* Официально: Первая научно-популярная библиотека «Научка» (ГБУК г.Москвы ОКЦ ЦАО ЦДБ 14 "Научка"). — Здесь и далее примечания автора.
https://www.sciencedaily.com/terms/artificial_intelligence.htm
Copeland J. (2003). Moor, James, ed., “The Turing Test”, The Turing Test: The Elusive Standard of Artificial Intelligence, Springer.
Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ
Bellman R. E. (1978). An Introduction to Artificial Intelligence: Can Computers Think? Boyd & Fraser Publishing Company.
Winston P. H. (1992). Artificial Intelligence (Third edition). Addison-Wesley.
Kurzweil R. (1990). The Age of Intelligent Machines. MIT Press.
Bellman R. E. (1978). An Introduction to Artificial Intelligence: Can Computers Think? Boyd & Fraser Publishing Company.
Poole D., Mackworth A., Goebel R. (1998). Computational Intelligence: A Logical Approach. New York: Oxford University Press.
Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ
* Исполнитель роли агента Смита в фильме «Матрица» (1999).
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
Kahn J. (2002). It's Alive! / Wired, 03.01.2002 // https://www.wired.com/2002/03/everywhere/
Hofstadter D. R. (2000). Gödel, Escher, Bach: An Eternal Golden Braid. Penguin // https://books.google.ru/books?id=grzEQgAACAAJ
Tesler L. CV: Adages & Coinages // http://www.nomodes.com/Larry_Tesler_Consulting/Adages_and_Coinages.html
Searle J. (1980). Minds, Brains and Programs / Behavioral and Brain Sciences, 3 (3): 417–457 // https://doi.org/10.1017/S0140525X00005756
Kurzweil R. (2005). The Singularity is near: when humans transcend biology. Viking Press // https://books.google.ru/books?id=9FtnppNpsT4C
Gubrud M. A. (1997). Nanotechnology and International Security // https://web.archive.org/web/20190430021737/https://foresight.org/Conferences/MNT05/Papers/Gubrud/
Seligman J. (2020). artificial Intelligence / Machine Learning In Marketing. Lulu.com // https://books.google.ru/books?id=l6zRDwAAQBAJ
Айер А. Д. (2010). Язык, истина и логика / Пер. с англ. В. А. Суровцева, Н. А. Тарабанова. Под общей ред. В. А. Суровцева. — М: «Канон+» РООИ «Реабилитация».
Diderot D. (2007). Pensees Philosophiques, Addition aux Pensees Philosophiques[Flammarion], p. 68.
Тьюринг А. (1960). Может ли машина мыслить? С приложением статьи Дж. фон Неймана «Общая и логическая теория автоматов» / Пер. с англ. Ю. А. Данилова, редакция и предисловие проф. С. А. Яновской. М.: Государственное издательство физико-математической литературы.
Evans R., Collins H. M. (2010). Interactional Expertise and the Imitation Game / Gorman M. E. (2010). Trading Zones and Interactional Expertise: Creating New Kinds of Collaboration. Cambridge: MIT Press, pp. 53—70.
Hollings K. (2013). "There must be something wrong with this, Sally…" Faults, Lapses and Imperfections in the Sex Lives of Machines / Leonardo Electronic Almanac, Vol. 19 Iss. 4 // https://www.leonardo.info/journal-issue/leonardo-electronic-almanac/19/4
Pruchnic J. (2013). Rhetoric and Ethics in the Cybernetic Age: The Transhuman Condition. Routledge // https://books.google.ru/books?id=sUttAAAAQBAJ
Turing A. (1952). Can Automatic Calculating Machines be Said to Think? / Copeland J. B. (2004). The Essential Turing: The ideas that gave birth to the computer age. Clarendon Press // https://books.google.ru/books?id=VlC5MkVIwqkC
Sterrett S. G. (2000). Turing's Two Test of Intelligence / Minds and Machines, Vol. 10, Iss. 4, p. 541 // https://doi.org/10.1023/A:1011242120015
* Двойной слепой метод — подход, когда ни задающий вопросы, ни взаимодействующие с ним организаторы сами не знают, кто из участников теста является машиной и есть ли вообще машина среди участников теста; то есть задача для жюри должна быть сформулирована следующим образом: «Выберите один из вариантов: только испытуемый 1 является машиной, только испытуемый 2 является машиной, оба испытуемых являются машинами, оба испытуемых являются людьми».
Кокшотт У. П., Микаэльсон Г., Коттрел А. (2017). Бёттке, синтаксис и тест Тьюринга / Пер. с англ. Горлова А. В., Маркова С. С // https://22century.ru/popular-science-publications/boettke-syntax-and-the-turing-test
Landau L. J. (1997). Penrose's Philosophical Error / Landau L. J., Taylor J. G. (1998). Concepts for Neural Networks. Perspectives in Neural Computing. Springer, London // https://doi.org/10.1007/978-1-4471-3427-5_7
* Способность мозга находить причинно-следственные связи.
** Представление о том, что в основе разума лежат квантовомеханические эффекты, принципиально невоспроизводимые средствами классической механики.
The Emperor’s New Mind: Concerning Computers, Minds and the Laws of Physic, Oxford University Press.
Shieber S. M. (1994). Lessons from a Restricted Turing Test / Communications of the ACM, Vol. 37, Iss. 6, pp. 70—78 // https://doi.org/10.1145/175208.175217
Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ
Mallery J. C. (1988). Thinking About Foreign Policy: Finding an Appropriate Role for Artificially Intelligent Computers / The 1988 Annual Meeting of the International Studies Association., St. Louis, MO.
*** Наборы визуальных тестов для оценки способности системы находить простые закономерности, предложенные советским учёным Михаилом Бонгардом.
McCarthy J. (1996). “The Philosophy of Artificial Intelligence”, What has AI in Common with Philosophy?
**** CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) — полностью автоматизированный публичный тест Тьюринга для различения компьютеров и людей.
Луис фон Ан. Массовое онлайн-сотрудничество // Конференция TED, 2011.
См. патент Method and system for discriminating a human action from a computerized action. 2004-03-01 (https://patents.google.com/patent/US20050114705A1/en).
Samuel A. (1959). Some Studies in Machine Learning Using the Game of Checkers / IBM Journal of Research and Development, Vol. 3, Iss. 3, pp. 210—229 // https://doi.org/10.1147/rd.33.0210
Воронцов К. В. Математические методы обучения по прецедентам (теория обучения машин) // http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf
Goled S. (2021). Self-Supervised Learning Vs Semi-Supervised Learning: How They Differ / Analytics India Magazine, May 7, 2021 // https://analyticsindiamag.com/self-supervised-learning-vs-semi-supervised-learning-how-they-differ/
Воронцов К. В. Математические методы обучения по прецедентам (теория обучения машин) // http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf
The measurement of man // http://www.galtoninstitute.org.uk/sir-francis-galton/psychology-statistics-criminology/
Galton F. (1886). Regression Towards Mediocrity in Hereditary Stature. The Journal of the Anthropological Institute of Great Britain and Ireland, Vol. 15, pp. 246—263 // http://www.jstor.org/stable/2841583
Воронцов К. В. Математические методы обучения по прецедентам (теория обучения машин) // http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf
Luong M.-T., Brevdo E., Zhao R. (2017). Neural Machine Translation (seq2seq) Tutorial // https://web.archive.org/web/20171123080802/https://www.tensorflow.org/tutorials/seq2seq
См., напр.: Xing Z., Pei J., Keogh E. (2010). A Brief Survey on Sequence Classification / SIGKDD Explorations, Vol. 12, pp. 40—48 // https://doi.org/10.1145/1882471.1882478
См., напр.: Gsponer S., Smyth B., Ifrim G. (2017). Efficient sequence regression by learning linear models in all-subsequence space / Ceci M., Hollmén J., Todorovski L., Vens C., Džeroski S. (2017). Machine Learning and Knowledge Discovery in Databases. Springer International Publishing.
Roweis S. T., Saul L. K. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding / Science, Vol. 290, Iss. 5500, pp. 2323—2326 // https://doi.org/10.1126/science.290.5500.2323
Bishop C. M., Lasserre J. (2007). Generative or discriminative? Getting the best of both worlds / Bayesian Statistics, Vol. 8, Iss. 3, p. 24.
* Пиксель (от англ. сокращения от pictures element) — наименьший элемент двумерного цифрового изображения.
* Хемоинформатика (химическая информатика, молекулярная информатика) — применение методов информатики при решении химических проблем.
Schwab K. (2017). The Fourth Industrial Revolution. World Economic Forum // https://www.google.ru/books?id=ST_FDAAAQBAJ
Шваб К. (2016). Четвёртая промышленная революция. Издательство «Э» // https://books.google.com/books?id=rTRnDQAAQBAJ
Boyer C. B., Merzbach U. C. (2011). A History of Mathematics. John Wiley & Sons // https://www.google.ru/books?id=bR9HAAAAQBAJ
Википедия // https://ru.wikipedia.org/wiki/Абак (версия от 11.03.2018).
См., напр.: Большой энциклопедический словарь (2002) / 2-е изд., перераб. и доп., с ил. // https://dic.academic.ru/dic.nsf/enc3p/44770
Donnegan J. Patton R. B. (1838). A New Greek and English Lexicon: Principally on the Plan of the Greek and German Lexicon of Schneider: the Words Alphabetically Arranged. Hilliard, Gray & Company.
Шанский Н. М., Боброва Т. А. (2004) Школьный этимологический словарь русского языка. Происхождение слов. — М.: Дрофа.
A Greek-English lexicon to the New Testament by Greenfield, William, 1799-1831; Green, Thomas Sheldon, 1803 or 1804-1876; Hastings H. L. (Horace Lorenzo), 1831-1899; Stearns, Wallace N. (Wallace Nelson), 1866-; Thayer, Joseph Henry, 1828-1901 // https://www.gutenberg.org/files/40935/40935-h/40935-h.htm
Михельсон А. Д. (1865) Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней.
A Dictionary of Greek and Roman Antiquities (1890) William Smith, LLD, William Wayte, G. E. Marindin, Ed // http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0063%3Aalphabetic+letter%3DA%3Aentry+group%3D1%3Aentry%3Dabacus-cn
Online etymology dictionary © 2001-2018 Douglas Harper. All rights reserved // https://www.etymonline.com/word/abacus
Huehnergard J. (2011). "Appendix of Semitic Roots, under the root ʾbq.". American Heritage Dictionary of the English Language (5th ed.). Houghton Mifflin Harcourt Trade.
Online etymology dictionary © 2001-2018 Douglas Harper. All rights reserved // https://www.etymonline.com/word/abacus
Robertson J. (2019). Robertson's Words for a Modern Age: A Dictionary of English Vocabulary Words Derived Primarily from Latin and Greek Sources, Presented Individually and in Family Units // https://wordinfo.info/
Ifrah G. (2001). The Universal History of Computing: From the Abacus to the Quantum Computer. New York, NY: John Wiley & Sons, Inc., р. 11.
Ifrah G. (2000). The Universal History of Numbers: From prehistory to the invention of the computer., John Wiley and Sons. Translated from the French by David Bellos, E. F. Harding, Sophie Wood and Ian Monk.
Macey S. L. (1989). The Dynamics of Progress: Time, Method, and Measure, Atlanta, Georgia: University of Georgia Press, p. 92.
Ndimele O., Chan S.(2016). The Numeral Systems of Nigerian Languages. Oxford: African Books Collective. Retrieved June 21, 2018, from Project MUSE database.
Francis W. (1988). Gazetteer of South India. Mittal Publ.
Caughley R. C. (1989). Chepang — a Sino-Tibetan language with a duodecimal numeral base?, in D. Bradley et al. (eds.).
de Buffon G. L. L., C'epède L. (1839). Oeuvres complètes de Buffon. Rapet et cie.
Foundation and First Generation // http://www.dozenal.org/drupal/content/foundation-and-first-generation.html
The Dozenal Society of Great Britain // http://www.dozenalsociety.org.uk/
Karttunen F. E. (1992). An Analytical Dictionary of Nahuatl. University of Oklahoma Press // https://books.google.ru/books?id=s4LURGT0h2AC
Kane N. (2016). Maya Math Simplified. Spangenhelm Publishing // https://books.google.ru/books?id=8vN6DQAAQBAJ
Ancient Aztec 'Computer' beats electronic brains / Radford Journal Weekly (November 3, 1977) // https://newspaperarchive.com/radford-journal-weekly-nov-03-1977-p-2/
Гуаман Пома де Айяла Ф. (2011) Первая новая хроника и доброе правление (доколумбовый период) / Пер. со староисп. В.А. Кузьмищева; отв. ред. Н.Ю. Кудеярова. — М.: Памятники исторической мысли // http://www.piminfo.ru/catfile/bbook_Pdf_small_275.pdf
Florio C. Risposta aperta a Subhash Kak sulla decifrazione della yupana di Guaman Poma // https://www.academia.edu/6343696/Risposta_aperta_a_Subhash_Kak_sulla_yupana_di_Guaman_Poma_de_Ayala
Volkov A. K. (1994). Large Numbers and Counting Rods / Extrême-Orient, Extrême-Occident, 1994, n°16. Sous les nombres, le monde: Matériaux pour l'histoire culturelle du nombre en Chine ancienne, pp. 71—92 // https://doi.org/10.3406/oroc.1994.991
Igarashi Y., Altman T., Funada M., Kamiyama B. (2014). Computing: A Historical and Technical Perspective. CRC Press // https://books.google.ru/books?id=eabNBQAAQBAJ
Moon P. H. (1971). The abacus: its history, its design, its possibilities in the modern world. Gordon and Breach Science Publishers // https://books.google.ru/books?id=G1LxAAAAMAAJ
Wagner R. G., Wang B. (2003). A Chinese Reading of the Daodejing: Wang Bi's Commentary on the Laozi with Critical Text and Translation. State University of New York Press // https://books.google.ru/books?id=bUZNAAAAQBAJ
Gullberg J., Hilton P., Gullberg P. (1997). Mathematics: From the Birth of Numbers. W. W. Norton // https://books.google.ru/books?id=E09fBi9StpQC
Васубандху (2006). Энциклопедия буддийской канонической философии (Абхидхармакоша) / Составление, перевод, комментарии, исследования Е. П. Островской, В. И. Рудого. — СПб.: Изд-во С.-Петерб. ун-та. С. 74 // http://abhidharma.ru/A/Guru%20Mahasiddhi/Content/Vasubandhu/Abhidharmakosha%20O.R.%20V-VI.pdf
Витсен Н. (2010). Северная и Восточная Тартария: в 3 т. — Амстердам: Pegasus. 624; 608; 584 с // https://www.pegasusboek.nl/severnaia-i-vostotsnaja-tartarija.html
Миллер Г. Ф. (1937). История Сибири. — М.: Издательство АН СССР. 637 с, 2 карты // https://www.runivers.ru/upload/iblock/2f8/miller%201.pdf
Карамзин Н. М. История государства Российского // http://www.kulichki.com/inkwell/text/special/history/karamzin/kar09_06.htm
* Соседствующего, между прочим, с историей о происхождении фамилии Строганов от умерщвления основателя рода татарами, выполненного путём строгания, то есть изрубливания на мелкие кусочки.
Цепков А. И. (сост.). Сочинения Григория Скибинского. Переписная книга домовой казны патриарха Никона. — Рязань: Александрия. С. 463 // https://mirlib.ru/knigi/history/212098-sochineniya-grigoriya-skibinskogo-perepisnaya-kniga-domovoy-kazny-patriarha-nikona.html
Спасский И. Г. (1952). Происхождение и история русских счётов // Историко-математические исследования. — М.: ГИТТЛ. № 5. С. 269—420 // http://pyrkov-professor.ru/default.aspx?tabid=195&ArticleId=43
The History Of Herodotus. Vol. 1 (of 2). Translator: G. C. Macaulay // https://www.gutenberg.org/files/2707/2707-h/2707-h.htm
Smith D. E. (1958). History of Mathematics. Dover Books on Mathematics. 2: Special Topics of Elementary Mathematics. Courier Dover Publications.
Smith D. E. (1958). History of Mathematics. Dover Books on Mathematics. 2: Special Topics of Elementary Mathematics. Courier Dover Publications.
Aeschylus, Agamemnon (Greek) (ed. Herbert Weir Smyth, Ph. D.) // http://data.perseus.org/citations/urn:cts:greekLit:tlg0085.tlg005.perseus-grc1:538-582
Aristophanes. Aristophanes Comoediae, ed. F. W. Hall and W. M. Geldart, vol. 1. F. W. Hall and W. M. Geldart. Oxford. Clarendon Press, Oxford. 1907 // http://data.perseus.org/citations/urn:cts:greekLit:tlg0019.tlg004.perseus-grc1:316-333
Aristophanes. Aristophanes Comoediae, ed. F. W. Hall and W. M. Geldart, vol. 1. F. W. Hall and W. M. Geldart. Oxford. Clarendon Press, Oxford. 1907 // http://data.perseus.org/citations/urn:cts:greekLit:tlg0019.tlg004.perseus-grc1:650-695
Athenaion Politeia, ed. Kenyon. Oxford. 1920 // http://data.perseus.org/citations/urn:cts:greekLit:tlg0086.tlg003.perseus-eng1:69.1
Ifrah G. (2001). The Universal History of Computing: From the Abacus to the Quantum Computer. New York, NY: John Wiley & Sons, Inc.
Trendall & Cambitoglou 1982 p. 495, no. 18/38, pl. 176,1; FR pl. 88 // http://www.perseus.tufts.edu/hopper/artifact?name=Naples+3253&object=vase
Pullan J. M. (1968). The History of the Abacus. New York, NY: Frederick A. Praeger, Inc., Publishers.
Historiae. Polybius. Theodorus Büttner-Wobst after L. Dindorf. Leipzig. Teubner. 1893 // http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0543.tlg001.perseus-eng1:5.26
Diogenes Laertius, Lives of Eminent Philosophers R. D. Hicks, Ed. (1972) // http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0004.tlg001.perseus-eng1:1.2
Williams M. R. (1997). Baltes, Cheryl, ed. A History of Computing technology (2nd ed.). Los Alamitos, CA: IEEE Computer Society Press.
The sponge divers and the original crew. Return to Antikythera. A project of the Hellenic Ministry of Culture and Sports // http://antikythera.org.gr/history/1900-1901/sponge-divers/
Nikoli M., Seiradakis J. H. The first newspaper references to the antikythera shipwreck discoveries // http://academy.edu.gr/Antikythera-Digital-Book-Files/08_Magdalini.pdf
Мерчант Д. (2017). Антикитерский механизм: Самое загадочное изобретение Античности. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=Kk00DwAAQBAJ
Trimmis K. P. (2016). The Forgotten Pioneer: Valerios Stais and his research in Kythera, Antikythera and Thessaly / Bulletin of the History of Archaeology, Vol. 26, Iss. 1 // http://doi.org/10.5334/bha-558
Athens, NM Br. 13400 (Sculpture) // http://www.perseus.tufts.edu/hopper/artifact?name=Athens,+NM+Br.+13400&object=sculpture
Trimmis K. P. (2016). The Forgotten Pioneer: Valerios Stais and his research in Kythera, Antikythera and Thessaly / Bulletin of the History of Archaeology, Vol. 26, Iss. 1 // http://doi.org/10.5334/bha-558
Hederich B. (1827). Novum lexicon manuale Graeco-Latinum et Latino-Graecum: Band 1 // https://books.google.ru/books?id=xHAUAAAAQAAJ
Liddell H. G., Scott R. A Greek-English Lexicon // http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dmoirognwmo%2Fnion
Большой Энциклопедический словарь (2002) / 2-е изд., перераб. и доп, с ил.
https://en.oxforddictionaries.com/definition/astrolabe
* Куфическое письмо — один из наиболее древних видов арабского письма, созданный в конце VIII в.; сыграл значительную роль в дальнейшем развитии всей арабской каллиграфии.
http://www.historyofinformation.com/expanded.php?id=2340
Field J. V., Wright M. T. (1985). The early history of mathematical gearing / Endeavour, Vol. 9, Iss. 4, pp. 198–203 // https://doi.org/10.1016/0160-9327(85)90078-X. (http://www.sciencedirect.com/science/article/pii/016093278590078X).
Astrolabe with Geared Calendar, by Muhammad b. Abi Bakr, Isfahan, 1221/2 // http://www.mhs.ox.ac.uk/object/inv/48213
Rados C. N. (1905). “Sur Les Trouvailles Astronomiques d’Anticythère” in Comptes rendus du Congrès international d’archéologie, 1re session, Athènes 1905, sous la présidence de S. A. R. le Prince Royal des Hellènes, président de la Société archéologique. 1re Session, 7–13 Avril, Athènes, Athènes, pp. 256–258 // https://archive.org/details/comptesrendusduc00conguoft
Жуков А. (2010). По страницам сочинения Герона Александрийского «О диоптре» // Квант. № 3. С. 23–25.
Jones A. The Antikythera Mechanism and the Public Face of Greek Science / Proceedings of Science PoS (Antikythera & SKA) 038, 2012 // http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=170.
Cicero M. T. Librorum de Re Publica Sex. C. F. W. Mueller. Leipzig. Teubner. 1889 // http://data.perseus.org/citations/urn:cts:latinLit:phi0474.phi043.perseus-lat1:1.21
Jones A. R. (2018). Like Opening a Pyramid and Finding an Atomic Bomb: Derek de Solla Price and the Antikythera Mechanism / Proceedings of the American Philosophical Society, Vol. 162, Iss. 3, pp. 259–294 // https://www.amphilsoc.org/sites/default/files/2019-03/attachments/Jones.pdf
Мерчант Д. (2017). Антикитерский механизм: Самое загадочное изобретение Античности. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=Kk00DwAAQBAJ
de Solla Price D. (1974). Gears from the Greeks. The Antikythera Mechanism: A Calendar Computer from ca. 80 B. C / Transactions of the American Philosophical Society, New Series, Vol. 64, No. 7 (1974), pp. 1–70 // http://www.jstor.org/stable/1006146
Poole L. (2017). Bromley’s model of the Antikythera Mechanism // https://maas.museum/inside-the-collection/2017/11/01/bromleys-model-of-the-antikythera-mechanism/
Oates S., Bromley A. Decoding the Heavens: Mistakes and misinterpretations // http://www.connectives.com/decoding-the-heavens-bromley-comments.html
A Planetarium Display for the Antikythera Mechanism / Horological Journal, vol. 144 no. 5 (May 2002), pp. 169–173, and vol. 144 no. 6 (June 2002), p. 193.
Мерчант Д. (2017). Антикитерский механизм: Самое загадочное изобретение Античности. — М.: Альпина нон фикшн // https://www.google.ru/books?id=Kk00DwAAQBAJ
Evans J., Carman C. C., Thorndyke A. (2010). Solar anomaly and planetary displays in the Antikythera Mechanism / Journal for the History of Astronomy. xli: pp. 1–39 // http://adsabs.harvard.edu/full/2010JHA….41….1E
Freeth T., Higgon D., Dacanalis A., MacDonald L., Georgakopoulou M., Wojcik A. (2021). A Model of the Cosmos in the ancient Greek Antikythera Mechanism / Scientific Reports, Vol. 11, Article number: 5821 // https://doi.org/10.1038/s41598-021-84310-w
Experts recreate a mechanical Cosmos for the world’s first computer (2021) / UCL News, 12 March 2021 // https://www.ucl.ac.uk/news/2021/mar/experts-recreate-mechanical-cosmos-worlds-first-computer
Byzantine portable universal altitude sundial with geared calendrical device // http://collection.sciencemuseum.org.uk/objects/co1082/byzantine-portable-universal-altitude-sundial-with-geared-calendrical-device-sundial-perpetual-calendar
Pappus, Hultsch F. O. (1878). Pappi Alexandrini collectionis quae supersunt. Apud Weidmannos // https://archive.org/stream/pappialexandrin02hultgoog#page/n33/mode/2up
Wright M. (2012). The Planetarium of Archimedes // http://hist.science.online.fr/antikythera/DOCS/THE%20PLANETARIUM%20OF%20ARCHIMEDES.pdf
Freeth, Tony; Jones, Alexander (2012). The Cosmos in the Antikythera Mechanism. Institute for the Study of the Ancient World // http://dlib.nyu.edu/awdl/isaw/isaw-papers/4/
* Пер. Е. Красновой.
Математика XVII столетия (1970) // История математики в 3 т / под ред. А. П. Юшкевича. — М.: Наука. Т. II. С. 54–48 // http://ilib.mccme.ru/djvu/istoria/istmat2.htm
Клейн Ф. (1987). Элементарная математика с точки зрения высшей. — М.: Наука. Т. I. Арифметика. Алгебра. Анализ. С. 210 // http://ilib.mccme.ru/djvu/klejn-1.htm
Карпушкина Н. (2011). Решётчатое умножение // Наука и жизнь. №2 // https://www.nkj.ru/archive/articles/19204/
* Османская миниатюра — форма искусства в Османской империи, разновидность живописи, изображающая сцены войн, охоты, значимых для двора и страны событий, уклад и образ жизни людей.
** «Девширме» («налог кровью») — система принудительного набора мальчиков из христианских семей для их последующего воспитания и дальнейшей службы в роли «капыкулу» (kapıkulları, «государевы рабы») — лиц рабского статуса на государственной и военной службе. Большая часть чиновников и военных Османской империи в XV–XVI вв. состояла именно из призванных по девширме лиц.
Stoianovich T. (2015). Balkan Worlds: The First and Last Europe: The First and Last Europe. Taylor & Francis // https://books.google.ru/books?id=lKVzCQAAQBAJ
Woodhead C. (2011). The Ottoman World. Taylor & Francis // https://books.google.ru/books?id=jt_FBQAAQBAJ
Corlu M. S., Burlbaw L. M., Capraro R. M., Han S., Çorlu M. A. (2010). The Ottoman palace school and the man with multiple talents, Matrakçı Nasuh / Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, Vol. 14, Iss. 1, pp. 19–31 // https://www.academia.edu/480968/Corlu_M._S._Burlbaw_L._M._Capraro_R._M._Han_S._and_%C3%87orlu_M._A._2010_._The_Ottoman_palace_school_and_the_man_with_multiple_talents_Matrak%C3%A7%C4%B1_Nasuh._Journal_of_the_Korea_Society_of_Mathematical_Education_Series_D_Research_in_Mathematical_Education_14_1_19_31
Celebi E., von Hammer-Purgstall J. (1834). Narrative of Travels in Europe, Asia, and Africa in the Seventeenth Century. Oriental Translation Fund // https://books.google.ru/books?id=66hCAAAAcAAJ
Karagöz A. (2013). Nasûh Es-Silâhî'nin Umdetü'l Hisâb Adlı Eseri (89b-179a) (İnceleme-Metin-Dizin-Tıpkıbasım) // https://tezarsivi.com/nasuh-es-silahinin-umdetul-hisab-adli-eseri-89b-179a-inceleme-metin-dizin-tipkibasim
Цит. по: Bulletin of the Scientific Instrument Society No. 76 (2003) // https://static1.squarespace.com/static/54ec9b40e4b02904f4e09b74/t/5692c4becbced6b74bcb6067/1452459215241/SIS_Bulletin_076.pdf
Gradstein S. (1962). The Calculating Machine of Blaise Pascal / Philips technical review, Vol. 24, 1962 // http://nvhrbiblio.nl/biblio/tijdschrift/Philips%20Technical%20Review/Philips-Technical-Review-1962.pdf
Dalakov G. The Rechenuhr (Calculating Clock) of Wilhelm Schickard / History of Computers: hardware, software, internet… // http://history-computer.com/MechanicalCalculators/Pioneers/Schickard.html
* Сенешаль — глава региональной системы правосудия во Франции в XVII в.
Adamson D. (1994). Blaise Pascal: Mathematician, Physicist and Thinker about God. Palgrave Macmillan UK // https://books.google.ru/books?id=qpmGDAAAQBAJ
O'Connor J. J., Robertson E. F. Étienne Pascal / MacTutor History of Mathematics archive // http://www-history.mcs.st-andrews.ac.uk/Biographies/Pascal_Etienne.html
Тарасов Б. Н. (2006). Паскаль. — М.: Молодая гвардия // https://books.google.ru/books?id=pq59AAAAMAAJ
Dalakov G. The Pascaline of Blaise Pascal / History of Computers: hardware, software, internet… // http://history-computer.com/MechanicalCalculators/Pioneers/Pascal.html
http://www.historicalstatistics.org/Currencyconverter.html
https://www.in2013dollars.com/us/inflation/2015?amount=2310
Dalakov G. The arithmometer of Thomas de Colmar / History of Computers: hardware, software, internet… // http://history-computer.com/MechanicalCalculators/19thCentury/Colmar.html
Leibniz Invents the Stepped Drum Gear Calculator / Jeremy Norman's HistoryOfInformation.com // http://www.historyofinformation.com/expanded.php?id=453
Doron Swade. Babbage, Charles / Oxford Dictionary of National Biography // https://doi.org/10.1093/ref:odnb/962
Dubbey J. M., Dubbey J. M. (2004). The Mathematical Work of Charles Babbage. Cambridge University Press // https://books.google.ru/books?id=gkWunaISTsgC
LMA/4050. REVEREND STEPHEN FREEMAN'S SCHOOL PONDERS END / London Metropolitan Archives: City of London // http://discovery.nationalarchives.gov.uk/details/r/db8b56cf-ea51-4c0b-ad46-320a2391d714
Woodhouse R. (1803). The Principles of Analytical Calculation. Cambridge University Press // https://books.google.ru/books?id=rEbnAAAAMAAJ
Lagrange J. L. (1797). Théorie des fonctions analytiques. Imprimerie de la République.
Agnesi M. G. (1748). Instituzioni analitiche: ad uso della gioventu' italiana. Nella Regia Ducal Corte // https://books.google.it/books?id=a7znPR4b4XkC
Hay D. C. (2002). Charles Babbage / Business Rules Journal Vol. 3, No. 2, Feb // http://www.brcommunity.com/a2002/b096.html
Swade D. Babbage, Charles / Oxford Dictionary of National Biography // https://doi.org/10.1093/ref:odnb/962
Henry F. H. I. (2019). Love, Sex, and the Noose: The Emotions of Sodomy in 18thCentury England / Electronic Thesis and Dissertation Repository, 6736 // https://ir.lib.uwo.ca/etd/6736
A Report of the Trial of the Reverend Thomas Jephson, for a Misdemeanor, at the Cambridge Summer Assizes, 1823, on Wednesday, July 23, Before Mr. Serjeant Bosanquet, and a Common Jury (1823) // https://books.google.ru/books?id=gZPfdOebxO0C
Simister L. (2015). Charles Babbage from the Beginning. Lulu.com // https://books.google.ru/books?id=YqJmCgAAQBAJ
Campbell-Kelly M., Aspray W., Ensmenger N., Yost J. R. (2013). Computer: A History of the Information Machine. Avalon Publishing // https://books.google.ru/books?id=0MZVDgAAQBAJ
Руденко Б. (2008). Бином Ньютона и треугольник Паскаля / Наука и жизнь. №4 // https://www.nkj.ru/archive/articles/13598/
Computing the Nautical Almanac, Called the "Seaman's Bible" / Jeremy Norman's HistoryOfInformation.com // http://www.historyofinformation.com/expanded.php?id=485
May W. E., Jones S. S. D., Howard J. L., Logsdon T. S., Anderson E. W., Richey M. W. Navigation | technology / Encyclopædia Britannica // https://www.britannica.com/technology/navigation-technology#ref363598
Higgitt R., Dunn R., Jones P. (2016). Navigational Enterprises in Europe and its Empires, 1730—1850. Palgrave Macmillan UK // https://books.google.ru/books?id=K8ObCwAAQBAJ
Parkinson B. W., Stansell T., Beard R., Gromov K. (1995). A History of Satellite Navigation / Navigation, Vol. 42, pp. 109–164 // https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2161-4296.1995.tb02333.x
Stephanie P. (2011). Into the breeches: A makeover for Longitude’s villain / New Scientist, Iss. 2814, published 28 May // https://www.newscientist.com/article/mg21028141-500-into-the-breeches-a-makeover-for-longitudes-villain/
Computing the Nautical Almanac, Called the "Seaman's Bible" / Jeremy Norman's HistoryOfInformation.com // http://www.historyofinformation.com/expanded.php?id=485
Dalakov G. The Differential Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/DifferentialEngine.html
Howe J. (April 1840). “Manufacture of Pins”. American Journal of Science and Arts. 38 (1): Appendix, p. 3 // https://archive.org/stream/mobot31753002152160#page/n225/mode/2up/search/howe
Campbell-Kelly M., Aspray W., Ensmenger N., Yost J. R. (2013). Computer: A History of the Information Machine. Avalon Publishing // https://books.google.ru/books?id=0MZVDgAAQBAJ
Babbage C., Morrision P., Morrison E. (2013). On the Principles and Development of the Calculator and Other Seminal Writings. Dover Publications // https://books.google.ru/books?id=FTXyAAAAQBAJ
Dalakov G. The Differential Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/DifferentialEngine.html
https://www.in2013dollars.com/1820-GBP-in-2023?amount=35000
Waller D. (2016). Iron Men: How One London Factory Powered the Industrial Revolution and Shaped the Modern World. Anthem Press // https://books.google.ru/books?id=zLs1DgAAQBAJ
Toole B. A. (1998). Ada, the Enchantress of Numbers. Mill Valley, California: Strawberry Press // https://archive.org/details/adaenchantressof00tool/page/38
Stein D. K. (1984). Lady Lovelace's Notes: Technical Text and Cultural Context / Victorian Studies, Vol. 28, No. 1 (Autumn, 1984), pp. 33–67 // https://www.jstor.org/stable/3826758
Campbell-Kelly M., Aspray W., Ensmenger N., Yost J. R. (2013). Computer: A History of the Information Machine. Avalon Publishing // https://books.google.ru/books?id=0MZVDgAAQBAJ
Hyman A. (1985). Charles Babbage: Pioneer of the Computer. Princeton University Press // https://books.google.ru/books?id=YCddaWqWK2cC
Babbage C., Morrision P., Morrison E. (2013). On the Principles and Development of the Calculator and Other Seminal Writings. Dover Publications // https://books.google.ru/books?id=FTXyAAAAQBAJ
Dalakov G. The differential engine of Pehr-Georg and Edvard Scheutz / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/NextDifferentialEngines/Scheutz.html
Watson I. (2012). The Universal Machine: From the Dawn of Computing to Digital Consciousness. Springer Berlin Heidelberg // https://books.google.ru/books?id=jlmVKZ1psCkC
* Некий студент написал в дипломной работе фразу: «По причине того, что досюда никто не дочитает, сердечник трансформатора рекомендуется сделать из дерева» (вариантов этой байки существует множество: «…выпиливаем турбину из цельного куска дерева, всё равно читать никто не будет» и т. п.).
