержала в себе все принципы; она заключала их в себе в качестве необходимых следствий; из нее вытекали и принцип сохранения энергии, и принцип сохранения масс, и равенство действия и противодействия, и принцип наименьшего действия. Правда, эти положения выступали не как экспериментальные истины, а как теоремы, и формулировка их была одновременно более точной и менее общей, чем современная.
И именно математическая физика наших отцов мало-помалу сроднила нас с этими различными принципами, приучила узнавать их под разнообразными одеяниями, в которые они маскируются. Эти принципы были сопоставлены с опытными данными; было выяснено, какие видоизменения их формы необходимы для того, чтобы привести их в соответствии с этими данными; это расширило и укрепило их содержание. Таким образом, появился взгляд на них как на экспериментальные истины; концепция центральных сил стала тогда бесполезной и даже стесняющей, так как свойственный ей гипотетический характер передавался и принципам.
Таким образом, основа научных идей благодаря своей гибкости не подверглась ломке, но расширилась; наши отцы, устанавливая ее, трудились не напрасно; общий характер намеченного ими плана мы узнаем в науке нашего времени.
Новый кризис. Предстоит ли нам теперь вступить в третий период? Должны ли мы ожидать второго кризиса? Будут ли принципы, на которых мы построили все, в свою очередь разрушаться? С некоторого времени мы имеем основание ставить такие вопросы.
Мои слова, несомненно, вызывают у вас мысль о радии, этом великом революционере нашего времени, и, действительно, я вскоре к нему обращусь; но этого мало: дело идет не только о сохранении энергии; опасности подвергаются и все другие принципы, как это мы сейчас увидим при последовательном обозрении их.
Принцип Карно. Начнем с принципа Карно. Это — единственный принцип, который не следует непосредственно из гипотезы центральных сил; более того, по-видимому, он если и не противоречит прямо этой гипотезе, то по крайней мере может быть согласован с ней лишь путем определенных усилий. Если бы физические явления обусловливались исключительно движениями атомов, взаимные притяжения которых зависели бы только от расстояния, то, кажется, все эти явления должны быть обратимыми; если бы все начальные скорости были заменены прямо противоположными, то атомы, находясь под действием все тех же сил, должны были бы описывать свои траектории в обратном направлении точно так же, как Земля стала бы описывать в обратном направлении ту же самую эллиптическую орбиту, какую она описывает в прямом направлении, если бы начальные условия ее движения были заменены противоположными. В силу этого, если некоторое физическое явление оказывается возможным, то должно быть возможным и обратное ему, и должна существовать возможность обратить вспять течение времени. Однако в природе дело обстоит не так, и этому как раз учит нас принцип Карно: тепло может перейти от теплого тела к холодному, но невозможно заставить его затем совершить обратный путь и вновь осуществить исчезнувшую разность температур. Движение может быть полностью рассеяно и посредством трения превращено в теплоту; обратное же превращение может быть осуществлено только частично.
Были попытки примирить это кажущееся противоречие. Если Вселенная стремится к единообразию, то это не потому, что ее мельчайшие части, вначале различные, стремятся сделаться все более сходными, но потому что они, перемещаясь случайным образом, в конце концов перемешиваются. Для глаза, который различал бы все элементы, различие все еще оставалось бы столь же большим; каждая крупинка сохраняет свою оригинальность и не будет похожа на своих соседок; но когда они перемешиваются все более тесно, наши грубые чувства воспринимают уже только однообразие. Вот почему, например, температуры стремятся выравняться, и обратный процесс оказывается невозможным.
Пусть капля вина падает в стакан воды; каков бы ни был закон внутреннего движения жидкости, мы вскоре увидим, как она окрашивается в однообразный розоватый цвет. С этого момента, как бы сильно мы ни трясли сосуд, вино и вода уже не смогут разделиться. Вот другой типичный пример необратимого физического явления: нетрудно спрятать ячменное зерно в ворохе ржи, но практически невозможно отыскать и извлечь его оттуда. Все это было разъяснено Максвеллом и Больцманом, но наиболее точно изложил этот вопрос Гиббс в своих «Основных принципах статистической механики» — книге, несколько трудной для чтения и поэтому слишком мало распространенной.
Для тех, кто принял эту точку зрения, принцип Карно есть принцип несовершенный — нечто вроде уступки слабости наших органов чувств: только потому, что глаза наши недостаточно остры, мы не различаем элементов в смесях, лишь оттого, что наши руки слишком грубы, мы не можем эти элементы разделить; демон, придуманный Максвеллом, который мог бы сортировать отдельные молекулы, сумел бы дать Вселенной обратный ход. Не исключено, что это случится само собой; однако вероятность этого бесконечно мала. Нам, вероятно, долго пришлось бы ждать такого стечения обстоятельств, которое допускало бы обратный ход; но рано или поздно оно осуществится, хотя на это может потребоваться такое число лет, для написания которого понадобились бы миллионы цифр. Однако такие оговорки имеют чисто теоретический характер; они не внушают особого беспокойства, и принцип Карно сохраняет все свое практическое значение. Но вот где картина меняется. Биолог, вооруженный микроскопом, уже давно заметил в своих препаратах беспорядочные движения мелких взвешенных частиц; это так называемое броуновское движение. Вначале он полагал, что это движение есть проявление жизни; но скоро обнаружилось, что неодушевленные тела танцуют с не меньшей энергией, тогда явление перешло в ведение физиков. К сожалению, физики долго не проявляли интереса к этому вопросу, они размышляли так: для освещения микроскопического препарата концентрируют свет; но света без теплоты не бывает; это создает неравенства температуры и внутренние потоки в жидкости; эти потоки и вызывают движения, о которых идет речь.
Гуи решил исследовать вопрос более тщательно; он пришел к выводу, что такое объяснение не подходит; движения становятся тем быстрее, чем мельче частицы, а способ освещения на них не влияет. Итак, если эти движения не прекращаются или, лучше сказать, беспрестанно возобновляются, не получая энергии у какого-либо внешнего источника, то что же нам следует думать? Несомненно, это не дает нам основания отрицать принцип сохранения энергии, но мы видим, как в наших глазах то движение в результате трения превращается в теплоту, то наоборот, теплота превращается в движение, и это происходит без каких-либо потерь, так как движение продолжается все время. Это противоречит принципу Карно. Если так, то нам более не нужен бесконечно изощренный глаз максвеллова демона, чтобы видеть обратный ход мирового механизма: достаточно нашего микроскопа. Тела значительных размеров, например в десятую долю миллиметра, подвергаются со всех сторон ударам движущихся атомов, но сами не приходят в движение, так как эти удары столь многочисленны, что они компенсируют друг друга по закону случайных явлений; частицы же более мелкие получают слишком мало ударов для того, чтобы компенсация осуществлялась наверняка, и потому они беспрестанно колеблются. И вот один из наших принципов уже находится в опасности.
Принцип относительности. Обратимся к принципу относительности. Его не только подтверждает ежедневный опыт; он не только является необходимым следствием гипотезы центральных сил, он непререкаемым образом навязывается нашему здравому рассудку; однако и в нем пробита брешь. Вообразим два наэлектризованных тела; хотя они кажутся нам покоящимися, однако оба они увлекаются движением Земли. Как доказал Роуленд, движущийся электрический заряд эквивалентен току; поэтому два таких заряженных тела будут равносильны двум параллельным токам, направленным одинаково; а такие два тока должны притягивать друг друга. Измеряя это притяжение, мы измерим скорость Земли: не скорость ее относительно Солнца или неподвижных звезд, а ее абсолютную скорость.
Я хорошо знаю, что мне на это возразят: здесь, скажут, изменяется не абсолютная скорость Земли, а скорость ее по отношению к эфиру. Как мало удовлетворяет такой довод! Разве не очевидно, что при таком понимании принципа из него уже ничего нельзя извлечь? Он уже не мог бы нас ничему научить с достоверностью, потому что для него не было бы более опасным никакое опровержение. Произведя то или иное измерение, мы всегда могли бы сказать: это де — не абсолютная скорость, и если это — не скорость по отношению к эфиру, то всегда это может быть скоростью относительно какой-то новой неизвестной жидкости, которой мы можем заполнить пространство.
Да и опыт опровергает такое толкование принципа относительности; все попытки измерить скорость Земли относительно эфира дали отрицательный результат. На этот раз экспериментальная физика оказалась более верной принципу, чем физика математическая; теоретики не стали бы им дорожить, чтобы согласовать другие свои общие взгляды, но опыт настойчиво его подтверждает. Применялись различные приемы, наконец Майкельсон довел точность до последних пределов, все же ничего не было обнаружено. И вот, чтобы объяснить эти упрямые факты, математики вынуждены теперь изощрять все свое остроумие.
Их задача была нелегкой. Если Лоренц преодолел затруднения, то только путем нагромождения гипотез.
Наибольшим остроумием отличалась идея местного времени. Вообразим двух наблюдателей, которые желают выверить свои часы при помощи световых сигналов; они обмениваются сигналами, но, зная, что свет распространяется не мгновенно, дают их, так сказать, перекрестным способом. Когда наблюдатель в пункте B принимает сигнал из пункта A, его часы должны показывать не то время, которое показывали часы в пункте A в момент отправления сигнала, а время, увеличенное на некоторую постоянную, представляющую собой длительность передачи. Пусть, например, из пункта A посылается сигнал, когда часы в кем показывают время 0, а в пункте B сигнал принимается, когда часы в нем показывают время t. Часы выверены, если запаздывание, равное t, представляет собой длительность передачи сигнала; чтобы это проверить, из пункта B посылается сигнал, когда часы в нем показывают время 0; в пункте A должны получить его, когда часы в нем показывают время t. Тогда показания часов согласованы. И действительно, они показывают одно и то же время в одно и то же физическое мгновение, но при условии, что оба пункта были неподвижны. В противном случае длительность передачи не будет одинакова в обоих направлениях: в случае, когда, например, пункт A движется навстречу оптическому возмущению, исходящему из B, и тогда, когда пункт B удаляется от возмущения, исходящего из А. Выверенные таким способом часы не будут показывать истинное время, они будут показывать так называемое местное время: одни часы будут отставать от других. Но это несущественно, поскольку у нас нет никакого средства заметить это. Все явления, происходящие, например, в A, будут запаздывать, но запаздывать одинаково, и наблюдатель не заметит этого, потому что его часы отстают; таким образом, как это следует из принципа относительности, у него не будет никакого средства узнать, находится ли он в покое или в абсолютном движении.
Этого, к сожалению, недостаточно, необходимы дополнительные гипотезы; надо допустить, что движущиеся тела испытывают однородное сокращение в направлении движения: например, один из диаметров Земли укорачивается на одну двухсотмиллионную долю вследствие движения нашей планеты, тогда как другой диаметр сохраняет свою нормальную длину. Этим предположением компенсируются последние малые различия. Но затем нужна еще гипотеза о силах. В мире, движущемся равномерно-поступательно, силы, независимо от их происхождения, будут ли это силы тяготения или упругости, должны в определенной пропорции уменьшаться. Точнее, должны уменьшаться их компоненты, перпендикулярные к направлению движения; параллельные же компоненты не изменяются. Теперь вернемся к нашему примеру двух наэлектризованных тел; эти тела отталкивают друг друга, но в то же время, если вся система находится в равномерно-поступательном движении, они эквивалентны двум параллельным токам одного направления, которые притягиваются.
Таким образом, это электродинамическое притяжение уменьшает электростатическое отталкивание, и результирующее отталкивание оказывается слабее, чем если бы оба тела были в покое. Но так как для измерения этого отталкивания мы должны уравновесить его другой силой и так как все другие силы испытывают уменьшение в одной и той же пропорции, то мы не замечаем ничего. Тем самым все, кажется, приведено в порядок, но все ли сомнения уже устранены? Что произошло бы, если бы можно было сообщаться путем сигналов иной природы, чем световые, скорость распространения которых отличалась бы от скорости света? Если бы, выверив часы оптическим способом, мы захотели бы сверить наши часы при помощи этих новых сигналов, мы обнаружили бы расхождения, с очевидностью говорящие о совместном поступательном движении обоих пунктов. А разве нельзя себе представить подобные сигналы, если вместе с Лапласом мы примем, что всемирное тяготение распространяется в миллион раз быстрее света.
Итак, в последнее время принцип относительности был мужественно защищен. Но уже та энергия, какая потребовалась для этой защиты, показывает, сколь серьезна была атака.
Принцип Ньютона. Теперь поговорим о принципе Ньютона, о равенстве действия и противодействия. Этот принцип тесно связан с предыдущим, и, по-видимому, падение одного повлекло бы за собой падение другого. Поэтому мы не должны удивляться, встречая здесь те же трудности.
Я уже раньше указал, что новые теории не склонны дорожить этим принципом.
По теории Лоренца электрические явления обусловлены смещением мелких заряженных частиц, так называемых электронов, погруженных в среду, которую мы называем эфиром. Движения этих электронов производят возмущения в окружающем эфире; эти возмущения распространяются во все стороны со скоростью света, и другие электроны, первоначально бывшие в покое, в свою очередь приходят в колебания, когда возмущение достигает частей эфира, соприкасающихся с ними. Таким образом, электроны взаимодействуют между собой, но это взаимодействие не прямое, оно совершается через посредство эфира. Может ли при таких условиях осуществляться равенство действия противодействию, по крайней мере для наблюдателя, учитывающего только движения материи, т. е. электронов, и не принимающего в расчет движений невидимого для него эфира? Очевидно, нет. Даже если бы эта компенсация была точной, она не могла бы осуществляться одновременно. Возмущение распространяется с конечной скоростью, поэтому оно достигает второго электрона лишь тогда, когда первый уже давно вернулся в состояние покоя. Таким образом, второй электрон подвергнется воздействию первого с некоторым запозданием, но, конечно, в этот момент он не окажет на него никакого противодействия, поскольку вокруг первого электрона ничто уже не движется.
