К ИСТОКАМ ГАРМОНИИ (ЭПИЛОГ)


Для изучения анатомии биолог вооружается скальпелем. Мы же в качестве инструмента познания выбрали функцию энтропии. Препарируя с ее помощью множество самых разнообразных явлений, мы попытались вскрывать их суть. Повсюду мы обнаруживали сочетание стохастичности и детерминации: в творчестве стандартные общепризнанные приемы сочетаются со свободным поиском оригинальных решений; в организмах жесткая наследственная программа, благодаря которой у курицы появляется не щенок, а цыпленок, сочетается с непредсказуемыми мутациями, проявляющимися в потомстве; в природе, в технике, в человеческом обществе постоянно накапливаемая информация и непокоряющаяся ей энтропия находятся в неразрывном единстве и в непрестанной борьбе.

И все это описывается замечательной вероятностной формулой энтропии, формулой, выражающей закон, по которому развивается мир. Значит, прав был Лаплас? Все-таки смог человеческий разум найти ту самую формулу, позволяющую вычислить прошлое и заглянуть в будущее Вселенной?

На этот вопрос мы ответим диалектически: и да, и нет. Да, потому что формула энтропии и в самом деле распространяется на все процессы развития, происходящие в мире. Нет, потому что мир, описываемый с ее помощью, оказался совсем не тем миром, который в своем воображении нарисовал Лаплас.

Лаплас надеялся дать математически точное, однозначное описание всех возможных состояний мира. А формула энтропии, наоборот, показала, что однозначного описания множества явлений не существует вообще. Именно потому нас окружает не фатально запрограммированный механистический мир Лапласа, а полный неожиданностей, непредсказуемо изменяющийся живой диалектический мир.

Изменяется мир, изменяются и научные взгляды. Для написания функции энтропии понадобились всего лишь три математических знака: суммы, логарифма и символа вероятностей. Из их сочетания образовалась формула со смыслом настолько глубоким, что больше ста лет неустанных исследований, размышлений и споров не позволили раскрыть его полностью.

Людвиг Больцман показал, как возникает молекулярный хаос в предоставленном самому себе (изолированном) газе. Клод Шеннон предложил оценивать, сколько новой и сколько предсказуемой информации несет в себе телеграфный сигнал или письменный текст. Казалось бы, что может быть общего между газом и текстом? Но последующие исследования информации и энтропии показали, что между всеми явлениями мира существует неразрывная связь.

Все известные науке системы стали выстраиваться в последовательную цепочку, на одном конце которой оказался хаос космической пыли, а на другом — мозг, тексты и ЭВМ. Стало понятно, что и Больцман и Шеннон, в сущности- занимались одной и той же проблемой соотношения хаоса и порядка, хотя и подошли к ней и к связанной с ней цепочке систем и явлений с противоположных сторон.

В 1948 году один из основоположников квантовой физики Вернер Гейзенберг, выступая перед студентами цюрихской Высшей школы, говорил о том, что математический аппарат физики нуждается во введении новых понятий, которые позволили бы найти физический подход к процессам жизни и к «духовным процессам» (так Гейзенберг определил все, что связано с интеллектуальной и эмоциональной деятельностью людей).

С тех пор утекло много воды. В год упомянутого выступления Гейзенберга появились первые работы Шеннона, на базе которых стала развиваться теория информации, предложившая то самое новое понятие «количества информации», на отсутствие которого сетовал Гейзенберг.

В течение 30 лет это понятие вместе с развивающимся на его основе новым математическим аппаратом все глубже внедрялось и в биологию, и в психологию, и в лингвистику и в другие сферы науки о жизни в самом широком понимании слова «жизнь», начиная с простейшей биологической клетки и кончая тончайшими и сложнейшими сферами духовной жизни людей.

Конечно же, вторжение математики в области, до последнего времени ей неподвластные не решает всех существующих там проблем. Однако многие закономерности, которые еще недавно описывались в науке расплывчато и туманно, начинают постепенно приобретать строгость математических теорем. Можно теперь говорить об информационно-энтропийных законах жизни и эволюции, двух феноменах, связанных неразрывно.