Dalakov G. The differential engine of Pehr-Georg and Edvard Scheutz / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/NextDifferentialEngines/Scheutz.html
Collier B. (1991). Little Engines That Could'Ve: The Calculating Machines of Charles Babbage. Garland Publishing, Inc // http://robroy.dyndns.info/collier/
Giudice J. P. (2001). Complejidad y dimensiones en los estudios sobre Babbage: la máquina analítica. Un análisis del fracaso cultural del primer proyecto de calculadora digital programable secuencialmente / Argumentos de Razón Téchnica. No.4 (2001), pp. 13–56 // http://institucional.us.es/revistas/argumentos/4/art_1.pdf
Babbage C., Morrision P., Morrison E. (2013). On the Principles and Development of the Calculator and Other Seminal Writings. Dover Publications // https://books.google.ru/books?id=FTXyAAAAQBAJ
Dalakov G. The differential engine of Pehr-Georg and Edvard Scheutz / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/NextDifferentialEngines/Scheutz.html
Swade D. D. (2005). The Construction of Charles Babbage's Difference Engine No. 2 / IEEE Annals of the History of Computing, Vol. 27, pp. 70–78 // https://ieeexplore.ieee.org/document/1498720/
Babbage printer finally runs (2000) / BBC News // http://news.bbc.co.uk/2/hi/science/nature/710950.stm
Dalakov G. The Analytical Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/AnalyticalEngine.html
Collier B. (1991). Little Engines That Could'Ve: The Calculating Machines of Charles Babbage. Garland Publishing, Inc // http://robroy.dyndns.info/collier/
Bromley A. G. (1998). Charles Babbage's Analytical Engine, 1838. IEEE Ann. Hist. Comput., 20, 29–45 // http://athena.union.edu/~hemmendd/Courses/cs80/an-engine.pdf
Shuttleworth M. (2011). Heron's Inventions. / Explorable.com, Retrieved Sep 03, 2023 // https://explorable.com/heron-inventions
Rice W. G. (1915). Tower Music of Belgium and Holland / The Musical Quarterly, Vol. 1, pp. 198–215 // http://www.jstor.org/stable/737846
Fowler C. B. (1967). The Museum of Music: A History of Mechanical Instruments. Music Educators Journal, Vol. 54, Iss. 2, pp. 45–49 // https://doi.org/10.2307/3391092
Keranen R. (2016). Inventions in Computing: From the Abacus to Personal Computers. Cavendish Square Publishing // https://books.google.ru/books?id=BHdmDwAAQBAJ
Dalakov G. Basile Bouchon / History of Computers: hardware, software, internet… // http://history-computer.com/Dreamers/Bouchon.html
Broudy E. (1993). The Book of Looms: A History of the Handloom from Ancient Times to the Present. University Press of New England // https://books.google.ru/books?id=shN5_-W1RzcC
Dalakov G. Jacques de Vaucanson / History of Computers: hardware, software, internet… // http://history-computer.com/Dreamers/Vaucanson.html
Keranen R. (2016). Inventions in Computing: From the Abacus to Personal Computers. Cavendish Square Publishing // https://books.google.ru/books?id=BHdmDwAAQBAJ
Dalakov G. Joseph-Marie Jacquard / History of Computers: hardware, software, internet… // http://history-computer.com/Dreamers/Jacquard.html
Полетаев В. Н. Жаккарда машина / Большая советская энциклопедия. — М.: Советская энциклопедия, 1969–1978 // https://dic.academic.ru/dic.nsf/bse/86903/Жаккарда
http://www.historicalstatistics.org/Currencyconverter.html
Dalakov G. Joseph-Marie Jacquard / History of Computers: hardware, software, internet… // http://history-computer.com/Dreamers/Jacquard.html
Sterling B. (2017). Charles Babbage left a computer program in Turin in 1840. Here it is / Wired, 05.14.2017 // https://www.wired.com/beyond-the-beyond/2017/05/charles-babbage-left-computer-program-turin-1840/
Oliveira-Pinto F. (1991). On a Visit by Charles Babbage to Turin in 1840. UC Biblioteca Geral 1 // https://books.google.ru/books?id=h8z2RKVV1B0C
Sterling B. (2017). Charles Babbage left a computer program in Turin in 1840. Here it is / Wired, 05.14.2017 // https://www.wired.com/beyond-the-beyond/2017/05/charles-babbage-left-computer-program-turin-1840/
Babbage C. (1864). Passages from the Life of a Philosopher. Longman, Green, Longman, Roberts & Green // https://archive.org/details/passagesfromlif01babbgoog/page/n150
Menabrea L. F. (1842) Notions sur la machine analytique de M. Charles Babbage / Bibliothèque Universelle de Genève, Nouvelle série 41, pp. 352–376 // http://www.bibnum.education.fr/sites/default/files/babage-menabrea-texte-final.pdf
Menabrea L. F., Babbage C., Lovelace A. K. C., L A. A. (1843). Sketch of the Analytical Engine invented by Charles Babbage … with notes by the translator. Extracted from the 'Scientific Memoirs,' etc. [The translator's notes signed: A.L.L. ie. Augusta Ada King, Countess Lovelace.]. R. & J. E. Taylor // https://books.google.ru/books?id=hPRmnQEACAAJ
Wolfram S. (2015). Untangling the Tale of Ada Lovelace / Stephen Wolfram Writings // https://writings.stephenwolfram.com/2015/12/untangling-the-tale-of-ada-lovelace/
Chiaverini J. (2017). Enchantress of Numbers: A Novel of Ada Lovelace. Penguin Publishing Group // https://books.google.ru/books?id=r5BTDgAAQBAJ
Misa T. J. (2015). Charles Babbage, Ada Lovelace, and the Bernoulli Numbers / Hammerman R., Russell A. L. (2015). Ada's Legacy: Cultures of Computing from the Victorian to the Digital Age. Association for Computing Machinery and Morgan & Claypool // https://doi.org/10.1145/2809523.2809527
De Morgan S. E., De Morgan A. (2010). Memoir of Augustus De Morgan: With Selections from His Letters. Cambridge University Press // https://books.google.ru/books?id=QsaQb6r3dwMC
Bromley A. G. (1982). Charles Babbage's Analytical Engine, 1838 / IEEE Annals of the History of Computing, Vol. 4, Iss. 3, pp. 197–217 // https://doi.org/10.1109/mahc.1982.10028
Menabrea L. F., Babbage C., Lovelace A. K. C., L A. A. (1843). Sketch of the Analytical Engine invented by Charles Babbage … with notes by the translator. Extracted from the 'Scientific Memoirs,' etc. [The translator's notes signed: A.L.L. ie. Augusta Ada King, Countess Lovelace.]. R. & J. E. Taylor // https://books.google.ru/books?id=hPRmnQEACAAJ
Collier B., MacLachlan J. (2000). Charles Babbage: And the Engines of Perfection. Oxford University Press // https://books.google.ru/books?id=-vzMEwf-bHEC
Toole B. A. (2010). Ada, the Enchantress of Numbers: Poetical Science. Critical Connection // https://books.google.ru/books?id=eWBpjlLMdQ4C
Stein D. (1985), Ada: A Life and a Legacy, MIT Press Series in the History of Computing, Cambridge, MA: The MIT Press // https://monoskop.org/images/e/e7/Stein_Dorothy_Ada_A_Life_and_a_Legacy.pdf
Brunel I. (2011). The Life of Isambard Kingdom Brunel, Civil Engineer. Cambridge University Press // https://books.google.ru/books?id=7kbGklaeTQQC
Lienhard J. H. (2003). The Engines of Our Ingenuity: An Engineer Looks at Technology and Culture. OUP USA // https://books.google.ru/books?id=qJdXre60T0kC
Risk R. B. (1893). Observed and Noted. Examiner printing house // https://books.google.ru/books?id=-HIUAQAAMAAJ
Ahearn B. (2012). Tennyson and Babbage / Tennyson Research Bulletin, Vol. 10, No. 1 (November 2012), pp. 53–65 // http://www.jstor.org/stable/45288571
Tennyson A., Collins J. C. (1900). The early poems of Alfred, Lord Tennyson. Frowde // https://books.google.ru/books?id=cITRcQAACAAJ
Dalakov G. The Analytical Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/AnalyticalEngine.html
Henry Babbage's Analytical Engine Mill, 1910 // http://collection.sciencemuseum.org.uk/objects/co62246/henry-babbages-analytical-engine-mill-1910-analytical-engine-mills
Cohen I. B. (2000). Howard Aiken: Portrait of a Computer Pioneer. MIT Press // https://books.google.ru/books?id=Ld7TgLeQXs4C
Cohen I. B. (1988). Babbage and Aiken / IEEE Annals of the History of Computing, Vol. 10, pp. 171–193 // http://doi.ieeecomputersociety.org/10.1109/MAHC.1988.10029
Swade D. (2017). Spring 2017 report to the Computer Conservation Society / Plan 28 Blog // http://blog.plan28.org/2017/05/spring-2017-report-to-computer.html
Babbage Analytical Engine designs to be digitized / BBC News, 21 September 2011 // https://www.bbc.com/news/technology-15001514
Babbage’s last laugh / The Economist, 9 September 1999 // https://www.economist.com/science-and-technology/1999/09/09/babbages-last-laugh
Sheepshanks R. (1860). A letter to the Board of visitors of the Greenwich royal observatory in reply to the calumnies of Mr. Babbage at their meeting in June 1853, and in his book entitled The exposition of 1851. London, Printed by G. Barclay // https://archive.org/details/alettertoboardv00babbgoog/page/n101
Bromley A. G. (1982). Charles Babbage’s Analytical Engine, 1838 / Annals of the History of Computing, Vol. 4, Num. 3 // https://anthony-zhang.me/blog/rod-logic/an-engine.pdf
Bard A., Söderqvist J. (2012). The Futurica Trilogy. Stockholm Text // https://books.google.ru/books?id=l-WCBwAAQBAJ
Hacking I. (1982). Biopower and the avalanche of printed numbers / Humanities in Society // https://s3.amazonaws.com/arena-attachments/778687/622e0ba69d28d9ff4049b1bc81462079.pdf
Hacking I. (1990). The Taming of Chance. Cambridge University Press // https://books.google.ru/books?id=KffZAQAAQBAJ
* В период с 1784 по 1896 г. Колумбийским колледжем назывался будущий Колумбийский университет.
Dalakov G. Tabulating machine of Herman Hollerith / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Basis/TabulatingMachine_Hollerith.html
Muirhead J. F. (1963). John Shaw Billings. New England Journal of Medicine, Vol. 268, Iss. 14, pp. 778–779 // https://doi.org/10.1056/nejm196304042681409
Dalakov G. Tabulating machine of Herman Hollerith / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Basis/TabulatingMachine_Hollerith.html
Truesdell L. E. (1965). The development of punch card tabulation in the Bureau of the Census, 1890–1940: with outlines of actual tabulation programs. U. S. G.P.O // https://books.google.ru/books?id=MGZqAAAAMAAJ
Wright C. D. (1966). The history and growth of the United States census[1790–1890] prepared for the Senate Committee on the Census. U. S. Govt. Print. Off, Johnson Reprint Corp // http://hdl.handle.net/2027/mdp.39015007025003
* Ин-кварто (лат. in quarto «в четвёртую часть листа», «в четвёртку» от лат. quartus «четвёртый») — полиграфический термин, обозначающий размер страницы в одну четверть типографского листа. На одном листе при этом помещается 4 листа (8 страниц) книги. Размеры страницы составляют 241,5 × 305 мм.
Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. №2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf
Dalakov G. Tabulating machine of Herman Hollerith / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Basis/TabulatingMachine_Hollerith.html
Truesdell L. E. (1965). The development of punch card tabulation in the Bureau of the Census, 1890–1940: with outlines of actual tabulation programs. U. S. G.P.O // https://books.google.ru/books?id=MGZqAAAAMAAJ
Strickland J. (2014). Hollerith and the “Punched Photograph” / Computer History Museum: Volunteer Information Exchange, Vol. 4, Iss. 3, February 20 // https://s3.amazonaws.com/s3data.computerhistory.org/chmedu/VIE_04_003.pdf
Karsakof S. (1832). Apercu d`un procédé nouveau d`investigation au moyen de machines à comparer les idées. St. Petersbourg.
Корсаков С. Н. (2009). Начертание нового способа исследования при помощи машин, сравнивающих идеи / Пер. с франц., под ред. А. С. Михайлова. — М.: МИФИ // http://www.raai.org/library/books/korsakov/korsakov_book.pdf
Михайлов А. С. (2016). Усиление возможностей разума — изобретения С. Н. Корсакова / Искусственный интеллект и принятие решений. № 2. С. 5–15 // http://www.aidt.ru/images/documents/2016-02/5_15.pdf
Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf
Austrian G. D. (2016). Herman Hollerith: Forgotten Giant of Information Processing. BookBaby // https://books.google.ru/books?id=Kn1vjwEACAAJ
Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf
Cartmell D. (2012). A Companion to Literature, Film, and Adaptation. Wiley // https://books.google.ru/books?id=63y9jREP6QEC
Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf
Merriam W. R. (1903). The Evolution of American Census Taking / The Century illustrated monthly magazine, Vol. LXV, Apr. 1903 // https://babel.hathitrust.org/cgi/pt?id=mdp.39015016778998;view=1up;seq=836
Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf
Truesdell L. E. (1965). The development of punch card tabulation in the Bureau of the Census, 1890–1940: with outlines of actual tabulation programs. U. S. G.P.O // https://books.google.ru/books?id=MGZqAAAAMAAJ
Heide L. (2009). Punched-Card Systems and the Early Information Explosion, 1880–1945. Johns Hopkins University Press // https://books.google.ru/books?id=KVVIkZhuPnQC
Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf
Austrian G. D. (2016). Herman Hollerith: Forgotten Giant of Information Processing. BookBaby // https://books.google.ru/books?id=Kn1vjwEACAAJ
Dalakov G. Biography of Herman Hollerith / History of Computers: hardware, software, internet… // https://history-computer.com/People/HollerithBio.html
* Lieutenant Commander, соответствует званию капитана третьего ранга или армейского майора.
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
** Примерно 1280 м.
*** Примерно 7300 м.
**** Примерно 46,3 км/ч.
* Гиростат (gyrostat) — модифицированный вариант гироскопа. Гироскоп — используемый для автоматического регулирования устойчивости прибор с диском и свободной осью, всегда сохраняющей неизменное положение.
** Примерно 45 м.
*** Примерно 565 м.
**** Примерно 18 200 м.
Friedman N. (2013). Naval Firepower: Battleship Guns and Gunnery in the Dreadnought Era. Pen & Sword Books Limited // https://books.google.ru/books?id=h5m9AwAAQBAJ
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
Cockshott W. P., Cockshott P., Mackenzie L. M., Michaelson G. (2012). Computation and Its Limits. OUP Oxford // https://books.google.ru/books?id=U1Gcp1S__hEC
Sweetman J. (1997). The Great Admirals: Command at Sea, 1587–1945. Naval Institute Press // https://books.google.ru/books?id=_9Wi8IYe00wC
* Channel Fleet, старейший английский флот, чьей задачей являлась защита Британских островов со стороны Ла-Манша.
* Captain, соответствует званию капитана первого ранга или армейского полковника.
** Commander, соответствует званию капитана второго ранга, или армейского подполковника.
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
Stewart W. (2014). Admirals of the World: A Biographical Dictionary, 1500 to the Present. McFarland, Incorporated, Publishers // https://books.google.ru/books?id=S1VimlFIjQoC
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
* Примерно 13 700 м.
Sambrook S. C. (2015). The Optical Munitions Industry in Great Britain, 1888–1923. Taylor & Francis // https://books.google.ru/books?id=gJBECgAAQBAJ
Sumida J. T. (1989). In Defence of Naval Supremacy: Finance, Technology and British Naval Policy, 1889–1914. Unwin Hyman Limited // https://books.google.ru/books?id=_Z7fAAAAMAAJ
** «Арго» здесь — название новой компании Поллена, созданной им в 1909 г.
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
Sumida J. T. (1989). In Defence of Naval Supremacy: Finance, Technology and British Naval Policy, 1889–1914. Unwin Hyman Limited // https://books.google.ru/books?id=_Z7fAAAAMAAJ
Jellicoe N. (2016). Jutland: The Unfinished Battle: A Personal History of a Naval Controversy. Seaforth Publishing // https://books.google.ru/books?id=2oMmDQAAQBAJ
Brooks J. (2016). The Battle of Jutland. Cambridge University Press // https://books.google.ru/books?id=lu0IDAAAQBAJ
Pollen A. (1916). Naval events reviewed / Land & water, August 10 // https://archive.org/details/1916landawater200belluoft/page/152
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
Mindell D. A. (2002). Between Human and Machine: Feedback, Control, and Computing Before Cybernetics. Johns Hopkins University Press //https://archive.org/details/B-001-002-575/page/n39
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
Nathanial G. Ott (2010). Battlecruisers at Jutland: A Comparative Analysis of British and German Warship Design and its Impact on the Naval War. The Ohio State University // https://kb.osu.edu/bitstream/handle/1811/46765/Nathan_Ott_Thesis.pdf
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
Pollen A. (1980). The Great Gunnery Scandal: The Mystery of Jutland. Collins // https://books.google.ru/books?id=3yggAAAAMAAJ
Dreyer D. (1986). Early Developments in Naval Fire Control / The Naval Review, July 1986, pp. 238–241.
Jellicoe N. (2016). Jutland: The Unfinished Battle: A Personal History of a Naval Controversy. Seaforth Publishing // https://books.google.ru/books?id=2oMmDQAAQBAJ
Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ
* Гирокомпас — механический указатель направления истинного (географического) меридиана, предназначенный для определения курса объекта, а также азимута (пеленга) ориентируемого направления. Принцип действия гирокомпаса основан на использовании свойств гироскопа и суточного вращения Земли. Идея гирокомпаса была предложена французским учёным Жаном Фуко.
Clymer A. B. (1993). The mechanical analog computers of Hannibal Ford and William Newell. IEEE Annals of the History of Computing, Vol. 15, Iss. 2, pp. 19–34.
Gallagher S. (2020). Gears of war: When mechanical analog computers ruled the waves / Ars Technica // https://arstechnica.com/information-technology/2020/05/gears-of-war-when-mechanical-analog-computers-ruled-the-waves/
Gallagher S. (2020). Gears of war: When mechanical analog computers ruled the waves / Ars Technica // https://arstechnica.com/information-technology/2020/05/gears-of-war-when-mechanical-analog-computers-ruled-the-waves/
Фейнман Р. Ф. (2001). Вы, конечно, шутите, мистер Фейнман! / Пер. с англ. Н. А. Зубченко, О. Л. Тиходеевой, М. Шифмана. — М.: НИЦ «Регулярная и хаотическая динамика» // http://lib.ru/ANEKDOTY/FEINMAN/feinman.txt_with-big-pictures.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Dalakov G. Konrad Zuse / History of Computers: hardware, software, internet… // https://history-computer.com/People/ZuseBio.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Alex J. (1997). Wege und Irrwege des Konrad Zuse / Spektrum der Wissenschaft № 1 // https://www.spektrum.de/magazin/wege-und-irrwege-des-konrad-zuse/823599
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Rojas R. (2016). The Design Principles of Konrad Zuse's Mechanical Computers // https://arxiv.org/ftp/arxiv/papers/1603/1603.02396.pdf
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Zuse K. (1987). My First Computer and First Thoughts About Data Processing. Computer Design-Past, Present, Future, talk given by Prof. Konrad Zuse, in Lund / Sweden, Oct. 2; Lee J. A. N. (1995). Computer Pioneers // https://history.computer.org/pioneers/zuse.html
Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Alex J. (1997). Wege und Irrwege des Konrad Zuse / Spektrum der Wissenschaft № 1 // https://www.spektrum.de/magazin/wege-und-irrwege-des-konrad-zuse/823599
Zuse K. (1969). Rechnender Raum. Braunschweig: Friedrich Vieweg & Sohn.
Zuse K. (1970). Calculating Space (Rechnender Raum). MIT Technical Translation AZT-70-164-GEMIT, Massachusetts Institute of Technology (Project MAC), Cambridge, Mass. 02139. Adrian German and Hector Zenil (eds) re-edition in LaTeX with permission of MIT and Zuse's family, 2012 // http://www.mathrix.org/zenil/ZuseCalculatingSpace-GermanZenil.pdf
Peters A. (2000). Was ist und wie verwirklicht sich Computer-Sozialismus: Gespräche mit Konrad Zuse. Verlag Neues Leben, Berlin.
Dalakov G. The MARK computers of Howard Aiken / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Aiken.html
Chase G. C. (1980). History of Mechanical Computing Machinery (with foreword by I. Bernard Cohen) / Annals of the History of Computing, Vol. 2, pp. 198–226 // http://www.rechenmaschinen-illustrated.com/pdf/chase.pdf
Aiken H. (1989). Perspectives on the Computer Revolution. Ablex Publishing Corp // https://history-computer.com/Library/AikenProposal.pdf
Dalakov G. The MARK computers of Howard Aiken / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Aiken.html
Edison to Puskas, 13 ноября 1878, Edison papers, Edison National Laboratory, U. S. National Park Service, West Orange, N. J., цит. по: Forsyth M. (2011). The Etymologicon: A Circular Stroll through the Hidden Connections of the English Language. Icon Books Limited.
Dalakov G. The MARK computers of Howard Aiken / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Aiken.html
Wilkes M. V. (1956). Automatic Digital Computers. New York: John Wiley & Sons. pp. 16–20 // https://books.google.ru/books?id=n_oNAAAAQAAJ
Cohen I. B., Welch G. W., Campbell R. V. D. (1999). Makin' Numbers: Howard Aiken and the Computer. MIT Press // https://books.google.ru/books?id=lVfX5wMkI7oC
https://www.reddit.com/r/AskScienceDiscussion/comments/49ut8e/ive_seen_a_whole_bunch_of_things_nominated_for/
Ceruzzi P. E. (1991). When Computers Were Human / IEEE Annals of the History of Computing, Vol. 13, Iss. 3 // https://ieeexplore.ieee.org/document/4638252
Wikipedia contributors. (2019, March 26). Church–Turing thesis. In Wikipedia, The Free Encyclopedia. Retrieved 03:00, March 28, 2019, from https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
Herbrand J., van Heijenoort J., Goldfarb W. D. (2012). Logical Writings. Springer Netherlands // https://books.google.ru/books?id=zOXqCAAAQBAJ
Kreisel G. (1980). Kurt Godel. 28 April 1906 — 14 January 1978 / Biographical Memoirs of Fellows of the Royal Society, Vol. 26, pp. 148–224 // https://doi.org/10.1098/rsbm.1980.0005
Dawson J. (2005). Logical Dilemmas: The Life and Work of Kurt Gödel. Taylor & Francis // https://books.google.ru/books?id=gA8SucCU1AYC
Goldstein R. (2006). Incompleteness: The Proof and Paradox of Kurt Gödel (Great Discoveries). W. W. Norton // https://books.google.ru/books?id=tXk2AAAAQBAJ
Wang H. (1997). A Logical Journey: From Gödel to Philosophy. MIT Press // https://books.google.ru/books?id=pckvCy6L_ocC
Dawson J. (2005). Logical Dilemmas: The Life and Work of Kurt Gödel. Taylor & Francis // https://books.google.ru/books?id=gA8SucCU1AYC
Wang H. (1997). A Logical Journey: From Gödel to Philosophy. MIT Press // https://books.google.ru/books?id=pckvCy6L_ocC
Feferman S. (1998). In the Light of Logic // https://books.google.ru/books?id=AadVrcnschMC
Dawson J. (2005). Logical Dilemmas: The Life and Work of Kurt Gödel. Taylor & Francis // https://books.google.ru/books?id=gA8SucCU1AYC
Dawson J. (2005). Logical Dilemmas: The Life and Work of Kurt Gödel. Taylor & Francis // https://books.google.ru/books?id=gA8SucCU1AYC
Morgan D. F. (2008). Descendants of Sir John Turing and Henry Turing // https://www.mit.edu/~dfm/genealogy/turing.html
M'Kenzie H. (1850). The lay of the Turings: (A.D. 1316-1849.) A sketch of the family history, feebly conceived and imperfectly executed: now dedicated to the Chief with the sincerest respect and affection, by H. M'K // https://deriv.nls.uk/dcn23/9549/95491600.23.pdf
Тюрин Е. А. (2012). Сквозь пространство и время (к столетию Алана Тюринга) / Вестник государственного и муниципального управления. № 2 // https://cyberleninka.ru/article/n/skvoz-prostranstvo-i-vremya
Turing S. (2012). Alan M. Turing: Centenary Edition. Cambridge University Press // https://books.google.ru/books?id=07_ckaHY-2QC
Тюрин Е. А. (2012). Сквозь пространство и время (к столетию Алана Тюринга) / Вестник государственного и муниципального управления. № 2 // https://cyberleninka.ru/article/n/skvoz-prostranstvo-i-vremya
Hedron N. (2012). A Valentine Memoriam: Alan Turing + Christopher Morcom / The Turing Centenary (+ Bicentennial), February 13, 2012 // https://theturingcentenary.wordpress.com/2012/02/13/a-valentine-memoriam-alan-turing-christopher-morcom/
Тюрин Е. А. (2012). Сквозь пространство и время (к столетию Алана Тюринга) / Вестник государственного и муниципального управления. № 2 // https://cyberleninka.ru/article/n/skvoz-prostranstvo-i-vremya
Turing A. M. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1), pp. 230–265 // https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
Кокшотт У. П., Микаэльсон Г., Коттрел А. (2017). Бёттке, синтаксис и тест Тьюринга / Пер. с англ. Горлова А.В., Маркова С.С // https://22century.ru/popular-science-publications/boettke-syntax-and-the-turing-test
Rojas R. (1996). Konrad Zuse's Legacy: The Architecture of the Z1 and Z3 / IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997 // http://page.mi.fu-berlin.de/rojas/1996/Konrad_Zuses_Legacy.pdf
Профессор Рауль Рохас, персональные коммуникации.
Bloch R. (1984-02-22). Oral history interview with Richard M. Bloch // https://conservancy.umn.edu/bitstream/handle/11299/107123/oh066rb.pdf
Dalakov G. The ENIAC of John Mauchly and John Eckert / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/ENIAC.html
Sendov B. (2001). John Atanasoff. The Man Who Invented the Computer // https://web.archive.org/web/20180306172639/http://www.johnatanasoff.com:80/pride_in_Bulgaria.php
Атанасов Дж. (1985). До моята бащина земя // https://webstage.bg/istoriya/4187-do-moyata-bashtina-zemya-dzhon-atanasov.html
https://www.census.gov/prod/cen2010/cph-1-11.pdf
Taylor J. M. (1882). A College Algebra. Boston. Allyn and Bacon // https://books.google.ru/books?id=0wg_AQAAMAAJ
Mollenhoff C. R. (1988). Atanasoff: Forgotten Father of the Computer. Iowa State University Press // https://books.google.ru/books?id=n5omAAAAMAAJ
Howarth R. J. (2017). Dictionary of Mathematical Geosciences: With Historical Notes. Springer International Publishing // https://books.google.ru/books?id=MNwlDwAAQBAJ
Mobley B. P. (2001). The ingenuity of common workmen: and the invention of the computer. Retrospective Theses and Dissertations. 660. Iowa State University // https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1659&context=rtd
Соловьёва О. (2000). Водяные вычислительные машины / Наука и жизнь. № 4 // https://www.nkj.ru/archive/articles/7033/
Smiley J. (2010). The Man Who Invented the Computer. Knopf Doubleday Publishing Group // https://books.google.ru/books?id=3ImIFEZrDjYC
Burton T. (2006). World Changer: Atanasoff and the Computer. Tangra TanNakRa // https://books.google.ru/books?id=1YMfAQAAIAAJ
* Тиратрон — ионный (газоразрядный) прибор для управления электрическим током с помощью напряжений, поданных на его электроды.
Burks A. R., Burks A. W. (1989). The First Electronic Computer: The Atanasoff Story. University of Michigan Press // https://books.google.ru/books?id=_Zja6hoP4psC
da Cruz F. Programming the ENIAC / Columbia University Computing History: A Chronology of Computing at Columbia University // http://www.columbia.edu/cu/computinghistory/eniac.html
Dalakov G. The ABC of John Atanasoff and Clifford Berry / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Atanasoff.html
Alt F. L. (1972). Archaelogy of computers: reminiscences, 1945–1947 / Communications of the ACM, Vol. 15, Iss. 7, pp. 693–694 // https://doi.org/10.1145/361454.361528
Grier D. (2004). From the Editor's Desk / IEEE Annals of the History of Computing, Vol. 26, Iss. 3, pp. 2–3 // https://doi.org/10.1109/MAHC.2004.9
Alt F. L. (1972). Archaelogy of computers: reminiscences, 1945–1947 / Communications of the ACM, Vol. 15, Iss. 7, pp. 693–694 // https://doi.org/10.1145/361454.361528
Fritz W. B. (1996). The Women of ENIAC / IEEE Annals of the History of Computing, Vol. 18, Iss. 3, pp. 13–28 // https://doi.org/10.1109/85.511940
Randall 5th, Alexander (2006-02-14). "A lost interview with ENIAC co-inventor J. Presper Eckert". Computer World // https://www.computerworld.com/article/2561813/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html
Igarashi Y., Altman T., Funada M., Kamiyama B. (2014). Computing: A Historical and Technical Perspective. Taylor & Francis // https://books.google.ru/books?id=58ySAwAAQBAJ
Rejewski M. (1981). How Polish Mathematicians Deciphered the Enigma / IEEE Annals of the History of Computing. Vol. 3. No. 3, July // http://chc60.fgcu.edu/images/articles/rejewski.pdf
Singh S. (2000). The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography. Anchor Books // https://books.google.ru/books?id=skt7TrLK5uYC
Rejewski M. (1981). How Polish Mathematicians Deciphered the Enigma / IEEE Annals of the History of Computing. Vol. 3. Iss. 3 // http://chc60.fgcu.edu/images/articles/rejewski.pdf
Stengers J. (2004). Enigma, the French, the Poles and the British 1931–1940. Revue belge de Philologie et d'Histoire, 82-1-2 // https://www.persee.fr/doc/rbph_0035-0818_2004_num_82_1_4836
Hinsley F. H. (1996). The Influence of ULTRA in the Second World War // https://web.archive.org/web/20120417052645/http://www.cl.cam.ac.uk/research/security/Historical/hinsley.html
Cawthorne N. (2014). Alan Turing: The Enigma Man. Arcturus Publishing // https://books.google.ru/books?id=6qmJBAAAQBAJ
Budiansky S. (2000). Battle of Wits: The Complete Story of Codebreaking in World War II. Free Press // https://books.google.ru/books?id=uccLlgJDk4gC
Toms S. (2005). Enigma and the Eastcote connection // https://web.archive.org/web/20081204105055/http://www.ruislip.co.uk/eastcotemod/enigma.htm
Alexander C. H. O'D. (c. 1945). Cryptographic History of Work on the German Naval Enigma / The National Archives, Kew, Reference HW 25/1 // http://www.ellsbury.com/gne/gne-000.htm
Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html
Hinsley F. H., Stripp A. (2001). Codebreakers: The Inside Story of Bletchley Park. Oxford University Press // https://books.google.ru/books?id=j1MC2d2LPAcC
Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html
Copeland B. J. (2010). Colossus: The Secrets of Bletchley Park’s Code-breaking Computers. OUP Oxford // https://books.google.ru/books?id=M2sVDAAAQBAJ
Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html
Copeland B. J. (2010). Colossus: The Secrets of Bletchley Park’s Codebreaking Computers. OUP Oxford // https://books.google.ru/books?id=M2sVDAAAQBAJ
Neumann C. E. (2004). The Labouchère Amendment (1885–1967) // http://www.glbtqarchive.com/ssh/labouchere_amendment_S.pdf
Hodges A. (2014). Alan Turing: The Enigma: The Book That Inspired the Film The Imitation Game — Updated Edition. Princeton University Press // https://books.google.ru/books?id=QnUPBAAAQBAJ
Leavitt D. (2015). The Man Who Knew Too Much: Alan Turing and the Invention of the Computer. Hachette UK // https://books.google.ru/books?id=OPVGBQAAQBAJ
Hodges A. (2014). Alan Turing: The Enigma: The Book That Inspired the Film The Imitation Game — Updated Edition. Princeton University Press // https://books.google.ru/books?id=QnUPBAAAQBAJ
Garner A. (2011). My hero: Alan Turing, by Alan Garner / The Guardian, 11 Nov // https://www.theguardian.com/books/2011/nov/11/alan-turing-my-hero-alan-garner
Leavitt D. (2015). The Man Who Knew Too Much: Alan Turing and the Invention of the Computer. Hachette UK // https://books.google.ru/books?id=OPVGBQAAQBAJ
* * Гинекомастия — увеличение размера грудных желёз у лиц мужского пола.
Cohn J. (2019). The Burden of Choice: Recommendations, Subversion, and Algorithmic Culture. Rutgers University Press // https://books.google.ru/books?id=DAC-DwAAQBAJ
Hailperin M., Kaiser B., Knight K. (1999). Concrete Abstractions: An Introduction to Computer Science Using Scheme // https://books.google.ru/books?id=yYyVRueWlZ8C
Copeland B. J. (2012). Turing suicide verdict in doubt// https://web.archive.org/web/20120629090527/http://fds.oup.com/www.oup.co.uk/pdf/general/popularscience/jackcopelandjune
Hodges A. (2014). Alan Turing: The Enigma: The Book That Inspired the Film The Imitation Game — Updated Edition. Princeton University Press // https://books.google.ru/books?id=QnUPBAAAQBAJ
Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html
Honour for Colossus code-cracker (2008) / BBC News // http://news.bbc.co.uk/2/hi/technology/7213215.stm
Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html
Башир Рамеев: отец советских компьютеров, внук Дэрдменда и друг Ботвинника / БИЗНЕС Online, 16.12.2018 // https://www.business-gazeta.ru/article/406454
История, которую стоит переписать: где на самом деле сделали первый советский компьютер / Индикатор: интернет-издание // https://indicator.ru/article/2018/04/17/pervyj-sovetskij-kompyuter/
Малиновский Б. Н. (2012) Первая отечественная ЭВМ и её создатели (к 40-летию ввода МЭСМ в регулярную эксплуатацию) / Кибертония. № 1 // http://www.computer-museum.ru/books/lebedev_kibertonia.pdf
Сергей Алексеевич Лебедев. К 100-летию со дня рождения основоположника отечественной электронной вычислительной техники / Отв. ред. В. С. Бурцев. Составители Ю. Н. Никольская, А. Н. Томилин, Ю. В. Никитин, Н. С. Лебедева. — М.: ФИЗМАТЛИТ, 2002 // http://padaread.com/?book=39476
История, которую стоит переписать: где на самом деле сделали первый советский компьютер / Индикатор: интернет-издание // https://indicator.ru/article/2018/04/17/pervyj-sovetskij-kompyuter/
Рогачёв Ю. В. (2008). АЦВМ М-1 / Виртуальный компьютерный музей // http://www.computer-museum.ru/histussr/m1_2.htm
* Впрочем, считать M-1 в полной мере полупроводниковой ЭВМ неправильно, поскольку в её схеме было также задействовано 730 электровакуумных ламп.
История, которую стоит переписать: где на самом деле сделали первый советский компьютер / Индикатор: интернет-издание // https://indicator.ru/article/2018/04/17/pervyj-sovetskij-kompyuter/
Дмитриева И. (2002). Эскиз к портрету на фоне ЭВМ. К 100-летию И. С. Брука / itWeek №42 (360) // https://www.itweek.ru/themes/detail.php?ID=63019
Коган Б. Я., Казьмин А. И., Назарова В. П., Спиро А. Г. (1967). Гибридные вычислительные системы и основные области их применения. Итоги науки. Теория вероятностей, Математическая статистика, Теория кибернетики. М.: ВИНИТИ // http://mi.mathnet.ru/intv9
Федотов А. М. (2013). Компьютер аналоговый / Словарь терминов в коллекции «Современные проблемы информатики» & «Вычислительные системы». Новосибирский государственный университет // http://www.nsc.ru/win/elbib/data/show_page.dhtml?77+87
Брусенцов Н. П. (2008). Из истории создания троичных цифровых машин в МГУ / Виртуальный компьютерный музей // http://www.computer-museum.ru/histussr/setun_hist.htm
Of ozone and fruit flies. A german, a dutchman and seven americans win the science prizes (1995) / Time, Oct. 23, 1995 // http://content.time.com/time/subscriber/article/0,33009,983602-1,00.html
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Пчела / Подготовка текста, перевод и комментарии В. В. Колесова. Текст приводится по новгородской рукописи XIV в. РНБ, F.п.I.44, в издании: Семенов В. Древнерусская «Пчела» по пергаменному списку. СП6., 1893, стр. 1–444 / Электронные публикации Института русской литературы (Пушкинского Дома) РАН // http://lib2.pushkinskijdom.ru/tabid-4968
* Пер. И. Бродского.
Яглом И. М. (1971). Две игры со спичками / Квант. № 2 // http://kvant.mccme.ru/1971/02/dve_igry_so_spichkami.htm
Jorgensen A. H. (2009). Context and driving forces in the development of the early computer game Nimbi / IEEE Annals of the History of Computing, Vol. 31, Iss. 3, pp. 44–53 // https://doi.org/10.1109/MAHC.2009.41
Bouton C. L. (1901–1902). Nim, A Game with a Complete Mathematical Theory / The Annals of Mathematics, 2nd Ser., Vol. 3, No. 1/4. (1901–1902), pp. 35–39 // https://paradise.caltech.edu/ist4/lectures/Bouton1901.pdf
Dalakov G. The Nimatron of Edward Condon / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Condon.html
Weiner C. (1968). Edward Condon – Session II. Oral History Interviews. Interviews that offer unique insights into the lives, works, and personalities of modern scientists / American Institute of Physics // https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4997-2
См. патент «Machine to play game of nim». 1940-09-24 (https://patents.google.com/patent/US2215544).
