Мир, в котором мы живем, наполнен звуками. Лишенный звуков, мир был бы неизмеримо беднее. Наше представление о лесе неразрывно связано с пением птиц, шумом деревьев; о поле — со стрекотаньем кузнечиков; о море — с рокотом волн, шумом прибоя; о городе — с его характерным многообразием звуков, называемым «городским шумом», в котором сливаются в своеобразную симфонию отдаленные гудки паровозов, трамвайные звонки, обрывки человеческой речи или музыки, приглушенный гул многочисленных фабрик и заводов.
Очень давно человек научился находить приятные сочетания звуков — создавать музыкальные мелодии. Музыка справедливо считается одним из старейших видов искусства. Чарующее действие музыкальных мелодий породило много поэтических легенд. Наши предки приписывали звукам даже волшебные свойства. Они считали, что музыка может усмирять диких зверей, сдвигать с места леса и скалы, удерживать потоки воды, успокаивать разбушевавшуюся стихию. Уже в глубокой древности научились создавать музыкальные инструменты. На египетских памятниках мы встречаем изображения музыкантов, играющих на флейтах и арфах.
Древние народы заложили и основу науки о звуке, или, как мы теперь говорим, акустики. Первые акустические опыты, сведения о которых дошли до нас, принадлежат греческому философу и ученому Пифагору, жившему две с половиной тысячи лет назад.
С тех пор человек прилагал много усилий для того, чтобы узнать природу и свойства звуков. И вот постепенно к концу XIX века установилось мнение, что о звуке мы знаем практически все. Казалось, что в акустике можно только пояснять уже известные явления, пользуясь более совершенными приборами, с меньшей ошибкой определять величины, которые, хотя и грубо, были уже определены раньше, но открыть что-либо новое нельзя.
Это было неверно.
Наше знание окружающего мира непрерывно расширяется и углубляется, «…и если вчера, — как учит нас В. И. Ленин, — это углубление не шло дальше атома, сегодня — дальше электрона и эфира, то диалектический материализм настаивает на временном, относительном, приблизительном характере всех этих вех познания природы прогрессирующей наукой человека. Электрон так же неисчерпаем, как и атом, природа бесконечна…» (Соч., т. 14, стр. 249).
Оказалось, что и мир звуков хранил тайны, о существовании которых не догадывался человек. В то самое время, когда ученые склонялись к мысли о том, что в акустике все выяснено, была открыта новая увлекательная страница знания, была открыта дверь в неизвестное до тех пор царство природы — царство неслышимых звуков.
Это открытие имело большое значение для развития науки. Узнав свойства и особенности неслышимых звуков, человек с успехом использовал их как средство дальнейшего проникновения в тайны природы. Они стали помощниками человека.
Свойства ультразвука без знакомства с обычными, слышимыми звуками понять нельзя. Поэтому мы очень кратко расскажем читателю, что же известно о природе и свойствах обычных, воспринимаемых ухом звуков.
Прислушаемся к тем звукам, которые проникают в наше сознание, как только мы проснемся. Вот, например, раздался гудок заводской сирены.
Что произошло в тот момент, когда возник звук гудка?
Машинист открыл клапан, и сжатый воздух стремительно вырвался наружу, расширился, занял значительно больший объем. Подстегнутые толчком, сместились мельчайшие частицы воздуха — молекулы. Но уйти далеко молекулы не могут. Резко подавшись вперед, они смешиваются с молекулами слоев воздуха, расположенных перед ними, и поджимают их. Поэтому в соседних слоях воздуха на ничтожное мгновение окажется гораздо больше молекул, чем было раньше. Это означает, что давление в них на мгновение возрастет, воздух станет плотнее.
Сирена создает прерывистую струю сжатого воздуха, и подобные толчки молекул возникают много раз в секунду.
В те моменты, когда струя воздуха прерывается, смещение молекул приводит к тому, что в слое, расположенном рядом со сжатым, на мгновение окажется недостаток молекул. Поэтому рядом со слоем сгущенным, слоем повышенного давления, возникнет слой разряженный, с пониженным давлением. Пока гудит сирена, слои сгущений и разряжений бегут во все стороны.
Попадая в человеческое ухо, чередующиеся сжатия и разрежения вызывают ощущение звука.
Таким образом, то, что мы называем звуком, представляет собою быструю последовательную смену чередующихся сжатий и разрежений воздуха.
При этом частицы воздуха не перемещаются вместе с распространяющимся звуком. Подталкиваемые сжатым воздухом, они только колеблются, попеременно смещаясь вперед и назад на очень небольшие расстояния.
Сходное движение можно наблюдать, когда по поверхности воды бежит волна и поверхность делается неровной: одни участки приподнимаются, образуя гребни, другие опускаются, создавая впадины (рис. 1).
Такое движение называют волновым.