Анализ фактов позволит нам сделать изложение еще более точным. Вообразим излучатель Герца, подобный тем, которые употребляются в беспроволочной телеграфии. Он излучает энергию во все стороны, но мы можем снабдить его параболическим зеркалом, как это делал Герц со своими небольшими излучателями, и направить всю производимую энергию в каком-то одном направлении. Что должно произойти тогда согласно теории? Аппарат должен испытать отдачу, как если бы он был пушкой, а испущенная им энергия была бы снарядом; но это противоречит принципу Ньютона, потому что здесь снаряд не имеет массы, он является не веществом[38], а энергией. То же самое имеет место и в прожекторе, снабженном рефлектором, поскольку свет есть не что иное, как возмущение электромагнитного поля. Такой прожектор должен испытывать отдачу, как если бы испускаемый свет был снарядом. Какая сила вызывает эту отдачу? Это то, что называют давлением Максвелла — Бартольди, оно очень мало, и его трудно обнаружить даже при помощи самых чувствительных радиометров; но важно то, что оно существует.
Если вся энергия, вышедшая из нашего излучателя, попадает в приемник, то последний испытывает как бы механический толчок, который в некотором смысле представляет собой компенсацию отдачи, испытанной излучателем; противодействие будет равно действию, но оно не будет с ним одновременно; приемник оттолкнется, но не в тот момент, когда излучатель испытает отдачу. Если же энергия распространяется беспредельно, не встречая приемника, то компенсация не произойдет никогда.
Но, быть может, можно сказать, что пространство между излучателем и приемником, в котором возмущение распространяется от первого ко второму, не является пустым, а что оно наполнено не только эфиром, а и воздухом или (в междупланетных пространствах) некоторым весьма тонким, но все же весомым флюидом; что это вещество, как и приемник, испытывает толчок в момент падения на него энергии, а также отдачу, когда возмущение оставляет его? Это спасло бы принцип Ньютона, но это неверно; если бы энергия в процессе распространения всегда была связана с некоторым вещественным субстратом, то движущееся вещество увлекало бы свет. Однако Физо показал, что это не так, по крайней мере для воздуха. Впоследствии это подтвердили Майкельсон и Морли. Можно также предположить, что движения вещества в собственном смысле точно компенсируются движениями эфира, но это привело бы нас к тем соображениям, какие только что рассмотрены. Принцип, понимаемый таким образом, будет в состоянии объяснить все, ибо каковы бы ни были видимые движения, всегда можно придумать гипотетические движения, их компенсирующие. Но если он и может все объяснить, то он не позволяет нам ничего предвидеть, он не позволяет нам выбирать между различными возможными гипотезами, поскольку он все объясняет заранее. Стало быть, он становится бесполезным.
Кроме того, предположения, которые пришлось бы сделать о движениях эфира, не очень удовлетворительны. Так, естественно было бы предположить, что если электрические заряды удваиваются, то скорости различных атомов эфира также удваиваются; но для компенсации необходимо, чтобы средняя скорость эфира учетверилась.
Вот почему я долгое время считал, что эти теоретические выводы, противоречащие принципу Ньютона, в конце концов будут отвергнуты. Однако новейшие опыты, в которых исследовалось движение электронов, испускаемых радием, скорее их подтверждают.
Принцип Лавуазье. Перехожу к принципу Лавуазье, касающемуся сохранения масс. Конечно, это — принцип такого рода, что его нельзя затронуть без того, чтобы не поколебать механику. И тем не менее теперь некоторые думают, что он кажется нам верным только потому, что в механике рассматриваются не слишком большие скорости, но что он перестал бы быть верным для тел, обладающих скоростями, сравнимыми со скоростью света. Но в настоящее время такие скорости считаются осуществленными: катодные лучи и лучи радия состоят из весьма малых частиц или из электронов, летящих со скоростью, которая, без сомнения, меньше скорости света, но все же составляет от одной десятой до одной трети ее.
Эти лучи отклоняются как в электрическом, так и в магнитном поле; сравнивая то и другое отклонение, можно одновременно измерить скорость электронов и их массу (или, вернее, отношение их массы к их заряду). Но оказалось, что когда эти скорости приближаются к скорости света, необходимо вносить поправки. Эти частицы, будучи заряжены, не могут перемещаться, не приводя в колебание эфир; чтобы привести их в движение, необходимо преодолеть инерцию двоякого рода — инерцию самой частицы и инерцию эфира. Поэтому полная или наблюдаемая масса, которую именно и измеряют, состоит из двух частей: из действительной или механической, массы частицы и из электродинамической массы, выражающей инерцию эфира.
Вычисления Абрагама и опыты Кауфмана показали, что механическая масса в собственном смысле равна нулю и что масса электронов — по крайней мере отрицательных электронов — имеет исключительно электродинамическое происхождение. Это вынуждает нас изменить определение массы: мы не можем уже проводить различие между массой механической и массой электродинамической, так как тогда первая исчезает. Нет иной массы, кроме массы, связанной с электродинамической инерцией. Но в таком случае масса уже не может быть постоянной, она увеличивается со скоростью; мало того, она зависит от направления, так что тело, имеющее значительную скорость, оказывает разное сопротивление силам, стремящимся отклонить его с его пути, и силам, ускоряющим или замедляющим его движение.
Есть еще один выход: последними элементами тел являются электроны, одни из них заряжены отрицательно, другие — положительно.
Отрицательные электроны не имеют массы — это установлено; но электроны положительные, согласно тому немногому, что о них известно, гораздо более крупны. Быть может, они, кроме их электродинамической массы, имеют также настоящую механическую массу. В таком случае истинная масса тела была бы суммой механических масс его положительных электронов: отрицательные электроны не принимаются в расчет. Определенная таким образом масса еще могла бы быть постоянной.
Увы! И этот выход ускользает от нас. Вспомним то, что было сказано по поводу принципа относительности и усилий, предпринятых для его спасения. И дело не только в том, чтобы спасти принцип, но и в несомненных результатах опытов Майкельсона. Как мы видели, Лоренцу пришлось для истолкования этих результатов предположить, что в среде, движущейся равномерно-поступательно, все силы независимо от их происхождения уменьшаются в одной и той же пропорции; мало того, такое уменьшение должно иметь место не только для реальных сил, но и для сил инерции. Таким образом, говорит Лоренц, необходимо, чтобы массы всех частиц при поступательном, движении испытывали такое же изменение, какое испытывают электромагнитные массы электронов.
Итак, механические массы должны изменяться по тем же законам, что и массы электродинамические: следовательно, они не могут быть постоянными.
Легко понять, что падение принципа Лавуазье повлекло бы за собой падение принципа Ньютона. Этот последний между прочим означает, что центр тяжести изолированной системы движется прямолинейно; но если не существует постоянной массы, то нет и центра тяжести, и мы больше не можем сказать, что это такое. Вот почему выше я сказал, что опыты с катодными лучами, по-видимому, подтверждают сомнения Лоренца, относящиеся к принципу Ньютона.
Если бы все эти результаты получили подтверждение, то из них возникла бы совершенно новая механика, для которой было бы особенно характерно то положение, что не может существовать скорость, большая, чем скорость света[39], подобно тому как невозможно получить температуру ниже абсолютного нуля. С точки зрения наблюдателя, увлекаемого поступательным движением, о котором он не подозревает, никакая кажущаяся скорость точно так же не могла бы превзойти скорость света; здесь можно было бы усмотреть противоречие, если бы мы не вспомнили, что этот наблюдатель пользуется не теми же часами, какими пользуется неподвижный наблюдатель, а часами, показывающими «местное время».
Здесь мы встречаемся с вопросом, относительно которого я ограничусь только его постановкой. Если масса больше не существует, то во что обращается закон Ньютона?
Масса имеет два аспекта: во-первых, это — коэффициент инерции; во-вторых, это — тяготеющая масса, входящая в качестве множителя в формулу ньютонианского тяготения. Если коэффициент инерции не является постоянным, может ли быть постоянной притягивающая масса? Вот вопрос, встающий перед нами.
Принцип Майера. У нас еще оставался по крайней мере принцип сохранения энергии. Уж он-то казался наиболее прочным. Надо ли напоминать, что и он в свою очередь подвергся сомнению? Это событие наделало больше шуму, чем все предыдущие, что отмечено во всех статьях. После первых работ Беккереля, а в особенности после того, как супруги Кюри открыли радий, обнаружилось, что любое радиактивное тело является неисчерпаемым источником излучений. Представлялось, что его активность сохраняется без изменения на протяжении месяцев и лет. Это уже было ударом для принципов: эти излучения представляли собой энергию, которая непрестанно выделялась из одной и той же крупицы радия. Но эти количества энергии были слишком малы, чтобы их можно было измерить; так по крайней мере думали и поэтому не очень беспокоились.
Положение изменилось после того, как Кюри догадались поместить радий в калориметр: тогда оказалось, что количество непрерывно выделяемой теплоты весьма значительно.
Было предложено много объяснений. Но нельзя сказать, чтобы в подобных случаях излишек не приносил вреда. Пока одно из объяснений не возьмет верх над другими, мы не можем быть уверены в том, что среди них есть хотя бы одно пригодное. Однако с некоторого времени одно из этих объяснений, по-видимому, берет верх, и можно надеяться, что ключ от тайны находится в наших руках.
Сэр У. Рамсей сделал попытку показать, что радий подвергается превращению, что он обладает хотя и огромным, но исчерпываемым запасом энергии. В таком случае при превращении радия производится в миллион раз больше теплоты, чем при всех других известных превращениях. Радий должен истощиться за время в 1250 лет; итак, по крайней мере через несколько сот лет, дело наверное выяснится. Пока мы этого ждем, наши сомнения остаются в силе.
Принципы и опыт. Что же остается нетронутым среди всех этих руин? Принцип наименьшего действия стоит нерушимо до сих пор, и Лармор, по-видимому, считает, что этот принцип надолго переживет все остальные; он действительно и самый неопределенный и самый общий.
Какую же позицию должна занять математическая физика при наличии этого всеобщего разгрома принципов? Прежде чем начинать волноваться, нам следует спросить себя, действительно ли все сказанное верно. Все нарушения принципов встречаются лишь в области бесконечно малого: чтобы видеть броуновское движение, нужен микроскоп: электроны чрезвычайно легки; радий очень редок, его никогда не бывает в нашем распоряжении больше нескольких миллиграммов сразу, а в таком случае можно спросить себя нет ли рядом с тем бесконечно малым, которое мы увидели, еще много бесконечно малого, которого не видим, и которое составляет противовес первому?
Возникший вопрос имеет такой характер, что его может разрешить один только опыт. Поэтому нам остается лишь обратиться к экспериментаторам и в ожидании, пока они окончательно разрешат спор, не слишком озабочиваться этими тревожными вопросами, а спокойно продолжать нашу работу, как если бы принципы были еще бесспорными. В самом деле нам еще много предстоит сделать в той области, где их можно применить с полной уверенностью; нам есть к чему приложить нашу деятельность в течение этого периода сомнений.
Роль аналитика. Однако верно ли, что мы ничего не можем сделать для освобождения науки от этих сомнений? Необходимо сказать, что они порождены не одной экспериментальной физикой; и математическая физика тоже внесла свой вклад. Экспериментаторы обнаружили, что радий выделяет энергию; зато теоретики раскрыли все трудности, которые связаны с описанием распространения света в движущихся средах, без них мы, вероятно, об этих трудностях не узнали бы. Но если они сделали все, чтобы поставить нас в затруднительное положение, то надо, чтобы они же помогли нам и выйти из него.
Они должны подвергнуть критическому анализу все описанные мною новые взгляды; и надо, чтобы они отклоняли принципы не раньше, чем будут исчерпаны все средства для их спасения. Что же они могут сделать в этом смысле? Это я и попытаюсь объяснить[40].
Среди наиболее интересных проблем математической физики особое место следует отвести проблемам, связанным с кинетической теорией газа. Многое уже сделано для их решения, но многое еще остается сделать Эта теория — какой-то вечный парадокс. В посылках мы имеем обратимость, в результатах — необратимость, а между ними — пропасть. Достаточно ли статистических соображений, закона больших чисел, чтобы ее заполнить? Есть много темных мест, к которым надо вернуться и, вероятно, не один раз. Их разъяснение поможет лучше понять смысл принципа Карно и его место среди динамических законов, и тогда мы будем лучше вооружены для того, чтобы объяснить любопытный опыт Гуи, о котором я говорил выше.
Не должны ли мы прежде всего позаботиться о том, чтобы создать более удовлетворительную электродинамику движущихся тел? Выше я показал, что именно здесь накопилось особенно много трудностей; как ни нагромождай гипотезы, сразу невозможно удовлетворить всем принципам; до сих пор удавалось спасти некоторые из них не иначе, как жертвуя другими; но еще не вполне утрачена надежда на получение лучших результатов. Поэтому примем теорию Лоренца, всесторонне рассмотрим ее и будем понемногу видоизменять; быть может, постепенно все уладится.