Dreher T. (2015). History of Computer Art // http://iasl.uni-muenchen.de/links/GCA.pdf
Flesch R. (1951). The Art of Clear Thinking. — 1. — New York, USA: Harper & Brothers Publishers // https://dc135.files.wordpress.com/2012/11/flesch-the-art-of-clear-thinking.pdf
Rougetet L. (2016). Machines designed to play Nim games. Teaching supports for mathematics, algorithmics and computer science (1940–1970) // https://hal.archives-ouvertes.fr/hal-01349260/document
Dalakov G. The Nimatron of Edward Condon / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Condon.html
Rougetet L. (2016). Machines designed to play Nim games. Teaching supports for mathematics, algorithmics and computer science (1940–1970) // https://hal.archives-ouvertes.fr/hal-01349260/document
Dalakov G. The Nimatron of Edward Condon / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Condon.html
Redheffer R. (1948). A Machine for Playing the Game Nim / The American Mathematical Monthly, Vol. 55, Iss. 6, pp. 343–349 // https://doi.org/10.1080/00029890.1948.11999249
Rougetet L. (2016). Machines designed to play Nim games. Teaching supports for mathematics, algorithmics and computer science (1940–1970) // https://hal.archives-ouvertes.fr/hal-01349260/document
Moynihan D. P. (1998). Secrecy: The American Experience. Yale University Press // https://books.google.ru/books?id=FWq-5a5tqH0C
Sagan C. (1996). The Demon-Haunted World: Science as a Candle in the Dark. New York: Ballantine Books // https://books.google.ru/books?id=Yz8Y6KfXf9UC
Wheeler J. A. (1998). Geons, Black Holes, and Quantum Foam: A Life in Physics. New York: W. W. Norton // https://books.google.ru/books?id=zGFkK2tTXPsC
Sturrock P. A. (1987). An Analysis of the Condon Report on the Colorado UFO Project / Journal of Scientific Exploration // https://web.archive.org/web/20120717083947/http://www.ufoskeptic.org/sturrock/1.html
Carlisle R. P. (2009). Encyclopedia of Play in Today’s Society. SAGE Publications // https://books.google.ru/books?id=jLqXM3U_pzEC
Applebaum B., DiSorbo D., Ferrari M. (2016). Recess: From Dodgeball to Double Dutch: Classic Games for Players of Today. Chronicle Books LLC // https://books.google.ru/books?id=SzQBCwAAQBAJ
Wikipedia contributors. (2019, April 15). Tic-tac-toe. In Wikipedia, The Free Encyclopedia. Retrieved 04:41, April 15, 2019, from https://en.wikipedia.org/wiki/Tic-tac-toe
Parker M. (1995). She Does Math!: Real-life Problems from Women on the Job. Mathematical Association of America // https://books.google.ru/books?id=N4nmGjq5dWsC
Zaslavsky C. (1998). Math Games and Activities from Around the World. Chicago Review Press, Incorporated // https://books.google.ru/books?id=38o9k9YeOvwC
Parker H. (1909). Ancient Ceylon: An Account of the Aborigines and of Part of the Early Civilisation. Luzac and Co, Publishes to the India office // https://archive.org/details/in.ernet.dli.2015.69695/page/n633
Murray H. J. R. (1952). A history of board-games other than chess. Clarendon Press // https://books.google.ru/books?id=P2UNAQAAMAAJ
Bell R. C. (1969). Board and Table Games From Many Civilizations. Vol. I. 2nd ed. London, New York[etc.] Oxford U.P // https://archive.org/details/B-001-002-771/page/n127
Berger F. (2004). From circle and square to the image of the world: a possible interpretation for some petroglyphs of merels boards / Rock Art Research, Vol. 21, Iss. 1, pp. 11–25 // https://web.archive.org/web/20041121040028/http://mc2.vicnet.net.au/home/aura/shared_files/Berger1.pdf
Uberti M. (2012). The Merels Board Enigma. With the worldwide census. Marisa Uberti.
Berger F. (2004). From circle and square to the image of the world: a possible interpretation for some petroglyphs of merels boards / Rock Art Research, Vol. 21, Iss. 1, pp. 11–25 // https://web.archive.org/web/20041121040028/http://mc2.vicnet.net.au/home/aura/shared_files/Berger1.pdf
Berlekamp E. R., Conway J. H., Guy R. K. (1983). Winning ways for your mathematical plays: Games in particular. Acad. Pr // https://books.google.ru/books?id=1PfuAAAAMAAJ
Lanciani R. (1892). Gambling and Cheating in Ancient Rome / The North American Review, Volume 155 // https://archive.org/details/jstor-25102412/page/n1
Heimann F., Schädler U. (2014). The loop within circular three men’s morris / Game Studies, Vol. 8, pp. 51–61 // https://www.researchgate.net/publication/312118169_The_loop_within_circular_three_men's_morris
Murray H. J. R. (2015). A History of Chess. Skyhorse Publishing // https://books.google.ru/books?id=dNSBCgAAQBAJ
Bell R. C. (2012). Board and Table Games from Many Civilizations. Dover Publications // https://books.google.ru/books?id=2vvBAgAAQBAJ
* Пер. Татьяны Стамовой.
Стамова Т., Халтрин-Халтурина Е. (2011). Уильям Вордсворт. Прелюдия, или Становление сознания поэта. Фрагменты поэмы / Перевод Татьяны Стамовой. Вступление Елены Халтрин-Халтуриной / Иностранная литература. № 3 // http://magazines.russ.ru/inostran/2011/3/vo9.html
Notes and Queries, 2nd Series Volume VI 152, Nov. 27 1858 // https://archive.org/details/notesqueries2621unse/page/434
Wikipedia contributors. (2020, November 6). Tic-tac-toe. In Wikipedia, The Free Encyclopedia. Retrieved 02:40, November 12, 2020, from https://en.wikipedia.org/wiki/Tic-tac-toe
Monnens D. (2013). “I commenced an examination of a game called 'tit-tat-to'”: Charles Babbage and the “First” Computer Game / DiGRA Conference 2013 // http://www.digra.org/wp-content/uploads/digital-library/paper_436.pdf
Bateman C. (2014). Meet Bertie the Brain, the world’s first arcade game, built in Toronto / Spacing Toronto, August 13 // http://spacing.ca/toronto/2014/08/13/meet-bertie-brain-worlds-first-arcade-game-built-toronto/
Wolf M. J. P. (2012). Encyclopedia of Video Games: The Culture, Technology, and Art of Gaming. Greenwood Publishing Group // https://books.google.ru/books?id=deBFx7QAwsQC
Michie D. (1963). Experiments on the mechanization of game-learning // http://people.csail.mit.edu/brooks/idocs/matchbox.pdf
Brooks R. (2019). Interesting Stuff for Download / Rodney Brooks — Roboticist // http://people.csail.mit.edu/brooks/documents.html
* Пер. В. Филиппова.
Schwalbe U., Walker P. (1997, 1999). Zermelo and the Early History of Game Theory // http://abel.math.harvard.edu/~elkies/FS23j.03/zermelo.pdf
Aumann R. J. (1989). Game Theory / Eatwell J., Milgate M., Newman P. (1989). The New Palgrave: Game Theory, Macmillan Press, London.
Eichberger J. (1993). Game Theory for Economists, Academic Press, San Diego.
Hart S. (1992). Games in Extensive and Strategic Forms, in Robert J. Aumann and Sergiu Hart (eds.), Handbook of Game Theory, Volume 1, NorthHolland, Amsterdam.
Mas-Colell A., Whinston M. D., Green J. R. (1995). Microeconomic Theory, Oxford University Press, New York.
Dimand M. A., Dimand R. W. (1996). A History of Game Theory, Volume 1: From the Beginnings to 1945, Routledge, London.
Binmore K. (1992). Fun and Games: A Text on Game Theory, D. C. Heath and Company, Lexington
Zermelo E. (1913). Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels / Proceedings of the Fifth Congress Mathematicians (Cambridge 1912), pp. 501–504 // https://doi.org/10.1007/978-3-540-79384-7_9
Kőnig D. (1927). Uber eine Schlussweise aus dem Endlichen ins Unendliche / Acta Scientiarum Mathematicarum, Vol. 3, pp. 121–130.
Kalmár L. (1928, 1929), Zur Theorie der abstrakten Spiele / Acta Scientiarum Mathematicarum, Vol. 4, pp. 65–85.
Dimand M. A., Dimand R. W. (1997). The Foundations of Game Theory, Volume I. Edward Elgar, Aldershot.
Schwalbe U., Walker P. (1997, 1999). Zermelo and the Early History of Game Theory // http://abel.math.harvard.edu/~elkies/FS23j.03/zermelo.pdf
Godden K. (2007). The Longest Possible Chess Game / Blog at Chess.com // https://www.chess.com/blog/kurtgodden/the-longest-possible-chess-game
von Neumann J., Morgenstern O. (1944). Theory of Games and Economic Behavior. Science Editions, J. Wiley // https://archive.org/details/game_theo_econ/page/n139
Israel G., Gasca A. M. (2009). The World as a Mathematical Game: John von Neumann and Twentieth Century Science. Birkhäuser Basel // https://books.google.at/books?id=6o52lsjG83UC
* Маргиттаи означает «из Маргиты», а окончание –i — типичное окончание, используемое при образовании венгерских дворянских имён от названия местности; но семья Неймана не имела никакого отношения к городу Маргита, фамилию старший Нейман, по всей видимости, избрал по имени жены, а на выбранном гербе были изображены три маргаритки на зелёном поле.
Leonard R. (2010). Von Neumann, Morgenstern, and the Creation of Game Theory: From Chess to Social Science, 1900–1960. Cambridge University Press // https://books.google.ru/books?id=uV6sAwAAQBAJ
Aspray W. (1990). John Von Neumann and the Origins of Modern Computing. MIT Press // https://books.google.ru/books?id=M6DmngEACAAJ
Macrae N. (1992). John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence, and Much More. Pantheon Press // https://books.google.ru/books?id=ratFAAAAYAAJ
Brown T. A. (1941). Elementary Inequalities. The Mathematical Gazette, Vol. 25, Iss. 263, pp. 2–11 // https://doi.org/10.2307/3606471
Bellman R. (1954). Inequalities / Mathematics Magazine, Vol. 28, Iss. 1, pp. 21–26 // https://doi.org/10.2307/3029433
Stiller L. B. (1995). Exploiting symmetry on parallel architectures. Ph. D. Thesis, Johns Hopkins University. Archived from the original on 30 September 2007. Retrieved 4 May 2007 // https://web.archive.org/web/20070930063855/http://users.rcn.com/lstiller/thesis.pdf
Bellman R. E. (1961). On the reduction of dimensionality for classes of dynamic programming processes. Technical report, The RAND Corporation, Santa Monica, CA, 7 March 1961 // https://www.rand.org/pubs/papers/P2243.html
Bellman R. E. (1965). On the application of dynamic programming to the determination of optimal play in chess and checkers. Proceedings of the National Academy of Sciences of the United States of America, 53(2):244–246, February // https://www.ncbi.nlm.nih.gov/pmc/articles/PMC219499/pdf/pnas00154-0020.pdf
Гик Е. Я. (1976). Математика на шахматной доске. — М.: Наука // https://books.google.ru/books?id=bPQPAQAAIAAJ
Брудно А., Ландау И. (1969). Неприкасаемый король // Шахматы. № 19.
Ströhlein T. (1970). Untersuchungen über kombinatorische Spiele. Technische Hochschule München // https://books.google.ru/books?id=VowgHAAACAAJ
Ströhlein T., Zagler L. (1977). Analyzing games by Boolean matrix iteration / Discrete Mathematics, Vol. 19, Iss. 2, pp. 183–193 // https://doi.org/10.1016/0012-365X(77)90033-4
Stiller L. B. (1995). Exploiting symmetry on parallel architectures. Ph. D. Thesis, Johns Hopkins University. Archived from the original on 30 September 2007. Retrieved 4 May 2007 // https://web.archive.org/web/20070930063855/http://users.rcn.com/lstiller/thesis.pdf
Комиссарчик Е. А., Футер А. Л. (1974). Об анализе ферзевого эндшпиля при помощи ЭВМ // Проблемы кибернетики. № 29.
Футер А. Л. (1978). Программирование малофигурных эндшпилей: Докл. АН СССР, 242:2 (1978). С. 302–305 // http://mi.mathnet.ru/dan41980
Александров А. Г., Бараев А. М., Гольфанд Я. Ю., Комиссарчик Э. А., Футер А. Л. (1977). Анализ ладейного эндшпиля на ЭВМ / Автоматика и телемеханика. № 8. С. 113–117 // http://mi.mathnet.ru/at7425
Levy D. (2007). Love and Sex with Robots: The Evolution of Human-Robot Relationships. HarperCollins // https://books.google.ru/books?id=PJ4sAAAAYAAJ
https://www.in2013dollars.com/uk/inflation/1968?endYear=2023&amount=500
Baraniuk C. (2015). BBC – Future – The cyborg chess players that can’t be beaten, December 04 // http://www.bbc.com/future/story/20151201-the-cyborg-chess-players-that-cant-be-beaten
Douglas J. R. (1978). Chess 4.7 versus David Levy / BYTE. p. 84. Retrieved 17 October 2013 // https://archive.org/stream/byte-magazine-1978-12/1978_12_BYTE_03-12_Life#page/n85/mode/2up
Levy D. N. L., Newborn M. (1980). More chess and computers: the microcomputer revolution, the challenge match. Computer Science Press // https://books.google.ru/books?id=uDtQAQAAIAAJ
Levy D. (1984). Chess Master versus Computer // ICCA Journal, Vol. 7, No. 2.
Levy D. (2013). Computer Chess Compendium. Springer New York // https://books.google.ru/books?id=vwbkBwAAQBAJ
Levy D., Newborn M. (2012). All About Chess and Computers: Chess and Computers and More Chess and Computers. Springer Science & Business Media // https://books.google.ru/books?id=Ao6qCAAAQBAJ
Mashey J. (2005). Oral History of Ken Thompson // http://archive.computerhistory.org/resources/text/Oral_History/Thompson_Ken/thompson.oral_history_transcript.2005.102657921.pdf
* В английском языке тут присутствует дополнительная игра слов: earful of beer означает «пивная взбучка», а созвучное ему ear full of beer — «полное ухо пива».
Bourzutschky M., Kryukov K. (2022). All about chess endgames study // https://www.arves.org/arves/index.php/en/endgamestudies/theory/endgame-tablebases-check-a-7-men-position?id=1509
Bourzutschky M., Kryukov K. (2022). All about chess endgames study // https://www.arves.org/arves/index.php/en/endgamestudies/theory/endgame-tablebases-check-a-7-men-position?id=1533
Hicks J. (1966). Close-up / Piet Hein bestrides art and science / LIFE, Oct. 14 // https://books.google.ru/books?id=lFYEAAAAMBAJ&pg=PA64
Варденга Г. Л. (1997). П. Хэйн. Груки / Вопросы истории естествознания и техники. № 3 // http://vivovoco.ibmh.msk.su/VV/PAPERS/BONMOTS/GROOKS/HEIN.HTM
Toft H. (2019). Hex, Inside and Out: The Full Story. CRC Press // https://doi.org/10.1201/9780429031960
Nash J. (1952). Rand Corp. technical report D-1164: Some Games and Machines for Playing Them // https://www.rand.org/content/dam/rand/pubs/documents/2015/D1164.pdf
Gale D. (1979). The Game of Hex and Brouwer Fixed-Point Theorem / The American Mathematical Monthly. Mathematical Association of America, Vol. 86, Iss. 10, pp. 818–827 //https://doi.org/10.2307/2320146
Nash J. (1952). Rand Corp. technical report D-1164: Some Games and Machines for Playing Them // https://www.rand.org/content/dam/rand/pubs/documents/2015/D1164.pdf
Woolley C. L. (1930). Ur of the Chaldees // https://books.google.ru/books?id=JBRHtd-o0iYC
Гомер. Одиссея // http://data.perseus.org/citations/urn:cts:greekLit:tlg0012.tlg002.perseus-grc1:1.80-1.124
Peck H. T. (1898). Harpers Dictionary of Classical Antiquities // http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0062:id=latrunculi-harpers
Сократ. Федр // http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0059.tlg012.perseus-grc1:274d http://psylib.org.ua/books/plato01/21fedr.htm
Westerveld G. (2013). The History of Alquerque-12. Spain and France. Volume I. Lulu.com // https://books.google.ru/books?id=Bp0pBgAAQBAJ
Neto J. P. (2016). Latrunculi / The World of Abstract Games // https://www.di.fc.ul.pt/~jpn/gv/latrunculi.htm
Цит. по: Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Epstein R., Roberts G., Beber G. (2007). Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer. Springer Netherlands // https://books.google.ru/books?id=aggUJL_5_oQC
Turing A. M. (2000). Alan Turing’s Manual for the Ferranti Mk. I. Transcribed by Robert S. Thau // http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/kgill/mark1/RobertTau/turing.pdf
Doornbusch P. (2017). MuSA 2017 Conference — Early Computer Music Experiments in Australia, England and the USA // https://www.researchgate.net/publication/319130809_MuSA_2017_Conference_-_Early_Computer_Music_Experiments_in_Australia_England_and_the_USA
https://soundcloud.com/musicandcomputerscience/ferranti-mark-1-computer-god-save-the-queen-baa-baa-black-sheep-in-the-mood/s-NKOm6
Doornbusch P. (2004). Computer Sound Synthesis in 1951: The Music of CSIRAC / Computer Music Journal, Vol. 28 // https://www.mitpressjournals.org/doi/10.1162/014892604322970616
Barron D. (2008). Pioneer Profiles — Christopher Strachey / RESURRECTION: The Bulletin of the Computer Conservation Society, Vol. 43 // http://www.cs.man.ac.uk/CCS/res/res43.htm
Peter Norvig (2012). Systems Analysis and Programming: Thoughts from the Attic / eter@Norvig.com // http://norvig.com/sciam/sciam.html
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Turing A. M. (2000). Alan Turing’s Manual for the Ferranti Mk. I. Transcribed by Robert S. Thau // http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/kgill/mark1/RobertTau/turing.pdf
J. C. Bik A. (2012). Computing Deep Perft and Divide Numbers for Checkers. ICGA Journal, 35, 206–213 // https://doi.org/10.3233/ICG-2012-35403
Samuel A.L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II-Recent Progress / IBM Journal, November 1967 // https://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf
von Neumann J. (1928). Zur Theorie der Gesellschaftsspiele / Mathematische Annalen, Vol. 100, Iss. 1, pp. 295–320 // https://doi.org/10.1007/BF01448847
van den Herik H. J. (1983). Computerschaak, schaakwereld en kunstmatige intelligentie. Herik // https://books.google.ru/books?id=5HcWAAAACAAJ
Beal D. (1999). The Nature of MINIMAX Search. Ph. D. thesis // https://project.dke.maastrichtuniversity.nl/games/files/phd/Beal_thesis.pdf
Wiener N. (1948). Cybernetics or Control and Communication in the Animal and the Machine – MIT Press, Cambridge, MA // https://books.google.ru/books?id=NnM-uISyywAC
Epstein R., Roberts G., Beber G. (2007). Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer. Springer Netherlands // https://books.google.ru/books?id=aggUJL_5_oQC
Sampson J. R. (2012). Adaptive Information Processing: An Introductory Survey. Springer Science & Business Media // https://books.google.ru/books?id=OsaqCAAAQBAJ
Samuel A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II-Recent Progress / IBM Journal, November 1967 // https://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf
Knuth D. E., Moore R. W. (1974). An Analysis of Alpha-Beta Pruning / Artificial Intelligence, Vol. 6, pp. 293–326 // https://pdfs.semanticscholar.org/dce2/6118156e5bc287bca2465a62e75af39c7e85.pdf
Samuel A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II-Recent Progress / IBM Journal, November 1967 // https://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf
* В ряде источников встречается, что он предсказал рост цены акций IBM на 15 пунктов ввиду выхода телевизионного сюжета и оказался прав. Однако более скрупулёзный анализ динамики котировок акций компании свидетельствует о том, что это не более чем миф. В действительности в тот день торговля акциями IBM закрылась с незначительным снижением, а рост котировок в последующие недели происходил со среднерыночными темпами.
Fogel D. B. (2001). Blondie24: Playing at the Edge of AI // https://books.google.ru/books?id=M9qLGRPkOVsC
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Feigenbaum E. A., Feldman J. (1963). Computers and thought. McGraw-Hill // https://books.google.ru/books?id=OfT9tQEACAAJ
Kosharsky R. (1980). Robert Nealey, world blind checker champ / St. Petersburg Times, February 26th, 1980 // https://news.google.com/newspapers?nid=888&dat=19800226&id=GRsmAAAAIBAJ&sjid=dloDAAAAIBAJ&pg=6459,2508946&hl=ru
* Duke значит «герцог» и в то же время совпадает с названием университета; шахматная программа, в разработке которой также участвовал Траскотт, называлась Duchess — «герцогиня».
Эрик Дженсен, личные коммуникации.
World War I Soldier / Stuck Record (2021) / MontyPython.net // https://montycasinos.com/montypython/scripts/ww1soldier.php.html
Reilly E. D. (2003). Milestones in Computer Science and Information Technology. Greenwood Press // https://books.google.ru/books?id=JTYPKxug49IC
Gardner M. (2007). The Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications. Springer New York // https://books.google.ru/books?id=RHCkV2YaGoEC
https://www.in2013dollars.com/us/inflation/1977?endYear=2023&amount=5000
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
* Здесь и далее я буду использовать мужской род для программ Chinook, Fritz и нескольких других. Формально это неправильно, но фразы типа «Chinook играла» или «Fritz выиграла» звучат неестественно и режут мне слух.
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Shuffett R. L. (1982). Checkers, the Tinsley Way: Featuring the Checker Games of the World’s Greatest Player, Dr. Marion F. Tinsley. R.L. Shuffett // https://books.google.ru/books?id=LHOxHAAACAAJ
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
1st Computer Olympiad, Checkers / ICGA Tournaments. Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=126
Millett A. (1994). Derek Oldbury: A Eulogy / Journal of the International Computer Chess Association, 17, Vol. 3, pp. 174–175 // https://content.iospress.com/download/icga-journal/icg17-3-14?id=icga-journal%2Ficg17-3-14
2nd Computer Olympiad, Checkers / ICGA Tournaments. Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=136
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
1st Computer Olympiad, Checkers / ICGA Tournaments. Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=126
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Mephisto (Computer) vs Deep Thought (Computer). 20th NACCC (1989), Reno, NV USA, rd 5, Nov-15. Queen's Gambit Accepted: Janowski-Larsen Variation (D25). 1-0 / chessgames.com: online chess database and community // http://www.chessgames.com/perl/chessgame?gid=1472135
Mephisto Portorose / Chess Programming Wiki // https://www.chessprogramming.org/Mephisto_Portorose
1990 3-Move Nationals Location: Tupelo, Mississippi / The American Checker Federation // https://www.usacheckers.com/nats1990.php
Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ
Knuth D. (1990) Arthur Lee Samuel, 1901–1990 / TUGboat, Volume 11, No. 4 // https://tug.org/TUGboat/tb11-4/tb30knut-samuel.pdf
Propp J. (1999). Chinook (a report on the 1994 Man-Machine World Checkers Championship) // http://faculty.uml.edu/jpropp/chinook.html
Kucharski A. (2016). The Perfect Bet: How Science and Math Are Taking the Luck Out of Gambling. Basic Books // https://books.google.ru/books?id=abBVDgAAQBAJ
Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC
Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC
Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC
1994 3-Move Nationals Location: Garland, Texas / The American Checker Federation // https://www.usacheckers.com/nats1994.php
Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC
1996 3-Move Nationals Location: Danville, Virginia / The American Checker Federation // https://www.usacheckers.com/nats1996.php
Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC
Westerveld G. (2013). The History of Checkers (Draughts). Lulu.com // https://books.google.ru/books?id=wwotBgAAQBAJ
Sturges J. (1800). Guide to the Game of Draughts: Containing Five Hundred Select Games, Together with One Hundred and Forty Striking Situations, Exhibiting Games Drawn, and Won, by Critical Strokes; Comprising Almost Every Possible Variety which the Board Can Display… // https://books.google.ru/books?id=jmR2ugEACAAJ
Dunn A. (1998). The Ontology of Checkers / The New York Times, February 25, 1998 // http://movies2.nytimes.com/library/cyber/surf/022598mind.html
Grayson B. (2007). The Next Jump in Artificial Intelligence: Computer program is unbeatable at checkers / Dicsover, July 19 // https://www.discovermagazine.com/technology/the-next-jump-in-artificial-intelligence
Blanvillain X. A. P. (2012). Oware: The Oldest Game of the World Will Not Be Solved by Computers // https://www.slideshare.net/XavierBlanvillain/abstract-oware-solutionxavierblanvillain120226
Romein J. W., Bal H. E. (2002). Awari is solved / ICGA Journal Vol. 25, Iss. 3 // https://icga.org/icga/journal/contents/content25-3.htm#AWARI%20IS%20SOLVED
Schaeffer J., Bjornsson Y., Burch N., Lake R., Lu P., Sutphen S. (2003). Building the Checkers 10-piece Endgame Databases / Advances in Computer Games 10, Kluwer Academic Publishers, pp. 193—210 // https://www.researchgate.net/publication/220717027_Building_the_Checkers_10-Piece_Endgame_Databases
Bjornsson Y., Schaeffer J., Sturtevant N. (2005). Partial Information Endgame Databases / Advances in Computer Games 11, Lecture Notes in Computing Science #4250, Springer-Verlag, 2005, pp. 11—22 // https://www.researchgate.net/publication/220716997_Partial_Information_Endgame_Databases
Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC
Schaeffer J., Burch N., Björnsson Y., Kishimoto A., Müller M., Lake R., Lu P., Sutphen S. (2007). Checkers Is Solved / Science, Vol. 317 (5844), pp. 1518—1522 // https://doi.org/10.1126/science.1144079
The Scientist News Staff (2007). The Runners-Up / Science, Vol. 318, Iss. 5858, pp. 1844—1849 // https://science.sciencemag.org/content/318/5858/1844.1.full
Schaeffer J., Burch N., Björnsson Y., Kishimoto A., Müller M., Lake R., Lu P., Sutphen S. (2007). Checkers Is Solved / Science, Vol. 317 (5844), pp. 1518—1522 // https://doi.org/10.1126/science.1144079
Шахматы: энциклопедический словарь / гл. ред. А. Е. Карпов. — М.: Советская энциклопедия, 1990. С. 8—9 // http://whychess.ru/835encuklopedicheskiy-slovar.html
von Windisch K. G. (1783). Briefe über den schachspieler des herrn von Kempelen. A. Löwe // https://books.google.ru/books?id=vS4VAAAAYAAJ
http://www.historicalstatistics.org/Currencyconverter.html
Wilson J. G., Fiske J. (1900). Maelzl, John Nepomuk. Appletons' Cyclopædia of American Biography. New York: D. Appleton // https://archive.org/details/appletonscyclopa04wils/page/170
Joseph Earl Arrington (1960). John Maelzel, Master Showman of Automata and Panoramas / Pennsylvania Magazine of History and Biography, vol.84, issue 1, January // https://journals.psu.edu/pmhb/article/view/41542
Standage T. (2003). The Turk: The Life and Times of the Famous Eighteenth-Century Chess-Playing Machine. Berkley Books // https://books.google.ru/books?id=bITZAAAAMAAJ
Hunneman W., Hunnemann W. (1820). Chess: A Selection of Fifty Games from Those Played by the Automaton Chess Player, During Its Exhibition in London in 1820: Taken Down, by Permission of Mr. Maelzel, at the Time They Were Played. Sold at the exhibition room, no 29, St. James's Street; and by A. Maxwell, Bell Yard, Lincolns Inn // https://books.google.ru/books?id=iP5dAAAAcAAJ
Le Magasin picturesque edited by E. Charton, (1834) p. 155 // https://babel.hathitrust.org/cgi/pt?id=chi.12785572;view=1up;seq=165
Walker G. (1850). Chess & Chess-Players: Consisting of Original Stories and Sketches: By George Walker. Charles J. Skeet // https://books.google.ru/books?id=MfUIAAAAQAAJ
Willis R. (1821). An Attempt to Analyse the Automaton Chess Player, of Mr. de Kempelen … to which is Added, a … Collection of the Knight's Moves Over the Chess Board. Booth // https://books.google.ru/books?id=N7kUAAAAYAAJ
Silas W. M. (1857). The Last of a Veteran Chess Player / The Chess Monthly. № 1—2 // https://www.chess.com/blog/batgirl/the-last-of-a-veteran-chess-player---the-turk
Шахматы: энциклопедический словарь / гл. ред. А. Е. Карпов. — М.: Советская энциклопедия // http://whychess.ru/835encuklopedicheskiy-slovar.html
Robert-Houdin J., Wraxall F. (1859). Memoirs of Robert-Houdin, written by himself[tr. by sir F. C. L. Wraxall. Copyright ed. Oxford University Press // https://books.google.ru/books?id=ZjkBAAAAQAAJ
Funaro L. E. (2012). Morosi, Giuseppe / Dizionario Biografico degli Italiani, Vol. 77 // http://www.treccani.it/enciclopedia/giuseppe-morosi_(Dizionario-Biografico)/
Croft L. (2012). George Anton Schaeffer: Killing Napoleon From The Air. Sphynx Publications // https://books.google.ru/books?id=0z5enQEACAAJ
Шахматы: энциклопедический словарь / гл. ред. А. Е. Карпов. — М.: Советская энциклопедия // http://whychess.ru/835encuklopedicheskiy-slovar.html
Hobbes T. (1969). Leviathan, 1651. Scolar P // https://books.google.ru/books?id=8xyDAAAAMAAJ
Lee J. A. N. (1995, 2013). Leonardo Torres y Quevedo / IEEE Compputer Society: Computer Pioneers by J. A. N. Lee // https://history.computer.org/pioneers/torres.html
Dalakov G. Leonardo Torres's chess-machine / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Torres_chess.html
Williams A. (2017). History of Digital Games: Developments in Art, Design and Interaction. CRC Press // https://books.google.ru/books?id=xLVdDgAAQBAJ
Bowden B. (1953). Faster than thought: a symposium on digital computing machines. Pitman // https://books.google.ru/books?id=5HZQAAAAMAAJ
Torres and his Remarkable Automatic Devices: He Would Substitute Machinery for the Human Mind / Scientific American Supplement, No 2079 (November, 1915) // http://doi.org/10.1038%2Fscientificamerican11061915-296supp
Williams A. (2017). History of Digital Games: Developments in Art, Design and Interaction. CRC Press // https://books.google.ru/books?id=xLVdDgAAQBAJ
Dalakov G. Leonardo Torres's chess-machine / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Torres_chess.html
Museo “Torres Quevedo” / Universidad Politécnica de Madrid // http://www.upm.es/UPM/MuseosUPM/MuseoTorresQuevedo
Mccain N. (2016). Light on forlorn ropeway / news24.com, 01 Mar 2016 // https://www.news24.com/news24/SouthAfrica/Local/Peoples-Post/light-on-forlorn-ropeway-20160229
Levy D. (2005). Robots Unlimited: Life in a Virtual Age. CRC Press // https://books.google.ru/books?id=tiesCQAAQBAJ
Francisco González de Posada (2007). Leonardo Torres Quevedo Y La Conquista Del Aire. Centenario De La Botadura Del Dirigible Torres Quevedo 1907. Guadalajara 2007 // https://www.torresquevedo.org/LTQ10/images/LTQConquistaDelAire.pdf
Dalakov G. Leonardo Torres y Quevedo / History of Computers: hardware, software, internet… // https://history-computer.com/People/TorresBio.html
Yuste A. P. Palma M. S. (2005). Scanning our Past from Madrid: Leonardo Torres Quevedo. Proceedings of the IEEE 93(v. 1), pp. 1379—1382 // https://ieeexplore.ieee.org/document/1461596
Dalakov G. Leonardo Torres y Quevedo / History of Computers: hardware, software, internet… // https://history-computer.com/Babbage/LeonardoTorres.html
Turing A. M. (1945). Proposed electronic calculator // http://www.alanturing.net/proposed_electronic_calculator/
Turing A. M. (1948). Intelligent machinery: a report // http://www.alanturing.net/intelligent_machinery/
Copeland J., Bowen J., Sprevak M., Wilson R. (2017). The Turing Guide. OUP Oxford // https://books.google.ru/books?id=y1MjDgAAQBAJ
Copeland J., Bowen J., Sprevak M., Wilson R. (2017). The Turing Guide. OUP Oxford // https://books.google.ru/books?id=y1MjDgAAQBAJ
Pritchard E. (1980). Origins of computer chess / Personal Computing 1980-01 // https://archive.org/details/198001/page/n79
Bowden B. (1953). Faster than thought: a symposium on digital computing machines. Pitman // https://books.google.ru/books?id=5HZQAAAAMAAJ
Turing A. (1953). Digital computers applied to games. n.d. Turing's contribution to “Faster than thought”, ed. B. V. Bowden, London 1953. Published by Pitman Publishing. TS with MS corrections. R.S. 1953b / The Turing digital archive // http://www.turingarchive.org/viewer/?id=461&title=1
Friedel F. (2017). Reconstructing Turing's “Paper Machine” // https://en.chessbase.com/post/reconstructing-turing-s-paper-machine
Bauer F. L., Wössner H. (1972). The "Plankalkül" of Konrad Zuse: A Forerunner of Today's Programming Languages. Commun. ACM 15(7), pp. 678—685.
Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC
Shannon C. E. (1950). Programming a Computer for Playing Chess / Philosophical Magazine, Ser.7, Vol. 41, No. 314 // https://vision.unipv.it/IA1/aa2009-2010/ProgrammingaComputerforPlayingChess.pdf
Copeland J., Bowen J., Sprevak M., Wilson R. (2017). The Turing Guide. OUP Oxford // https://books.google.ru/books?id=y1MjDgAAQBAJ
Schliebs G. (1953). Über die Gründzuge eines Programms für eine Schachspielende Rechenmaschine / Funk und Ton, 1953, vol. 7, pp. 257—265.
Китов А.И. (1956). Электронные цифровые машины // http://www.kitov-anatoly.ru/naucnye-trudy/izbrannye-naucnye-trudy-anatolia-ivanovica-v-pdf/elektronnye-cifrovye-masiny
Китов А.И., Криницкий Н.А. (1958). Электронные вычислительные машины и программирование // http://elib.ict.nsc.ru/jspui/bitstream/ICT/862/3/kitov1958.pdf
Безбородов Ю. М., Орлов Б. В. (1961). Машина играет в шахматы / Математическое просвещение, вып. 6. С. 139—164 // http://mi.mathnet.ru/mp682
Лаут В.Н. Как я попал в ИТМ? // http://www.ipmce.ru/about/history/leading/lebedev/remembrance/laut/print/
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
Ensmenger N. (2012). The Computer Boys Take Over: Computers, Programmers, and the Politics of Technical Expertise. New York, NY, USA: MIT Press // https://books.google.ru/books?id=VCcsTPQ738oC
Misa T. (2011). Gender Codes.: Why Women Are Leaving Computing. Wiley // https://books.google.ru/books?id=EjDYh_KHls8C
Mazliak L., Perfettini T. (2019). Under the protection of alien wings. Mathematicians in the Russian emigration in inter war France // https://hal.archives-ouvertes.fr/hal-02280296/document
Элизабет Рэнд, личные коммуникации.
Макс Бернстайн, личные коммуникации.
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
Bernstein A., Van Roberts R. (1958). Computer V. Chess player / Scientific American 198, pp. 96—105.
Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ
Logan A., Gill B. (1958). Runner-up / The New Yorker, November 29, p. 43 // https://www.newyorker.com/magazine/1958/11/29/runner-up-4
Solomonof G. (2006). Ray Solomonoff and the Dartmouth Summer Research Project in Artificial Intelligence, 1956 // http://raysolomonoff.com/dartmouth/dartray.pdf
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
McCarthy J. (2006). The Dartmouth Workshop--as planned and as it happened // http://www-formal.stanford.edu/jmc/slides/dartmouth/dartmouth/node1.html
Logan A., Gill B. (1958). Runner-up / The New Yorker, November 29, p. 43 // https://www.newyorker.com/magazine/1958/11/29/runner-up-4
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
Википедия // https://ru.wikipedia.org/wiki/Понедельник_начинается_в_субботу (версия от 29.05.2019).
OFF-LINE интервью с Борисом Стругацким. Сентябрь 2009 / Аркадий и Борис Стругацкие: официальный сайт // http://www.rusf.ru/abs/int0132.htm
Глушкова А., Жабин С. (2019). Виртуальная страна Кибертония — субкультура советских программистов / Спильне. 8 апреля // https://commons.com.ua/uk/virtualnaya-strana-kibertoniya/
Игорь Осипчук (2013). Дочь академика Глушкова: «Прочтя 20 страниц математического текста, отец запоминал его наизусть» / Факты // https://fakty.ua/169041-prochtya-20-stranic-matematicheskogo-teksta-otec-zapominal-ego-naizust
* Сегодня слово «хакер» обычно используется для обозначения компьютерных взломщиков, но изначально оно имело иной смысл; хакер — это тот, кто «врубается», компьютерный энтузиаст и эксперт.