Наблюдая за поплавком, брошенным на поверхность воды, мы обнаружим, что он только колеблется, то поднимаясь, то опускаясь, а не движется вдоль поверхности вместе с бегущей волной.
Это говорит о том, что молекулы воды не перемещаются вместе с волной, они только колеблются около своих средних положений, и это колебательное движение передается молекулами вещества все дальше и дальше, наподобие того, как передают палочку эстафеты бегуны на стадионе.
На поверхности воды за гребнем волны следует впадина, а в воздухе, в котором распространяется звук, сгущение молекул сменяется разрежением; и там и тут отдельные частицы вещества совершают колебательные движения.
Благодаря сходству в движении частиц воздуха и воды чередующиеся сжатия и разрежения в воздухе называют звуковыми волнами.
Когда до какой-либо точки пространства доходит звуковая волна, частицы вещества, до того не совершавшие упорядоченных движений, начинают колебаться. Всякое движущееся тело, в том числе и колеблющееся, способно совершать работу, оно, как говорят, обладает энергией. Очевидно, что распространение звуковой волны сопровождается распространением энергии. Источником этой энергии является звучащее тело. Именно оно излучает в окружающее вещество энергию.
Звуковые волны возникают и распространяются в воздухе при колебаниях любого тела: струны, мембраны патефона, диффузора репродуктора и т. д.
Проводником звуковых волн может быть не только воздух.
Перед Куликовской битвой князь Димитрий Донской выехал на разведку и, приложив ухо к земле, услышал конский топот: приближалась вражеская конница. В этом случае звуковые волны распространялись в земле.
В различных веществах скорость распространения звуковых волн неодинакова.
В воздухе скорость звука сравнительно невелика и составляет при обычных условиях всего 332 метра в секунду. Если бы мы могли крикнуть так громко, чтобы звук долетел от Москвы до Ленинграда, то нас услышали бы там через полчаса.
В воде звук распространяется быстрее: за одну секунду он проходит приблизительно 1,5 километра. От Москвы до Ленинграда «водным путем» звук шел бы около 7 минут.
С еще большей скоростью распространяется звук в твердых телах. Например, в стальном стержне звук пробегает за 1 секунду около 5 километров, и расстояние между Москвой и Ленинградом по стальному рельсу он прошел бы приблизительно за 2 минуты.
В обыденной жизни мы различаем звуки в зависимости от их силы и тона.
Тон звука зависит от частоты, с которой колеблется звучащее тело. Чем больше частота, тем большее количество сжатий и разрежений возникает в звуковой волне за одну секунду и тем выше тон звука.
Частота колебаний измеряется единицей, называемой герцем. Один герц — это такая частота, когда в одну секунду совершается одно колебание. Тысяча герц называется килогерцем.
Скорость распространения для звуков различного тона одна и та же. Поэтому у звуков большей частоты соседние области сжатий или разрежений будут расположены ближе друг к другу, чем у звуков меньшей частоты.
Расстояние между двумя соседними областями сжатия воздуха или между двумя соседними областями разрежения называют длиной звуковой волны. Чем больше частота звука, тем короче длина волны (рис. 2).
Человеческое ухо очень чувствительно к тону звука. Одаренный музыкальным слухом человек может различить два звука, один с частотой 1 000, а другой — 1 003 колебания в секунду!
Однако два звука одного и того же тона все же могут восприниматься нами по-разному: про один из них мы скажем, что он сильнее, громче другого. Сила звука зависит при одной и той же частоте от размаха колебаний звучащего тела.
Звучащее тело, совершающее колебания с бóльшим размахом, будет вызывать бóльшие изменения давления воздуха, и звук будет сильнее. Чем больше изменения давления, тем больше сила звука (рис. 3).
В последние годы учеными созданы источники звука огромной силы, или, как чаще говорят, мощности.
Если мы попробуем превратить звуковую энергию в теплоту, то увидим, насколько мала энергия, излучаемая обычными источниками звука, по сравнению с энергией современных мощных генераторов звука. Действительно, для того чтобы нагреть до кипения стакан воды, превратив в теплоту энергию, затрачиваемую нами при разговоре, понадобилось бы, в зависимости от громкости голоса, говорить непрерывно от 75 до 2 тысяч лет. Если же использовать звуковую энергию, излучаемую современными мощными источниками звука, то потребуется всего около 7 минут.
Обычно силу звука мы оцениваем на слух, однако измерить ее таким образом нельзя, так как чувствительность уха имеет свои особенности. Именно эти особенности и объясняют, почему мы так долго не знали о существовании ультразвуков и в такой старой области знания, как акустика, могли сохраниться неизученными, подобно «белым пятнам» на географической карте, целые большие разделы.