Так, вместо того чтобы предполагать, что движущиеся тела испытывают сжатие в направлении движения и что это сжатие не зависит ни от природы тел, ни от других сил, действующих на них, нельзя ли было бы предложить другую гипотезу, более простую и более естественную? Можно было бы, например, допустить, что происходит изменение в состоянии эфира, когда он движется относительно погруженной в него материальной среды, и что это его изменение таково, что он уже более не передает возмущений с одной и той же скоростью по всем направлениям. Можно предположить, что возмущения, распространяющиеся параллельно движению тела (безразлично, в каком из этих противоположных направлений), передаются эфиром с большей скоростью, а распространяющиеся перпендикулярно — с меньшей. В таком случае волновые поверхности были бы не сферами, а эллипсоидами, и можно было бы обойтись без этого столь необычного сжатия всех тел.
Я указываю это лишь в качестве примера, ибо очевидно, что можно было бы испробовать бесконечное число вариантов.
Аберрация и астрономия. Возможно также, что астрономия предоставит нам со временем данные по этой проблеме: ведь в сущности именно она первая возбудила вопрос, познакомив нас с явлением аберрации света. Строя грубую теорию аберрации, мы приходим к весьма курьезному результату. Видимые положения звезд отличаются от их действительных положений вследствие движения Земли, и так как это движение меняется, то меняются и эти видимые положения. Действительного положения мы узнать не можем, но мы можем наблюдать изменения видимого положения. Поэтому наблюдения над аберрацией показывают нам не движение Земли, а изменения этого движения; следовательно, они не могут дать нам сведений об абсолютном движении Земли.
Это верно, по крайней мере в первом приближении; но если бы мы могли измерять углы с точностью до тысячных долей секунды, то это было бы уже неверно. Мы увидели бы тогда, что амплитуда колебаний зависит не только от изменений скорости, изменений, которые хорошо известны, поскольку они обусловлены движением нашей планеты по ее эллиптической орбите, но также и от среднего значения этого движения, так что константа аберрации уже не была бы совершенно одинаковой для всех звезд, и наблюдение различий дало бы нам возможность узнать абсолютное движение Земли в пространстве. Это означало бы падение принципа относительности, реализуемое в несколько иной форме. Правда, мы далеко не в состоянии оценивать тысячные доли секунды; но со всем тем, как говорят некоторые, полная абсолютная скорость Земли может в конце концов значительно превышать ее скорость относительно Солнца; если бы она составляла, например, 300 километров в секунду вместо 30, то этого было бы достаточно для возможности наблюдать явление.
Я полагаю, что такие рассуждения основаны на принятии слишком упрощенной теории аберрации. Как я уже упомянул, Майкельсон показал, что физические процессы не в состоянии обнаружить абсолютное движение; я убежден, что это верно и для астрономических методов, какова бы ни была степень точности.
Но как бы то ни было, данные, которые астрономия предоставит нам по этому вопросу, когда-нибудь будут иметь неоценимое значение для физика. Я полагаю, что теоретики могут ожидать отрицательный результат, имея в виду опыт Майкельсона; думаю, что они совершили бы полезное дело, создав теорию абберации, которая учитывала бы это заранее.
Электроны и спектры. Но вернемся на Землю. Здесь мы также могли бы помочь экспериментаторам. Мы можем, например, подготовить почву, тщательно исследуя динамику электронов, не придерживаясь при этом какой-то одной гипотезы, а, наоборот, увеличивая, насколько возможно, их число. Используя наши работы, физики могли бы тогда предложить решающий опыт, который позволил бы отдать предпочтение одной из них[41].
К динамике электрона существуют разные подходы. Но в числе путей, ведущих к ней, есть один, который был в некотором пренебрежении, хотя он как раз из числа тех, которые обещают наибольшие неожиданности. Дело в том, что спектральные линии излучения порождаются движениями электронов, как это доказывает эффект Зеемана; то, что колеблется в раскаленном теле, испытывает действие магнита и, следовательно, наэлектризовано. Это очень важный исходный пункт; но пока далее его не пошли. Почему спектральные линии распределены соответственно точному закону? Экспериментаторы до мельчайших деталей изучили эти законы, они весьма точны и сравнительно просты. Первые исследования этих распределений включали идею о гармонических соотношениях, встречающихся в акустике; однако различие оказалось значительным; не только частоты не представляют собой последовательных кратных одного и того же числа, но мы даже не находим здесь ничего соответствующего корням тех трансцендентных уравнений, к которым нас приводят многие задачи математической физики, например задача о колебаниях упругого тела произвольной формы, задача о герцевских колебаниях в излучателе произвольной формы, задача Фурье об охлаждениях твердого тела.
Законы спектральных линий более просты, но природа их совершенно иная; ограничусь лишь одним примером такого различия: для гармоник высшего порядка число колебаний стремится к конечному пределу вместо того, чтобы бесконечно возрастать.
Эти явления еще не объяснены, и я думаю, что здесь перед нами одна из наиболее важных тайн природы. Японский физик Нагаока предложил недавно свое объяснение: по его мнению, атомы состоят из большого положительного электрона, окруженного кольцом из весьма большого числа весьма малых отрицательных электронов. Такова планета Сатурн со своим кольцом. Это очень интересное, но еще не вполне удовлетворительное объяснение, его следовало бы развить. Мы проникаем, так сказать, в самые глубины вещества; с той частной позиции, которую мы занимаем сегодня, представляется, что когда мы узнаем, почему колебания раскаленных тел так отличаются от обычных упругих колебаний, почему электроны ведут себя иначе, чем обычное вещество, тогда мы лучше поймем динамику электронов и, может быть, нам будет легче согласовывать ее с принципами.
Условные положения перед лицом опыта. Теперь предположим, что все эти усилия потерпят неудачу (чего, учитывая все обстоятельства, я не допускаю); что должны мы делать тогда? Нужно ли будет попытаться исправлять поколебленные принципы при помощи какого-нибудь ухищрения? Это, очевидно, всегда возможно, и я не беру назад ничего из сказанного раньше. Если бы вы захотели спорить со мной, вы могли бы сказать: «Не написано ли у вас, что принципы — несмотря на их опытное происхождение — в настоящее время лежат вне досягаемости опыта, потому что они стали условными соглашениями[42]. А теперь вы нам говорите, что последние достижения опыта подвергают эти принципы опасности. Так вот, я был прав раньше, но и теперь я не ошибаюсь. Я был прав раньше — и то, что происходит ныне, служит тому новым доказательством. Возьмем, например, калориметрический опыт, который произвел Кюри с радием. Можно ли согласовать его с принципом сохранения энергии? Этого пытались достигнуть многими способами, и на один из них я хотел бы обратить ваше внимание; это — не то объяснение, которое ныне одерживает верх, но все же одно из предложенных. В нем предполагается, что радий есть всего лишь посредник, что он только концентрирует излучения неизвестной природы, которые бороздят пространство по всем направлениям, проникая сквозь все тела, кроме радия, никак не воздействуя на них и не изменяя своей природы. Один только радий способен поглощать часть энергии этих излучений и затем в различных формах отдавать ее нам.
Какое удачное объяснение, и как оно удобно! Во-первых, его нельзя проверить, а следовательно, и опровергнуть. Во-вторых, оно может служить для объяснения каких угодно нарушений принципа Майера: оно заранее дает ответ не только на возражение Кюри, но и на любые другие возражения, какие могут быть представлены экспериментаторами в будущем. Эта новая неизвестная энергия могла бы служить для всевозможных целей.
Это как раз то, о чем я говорил в свое время; и это доказывает, что наш принцип вне досягаемости опыта Но в конце концов что же приобрели мы с помощью такой уловки? Принцип сохранен, но чему он может служить с этих пор? Раньше он позволял нам предвидеть, что в таких-то обстоятельствах мы можем рассчитывать на такое-то полное количество энергии; он нас ограничивал; но теперь после того, как в наше распоряжение предоставлен неопределенный запас новой энергии, мы уже не ограничены ничем. А если, как я писал в «Науке и гипотезе», какой-нибудь принцип перестает быть плодотворным, то опыт, не противореча ему непосредственно, тем не менее осудит его.
Будущая математическая физика. Поэтому надо было бы поступать не так; мы должны были бы перестраивать все сызнова. Впрочем, если бы такая необходимость и возникла, то мы могли бы найти себе утешение. Отсюда еще не следовало бы заключать, что научный труд — труд Пенелопы, что наука способна лишь к эфемерным построениям, которые ей вскоре же приходится разрушать собственными руками до самого основания.
Как я говорил, мы однажды уже прошли через подобный кризис. Я указывал, что в математической физике второго периода — физике принципов — встречаются следы предшествующей физики, физики центральных сил. То же самое будет иметь место, если нам придется познакомиться с физикой третьего периода. Так, линяющее животное разрывает свой слишком тесный панцирь и заменяет его новым, но и под новой оболочкой легко узнать существенные черты прежнего организма.
Мы не в состоянии предвидеть, в каком направлении пойдет дальнейшее развитие. Быть может, кинетическая теория газов расширится и послужит образцом для других теорий. В таком случае факты, вначале казавшиеся нам простыми, были бы уже только результатом суммирования огромного числа элементарных фактов, которые, управляясь единственно законами случая, стремились бы к одной и той же цели. Тогда физический закон получил бы совершенно новый вид: он не был бы уже только дифференциальным уравнением, но приобрел бы характер статистического закона. Возможно также, что придется создать совершенно новую механику, которую мы сейчас лишь смутно предугадываем. В этой механике инерция возрастала бы вместе со скоростью, и скорость света являлась бы непреодолимым пределом. Обычная, более простая, механика сохранила бы значение первого приближения, так как она была бы верна для не очень больших скоростей: таким образом, старая динамика еще содержалась бы в новой. Мы не имели бы причин жалеть о том, что верили принципам: в практической области было бы даже самым верным продолжать действовать так, как если бы мы сохранили эту веру, ибо скорости, чересчур большие и не допускающие применения старых формул, встречались бы всегда лишь в качестве исключения. Эти принципы столь полезны, что за ними надо было бы сохранить их место. Желать полного их исключения значило бы лишить себя ценного оружия. В заключение я хотел бы сказать, что мы еще не дошли до этого; еще ничто не доказывает, что они не выйдут из борьбы победоносными и неизмененными.
Мы видели много оснований для скептицизма; должны ли мы довести этот скептицизм до конца или остановиться на пути? Идти до конца — это самое соблазнительное, самое удобное решение вопроса; многие приняли его, отчаявшись что-либо спасти от крушения.
Среди сочинений, внушенных таким стремлением, необходимо поставить на первом месте труды Леруа. Этот мыслитель является не только философом и заслуженным писателем; он также обладает глубоким знанием точных наук, в частности физических; кроме того, он обнаружил ценную способность к математическому изобретательству.
Изложим в немногих словах его учение, давшее повод к большим спорам.
Наука состоит из одних условных положений, и своей кажущейся достоверностью она обязана единственно этому обстоятельству; научные факты и тем более законы суть искусственное творение ученого; поэтому наука отнюдь не в состоянии открыть нам истину, она может служить нам только как правило действия.
Мы узнаем здесь философскую теорию, известную под именем номинализма. Не все в этой теории ложно; ей нужно предоставить область, принадлежащую ей по праву, но не следует позволять ей переходить эти пределы.
Но учение Леруа не только номиналистично: ему свойственна еще другая черта, явившаяся, несомненно, благодаря влиянию Бергсона: оно антиинтеллектуалистично. С точки зрения Леруа, ум искажает все, к чему он прикасается; это еще более справедливо по отношению к его необходимому инструменту — «рассудочности». Реальность присуща только нашим беглым и изменяющимся впечатлениям, и даже эта реальность исчезает при первом прикосновении к ним.
Однако Леруа — не скептик. Если он объявляет разум непоправимо бессильным, то лишь для того, чтобы уделить побольше места для других источников познания, — например для сердца, чувства, инстинкта или веры.
Как ни уважаю я талант Леруа, как ни остроумно это положение, я не мог бы принять его полностью. Конечно, во многих отношениях я согласен с Леруа, и он даже цитировал для поддержки своей точки зрения различные места из моих сочинений, от которых я нисколько не намерен отказываться. Я лишь считаю своей обязанностью разъяснить, почему я не могу последовать за ним до конца.
Леруа часто жалуется на то, что его обвиняют в скептицизме. Иначе и быть не могло, хотя это обвинение, вероятно, несправедливо. Разве все улики не против него? Номиналист в теории, но реалист в сердце, он спасается от абсолютного номинализма, по-видимому, лишь актом отчаявшейся веры.
Дело в том, что антиинтеллектуалистическая философия, отвергая анализ и «рассудочность», тем самым обрекает себя на невозможность быть передаваемой; это — философия, по существу, замкнутая в себе: если же что-нибудь и может быть здесь передаваемо, то только отрицания. Поэтому можно ли удивляться, что с точки зрения внешнего наблюдателя она принимает вид скептицизма?
В этом — слабое место философии Леруа. Если она желает остаться верной себе, то всю свою мощь она исчерпает в отрицании и вопле энтузиазма. Каждый автор может повторять это отрицание и этот вопль, разнообразить их вид, но он не в силах ничего прибавить.
И еще, не было ли бы более последовательным умолкнуть? Вот вы написали несколько длинных статей: для этого вам необходимо было пользоваться словами. А благодаря этому не стали ли вы гораздо более «рассудочным», а следовательно, и гораздо удаленнее от жизни и от истины, чем животное, которое просто живет, не философствуя? Не будет ли это животное истинным философом?
Если никакой художник не в состоянии написать совершенно похожий портрет, то должны ли мы из этого заключать, что самая лучшая живопись состоит в том, чтобы не писать вовсе? Когда зоолог рассекает животное, он, конечно, его «искажает». Да, рассекая его, он обрекает себя на невозможность когда-либо узнать о нем все; но не рассекая его, он обрек бы себя на невозможность когда-либо узнать о нем хоть что-нибудь, а следовательно, и на невозможность когда-либо сказать что-нибудь.