Глушкова А., Жабин С. (2019). Виртуальная страна Кибертония — субкультура советских программистов / Спильне. 8 апреля // https://commons.com.ua/uk/virtualnaya-strana-kibertoniya/
Волошин А. (1965). Кибертония-65 / Вечерний Киев. Суббота 16 янв. С. 2 // http://ogas.kiev.ua/library/kybertonyya-65-694
Глушкова А., Жабин С. (2019). Виртуальная страна Кибертония — субкультура советских программистов / Спильне. 8 апреля // https://commons.com.ua/uk/virtualnaya-strana-kibertoniya/
Игорь Осипчук (2013). Дочь академика Глушкова: «Прочтя 20 страниц математического текста, отец запоминал его наизусть» / Факты // https://fakty.ua/169041-prochtya-20-stranic-matematicheskogo-teksta-otec-zapominal-ego-naizust
Глушкова А., Жабин С. (2019). Виртуальная страна Кибертония — субкультура советских программистов / Спильне. 8 апреля // https://commons.com.ua/uk/virtualnaya-strana-kibertoniya/
Смилга В. П. (1956). Возможен ли шахматный автомат? / Шахматы в СССР. № 6.
Смилга В. П. (1963). Электронный гроссмейстер / Знание — сила. № 12.
Евграфов М. А., Задыхайло И. Б. (1965). Некоторые соображения о программировании шахматной игры / Проблемы кибернетики. № 15.
Туманов В. «„Лучший ход“ — за 58 секунд» // Таль — Ботвинник: матч-реванш на первенство мира. Бюллетень Центрального шахматного клуба СССР. 1961. № 8. С. 4—5.
Ландис Е. М., Яглом И. М. (2001). Об Александре Семёновиче Кронроде / Успехи математических наук. Т. 56, вып. 5(341). С. 191–201 // https://doi.org/10.4213/rm448
Гутер Р.С., Полунов Ю.Л. (1981). От абака до компьютера / Изд. 2-е исп. и доп. — М.: Знание // http://elib.ict.nsc.ru/jspui/bitstream/ICT/1354/4/abacus_1981b.pdf
Ландис Е. М., Яглом И. М. (2001). Об Александре Семёновиче Кронроде / Успехи математических наук. Т. 56, вып. 5(341). С. 191–201 // https://doi.org/10.4213/rm448
Академия наук СССР, Трапезников В.А., Национальный комитет СССР по автоматическому управлению (1967). Оптимальные системы, статистические методы: труды III Всесоюзного совещания по автоматическому управлению (технической кибернетике), Одесса, 20–26 сентября 1965 г. Наука // https://books.google.ru/books?id=S_fmAAAAMAAJ
Nelson W. L. (2011). 1965 USSR Trip / MYBELLLABSDAYS // https://mybelllabsdays.wordpress.com/2011/12/04/1965-ussr-trip/
Маккарти Д. (2006). Вспоминая Андрея Петровича Ершова / Андрей Петрович Ершов — учёный и человек / под ред. А. Г. Марчука. — Новосибирск: Издательство Сибирского отделения РАН // https://www.iis.nsk.su/files/book/file/Ershov_kniga.pdf
Маккарти Д. (1965). Письмо Андрею Ершову / Архив академика А. П. Ершова // http://ershov.iis.nsk.su/node/777848
Маккарти Д. (2006). Вспоминая Андрея Петровича Ершова / Андрей Петрович Ершов — учёный и человек / под ред. А. Г. Марчука. — Новосибирск: Издательство Сибирского отделения РАН // https://www.iis.nsk.su/files/book/file/Ershov_kniga.pdf
McCarthy J. (2005). The History of Computer Chess: An AI Perspective (Video). Mountain View, CA, USA: Computer History Museum // https://www.youtube.com/watch?v=AvU_fnLWRRk
Кронрод А.С. (2004) Беседы о программировании / Предисл. Л. А. Кронрод. Послесл. В. Л. Арлазарова. Изд. 2-е, стереотипное. — М.: Едиториал УРСС // https://nsu.ru/xmlui/handle/nsu/9050
http://greko.su/m20-itef.pdf
Рузайкин Г. И., Коновалов С. П. (2005). Рассказ «бабки-повитухи» / Мир ПК. № 10 // https://www.osp.ru/pcworld/2005/10/317270/
Адельсон-Вельский Г. М., Арлазаров В. Л., Битман А. Р., Животовский А. А., Усков А. В. (1970). О программировании игры вычислительной машины в шахматы / Успехи математических наук. Т. 25, вып. 2 (152). С. 221—260 // http://mi.mathnet.ru/umn5324
Гутер Р. С., Арлазаров В. Л., Усков А. В. (1965). Практика программирования: Справочник. — М.: Наука.
Ершов А.П., Лавров С.С., Семендяев К.А. (1966). Письмо в «Литературную газету» / Архив академика А. П. Ершова // http://ershov.iis.nsk.su/node/806835
Гутер Р. С., Арлазаров В. Л., Усков А. В. (1965). Практика программирования: Справочник. — М.: Наука.
* Язык ассемблера (assembly language) — язык программирования низкого уровня. Он представляет собой систему обозначений, используемую для представления в удобочитаемой форме программ, записанных в машинном коде. Команды языка соответствуют отдельным командам, выполняемым процессором машины, или их коротким последовательностям. Поскольку наборы команд различаются в зависимости от используемой аппаратной платформы, в действительности мы имеем дело не с единым языком, а с классом аппаратно-специфичных языков, хотя и разделяющих обычно некоторые условные обозначения. Например, команда ADD, используемая для сложения чисел, почти во всех этих языках называется именно так.
Костинский А. (2002). Компьютерные программы, как конец спортивных шахмат / Радио Свобода // https://www.svoboda.org/a/24203756.html
Berenyi I. (1970). Computers in Eastern Europe / Scientific American, Vol. 223, Iss. 4.
Малиновский Б. Н. (1995). История вычислительной техники в лицах. — К.: фирма «КИТ», ПТОО «А.С.К.» // http://lib.ru/MEMUARY/MALINOWSKIJ/0.txt
Донской М. История «Каиссы» / Виртуальный компьютерный музей // http://www.computer-museum.ru/games/kaissa1.htm
Chess: Ancient precursors and related games / Encyclopædia Britannica. 2002 // https://www.britannica.com/topic/chess
Chalmers A., Johnson S. (1810). The Works of the English Poets, from Chaucer to Cowper: Including the Series Edited with Prefaces, Biographical and Critical. J. Johnson // https://books.google.ru/books?id=b0LVAAAAMAAJ
Murray H. J. R. (2015). A History of Chess. Skyhorse Publishing // https://books.google.ru/books?id=dNSBCgAAQBAJ
Донской М. История «Каиссы» / Виртуальный компьютерный музей // http://www.computer-museum.ru/games/kaissa1.htm
Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ
Донской М. История «Каиссы» / Виртуальный компьютерный музей // http://www.computer-museum.ru/games/kaissa1.htm
Wall B. Kaissa // http://billwall.phpwebhosting.com/articles/Kaissa.htm
* Первый разряд соответствует силе игры в 1800–2000 пунктов Эло, рейтинг Эло — метод расчёта относительной силы игроков в играх с двумя игроками; эту систему рейтингов разработал американский профессор физики венгерского происхождения Арпад Эло; новичкам соответствует рейтинг Эло 1000–1200, разница в 100 пунктов между двумя игроками означает, что сильнейший игрок набирает в среднем 64% очков, разница в 200 пунктов — 76% очков.
** Архитектура машины позволяла выполнять быстрые операции с 64-разрядными целыми числами, в которых каждый разряд соответствует одному из полей шахматной доски; сегодня эти технологии называются bitboards — дословно «битовые доски»; впервые этот подход предложил ещё Шура-Бура.
Владимир Арлазаров: Персона дня — 19.10.2018 / Российская Шахматная Федерация // https://ruchess.ru/persons_of_day/vladimir_arlazarov_pd/?sphrase_id=180658
Computer chess pioneer Mikhail Donskoy passes on // https://en.chessbase.com/post/computer-che-pioneer-mikhail-donskoy-paes-on
3rd World Computer Chess Championship / ICGA Tournaments: Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=68
Reseña histórica del ajedrez por computadora (VI) // http://www.anacadigital.com/historia/anaca5_1_89.htm
Horváth Z. (1990). Report on the 2nd Computer Olympiad. ICCA Journal, Vol. 13, No. 3.
2nd Computer Olympiad, Chess / ICGA Tournaments: Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=142
Костинский А. (2002). Компьютерные программы как конец спортивных шахмат / Радио Свобода // https://www.svoboda.org/a/24203756.html
Арлазаров В. Л., Битман А. Р. (1968). Обыграет ли машина человека? / Шахматы в СССР. № 2. С. 9—11.
Адельсон-Вельский Г. М., Арлазаров В. Л., Битман А. Р., Животовский А. А., Усков А. В. (1969). О программировании шахматной игры / Труды первой зимней школы по математическому программированию. Вып. II. С. 216—252.
Адельсон-Вельский Г. М., Арлазаров В. Л., Битман А. Р., Животовский А. А., Усков А. В. (1970). О программировании игры вычислительной машины в шахматы / Успехи математических наук. Т. 25, вып. 2 (152). С. 221—260 // http://www.mathnet.ru/links/e353ff456f77590009af6ba9f008f4cb/rm5324.pdf
Adelson-Velsky G., Arlazarov V., Donskoy M. (1975). Some Methods of Controlling the Tree Search in Chess Programs. Artificial Ingelligence, Vol. 6, No. 4, pp. 361–371.
Adelson-Velsky G., Arlazarov V., Donskoy M. (1977). On the Structure of an Important Class of Exhaustive Problems and Methods of Search Reduction for them. Advances in Computer Chess 1
Адельсон-Вельский Г. М., Арлазаров В. Л., Битман А. Р., Донской М. В. (1983). Машина играет в шахматы. — М.: Наука // http://www.computer-museum.ru/books/kaissa.pdf
Haugeland J. (1985). Symbolic Computation. Artificial Intelligence: The Very Idea. MIT Press // https://books.google.ru/books?id=UuQbnAEACAAJ
Turing A. (1953). Digital computers applied to games. n.d. Turing's contribution to “Faster than thought”, ed. B. V. Bowden, London 1953. Published by Pitman Publishing. TS with MS corrections. R.S. 1953b / The Turing digital archive // http://www.turingarchive.org/viewer/?id=461&title=1
Carrera P., Cherubino G., Tortelli M., Rossi G. d., Romano G. (1617). Il gioco de gli scacchi di D. Pietro Carrera diuiso in otto libri, ne' quali s'insegnano i precetti, le vscite, e i tratti posticci del gioco, e si discorre della vera origine di esso. Con due discorsi, l'vno del padre D. Gio. Battista Chèrubino, l'altro del dottor Mario Tortelli, opera non meno vtile a' professori del gioco, che diletteuole a' gli studiosi per la varieta' della eruditione cauata dalle tenebre dell'antichita'. per Giouanni de' Rossi da Trento // https://books.google.ru/books?id=RPvGROWRIikC
Lolli G. (1763). Osservazioni teorico-pratiche sopra il giuoco degli scacchi ossia il Giuoco degli Scacchi: esposto nel sus miglian lume. Stamp. di S. Tommaso d'Aquino // https://books.google.ru/books?id=zych5drFRuQC
Ботвинник М. (1979). От шахматиста — к машине. М.: Физкультура и спорт // https://books.google.ru/books?id=W8aptgEACAAJ
Phony Benoni. Wageningen Caltex (1958) / Chessgames.com: online chess database and community // http://www.chessgames.com/perl/chesscollection?cid=1026124
Мюннингхофф А. (1979). Макс Эйве / Пер. с нидерландского В. И. Мурахвери — М.: Физкультура и спорт.
* Европейское сообщество по атомной энергии.
O'Connor J. J., Robertson E. F. (2003). Machgielis Euwe. School of Mathematics and Statistics University of St Andrews // http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Euwe.html
Ботвинник М. (1979). От шахматиста — к машине. М.: Физкультура и спорт // https://books.google.ru/books?id=W8aptgEACAAJ
Ботвинник М. М. (1961). Люди и машины за шахматной доской / Шахматы в СССР. № 3.
Жанна Михайловна Таль, персональные коммуникации.
В шахматы «играет» ЭВМ. Телевизионные новости. Эфир 24.11.1968 // https://www.youtube.com/watch?v=LZEd6ZtSxCo
Goodman R., Soni J. (2017). The Man Who Built The Chess Machine / Chess.com // https://www.chess.com/article/view/the-man-who-built-the-chess-machine
Ботвинник, М. (1979). От шахматиста — к машине. М.: Физкультура и спорт // https://books.google.ru/books?id=W8aptgEACAAJ
Ботвинник М. М. (1966). Математическое отображение шахматной игры (Пособие для шахматного анализа) / Бюллетень центрального шахматного клуба СССР. № 3.
Кухарева А. (2003). Михаил Донской: Я Билла Гейтса ни в чем не виню. ИД «Компьютерра, 2003. Сайт «Домашний компьютер» — приложение к интернет-изданию «Компьюлента» / Сайт Александра Тимофеева // http://atimopheyev.narod.ru/AfterPIONEER/info/PIONEER/2.htm
Карпов А. (2022). «Мальчик понятия не имеет о шахматах». Гроссмейстер Карпов — о школе, первых деньгах и знакомстве с Ботвинником / Мел, 25.01.2022 // https://mel.fm/zhizn/knigi/4218760-malchik-ponyatiya-ne-imeyet-o-shakhmatakh-grossmeyster-karpov--o-shkole-pervykh-dengakh-i-znakomstve
Botvinnik M., Brown A. (1970). Computers, chess and long-range planning. Springer-Verlag // https://books.google.ru/books?id=ZYxRAAAAMAAJ
Ботвинник М. М. (1968). Алгоритм игры в шахматы. — М. // http://whychess.ru/776algoritm-igru-v-shahmatu.html
Книжник С. (2009). Наставник для компьютера / Наука в Сибири. № 17 (2702), 30 апреля // http://www.nsc.ru/HBC/hbc.phtml?5+500+1
Ботвинник М. М. (1987). Аналитические и критические работы. Статьи и воспоминания // http://whychess.ru/botvinnik-stati-vospominaniua.html
Ботвинник, М. (1979). От шахматиста — к машине. М.: Физкультура и спорт // https://books.google.ru/books?id=W8aptgEACAAJ
* Этюд Рети — знаменитый этюд (белые: Крh8, пешка с6, чёрные: Крa6, пешка h5), в котором используется неевклидова геометрия шахматной доски: движение короля по диагонали занимает столько же ходов, сколько движение по прямой.
** Сила игры международного мастера соответствует 2400–2500 пунктов Эло, к 1981 г. звание «международный мастер» было присвоено 897 шахматистам.
Lopez R., Sentef J. (2017). Comments / Marginal Revolution // https://marginalrevolution.com/marginalrevolution/2017/03/new-george-steiner-book.html
*** Рейтинг Эло свыше 2500, в 1988 г. в мире было 338 международных гроссмейстеров.
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
* По неведомым причинам в советских научно-популярных изданиях её именовали на славянский манер — «Хитеч».
* Миттельшпиль (от нем. Mittelspiel — середина игры) — следующая за дебютом стадия шахматной партии, в которой обычно происходят основные события.
** Эндшпиль (от нем. Endspiel — «заключительная игра») — заключительная часть шахматной партии, после размена большинства фигур.
Berliner H. J. (1977). Experiences in Evaluation with BKG, a Program That Plays Backgammon / Proceedings of IJCAI, 1977 (1979), pp. 428–433 // http://www.bkgm.com/articles/Berliner/ExperiencesInEvaluationWithBKG/index.html
Berliner H. J. (1980). Backgammon Computer Program Beats World Champion / Artificial Intelligence, vol. 14 (1980), pp. 205—220 // http://www.bkgm.com/articles/Berliner/BackgammonProgramBeatsWorldChamp/
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Theo van der Storm (2002). North American Computer-Chess Championships: Complete History of Tournament Results and Games // https://old.csvn.nl/ncc_hist.html#17th
Atkinson G. (1998). Chess and Machine Intuition. Intellect Books // https://books.google.ru/books?id=ZuTvVo4zo6oC
6th World Computer Chess Championship / ICGA Tournaments: Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=14
All Time Rankings / Edinburgh University Chess Club Home Page // https://web.archive.org/web/20100724043700/http://chess.eusa.ed.ac.uk/Chess/Trivia/AlltimeList.html
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Volker Jeschonnek (2000). A Visit to My Opponent's Camp: Introducing Man vs. Machine (CC) Challenges and Wchess / Ralph Marconi Chess Page // https://web.archive.org/web/20001218000600/http://correspondencechess.com/marconi/volkerart.htm
Kasparov versus Deep Thought documentary / PBS Nova // https://www.youtube.com/watch?v=mhnDzk9IVAA
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Laswon D. (1989). The Pentagon plays chess / The Spectator, 28 Janyary 1989, p. 9 // http://archive.spectator.co.uk/article/28th-january-1989/9/the-pentagon-plays-chess
Krauthammer C. (1989). Checkmated by a monster of calculation / The Washington Post, 24 February 1989 // https://www.washingtonpost.com/archive/opinions/1989/02/24/checkmated-by-a-monster-of-calculation/9afad6af-939b-4c6a-8641-7cf5016f2cd5/
* «Глубокая глотка» — это кодовое имя информатора журналистов-расследователей из The Washington Post в ходе Уотергейтского скандала, а также название фильма, на просмотр которого не стоит приглашать свою маму.
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Theo van der Storm (2002). North American Computer-Chess Championships: Complete History of Tournament Results and Games // https://old.csvn.nl/ncc_hist.html#22th
Jiu H. (1993). P. C. CORNER // https://www.thecrimson.com/article/1993/11/9/p-c-corner-pwhen-current-us
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Theo van der Storm. Harvard Cup Human vs. Computer Chess Challenge // https://old.csvn.nl/harvhist.html#4th
8th World Computer Chess Championship / ICGA Tournaments: Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=29
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Newborn M. (2012). Kasparov versus Deep Blue: Computer Chess Comes of Age. Springer New York // https://books.google.ru/books?id=IiXjBwAAQBAJ
All Time Rankings / Edinburgh University Chess Club Home Page // https://web.archive.org/web/20100724043700/http://chess.eusa.ed.ac.uk/Chess/Trivia/AlltimeList.html
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ
Antonoff M. (1996). Curtains for Kasparov? / Popular Science. №3, 1996 // https://books.google.ru/books?id=-TKv7UHgoTQC&pg=PA43
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Isenberg G. (2018). Frans Morsch / Chess Programming Wiki // https://www.chessprogramming.org/Frans_Morsch
Гниренко В. (2012). Рекорды двух символических клубов / Шахматное обозрение. №1.
Jones B. (2007). Grandmaster Maurice Ashley comes to Baltimore, playing chess – and teacher / The Baltimore Sun, October 3 // https://www.baltimoresun.com/news/bs-xpm-2007-10-03-0710030152-story.html
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
* HAL 9000 — вымышленный компьютер из цикла произведений «Космическая одиссея» Артура Кларка, обладающий способностью к самообучению и являющийся примером искусственного интеллекта в научной фантастике; поскольку HAL вступил в конфликт с людьми, его образ нередко использовался в качестве архетипического «злого ИИ».
Gaulin E. (1996). Computer 1, chess champion 0 / Atlanta Journal and Constitution, February 11.
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
* Сотрудник автоинспекции тормозит всех подряд и задаёт один и тот же вопрос:
— Если я у тебя свечу выкручу, какое колесо спустит?
— Не знаю…
— Не знаешь правил — плати штраф!
И так весь день, пока не остановил «запорожец»:
— Если я у тебя свечу выкручу, какое колесо спустит?
— А если я тебе монтировкой по голове ударю, какой шнурок развяжется?
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Waga P. (1996). Kasparov, IBM plan man vs. machine rematch / The Reporter Dispatch, Gannett Suburban Newspapers, August 21,1996.
Saylor M. (1997). Computers cast a long shadow on chessboard / Los Angeles Times, May 1 // https://www.latimes.com/archives/la-xpm-1997-05-01-mn-54193-story.html
Antonoff M. (1997). Game, net & match / Yahoo Internet Life, May.
Kasparov challenger receives an upgrade / The New York Times, May 1, 1997.
Kim J. (1997). More than just chess. But not as simple as man vs.computer / USA Today, May 2.
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Chess Opening Explorer / 365Chess.com: Biggest Chess Games Database Online // https://www.365chess.com/opening.php
Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ
Ingo Althoefer vs Deep Thought (Computer), Hanover (1991). Mieses Opening: Reversed Rat (A00), 0-1 / chessgames.com: online chess database and community // http://www.chessgames.com/perl/chessgame?gid=1472153
Althöfer I. (2013). Random Structures from Lego Bricks and Analog Monte Carlo Procedures // https://www.althofer.de/random-lego-structures.pdf
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Bonesteel, Mark (2017). Diego Maradona admits video replay would have erased his 'Hand of God' goal / The Washington Post, 26 July // https://www.washingtonpost.com/news/early-lead/wp/2017/07/26/diego-maradona-admits-video-replay-would-have-erased-his-hand-of-god-goal/
* Этот гол вошёл в историю мирового футбола под названием «рука Бога», поскольку на послематчевой конференции автор гола заявил, что спорный гол был забит «отчасти головой Марадоны, а отчасти рукой Бога».
Weber B. (1996). Chess Computer Seeking Revenge Against Kasparov / New York Times, August 20 // https://www.nytimes.com/1996/08/20/nyregion/chess-computer-seeking-revenge-against-kasparov.html
Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ
Deep Blue (Computer) vs Garry Kasparov, New York (1997). Caro-Kann Defense: Karpov. Modern Variation (B17), 1-0 / chessgames.com: online chess database and community // http://www.chessgames.com/perl/chessgame?gid=1070917
Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ
Dirk Jan ten Geuzendam (2009). Interview: Miguel Illescas / New In Chess magazine. № 5.
Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ
Hoffman P. (2003). Retooling Machine and Man For Next Big Chess Faceoff / The New York Times, Jan. 21 // https://www.nytimes.com/2003/01/21/science/retooling-machine-and-man-for-next-big-chess-faceoff.html
Rebel vs Yusupov // http://www.rebel.nl/italy.htm
Rebel vs Anand // http://www.rebel.nl/anand.htm
Kramnik-Deep Fritz match ends in 4-4 draw! / The Chess Drum // https://www.thechessdrum.net/newsbriefs/2002/NB_BrainGames2.html
An interview with world chess champion Vladimir Kramnik on Man vs Machine and Classical World Championships // https://en.chessbase.com/post/vladimir-kramnik-on-man-vs-machine-and-world-championships
Shabazz D. (2003). Kasparov & Deep Junior fight 3–3 to draw! / The Chess Drum // https://www.thechessdrum.net/tournaments/Kasparov-DeepJr/
Biever C. (2003). Kasparov 'forced' to draw with X3D Fritz / New Scientist, 12 November // https://www.newscientist.com/article/dn4376-kasparov-forced-to-draw-with-x3d-fritz/
Bilbao Man vs Machine – a resume // https://en.chessbase.com/post/bilbao-man-vs-machine-a-resume
8:4 final score for the machines – what next? // https://en.chessbase.com/post/8-4-final-score-for-the-machines-what-next-
Adams vs Hydra: Man 0.5 – Machine 5.5 // https://en.chessbase.com/post/adams-vs-hydra-man-0-5-machine-5-5
Schulz A. (2006). Kramnik gegen Deep Fritz: Das letzte Match Mensch gegen Maschine? / Spiegel Online // https://www.spiegel.de/netzwelt/tech/kramnik-gegen-deep-fritz-das-letzte-match-mensch-gegen-maschine-a-450147.html
* Термин «движок» требует некоторых объяснений. В 2000-е годы окончательно закрепилось разделение шахматных программ на две независимые части — «оболочку» (Graphic User Interface, GUI) и «движок» (engine), связанные между собой при помощи одного из стандартных интерфейсов, например WinBoard или UCI (Universal Chess Interface). Эта практика возникла в 1990-е годы в продуктах ChessBase, в которых оболочка от ChessBase поставлялась с несколькими шахматными движками, такими как Fritz, Junior, Shredder, Hiarcs, связанными с оболочкой при помощи программного интерфейса. Затем эта практика была перенята и остальной частью сообщества компьютерных шахмат. Теперь шахматные программисты могли не тратить время на разработку собственного интерфейса, а сосредоточиться на создании «шахматного мозга» программы, сконцентрированного в её движке. Стандартизация интерфейсов шахматных движков позволила автоматизировать проведение матчей и турниров между шахматными программами, исключив из процесса человека. Теперь движки могли обмениваться ходами внутри единой оболочки, которая выполняла роль своеобразного рефери, наблюдая за расходованием времени, корректностью ходов и при необходимости присуждая результаты игры в очевидных ситуациях. Кроме того, оболочке могли быть переданы некоторые дополнительные функции, например выбор ходов из дебютной библиотеки, что позволяло, например, устраивать турниры программ с одинаковой библиотекой дебютов у всех участников.
Crowther M. (2009). The week in chess, 771, 17th August 2009 // https://web.archive.org/web/20110930232108/http://www.chess.co.uk/twic/twic771.html#13
Ertel W., Black N. (2018). Introduction to Artificial Intelligence. Springer International Publishing // https://books.google.ru/books?id=geFHDwAAQBAJ
Kaufman L. (2008). The Dzindzi – Rybka 3 Handicap Match // https://en.chessbase.com/post/the-dzindzi-rybka-3-handicap-match
Kaufman L. (2008). The Milov vs. Rybka Handicap Match // https://en.chessbase.com/post/the-milov-vs-rybka-handicap-match
Komodo handicap matches / Komodo chess engine // http://komodochess.com/store/pages.php?cmsid=17
Осень шахматиста. Михаил Ботвинник (1990) // https://www.youtube.com/watch?v=IQZqN0b6Op0
Tahan M. (1993). The Man Who Counted: A Collection of Mathematical Adventures. New York: W. W. Norton & Co., pp. 113—115 // https://books.google.ru/books?id=WMv_2aSlXOoC&pg=PA113
Crops (2017) / FAOSTAT. Retrieved 2019-08-18. Countries - Select All; Regions - World + (Total); Elements - Production Quantity; Items - Wheat; Years – 2017 // http://www.fao.org/faostat/en/#data/QC/
Shannon C. E. (1950). Programming a Computer for Playing Chess / Philosophical Magazine, Ser. 7, Vol. 41, No. 314 // https://vision.unipv.it/IA1/aa2009-2010/ProgrammingaComputerforPlayingChess.pdf
Allis V. (1994). Searching for Solutions in Games and Artificial Intelligence (PDF). Ph. D. Thesis, University of Limburg, Maastricht, The Netherlands // http://fragrieu.free.fr/SearchingForSolutions.pdf
Saul E. (2013). The Coded Universe: The Path to Eternity. Red Lead Press // https://books.google.ru/books?id=E22mj8ImiKwC
Tromp J. (2010). John's Chess Playground // https://tromp.github.io/chess/chess.html
Bob23 (2018). GUIDE: Setting up Leela on a Chess GUI / Lc0 blog // http://blog.lczero.org/2018/09/guide-setting-up-leela-on-chess-gui.html
Левенчук А. (2015). Интеллект-стек // https://youtu.be/1mL2DL6ZBSw?t=965
Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ
CCRL 40/40 Downloads and Statistics: Complete rating list, retrieved 2022-01-27 // https://ccrl.chessdom.com/ccrl/4040/rating_list_all.html
Azevedo F. A., Carvalho L. R., Grinberg L. T., Farfel J. M., Ferretti R. E., Leite R. E. P., Filho W. J., Lent R., Herculano-Houzel S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain / Journal of Comparative Neurology. Vol. 513(5), pp. 532—541 // https://www.ncbi.nlm.nih.gov/pubmed/19226510/
Dresbach T., Qualmann B., Kessels M. M., Garner C. C., Gundelfinger E. D. (2001). The presynaptic cytomatrix of brain synapses / Cellular and Molecular Life Sciences, Vol. 58, pp. 94—116 // https://doi.org/10.1007/PL00000781
Donald C. Cooper (2014). Introduction to Neuroscience. CU Neuroscience Series // https://books.google.ru/books?id=jXnkai44PxYC
Goldman B. (2010). New imaging method developed at Stanford reveals stunning details of brain connections // https://med.stanford.edu/news/all-news/2010/11/new-imaging-method-developed-at-stanford-reveals-stunning-details-of-brain-connections.html
Hu E. Y., Yu G., Song D., Bouteiller C. J., Berger W. T. (2018). Modeling Nonlinear Synaptic Dynamics: A Laguerre-Volterra Network Framework for Improved Computational Efficiency in Large Scale Simulations. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 64 (2), pp. 6129—6132 // http://europepmc.org/articles/PMC6462142
Beniaguev D., Segev I., London M. (2021). Single cortical neurons as deep artificial neural networks / Neuron, Vol. 109, Iss. 17, pp. 2727—2739.e3 // https://doi.org/10.1016/j.neuron.2021.07.002
Whitten A. (2021). How Computationally Complex Is a Single Neuron? / Quanta Magazine, September 2, 2021 // https://www.quantamagazine.org/how-computationally-complex-is-a-single-neuron-20210902
Уиттен Э. (2021). Насколько сложной должна быть компьютерная модель одного нейрона? / Пер. с англ. Горлова А // https://22century.ru/popular-science-publications/a-single-neuron-is-very-complex
NVIDIA H100 SXM5 80 GB (2023). / TechPowerUp // https://www.techpowerup.com/gpu-specs/h100-sxm5-80-gb.c3900
* Скорее всего, этот показатель будет немного улучшен с выходом GPU семейства Hopper-Next от Nvidia в 2024 году.
Creating Tomorrow’s Next-Generation Technologies Today // https://forums.xilinx.com/t5/Xilinx-Xclusive-Blog/Creating-Tomorrow-s-Next-Generation-Technologies-Today/ba-p/1156382
Gerstner W., Kistler W. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press // https://books.google.ru/books?id=Rs4oc7HfxIUC
** Максимальная частота глобального иерархического дерева тактовых импульсов; сеть распределения тактовых импульсов (или дерево тактовых импульсов, когда эта сеть формирует дерево) — часть электрической схемы, которая распределяет сигнал(ы) тактовых импульсов (т. е. импульсов, предназначенных для синхронизации различных процессов в схеме) от общего источника до всех элементов, которые в них нуждаются.
Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching Characteristics // https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
John Tromp (2016). Number of legal Go positions // https://tromp.github.io/go/legal.html
Allis V. (1994). Searching for Solutions in Games and Artificial Intelligence (Ph. D. thesis). University of Limburg, Maastricht, The Netherlands // https://project.dke.maastrichtuniversity.nl/games/files/phd/SearchingForSolutions.pdf
Good I. J. (1965). The Mystery of Go / New Scientist, 21 January // http://www.chilton-computing.org.uk/acl/literature/reports/p019.htm
Wedd N. (2016). Human-Computer Go Challenges / computer-go.info // http://www.computer-go.info/h-c/index.html
Cho A. (2016). ‘Huge leap forward’: Computer that mimics human brain beats professional at game of Go / Science // https://www.sciencemag.org/news/2016/01/huge-leap-forward-computer-mimics-human-brain-beats-professional-game-go
Millen J. K. (1981). Programming the Game of Go / Byte, April 1981 // https://archive.org/stream/byte-magazine-1981-04/1981_04_BYTE_06-04_Future_Computers#page/n101/mode/2up
Webster B. (1984). A Go Board for the Macintosh / Byte, November 1981 // https://archive.org/stream/byte-magazine-1984-11/1984_11_BYTE_09-12_New_Chips#page/n125/mode/2up
Macfadyen M. (1984). Computer Go / British Go Journal No. 61. March 1984 // https://www.britgo.org/bgj/06123.html
History of Go-playing Programs / Go British Association // https://www.britgo.org/computergo/history
Bronislaw Przybyla (1984). Acornsoft Go / Sensei's Library // https://senseis.xmp.net/?AcornsoftGo
History of Go-playing Programs / Go British Association // https://www.britgo.org/computergo/history
Burmeister J., Wiles J. CS-TR-339 Computer Go Tech Report // https://staff.itee.uq.edu.au/janetw/Computer%20Go/CS-TR-339.html#6.2
History of Go-playing Programs / Go British Association // https://www.britgo.org/computergo/history
Strickland J. (2010). Top 5 Computer vs. Human Game Matchups / howstuffworks // https://electronics.howstuffworks.com/5-computer-vs-human-game-matchups5.htm
Aydinian H., Cicalese F., Deppe C. (2013). Information Theory, Combinatorics, and Search Theory: In Memory of Rudolf Ahlswede. Springer Berlin Heidelberg // https://books.google.ru/books?id=qVW5BQAAQBAJ
Cosmic Style V.S. Zen (Computer Go) / The Nihon Ki-in[Японская ассоциация го] // https://www.nihonkiin.or.jp/english/topics/12/topics2012_03.htm#120326f
Shotwell P. (2011). Go! More Than a Game. Tuttle Publishing // https://books.google.ru/books?id=qf_QAgAAQBAJ
House P. (2014). The Electronic Holy War / The Ney Yorker, March 25, 2014 // https://www.newyorker.com/tech/annals-of-technology/the-electronic-holy-war
Althöfer I., Snatzke R. G. (2016). The codecentric Go Challenge 2014: Franz-Josef Dickhut vs. CRAZY STONE / ICGA Journal, Vol. 37, Iss. 4, pp. 232—236 // https://www.researchgate.net/publication/293799776_The_codecentric_Go_Challenge_2014_Franz-Josef_Dickhut_vs_CRAZY_STONE
Syed O. The Creation of Arimaa // http://arimaa.com/arimaa/
Натансон Л., Серов А., Лесной Д. МАРЬЯЖ для Windows: академическое издание // https://dr-vamp-r.ucoz.ru/load/1-1-0-5
The Computer Is A Cheating Bastard: Civilization / TV Tropes // https://tvtropes.org/pmwiki/pmwiki.php/TheComputerIsACheatingBastard/Civilization
Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ
Victor Allis (1994). Searching for Solutions in Games and Artificial Intelligence (PDF). Ph. D. Thesis, University of Limburg, Maastricht, The Netherlands // http://fragrieu.free.fr/SearchingForSolutions.pdf
Tesauro G. (1992). Practical issues in temporal difference learning / Machine Learning, Vol. 8, Iss. 3—4, pp. 257—277 // https:// doi.org/10.1007/BF00992697
Coulom R. (2011). CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning // https://www.remi-coulom.fr/CLOP/
Stockfish Testing Queue, retrieved 2020-04-25 // http://tests.stockfishchess.org
Stockfish Testing Queue, retrieved 2022-01-28 // http://tests.stockfishchess.org
* Реверс-инжиниринг — так в технике и программировании называют исследование некоторого устройства или программы, а также сопроводительной документации в целях обнаружения недокументированных возможностей, изменения исходной системы или её воспроизводства без прямого копирования.
Goujon P. (2001). From Biotechnology to Genomes: The Meaning of the Double Helix. World Scientific Publishing Company // https://books.google.ru/books?id=qRJsTiUAO_AC
Kline R. (2015). The Cybernetics Moment: Or Why We Call Our Age the Information Age. Johns Hopkins University Press // https://books.google.ru/books?id=WgPHCQAAQBAJ
Mayer J. (2009). Jack Ellwood Steele // http://www.ilasting.com/jacksteele.php
Bionics / Online Ethymology Dictionary // https://www.etymonline.com/word/bionics
Goujon P. (2001). From Biotechnology to Genomes: The Meaning of the Double Helix. World Scientific Publishing Company // https://books.google.ru/books?id=qRJsTiUAO_AC
Meet the Board of Directors: Janine Benyus / Biomimicry Institute // https://biomimicry.org/board/
Jacobs S. (2014). Biomimetics: A simple foundation will lead to new insight about process. International Journal of Design & Nature and Ecodynamics, Vol. 9, pp. 83—94 // https://doi.org/10.2495/DNE-V9-N2-83-94.