Человеческое ухо по-разному воспринимает звуки различной частоты. Особенно велика чувствительность его к звукам, частоты которых лежат в интервале от 1 тысячи до 3 тысяч колебаний в секунду. В этой области мы воспринимаем даже такие звуковые волны, в которых изменение давления в тысячи раз меньше, чем изменение давления, испытываемое человеческой рукой, на которую сел комар. Еще немного, и мы воспринимали бы как звук те случайные увеличения плотности воздуха, которые возникают в результате беспорядочного движения его молекул. А так как такие уплотнения происходят непрерывно, то окружающий нас мир был бы в этом случае наполнен не прекращающимся ни на мгновение шумом.
Чувствительность уха характеризуют той наименьшей силой звука, которая необходима для того, чтобы звук был услышан, — это будет порог слышимости. Естественно, что чем выше чувствительность, тем ниже порог слышимости.
С уменьшением частоты звука уменьшается наша способность к его восприятию и соответственно возрастает порог слышимости.
Для того чтобы быть услышанным, звук очень низкого тона, частота которого 100 колебаний в секунду, должен быть сильнее, чем, например, звук с частотою 3 тысячи колебаний в секунду.
Звуковые же волны, колебания в которых происходят очень медленно, скажем меньше 16–20 раз в секунду, вовсе не будут восприниматься человеческим ухом. Это — неслышимые инфразвуковые волны.
Невосприимчивость нашего уха к колебаниям низкой частоты важна для человека: она дает ему возможность не слышать биения собственного сердца, которое иначе воспринималось бы как непрерывный рокот.
Не воспринимает ухо человека и звуков очень большой частоты. В зависимости от возраста и индивидуальных особенностей человек не слышит звуков, частоты которых превышают 16–20 тысяч колебаний в секунду.
Эти неслышимые человеческим ухом высокочастотные звуковые колебания называют ультразвуками.
Физическая природа всех звуков едина, и, как мы видим, деление звуковых волн на слышимые и неслышимые условно. Оно связано с особенностями нашего уха.
Среди волн, частоты которых соответствуют слышимым звукам, наше ухо не способно воспринимать как очень слабые, так и очень мощные звуки.
Когда сила звука делается достаточно большой, человек перестает слышать звук и воспринимает звуковые колебания как ощущение давления или боли. Такую силу звука называют порогом болевого ощущения.
Как показывает опыт, сила, при которой звуки разной частоты вызывают появление болевого ощущения, различна; поэтому мы можем заключить, что порог болевого ощущения изменяется при изменении частоты звука. В области частот, соответствующей максимальной чувствительности человеческого уха, то есть там, где мы различаем самые слабые звуки, наше ухо может воспринимать без ощущения боли и очень мощные звуки.
Если силу наиболее слабого из воспринимаемых ухом звуков условно принять за единицу, то сила наиболее мощного звука той же частоты, который еще не будет вызывать ощущения боли, выразится числом, состоящим из единицы и 12 нулей!
Сказанное наглядно поясняет рис. 4. Вдоль горизонтальной оси отложена частота звука, вдоль вертикальной — сила звука.
Сплошная кривая соответствует порогу слышимости, а пунктирная кривая — порогу болевого ощущения.
Как можно убедиться, взглянув на рисунок, верхняя и нижняя кривые сближаются как при значительном увеличении частоты, так и при ее уменьшении. На рисунке при этом выделяется определенная область частот, которые соответствуют волнам, воспринимаемым человеческим ухом как звук. В заштрихованной части этой области находятся волны, используемые нами при разговоре и в музыке. Как мы видим, это только очень небольшая часть тех волн, которые воспринимает человеческое ухо.
Многие читатели, несомненно, задумаются над тем, имеется ли предел увеличению частоты звуковых колебаний.
Замечательный русский физик Петр Николаевич Лебедев, впервые применивший в исследовательской работе ультразвук, обратил внимание на то, что затухание высокочастотных звуков ставит предел распространению их в воздухе. П. Н. Лебедев подсчитал, что звуки с частотой около 5 миллионов колебаний в секунду практически не будут распространяться в воздухе, они будут затухать непосредственно у источника колебаний.
Хотя в жидких и твердых телах звук затухает несравненно медленнее, все же и в них нельзя беспредельно увеличивать его частоту. Рано или поздно мы, наконец, достигнем частот, соответствующих тепловым колебаниям молекул. Такие частоты будут верхней границей области ультразвуковых колебаний. Но чтобы достичь верхней границы ультразвуковых колебаний, надо увеличить частоту колебаний ультразвука еще в несколько тысяч раз по сравнению с той, которой удалось достичь сейчас.
Некоторые из замечательных свойств ультразвука, такие, например, как ускорение им химических превращений или способность дробить вещество, объясняются в большей степени его мощностью, нежели высокой частотой колебаний. Когда удалось получить достаточно мощные слышимые звуки, обнаружилось, что и они вызывают сходные действия. Поэтому когда в наше время говорят о практическом использовании ультразвуков, то часто обсуждают и возможные применения мощных слышимых звуков.