Конечно, в человеке имеются другие силы, кроме его ума: не было такого безумца, который бы отрицал это. Первый встречный приводит в действие эти слепые силы или позволяет им действовать. Но философ должен говорить о них: чтобы о них говорить, он должен знать о них то немногое, что можно знать; следовательно, он должен рассматривать их действия. Какими же глазами будет он их рассматривать, если не своим умом? Сердце, инстинкт могут руководить умом, но не могут сделать его бесполезным; они в состоянии направлять взгляд, но не в состоянии заменить глаз. Что сердце — рабочий, а ум — только орудие, с этим можно согласиться. Но без этого орудия нельзя обойтись; оно нужно нам если не для действия, то во всяком случае для философствования. Вот почему невозможно, чтобы истинная философия была антиинтеллектуалистической. Быть может, мы должны вывести заключение о «примате» действия; во всяком случае такое заключение будет делать наш ум. Уступая первое место действию, он сохраняет за собой превосходство «мыслящего тростника». Это — также «примат», которым не следует пренебрегать.
Я прошу простить мне эти краткие размышления, а также и то, что я лишь поверхностно коснулся вопроса. Я намерен рассуждать не о спорах об интеллектуализме; я хочу говорить о науке и, без сомнения, в защиту ее. Она будет или не будет интеллектуалистична, так сказать, в силу определения. Речь идет как раз о том, чтобы узнать, будет ли она такою.
С точки зрения Леруа наука есть лишь правило действия. Мы бессильны что-либо узнать, тем не менее мы принимаем участие в множестве обстоятельств, нам нужно действовать, и мы на всякий случай установили для себя правила. Совокупность этих правил и составляет то, что называют наукой.
Подобно этому люди, желая развлекаться, установили правила игр, например игры в трик-трак; эти правила могли бы в большей даже степени, чем сама наука, опираться на такой довод, как всеобщее согласие.
Точно так же люди, принужденные делать выбор, но не имеющие для него данных, бросают в воздух монету, чтобы открыть решетку или орла.
Конечно, правило игры в трик-трак есть правило действия, подобно науке, но можно ли считать это сравнение правильным, и не бросается ли в глаза различие? Правила игры представляют собой произвольное соглашение; можно было бы принять соглашение противоположного содержания, которое оказалось бы не хуже. Напротив, наука есть такое правило действия, которое приводит к успеху, по меньшей мере вообще, и я добавлю, тогда, когда противоположное правило не имело бы успеха.
Когда я говорю: «для добывания водорода действуйте кислотой на цинк», я формулирую правило, приводящее к успеху. Я мог бы сказать: «действуйте дистиллированной водой на золото»; это было бы также правило, но оно не вело бы к успеху.
Таким образом, если научные «рецепты» имеют ценность как правило для действия, то это потому, что в общем и целом они, как мы знаем, имеют успех. Знать это — значит уже знать кое-что, а раз так, то какое вы имеете право говорить нам, что мы не можем ничего знать?
Наука предвидит; и именно потому, что она предвидит, она может быть полезной и может служить правилом действия. Я хорошо знаю, что ее предвидения часто опровергаются фактами: это доказывает, что наука несовершенна, и если я добавлю, что она всегда останется такою, то я уверен, что по крайней мере это предвидение никогда не будет опровергнуто. Во всяком случае ученый обманывается реже, чем предсказатель, который предрекал бы наудачу. С другой стороны, прогресс хотя и медлен, но непрерывен; так что ученые, становясь смелее и смелее, обманываются все менее и менее. Это мало, но этого достаточно.
Я знаю, Леруа в одном месте сказал, что наука обманывалась чаще, чем думают, что кометы порой насмехались над астрономами, что ученые, как вообще свойственно людям, неохотно говорят о своих неудачах, а если бы они говорили о них, то число поражений оказалось бы значительнее числа побед.
На этот раз Леруа явно преувеличил. Если бы наука не преуспевала, то она не могла бы служить правилом действия; откуда черпала бы она свою ценность? Из того ли, что она «выжила», т. е. что мы любим ее и верим в нее? У алхимиков были рецепты для приготовления золота, они любили их и верили в них; однако правильными являются именно наши рецепты, потому что они приводят к успеху, хотя бы наша вера и не была очень сильна.
Нет средств уйти от этой дилеммы. Либо наука не дает возможности предвидеть, в таком случае она лишена ценности в качестве правила действия; либо она позволяет предвидеть (более или менее несовершенным образом), и тогда она не лишена значения в качестве средства к познанию.
Нельзя даже сказать, чтобы действие было целью науки. Должны ли мы осудить исследования, произведенные над Сириусом, под тем предлогом, что мы, вероятно, никогда не предпримем никаких действий по отношению к этой звезде?
С моей точки зрения, наоборот: знание есть цель, а действие есть средство. Когда я радуюсь развитию техники, то это не потому только, что оно доставляет удобный для защитников науки аргумент, но в особенности потому, что оно внушает ученому веру в себя самого, а также представляет огромное поле для его опытов, где он сталкивается с силами, чересчур колоссальными, чтобы можно было отделаться какой-нибудь фокуснической уловкой. Не будь этого балласта, кто знает, быть может, он покинул бы Землю, увлеченный призраком какой-нибудь новой схоластики, или впал бы в отчаяние, поверив, что все его труды — только греза?
Что наиболее парадоксально в сочинении Леруа, так это утверждение, что ученый создает факт. Здесь мы в то же время имеем существенный пункт, один из тех, которые вызвали наибольшие возражения.
Он говорит (я уверен, что это уже уступка): голые факты, быть может, и не создаются ученым; но во всяком случае научные факты им создаются.
Это различение голых и научных фактов само по себе не кажется мне незаконным. Но я сожалею, во-первых, о том, что между ними не проводится определенной и резкой границы; во-вторых, о том, что автор, по-видимому, подразумевал, будто голый факт, не будучи научным, лежит вне науки.
Наконец, я не могу признать, что ученый свободно творит научные факты: потому что их внушает ему голый факт.
Примеры, приведенные Леруа, чрезвычайно удивили меня. Первый из них относится к понятию атома. Атом, избранный как пример факта! Признаюсь, этот выбор так смутил меня, что я предпочитаю не говорить о нем ничего. Очевидно, я плохо понял мысль автора и не мог бы возражать против нее с пользой.
В качестве второго примера приведен случай затмения. Здесь голым явлением служит смена темноты и света; вмешательство астронома непременно приводит сюда два посторонних элемента, именно часы и закон Ньютона.
Наконец, Леруа называет вращение Земли. Ему возразили, что это — не факт. Он отвечал, что вращение Земли было фактом для Галилея, который подтверждал его, и точно так же для инквизитора, который его отрицал. Во всяком случае, это — факт не того же ранга, как первые два; дать им всем одно и то же имя — значит вызвать ряд недоразумений.
Итак мы имеем следующие четыре ступени:
1) Становится темно, говорит человек неученый.
2) Затмение наступило в девять часов, говорит астроном.
3) Затмение наступило в момент, который можно было бы указать из таблиц, построенных на основании законов Ньютона, говорит он еще.
4) Это зависит от того, что Земля вращается вокруг Солнца, говорит, наконец, Галилей.
Где же граница между голым фактом и фактом научным? Читая Леруа, можно было бы подумать, что она лежит между первой и второй ступенью; но кто же не видит, что между второй и третьей расстояние больше, а между третьей и четвертой — еще больше.
Я позволю себе привести два примера, которые, быть может, несколько разъяснят дело.
Я наблюдаю отклонение гальванометра с помощью подвижного зеркальца, которое отбрасывает световое изображение или «зайчик» на проградуированную шкалу. Голый факт таков: я вижу перемещение зайчика по шкале. Научный факт будет: в цепи проходит ток. Или еще: когда я произвожу какой-нибудь опыт, я должен подвергнуть результат некоторым поправкам, так как мне известно, что я должен был сделать погрешности. Эти погрешности бывают двух сортов: одни случайные, и я исправлю их, взяв среднюю; другие систематические, и я не буду в состоянии их исправить без глубокого исследования их причин.
Итак, первый полученный результат представляет собой голый факт, тогда как научным фактом будет окончательный результат после выполнения поправок.
Размышляя над этим последним примером, мы приходим к необходимости подразделить нашу вторую ступень, и вместо того, чтобы сказать:
2) затмение наступило в девять часов, мы скажем:
2а) затмение наступило, когда мои часы показывали девять.
2б) так как мои часы отстают на десять минут, то затмение наступило в девять часов десять минут.
Это не все: первая ступень также должна быть подразделена, и расстояние между этими двумя подразделениями будет значительно. Необходимо проводить различие между впечатлением темноты, которое испытывает свидетель затмения, и утверждением: становится темно, которое вызывается у него этим впечатлением. В известном смысле только первое есть настоящий голый факт; второе уже представляет род научного факта.
Итак, наша лестница имеет теперь шесть ступеней, и хотя нет никаких оснований останавливаться на этой цифре, но мы ее удержим.
Меня поражает, во-первых, следующее. На первой из наших шести ступеней факт, будучи вполне голым, является, так сказать, индивидуальным — он совершенно отличен от всех иных возможных фактов. Со второй ступени уже начинается иное. Выражение данного факта могло бы пригодиться для тысячи других фактов. Коль скоро на сцену выступает речь, я располагаю лишь ограниченным числом терминов для выражения бесконечного числа оттенков, в которые могут облекаться мои впечатления. Когда я говорю: «становится темно», это хорошо выражает впечатления, которые я испытываю, присутствуя при затмении; но даже впечатление темноты может иметь множество оттенков, и если бы вместо оттенка, осуществляющегося в действительности, имел место другой, несколько отличный, то все-таки я бы еще выразил этот другой факт словами «становится темно».
Другое замечание. Уже на второй ступени выражение факта может быть только верным или неверным. Этого нельзя сказать про любое предложение; если предложением выражается условное соглашение, то нельзя сказать, что это выражение верно в собственном смысле слова, так как оно не могло бы быть верно помимо моей воли: оно верно лишь потому, что я этого хочу.
Когда я, например, говорю «единица длины есть метр», это — решение, которое я принимаю, а не констатация, которая мне предписывается. Точно так же обстоит дело, например, по отношению к постулату Евклида, что я и доказал в другом месте.
Когда меня спрашивают, становится ли темно, я всегда знаю, ответить ли «да» или «нет».
Хотя бесчисленное множество возможных фактов будет восприниматься через то же самое выражение: становится темно, — однако я всегда буду знать, входит ли осуществившийся факт в число тех, которые соответствуют этому выражению, или нет. Факты поделены на категории, и если меня спрашивают, входит ли констатируемый мною факт в такую-то категорию или нет, я не затруднюсь ответом.
Без сомнения, такая классификация является достаточно произвольной, чтобы предоставить широкое участие свободе или прихоти человека. Словом, эта классификация есть соглашение. Раз принято это соглашение, то, если меня спрашивают, имел ли место определенный факт, я всегда сумею дать ответ, и мой ответ будет мне предписан свидетельством моих чувств.
Итак, если во время затмения спросят, становится ли темно, — всякий ответит утвердительно. Без сомнения, отрицательный ответ дали бы те, кто говорит на языке, на котором свет зовется тьмой, а тьма — светом. Но может ли это иметь какое-либо значение?
То же самое имеет место в математике: когда я установил определения и постулаты, являющиеся условными соглашениями, всякая теорема уже может быть только верной или неверной. Но для ответа на вопрос, верна ли эта теорема, я прибегну уже не к свидетельству моих чувств, а к рассуждению.
Словесное выражение факта всегда может быть проверено, и для проверки мы прибегаем или к свидетельству наших чувств или к воспоминанию об этом свидетельстве. Этим собственно и характеризуется факт. Если вы зададите мне вопрос, верен ли такой-то факт, то я сначала попрошу вас, если понадобится, уточнить условия разговора, иными словами, спрошу вас, на каком языке вы говорите; затем, раз это будет установлено, я обращусь к своим чувствам и отвечу вам «да» или «нет». Ответ будет дан моими чувствами, воспринимающими факт, но вовсе не вами в ваших словах: независимо от того, выразил ли я его по-английски или по-французски.
Подлежит ли здесь что-либо изменению при переходе к дальнейшим ступеням? Пусть я наблюдаю гальванометр; если я, подобно только что сказанному, спрошу у посетителя, не знакомого с делом, идет ли ток, то он станет смотреть на проволоку, стараясь увидеть, не идет ли что-нибудь по ней; но если я задам тот же вопрос своему помощнику, понимающему мой язык, то он будет знать, что вопрос означает, перемещается ли световой зайчик, и он станет смотреть на шкалу.
Но в таком случае в чем состоит различие между выражением голого факта и выражением научного факта? В том же, в чем состоит различие между выражением одного и того же голого факта на французском языке и на языке немецком. Научное выражение есть перевод «голой» формулы на язык, особенное отличие которого от обычного немецкого или французского языка состоит в том, что на нем говорит гораздо меньшее число людей.
Однако не станем спешить. Для измерения тока я могу пользоваться весьма разнообразными типами гальванометра, а также электродинамометром. Поэтому, когда я говорю: «по этой цепи проходит ток во столько-то ампер», — это значит: если я включу в эту цепь определенный гальванометр, то я увижу световой зайчик на делении a; но это равным образом значит: если я включу в эту цепь определенный электродинамометр, то я увижу зайчик на делении b. Та же фраза будет означать и множество других вещей, ибо ток может проявлять себя не только механическими действиями, но также действиями химическими, тепловыми, световыми и т. п.