Hallion R. (2003). Taking Flight: Inventing the Aerial Age, from Antiquity Through the First World War. Oxford University Press, USA // https://books.google.ru/books?id=YRqV_PayIKIC
Opdycke L. (1999). French Aeroplanes Before the Great War. Schiffer Pub // https://books.google.ru/books?id=qAAKAQAAMAAJ
Crouch T. D. (2019). Ader Éole / Encyclopædia Britannica // https://www.britannica.com/topic/Ader-Eole
Suddath C. (2010). A Brief History of: Velcro / Time, Tuesday, June 15, 2010 // http://content.time.com/time/nation/article/0,8599,1996883,00.html
Brian D., Bharat B. (2010). Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review / Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 28 October 2010 // http://doi.org/10.1098/rsta.2010.0201
Mann E. E., Mettetal M. R., May R. M., Drinker M. C., Stevenson B. C., Baiamonte V. L., Marso J. M., Dannemiller E. A., Parker A. E., Reddy S. T., Sande M. K. (2014). Surface Micropattern Resists Bacterial Contamination Transferred by Healthcare Practitioners / Journal of Microbiology & Experimentation, Vol. 1, Iss. 5 // https://www.sharklet.com/2015/01/19/surface-micropattern-resists-bacterial-contamination-transferred-by-healthcare-practitioners-2014/
Elliott D. (2009). Designing packs as nature intended / PackagingNews, 30 September 2009 // https://www.packagingnews.co.uk/news/designing-packs-as-nature-intended-30-09-2009
Mahdavi A., Ferreira L., Sundback C., Nichol J. W., Chan E. P., Carter D. J. D., Bettinger C. J., Patanavanich S., Chignozha L., Ben-Joseph E., Galakatos A., Pryor H., Pomerantseva I., Masiakos P. T., Faquin W., Zumbuehl A., Hong S., Borenstein J., Vacanti J., Langer R., Karp J. M. (2008). A biodegradable and biocompatible gecko-inspired tissue adhesive / Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, Iss. 7, pp. 2307—2312 // https://doi.org/10.1073/pnas.0712117105
Kastrup C. J., Nahrendorf M., Figueiredo J. L., Lee H., Kambhampati S., Lee T., Cho S.-W., Gorbatov R., Iwamoto Y., Dang T. T., Dutta P., Yeon J. H., Cheng H., Pritchard C. D., Vegas A. J., Siegel C. D., MacDougall S., Okonkwo M., Thai A., Stone J. R., Coury A. J., Weissleder R., Langer R., Anderson D. G. (2012). Painting blood vessels and atherosclerotic plaques with an adhesive drug depot / Proceedings of the National Academy of Sciences, Dec 26, 2012 // https://www.pnas.org/content/early/2012/12/10/1217972110
* Адгезив — вещество, способное соединять материалы путём поверхностного сцепления.
Li Y., Huang X. J., Heo S. H., Li C. C., Choi Y. K., Cai W. P., Cho S. O. (2007). Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays / Langmuir 2007, Vol. 23, Iss. 4, pp. 2169—2174, November 16, 2006 // https://doi.org/10.1021/la0620758
Potyrailo R. A., Bonam R. K., Hartley J. G., Starkey T. A., Vukusic P., Vasudev M., Bunning T., Naik R. R., Tang Z., Palacios M. A., Larsen M., Le Tarte L. A., Grande J. C., Zhong S., Deng T. (2015). Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies / Nature Communications, Vol. 6, Article number: 7959 // https://www.nature.com/articles/ncomms8959
Platé N. (1993). Liquid-Crystal Polymers. Springer US // https://books.google.ru/books?id=a3wjjzrmwf0C
Spencer N. J., Hu H. (2020). Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility / Nature Reviews Gastroenterology & Hepatology, Vol. 17, pp. 338—351 // https://doi.org/10.1038/s41575-020-0271-2
Banhey J., von Bartheld C. S. (2017). The Cellular Composition and Glia-Neuron Ratio in the Spinal Cord of a Human and a Non-Human Primate: Comparison with other Species and Brain Regions / Anatomical record (Hoboken, N. J.), Vol. 301, Iss. 4, pp. 697—710 // https://doi.org/10.1002/ar.23728
Huffman C. (2017). Alcmaeon / Stanford Encyclopedia of Philosophy // https://plato.stanford.edu/entries/alcmaeon/
Elhadi A. M., Kalb S., Perez-Orribo L., Little A. S., Spetzler R. F., Preul M. C. (2012). The Journey of Discovering Skull Base Anatomy in Ancient Egypt and the Special Influence of Alexandria / Neurosurgical Focus, Vol. 33, Iss. 2:e2 // https://www.medscape.com/viewarticle/769263_6
Hobbes T. (1969). Leviathan, 1651. Scolar P // https://books.google.ru/books?id=8xyDAAAAMAAJ
Kulstad M., Carlin L. (2013). Leibniz’s Philosophy of Mind / Stanford Encyclopedia of Philosophy // https://plato.stanford.edu/entries/leibniz-mind/
Robbins J. (2008). A Symphony in the Brain: The Evolution of the New Brain Wave Biofeedback. Grove Press // https://books.google.ru/books?id=ucRimHppmv0C
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Robbins J. (2008). A Symphony in the Brain: The Evolution of the New Brain Wave Biofeedback. Grove Press // https://books.google.ru/books?id=ucRimHppmv0C
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Robbins J. (2008). A Symphony in the Brain: The Evolution of the New Brain Wave Biofeedback. Grove Press // https://books.google.ru/books?id=ucRimHppmv0C
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Yamada T., Meng E. (2009). Practical Guide for Clinical Neurophysiologic Testing: EEG. Lippincott Williams & Wilkins // https://books.google.ru/books?id=VdsUrV8jeZ4C
Beck A. (1890). Die Bestimmung der Localisation des Gehirn — und Rückenmarksfunctionen vermittelst der electrischen Erscheinungen / Zentralblatt für Physiologie, Vol. 4, pp. 473—476 // https://www.biodiversitylibrary.org/item/49793#page/481/mode/1up
Yamada T., Meng E. (2009). Practical Guide for Clinical Neurophysiologic Testing: EEG. Lippincott Williams & Wilkins // https://books.google.ru/books?id=VdsUrV8jeZ4C
Jabr F. (2012). Know Your Neurons: The Discovery and Naming of the Neuron / Scientific American, May 14, 2012 // https://blogs.scientificamerican.com/brainwaves/know-your-neurons-the-discovery-and-naming-of-the-neuron/
The Nobel Prize in Physiology or Medicine 1906 / NobelPrize.org, Nobel Media AB 2020, 6 May 2020 // https://www.nobelprize.org/prizes/medicine/1906/summary/
Douglas Fields R. (2017). Why the First Drawings of Neurons Were Defaced / Quantamagazine, September 28, 2017 // https://www.quantamagazine.org/why-the-first-drawings-of-neurons-were-defaced-20170928/
* Исторически анатомы подразделяли ткани мозга на серое вещество (лат. substantia grisea) и белое вещество (лат. substantia alba), руководствуясь цветом соответствующих тканей. Их цветовая дифференциация обусловлена белым цветом миелина и серым цветом кровеносных капилляров и клеточных тел.
Borch-Jacobsen M. (2012). Ernst Fleischl von Marxow (1846-1891): Freud's first therapeutic blunder and how he lied about it / Psychology Today, Feb 07, 2012 // https://www.psychologytoday.com/intl/blog/freuds-patients-serial/201202/ernst-fleischl-von-marxow-1846-1891
Medwed H. (1997). Ernst Fleischl von Marxow (1846—1891): Leben und Werk. Medienverl. Köhler // https://books.google.ru/books?id=lGB4AAAACAAJ
Wickens A. (2009). Introduction to Biopsychology. Pearson Education // https://books.google.ru/books?id=DlBHRK6NGsoC
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Данилевский В. Я. (1949). Электрические явления в головном мозге / Первые отечественные исследования по электроэнцефалографии. — М. С. 87—88.
История изучения биоэлектрической активности головного мозга (2020) / Центр Медицинской Информации. Научная библиотека лаборатории электрофизиологии НЦИЛС // https://cmi.to/электрофизиология-2/электрофизиология-головного-мозга/история-изучения-биоэлектрической-а/
Шойфет М. С. (2011). Сто великих врачей. Вече // https://books.google.ru/books?id=-f2xkgEACAAJ
Караченцев Ю. И. (2009). К 90-летию со дня основания Института проблем эндокринной патологии им. В.Я. Данилевского: страницы истории, достижения и перспективы / Новости медицины и фармации. №10 (284) // http://www.mif-ua.com/archive/issue-9091/article-9106/
Введенский Н.Е. (1884). Телефонические исследования над электрическими явлениями в мышечных и нервных аппаратах. — СПб. // http://books.e-heritage.ru/book/10070047
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Pravdich-Neminsky, VV. (1913). Ein Versuch der Registrierung der elektrischen Gehirnerscheinungen / Zentralblatt für Physiologie, Vol. 27, pp. 951—60 // https://www.biodiversitylibrary.org/item/50775#page/967/mode/1up
* В те годы неврология и психиатрия составляли одну специальность — нейропсихиатрию, чистая неврология в немецкоязычных странах только начинала становиться отдельной дисциплиной.
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Ibañez D. (2014). Hans Berger: Lights and Shadows of the Inventor of Electroencephalography / NE neuroelectrics // https://www.neuroelectrics.com/blog/2014/12/18/hans-berger-lights-and-shadows-of-the-inventor-of-electroencephalography/
Rooney A. (2017). The History of Neuroscience. The Rosen Publishing Group, Inc // https://books.google.ru/books?id=Hd1hDwAAQBAJ
Radin D. (2009). Entangled Minds: Extrasensory Experiences in a Quantum Reality. New York: Paraview Pocket Books // https://books.google.ru/books?id=sUM1Hc-KwJQC
Wiedemann H. R. (1994). Hans Berger / European Journal of Pediatrics, Vol. 153, Iss. 10, p. 705 // https://doi.org/10.1007/BF01954482
Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
Berger H. (1929). Über das Elektrenkephalogramm des Menschen / Archiv Für Psychiatrie Und Nervenkrankheiten, Bd. 87, Ausg. 1, S. 527—570 // https://doi.org/10.1007/bf01797193 // http://www.audiomentaltraining.com/app/wp-content/uploads/Berger-1929-FirstEEG.pdf
* Бергер отверг неудачный, по его мнению, термин «электроцереброграмма» из-за сочетания в нём греческого и латинских корней, предложив вместо него более логичный вариант «электроэнкефалограмма» (Elektrenkephalogram), в общем-то, фонетически более правильный, чем термин, принятый в итоге научным сообществом.
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Grass A. M. (1984). The Electroencephalographic Heritage Until 1960 / American Journal of EEG Technology, Vol. 24, pp. 133–173 // https://doi.org/10.1080/00029238.1984.11080140
* Сегодня их часто называют волнами или ритмом Бергера, хотя сам учёный из скромности возражал против этого названия.
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Berger H. (1929). Über das Elektrenkephalogramm des Menschen. Archiv Für Psychiatrie Und Nervenkrankheiten, Bd. 87, Ausg. 1, S. 527—570 // https://doi.org/10.1007/bf01797193
** Пароксизмальный разряд — группа колебаний, резко отличных по структуре и амплитуде от фоновой активности; пароксизмальный разряд внезапно появляется, продолжается от долей секунды до нескольких секунд, а затем так же внезапно прекращается.
Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC
Zeidman L. A., Stone J., Kondziella D. (2013). New revelations about Hans Berger, father of the EEG, and his ties to the Third Reich // https://doi.org/10.1177/0883073813486558
Zeidman L. A., Kondziella D., Stone J. L. (2016). Authors’ Response to Letter to the Editor / Journal of Child Neurology, Vol 31, Iss. 14, 2016 // https://doi.org/10.1177/0883073816662419
Berger H. (1940). Psyche. Jena: Gustav Fischer // https://books.google.ru/books?id=mbOgvQEACAAJ
du Bois-Reymond E. (1848). Untersuchungen über tierische Elektrizität / Von den allgemeinen Gesetzen der Nervenerregung durch den elektrischen Strom (Band 1, Chapter 2.2). G. Reimer, Berlin // https://archive.org/details/bub_gb_AtkPAAAAQAAJ/page/n6
Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
Fick A. (1863). Beiträge zur vergleichenden Physiologie der irritabelen Substanzen: Mit in den Text eingedruckten Holzstichen. Vieweg // https://books.google.ru/books?id=zCFCAAAAcAAJ
von Kries J. (1882). Ueber die Erregung des motorischen Nerven durch Wechselströme / Berichte über die Verhandlungen der Naturforschenden Gesellschaft zu Freiburg im Breisgau, Vol. 8, Iss. 2, pp. 170—204 // https://www.biodiversitylibrary.org/item/42625#page/198/mode/1up
Pflüger E. (1859). Untersuchungen über die Physiologie des Electrotonus. August Hirschwald.
Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
* Элемент Лекланше — марганцево-цинковый элемент питания (источник тока), катод которого изготовлен из смеси графита с диоксидом марганца (MnO2), анод — из металлического цинка, а в роли электролита выступает раствор хлорида аммония NH4Cl.
Горбунов Б. Б., Востриков В. А., Нестеренко И. В., Телышев Д. В. (2018). История открытия закона Гоорвега-Вейса-Лапика / Медицинская техника. № 5 (311) // http://www.defibrillation.ru/download/Medicinskaya_texnika,2018,5,48-50.pdf
Hoorweg J. L. (1892). Ueber die elektrische Nervenerregung / Archiv für die gesame Physiologie des Menschen und der Tiere, Vol. 52, Iss. 3—4, pp. 87—108 // https://doi.org/10.1007/BF01661875
Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
Pflüger E. (1893). J. L. Hoorweg und die electrische Nervenerregung / Archiv für die gesame Physiologie des Menschen und der Tiere, Vol. 53, Iss. 11—12, p. 616
Weiss G. (1901). Sur la possibilité de rendre comparables entre eux les appareils servant à l’excitation électricque / Archives Italiennes de Biologie, Vol. 35, Iss. 1, pp. 413—446 // http://www.architalbiol.org/aib/article/view/35413
van Dongen M., Serdijn W. (2016). Design of Efficient and Safe Neural Stimulators: A Multidisciplinary Approach. Analog Circuits and Signal Processing. Springer International Publishing // https://books.google.ru/books?id=UGahCwAAQBAJ
Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
Lapicque L. (1909). Définition expérimentale de l'excitabilité / Comptes rendus des séances de la Société de biologie, 67, 280—283 // https://gallica.bnf.fr/ark:/12148/bpt6k6541404v/f288.image
Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0
Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
M. Max Lebaudy's yacht: A Mother's Neat Little Scheme Fails Of Its Aim, but Benefits Science / Los Angeles Herald, Volume 41, Number 25, 5 November 1893 // https://cdnc.ucr.edu/?a=d&d=LAH18931105&e=-------en--20--1--txt-txIN--------1
Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
Pinault M. (2000). Frédéric Joliot-Curie. O. Jacob // https://books.google.ru/books?id=ZQF1O1DLvHsC
Duclert V. (1998). La Ligue de “l’epoque heroique”: la politique des savants / Le Mouvement Social, Vol. 183 (27) // https://doi:10.2307/3779613
Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
Lapicque L. (1907). Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization / Journal of Physiol Pathol Générale, 9, 620-635 // https://fr.wikisource.org/wiki/Recherches_quantitatives_sur_l%27excitation_%C3%A9lectrique_des_nerfs_trait%C3%A9e_comme_une_polarisation
Lapicque L. (2007). Quantitative investigations of electrical nerve excitation treated as polarization. Translated by: Nicolas Brunel, Mark C. W. van Rossum / Biological Cybernetics, 2007 // https://core.ac.uk/download/pdf/21172797.pdf
Горбунов Б. Б., Востриков В. А., Нестеренко И. В., Телышев Д. В. (2018). История открытия закона Гоорвега-Вейса-Лапика / Медицинская техника, октябрь // https://www.researchgate.net/publication/328579029_The_History_of_the_Discovery_of_the_Hoorweg-Weiss-Lapicque_Law
Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0
* Потенциалом действия называют волну возбуждения, перемещающуюся по мембране живой клетки в виде кратковременного изменения мембранного потенциала (т. е. разницы в электрическом потенциале между зарядами внутренней и внешней стороны мембраны) на небольшом участке нейрона или кардиомиоцита. Далее по тексту книги мы часто для простоты будем использовать термин «импульс», хотя среди нейрофизиологов принято использовать более строгий термин «потенциал действия».
** Нейромедиаторами называют биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса через синаптическое пространство между нейронами.
Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
Davis H. (1923). The relationship of the “Chronaxie” of muscle to the size of the stimulating electrode / Journal of Physiology, Vol. 57, pp. 81—82.
Rushton W. A. H. (1935). The time factor in electrical excitation / Biological Reviews, Vol. 10, Iss. 1, pp. 1—17 // https://doi.org/10.1111/j.1469-185X.1935.tb00474.x
Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
Lapicque L., Gaultier P. (1943). La machine nerveuse. (Flammarion) réédition numérique FeniXX // https://books.google.ru/books?id=r2qJDwAAQBAJ
Mazliak L., Shafer G. (2011). What Does the Arrest and Release of Emile Borel and His Colleagues in 1941 Tell Us about the German Occupation of France? / Science in Context, Vol. 24, Iss. 4, pp. 587—623, December 2011 // https://doi.org/10.1017/S0269889711000238
Peltier C. Louis Édouard Lapicque (1866–1952) // http://www.charleslapicque.fr/a-propos-de/biographie/biographie-detaillee/resources/pdf/Louis_Lapicque.pdf
Lykknes A., Opitz D. L., Van Tiggelen B. (2012). For Better or For Worse? Collaborative Couples in the Sciences. Science Networks. Historical Studies. Springer Basel // https://books.google.ru/books?id=yR0fPFFbKqsC
Abbott L. F. (1997). Lapicque’s introduction of the integrate-and-fire model neuron / Brain Research Bulletin, Vol. 50, Iss. 5—6, November—December 1999, pp. 303—304 // https://doi.org/10.1016/S0361-9230(99)00161-6
Liang P., Wu S., Gu F. (2015). An Introduction to Neural Information Processing. Springer Netherlands // https://books.google.ru/books?id=XFZECwAAQBAJ
Calvo P., Gomila T. (2008). Handbook of Cognitive Science: An Embodied Approach. Elsevier Science // https://books.google.ru/books?id=jxnhqHuo3gQC
Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0
Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/
Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
Bowditch H. P (1871). Über die Eigenthümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen / Arbeiten aus der Physiologischen Anstalt zu Leipzig // https://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/permanent/vlp/lit1387/index.meta
Rosenblueth A. (1935). The All-or-None Principle and the Nerve Effector Systems / The Quarterly Review of Biology, Vol. 10, No. 3, pp. 334-340 // https://doi.org/10.1086/394489
Lucas K. (1905). On the gradation of activity in a skeletal muscle-fibre / The Journal of Physiology, Vol. 33, Iss. 2, pp. 125—137 // https://doi.org/10.1113/jphysiol.1905.sp001115
Lucas K. (1909). The "all-or-none" contraction of the amphibian skeletal muscle fibre / The Journal of Physiology, Vol. 38, Iss. 2—3, pp. 113-133 // https://doi.org/10.1113/jphysiol.1909.sp001298
Smith D. L. (1963). Basic Concepts in Physiology: II. Keith Lucas and the Nerve-Muscle Response / The American Biology Teacher, Vol. 25, Iss. 8, pp. 610—615 // https://doi.org/10.2307/4440465
Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006
Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/
Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
Piccolino M., Bresadola M. (2013). Shocking Frogs: Galvani, Volta, and the Electric Origins of Neuroscience. Oxford University Press // https://books.google.ru/books?id=_VYGAQAAQBAJ
Lucas K., Adrian E. D. (1917). The Conduction of the Nervous Impulse. Longmans, Green and Company // https://books.google.ru/books?id=fNVOAAAAMAAJ
Cowan W. M., Südhof T. C., Stevens C. P. (2003). Synapses. JHU Press // https://books.google.ru/books?id=FO5efrKGVQoC
Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
Gasser H. S., Newcomer H. S. (1921). Physiological action currents in the phrenic nerve. An application of the thermionic vacuum tube to nerve physiology / The American Journal of Physiology, Vol. 57, Iss. 1, pp. 1—26 // https://doi.org/10.1152/ajplegacy.1921.57.1.1
Павлов А. 5 июля 1888 г / Critical: Сайт медицины критических состояний. Календарь // https://www.critical.ru/calendar/0507gasser.htm
Gasser H. S., Erlanger J. (1929). Role of size in establishment of nerve block by pressure or cocaine / The American Journal of Physiology, Vol. 88, pp. 581—589.
Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006
Kato G.-I. (1970). The road a scientist followed. Notes of Japanese Physiology as I myself experienced it / Annual Review of Physiology, 1970, Vol. 32, pp. 1—22 // https://doi.org/10.1146/annurev.ph.32.030170.000245
Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/
The Nobel Prize in Physiology or Medicine 1944. NobelPrize.org. Nobel Media AB 2020, 30 Oct 2020 // https://www.nobelprize.org/prizes/medicine/1944/summary/
* Частотно-импульсная модуляция — такой вид импульсной модуляции, при которой управление средним значением выходного параметра осуществляется за счёт изменения частоты следования импульсов, обладающих неизменной длительностью.
Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006
Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
Сандаков Д. Б. (2011). Возбуждение и его механизмы / Электронный учебник по курсу «Физиология человека и животных» // http://www.bio.bsu.by/phha/01/01_text.html
Сазонов В. Ф. (2011). Функциональная классификация мембранных ионных каналов / Научные труды III Съезда физиологов СНГ. — М.: Медицина-Здоровье. С. 72 // http://www.physiology-cis.org/files/YA2011_Proceedings.pdf
Сазонов В. Ф. (2017). Ионные каналы мембраны / Кинезиолог // http://kineziolog.bodhy.ru/content/ionnye-kanaly-membrany
Zangari A., Micheli D., Galeazzi R., Tozzi A. (2018). Node of Ranvier as an Array of Bio-Nanoantennas for Infrared Communication in Nerve Tissue / Scientific Reports, Vol. 8, p. 539 // https://doi.org/10.1038/s41598-017-18866-x
Castelfranco A. M., Hartline D. K. (2015). The evolution of vertebrate and invertebrate myelin: a theoretical computational study / Journal of Computational Neuroscience, Vol. 38, pp. 521—538 // https://doi.org/10.1007/s10827-015-0552-x
Hodgkin A. L., Huxley A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve / The Journal of Physiology. 117 (4): 500–44 // https://doi.org/10.1113%2Fjphysiol.1952.sp004764
Forrest M. D. (2014). Can the Thermodynamic Hodgkin–Huxley Model of Voltage-Dependent Conductance Extrapolate for Temperature? / Computation, Vol. 2, Iss. 2, pp. 47—60 // https://doi.org/10.3390%2Fcomputation2020047
Pakdaman K., Thieullen M., Wainrib G. (2010). Fluid limit theorems for stochastic hybrid systems with applications to neuron models / Advances in Applied Probability, Vol. 42, Iss. 3, pp. 761—794 // https://doi.org/10.1239/aap/1282924062
Zheng Q., Wei G. W. (2011). Poisson-Boltzmann-Nernst-Planck model / Journal of Chemical Physics, 134 (19): 194101 // https://doi.org/10.1063%2F1.3581031
Tai-Chia Lin T.-C. (2011). The Poisson The Poisson-Nernst-Planck (PNP) system for ion transport (PNP) system for ion transport / 3rd OCAMI-TIMS Workshop in Japan, Osaka, March 13—16, 2011 // http://www.sci.osaka-cu.ac.jp/~ohnita/2010/TCLin.pdf
Nagumo J., Arimoto S., Yoshizawa S. (1962). An active pulse transmission line simulating nerve axon / Proceedings of the IRE, Vol. 50, pp. 2061—2070 // https://ieeexplore.ieee.org/document/4066548
Izhikevich E. M. (2003). Simple model of spiking neurons / IEEE transactions on neural networks, Vol. 14, No. 6, November 2003 // http://www.rctn.org/vs265/izhikevich-nn03.pdf
MacGregor R. (2012). Neural and Brain Modeling. Elsevier // https://books.google.ru/books?id=0vOiz7Ztx10C
Briggman K. L., Helmstaedter M., Denk W. (2011). Wiring specificity in the direction-selectivity circuit of the retina / Nature, vol. 471, Iss. 7337, pp. 183—188 // https://doi.org/10.1038/nature09818
Kim J. S., Greene M. J., Zlateski A., Lee K., Richardson M., Turaga S. C., Purcaro M., Balkam M., Robinson A., Behabadi B. F., Campos M., Denk W., Seung H. S. (2014). Space–time wiring specificity supports direction selectivity in the retina / Nature, Vol. 509, Iss. 7500, pp. 331—336 // https://doi.org/10.1038%2Fnature13240
* Биполярные клетки (bipolar cells) обычно имеют веретенообразную форму и два отростка (один аксон и один дендрит), именно поэтому их и называют биполярными. В сетчатке они соединяют через синапсы одну колбочку или несколько палочек зрительной системы с одной ганглионарной или амакриновой клеткой (последнее характерно для биполярных клеток палочек).
** Амакриновые клетки (amacrine cells) получили название от греческой приставки α (не-) и слов μακρός (длинный) и ίνα (волокно). Амакриновые клетки — это тормозящие нейроны, выходы которых соединяются с ганглионарными клетками сетчатки и/или с биполярными клетками.
*** Ганглионарные клетки (retinal ganglion cells, RGC) — слой нейронов, расположенных в непосредственной близости от внутренней поверхности сетчатки. Они генерируют сигналы, которые затем передаются в зрительную кору.
Коровски Ю. (2015). Игры ради науки / XX2 век, 23 марта // https://22century.ru/popular-science-publications/games-for-science
Zlateski A., Lee K., Seung H. S. (2017). Scalable training of 3D convolutional networks on multi-and many-cores / Journal of Parallel and Distributed Computing, Vol. 106, pp. 195—204 // https://doi.org/10.1016/j.jpdc.2017.02.006
* Нейронаука — междисциплинарная область знаний, занимающаяся изучением нейронных процессов.
Alivisatos P. A., Chun M., Church G. M., Greenspan R. J., Roukes M. L., Yuste R. (2012). The Brain Activity Map Project and the Challenge of Functional Connectomics / Neuron, Vol. 74, Iss. 6, pp. 970—974, June 21, 2012 // https://doi.org/10.1016/j.neuron.2012.06.006
Jürgens K. D. (2002). Etruscan shrew muscle: the consequences of being small. The Journal of Experimental Biology. 205 (Pt 15): 2161–2166 // https://www.ncbi.nlm.nih.gov/pubmed/12110649
Alivisatos P. A., Chun M., Church G. M., Greenspan R. J., Roukes M. L., Yuste R. (2012). The Brain Activity Map Project and the Challenge of Functional Connectomics / Neuron, Vol. 74, Iss. 6, pp. 970—974, June 21, 2012 // https://doi.org/10.1016/j.neuron.2012.06.006
White J. G., Southgate E., Thomson J. N., Brenner S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans / Philosophical Transactions of the Royal Society B, Vol. 314, Iss. 1165, 12 November 1986, pp. 1—340 // https://doi.org/10.1098/rstb.1986.0056
Ryan R., Lu Z., Meinertzhagen I. A. (2016). The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling / eLife 2016; 5:e16962 // https://doi.org/10.7554/eLife.16962
DeWeerdt S. (2019). How to map the brain / Nature, Vol. 571, S6-S8, 24 July 2019 // https://www.nature.com/articles/d41586-019-02208-0
Cook S. J., Jarrell T. A., Brittin C. A., Wang Y., Bloniarz A. E., Yakovlev M. A., Nguyen K. C. Q., Tang L. T.-H., Bayer E. A., Duerr J. S., Bülow H. E., Hobert O., Hall D. H., Emmons S. W. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes / Nature, Vol. 571, pp. 63—71 // https://doi.org/10.1038/s41586-019-1352-7
Zheng Z., Lauritzen J. S., Perlman E., Robinson C. G., Nichols M., Milkie D., Torrens O., Price J., Fisher C. B., Sharifi N., Calle-Schuler S. A., Kmecova L., Ali I. J., Karsh B., Trautman E. T., Bogovic J. A., Hanslovsky P., Jefferis G. S. X. E., Kazhdan M., Khairy K., Saalfeld S., Fetter R. D., Bock D. D. A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster / Cell, Vol. 174, Iss. 3, pp. 730—743.E22, July 26, 2018 // https://doi.org/10.1016/j.cell.2018.06.019
Li P. H., Maitin-Shepard J. (2019). An Interactive, Automated 3D Reconstruction of a Fly Brain / Google AI Blog, August 5, 2019 // https://ai.googleblog.com/2019/08/an-interactive-automated-3d.html
Li P. H., Lindsey L. F., Januszewski M., Zheng Z., Bates A. S., Taisz I., Tyka M., Nichols M., Li F., Perlman E., Maitin-Shepard J., Blakely T., Leavitt L., Jefferis G. S. X. E., Bock D., Jain V. (2019). Automated Reconstruction of a Serial-Section EM Drosophila Brain with Flood-Filling Networks and Local Realignment // https://doi.org/10.1101/605634
Jain V., Januszewski M. (2018). Improving Connectomics by an Order of Magnitude / Google AI Blog, July 16, 2018 // https://ai.googleblog.com/2018/07/improving-connectomics-by-order-of.html
Blakely T. (2021). A Browsable Petascale Reconstruction of the Human Cortex / Google AI Blog, June 1, 2021 // https://ai.googleblog.com/2021/06/a-browsable-petascale-reconstruction-of.html
Shapson-Coe A., Januszewski M., Berger D. R., Pope A., Wu Y., Blakely T., Schalek R. L., Li P., Wang S., Maitin-Shepard J., Karlupia N., Dorkenwald S., Sjostedt E., Leavitt L., Lee D., Bailey L., Fitzmaurice A., Kar R., Field B., Wu H., Wagner-Carena J., Aley D., Lau J., Lin Z., Wei D., Pfister H., Peleg A., Jain V., Lichtman J. W. (2021). A connectomic study of a petascale fragment of human cerebral cortex // https://doi.org/10.1101/2021.05.29.446289
Explore H01: One cubic millimeter of the human cerebral cortex (2021) // https://h01-release.storage.googleapis.com/explore.html
Wilhelm B. G., Mandad S., Truckenbrodt S., Kröhnert K., Schäfer C., Rammner B., Koo S. J., Claßen G. A., Krauss M., Haucke V., Urlaub H., Rizzoli S. O. (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. / Science, Vol. 344, Iss. 6187, pp. 1023—1028 // https://doi.org/10.1126/science.1252884
Doerr A. (2014). Modeling the synapse / Nature Methods, Vol. 11, pp. 788–789 // https://doi.org/10.1038/nmeth.3057
* Астроцит (от греч. άστρον — звезда и κύτος — клетка) — тип нейроглиальной клетки звёздчатой формы с многочисленными отростками.
Jolivet R., Coggan J. S., Allaman I., Magistretti P. J. (2015). Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble / PLOS Computational Biology, February 26, 2015. // https://doi.org/10.1371/journal.pcbi.1004036
de Ceglia R., Ledonne A., Litvin D. G., Lind B. L., Carriero G., Latagliata E. C., Bindocci E., Di Castro M. A., Savtchouk I., Vitali I., Ranjak A., Congiu M., Canonica T., Wisden W., Harris K., Mameli M., Mercuri N., Telley L., Volterra A. (2023). Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. / Nature, Vol. 262, 06 September 2023. // https://doi.org/10.1038/s41586-023-06502-w
DeWeerdt S. (2019). How to map the brain / Nature, Vol. 571, S6-S8, 24 July 2019 // https://www.nature.com/articles/d41586-019-02208-0
OpenWorm foundation (2022). OpenWorm // https://openworm.org/
Haspel G., Boyden E. S., Brown J., Church G., Cohen N., Fang-Yen C., Flavell S., Goodman M. B., Hart A. C., Hobert O., Kagias K., Lockery S., Lu Y., Marblestone A., Matelsky J., Pfister H., Rotstein H. G., Scholz M., Shlizerman E., Simeon Q., Skuhersky M. A., Venkatachalam V., Yang G. R., Yemini E., Zimmer M., Kording K. P. (2023). To reverse engineer an entire nervous system // https://arxiv.org/abs/2308.06578
Сегеда Г. (2022). Цифровой двойник головастика — ещё один шаг на пути к искусственному разуму? / Наука в Сибири, 31 янв. // https://sbras.info/articles/nauka-dlya-obschestva/cifrovoy-dvoynik-golovastika-esche-odin-shag-na-puti-k
Ferrario A., Palyanov A., Koutsikou S., Li W., Soffe S., Roberts A., Borisyuk R. (2021). From decision to action: Detailed modelling of frog tadpoles reveals neuronal mechanisms of decision-making and reproduces unpredictable swimming movements in response to sensory signals / PLOS Computational Biology, December 13, 2021 // https://doi.org/10.1371/journal.pcbi.1009654
McCulloch W. S., Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity / Bulletin of Mathematical Biophysics, 5: 115 // https://doi.org/10.1007/BF02478259
Heims S. J. (1991). Describing “Embodiments of mind”: McCulloch and his cohorts / Chrisley R., Begeer S. (2000). Artificial Intelligence: Critical Concepts. Routledge // https://books.google.ru/books?id=dLQ3bDy2tgYC
Conway F., Siegelman J. (2009). Dark Hero of the Information Age: In Search of Norbert Wiener, The Father of Cybernetics. Basic Books // https://books.google.ru/books?id=u_w4DgAAQBAJ
Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // https://nautil.us/the-man-who-tried-to-redeem-the-world-with-logic-235253/
* Венский кружок (нем. Wiener Kreis) — группа учёных, регулярно собиравшаяся в Вене в конце 20-х — середине 30-х гг. XX в. С деятельностью Венского кружка обычно связывают появление логического позитивизма.
Arbib M. A. (2016). Foreword to the 2016 reussue / McCulloch W. S., Papert S. (2016). Embodiments of Mind. MIT Press // https://books.google.ru/books?id=ITxMDQAAQBAJ
Conway F., Siegelman J. (2009). Dark Hero of the Information Age: In Search of Norbert Wiener, The Father of Cybernetics. Basic Books // https://books.google.ru/books?id=u_w4DgAAQBAJ
Abraham T. H. (2002). (Physio)logical circuits: The intellectual origins of the McCulloch-Pitts neural networks / Journal of the History of the Behavioral Sciences, Vol. 38, Iss. 1, pp. 3—25 // https://doi.org/10.1002/jhbs.1094
Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ
Орехова К. В. (2010). Дворянский Род Ржевских в Дзержинске / Городской журнал Светский в Дзержинске // http://www.svetsky.com/dvoryanskoe-gnezdo-dzerzhinska/dvorianskii-rod-rzhevskikh-v-dzerzhinske
Модзалевский В. Л. (2012). Малороссийский родословник. Т. 4. С. 220—432 // https://books.google.ru/books?id=OuaWBgAAQBAJ
Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ
Рашевский Н. П. (1920). Н. П. Рашевский — В. И. Вернадскому. № 706, 23 октября 1920 / Вернадський В. I. (2012). Вибрані наукові праці академіка В.І. Вернадського. Т. 2: Володимир Іванович Вернадський. Листування з українськими вченими.
Невзорова И. М. (2007). Таврида в изгнании / «Серебряный век» в Крыму: взгляд из XXI столетия. Материалы Четвёртых Герцыковских чтений в г. Судаке 6—10 июня 2005 года.
Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ
Harman O., Dietrich M. R. (2012). Outsider Scientists: Routes to Innovation in Biology. University of Chicago Press // https://books.google.ru/books?id=yffPAQAAQBAJ
Nicolas Rashevsky / Worddisk // https://www.worddisk.com/wiki/Nicholas_Rashevsky/
Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ
Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ
Rashevsky N. P. (1924). Is Time the Fourth Dimension? / Scientific American, Vol. 131, Iss. 6 / https://www.scientificamerican.com/article/is-time-the-fourth-dimension/
Current Opinion, Vol. 78, 1924, p. 78.
* Дисперсными называют системы, состоящие как минимум из двух фаз, одна из которых мелко раздроблена и равномерно распределена во второй, сплошной фазе. В зависимости от размера частиц дисперсной фазы выделяют грубодисперсные (с размером частиц больше 100 нм) и тонкодисперсные (с размером частиц от 1 до 100 нм), или коллоидные, системы. Если же размер частиц дисперсной фазы становится меньше 1 нм, то система становится раствором.
Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ
Rosen R. (1991). Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life. Columbia University Press // https://books.google.ru/books?id=DR8L4snDnkIC
Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ
* Один из вариантов этого анекдота: «Собрали биолога, математика и физика и попросили их придумать что-нибудь, чтобы всегда выигрывать на бегах. Через год учёные рассказывают о своих достижениях.
Биолог: Зная точную родословную лошади, успехи её родителей, чем её кормили, как лечили, я могу точно назвать максимальную скорость.
Математик: Имея точные статистические данные предыдущих забегов этих лошадей, я могу назвать приблизительные результаты этого.
Физик: Мне нужно ещё десять лет, пятьдесят миллионов долларов, несколько помощников и лаборатория, но я уже построил модель движения сферического коня в вакууме».