Рассуждая о разных аспектах этой сложнейшей проблемы, мы с вами на протяжении всей книги пользовались одним и тем же приемом: делали разные предположения об изменениях распределения вероятностей каких-то событий и смотрели, что будет происходить с величиной функции

Прием, казалось бы, чисто формальный. Но как ни удивительно, получаемые таким формальным способом выводы всегда совпадали со свойствами не придуманных умозрительно, а существующих и развивающихся реальных систем.

В чем причина совпадений? В том, что эта функция не просто удачно придуманное сочетание математических символов, а глубокое отражение некой общей закономерности, характерной для всей природы, некой единой сущности всех процессов развития, раскрываемой через информационно-энтропийную связь. И не случайно к пониманию смысла и сущности функциинаука шла таким мучительно долгим путем.

Затраченные на постижение сущности энтропии усилия не пропали даром: установление взаимосвязи между энтропией и информацией позволило найти соотношение запрограммированных и непредсказуемых связей между элементами различных систем.

Начатый мудрецами Древней Греции и длящийся более двух тысячелетий научный диспут о соотношении необходимого и случайного в окружающем мире разрешается диалектически: в мире почти нет явлений, жестко детерминированных или чисто случайных; мир гармоничен именно потому, что развивающиеся системы сами находят те соотношения необходимого и случайного, которые обеспечивают им, с одной стороны, структурную целостность, а с другой — ту изменчивость, которая необходима для гибкого взаимодействия с переменчивой внешней средой.

Мой друг гуманитарий опасался, что, используя формулу энтропии для анализа творчества, ученые пытаются «поверить алгеброй гармонию», что подобно тому, как Моцарта убил завистник его искрометного таланта Сальери, скрупулезный подсчет информации, содержащейся в произведениях живописи, поэзии или музыки, омертвит, схематизирует трепетные чувства их авторов и их ищущую беспокойную мысль.

Напрасные опасения! Ведь сама эта формула тоже живая! За символами вероятностей в ней скрываются разнообразные непредвиденные события, а из совокупности множества событий складывается наш не подвластный никаким однозначным формулам диалектический мир.

Единственно, что можно безошибочно предвидеть с помощью формул в отношении нашего мира,— это вечное его стремление к усложнению и совершенствованию форм.

Достигнутая миром гармония хранится в накопленной им информации. За вечную молодость, изменчивость, непредсказуемость нашего мира мы должны быть признательны энтропии. Согласитесь, скучно было бы жить в мире (если даже забыть на минуту о том, что жизнь в таком мире вообще не могла возникнуть), в котором все заранее предначертано и ничего нельзя изменить.


УВАЖАЕМЫЙ ЧИТАТЕЛЬ!

Литература по вопросам, затронутым в книге, настолько обширна, что привести ее всю нет возможности. Правда, это главным образом научные публикации Тем, кто захочет продолжить знакомство с темой книги, я могу порекомендовать несколько работ, включая ряд вполне доступных для многих научных монографий:


Алексеев Г Н Энергия и энтропия. М , «Знание», 1978.

Бирюков Б. В., Геллер Е. С. Кибернетика в гуманитарных науках. М., Наука, 1973.

Данин Д. Вероятностный мир. М, Знание, 1981.

Дюк рок А. Физика кибернетики. В сб.: Кибернетика ожидаемая и кибернетика неожиданная. М., Наука, 1968.

Налимов В. В. Вероятностная модель языка: о соотношении естественного и искусственного языка. Изд. 2־е. М., Наука, 1979.

Сачков Ю. В. Введение в вероятностный мир. М., Наука, 1971

Седов Е. А. Репортаж с ничейной земли. М., Молодая гвардия, 1966.

Седов Е. А. Эволюция и информация. М, Наука, 1976

Урсул А. Д. Информация. Методологические аспекты М , Наука 1971.

Шамбадаль П. Развитие и приложения понятия энтропии. М., Наука, 1967.

Яглом А. М., Яглом И М. Вероятность и информация. М.Наука, 1973.


Загрузка...