Итак, мы здесь видим, что одно и то же высказывание соответствует весьма большому числу совершенно различных фактов. Почему? Потому что я допускаю закон, согласно которому при осуществлении известного механического действия одновременно осуществляется также и определенное химическое действие. Все множество прошлых опытов всегда подтверждало этот закон, и поэтому я составил убеждение, что можно одним и тем же предложением выражать два факта, столь неизменно связанные друг с другом.
Когда меня спрашивают, идет ли ток, я могу понять вопрос так: наступило ли определенное механическое действие? Но я могу понять его также иначе: наступило ли определенное химическое действие? Поэтому я стану наблюдать за осуществлением либо механического, либо химического действия: это безразлично, ибо в обоих случаях ответ должен быть один и тот же.
Но если бы однажды закон был признан ложным? Если бы оказалось, что согласованность двух действий — механического и химического — не постоянна. Тогда пришлось бы изменить научный язык, устранить из него опасную двусмысленность.
Что же потом? Разве кто-нибудь думает, что обычный язык, с помощью которого мы выражаем факты обыденной жизни, свободен от двусмысленности?
Но следует ли из этого, что факты обыденной жизни — создание грамматиков?
Вы спрашиваете меня: есть ли ток? Я ищу, есть ли механическое действие, нахожу его и отвечают да, ток есть. Вы сразу понимаете, что наличие механического действия означает также и наличие химического действия, которого я не искал. Допустим теперь невозможное: вообразим, что закон, который мы считали верным, неверен, что химического действия в этом случае нет. При таком предположении мы будем иметь два различных факта: один, наблюденный непосредственно, верен; другой, выведенный [путем умозаключения], ложен. Точнее будет сказать, что второй факт создан нами. Так что ошибочна та часть, которая связана с личным участием человека в выработке научного факта.
Но если мы можем сказать, что факт, о котором идет речь, ложен, то это как раз потому, что он не является свободным и произвольным созданием нашего ума, не является замаскированным соглашением. В последнем случае он не был бы ни истинным, ни ложным. На самом же деле его можно было проверить; я не сделал проверки, но я мог бы ее выполнить. Если я дал неверный ответ, то это потому, что я хотел ответить слишком поспешно, не допросив природу, которая одна знала тайну.
Когда после опыта я исправляю случайные и систематические ошибки с целью получить в чистоте научный факт, это опять то же самое; научный факт всегда будет не более чем голым фактом, переведенным на другой язык. Когда я говорю: «теперь такой-то час», — это сокращенный способ речи вместо: «существует такое-то соотношение между временем, которое показывают мои часы, и временем, которое они показывали в момент прохождения такой-то звезды и такой-то другой звезды через меридиан». И раз эта условная речь общепринята, то уже не от меня будет зависеть дать положительный или отрицательный ответ на вопрос: «такой ли час теперь?».
Перейдем к предпоследней ступени: затмение произошло в момент, даваемый таблицами, основанными на законах Ньютона. Это опять — условный способ выражения, совершенно ясный для тех, кто знает небесную механику, или просто для тех, у кого есть астрономические таблицы. Меня спрашивают: произошло ли затмение в предсказанный час? Я ищу в lа Connaissanse des Temps[44], вижу, что затмение было предсказано в девять часов, и соображаю, что вопрос имеет смысл: произошло ли затмение в девять часов? И здесь опять нам нечего изменять в наших выводах. Научный факт есть не что иное, как голый факт в переводе на удобный язык.
Правда, на последней ступени дело меняется. Вращается ли Земля? Доступен ли проверке этот факт? Можно ли было Галилею и Великому Инквизитору прибегнуть, с целью соглашения, к свидетельству своих чувств? Нет: они были согласны в том, что касается видимости, и, каков бы ни был накопленный опыт, они остались бы согласными относительно видимости, не приходя ни к какому соглашению относительно ее истолкования. Поэтому-то им пришлось прибегнуть к столь ненаучным приемам спора.
Итак, я полагаю, что предметом их разногласия был не факт; мы не имеем права давать одно и то же имя и вращению Земли, о котором они спорили, и голым или научным фактам, рассмотренным нами до сих пор в нашем обзоре.
После всего сказанного представляется лишним исследовать, лежит ли голый факт вне области науки. Наука не могла бы существовать без научного факта, а научный факт — без голого факта: ведь первый есть лишь пересказ второго.
А в таком случае, имеем ли мы право сказать, что ученый создает научный факт? Он, прежде всего, не создает его из ничего: он вырабатывает его с помощью голого факта. Значит, он не производит его свободно и по своей прихоти. Как бы ни был искусен работник, его свобода всегда ограничена свойствами первичного материала, над которым он работает.
Итак, что же вы хотите сказать, говоря о свободном творчестве научного факта и приводя пример астронома, который, принеся свои часы, принимает активное участие в явлении затмения? Хотите ли вы этим сказать, что затмение произошло в девять часов, но если бы астроном пожелал, чтобы оно случилось в десять часов, то это вполне зависело бы от него: ему стоило бы только перевести свои часы на один час вперед.
Но если бы астроному пришла в голову эта дурная шутка, то это было бы очевидное злоупотребление двусмысленностью. Когда он говорит мне: «затмение произошло в девять часов», — я понимаю, что «девять часов» обозначают время, выведенное из грубого показания часов при помощи ряда обычных поправок. Если мне дают лишь это грубое показание или если сделанные поправки не согласуются с общепринятыми правилами, то это значит, что условный язык без моего ведома подвергся изменениям. Если же меня позаботились предупредить об этом, то у меня нет оснований жаловаться; но тогда мы имеем все тот же факт, выраженный другим языком.
Резюмируем сказанное: вся творческая деятельность ученого по отношению к факту исчерпывается высказыванием, которым он выражает этот факт. Если он предсказывает какой-нибудь факт, он употребит это высказывание, и его предсказание будет совершенно недвусмысленно для всех тех, кто умеет употреблять и понимать язык науки. Но раз ученый сделал это предсказание, то, очевидно, не от него зависит, осуществится ли оно или нет.
Что же в таком случае остается от положения, высказанного Леруа? Остается следующее: ученый принимает активное участие в выборе фактов, которые заслуживают наблюдения. Отдельный факт сам по себе не представляет никакого интереса; факт привлекает к себе внимание тогда, когда есть основание думать, что он поможет предсказать другие факты, или же в том случае, когда он, будучи предсказан и затем подтвержден, приведет к установлению закона. Кто отбирает факты, которые, удовлетворяя этим условиям, заслуживали бы права гражданства в науке? Свободная деятельность ученого.
Это не все. Я сказал, что научный факт есть перевод голого факта на некоторый язык; мне следовало бы добавить, что любой научный факт образован из нескольких голых фактов. Это с достаточной ясностью обнаруживается в приведенных выше примерах. Так в начале затмения мои часы показывали время α; они показывали время β в момент последнего прохождения через меридиан некоторой звезды, которую мы берем за начало прямых восхождений; они показывали время γ в момент предпоследнего прохождения той же звезды. Вот три различных факта (заметим еще, что каждый из них в свою очередь представляет собой результат двух одновременных голых фактов, но не будем на этом останавливаться). Вместо этого я говорю: затмение произошло в момент — и три факта оказываются сосредоточенными в едином научном факте. Я решил, что три отсчета α, β, γ, сделанные по моим часам в три различные момента, не представляют интереса и что единственной интересной вещью является сочетание этих трех отсчетов. В этом суждении проявляется свободная деятельность моего ума.
Но этим исчерпывается моя мощь; я не могу достигнуть того, чтобы это сочетание имело такое, а не какое-либо иное числовое значение, ибо я не в состоянии влиять на числовые значения величин α, β, γ, которые суть голые факты, не зависящие от меня.
Итог: факты суть факты; если бывает, что они согласуются с предсказанием, то это не является результатом нашей свободной деятельности. Не существует резкой грани между голым фактом и научным фактом; можно только назвать одно выражение факта более голым или, наоборот, более научным, чем другое.
Ясно, что если мы от фактов переходим к законам, то участие свободной деятельности ученого станет гораздо более значительным. Но все-таки не преувеличивается ли оно у Леруа? Займемся исследованием этого вопроса.
Обратимся сначала к приводимым у него примерам. Когда я говорю: «фосфор плавится при 44°», — я считаю, что высказываю закон; на самом же деле это — определение фосфора. Если бы было открыто тело, которое, обладая всеми прочими свойствами фосфора, не плавилось бы при 44°, ему дали бы другое название и только. Закон остался бы верным.
Так же, когда я говорю: «тяжелые тела в свободном падении проходят пути, пропорциональные квадратам времен», — я просто даю определение свободного падения. Всякий раз, как условие не будет выполнено, я скажу, что падение не свободно, так что закон никогда не окажется ошибочным.
Ясно, что если бы законы сводились к этому, то они не могли бы служить для предсказания; следовательно, они не были бы пригодны ни к чему — ни в качестве орудий познания, ни в качестве оснований деятельности.
Когда я говорю: «фосфор плавится при 44°», — я хочу этим сказать: «всякое тело, обладающее такими-то свойствами (подразумеваются все признаки фосфора, за исключением точки плавления), плавится при 44°». При таком понимании мое предложение есть, конечно, закон, и этот закон может мне принести пользу, ибо если я встречу тело, обладающее этими свойствами, то смогу предсказать, что оно будет плавиться при 44°.
Без сомнения, может обнаружиться, что этот закон ошибочен. Тогда мы прочтем в трактатах по химии: «Существуют два тела, которые в течение долгого времени смешивались химиками под названием фосфора; эти два тела отличаются друг от друга только температурой плавления». Очевидно, это был бы не первый случай того, как химики приходят к разделению двух тел, которых раньше они не умели отличить друг от друга; таковы, например, неодим и празеодим, которые в течение долгого времени смешивались под названием дидима.
Я не думаю, чтобы химики сколько-нибудь опасались подобной неприятности по отношению к фосфору. Но если бы это сверх ожидания произошло, то упомянутые два тела, наверное, не имели бы в точности одинаковой плотности, в точности одинаковой удельной теплоты и т. д.; поэтому, тщательно определив, например, плотность, мы еще были бы в состоянии предвидеть температуру плавления.
Впрочем, это не столь важно: достаточно заметить, что мы имеем здесь закон и что этот закон, будь он верен или ошибочен, не сводится к одной тавтологии.
Нам, быть может, возразят, что если мы не знаем на Земле тела, которое, имея все прочие свойства фосфора, не плавилось бы при 44°, то ведь неизвестно, не существует ли его на других планетах. Это без сомнения возможно, и тогда пришлось бы вывести заключение, что хотя рассматриваемый закон и может служить правилом действия для нас, обитателей Земли, однако с точки зрения познания он не имеет общего значения, и весь интерес к нему обязан только случайностью, поселившей нас на земном шаре. Это возможно, но если бы это было так, то закон не имел бы значения не потому, что он сводится к условному соглашению, но потому, что он тогда был бы ложен.
То же самое относится к падению тел. Мне не к чему было бы давать название «свободного падения» падению, совершающемуся согласно с законами Галилея, если бы я в то же время не знал, что в известных условиях падение будет, вероятно, свободно или почти свободно. Итак это — закон, который может быть верен или неверен, но который уже не сводится к условному соглашению.
Предположим, что астрономы открыли, что небесные тела не подчиняются в точности закону Ньютона. Тогда у них будет выбор между двумя точками зрения: они могут сказать или что тяготение не в точности обратно пропорционально квадрату расстояния, или что небесные тела, кроме тяготения, подчинены еще другой силе, имеющей отличную от него природу.
В этом втором случае закон Ньютона будет рассматриваться как определение тяготения. Это будет точка зрения номинализма. Выбор между двумя точками зрения остается свободным и делается по соображениям удобства, хотя чаще всего эти соображения бывают столь влиятельными, что свобода выбора на практике почти исчезает.
Мы можем разложить предложение: «(1) небесные тела подчиняются закону Ньютона» на два других; «(2) тяготение следует закону Ньютона»; «(3) тяготение есть единственная сила, действующая на небесные тела». В таком случае предложение (2) есть простое определение и оно ускользает от опытной проверки, но тогда можно будет подвергнуть проверке предложение (3). Это, конечно, необходимо, ибо вытекающее из него предложение (1) предсказывает голые факты, допускающие проверку.
Благодаря этому приему в духе неосознанного номинализма ученые поставили выше законов то, что они называют принципами. Когда некоторый закон получил достаточное опытное подтверждение, мы можем занять по отношению к нему одну из двух позиций: или подвергать его непрерывным проверкам и пересмотрам (которые в конце концов несомненно докажут, что он является лишь приближенным), или же возвысить его в ранг принципов, принимая при этом такие соглашения, чтобы предложение было несомненно истинным. Это делается всегда одним и тем же приемом. Первоначальный закон выражал соотношение между двумя голыми фактами A и B; между этими двумя голыми фактами вводится промежуточный отвлеченный факт С, более или менее фиктивный (в предыдущем примере эта роль принадлежит неуловимой сущности тяготения). Тогда мы имеем соотношение между A и C, которое можем считать строго точным и которое есть принцип; и другое — между C и B, которое продолжает существовать как закон, могущий быть пересмотренным.
Принцип, который с этих пор как бы кристаллизовался, уже не подчинен опытной проверке. Он ни верен, ни неверен; он удобен.
В таком образе действий часто находят большую выгоду; но ясно, что если бы все законы были преобразованы в принципы, то от науки не осталось бы ничего. Каждый закон может быть разложен на принцип и закон; но из предыдущего очевидно, что законы продолжают существовать всегда, как бы далеко ни проводить это разложение.
Итак, номинализм имеет границы; и можно этого не осознавать, если понимать в буквальном смысле утверждения Леруа.