Anderson J., Rosenfeld E. (2000). Talking Nets: An Oral History of Neural Networks. New York, NY, USA: MIT Press // https://books.google.ru/books?id=-l-yim2lNRUC
Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ
Abraham T. H. (2004). Nicolas Rashevsky’s Mathematical Biophysics / Journal of the History of Biology, Vol. 37, Iss. 2, pp. 333—385 / https://doi.org/10.1023/b:hist.0000038267.09413.0d
Conway F., Siegelman J. (2009). Dark Hero of the Information Age: In Search of Norbert Wiener, The Father of Cybernetics. Basic Books // https://books.google.ru/books?id=u_w4DgAAQBAJ
Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic
Day Staff Writer (2009). Old Lyme family looks to future of land with guidance from past / The Day, published March 13.2000, updated December 29, 2009 // https://www.theday.com/article/20000313/DAYARC/303139970
Malapi-Nelson A. (2017). The Nature of the Machine and the Collapse of Cybernetics: A Transhumanist Lesson for Emerging Technologies. Palgrave Studies in the Future of Humanity and its Successors. Springer International Publishing // https://books.google.ru/books?id=-g0rDwAAQBAJ
Levine Y. (2019). Surveillance Valley: The Secret Military History of the Internet. Icon Books Limited // https://books.google.ru/books?id=Rph5DwAAQBAJ
Levine Y. (2019). Surveillance Valley: The Secret Military History of the Internet. Icon Books Limited // https://books.google.ru/books?id=Rph5DwAAQBAJ
Joby Milo A. (1994). In Eves' circles. MAA notes 34. Mathematical Association of America // https://books.google.ru/books?id=CNzuAAAAMAAJ
Chang S. (2011). Academic Genealogy of Mathematicians. World Scientific // https://books.google.ru/books?id=4siw31DPONUC
Powell A. B., Frankenstein M. (2000). Remembering Dirk Jan Struik, 1894-2000 // https://www.maa.org/news/remembering-dirk-jan-struik-1894-2000
Chang S. (2013). The Secret Guide to Computers. Springer Science & Business Media // https://books.google.ru/books?id=gMYGCAAAQBAJ
Hardesty L. (2011). The Original Absent-Minded Professor / MIT Technology Review, Jun 21, 2011 // https://www.technologyreview.com/s/424363/the-original-absent-minded-professor/
Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic
Priestley M. (2011). A Science of Operations: Machines, Logic and the Invention of Programming. Springer London // https://books.google.ru/books?id=uflV0_q-FEUC
Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic
Rosenbluelh А., Wiener N., Bigelow J. (1943). Behavior, Purpose and Teleology / Philosophy of Science, 1943, Vol. 10, No. 1, pp. 18—24 // https://doi.org/10.1086/286788
Masani P. R. (1990). Norbert Wiener 1894–1964. Vita Mathematica. Birkhäuser // https://books.google.ru/books?id=TpT_GfMId-sC
The Coalescence of Cybernetics / American Society for Cybernetics: Foundations: History of Cybernetics // http://www.asc-cybernetics.org/foundations/history2.htm
Kline R. R. (2015). The Cybernetics Moment: Or Why We Call Our Age the Information Age. New Studies in American Intellectual and Cultural History. JHU Press // https://books.google.ru/books?id=NQPHCQAAQBAJ
Josiah Macy, Jr. Foundation. (1960). A review of activities, 1956-1960. New York: Josiah Macy, Jr. Foundation, p. 7 // https://books.google.ru/books/about/Josiah_Macy_Jr_Foundation.html?id=shJrAAAAMAAJ
Шутина Ю. (2017). Год разоблачения сенсаций. Главные открытия и достижения археологов в 2016 г. / Meduza, 5 янв. // https://meduza.io/feature/2017/01/05/god-razoblacheniya-sensatsiy
von Neumann J. (1945). First Draft of a Report on the EDVAC. Moore School of Electrical Engineering. University of Pennsylvania / IEEE Annals of the History of Computing, vol. 15, No. 1, 1993 // http://web.mit.edu/STS.035/www/PDFs/edvac.pdf
Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic
Moye W. T. (1996). ENIAC: The Army-Sponsored Revolution. United States Army Research Laboratory // http://ftp.arl.army.mil/mike/comphist/96summary/index.html
Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic
Smalheiser N. (2000). Walter Pitts / Perspectives in biology and medicine, 43, pp. 217—226 // https://doi.org/10.1353/pbm.2000.0009
Kline R. (2015). The Cybernetics Moment: Or Why We Call Our Age the Information Age. Johns Hopkins University Press // https://books.google.ru/books?id=WgPHCQAAQBAJ
Soni J., Goodman R. (2017). A Mind at Play: How Claude Shannon Invented the Information Age. Simon & Schuster // https://books.google.ru/books?id=ABlpDQAAQBAJ
Smalheiser N. (2000). Walter Pitts / Perspectives in biology and medicine, 43, pp. 217—226 // https://doi.org/10.1353/pbm.2000.0009
* Пенеплен (в геоморфологии) — практически ровная, местами слабовсхолмлённая поверхность, которая была сформирована на месте древних гор.
** Аноэтический — не полностью сознающий; находящийся на грани сознания.
*** Номотет — законодатель; у афинян: член совета, назначенный для испытания перемен, предполагавшихся в законах Солона.
Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic
Malapi-Nelson A. (2017). The Nature of the Machine and the Collapse of Cybernetics: A Transhumanist Lesson for Emerging Technologies. Palgrave Studies in the Future of Humanity and its Successors. Springer International Publishing // https://books.google.ru/books?id=-g0rDwAAQBAJ
Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // https://nautil.us/the-man-who-tried-to-redeem-the-world-with-logic-235253/
Franchi S., Bianchini F. (2011). The Search for a Theory of Cognition: Early Mechanisms and New Ideas. Rodopi // https://books.google.ru/books?id=aRzSx0Jse-0C
Malapi-Nelson A. (2017). The Nature of the Machine and the Collapse of Cybernetics: A Transhumanist Lesson for Emerging Technologies. Palgrave Studies in the Future of Humanity and its Successors. Springer International Publishing // https://books.google.ru/books?id=-g0rDwAAQBAJ
McCulloch W. S., Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity / Bulletin of Mathematical Biophysics, 5: 115 // https://doi.org/10.1007/BF02478259
Kleene S. (1951). Representation of events in nerve nets and finite automata // https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
* Это буква «тета», а не ноль, перерубленный пополам; я мог бы заменить её на другую букву без перемены смысла, но всё-таки решил оставить её ради аутентичности, а также для того, чтобы читателям, боящимся математических выражений, в этом месте было страшнее.
McCulloch W. S., Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity / Bulletin of Mathematical Biophysics, 5: 115 // https://doi.org/10.1007/BF02478259
von Neumann J. (1951). The General and Logical Theory of Automata / Jeffress L. A. (1951). Cerebral Mechanisms in Behavior: The Hixon Symposium. Wiley. New York // https://books.google.ru/books?id=0vgMAAAAIAAJ
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Piccinini G. (2004). The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts's “Logical Calculus of Ideas Immanent in Nervous Activity” / Synthese, Vol. 141 (2) // https://doi.org/10.1023/B:SYNT.0000043018.52445.3e
Kleene S. (1951). Representation of events in nerve nets and finite automata // https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
Pierpoint N. (2009). Why are regular expressions called “regular” expressions? / StackOverflow, Jun 10 '09 // https://stackoverflow.com/questions/975465/why-are-regular-expressions-called-regular-expressions
Wright P. (2012). Why is a regular language called 'regular'? / StackExchange, May 10 '12 // https://cs.stackexchange.com/questions/1771/why-is-a-regular-language-called-regular/1772
Weller T. (2016). How did Regex get its name? / StackExchange, Mar 9 '16 // https://ell.stackexchange.com/questions/83917/how-did-regex-get-its-name
Piccinini G. (2004). The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts's “Logical Calculus of Ideas Immanent in Nervous Activity” / Synthese, Vol. 141 (2) // https://doi.org/10.1023/B:SYNT.0000043018.52445.3e
Kleene S. (1951). Representation of events in nerve nets and finite automata // https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Landahl H. D., McCulloch W. S., Pitts W. (1943). A statistical consequence of the logical calculus of nervous nets. The Bulletin of Mathematical Biophysics, 5(4), 135–137 // https://doi.org/10.1007/bf02478260
Turing A. (1946). Turing Letter to W. Ross Ashby // http://www.rossashby.info/letters/turing.html
Copeland B. J. (2012). Alan Turing's Electronic Brain: The Struggle to Build the ACE, the World's Fastest Computer. OUP Oxford // https://books.google.ru/books?id=YhQZnczOS7kC
Turing A. (1948). Intelligent Machinery // http://www.alanturing.net/intelligent_machinery/
Gabbay D., Woods J., Thagard P. (2006). Philosophy of Psychology and Cognitive Science. Handbook of the Philosophy of Science. Elsevier Science // https://books.google.ru/books?id=Lp93PtrvM0MC
Turing A. (1948). Intelligent Machinery // http://www.alanturing.net/intelligent_machinery/
Shimbel A., Rapoport A. (1948). A statistical approach to the theory of the central nervous system. The Bulletin of Mathematical Biophysics, 10(1), 41–55 // https://doi.org/10.1007/bf02478329
Hebb D. (1949). The Organization of Behavior: A Neuropsychological Theory. A Wiley book in clinical psychology. Wiley // https://books.google.ru/books?id=dZ0eDiLTwuEC
Thorndike E. L., Bruce D. (1970). Animal Intelligence: Experimental Studies. Transaction Publishers // https://books.google.ru/books?id=Go8XozILUJYC
Thorndike E. L. (1932). The Fundamentals Of Learning. Teachers College, Columbia University // https://archive.org/details/in.ernet.dli.2015.157080/page/n29
Thorndike E. L. (1911). Animal intelligence: experimental studies. Animal behavior series. New York, The Macmillan Company // https://doi.org/10.5962/bhl.title.55072
Майоров Ф. П. (1948). История учения об условных рефлексах. — М.: Академия Медицинских наук СССР // http://anfiz.ru/books/item/f00/s00/z0000021/index.shtml
Pavlov I. P., Anrep G. V. (1927). Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford university press: Humphrey milford // https://books.google.ru/books?id=aGMSyQEACAAJ
* Гиропилот (также гирорулевой) — электронавигационный прибор, работающий на основании показаний гирокомпаса. Гиропилот осуществляет автоматическое удержание судна на заданном курсе с гораздо большей точностью, чем это может делать человек, использующий компас.
Hoggett R. (2009). 1951 — SNARC Maze Solver — Minsky / Edmonds (American) / cyberneticzoo.com: a history of cybernetic animals and early robots // http://cyberneticzoo.com/mazesolvers/1951-maze-solver-minsky-edmonds-american/
Bernstein J. (1981). A.I / The New Yorker, December 6, 1981 // https://www.newyorker.com/magazine/1981/12/14/a-i
Klein D. (2018). Mighty mouse / MIT Technology Review, December 19, 2018 // https://www.technologyreview.com/2018/12/19/138508/mighty-mouse/
Cannon W. B. (1932). The Wisdom of the Body, Vol. 10. W. W. Norton, Incorporated // https://books.google.ru/books?id=zdkEAQAAIAAJ
Pfeiffer J. E. (1949). The Stuff That Dreams Are Made On; CYBERNETICS: Or Control and Communication in the Animal and the Machine. By Norbert Wiener. 191 pp. New York: John Wiley & Sons / The New York Times, Jan. 23, 1949 // https://www.nytimes.com/1949/01/23/archives/the-stuff-that-dreams-are-made-on-cybernetics-or-control-and.html
Science: The Thinking Machine (1949) / Time, Monday, Jan. 24, 1949 // http://content.time.com/time/subscriber/article/0,33009,799721,00.html
Ashby W. R. (1960). Design for a Brain. The origin of adaptive behaviour. Second edition. Springer Netherlands // https://books.google.ru/books?id=QsIXAAAAMAAJ
Ashby W. R. (1949). The Electronic Brain / Radio-Electronics, Mar. 1949 // http://www.rossashby.info/gallery/Radio%20Electronics%20March%201949%20The%20Electronic%20Brain.pdf
Ashby W. R. (1948). Design for a Brain / Electronic Engineering, Vol. 20, pp. 379—383.
Pickering A. (2009). Psychiatry, synthetic brains and cybernetics in the work of W. Ross Ashby / International Journal of General Systems, Vol. 38, Iss. 2, pp. 213—230 // https://doi.org/10.1080/03081070802712025
Rid T. (2016). Rise of the Machines: A Cybernetic History. W. W. Norton & Company // https://books.google.ru/books?id=WByZCgAAQBAJ
Рид Т. (2020). Рождение машин. Неизвестная история кибернетики / Пер. с англ. Е. Васильченко, Е. Кузьмина. Litres // https://books.google.ru/books?id=0CCNDwAAQBAJ
Cariani P. A. (2009). The homeostat as embodiment of adaptive control / International Journal of General Systems, Vol. 38, No. 2, pp. 139—154 // https://doi.org/ 10.1080/03081070802633593
Pickering A. (2002). Cybernetics And The Mangle: Ashby, Beer And Pask / Social Studies of Science, Vol. 32, Iss. 3 // https://doi.org/10.1177/0306312702032003003
Pilcher H. (1948). 390625 thoughts. The clicking brain is clever than man's / Daily Herald, No. 10227, Dec. 13, 1948 // https://www.britishnewspaperarchive.co.uk/viewer/BL/0000681/19481213/001/0001
Pias C., Foerster G. v. (2016). Cybernetics: The Macy Conferences 1946-1953: The Complete Transactions. The University of Chicago Press // https://books.google.ru/books?id=zOincQAACAAJ
Boden M. A. (2006). Mind as Machine: A History of Cognitive Science. Oxford University Press // https://books.google.ru/books?id=b4SE3C8PYU0C
Boden M. A. (2006). Grey Walter’s Anticipatory Tortoises / The Rutherford Journal, Vol. 2, 2006-2007 // http://www.rutherfordjournal.org/article020101.html
Marsh A. (2020). Meet the Roomba’s Ancestor: The Cybernetic Tortoise / IEEE Spectrum, 28 Feb 2020 // https://spectrum.ieee.org/tech-history/space-age/meet-roombas-ancestor-cybernetic-tortoise
Марш А. (2020). Познакомьтесь с кибернетической черепахой, предшественником Roomba / Пер. с англ. Голованов А. / Хабр, 24 марта 2020 // https://habr.com/ru/post/493482/
Pickering A. (2010). The cybernetic brain. Sketches of another future. The University of Chicago Press // http://www.arise.mae.usp.br/wp-content/uploads/2018/03/Andrew-Pickering-Cybernetic-Brain_Cap.3.pdf
* Паттерн (от англ. pattern — узор, шаблон, образец, схема) здесь часто означает образ, шаблон, повторяющийся элемент.
Gabbay D., Woods J., Thagard P. (2006). Philosophy of Psychology and Cognitive Science. Elsevier Science // https://books.google.ru/books?id=Lp93PtrvM0MC
Farley B., Clark W. (1954). Simulation of self-organizing systems by digital computer / Transactions of the IRE Professional Group on Information Theory, Vol. 4 (4), pp. 76—84 // https://doi.org/10.1109/tit.1954.1057468
Clark W., Farley B. (1954). Generalization of pattern recognition in a self-organizing system / Proceedings of the March 1-3, 1955, western joint computer conference, pp. 86—91 //https://doi.org/10.1145/1455292.1455309
Rochester N., Holland J., Haibt L., Duda W. (1956). Tests on a cell assembly theory of the action of the brain, using a large digital computer. IEEE Transactions on Information Theory, 2(3), 80–93 // https://doi.org/10.1109/tit.1956.1056810
Gabbay D., Woods J., Thagard P. (2006). Philosophy of Psychology and Cognitive Science. Elsevier Science // https://books.google.ru/books?id=Lp93PtrvM0MC
Davis B. (2012). New Rochelle. Arcadia Publishing // https://books.google.ru/books?id=v5o78L0q_wQC
Kennedy K. (2016). Lasting Impact: One Team, One Season. What Happens When Our Sons Play Football. Time Incorporated Books // https://books.google.ru/books?id=qMi_DAAAQBAJ
YIVO Institute of Jewish Research (2013). Frank Rosenblatt / Guide to the YIVO archives // http://www.yivoarchives.org/index.php?p=collections/controlcard&id=33295
Goldsmith S. A. (1927). Dr. Frank F. Rosenblatt / The Jewish Social Service Quarterly. Stanford. The Berman Jewish Policy Archive // https://www.jewishdatabank.org/search-results/publication/12586
Coblentz S., Elliot J., Burgess S. (1993). Adventures of a Freelancer: The Literary Exploits and Autobiography of Stanton A. Coblentz. Borgo Press // https://books.google.ru/books?id=Bd9R-hcy7iEC
Бейзер М. (2014). Трудности «дистанционного управления» в истории «Джойнта» на примере его работы в России — СССР / Труды по еврейской истории и культуре. Материалы XXI ежегодной конференции по иудаике, вып. 50 // https://sefer.ru/upload/Conf-21.text.1-575(25.12.14).pdf
Scates S. (2006). Maurice Rosenblatt and the Fall of Joseph McCarthy. University of Washington Press // https://books.google.ru/books?id=8y53AAAAMAAJ
Schudel M. (2005). Lobbyist Maurice Rosenblatt Dies / The Washington Post, August 15, 2005 // https://www.washingtonpost.com/archive/local/2005/08/15/lobbyist-maurice-rosenblatt-dies/572aad97-92b3-42fa-9e32-c0636e12be99/
Dorrien G. (2018). Breaking White Supremacy: Martin Luther King Jr. and the Black Social Gospel. Yale University Press // https://books.google.ru/books?id=rjlFDwAAQBAJ
Sejnowski T. (2018). The Deep Learning Revolution. New York, NY, USA: MIT Press // https://books.google.ru/books?id=9xZxDwAAQBAJ
Emlen S. T., Howland H. C., O’Brien R. D. (1971). Frank Rosenblatt, July 11, 1928 — July 11, 1971: Cornell University Faculty Memorial Statement // https://ecommons.cornell.edu/bitstream/handle/1813/18965/Rosenblatt_Frank_1971.pdf
Rosenblatt F. (1957). The Perceptron: A Perceiving and Recognizing Automaton. Project Para Report No. 85-460-1, Cornell Aeronautical Laboratory // https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
Rosenblatt F. (1957). The perceptron: A Probabilistic model for Visual Perception / Proceedings of the 15th International Congress of Psychology, North Holland, pp. 290—297
Rosenblatt F. (1957). The Perceptron: A Perceiving and Recognizing Automaton. Project Para Report No. 85-460-1, Cornell Aeronautical Laboratory // https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
LeCun Y., Cortes C., Burges C. J. C. (1998). The MNIST database of handwritten digits // http://yann.lecun.com/exdb/mnist/
Kussul E., Baidyk T., Kasatkina L., Lukovich V. (2001). Rosenblatt perceptrons for handwritten digit recognition / IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222) // https://doi.org/10.1109/ijcnn.2001.939589
Backus J. (1978). Can Programming Be Liberated from the Von Neumann Style? A Functional Style and Its Algebra of Programs / Communications of the ACM, 21(8), pp. 613—641 // http://doi.acm.org/10.1145/359576.359579
Anderson J., Rosenfeld E. (2000). Talking Nets: An Oral History of Neural Networks. New York, NY, USA: MIT Press // https://books.google.ru/books?id=-l-yim2lNRUC
Douglas S. C. (1995). Generalized gradient adaptive step sizes for stochastic gradient adaptive filters / 1995 International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, Iss. 8, pp. 1396—1399 // https://doi.org/10.1109/ICASSP.1995.480502
Anderson J., Rosenfeld E. (2000). Talking Nets: An Oral History of Neural Networks. New York, NY, USA: MIT Press // https://books.google.ru/books?id=-l-yim2lNRUC
Hilberg v. W. (1995). Karl Steinbuch, ein zu Unrecht vergessener Pionier der künstlichen neuronalen Systeme / Frequenz, Vol. 49, pp. 1—2 // https://www.degruyter.com/downloadpdf/j/freq.1995.49.1-2/freq.1995.49.1-2.28/freq.1995.49.1-2.28.pdf
Karl Steinbuch: von der Kybernetik zur Politik (2017) / Heinz Nixdorf MuseumsForum Blog, 15.06.2017 // https://blog.hnf.de/karl-steinbuch-von-der-kybernetik-zur-politik/
Bishop C. M. (2006). Pattern Recognition and Machine Learning. Information science and statistics. Springer New York // https://books.google.ru/books?id=kOXDtAEACAAJ
United States. Office of Naval Research (1960). Research device recognizes objects or patterns / Naval Research Reviews, Volume 13, 4-Feb-1960 // https://books.google.ru/books?id=ve9cbfGDaywC
* Brain (англ.) — мозг.
** В греческой мифологии Минос был сыном Зевса и Европы и властителем Крита, а после смерти стал одним из трёх судей в подземном мире.
Nilsson N. J. (2009). The Quest for Artificial Intelligence. Cambridge University Press // https://books.google.ru/books?id=nUJdAAAAQBAJ
Huber W. A. (1968). Graphical data processing / Pattern Identification by Man and Machine. Proceedings of a Planning Conference Held at Texas Christian University, Fort Worth, Texas, 12-13 December, 1968 // https://books.google.ru/books?id=vaQlAAAAMAAJ
Duda R. O., Nilsson N. J. (1965). Calculus of networks of adaptive elements. Proposal for Research SRI No. ESU 65-12R. Proposal Request 1-6-4400 // https://www.sri.com/wp-content/uploads/pdf/1284.pdf
Nilsson N. J. (2009). The Quest for Artificial Intelligence. Cambridge University Press // https://books.google.ru/books?id=nUJdAAAAQBAJ
* Shake (англ.) — дрожь.
Fan S. (2019). Will AI Replace Us: A Primer for the 21st Century. Volume 0 of The Big Idea Series. Thames & Hudson // https://books.google.ru/books?id=5iapDwAAQBAJ
Keay A., Silicon Valley Robotics (2017). Shakey is first robot to receive IEEE Milestone award / Robohub, February 28, 2017 // https://robohub.org/shakey-is-first-robot-to-receive-ieee-milestone-award/
Mao L. (2017). Comprehensive Proof of Perceptron Convergence Theorem // https://leimao.github.io/blog/Perceptron-Convergence-Theorem/
Витушкин А. Г. (2004). 13-я проблема Гильберта и смежные вопросы / Успехи математических наук. Т. 59, вып. 1 (355). С. 11—24 // https://doi.org/10.4213/rm698
Tavora M. (2018). Connections between Neural Networks and Pure Mathematics / freeCodeCamp, 12 December 2018 // https://www.freecodecamp.org/news/connections-between-deep-learning-physics-and-pure-mathematics-part-i-947abeb3a5dd/
Hu J. (2015). Between Us: A Queer Theorist’s Devoted Husband and Enduring Legacy / The New Yorker, December 9, 2015 // https://www.newyorker.com/books/page-turner/between-us-a-queer-theorists-devoted-husband-and-enduring-legacy
Sedgwick H. A. (2017). Life of Eve Kosofsky Sedgwick / A resource for the exploration of the life and work of Eve Kosofsky Sedgwick // https://eveksedgwickfoundation.org/biography/biography.html
Sedgwick H. A. (2016). The Cornell Student Homophile League // http://www.jearldmoldenhauer.com/wp-content/uploads/Cornell-Final5X.pdf
* Интрацистернально — в подпаутинное пространство головного мозга.
Røigaard-Petersen, H. H., Nissen, T., Fjerdingstad, E. J. (1968). Effect of ribonucleic acid (RNA) extracted from the brain of trained animals on learning in rats / Scandinavian Journal of Psychology, Vol. 9, Iss. 1, pp. 1–16 // https://doi.org/10.1111/j.1467-9450.1968.tb00512.x
Ungar G., Oceguera-Navarro C. (1965). Transfer of Habituation by Material extracted from Brain / Nature, vol. 207, 1965, pp. 301—302 // https://doi.org/10.1038/207301a0
Setlow B. (1997). Georges Ungar and memory transfer / Journal of the history of the neurosciences, 6, pp. 181—192 // https://doi.org/10.1080/09647049709525701
Babich F. R., Jacobson A. L., Bubash S., Jacobson A. (1965). Transfer of a Response to Naive Rats by Injection of Ribonucleic Acid Extracted from Trained Rats / Science, 06-Aug-1965, pp. 656—657 // https://doi.org/10.1126/science.149.3684.656
Rosenblatt F., Farrow J. T., Herblin W. F. (1966). Transfer of Conditioned Responses from Trained Rats to Untrained Rats by Means of a Brain Extract / Nature, Vol. 209, Iss. 5018, pp. 46–48 // https://doi.org/10.1038/209046a0
Fields R. D. (2011). Imaging Learning: The Search for a Memory Trace / The Neuroscientist, Vol. 17, Iss. 2, pp. 185—196 // https://doi.org/10.1177/1073858410383696
Bédécarrats A., Chen S., Pearce K., Cai D., Glanzman D. L. (2018). RNA from Trained Aplysia Can Induce an Epigenetic Engram for Long-Term Sensitization in Untrained Aplysia / eNeuro, 14 May 2018, Vol. 5, Iss. 3 // https://doi.org/10.1523/ENEURO.0038-18.2018
Lehnert W. G. (2013). Cognition, Computers, and Car Bombs: How Yale Prepared Me for the 90’s / Schank R. C., Langer E. (2013). Beliefs, Reasoning, and Decision Making: Psycho-Logic in Honor of Bob Abelson. Psychology Press, Jun 17, 2013 // https://books.google.ru/books?id=EA01vM2uQd4C
* Семантика — раздел лингвистики, изучающий смысловое значение единиц языка. Иногда термин также употребляется в качестве синонима понятия «смысл».
Crevier D. (1993). AI: the tumultuous history of the search for artificial intelligence // https://archive.org/details/aitumultuoushist00crev/page/168
Brügger N., Milligan I. (2018). The SAGE Handbook of Web History. SAGE Publications // https://books.google.ru/books?id=PENeDwAAQBAJ
Pike D. (1985). Lukács and Brecht. Studien und Texte zur Sozialgeschichte der Literatur. University of North Carolina Press // https://books.google.ru/books?id=nGSk4a7kTBgC
Sternberg R. J., Kaufman S. B. (2011). The Cambridge Handbook of Intelligence. Cambridge Handbooks in Psychology. Cambridge University Press // https://books.google.ru/books?id=FtYeTcNwzQ4C
Holyoak K. J., Thagard P. (1996). Mental Leaps: Analogy in Creative Thought. MIT Press // https://books.google.ru/books/about/Mental_Leaps.html?id=8ZRHYv59154C
Schank R. C., Cleary C. (1995). Engines for education. Lawrence Erlbaum Associates // https://books.google.ru/books/about/Engines_for_education.html?id=fWruAAAAMAAJ
Kolodner J. L. (2002). The “Neat” and the “Scruffy” in Promoting Learning From Analogy: We Need to Pay Attention to Both / The Journal of the Learning Sciences, Vol. 11, No. 1 (2002), pp. 139—152 // https://www.jstor.org/stable/1466725
Marx K. (1845). Thesen über Feuerbach. Geschrieben im Frühjahr // http://www.mlwerke.de/me/me03/me03_005.htm
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
Pentland A. P., Fischler M. A. (1983). A More Rational View of Logic or, Up Against The Wall, Logic Imperialists! / AI Magazine, Vol. 4, Num. 4 (1983) // https://www.aaai.org/ojs/index.php/aimagazine/article/view/412/348
Papert S. (1994). The Children's Machine — Rethinking School in the Age of the Computer. New York: Basic Books // https://books.google.ru/books?id=SqYGtAEACAAJ
Broussard M. (2019). Artificial Unintelligence: How Computers Misunderstand the World. MIT Press // https://books.google.ru/books?id=67NMvAEACAAJ
Boyle M. (1997). The History of Mr. Papert. 20 - 31. Logo in Australia: 21 Years On., Melbourne Vic Australia // http://www.stager.org/omaet2004/papertbio.html
Papert S. (1998). Transcript of Child Power: Keys to the New Learning of the Digital Century at the 11th Colin Cherry Memorial Lecture on Communication, Imperial College, London // http://pirun.ku.ac.th/~btun/papert/childpower.pdf
Boyle M. (1997). The History of Mr. Papert. 20 - 31. Logo in Australia: 21 Years On., Melbourne Vic Australia // http://www.stager.org/omaet2004/papertbio.html
Broussard M. (2019). Artificial Unintelligence: How Computers Misunderstand the World. MIT Press // https://books.google.ru/books?id=67NMvAEACAAJ
Silberman S. (2005). Life After Darth / Wired, 05.01.2005 // https://www.wired.com/2005/05/lucas-2/
Martin S. (2012). Roman Kroitor, 85, revolutionized the film world / The globe and mail, October 5, 2012 // https://www.theglobeandmail.com/news/toronto/roman-kroitor-85-revolutionized-the-film-world/article4593837/?page=all
Dreyfus H. L. (1965). Alchemy and artificial intelligence / P-3244, December 1965 // https://www.rand.org/content/dam/rand/pubs/papers/2006/P3244.pdf
Horgan J. (2000). The Undiscovered Mind: How the Human Brain Defies Replication, Medication, and Explanation. A Touchstone book. Simon and Schuster // https://books.google.ru/books?id=zMjxO7HHftUC
MacKenzie D. (1995). The Automation of Proof: A Historical and Sociological Exploration / IEEE Annals of the History of Computing, Vol. 17, No. 3, 1995 // http://www.cs.cornell.edu/courses/cs4860/2012fa/MacKenzie-TheAutomationOfProof.pdf
Dreyfus H. L. (1965). Alchemy and artificial intelligence / P-3244, December 1965 // https://www.rand.org/content/dam/rand/pubs/papers/2006/P3244.pdf
Dreyfus H. L. (1979). What Computers Can't Do: The Limits of Artificial Intelligence. Colophon books. Harper & Row // https://books.google.ru/books?id=9SGdAQAACAAJ
Славин С. (1994). Лететь или катиться? / Юный техник. № 2 // http://www.nehudlit.ru/journals/detail1184287.html
Puck, Vol. 52, No. 1347, p. 2, Published at the Puck Building, New York, Copyright Keppler and Schwarzmann, New York // https://hdl.handle.net/2027/umn.31951002801288o?urlappend=%3Bseq=358
People Who Say It Cannot Be Done Should Not Interrupt Those Who Are Doing It: George Bernard Shaw? Puck? Saxby’s Magazine? Elbert Hubbard? Confucius? Anonymous? / Quote Investigator, Posted onJanuary 26, 2015 // https://quoteinvestigator.com/2015/01/26/doing/
Newborn M., Standish T. A. (2014). Computer Chess. ACM monograph series. Elsevier Science // https://books.google.ru/books?id=KKGjBQAAQBAJ
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
MacKenzie D. (1995). The Automation of Proof: A Historical and Sociological Exploration / IEEE Annals of the History of Computing, Vol. 17, No. 3, 1995 // http://www.cs.cornell.edu/courses/cs4860/2012fa/MacKenzie-TheAutomationOfProof.pdf
* «Охота на Снарка» (The Hunting of the Snark) — поэма Льюиса Кэрролла, написанная в 1876 г., образец литературы нонсенса. Основа сюжета: команда из девяти человек и бобра охотится за таинственным Снарком. Буджум (Boojum) — особо опасная разновидность Снарка, встреча с которым может привести к исчезновению охотника.
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
Crevier D. (1993). AI: the tumultuous history of the search for artificial intelligence // https://archive.org/details/aitumultuoushist00crev
Boyle M. (1997). The History of Mr. Papert. 20 - 31. Logo in Australia: 21 Years On., Melbourne Vic Australia // http://www.stager.org/omaet2004/papertbio.html
Papert S. (1992). One AI or Many? / Beakley B., Ludlow P. (1992). The philosophy of mind: Classical problems/contemporary issues. Cambridge, MA, US: The MIT Press // https://books.google.ru/books/about/The_Philosophy_of_Mind.html?id=pBV526wnJigC
Александр (rgen3). (2011). Что такое искусственные нейронные сети? / Хабр, 21 декабря 2011 // https://habr.com/ru/post/134998/
Сергей (tac). (2012). Перцептрон Розенблатта — что забыто и придумано историей? / Хабр, 20 марта // https://habr.com/ru/post/140301/
Minsky M., Papert S. A. (1969). Perceptrons: An Introduction to Computational Geometry. MIT Press // https://books.google.ru/books?id=KhI-uwEACAAJ
Block H. D. (1970). A review of 'Perceptrons' / Information and Control, Vol. 17, pp. 510—522 // https://doi.org/10.1016/S0019-9958(70)90409-2
Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8
Block H. D. (1970). A review of 'Perceptrons' / Information and Control, Vol. 17, pp. 510—522 // https://doi.org/10.1016/S0019-9958(70)90409-2
Minsky M., Papert S. A. (1969). Perceptrons: An Introduction to Computational Geometry. MIT Press // https://books.google.ru/books?id=KhI-uwEACAAJ
Anderson J., Rosenfeld E. (2000). Talking Nets: An Oral History of Neural Networks. New York, NY, USA: MIT Press // https://books.google.ru/books?id=-l-yim2lNRUC
Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8
Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8
Dr. Frank Rosenblatt Dies at 43; Taught Neurobiology at Cornell / The New York Times, July 13, 1971, p.36 // https://www.nytimes.com/1971/07/13/archives/dr-frank-rosenblatt-dies-at-43-taught-neurobiology-at-cornell.html
Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8
Dreyfus H. L., Dreyfus S. E. (1995). Making a mind vs. Modeling the brain: AI back at a branchpoint / Informatica, 1995, Num. 4, Vol. 19 // http://www.ccs.fau.edu/~bressler/EDU/CompNeuro/Resources/Mind_Modelling_Brain.pdf
Tofts D., Jonson A., Cavallaro A. (2004). Prefiguring Cyberculture: An Intellectual History. MIT Press // https://books.google.ru/books?id=LNyvD79vNVEC
Sedgwick H. A. (2016). The Cornell Student Homophile League // http://www.jearldmoldenhauer.com/wp-content/uploads/Cornell-Final5X.pdf
Edwards J., Campbell M. B., Boulton M., Brown A., Edwards J., Kent K. R., Sedgwick E. K., Pearl M., Westwood B. (2017). Bathroom Songs: Eve Kosofsky Sedgwick as a Poet. Earth, Milky Way: punctum books // https://doi.rog/10.21983/P3.0189.1.00
Alexander T. (1984). Why Computers Can't Outthink the Experts / Fortune, Vol. 110, August 20, 1984, pp. 105—118 // https://exhibits.stanford.edu/feigenbaum/catalog/nr990gh3548
Crevier D. (1993). AI: the tumultuous history of the search for artificial intelligence // https://archive.org/details/aitumultuoushist00crev/page/203
Bloom J. (2016). Rise of Intelligent Machines as Artificial Intelligence Goes Mainstream / Experfy. Big Data and Technology, Jan 16, 2016 // https://www.experfy.com/blog/rise-of-intelligent-machines-as-artificial-intelligence-goes-mainstream
Kurzweil R. (2005). The Singularity is near: when humans transcend biology. Viking Press // https://books.google.ru/books?id=9FtnppNpsT4C
Lighthill J. (1973): Artificial Intelligence: A General Survey / Artificial Intelligence: a paper symposium, Science Research Council // http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm
Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ
Schuchmann S. (2019). History of the first AI Winter / Towrds Data Science, 5-May-2019 // https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
* После четвёртого поколения, построенного на сверхбольших интегральных схемах, предполагалось появление следующего поколения ЭВМ, ориентированного на распределённые вычисления; при этом считалось, что пятое поколение станет базой для создания устройств, способных к моделированию мышления.
Aleksander I. (2013). Decision and Intelligence. Volume 6 of NSRDS Bibliographic Series. Springer Science & Business Media // https://books.google.ru/books?id=_h7lBwAAQBAJ
Roland A., Shiman P. (2002). Strategic Computing: DARPA and the Quest for Machine Intelligence, 1983-1993. Cambridge, Mass.: MIT Press // https://books.google.ru/books?id=eD4taFgeTUYC
McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ
Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ
Hewitt C., Woods J., Spurr J. (2015). Inconsistency Robustness. Studies in Logic. 52. College Publications // https://books.google.ru/books?id=dJkaswEACAAJ
Panetta K. (2017). Enterprises should explain the business potential of blockchain, artificial intelligence and augmented reality // https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
Делюкин Е. (2018). Стоит ли доверять аналитикам: разбор прогнозов исследовательской компании Gartner за 16 лет / vc.ru, 27 июля // https://vc.ru/flood/42736-stoit-li-doveryat-analitikam-razbor-prognozov-issledovatelskoy-kompanii-gartner-za-16-let
Бехтерев В.М. (1908). Внушение и его роль в общественной жизни. — СПб.: Издание К.Л.Риккера // http://psylib.org.ua/books/behtv01/index.htm
Mackay C. (1852). Memoirs of Extraordinary Popular Delusions and the Madness of Crowds. Office of the National Illustrated Library // https://books.google.ru/books?id=NmEOAAAAQAAJ
Скоренко Т. (2015). Радиоактивное мыло, таблетки, вода и другие странности радиационной медицины / Популярная механика, 6 дек. // https://www.popmech.ru/science/233421-radioaktivnoe-mylo-tabletki-voda-i-drugie-strannosti-radiatsionnoy-meditsiny/
Ng A. (2016). Deep Learning in Practice: Speech Recognition and Beyond / MIT Technology Review, May 23, 2016 // https://events.technologyreview.com/video/watch/andrew-ng-deep-learning/
* Пер. С. Земляного.
Католин Л. (1967). Кибернетические путешествия. — М.: Знание // http://informaticslib.ru/books/item/f00/s00/z0000013/st003.shtml
Джура С. Г. (1992). Теория информации в контексте построения нейросетей / Электронный архив Донец. нац. техн. ун-та (г. Донецк) // http://ea.donntu.org:8080/jspui/bitstream/123456789/5218/1/buharest.doc
Глушков В. М. — Ляпунову А. А., 19.XII.1959 г / Музей А. А. Ляпунова // http://lyapunov.vixpo.nsu.ru/?int=VIEW&el=915&templ=VIEW_TYPE
Католин Л. (1967). Кибернетические путешествия. — М.: Знание // http://informaticslib.ru/books/item/f00/s00/z0000013/st003.shtml
Ивахненко А. Г. (1971). Системы эвристической самоорганизации в технической кибернетике. — Киев: Технiка.
Schmidhuber J. (2015). Deep learning in neural networks: An overview / Neural Networks. Volume 61, January 2015, pp. 85—117 // https://doi.org/10.1016/j.neunet.2014.09.003
Schmidhuber J. (2015). Critique of Paper by “Deep Learning Conspiracy” (Nature 521 p. 436) // http://people.idsia.ch/~juergen/deep-learning-conspiracy.html
Ивахненко А. Г. (1971). Системы эвристической самоорганизации в технической кибернетике. Киев: Технiка.
Parasuraman R., Rizzo M. (2008). Neuroergonomics. Volume 3 of Human-Technology Interaction Series. Oxford University Press // https://books.google.ru/books?id=9ERRDAAAQBAJ
Joseph R. D. (1961). Contributions to perceptron theory (Ph. D. thesis), Cornell Univ.
Viglione S. (1970). Applications of pattern recognition technology / Mendel J. M., Fu K. S. Adaptive, learning, and pattern recognition systems. Academic Press.
Ivakhnenko A. G. (1970). Heuristic self-organization in problems of engineering cybernetics / Automatica. Volume 6, Issue 2, March 1970, pp. 207—219 // https://doi.org/10.1016/0005-1098(70)90092-0
Ивахненко А. Г. (1971). Системы эвристической самоорганизации в технической кибернетике. Киев: Технiка.
Ивахненко О. Г., Лапа В. Г. (1969). Предсказание случайных процессов. — Киев: Наукова думка.
Ивахненко А. Г. (1971). Системы эвристической самоорганизации в технической кибернетике. — Киев: Технiка.
David E. Rumelhart: A Scientific Biography / The David E. Rumelhart Prize For Contributions to the Theoretical Foundations of Human Cognition // https://web.archive.org/web/20131030220027/http://rumelhartprize.org/?page_id=10
Klahr D. (2014). Cognition and Instruction. Carnegie Mellon Symposia on Cognition Series. Psychology Press // https://books.google.ru/books?id=GmWYAgAAQBAJ
Frankish K., Ramsey W. (2012). The Cambridge Handbook of Cognitive Science. Cambridge University Press // https://books.google.ru/books?id=JjEzjrZ6ZG4C
Bobrow D. G., Collins A. F. (1975). Representation and Understanding: Studies in Cognitive Science. Academic Press, Inc // https://dl.acm.org/doi/book/10.5555/1102011
Thagard P., Zalta E. N. (2008). Cognitive Science / The Stanford Encyclopedia of Philosophy // https://plato.stanford.edu/archives/fall2008/entries/cognitive-science/
Willingham D. T. (2002). Ask the Cognitive Scientist. Allocating Student Study Time: “Massed” versus “Distributed” Practice / American Federation of Teachers // https://www.aft.org/periodical/american-educator/summer-2002/ask-cognitive-scientist
Miller G. A. (2003). The cognitive revolution: a historical perspective / TRENDS in Cognitive Sciences, Vol. 7, No.3, March 2003 // https://www.cs.princeton.edu/~rit/geo/Miller.pdf
Frankish K., Ramsey W. (2012). The Cambridge Handbook of Cognitive Science. Cambridge University Press // https://books.google.ru/books?id=JjEzjrZ6ZG4C
Hinton G. E., Anderson J. A. (1981). Parallel Models of Associative Memory. Erlbaum // https://books.google.ru/books/about/Parallel_Models_of_Associative_Memory.html?id=rZ99AAAAMAAJ
Fernandino L., Tong J.-Q., Conant L. L., Humphries C. J., Binder J. R. (2022). Decoding the information structure underlying the neural representation of concepts / PNAS, Vol. 119, Iss. 6 // https://doi.org/10.1073/pnas.2108091119
Quinlan P. T. (1987) Theoretical notes on “Parallel models of associative memory” / Cognitive Neuropsychology, Vol. 4, Iss. 3, pp. 333—364 // https://doi.org/10.1080/02643298708252043
Bohannon J. (2016). Who’s the Michael Jordan of computer science? New tool ranks researchers' influence / Science, Apr. 20, 2016 // https://www.sciencemag.org/news/2016/04/who-s-michael-jordan-computer-science-new-tool-ranks-researchers-influence
Rumelhart D. E. (1990). Brain Style Computation: Learning and Generalization / Zornetzer S. E., Davis J. L., Lau C. (1990). An Introduction to Neural and Electronic Networks. San Diego: Academic Press // https://books.google.ru/books?id=6ZNQAAAAMAAJ
Сергей (tac). (2012). Какова роль первого «случайного» слоя в перцептроне Розенблатта / Хабр, 21 марта // https://habr.com/ru/post/140387/
Rumelhart D. E., McClelland J. L. (1986). Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Cambridge, MA: MIT Press // https://doi.org/10.7551/mitpress/5236.001.0001
McClelland J. L., Rumelhart D. E. (1989). Explorations in Parallel Distributed Processing — Macintosh version: A Handbook of Models, Programs, and Exercises. MIT Press // https://books.google.ru/books?id=3WkcZOWmljEC
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Kang N. (2017). Multi-Layer Neural Networks with Sigmoid Function — Deep Learning for Rookies (2) / Towards Data Science, Jun 27 // https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning representations by back-propagating errors / Nature, Vol. 323, Iss. 6088, pp. 533—536 // https://doi.org/10.1038/323533a0
Dreyfus S. E. (1990). Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure / Journal of Guidance, Control, and Dynamics, Vol. 13, Num. 5 // https://doi.org/10.2514/3.25422
Schmidhuber J. (2015). Deep learning in neural networks: An overview / Neural Networks. Volume 61, January 2015, pp. 85—117 // https://doi.org/10.1016/j.neunet.2014.09.003
Kelley H. J. (1960). Gradient Theory of Optimal Flight Paths / American Rocket Society Journal, Vol. 30, Num. 10, October 1960 // https://doi.org/10.2514/8.5282
Dreyfus S. E. (1990). Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure / Journal of Guidance, Control, and Dynamics, Vol. 13, Num. 5 // https://doi.org/10.2514/3.25422
Schmidhuber J. (2015). Who Invented Backpropagation? // http://people.idsia.ch/~juergen/who-invented-backpropagation.html
Понтрягин Л. С. (1998). Жизнеописание Л. С. Понтрягина, математика, составленное им самим. — М.: КомКнига // https://e-libra.ru/books/243417-zhizneopisanie-l-s-pontryagina-matematika-sostavlennoe-im-samim.html
Schmidhuber J. (2015). Who Invented Backpropagation? // http://people.idsia.ch/~juergen/who-invented-backpropagation.html
Chauvin Y., Rumelhart D. E. (2013). Backpropagation: Theory, Architectures, and Applications. Psychology Press // https://books.google.ru/books?id=B71nu3LDpREC
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Widrow B., Lehr M. A. (1990). 30 years of adaptive neural networks: perceptron, Madaline, and backpropagation / Proceedings of the IEEE, Vol. 78, Iss. 9, pp. 1415—1442 // https://doi.org/10.1109/5.58323
Werbos P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA.
Werbos J. P. (2006). Backwards Differentiation in AD and Neural Nets: Past Links and New Opportunities / Bücker M, Corliss G., Naumann U., Hovland P., Norris B. (2006). Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 50). Springer Berlin Heidelberg // https://books.google.ru/books?id=nyvRV4J89VoC
Werbos P. J. (1994). The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. Wiley & Sons Ltd // https://books.google.ru/books?id=WdR3OOM2gBwC
Freud S. (1950). Project for a Scientific Psychology (1950[1895]). The Standard Edition of the Complete Psychological Works of Sigmund Freud, Volume I (1886-1899): Pre-Psycho-Analytic Publications and Unpublished Drafts // http://users.clas.ufl.edu/burt/freud%20fleiss%20letters/200711781-013.pdf
Gresser M. (2012). Dual Allegiance: Freud as a Modern Jew. SUNY Press // https://books.google.ru/books?id=Gh9OF0JJVw0C
Jones E. (1993). The Life and Work of Sigmund Freud. Penguin Books // https://books.google.ru/books?id=_XqhPwAACAAJ
Gottwaldt A. (2004). Sigmund Freud's sisters and death. Notes on their fate in deportation and mass-murder / Psyche. Vol. 58. pp. 533-543 // https://www.researchgate.net/publication/292510186_Sigmund_Freud's_sisters_and_death_Notes_on_their_fate_in_deportation_and_mass-murder
Rice E. (1990). Freud and Moses: The Long Journey Home. SUNY Press // https://books.google.ru/books?id=g5JFAgAAQBAJ
Costandi M. (2014). Freud was a pioneering neuroscientist / The Guardian, 10 Mar // https://www.theguardian.com/science/neurophilosophy/2014/mar/10/neuroscience-history-science
Galbis-Reig D. (2003). Sigmund Freud, M. D.: Forgotten Contributions to Neurology, Neuropathology, and Anesthesia / Internet Journal of Neurology. Vol. 3 (1), Jan 2003 // https://www.researchgate.net/publication/275833594_Sigmund_Freud_MD_Forgotten_Contributions_to_Neurology_Neuropathology_and_Anesthesia
Triarhou L. C. (2009). Exploring the mind with a microscope: Freud's beginnings in Neurobiology / Hellenic Journal of Psychology // https://www.academia.edu/9914521/Exploring_the_mind_with_a_microscope_Freuds_beginnings_in_Neurobiology
Freud S. (1885). A new histological method for the study of nerve-tracts in the brain and spinal chord / Brain: a journal of neurology, Vol. IV // https://archive.org/details/brainjournalofne07londuoft/page/86
Barford D., Geerardyn F., van de Vijver G. (2018). The Pre-Psychoanalytic Writings of Sigmund Freud. Routledge // https://books.google.ru/books?id=Fx-yDwAAQBAJ
Reshe J. (2018). Freud’s living corpse: psychoanalysis vs neuroscience / Brev Spread, Vol. 18, pp. 20—37 // https://www.academia.edu/37323128/Freuds_living_corpse_psychoanalysis_vs_neuroscience
Ramón y Cajal S. (2002). Texture of the Nervous System of Man and the Vertebrates: Volume III An annotated and edited translation of the original Spanish text with the additions of the French version by Pedro Pasik and Tauba Pasik. Springer Science & Business Media // https://books.google.ru/books?id=DMETOdFiJwMC
Freud S. (1950). Project for a Scientific Psychology (1950[1895]). The Standard Edition of the Complete Psychological Works of Sigmund Freud, Volume I (1886-1899): Pre-Psycho-Analytic Publications and Unpublished Drafts // http://users.clas.ufl.edu/burt/freud%20fleiss%20letters/200711781-013.pdf
Fancher R. E., Rutherford A. (2016). Pioneers of Psychology (Fifth International Edition). W. W. Norton // https://books.google.ru/books?id=gmnKswEACAAJ
Freud S. (1950). Project for a Scientific Psychology (1950[1895]). The Standard Edition of the Complete Psychological Works of Sigmund Freud, Volume I (1886-1899): Pre-Psycho-Analytic Publications and Unpublished Drafts // http://users.clas.ufl.edu/burt/freud%20fleiss%20letters/200711781-013.pdf
Werbos P. (1982). Applications of Advances in Nonlinear Sensitivity Analysis / Drenick R., Kozin F. (1982). System Modeling and Optimization. Proceedings of the 10th IFIP Conference New York City, USA, August 31–September 4, 1981. Springer-Verlag // https://books.google.ru/books?id=oczhwgEACAAJ
Kurenkov A. (2015). A 'Brief' History of Neural Nets and Deep Learning // https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
* Значение метода наименьших квадратов, разработанного в начале XVIII в. Гауссом и Лежандром, для машинного обучения столь значительно, что один из отцов современных нейронных сетей Юрген Шмидхубер даже называет модели Гаусса и Лежандра «линейными нейронными сетями» или «линейными перцептронами».
Machine Learning Street Talk (2023). ORIGINAL FATHER OF AI ON DANGERS! (Prof. Jürgen Schmidhuber) / YouTube, Aug 13, 2023 // https://www.youtube.com/watch?v=q27XMPm5wg8
Werbos P. J. (2006) Backwards Differentiation in AD and Neural Nets: Past Links and New Opportunities / Bücker M., Corliss G., Naumann U., Hovland P., Norris B. (2006). Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computational Science and Engineering, Vol 50. Springer, Berlin, Heidelberg // https://doi.org/10.1007/3-540-28438-9_2
Werbos P. J. (1994). The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. Wiley & Sons Ltd // https://books.google.ru/books?id=WdR3OOM2gBwC
Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning representations by back-propagating errors / Nature, 323(6088), pp. 533–536 // https://doi.org/10.1038/323533a0
Галушкин А. И. (1974). Синтез многослойных систем распознавания образов. — М.: Энергия.
Галушкин А. И. (1971). Реализация критериев первичной оптимизации в системах распознавания образов, настраивающихся по замкнутому циклу в режиме обучения // Труды МИЭМ. Вып. 23.
Галушкин А. И., Василькова Т. А., Слободенюк В. А., Тюхов Б. П. (1971). Анализ динамики систем распознавания нестационарных образов // Труды МИЭМ. Вып. 23.
Галушкин А. И., Василькова Т. А., Слободенюк В. А., Тюхов Б. П. (1971). Анализ динамики систем распознавания нестационарных образов // Труды МИЭМ. Вып. 23; Галушкин А. И. (1973). Об алгоритмах адаптации в многослойных системах распознавания образов / Докл. АН Укр. ССР, А, 91. № 1. С. 15—20
Ванюшин В. А., Галушкин А. И., Тюхов Б. П. (1972). Построение и исследование многослойных систем распознавания образов / Берг А. И. (1972). Некоторые проблемы биологической кибернетики. — Л.: Наука.
Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning representations by back-propagating errors / Nature, 323(6088), pp. 533–536 // https://doi.org/10.1038/323533a0
Галушкин А. И. (1974). Синтез многослойных систем распознавания образов. — М.: Энергия.
Пупков К. А., Нариманов В. Х., Галушкин А. И. Специализированное распознающее устройство // Труды МИЭМ, вып. 23, 1971. С. 156–165.
Galushkin A. I. (2007). Neural Networks Theory. Springer Science & Business Media // https://books.google.ru/books?id=ULds8NuzLtkC
* На деле, конечно, псевдослучайным, поскольку источниками «случайности» чаще всего являются генераторы псевдослучайных чисел.
Robbins H., Monro S. (1951). A Stochastic Approximation Method. / Annals of Mathematical Statistics, Vol. 22, Iss. 3, pp. 400—407, September, 1951 // https://doi.org/10.1214/aoms/1177729586
Kiefer J., Wolfowitz J. (1952). Stochastic Estimation of the Maximum of a Regression Function. / Annals of Mathematical Statistics, Vol. 23, Iss. 3, September, 1952, pp. 462—466 // https://doi.org/10.1214/aoms/1177729392
Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning representations by back-propagating errors / Nature, 323(6088), pp. 533–536 // https://doi.org/10.1038/323533a0
Поляк Б. Т. (1964). О некоторых способах ускорения сходимости итерационных методов. / Журнал вычислительной математики и математической физики, том 4, номер 5, 1964, с. 791—803 // https://www.mathnet.ru/rus/zvmmf7713
Polyak B. T. (1964). Some methods of speeding up the convergence of iteration methods. / USSR Computational Mathematics and Mathematical Physics, Vol. 4, Iss. 5, 1964, pp. 1—17 // https://doi.org/10.1016/0041-5553(64)90137-5
Duchi J., Hazan E., Singer Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. / Journal of Machine Learning Research 12 (2011) 2121-2159 // https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
Zeiler M. D. (2012). ADADELTA: An Adaptive Learning Rate Method // https://arxiv.org/abs/1212.5701
Tieleman T., Hinton G. (2012). Lecture 6.5 - rmsprop: Divide the gradient by a running average of its recent magnitude // https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
Kingma D. P., Ba J. (2014). Adam: A Method for Stochastic Optimization // https://arxiv.org/abs/1412.6980
Dozat T. (2016). Incorporating nesterov momentum into Adam. / In International Conference on Learning Representations Workshops, 2016 // https://cs229.stanford.edu/proj2015/054_report.pdf
Loshchilov I., Hutter F. (2017). Decoupled Weight Decay Regularization // https://arxiv.org/abs/1711.05101
Xie X., Zhou P., Li H., Lin Z., Yan S. (2022). Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models // https://arxiv.org/abs/2208.06677
Zimmer M. F. (2020). Neograd: Near-Ideal Gradient Descent // https://arxiv.org/abs/2010.07873
Ginsburg B., Castonguay P., Hrinchuk O., Kuchaiev O., Lavrukhin V., Leary R., Li J., Nguyen H., Zhang Y., Cohen J. M. (2019). Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks // https://arxiv.org/abs/1905.11286
Xie Z., Wang X., Zhang H., Sato I., Sugiyama M. (2020). Adai: Separating the Effects of Adaptive Learning Rate and Momentum Inertia // https://arxiv.org/abs/2006.15815
Gupta V., Koren T., Singer Y. (2018). Shampoo: Preconditioned Stochastic Tensor Optimization // https://arxiv.org/abs/1802.09568
Anil R., Gupta V., Koren T., Regan K., Singer Y. (2021). Scalable Second Order Optimization for Deep Learning // https://arxiv.org/abs/2002.09018
Liu H., Li Z., Hall D., Liang P., Ma T. (2023). Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training // https://arxiv.org/abs/2305.14342
Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2023). Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675
Schmidt R. M., Schneider F., Hennig P. (2020). Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers // https://arxiv.org/abs/2007.01547
Dechter R. (1986). Learning While Searching in Constraint-Satisfaction-Problems / Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, August 11—15, 1986, Vol. 1: Science // https://www.researchgate.net/publication/221605378_Learning_While_Searching_in_Constraint-Satisfaction-Problems
Kelleher J. D. (2019). Deep Learning. MIT Press // https://books.google.ru/books?id=ZU6qDwAAQBAJ
Kharlamov A., Pilgun M. (2020). Neuroinformatics and Semantic Representations: Theory and Applications. Cambridge Scholars Publishing // https://books.google.ru/books?id=jEfhDwAAQBAJ
Jain V. K. (2019). Machine Learning. Khanna Publishing House // https://books.google.ru/books?id=c6YEEAAAQBAJ
Aizenberg I. N., Aizenberg N. N., Vandewalle J. (2000). Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer Science & Business Media // https://books.google.ru/books?id=g9LlraAp2-8C
Dertouzos M. L. (1965). Threshold Logic: A Synthesis Approach. M.I.T. Press // https://books.google.ru/books?id=u2ZqQgAACAAJ
Muroga S. (1971). Threshold Logic and Its Applications. John Wiley & Sons, New York // https://books.google.ru/books?id=wvtQAAAAMAAJ
Hinton G. E., Salakhutdinov R. R. (2006). Reducing the Dimensionality of Data with Neural Networks / Science. — 2006-07-28. — Vol. 313, iss. 5786, pp. 504–507 // https://dx.doi.org/10.1126%2Fscience.1127647
Hinton G. E., Osindero S. (2006). A fast learning algorithm for deep belief nets // http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
Horita T., Murata T., Takanami I. (2006). A Multiple-Weight-and-Neuron-Fault Tolerant Digital Multilayer Neural Network / 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems // https://doi.org/10.1109/DFT.2006.8
LeCun Y., Bengio Y., Hinton G. (2015). Deep learning / Nature, Vol. 521, pp. 436—444 // https://doi.org/10.1038/nature14539
Raymond E. S., Steele G. L. (1996). The New Hacker's Dictionary. MIT Press // https://books.google.ru/books?id=g80P_4v4QbIC
Levy S. (2010). Hackers: Heroes of the Computer Revolution. 25th Anniversary Edition. O'Reilly Media, Inc // https://books.google.ru/books?id=mShXzzKtpmEC
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Pater J. (2017). Did Frank Rosenblatt invent deep learning in 1962? // https://blogs.umass.edu/comphon/2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/
Rosenblatt F. (1964). Analytic Techniques for the Study of Neural Nets / IEEE Transactions on Applications and Industry, Vol. 83(74), pp. 285–292 // https://doi.org/10.1109/tai.1964.5407758
Rosenblatt F. (1967). Recent Work on Theoretical Models of Biological Memory / Computer and Information Sciences, Vol. 2, pp. 33—56 // https://blogs.umass.edu/brain-wars/files/2016/01/rosenblatt-1967.pdf
Roberts P. A. (1992). Neuroanatomy. Springer-Verlag, p. 86 // https://books.google.ru/books?id=7zywoAEACAAJ
Toro R., Perron M., Pike B., Richer L., Veillette S., Pausova Z., Paus T. (2008). Brain Size and Folding of the Human Cerebral Cortex / Cerebral Cortex, Vol. 18, Iss. 10, pp. 2352—2357 // https://doi.org/10.1093/cercor/bhm261
Woolsey C. N., Marshall W. H., Bard P. (1942). Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials / Bulletin of the Johns Hopkins Hospital, Vol. 70, pp. 399—441.
Adrian E. D. (1943). Afferent areas in the brain of ungulates / Brain, Vol. 66, Iss. 2, pp. 89—103 // https://doi.org/10.1093/brain/66.2.89
Catania K. C. (2007). Evolution of the Somatosensory System — Clues from Specialized Species / Kaas J. S. (2007). Evolution of Nervous Systems: a comprehensive reference // https://books.google.ru/books?id=UX1PAQAAIAAJ
Hubel D. H., Wiesel T. N. (1979). Brain Mechanisms of Vision / Scientific American, 241(3), pp. 150–162 // https://doi.org/10.1038/scientificamerican0979-150
Minsky M., Papert S. A. (1969). Perceptrons: An Introduction to Computational Geometry. MIT Press // https://books.google.ru/books?id=KhI-uwEACAAJ
Block H. D. (1970). A review of 'Perceptrons' / Information and Control, Vol. 17, pp. 510—522 // https://doi.org/10.1016/S0019-9958(70)90409-2
Павлов И. П. (1923). Двадцатилетний опыт объективного изучения высшей нервной деятельности животных. Государственное издательство Москва—Петроград.
Nicholls J. G., Martin A. R., Fuchs P. A., Brown D. A., Diamond M. E., Weisblat D. A. (2012). From Neuron to Brain. Sinauer // https://books.google.ru/books?id=eTLzXwAACAAJ
Erling N. (2016). Nobel Prizes And Notable Discoveries. World Scientific // https://books.google.ru/books?id=IU4tDQAAQBAJ
Nicholls J. G., Martin A. R., Fuchs P. A., Brown D. A., Diamond M. E., Weisblat D. A. (2012). From Neuron to Brain. Sinauer // https://books.google.ru/books?id=eTLzXwAACAAJ
Цит. по: Николлс Д., Мартин Р., Валлас Б., Фукс П. (2017). От нейрона к мозгу / изд. 4-е. — М.: УРРС: Книжный дом «Либерком».
Hubel D. H., Wiesel T. N. (1959). Receptive fields of single neurons in the cat's striate cortex / Journal of Physiology, 1959, vol. 148, pp. 574—591 // https://doi.org/10.1113/jphysiol.1959.sp006308
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Contributors (1983) / IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-13, No. 5, September/October 1983
Fukushima K. (1975). Cognitron: A self-organizing multilayered neural network / Biological Cybernetics, 20(3-4), 121–136 // https://doi.org/10.1007/bf00342633
Draelos R. (2019). Convolution vs. Cross-Correlation / GLASS BOX: Machine Learning and Medicine, by Rachel Lea Ballantyne Draelos, July 26, 2019 // https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/
Rosebrock A. (2021). Convolution and cross-correlation in neural networks / pyimagesearch, May 14, 2021 // https://www.pyimagesearch.com/2021/05/14/convolution-and-cross-correlation-in-neural-networks/
Yann LeCun (2018) / Heidelberg Laureate Forum // https://www.heidelberg-laureate-forum.org/laureate/yann-lecun.html
Lecun Y. Fun stuff / Yann LeCun home page // http://yann.lecun.com/ex/fun/
Lecun Y. (2014). Biographical Sketch / Yann LeCun home page // http://yann.lecun.com/ex/bio.html
Lecun Y. Fun stuff / Yann LeCun home page // http://yann.lecun.com/ex/fun/
Denker J. S., Gardner W. R., Graf H. P., Henderson D., Howard R. E., Hubbard W., Jackel L. D., Baird H. S., Guyon I. (1989). Neural network recognizer for hand-written zip code digits / Advances in neural information processing systems, 1-Dec-1989, pp. 323—331 // https://dl.acm.org/doi/10.5555/89851.89898
LeCun Y., Boser B., Denker J. S., Henderson D., Howard R. E., Hubbard W., Jackel L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories // http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
LeCun Y., Bottou L., Bengio Y., Haffner P. (1998). Gradient-based learning applied to document recognition / Proceedings of the IEEE. 86 (11): 2278–2324 // https://doi:10.1109/5.726791
Guyon I., Boser B., Vapnik V. (1993). Automatic Capacity Tuning of Very Large VC-dimension Classifers / Advances in Neural Information Processing Systems // https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.7215
Айзерман М. А., Браверман Э. М., Розоноэр Л. И. (1964). Теоретические основы метода потенциальных функций в задаче об обучении автоматов разделению входных ситуаций на классы // Автоматика и телемеханика. 1964. №6. с. 917-936.
Вапник В. Н., Червоненкис А. Я. Теория распознавания образов (статистические проблемы обучения). Москва: Наука, 1974 // https://books.google.ru/books?id=LAGzAAAAIAAJ
LeCun Y., Bottou L., Bengio Y., Haffner P. (1998). Gradient-based learning applied to document recognition / Proceedings of the IEEE. 86 (11): 2278–2324 // https://doi:10.1109/5.726791
Arbib M. Review of “Computation: Finite and Infinite Machines” (Minsky, Marvin; 1967) / IEEE Transactions on Information Theory, 1968; 14:354–355 // https://doi.org/10.1109/TIT.1968.1054133
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ
Tarique A. (2018). Where can I find the original paper that introduced RNNs? / StackExchange: Artificial Intelligence // https://ai.stackexchange.com/questions/8190/where-can-i-find-the-original-paper-that-introduced-rnns
Nilsson N. J. (2009). The Quest for Artificial Intelligence. Cambridge University Press // https://books.google.ru/books?id=nUJdAAAAQBAJ
Dobnikar A., Šter B. (2009). Structural Properties of Recurrent Neural Networks / Neural Processing Letters, Vol. 29, pp. 75—88 // https://doi.org/10.1007/s11063-009-9096-2
Elman J. (1990). Finding structure in time / Cognitive Science, 14(2), pp. 179–211 // https://doi.org/10.1016/0364-0213(90)90002-e
Jordan M. J. (1986). Serial order: a parallel distributed processing approach. ICS Report 8604 // http://cseweb.ucsd.edu/~gary/258/jordan-tr.pdf
Pascanu R., Mikolov T., Bengio Y. (2012). On the difficulty of training recurrent neural networks // https://arxiv.org/abs/1211.5063
Hochreiter S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut f. Informatik, Technische Univ. Munich // http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
Hochreiter S., Bengio Y., Frasconi P., Schmidhuber J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies / Kremer S. C., Kolen J. F. (2001). A Field Guide to Dynamical Recurrent Neural Networks. John Wiley & Sons // https://books.google.ru/books?id=NWOcMVA64aAC
Hochreiter S., Schmidhuber J. (1997). Long short-term memory / Neural Computation journal, 1997, Vol. 9, No. 8, pp. 1735—1780 // https://doi.org/10.1162/neco.1997.9.8.1735
Borges J. L. (1988). Funes el memorioso. Umbriel Libros // https://books.google.ru/books?id=hCYxuwEACAAJ
user124589 (2016). Understanding LSTM units vs. cells / StackExchange. CrossValidated, Oct 23 '16 // https://stats.stackexchange.com/questions/241985/understanding-lstm-units-vs-cells
* Один из вариантов этого анекдота: «Некий студент решил поставить опыт. Поймал таракана, положил на стол и начал стучать по столу. Таракан убежал. Затем студент начал отрывать по одной лапке у таракана и обнаружил, что с каждым разом таракан реагирует на стук всё хуже. Потом, когда все лапки были оторваны, студент постучал по столу, но таракан никуда не убежал. В итоге студент сделал вывод, что таракан оглох».
Merity S., Keskar N. S., Socher R. (2017). Regularizing and Optimizing LSTM Language Models // https://arxiv.org/abs/1708.02182
Melis G., Kočiský T., Blunsom P. (2019). Mogrifier LSTM // https://arxiv.org/abs/1909.01792
Rusch T. K., Mishra S., Erichson N. B., Mahoney M. W. (2021). Long Expressive Memory for Sequence Modeling // https://arxiv.org/abs/2110.04744
Kingma D. P., Welling M. (2019). An Introduction to Variational Autoencoders // https://arxiv.org/abs/1906.02691
Berthelot D., Raffel C., Roy A., Goodfellow I. (2018). Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer // https://arxiv.org/abs/1807.07543
Hinton G. E., Salakhutdinov R. R. (2006). Reducing the Dimensionality of Data with Neural Networks / Science. — 2006-07-28. — Vol. 313, iss. 5786, pp. 504–507 // https://dx.doi.org/10.1126%2Fscience.1127647
Pascal V., Hugo L. (2010). Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion / Journal of Machine Learning Research. 11: 3371–3408 // http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
Pearson K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space / Philosophical Magazine. 2 (11): 559–572 // https://doi.org/10.1080/14786440109462720
Kohonen T. (1981). Automatic formation of topological maps of patterns in a self-organizing system / Oja E., Simula O. (1981). Proceedings of the 2nd Scandinavian Conference on Image Analysis. Espoo: Suomen Hahmontunnistustutkimuksen Seura, pp. 214–220
Kohonen T. (1982). Self-organized formation of topologically correct feature maps / Biological Cybernetics, Vol. 43, pp. 59—69 // https://doi.org/10.1007/BF00337288
Kohonen T. (1984). Self-organization and associative memory. Springer-Verlag // https://books.google.ru/books?id=LYZQAAAAMAAJ
Hinton G. E., Sejnowski T. J., Ackley D. H. (1984). Boltzmann Machines: Constraint satisfaction network that learn. Technical Report No. CMU-CS-84-119. Pittsburgh, PA: Carnegie-Mellon University.
Ackley D. H., Hinton G. E., Sejnowski T. J. (1985). A Learning Algorithm for Boltzmann Machines / Cognitive Science, Vol. 9, pp. 145—169 // https://doi.org/10.1207/s15516709cog0901_7
LeCun Y. (1987). Modeles connexionistes de l’apprentissage. PhD thesis, Universite de Paris VI // https://www.persee.fr/doc/intel_0769-4113_1987_num_2_1_1804
Gallinari P., LeCun Y., Thiria S., Fogelman-Soulie F. (1987). Memoires associatives distribuees / Proceedings of COGNITIVA 87. Paris, La Villette // https://www.researchgate.net/publication/216792895_Memoires_associatives_distribuees_une_comparaison_distributed_associative_memories_a_comparison
Bourlard H., Kamp Y. (1988). Auto-Association by Multilayer Perceptrons and Singular Value Decomposition / Biological Cybernetics, Vol. 59, Iss. 4—5, pp. 291–294 // https://doi.org/10.1007/BF00332918
Kramer M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks / AIChE Journal, Vol. 37, No. 2, pp. 233—243 // https://doi.rog/10.1002/aic.690370209
Hinton G. E., Zemel R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy / Advances in neural information processing systems, Vol. 6, pp. 3—10.
Hinton G. E., Salakhutdinov R. R. (2006). Reducing the Dimensionality of Data with Neural Networks / Science. — 2006-07-28. — Vol. 313, Iss. 5786, pp. 504—507 // https://dx.doi.org/10.1126%2Fscience.1127647
Hinton G. E., Osindero S., Teh Y. W. (2006). A Fast Learning Algorithm for Deep Belief Nets // https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
Masci J., Meier U., Cireșan D., Schmidhuber J. (2011). Stacked convolutional autoencoders for hierarchical feature extraction / International Conference on Artificial Neural Networks, pp. 52—59 // http://people.idsia.ch/~juergen/icann2011stack.pdf
Bromley J., Bentz J. W., Bottou L., Guyon I., LeCun Y., Moore C., Sackinger E., Shah R. (1993). Signature verification using a siamese time delay neural network / International Journal of Pattern Recognition and Artificial Intelligence, Vol. 7, Iss. 4, pp. 669—688 // https://dl.acm.org/doi/10.5555/2987189.2987282
He K., Fan H., Wu Y., Xie S., Girshick R. (2019). Momentum Contrast for Unsupervised Visual Representation Learning // https://arxiv.org/abs/1911.05722
Chen X., Fan H., Girshick R., He K. (2020). Improved Baselines with Momentum Contrastive Learning // https://arxiv.org/abs/2003.04297
Caron M., Misra I., Mairal J., Goyal P., Bojanowski P., Joulin A. (2020). Unsupervised Learning of Visual Features by Contrasting Cluster Assignments // https://arxiv.org/abs/2006.09882
Grill J.-B., Strub F., Altché F., Tallec C., Richemond P. H., Buchatskaya E., Doersch C., Pires B. A., Guo Z. D., Azar M. G., Piot B., Kavukcuoglu K., Munos R., Valko M. (2020). Bootstrap your own latent: A new approach to self-supervised Learning // https://arxiv.org/abs/2006.07733
Chen T., Kornblith S., Norouzi M., Hinton G. (2020). A Simple Framework for Contrastive Learning of Visual Representations // https://arxiv.org/abs/2002.05709
Chen T., Kornblith S., Swersky K., Norouzi M., Hinton G. (2020). Big Self-Supervised Models are Strong Semi-Supervised Learners // https://arxiv.org/abs/2006.10029
Zbontar J., Jing L., Misra I., LeCun Y., Deny S. (2021). Barlow Twins: Self-Supervised Learning via Redundancy Reduction // https://arxiv.org/abs/2103.03230
Barlow H. (1961). Possible Principles Underlying the Transformations of Sensory Messages // https://doi.org/10.7551/mitpress/9780262518420.003.0013
Tishby N., Pereira F. C., Bialek W. (1999). The Information Bottleneck Method / The 37th annual Allerton Conference on Communication, Control, and Computing, pp. 368—377 // https://arxiv.org/abs/physics/0004057
Tsai Y.-H. H., Bai S., Morency L.-P., Salakhutdinov R. (2021). A Note on Connecting Barlow Twins with Negative-Sample-Free Contrastive Learning // https://arxiv.org/abs/2104.13712
Gretton A., Fukumizu K., Teo C. H., Song L., Schölkopf B., Smola A. J. (2007). A kernel statistical test of independence / NIPS'07: Proceedings of the 20th International Conference on Neural Information Processing Systems, pp. 585—592 // https://dl.acm.org/doi/10.5555/2981562.2981636
Moore G. E. (1998). Cramming More Components Onto Integrated Circuits. Reprinter from Electronics, volume 38, number 8, April 19, 1965, p.114 / Proceedings of the IEEE, Vol. 86, Iss. 1 // https://doi.org/10.1109/jproc.1998.658762
Lécuyer C., Brock D. C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press // https://books.google.ru/books?id=LaZpUpkG70QC
Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
Moll J. (1995). Wiliam Bradford Shockley. A biographical memoir / Biographical Memoirs, Vol. 68. National Academies Press // https://books.google.ru/books?id=5NgoqLe_B5kC
Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
Berlin L. (2007). Tracing Silicon Valley's roots / San Francisco Chronicle, 2007, September 30 // https://www.sfgate.com/business/article/Tracing-Silicon-Valley-s-roots-2520298.php
Lojek B. (2007). History of semiconductor engineering. Springer Science & Business Media // https://books.google.ru/books?id=2cu1Oh_COv8C
Lécuyer C., Brock D. C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press // https://books.google.ru/books?id=LaZpUpkG70QC
* Иногда в популярных источниках называют срок, равный 18 месяцам, — он связан с прогнозом Давида Хауса, многолетнего главы компании Intel, который считал, что производительность процессоров должна удваиваться каждые 18 месяцев за счёт комбинации действия закона Мура и увеличения тактовых частот процессоров. Ретроспективная оценка показывает, что прогноз Хауса был близок к истине, более поздние оценки дают величину, равную примерно 20 месяцам.