Беглый обзор наук позволит нам лучше уяснить себе, каковы эти границы. Точка зрения номинализма оправдывается лишь тогда, когда она удобна. Когда это бывает?
Опыт знакомит нас с отношениями между телами; это — голый факт. Эти отношения чрезвычайно сложны. Вместо того чтобы прямо рассматривать отношение между телом A и телом B, мы вводим между ними промежуточный элемент — пространство — и рассматриваем три различные отношения: отношение между телом A и пространственным образом A', отношение между телом B и пространственным образом B', отношение двух пространственных образов A' и B' между собой. Почему этот окольный путь является выгодным? Потому что отношение между A и B было сложно, но мало отличалось от отношения между A' и B', отличающегося простотой; следовательно, это сложное отношение может быть заменено простым отношением между A' и B' и двумя другими отношениями, из которых мы узнаем, что разности между A и A', с одной стороны, и между B и B' с другой, очень малы. Например, если A и B будут два естественных твердых тела, которые перемещаются, слегка деформируясь, то мы будем рассматривать два неизменных подвижных образа A' и В'. Законы относительных перемещений этих образов A' и B' будут весьма просты; это будут законы геометрии. А затем мы добавим, что тело A, которое всегда весьма мало отлично от A', расширяется под действием тепла и сгибается в силу упругости. Для нашего ума будет сравнительно легко изучить эти расширения и сгибания именно вследствие того, что они весьма малы. Но подумайте, на какое усложнение речи пришлось бы нам пойти, если бы мы захотели включить в одно изложение перемещение твердого тела, его расширение и его сгибание?
Отношение между A и B было грубым законом; оно разложено. Мы имеем теперь два закона, выражающих отношения между A и A', B и B', и принцип, выражающий отношение между A' и В'. Совокупность принципов этого рода называют геометрией.
Еще два замечания. Мы имеем отношение между двумя телами A и B, которое мы заменили отношением между двумя образами A' и B', но это самое отношение между теми же образами A' и B' может быть с выгодой заменено отношением между двумя другими телами А" и В", совершенно отличающимися от A и B. И это может быть выполнено множеством способов. Если бы принципы и геометрия не были изобретены (inventé), то после изучения связи между A и B нужно было бы ab ovo[45] возобновлять изучение связи между А" и В". Вот почему столь драгоценна геометрия. Геометрическое отношение может с выгодою заменить отношение, которое, будучи рассматриваемо в грубом виде, представляется как механическое; оно не может заменить и другое, которое могло бы рассматриваться как оптическое, и т. д.
Но пусть не говорят нам: это доказывает, что геометрия — опытная наука; отделяя ее принципы от законов, из которых они извлечены, вы искусственно отделяете ее от наук, которые ее произвели. Другие науки также имеют принципы, но это не устраняет необходимости называть их экспериментальными.
Надо признаться, что трудно было бы не сделать этого разделения, которое выглядит искусственным. Известно, какую роль сыграла кинематика твердых тел в генезисе геометрии; но следует ли отсюда, что геометрия есть только ветвь экспериментальной кинематики? И законы прямолинейного распространения света также содействовали формированию ее принципов. Следует ли поэтому рассматривать геометрию в одно и то же время как ветвь кинематики и как ветвь оптики? Я напомню еще, что наше евклидово пространство, которое, собственно, является предметом геометрии, было выбрано по соображениям удобства из некоторого числа типов, которые ранее существовали в нашем сознании и которым присвоено название групп.
Переходя к механике, мы видим и здесь великие принципы, имеющие аналогичное происхождение; но так как их «сфера действия» (так сказать) менее значительна, то уже нет оснований отделять их от механики в собственном смысле и рассматривать эту науку как дедуктивную.
Наконец, в физике роль принципов еще более суживается. Действительно, их вводят лишь тогда, когда это бывает выгодно. Но они приносят выгоду как раз только потому, что они малочисленны, потому, что каждый из них заменяет довольно значительное число законов. Поэтому размножать их невыгодно. Кроме того, надо учесть, что здесь в конце концов приходится покидать абстракции, чтобы войти в контакт с реальностью.
Таковы пределы номинализма, и они тесны.
Однако Леруа настойчив, и он ставит вопрос в другой форме.
Так как формулировка наших законов может меняться вместе с соглашениями, которые мы принимаем, и так как эти соглашения могут видоизменять сами естественные отношения этих законов, то существует ли во всей совокупности этих законов нечто такое, что не зависело бы от указанных соглашений и могло бы, так сказать, играть роль универсального инварианта? Можно вообразить, например, существа, которые, получив умственное воспитание в мире, отличном от нашего, приходят к созданию неевклидовой геометрии. Если бы затем эти существа были вдруг перенесены в наш мир, то они наблюдали бы те же законы, что и мы, но выражали бы их совершенно иным способом. Правда, между двумя способами формулировок еще оставалось бы кое-что общее, но это потому, что эти существа еще недостаточно отличны от нас. Можно вообразить существа, еще более странные, и тогда часть, общая двум системам формулировок, будет суживаться все более и более. Может ли она уменьшиться таким образом до нуля, или же окажется несократимый остаток, который тогда и будет искомым универсальным инвариантом?
Надо уточнить постановку вопроса. Хотим ли мы, чтобы эта общая часть содержания могла быть выражена словами? В таком случае ясно, что не существует слов, общих всем языкам, и мы не можем иметь притязаний построить какой-то универсальный инвариант, который был бы в одно время понятен и для нас, и для тех воображаемых неевклидовых геометров, о которых только что шла речь, — точно так же, как нельзя построить фразу, которая была бы понятна сразу немцам, не знающим французского языка, и французам, не знающим немецкого языка. Но у нас есть неизменные правила, позволяющие нам переводить французскую речь на немецкий и обратно. Для этого-то и составляются грамматики и словари. Там же существуют неизменные правила для перевода евклидова языка на неевклидов, и если бы их не было, то их можно было бы составить.
Но даже если бы не существовало ни переводчика, ни словаря и если мы, немцы и французы, прожив века в разделенных друг от друга мирах, вдруг пришли в соприкосновение, можно ли думать, что не оказалось бы ничего общего между наукой немецких книг и наукой книг французских? В конце концов немцы и французы, конечно, стали бы понимать друг друга, подобно тому как американские индейцы поняли язык своих победителей-испанцев.
Но, скажут нам, конечно, французы были бы способны понять немцев, даже не изучая немецкий язык; однако это потому, что между французами и немцами есть нечто общее: те и другие — люди. Так же можно было бы столковаться с нашими гипотетическими неевклидовыми существами (хотя они уже больше не люди), так как они еще сохранили бы нечто человеческое. Но во всяком случае некоторый минимум человеческого необходим.
Возможно, что это так; но я, во-первых, замечу, что небольшой доли человеческих признаков, остающейся у неевклидовых существ, было бы достаточно не только для того, чтобы перевести немногое из их языка, но и чтобы перевести весь их язык.
Что же касается необходимости минимума, то с этим я согласен. Предположим, что существует некоторый флюид, наполняющий промежутки между частицами нашей материи, не оказывающий на последнюю никакого действия и не подвергающийся никакому действию с ее стороны. Допустим, что некоторые существа были бы восприимчивы к воздействию этого флюида и невосприимчивы к воздействию нашей материи. Ясно, что наука этих существ совершенно отличалась бы от нашей, и было бы напрасно искать «инвариант», общий обеим этим наукам. То же самое, если бы эти существа не признавали нашей логики, отрицая, например, принцип противоречия.
Однако, по моему мнению, не представляет интереса углубляться в подобные гипотезы.
В таком случае, если мы не будем заходить столь далеко по пути этих странных допущений, если будем воображать лишь существа, обладающие чувствами, аналогичными нашим чувствам, и восприимчивые к тем же впечатлениям, что и мы, а с другой стороны, допускающие принципы нашей логики, то мы можем заключить, что их язык, как бы он ни отличался от нашего, всегда был бы доступен для перевода.
Но возможность перевода означает существование инварианта. Перевести как раз и означает: выделить этот инвариант. Подобно этому дешифрировать криптографический документ — значит отыскать то, что остается в этом документе неизменным при перемене его знаков.
Теперь легко понять, какова природа этого инварианта. Это выражается в двух словах. Инвариантные законы суть отношения между голыми фактами, тогда как отношения между «научными фактами» всегда остаются в зависимости от некоторых условных соглашений.
Я не имею в виду рассматривать здесь вопрос о случайности законов природы — вопрос, который, очевидно, неразрешим и о котором уже так много писали.
Я хотел бы лишь обратить внимание на то, сколько различных значений давали слову «случайность» и как было бы полезно отличать эти значения друг от друга.
Рассматривая какой-либо частный закон, мы наперед можем быть уверены, что он является только приближенным. В самом деле, он выведен на основании опытных проверок, а эти последние были и могли быть только приближенными. Надо быть постоянно готовым к тому, что более точные измерения заставят нас добавить к нашим формулам новые члены. Так это было, например, по отношению к закону Мариотта.
Более того, формулировка любого закона неизбежно бывает неполной. Эта формулировка должна была бы включать перечисление всех предшествующих событий, в силу которых происходит данное следствие. Мне следовало бы сначала описать все условия производимого опыта; тогда закон выразился бы так: если все условия выполнены, то будет иметь место такое-то явление.
Но мы лишь тогда можем быть уверены в том, что ни одно из этих условий не забыто нами, если опишем состояние всей Вселенной в момент t: в самом деле, все части этой Вселенной могут оказывать более или менее значительное влияние на явление, которому предстоит произойти в момент t + dt.
Но ясно, что подобное описание не могло бы иметь места в выражении закона; а если бы его и выполнить, то закон стал бы неприменимым; требуя выполнения стольких условий одновременно, мы имели бы весьма малую вероятность того, что в какой-то момент они все осуществятся.
Но раз мы никогда не можем быть уверены в том, что какое-нибудь существенное условие не забыто нами, то мы не будем иметь возможности говорить: «при осуществлении таких-то условий произойдет такое-то явление». Можно только сказать: «вероятно, что при осуществлении таких-то условий произойдет приблизительно такое-то явление».
Возьмем закон тяготения, наименее несовершенный из всех известных законов. Он позволяет нам предвидеть движения планет. Когда я пользуюсь им, например, для вычисления орбиты Сатурна, я пренебрегаю действием звезд и, поступая так, сохраняю уверенность в своей правоте, ибо знаю, что эти звезды слишком удалены, чтобы их действие было ощутимо.
Итак, я заявляю якобы с достоверностью, что в такое-то время координаты Сатурна будут заключаться между такими-то пределами. Однако абсолютна ли эта достоверность?
Разве не может существовать во Вселенной некоторой гипотетической массы, гораздо более значительной, чем все известные звезды, действие которой могло бы стать заметным на больших расстояниях? Положим, что эта масса обладает колоссальной скоростью, и пусть, после того как она обращалась все время на таких расстояниях от нас, что ее влияние до сих пор оставалось для нас незаметным, она вдруг проходит вблизи нас. Она, наверное, произведет в нашей Солнечной системе огромные возмущения, которых мы совершенно не могли бы предвидеть. Все, что можно об этом сказать, это то, что подобный случай совершенно невероятен, и тогда вместо того, чтобы говорить: «Сатурн будет близ такой-то точки неба», мы должны будем ограничиться заявлением: «Сатурн, вероятно, будет вблизи такой-то точки неба», Хотя эта вероятность на практике равносильна достоверности, все же это только вероятность.
На этом основании всякий частный закон всегда будет лишь приближенным и вероятным. Ученые никогда не забывали этой истины; однако они, основательно или нет, верят в то, что всякий закон можно будет заменить другим, более приближенным и более вероятным, что этот новый закон в свою очередь будет лишь временным, но что такой процесс можно будет продолжать бесконечно, так что наука, прогрессируя, будет обладать законами, все более и более вероятными, и, наконец, приближенность и вероятность будут сколь угодно мало отличаться от точности и достоверности.
Если ученые, думая так, правы, то можно ли все-таки сказать, что вообще законы природы случайны, хотя каждый закон, взятый в отдельности, может быть признан случайным?
Или же, прежде чем сделать вывод о случайности законов природы вообще, придется поставить требование, чтобы упомянутый мною прогресс имел границу, чтобы ученый в конце концов был остановлен в своем искании все больших приближений и чтобы за известным пределом он встречал в природе один лишь произвол?
С точки зрения, о которой я только что сказал (и которую я назову научной точкой зрения), всякий закон является лишь несовершенной и временной формулировкой; но он должен быть с течением времени заменен другим, более совершенным законом, по отношению к которому он лишь грубое подобие. Поэтому для вмешательства свободной воли не остается места.
Мне кажется, что кинетическая теория газов предоставляет нам поразительный пример.
Известно, что эта теория объясняет все свойства газов при помощи простой гипотезы. Предполагается, что все молекулы в газах движутся с большими скоростями во всех направлениях по прямолинейным путям, которые терпят изменения лишь тогда, когда молекула проходит очень близко от стенок сосуда или от другой молекулы. Те эффекты, которые доступны для наблюдения с помощью наших грубых чувств, суть средние эффекты; в этих средних большие отклонения скомпенсируются; по крайней мере, весьма невероятно, чтобы они не скомпенсировались; поэтому наблюдаемые явления подчинены простым законам, каковы законы Мариотта и Гей-Люссака. Но эта компенсация отклонений является лишь вероятной. Молекулы беспрестанно меняют места, и при этих непрерывных перемещениях образуемые ими фигуры последовательно проходят через все возможные комбинации. Число этих комбинаций чрезвычайно велико; почти все они согласуются с законом Мариотта и только некоторые от него отклоняются. Когда-нибудь реализуются и они; но только этого надо было бы очень долго дожидаться. Если бы мы стали следить за газом в течение достаточно продолжительного времени, то в конце концов, наверное, увидели бы его в течение весьма короткого промежутка времени уклоняющимся от закона Мариотта. Сколько времени пришлось бы этого выжидать? Если бы мы пожелали вычислить вероятное число лет, то оно оказалось бы столь большим, что для одного письменного изображения числа его знаков понадобилось бы около дюжины цифр. Это не важно: для нас достаточно, что оно будет конечным.
Я не хочу обсуждать здесь ценность этой теории. Ясно, что если ее принять, то закон Мариотта будет представляться нам уже только случайным, так как наступит время, когда он больше не будет верным. Однако следует ли думать, что сторонники кинетической теории являются противниками детерминизма? Напротив, это — самые непримиримые из механистов. Их молекулы следуют строго по определенным траекториям, отклоняясь от них лишь под влиянием сил, меняющихся с расстоянием по совершенно определенному закону. В их системе не остается малейшего места ни для свободы, ни для какого-либо фактора эволюции в собственном смысле, ни для чего бы то ни было, подходящего под название случайности. Во избежание недоразумений я добавлю, что здесь нет также эволюции самого закона Мариотта: через какое-то множество веков он перестает быть верным, но спустя какую-то долю секунды он становится опять верным и это — на неисчислимое множество веков.
Надо устранить еще одно недоразумение, связанное со словом «эволюция», которое я употребил. Часто говорят: быть может, законы природы эволюционируют, быть может, откроется, что в каменноугольную эпоху они были не теми, какими они являются сегодня. Что под этим подразумевают? Все, что мы полагаем знать о прошедшем земного шара, мы выводим из его теперешнего состояния. Эти выводы делаются именно при посредстве законов, предполагаемых известными. Закон, как отношение между условием и следствием, одинаково позволяет нам выводить как следствие из условия, т. е. предвидеть будущее, так и условие — из следствия, т. е. заключать от настоящего к прошедшему. Астроном, знающий настоящее положение светил, может при помощи закона Ньютона вывести отсюда будущее их положение (именно это он делает при построении эфемерид), а равно и прошедшее их положение. Вычисления, которые ему придется делать при этом, не могут показать ему, что закон Ньютона когда-нибудь перестанет быть верным, ибо как раз этот закон служит его исходной точкой; точно так же они не могут открыть ему, что закон был неверен в прошедшем. По отношению к будущему его эфемериды еще могут быть когда-нибудь подвергнуты проверке, и наши потомки, быть может, признают, что они были неверны. Но по отношению к прошлому — геологическому прошлому, очевидцев которого не существует, — результаты его вычислений (как вообще результаты всех умозрений, посредством которых мы стремимся вывести прошлое из настоящего) по самой своей природе ускользают от всякого подобия проверки. Поэтому, если законы природы были в каменноугольный период не те, что в современную эпоху, то мы никогда не будем в состоянии это узнать, ибо мы можем узнать об этом периоде только то, что мы выводим из предположения неизменности этих законов.
Пожалуй, мне возразят, что эта гипотеза может привести к противоречивым результатам и что тогда придется от нее отказаться. Так, в вопросе о происхождении жизни можно прийти к заключению, что живые существа были всегда, так как современный мир всегда показывает нам, что жизнь рождается из жизни; но можно также заключить, что они существовали не всегда, потому что применение современных физических законов к настоящему состоянию земного шара показывает нам, что было время, когда земной шар был столь сильно нагрет, что жизнь на нем была невозможна. Однако противоречия этого рода всегда могут быть устранены двумя способами: можно допустить, что современные законы природы не в точности таковы, какими мы их принимаем; или же можно допустить, что законы природы в настоящее время таковы, какими мы их принимаем, но что так было не всегда.
Ясно, что современные законы никогда не будут известны достаточно хорошо, чтобы нельзя было принять первое из этих двух решений и таким образом избегнуть необходимости вывода об эволюции естественных законов.
С другой стороны, допустим такую эволюцию: примем, если угодно, что человечество живет достаточно долго, так что эта эволюция могла иметь очевидцев. Пусть, например, то же самое условие влечет различные следствия в каменноугольную эпоху и в четвертичную эпоху. Это, очевидно, означает, что условия приблизительно одинаковы; если бы все обстоятельства были тождественны, каменноугольная эпоха была бы неразличима от четвертичной; очевидно, это — не то, что мы предполагаем. Остается заключить, что такое-то условие, сопровождаемое таким-то побочным обстоятельством, производит такое-то следствие, а то же самое условие, сопровождаемое другим побочным обстоятельством, производит другое следствие. Время не играет здесь никакой роли.
Недостаточно развившаяся наука формулирует закон, согласно которому определенное условие всегда вызывает определенное следствие. Такой закон, не учитывающий побочных обстоятельств, является не более как приближенным и вероятным, и он должен быть заменен другим законом, который учтет эти побочные обстоятельства и явится более приближенным и более вероятным. Таким образом, мы постоянно приходим опять к тому же процессу, который был рассмотрен выше, и если бы человечество открыло что-нибудь в этом роде, то оно не сказало бы, что законы испытали эволюцию, но сказало бы, что обстоятельства видоизменились.
Таковы различные значения слова «случайность». Леруа сохраняет их все, не различая их достаточно, и еще вводит новое. Экспериментальные законы являются лишь приближенными; если некоторые из них представляются нам точными, то это потому, что мы искусственно преобразовали их в то, что я выше назвал принципом. Это преобразование сделано нами свободно, и так как произвол, в силу которого мы совершили его, есть нечто в высшей степени случайное, то эту случайность мы сообщили самому закону. В этом смысле мы имеем право сказать, что детерминизм предполагает свободу, так как мы становимся детерминистами свободно. Быть может, найдут, что такая точка зрения предоставляет слишком большую роль номинализму и что введение этого нового смысла слова «случайность» не принесет большой помощи при решении всех вопросов, которые естественно возникают здесь и о которых мы только что сказали несколько слов.
Я отнюдь не хочу исследовать здесь основания принципа индукции; я очень хорошо знаю, что я не имел бы успеха: оправдать этот принцип так же трудно, как и обойтись без него. Я хочу лишь показать, как ученые его применяют или бывают вынуждены применять.
Когда воспроизводится одно и то же условие, должно воспроизводиться то же самое следствие; такова обычная формулировка. Но в такой форме этот принцип не мог бы оказать никаких услуг. Для того чтобы можно было сказать, что воспроизведено то же самое условие, необходимо воспроизведение всех обстоятельств, так как ни одно из них не является абсолютно безразличным, и притом воспроизведение должно быть точным. А так как этого никогда не будет, то принцип не мог бы иметь никакого применения.
Поэтому мы должны видоизменить формулировку и сказать: если однажды условие A произвело следствие B, то условие A', мало отличающееся от A, произведет следствие B', мало отличающееся от B. Но как нам узнать, что условия A и A' «мало отличаются» друг от друга? Если одно из обстоятельств может быть выражено числом и если это число в двух случаях имеет весьма близкие друг к другу значения, то смысл слов «мало отличающийся» относительно ясен; принцип означает тогда, что следствие есть непрерывная функция предшествующего условия. А в качестве практического правила приходим к выводу, что мы вправе производить интерполяцию. В самом деле, ученые производят ее на каждом шагу; без интерполяции наука была бы невозможна.
Однако заметим одно обстоятельство. Искомый закон может быть представлен кривою. Опыт указал нам некоторые точки этой кривой. В силу только что изложенного принципа мы полагаем, что эти точки могут быть соединены непрерывной линией. Мы чертим эту линию на глаз. Новые опыты дадут нам новые точки кривой. Если эти точки лежат вне начерченной раньше линии, то нам придется видоизменить нашу кривую, но не отказаться от нашего принципа. Всегда можно провести непрерывную кривую через любое число как угодно расположенных точек. Если эта кривая будет чересчур причудлива, то мы, несомненно, будем смущены (и даже станем подозревать погрешности опыта), но принцип не будет заподозрен в ошибочности.
Кроме того, между обстоятельствами известного явления всегда бывают такие, которые мы считаем несущественными, и мы будем считать, что A и A' мало отличаются друг от друга, если они отличаются лишь этими побочными обстоятельствами. Пусть я, например, установил, что водород с кислородом соединяется под действием электрической искры; я уверен, что эти два газа будут соединяться снова, хотя долгота Юпитера успела за это время значительно измениться. Мы допускаем, например, что состояние удаленных тел не может иметь заметного влияния на земные явления, и эта мысль действительно как бы с неизбежностью навязывается нам; но бывают случаи, когда выбор таких практически безразличных обстоятельств сопряжен с большей степенью произвола или, если угодно, требует большего чутья.
Еще одно замечание. Принцип индукции был бы неприложим, если бы в природе не существовало большого числа тел, сходных или почти сходных между собой, и если бы, например, по одному куску фосфора нельзя было заключать о другом куске фосфора.
Если мы призадумаемся над этими соображениями, то проблема детерминизма и случайности явится нам в новом свете.
Положим, что мы могли бы охватить совокупность всех явлений мира за всю длительность времени. Мы могли бы рассматривать то, что можно было бы назвать следованиями: я подразумеваю соотношения между предшествующим и последующим. Я не имею в виду говорить о постоянных соотношениях или законах, я рассматриваю в отдельности, — так сказать, индивидуально — различные осуществляемые следования.
Мы убедились бы тогда, что между этими следованиями нет даже двух, которые были бы совершенно подобны друг другу. Но если справедлив принцип индукции (в той форме, в какой мы его выразили), то между ними будут такие, которые будут почти подобны и которые могут быть причислены к одному и тому же классу. Иными словами, можно создать классификацию следований.
К возможности и законности подобной классификации и сводится в конечном счете детерминизм. Это все, что остается от него после предыдущего анализа. Быть может, в этой скромной форме он покажется моралисту менее ужасным.
Несомненно, мне скажут, что, таким образом, мы окольным путем возвращаемся к тому же самому выводу Леруа, который, по-видимому, только что отвергали: детерминиста создает свобода. Действительно, всякая классификация предполагает деятельное участие классифицирующего. Пожалуй, это так; все же мне кажется, что этот окольный путь небесполезен и кое-что нам разъясняет.
Перехожу к вопросу, поставленному в заглавии этого параграфа: какова объективная ценность науки? И, прежде всего, что мы должны понимать под объективностью?
Гарантией объективности мира, в котором мы живем, служит общность этого мира для нас и для других мыслящих существ. Посредством сношений, происходящих у нас с другими людьми, мы получаем от них готовые умозаключения; мы знаем, что эти умозаключения не исходят от нас, и в то же время мы признаем их произведением мыслящих существ, подобных нам. И так как эти умозаключения представляются приложимыми к миру наших ощущений, то мы считаем себя вправе заключить, что эти мыслящие существа видели то же, что мы; отсюда-то мы и узнаем, что мы не грезим.
Таково, следовательно, первое условие объективности; что объективно, то должно быть обще многим умам и, значит, должно иметь способность передаваться от одного к другому; а так как эта передача может происходить лишь «дискурсивным» путем (который внушает такое недоверие Леруа), то мы вынуждены сделать заключение: путь к объективности есть путь общения посредством речи (рассуждений, логики)[46] (pas de discours, pas d'objectivité)[47].
Ощущения другого индивидуума будут для нас навечно закрытым миром. У нас нет никакого средства удостовериться, что ощущение, которое я выражаю словом «красное», есть то же самое, которое связывается с этим словом у соседа.
Допустим, что вишня и цветок мака вызывают у меня ощущение A, а у другого ощущение B и что, наоборот, древесный лист вызывает у меня ощущение B, а у него ощущение A. Ясно, что мы об этом никогда ничего не узнаем: ибо я буду обозначать ощущение A словом «красное» и ощущение B словом «зеленое», тогда как он первое назовет словом «зеленое», а второе словом «красное». Зато мы будем в состоянии установить, что как у него, так и у меня вишня и цветок мака вызывают одно и то же ощущение, ибо мы оба даем одно и то же название испытываемым в этом случае ощущениям. Итак, ощущения непередаваемы, или — точнее — все то из них, что является чистым качеством, непередаваемо и навсегда недоступно. Но нельзя того же сказать об отношениях между ощущениями.
С этой точки зрения все, что объективно, лишено всякого «качества», является только чистым отношением. Я не стану, конечно, говорить, что объективность есть только чистое «количество» (это значило бы слишком суживать природу рассматриваемых отношений), но вы понимаете, что я уже не знаю, как можно позволить себе увлечься до того, чтобы сказать, что мир есть не более как дифференциальное уравнение.
Соблюдая всяческую осторожность по отношению к этому парадоксальному предложению, мы должны тем не менее допустить, что объективно лишь то, что поддается передаче, и, следовательно, что объективную ценность могут иметь только одни отношения между ощущениями.
Могу сказать, что эстетические эмоции, которые общи у всех людей, доказывают нам, что качества наших ощущений тоже одни и те же для всех людей и тем самым объективны. Но, поразмыслив, мы увидим, что доказательства этому нет; доказано только то, что известная эмоция вызвана у Жана и у Пьера ощущениями (или сочетаниями соответствующих ощущений), которым Жан и Пьер дают одно и то же название, причем возможно, что эта эмоция у Жана ассоциируется с ощущением A, которое Жан обозначает словом «красное», а у Пьера она параллельно этому ассоциируется с ощущением В, которое Пьер обозначает словом «красное»; возможно также, что эта эмоция вызвана не самими качествами ощущений, но гармоническим сочетанием их отношений и испытанным нами неосознанным впечатлением.
Известное ощущение бывает «красиво» не потому, что оно обладает определенным качеством, но потому, что оно занимает определенное место в ткани, образуемой ассоциациями наших идей: его нельзя задеть без того, чтобы не привести в колебания «приемник», который находится на другом конце нити и который соответствует художественной эмоции.
Вопрос представляется всегда одним и тем же, станем ли мы на моральную, эстетическую или научную точку зрения. Объективно лишь то, что является тождественным для всех; но о таком тождестве можно говорить лишь в том случае, если возможно сравнение, если результат этого сравнения поддается переводу на «разменную монету», которая может быть передана от одного сознания другому. Поэтому ничто не будет иметь объективной ценности, кроме того, что может быть передано посредством речи, т. е. того, что может быть понимаемо.
Но это лишь одна сторона вопроса. Абсолютно беспорядочная совокупность не могла бы иметь объективной ценности, потому что она была бы недоступна пониманию; но и упорядоченная совокупность не может иметь объективной ценности, если она не соответствует действительно испытываемым ощущениям. Мне представляется излишним напоминать это условие; я не стал бы говорить о нем, если бы в последнее время не стали утверждать, что физика — не экспериментальная наука. Хотя это воззрение не имеет никаких шансов на успех как у физиков, так и у философов, однако не мешает о нем знать, чтобы не соскользнуть на ту наклонную плоскость, которая приводит к нему. Таким образом, существует два необходимых условия: если первое отделяет реальность[48] от грезы, то второе отличает ее от романа.
Но что же такое наука? Как я разъяснил в предыдущем параграфе, это прежде всего некоторая классификация, способ сближать между собой факты, которые представляются разделенными, хотя они связаны некоторым естественным скрытым родством. Иными словами, наука есть система отношений. Но, как мы только что сказали, объективность следует искать только в отношениях, тщетно было бы искать ее в вещах, рассматриваемых изолированно друг от друга.
Сказать, что наука не может иметь объективной ценности потому, что мы узнаем из нее только отношения, — значит рассуждать навыворот, так как именно только отношения и могут рассматриваться как объективные.
Так, например, внешние предметы, для которых было изобретено слово объект, суть действительно объекты, а не одна беглая и неуловимая видимость: ибо это — не просто группы ощущений, но и группы, скрепленные постоянной связью. Эта связь — и только эта связь — и является в них объектом; и связь эта есть отношение.
Поэтому, когда мы задаем вопрос о том, какова объективная ценность науки, то это не означает: открывает ли нам наука истинную природу вещей? Но это означает: открывает ли она нам истинные отношения вещей?
Никто не поколебался бы ответить отрицательно на первый вопрос. Я думаю, что можно пойти и дальше: не только наука не может открыть нам природу вещей; ничто не в силах открыть нам ее, и если бы ее знал какой-нибудь бог, то он не мог бы найти слов для ее выражения. Мы не только не можем угадать ответа, но если бы даже нам дали его, то мы не были бы в состоянии сколько-нибудь понять его; я даже готов спросить, хорошо ли мы понимаем самый вопрос.
Поэтому когда научная теория обнаруживает притязание научить нас тому, что такое теплота, или что такое электричество, или что такое жизнь, она наперед осуждена; все, что она может нам дать, есть не более как грубое подобие. Поэтому она является временной и шаткой.
Первый вопрос устранен, остается второй. Может ли наука открыть нам истинные отношения вещей? Подлежит ли разделению то, что она сближает, и подлежит ли сближению то, что она разделяет?
Чтобы понять смысл этого нового вопроса, нужно возвратиться к сказанному выше об условиях объективности. Вопрос о том, имеют ли эти отношения объективную ценность, означает: являются ли эти отношения одинаковыми для всех, будут ли они теми же самыми и для наших потомков?
Ясно, что они не одинаковы для ученого и для профана. Но это не важно, ибо если профан не видит их сейчас, то ученый может заставить его увидеть их при помощи ряда опытов и рассуждений. Существенно, что есть пункты, относительно которых могут согласиться все, обладающие достаточной осведомленностью и опытом
Вопрос в том, чтобы узнать: будет ли продолжительно это согласие и сохранится ли оно у наших потомков. Можно спросить себя, будут ли те сближения, которые делает сегодняшняя наука, подтверждены наукой завтрашнего дня. К доказательству верности этого положения не может быть привлечен никакой априорный довод; вопрос решается фактами; и наука уже прожила достаточно долго для того, чтобы, обращаясь к ее истории, можно было узнать, противятся ли влиянию времени воздвигаемые ею здания или же они не отличаются от эфемерных построений.
Что же мы видим? Сначала нам представляется, что теории живут не долее дня и что руины нагромождаются на руины. Сегодня теория родилась, завтра она в моде, послезавтра она делается классической, на третий день она устарела, а на четвертый — забыта. Но если всмотреться ближе, то увидим, что так именно падают, собственно говоря, те теории, которые имеют притязание открыть нам сущность вещей. Но в теориях есть нечто, что чаще всего выживает. Если одна из них открыла нам истинное отношение, то это отношение является окончательным приобретением; мы найдем его под новым одеянием в других теориях, которые будут последовательно водворяться на ее месте.
Ограничимся одним примером. Теория эфирных волн учила нас, что свет есть движение. В настоящий момент благосклонная мода на стороне электромагнитной теории, которая учит, что свет есть ток. Не станем исследовать, нельзя ли их примирить, сказав, что свет есть ток, а ток есть движение. Так как, во всяком случае, вероятно, что это движение не будет тождественно с тем, какое допускали сторонники прежней теории, то можно было бы считать себя вправе сказать, что прежняя теория развенчана. Тем не менее от нее остается нечто, ибо между гипотетическими токами, допускаемыми у Максвелла, имеют место те же отношения, как и между гипотетическими движениями, которые допускал Френель. Таким образом, есть нечто, что остается нерушимым, и именно это нечто существенно. Этим объясняется, почему современные физики без малейшего затруднения перешли от языка Френеля к языку Максвелла.
Несомненно, что многие сопоставления, считавшиеся прочно установленными, были потом отвергнуты; но значительное большинство их остается и, по-видимому, останется и впредь. Что касается их, то каков критерий их объективности?
Да совершенно тот же самый, как и критерий нашей веры во внешние предметы. Эти предметы реальны, поскольку ощущения, которые они в нас вызывают, представляются нам соединенными, я не знаю, каким-то неразрушимым цементом, а не случаем дня. Так и наука открывает нам между явлениями другие связи, более тонкие, но не менее прочные; это — нити, столь тонкие, что на них долгое время не обращали внимания; но коль скоро они замечены, их нельзя уже не видеть. Итак, они не менее реальны, чем те, которые сообщают реальность внешним предметам. Не имеет значения то обстоятельство, что о них позже узнали, так как они не могут погибнуть ранее других.
Можно сказать, например, что эфир имеет не меньшую реальность, чем какое угодно внешнее тело. Сказать, что такое-то тело существует, — значит сказать, что между цветом этого тела, его вкусом, его запахом есть глубокая, прочная и постоянная связь. Сказать, что эфир существует, — значит сказать, что есть естественное родство между всеми оптическими явлениями. Из двух предложений, очевидно, одно имеет не меньшую ценность, чем другое.
Продукты научного синтеза в некотором смысле имеют даже большую реальность, чем плоды синтетической деятельности здравого смысла, так как первые охватывают большее число членов и стремятся поглотить частичные синтезы.
Нам скажут, что наука есть лишь классификация и что классификация не может быть верною, а только удобною. Но это верно, что она удобна; верно, что она является такой не только для меня, но и для всех людей; верно, что она останется удобной для наших потомков; наконец, верно, что это не может быть плодом случайности.
В итоге единственной объективной реальностью являются отношения вещей, отношения, из которых вытекает мировая гармония. Без сомнения, эти отношения, эта гармония не могли бы быть восприняты вне связи с умом, который их воспринимает или чувствует.
Тем не менее они объективны, потому что они общи и останутся общими для всех мыслящих существ.
Это позволит нам вернуться к вопросу о вращении Земли; мы будем иметь здесь случай пояснить сказанное примером.
В моем сочинении «Наука и гипотеза»[49], я сказал: «…утверждение: «Земля вращается» не имеет никакого смысла… или, лучше сказать, два положения: «Земля вращается» и «удобнее предположить, что Земля вращается» — имеют один и тот же смысл».
Эти слова подали повод к самым странным толкованиям. Некоторые надумали видеть в этом реабилитацию птолемеевой системы и, пожалуй, даже оправдание суда над Галилеем.
Однако тот, кто внимательно прочел всю книгу, не мог впасть в ошибку. Истина «Земля вращается» была там поставлена наряду, например, с постулатом Евклида; значило ли это отвергать ее? Более того: на том же языке можно было бы с полным основанием сказать, что два положения — «внешний мир существует» и «удобнее предположить, что внешний мир существует» — имеют один и тот же смысл. Таким образом, гипотеза о вращении Земли имела бы ту же степень достоверности, что и самое существование внешних предметов.
Но после того, что изложено в четвертой части, мы можем пойти дальше. Мы сказали: физическая теория бывает тем более верна, чем больше верных отношений из нее вытекает. Исследуем занимающий нас вопрос в свете этого нового принципа.
Абсолютного пространства нет. Поэтому с точки зрения кинематики из двух противоречивых положений — «Земля вращается» и «Земля не вращается» — одно не более верно, чем другое. Принимать одно, отвергая другое, в кинематическом смысле значило бы допускать существование абсолютного пространства.
Однако если одно из них открывает нам верные отношения, которые не вытекают из другого, то можно считать первое физически более верным, чем другое, потому что оно имеет более богатое содержание. И в этом отношении не может быть никаких сомнений.
Перед нами видимое суточное движение звезд, суточное движение других небесных тел, а с другой стороны — сплющение Земли, вращение маятника Фуко, вращение циклонов, пассатные ветры и т. д. Для последователя Птолемея все эти явления ничем не связаны между собой; с точки зрения последователя Коперника они производятся одной и той же причиной. Говоря: «Земля вращается», я утверждаю, что все эти явления по существу находятся в тесном соотношении друг с другом, и это верно; и это останется верным, хотя нет и не может быть абсолютного пространства.
Сказав о вращении самой Земли, перейдем теперь к ее обращению вокруг Солнца. Здесь также налицо три явления, которые для сторонника Птолемея совершенно независимы и которые, с точки зрения последователя Коперника, восходят к одному и тому же началу; это именно, видимые перемещения планет на небесной сфере, аберрация неподвижных звезд, их параллакс. Случайно ли, что все планеты допускают неравенство, период которого равняется году, и что этот период в точности равен периоду аберрации и также в точности равен периоду параллакса? Принять птолемееву систему — значит ответить «да», принять систему Коперника — ответить «нет». Принимая вторую, мы утверждаем наличие связи между тремя явлениями, и это верно, несмотря на то, что абсолютного пространства нет.
В системе Птолемея движения небесных тел не могут быть объяснены действием центральных сил; небесная механика невозможна. Глубокие соотношения между небесными явлениями, раскрываемые нам небесною механикой, суть отношения верные; утверждать неподвижность Земли значило бы отрицать эти соотношения, а следовательно, заблуждаться.
Таким образом, истина, за которую пострадал Галилей, остается истиной, хотя она имеет и не совсем тот смысл, какой представляется профану, и хотя ее настоящий смысл гораздо утонченнее, глубже и богаче.
Не против Леруа намереваюсь я защищать науку для науки. Быть может, он осуждает ее, но все же он ее развивает, потому что он любит истину, ищет ее и не мог бы жить без нее. Я просто хочу высказать несколько соображений
Мы не можем познать все факты; необходимо выбирать те, которые достойны быть познанными. Если верить Толстому, ученые делают этот выбор наудачу вместо того, чтобы делать его, имея в виду практические применения, что было бы благоразумно. В действительности это не так: ученые считают определенные факты более интересными в сравнении с другими, потому что они дополняют незаконченную гармонию или потому, что они позволяют предвидеть большое число других фактов. Если ученые ошибаются, если эта неявно предполагаемая ими иерархия фактов есть лишь пустая иллюзия, то не могло бы существовать науки для науки и, следовательно, не могло бы быть науки. Что касается меня, то я думаю, что они правы, и выше я на примере показал высокую ценность астрономических фактов, которая определяется не практической применимостью их, а их величайшей поучительностью.
Уровень цивилизации зависит от науки и искусства. Формула «наука для науки» возбуждала удивление; а между тем это, конечно, стоит «жизни для жизни», если жизнь не жалка и ничтожна, и даже «счастья для счастья», если не держаться того взгляда, что все удовольствия равноценны, если не считать, что цель цивилизации состоит в том, чтобы доставлять алкоголь охотникам до выпивки.
Всякое действие должно иметь цель. Мы должны страдать, должны трудиться, должны платить за наше место в спектакле, чтобы видеть, или, по крайней мере, чтобы другие увидели свет.
Все, что не есть мысль, есть чистое ничто, ибо мы не можем мыслить ничего, кроме мысли, и все слова, которыми мы располагаем для разговора о вещах, не могут выражать ничего, кроме мыслей. Поэтому сказать, что существует нечто иное, чем мысль, значило бы высказать утверждение, которое не может иметь смысла.
Однако (странное противоречие с точки зрения тех, кто верит во время) геологическая история показывает нам, что жизнь есть лишь беглый эпизод между двумя вечностями смерти и что в этом эпизоде прошедшая и будущая длительность сознательной мысли — не более, как мгновение. Мысль — только вспышка света посреди долгой ночи.
Но эта вспышка — всё.