Kanellos M. (2003). Moore's Law to roll on for another decade / c|net, Feb. 11, 2003 // https://www.cnet.com/news/moores-law-to-roll-on-for-another-decade/
Denning P. J., Lewis T. G. (2017). Exponential Laws of Computing Growth / Communications of the ACM, January 2017, Vol. 60, No. 1, pp. 54—65 // https://doi.org/10.1145/2976758
Moore G. E. (1998). Cramming More Components Onto Integrated Circuits. Reprinter from Electronics, volume 38, number 8, April 19, 1965, p. 114 / Proceedings of the IEEE, Vol. 86, Iss. 1 // https://doi.org/10.1109/jproc.1998.658762
DuBravac S. (2016). Moore’s Law Begins and Ends with Economics / Tech.pinions | Perspective, insight, analysis, July 18, 2016 // https://techpinions.com/moores-law-begins-and-ends-with-economics/46575
TSMC (2023). TSMC Holds 3nm Volume Production and Capacity Expansion Ceremony, Marking a Key Milestone for Advanced Manufacturing. / TSMC, 29.12.2022 // https://pr.tsmc.com/english/news/2986
Касми Э. (2021). Создан первый в мире процессор с топологией 2 нм / C•News, 06.05.2021 // https://www.cnews.ru/news/top/2021-05-06_sozdan_pervyj_v_mire_protsessor
Philip E. Ross (2003). The rules engineers live by weren’t always set in stone / IEEE Spectrum, December 2003 // https://www.gwern.net/docs/cs/2003-ross.pdf
* Её также называют уравнением Ферхюльста. Пьер Ферхюльст — бельгийский математик, занимавшийся среди прочего моделированием изменения численности населения, рост которого ограничен имеющимися в распоряжении популяции ресурсами, позже эту же кривую неоднократно переоткрывали и применяли для описания динамики различных процессов, например автокаталитических реакций, роста опухолей, изменения лексики в естественных языках и, наконец, распространения инноваций.
Lloyd P. J. (1967). American, German and British Antecedents to Pearl and Reed's Logistic Curve / Population Studies, Vol. 21, No. 2 (Sep., 1967), pp. 99—108 // https://doi.org/10.2307/2172714
Green500 Release (2023). June 2023 / TOP500 The List // https://www.top500.org/lists/green500/2023/06/
Green500 Release (2013). June 2013 / TOP500 The List // https://www.top500.org/lists/green500/2013/06/
Cavin R. K., Zhirnov V. V., Herr D. J. C., Avila A., Hutchby J. (2006). Research directions and challenges in nanoelectronics / Journal of Nanoparticle Research, p. 865 // https://www.researchgate.net/publication/225404354_Research_directions_and_challenges_in_nanoelectronics
Cockshott W. P., Cockshott P., Mackenzie L. M., Michaelson G. (2012). Computation and Its Limits. OUP Oxford // https://books.google.ru/books?id=U1Gcp1S__hEC
Schneider D. (2021). Frontier supercomputer to usher in exascale computing / IEEE Spectrum, 23 Dec 2021 // https://spectrum.ieee.org/exascale-supercomputing
TOP500 Release (2023). June 2023 / TOP500 The List // https://www.top500.org/lists/top500/2023/06/
Weiss T. R. (2021). Google Launches TPU v4 AI Chips / HPC wire, May 20, 2021 // https://www.hpcwire.com/2021/05/20/google-launches-tpu-v4-ai-chips/
Mayersen I. (2020). Intel is sacrificing previous AI acquisitions for Habana: They've traded one AI startup for another / TechSpot, February 2, 2020 // https://www.techspot.com/news/83826-intel-sacrificing-their-previous-ai-acquisitions-habana.html
Toon N. (2020). Introducing 2nd generation IPU systems for AI at scale // https://www.graphcore.ai/posts/introducing-second-generation-ipu-systems-for-ai-at-scale
Cerebras Systems Smashes the 2.5 Trillion Transistor Mark with New Second Generation Wafer Scale Engine (2021) // https://www.cerebras.net/press-release/cerebras-systems-smashes-the-2-5-trillion-transistor-mark-with-new-second-generation-wafer-scale-engine/
Suryavansh M. (2019). How to make your own deep learning accelerator chip! / Towards Data Science, Sep 18, 2019 // https://towardsdatascience.com/how-to-make-your-own-deep-learning-accelerator-chip-1ff69b78ece4
Locken Lui (2018). “Tensors” in TensorFlow… / Medium, Aug 24, 2018 // https://medium.com/@lockenluy/tensors-in-tensorflow-have-nothing-to-do-with-tensors-2ffb75172d05
Sapunov G. (2021). Hardware for Deep Learning / Intento, Feb 26, 2018 — Jan, 11, 2021 // https://blog.inten.to/hardware-for-deep-learning-current-state-and-trends-51c01ebbb6dc
Maass W. (1997). Networks of spiking neurons: The third generation of neural network models / Neural Networks, Vol. 10, Iss. 9, December 1997, pp. 1659—1671 // https://doi.org/10.1016/S0893-6080(97)00011-7
Schmitt O. H. (1937). Mechanical Solution of the Equations of Nerve Impulse Propagation / Proceedings of the American Physiological Society, 49th Annual Meeting, Memphis, TN, April, 1937.
Hézard T., Hélie T., Doval B., Bernardoni N. H., Kob M. (2012). Non-invasive vocal-folds monitoring using electrical imaging methods / 100 years of electrical imaging, Jul 2012, Paris, France. pp. 1—4 // https://hal.archives-ouvertes.fr/hal-00769567
Fabre P. (1940). Retour Sur Un Modèle Du Nerf (Première Partie) / Archives Internationales de Physiologie, 50(1), pp. 12—32 // https://doi.org/10.3109/13813454009148741
Fabre P. (1940). Retour Sur Un Modèle Du Nerf (Deuxième Partie) / Archives Internationales de Physiologie, 50(2), pp. 185–196 // https://doi.org/10.3109/13813454009145553
Zaghloul M. E., Meador J. L., Newcomb R. W. (2012). Silicon Implementation of Pulse Coded Neural Networks. Springer Science & Business Media // https://books.google.ru/books?id=rE3hBwAAQBAJ
Crane H. D. (1960). The Neuristor / IEEE Transactions on Electronic Computers, EC-9(3), pp. 370—371 // https://doi.org/10.1109/tec.1960.5219861
Zaghloul M. E., Meador J. L., Newcomb R. W. (2012). Silicon Implementation of Pulse Coded Neural Networks. Springer Science & Business Media // https://books.google.ru/books?id=rE3hBwAAQBAJ
Морозов В. Н., Смолович А. М. (1974). О возможности создания оптической нейристорной логики на основе эффекта индуцированной самопрозрачности / Квантовая электроника. №2, 1974 // http://mi.mathnet.ru/qe6693
* Фотоникой (от греческого φῶς, φωτὁς — свет) называют дисциплину, занимающуюся различными аспектами работы с оптическими сигналами, а также созданием разных устройств на их основе; нанофотоника — это раздел фотоники, изучающий физические процессы, возникающие при взаимодействии фотонов с объектами нанометрового масштаба.
Wagner K., Psaltis D. (1988). Adaptive optical networks using photorefractive crystals / Applied Optics, Vol. 27, Iss. 9, pp. 1752–1759 // https://doi.org/10.1364/AO.27.001752
Weverka R., Wagner K., Saffman M. (1991). Fully interconnected, two-dimensional neural arrays using wavelength-multiplexed volume holograms / Optics Letters, Vol. 16, Iss. 11, pp. 826–828 // https://doi.org/10.1364/OL.16.000826
Jang J. S., Jung S. W., Lee S. Y., Shin S. Y. (1988). Optical implementation of the Hopfield model for two-dimensional associative memory // https://doi.org/10.1364/ol.13.000248
Lin S., Liu L., Wang Z. (1989). Optical implementation of the 2-D Hopfield model for a 2-D associative memory // Optics Communications, Vol. 70, Iss. 2, 15 February 1989, pp. 87–91 // https://doi.org/10.1016/0030-4018(89)90274-5
Ramachandran R., Gunasekaran N. (2000). Optical Implementation of Two Dimensional Bipolar Hopfield Model Neural Network / Proceedings of the National Science Council, Republic of China, Part A, Physical Science and Engineering, Vol. 24, Iss. 1, pp. 73–78
Duvillier J., Killinger M., Heggarty K., Yao K., de Bougrenet de la Tocnaye J. L. (1994). All-optical implementation of a self-organizing map: a preliminary approach / Applied Optics, Vol. 33, Iss. 2, pp. 258–266 // https://doi.org/10.1364/AO.33.000258
George J., Mehrabian A., Amin R., Meng J., de Lima T. F., Tait A. N., Shastri B. J., El-Ghazawi T., Prucnal P. R., Sorger V. J. (2019). Neuromorphic photonics with electro-absorption modulators // https://arxiv.org/abs/1809.03545
Shainline J. M. (2020). Fluxonic Processing of Photonic Synapse Events. / IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, Iss. 1, pp. 1–15. // https://doi.org/10.1109/JSTQE.2019.2927473
Romeira B., Javaloyes J., Ironside C. N., Figueiredo J. M., Balle S., Piro O. (2013). Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors/ Optics Express, Vol. 21, Iss. 18, pp. 20931–20940. // https://doi.org/10.1364/OE.21.020931
Hejda M., Robertson J., Bueno J., Alanis J., Hurtado A. (2021). Neuromorphic encoding of image pixel data into rate-coded optical spike trains with a photonic VCSEL-neuron / APL Photonics, Vol. 6, Iss. 6, 060802. // https://doi.org/10.1063/5.0048674
Robertson J., Hejda M., Bueno J., Hurtado A. (2020). Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons / Scientific Reports, Vol. 10, Iss. 1, 6098. // https://doi.org/10.1038/s41598-020-62945-5
Белкин М., Яковлев В. (2015). Викселоника — новое направление оптоэлектронной обработки радиосигналов / Электроника. №3 (00143) // http://www.electronics.ru/files/article_pdf/4/article_4594_289.pdf
Zuo Y., Li B., Zhao Y., Jiang Y., Chen Y., Chen P., Jo G., Liu J., Du S. (2019). All-optical neural network with nonlinear activation functions / Optica, Vol. 6, Iss. 9, pp. 1132—1137 // https://doi.org/10.1364/OPTICA.6.001132
Wang T., Sohoni M. M., Wright L. G., Stein M. M., Ma S.-Y., Onodera T., Anderson M. G., McMahon P. L. (2022). Image sensing with multilayer, nonlinear optical neural networks // https://arxiv.org/abs/2207.14293
Wang T., Sohoni M. M., Wright L. G., Stein M. M., Ma S.-Y., Onodera T., Anderson M. G., McMahon P. L. (2023). Image sensing with multilayer, nonlinear optical neural networks / Nature Photonics, Vol. 17, pp. 408–415. // https://doi.org/10.1038/s41566-023-01170-8
Johnson J. L. (1994). Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images / Applied Optics, Vol. 33, Iss. 26, pp. 6239—6253 // https://doi.org/10.1364/AO.33.006239
Eckhorn R., Bauer R., Rosch M., Jordan W., Kruse W., Munk M. (1988). Functionally related modules of cat visual cortex shows stimulus-evoked coherent oscillations: a multiple electrode study / Investigative Ophthalmology & Visual Science, Vol. 29, 331—343 // https://doi.org/10.1364/ao.33.006239
Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse M., Munk M., Reitboeck H. J. (1988). Coherent Oscillations: A Mechanism of Feature Linking in the Visual Cortex? Multiple Electrode and Correlation Analyses in the Cat / Biological Cybernetics, Vol. 60, pp. 121—130 // https://doi.org/10.1007/BF00202899
Lee C., Panda P., Srinivasan G., Roy K. (2018). Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning / Frontiers in Neuroscience, Vol. 12, 2018 // https://doi.org/10.3389/fnins.2018.00435
Shrestha A., Ahmed K., Wang Y., Widemann D. P., Moody A. T., Van Essen B. C., Qiu Q. (2017). A spike-based long short-term memory on a neurosynaptic processor / IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, 2017, pp. 631—637 // https://doi.org/10.1109/ICCAD.2017.8203836
Burbank K. S. (2015). Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons / PLoS: Computational biology, December 3, 2015 // https://doi.org/10.1371/journal.pcbi.1004566
Zhu R.-J., Zhao Q., Li G., Eshraghian J. K. (2023). SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks // https://arxiv.org/abs/2302.1393
Izhikevich E. M. (2007). Dynamical Systems in Neuroscience. MIT Press // https://books.google.ru/books?id=kVjM6DFk-twC
Izhikevich E. M. (2005). Simulation of Large-Scale Brain Models / The Neurosciences Institute: Eugene M. Izhikevich // https://www.izhikevich.org/human_brain_simulation/Blue_Brain.htm
Wong T. M., Preissl R., Datta P., Flickner M., Singh R., Esser S. K., McQuinn E., Appuswamy R., Risk W. P., Simon H. D., Modha D. S. (2012). 1014. IBM Research Report, RJ10502 (ALM1211-004), November 13, 2012 // https://dominoweb.draco.res.ibm.com/reports/RJ10502.pdf
Makino J., Fukushige T., Koga M., Namura K. (2003). GRAPE-6: Massively-Parallel Special-Purpose Computer for Astrophysical Particle Simulations / Publications of the Astronomical Society of Japan, Vol. 55, Iss. 6, 25 December 2003, pp. 1163—1187 // https://doi.org/10.1093/pasj/55.6.1163
The Board: Neurogrid (2009) / Stanford University: Brains in Silicon // https://web.stanford.edu/group/brainsinsilicon/neurogrid.html
Benjamin B. V., Gao P., McQuinn E., Choudhary S., Chandrasekaran A. R., Bussat J., Alvarez-Icaza R., Arthur J. V., Merolla P. A., Boahen K. (2014). Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations / Proceedings of the IEEE, Vol. 102, No. 5, May 2014 // https://doi.org/10.1109/JPROC.2014.2313565
Davison A. P., Müller E., Schmitt S., Vogginger B., Lester D., Pfeil T. (2020). HBP Neuromorphic Computing Platform Guidebook. Release 2020-01-21 09:32:46 (cc9c98a) / Human Brain Project — Neuromorphic Computing Platform // https://flagship.kip.uni-heidelberg.de/jss/FileExchange/HBPNeuromorphicComputingPlatformGuidebook.pdf?fID=1504&s=qqdXDg6HuX3&uID=65
Schmitt S., Klähn J., Bellec G., Grüb A., Güttler M., Hartel A., Hartmann S., Husmann D., Husmann K., Jeltsch S., Karasenko V., Kleider M., Koke C., Kononov A., Mauch C., Müller E., Müller P., Partzsch J., Petrovici M. A., Schiefer S., Scholze S., Thanasoulis V., Vogginger B., Legenstein R., Maass W., Mayr C., Schüffny R., Schemmel J., Meier K. (2017). Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System / 2017 International Joint Conference on Neural Network // https://doi.rog/10.1109/IJCNN.2017.7966125
Hardware (2020) / Human Brain Project // https://www.humanbrainproject.eu/en/silicon-brains/how-we-work/hardware/
Schemmel J., Kriener L., Müller P., Meier K. (2017). An Accelerated Analog Neuromorphic Hardware System Emulating NMDA- and Calcium-Based Non-Linear Dendrites // 2017 International Joint Conference on Neural Networks / https://doi.org/10.1109/IJCNN.2017.7966124
Schmitt S., Müller E. (2019). BrainScaleS Hands-On Tutorial: Overview / NICE Workshop, 2019 // https://niceworkshop.org/wp-content/uploads/2019/04/NICE-2019-Day-4a_BrainScaleS-Overview.pdf
Hardware (2020) / Human Brain Project // https://www.humanbrainproject.eu/en/silicon-brains/how-we-work/hardware/
Illing D., Gerstner W., Brea J. (2019). Biologically plausible deep learning — But how far can we go with shallow networks? / Neural Networks, Vol. 118, pp. 90—101 // https://doi.org/10.1016/j.neunet.2019.06.001
Bliss T. V. P. (1979). Synaptic plasticity in the hippocampus / Trends in Neurosciences, Vol. 2, pp. 42—45 // https://doi.org/10.1016/0166-2236(79)90019-5
Kandel E. R., Tauc L. (1965). Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans / The Journal of Physiology, Vol. 181, Iss. 1, pp. 1—27 // https://doi.org/10.1113/jphysiol.1965.sp007742
Taylor M. M. (1973). The Problem of Stimulus Structure in the Behavioural Theory of Perception / South African Journal of Psychology, Vol. 3, pp. 23—45 // https://www.researchgate.net/publication/298214719_The_Problem_of_Stimulus_Structure_in_the_Behavioural_Theory_of_Perception
Bliss T. V., Lomo T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path / The Journal Of Physiology, Vol. 232, No. 2, pp. 331—356 // https://doi.org/10.1113/jphysiol.1973.sp010273
Rall W., Rinzel J. (1971). Dendritic spine function and synaptic attenuation calculations / Program and Abstracts: Society for Neuroscience First annual meeting, p. 64
Zemlyanukhin A. I., Bochkarev A. V. (2019). Analytical Properties and Solutions of the FitzHugh—Rinzel Model / Russian Journal of Nonlinear Dynamics, 2019, vol. 15, no. 1, pp. 3–12 // https://doi.org/10.20537/nd190101
Rahimian E., Zabihi S., Amiri M., Linares-Barranco B. (2017). Digital Implementation of the Two-Compartmental Pinsky-Rinzel Pyramidal Neuron Model / IEEE Transactions on Biomedical Circuits and Systems, 2018-Feb; 12(1):47-57 // https://doi.org/10.1109/TBCAS.2017.2753541
Lynch M. A. (2004). Long-term potentiation and memory / Physiological Reviews, Vol. 84, Iss. 1, pp. 87—136 // https://doi.org/10.1152/physrev.00014.2003
Segal M., Murphy D. D. (1999). CREB activation mediates plasticity in cultured hippocampal neurons / Neural Plasticity, Vol. 6, Iss. 3, pp. 1—7 // https://doi.org/10.1155/NP.1998.1
Emptage N. J., Reid C. A., Fine A., Bliss T. V. (2003). Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses / Neuron, Vol. 38, Iss. 5, pp. 797—804 // https://doi.org/10.1016/S0896-6273(03)00325-8
Tang Y. P., Shimizu E., Dube G. R., Rampon C., Kerchner G. A., Zhuo M., Liu G., Tsien J. Z. (1999). Genetic enhancement of learning and memory in mice / Nature, Vol. 401 (6748), pp. 63—69 // https://doi.org/10.1038/43432
Tang Y., Wang H., Feng R., Kyin M., Tsien J. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice / Neuropharmacology, Vol. 41, Iss. 6, pp. 779—790 // https://doi.org/10.1016/S0028-3908(01)00122-8
Malinow R. (2003). AMPA receptor trafficking and long-term potentiation / Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 358 (1432), pp. 707—14 // https://doi.org/10.1098/rstb.2002.1233
Malenka R. C., Bear M. F. (2004). LTP and LTD: an embarrassment of riches / Neuron, Vol. 44, Iss. 1, pp. 5—21 // https://doi.oeg/10.1016/j.neuron.2004.09.012
Araya R., Vogels T. P., Yuste R. (2014). Activity-dependent dendritic spine neck changes are correlated with synaptic strength // PNAS, Vol. 111, Iss. 28, pp. E2895—E2904 // https://doi.org/10.1073/pnas.1321869111
Douglas R. M., Goddard G. V. (1975). Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus / Brain Research, Vol. 86, Iss. 2, 21-Mar-1975, pp. 205—215 // https://doi.org/10.1016/0006-8993(75)90697-6
McNaughton B. L., Douglas R. M., Goddard G. V. (1978). Synaptic enhancement in fascia dentata: cooperativity among coactive afferents / Brain Research, 1978 Nov 24; 157(2):277-93 // https://doi.org/10.1016/0006-8993(78)90030-6
Lynch G. S., Dunwiddie T., Gribkoff V. (1977). Heterosynaptic depression: a postsynaptic correlate of long-term potentiation / Nature, Vol. 266, pp. 737—739 // https://doi.org/10.1038/266737a0
Dunwiddie T., Lynch G. (1978). Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency / The Journal of Physiology, Vol. 276, pp. 353—367 // https://doi.org/10.1113/jphysiol.1978.sp012239
Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004
Ito M., Sakurai M., Tongroach P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells / The Journal of Physiology, Vol. 324, pp. 113—134 // https://doi.org/10.1113/jphysiol.1982.sp014103
Herculano-Houzel S. (2009). The Human Brain in Numbers: A Linearly Scaled-up Primate Brain / Frontiers in Human Neuroscience, Vol. 3, Iss. 21, 2009 // https://doi.org/10.3389/neuro.09.031.2009
Марков Д. (2021). Удалось увидеть, как в мозжечке личинок данио-рерио строятся модели взаимодействия тела с внешним миром / Элементы, 17.12.2021 // https://elementy.ru/novosti_nauki/433910/Udalos_uvidet_kak_v_mozzhechke_lichinok_danio_rerio_stroyatsya_modeli_vzaimodeystviya_tela_s_vneshnim_mirom
Markov D. A., Petrucco L., Kist A. M., Portugues R. (2021). A cerebellar internal model calibrates a feedback controller involved in sensorimotor control / Nature Communications, Vol. 12, 2021 // https://doi.org/10.1038/s41467-021-26988-0
Levy W. B., Steward O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus / Neuroscience, Vol. 8, Iss. 4, April 1983, pp. 799—808 // https://doi.org/10.1016/0306-4522(83)90011-8
Artola A., Brocher S., Singer W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex / Nature, Vol. 347, pp. 69—72 // https://doi.org/10.1038/347069a0
Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004
Debanne D., Gahwiler B. H., Thompson S. M. (1994). Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro / Proceedings of the National Academy of Sciences of the United States of America, Vol. 91 (3), pp. 1148—1152 // https://doi.org/10.1073/pnas.91.3.1148
Malinow R. (1991). Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP / Science, Vol. 252, Iss. 5006, pp. 722—724 // https://doi.org/10.1126/science.1850871
Verstraelen P., Van Dyck M., Verschuuren M., Kashikar N. D., Nuydens R., Timmermans J.-P., De Vos W. H. (2018). Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture / Frontiers in Neuroscience, 26 June 2018 // https://doi.org/10.3389/fnins.2018.00389
Danielson E., Lee S. H. (2014). SynPAnal: Software for Rapid Quantification of the Density and Intensity of Protein Puncta from Fluorescence Microscopy Images of Neurons / PLoS One, Vol. 9 (12), e115298 // https://doi.org/10.1371/journal.pone.0115298
Kashiwagi Y., Higashi T., Obashi K., Sato Y., Komiyama N. H., Grant S. G. N., Okabe S. (2019). Computational geometry analysis of dendritic spines by structured illumination microscopy / Nature Communications, Vol. 10, Article number: 1285 // https://doi.org/10.1038/s41467-019-09337-0
Markram H., Sakmann B. (1995). Action potentials propogating back into dendrites triggers changes in efficacy of single-axon synapses between layer V pyramidal cells / Society for Neuroscience abstracts, Vol. 21.
Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004
Song S., Miller K. D., Abbott L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity / Nature Neuroscience. Vol. 3, pp. 919—926 // https://doi.org/10.1038/78829
Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004
Izhikevich E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling / Cerebral Cortex, Vol. 17, pp. 2443—2452 // https://doi.org/10.1093/cercor/bhl152
Frémaux N., Gerstner W. (2016). Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules / Frontiers in Neural Circuits, Vol. 9 // https://doi.org/10.3389/fncir.2015.00085
Tavanaei A., Maida A. (2019). BP-STDP: Approximating backpropagation using spike timing dependent plasticity / Neurocomputing, Vol. 330, pp. 39—47 // https://doi.org/10.1016/j.neucom.2018.11.014
Bengio Y., Mesnard T., Fischer A., Zhang S., Wu Y. (2017). STDP-compatible approximation of backpropagation in an energy-based model / Neural computation, Vol. 29, Iss. 3, pp. 555—577 // https://doi.org/10.1162/NECO_a_00934
Millidge B., Tschantz A., Buckley C. L. (2020). Predictive coding approximates backprop along arbitrary computation graphs // https://arxiv.org/abs/2006.04182
Mozafari M., Ganjtabesh M., Nowzari-Dalini A., Thorpe S. J., Masquelier T. (2019). Bio-Inspired Digit Recognition UsingSpike-Timing-Dependent Plasticity (STDP) and Reward-Modulated STDP in Deep Convolutional Networks / Pattern Recognition, Vol. 94, pp. 87—95 // https://doi.org/10.1016/j.patcog.2019.05.015
Lee C., Panda P., Srinivasan G., Roy K. (2018). Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning / Frontiers in Neuroscience, Vol. 12, 2018 // https://doi.org/10.3389/fnins.2018.00435
Mozafari M., Kheradpisheh S. R., Masquelier T., Nowzari-Dalini A., Ganjtabesh M. (2018). First-Spike-Based Visual Categorization Using Reward-Modulated STDP / IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 12, pp. 6178—6190 // https://doi.org/10.1109/TNNLS.2018.2826721
Vaila R., Chiasson J., Saxena V. (2019). Deep Convolutional Spiking Neural Networks for Image Classification // https://arxiv.org/abs/1903.12272
Wunderlich T., Kungl A. F., Müller E., Hartel A., Stradmann Y., Aamir S. A., Grübl A., Heimbrecht A., Schreiber K., Stöckel D., Pehle C., Billaudelle S., Kiene G., Mauch C., Schemmel J., Meier K., Petrovici M. A. (2019). Demonstrating Advantages of Neuromorphic Computation: A Pilot Study / Frontiers in Neuroscience: Neuromorphic Engineering, 26-Mar-2019 // https://doi.org/10.3389/fnins.2019.00260
SpiNNaker Project — Architectural Overview / The University of Manchester: APT Advanced Processor Technologies Research Group // http://apt.cs.manchester.ac.uk/projects/SpiNNaker/architecture/
SpiNNaker Project — Boards and Machines / The University of Manchester: APT Advanced Processor Technologies Research Group // http://apt.cs.manchester.ac.uk/projects/SpiNNaker/hardware/
Saxon Science Ministry delivers 8 Mio Euro to TU Dresden for second generation SpiNNaker machine (2019) / Human Brain Project // https://www.humanbrainproject.eu/en/follow-hbp/news/second-generation-spinnaker-neurorphic-supercomputer-to-be-built-at-tu-dresden/
Mayr С., Höppner S., Furber S. (2019). SpiNNaker 2: A 10 Million Core Processor System for Brain Simulation and Machine Learning // https://arxiv.org/abs/1911.02385
Höppner S., Mayr C. (2018). SpiNNaker2 — Towards Extremely Efficient Digital Neuromorphics and Multi-scale Brain Emulation / NICE Workshop, 2018 // https://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf
Мамаева О. (2018). Самую дорогую квартиру в Москве оценили в 7 млрд рублей / РБК, 19 сентября 2018 // https://realty.rbc.ru/news/5ba225279a7947b0b1ce8985
Human Brain Project, Framework Partnership Agreement // https://sos-ch-dk-2.exo.io/public-website-production/filer_public/0d/95/0d95ec21-276a-478d-a2a9-d0c5922fb83a/fpa_annex_1_part_b.pdf
Defense Spending by Country: Total annual defense spending by nation (2020) / www.GlobalFirepower.com // https://www.globalfirepower.com/defense-spending-budget.asp
Cleared Initiatives (2019) / NIH: The BrainInitiative® // https://braininitiative.nih.gov/funding/cleared-initiatives
Moon G., Zaghloul M. E., Newcomb R. W. (1992). VLSI implementation of synaptic weighting and summing in pulse coded neural-type cells / IEEE Transactions on Neural Networks, Vol. 3, Iss. 3 // https://doi.org/10.1109/72.129412
Zaghloul M., Meador J. L., Newcomb R. W. (1994). Silicon Implementation of Pulse Coded Neural Networks. Volume 266 of The Springer International Series in Engineering and Computer Science. Springer US // https://books.google.ru/books?id=MqdQAAAAMAAJ
Ota Y., Wilamowski B. W. (2000). CMOS Architecture of Synchronous Pulse-Coupled Neural Network / 26th Annual Confjerence of the IEEE, Vol. 2 // https://doi.org/10.1109/IECON.2000.972295
Huo J., Murray A., Wei D. (2012). Adaptive Visual and Auditory Map Alignment in Barn Owl Superior Colliculus and Its Neuromorphic Implementation / IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, No. 9, pp. 1486—1497 // https://doi.org/10.1109/TNNLS.2012.2204771
Strukov D., Snider G., Stewart D. R., Williams R. S. (2008). The missing memristor found / Nature, Vol. 453, pp. 80—83 // https://doi.org/10.1038/nature06932
Vaidyanathan S., Volos C. (2016). Advances and Applications in Nonlinear Control Systems. Studies in Computational Intelligence. Springer International Publishing // https://books.google.ru/books?id=NxDNCwAAQBAJ
* Диоксид титана — весьма распространённое химическое соединение. Это белый неорганический пигмент, широко применяемый в пищевой, косметической и фармацевтической промышленности. В качестве пищевой добавки (E171) он применяется для отбеливания рыбного фарша (сурими), в кондитерском производстве — для придания белизны сахарной и жировой глазури и конфетам. Диоксид титана можно легко встретить в числе компонентов зубной пасты, солнцезащитного крема, изделий из стекла и керамики, а также других повседневных вещей. По всей видимости, именно в силу своей распространённости в качестве пищевой добавки диоксид титана является источником лютого баттхёрта у многих хемофобов.
Meuffels P., Soni R. (2012). Fundamental Issues and Problems in the Realization of Memristors // https://arxiv.org/abs/1207.7319
Chua L. (2011). Resistance switching memories are memristors / Applied Physycs A, Vol. 102, pp. 765—783 // https://doi.org/10.1007/s00339-011-6264-9
Пизастор таинственный (2008) / Томская группа и студенческое отделение Института инженеров по электротехнике и радиоэлектронике // https://web.archive.org/web/20200128145235/http://ieee.tpu.ru/smex/pizastor_01.html
Yi W., Tsang K. K., Lam S. K., Bai X., Crowell J. A., Flores E. A. (2018). Biological plausibility and stochasticity in scalable VO2 active memristor neurons / Nature Communications, Vol. 9, Article number: 4661 // https://doi.org/10.1038/s41467-018-07052-w
Wilson S. W. (1986). Knowledge Growth in an Artificial Animal / Narendra K. S. (1986). Adaptive and Learning Systems. Springer, Boston, MA // https://doi.org/10.1007/978-1-4757-1895-9_18
Versace M., Chandler B. (2010). MoNETA: A Mind Made from Memristors / IEEE Spectrum, 23 Nov 2010 // https://spectrum.ieee.org/robotics/artificial-intelligence/moneta-a-mind-made-from-memristors
Kozma R., Pino R. E., Pazienza G. E. (2012). Advances in Neuromorphic Memristor Science and Applications. Springer Science & Business Media // https://books.google.ru/books?id=ATdIfAol_k4C
Hus S. M., Ge R., Chen P.-A., Liang L., Donnelly G. E., Ko W., Huang F., Chiang M.-H., Li A.-P., Akinwande D. (2020). Observation of single-defect memristor in an MoS2 atomic sheet / Nature Nanotechnology, Vol. 16, pp. 58—62 // https://www.nature.com/articles/s41565-020-00789-w
Merolla P. A., Arthur J. V., Alvarez-Icaza R., Cassidy A. S., Sawada J., Akopyan F., Jackson B. L., Imam N., Guo C., Nakamura Y., Brezzo B., Vo I., Esser S. K., Appuswamy R., Taba B., Amir A., Flickner M. D., Risk W. P., Manohar R., Modha D. S. (2014). A million spiking-neuron integrated circuit with a scalable communication network and interface / Science, Vol. 345 (6197): 668 // https://doi.org/10.1126/science.1254642
Yu S., Chen P.-Y., Cao Y., Xia L., Wang Y., Wu H. (2015). Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect / 2015 IEEE International Electron Devices Meeting / https://doi.org/10.1109/IEDM.2015.7409718
Gao L., Wang I.-T., Chen P.-Y., Vrudhula S., Seo J.-s., Cao Y., Hou T.-H., Yu S. (2015). Fully parallel write/read in resistive synaptic array for accelerating on-chip learning / Nanotechnology, Vol. 26, Num. 45 // https://doi.org/10.1088/0957-4484/26/45/455204
Prezioso M., Merrikh-Bayat F., Hoskins B. D., Adam G. C., Likharev K. K., Strukov D. B. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors / Nature, Vol. 521, pp. 61—64 // https://doi.org/10.1038/nature14441
Jang J.-W., Park S., Burr G. W., Hwang H., Jeong Y.-H. (2015). Optimization of conductance change in Pr1−xCaxMnO3-based synaptic devices for neuromorphic systems / IEEE Electron Device Letters, Vol. 36, No. 5, pp. 457—459 // https://researcher.watson.ibm.com/researcher/files/us-gwburr/PCMO_neuromorphic_EDL2015.pdf
Jeong Y. J., Kim S., Lu W. D. (2015). Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor / Applied Physics Letters, Vol. 107 // https://doi.org/10.1063/1.4934818
van de Burgt Y., Lubberman E., Fuller E. J., Keene S. T., Faria G. C., Agarwal S., Marinella M. J., Talin A. A., Salleo A. (2017). A non-volatile organic electrochemical device as a low-voltage artifcial synapse for neuromorphic computing / Nature Materials, Vol. 16, pp. 414—418 // https://doi.org/10.1038/nmat4856
Agarwal S., Jacobs Gedrim R. B., Hsia A. H., Hughart D. R., Fuller E. J., Talin A. A., James C. D., Plimpton S. J., Marinella M. J. (2017). Achieving ideal accuracies in analog neuromorphic computing using periodic carry / 2017 Symposium on VLSI Technology // https://doi.org/10.23919/VLSIT.2017.7998164
Upadhyay N. K., Jiang H., Wang Z., Asapu S., Xia Q., Joshua Yang J. (2019). Emerging Memory Devices for Neuromorphic Computing / Advanced Materials Technologies, 1800589 // https://doi:10.1002/admt.201800589
Oh S., Shi Y., del Valle J., Salev P., Lu Y., Huang Z., Kalcheim Y., Schuller I. K., Kuzum D. (2021). Energy-efficient Mott activation neuron for full-hardware implementation of neural networks / Nature Nanotechnology, Vol. 16, pp. 680—687 // https://doi.org/10.1038/s41565-021-00874-8
Ambrogio S., Narayanan P., Tsai H., Shelby R. M., Boybat I., Nolfo C., Sidler S., Giordano M., Bodini M., Farinha N. C. P., Killeen B., Cheng C., Jaoudi Y., Burr G. W. (2018). Equivalent-accuracy accelerated neural-network training using analogue memory / Nature, Vol. 558, pp. 60—67 // https://doi.org/10.1038/s41586-018-0180-5
Mayberry M. (2017). Intel’s New Self-Learning Chip Promises to Accelerate Artificial Intelligence / Intel newsroom, September 25, 2017 // https://newsroom.intel.com/editorials/intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/
Davies M. (2018). Loihi — a brief introduction // http://niceworkshop.org/wp-content/uploads/2018/05/Mike-Davies-NICE-Loihi-Intro-Talk-2018.pdf
Loihi – Intel / WikiChip // https://en.wikichip.org/wiki/intel/loihi
Mayberry M. (2018). Intel Creates Neuromorphic Research Community to Advance ‘Loihi’ Test Chip / Intel newsroom, March 1, 2018 // https://newsroom.intel.com/editorials/intel-creates-neuromorphic-research-community/
News Byte (2020). Intel Scales Neuromorphic Research System to 100 Million Neurons / Intel newsroom, March 18, 2020 // https://newsroom.intel.com/news/intel-scales-neuromorphic-research-system-100-million-neurons/
Intel Advances Neuromorphic with Loihi 2, New Lava Software Framework and New Partners (2021) / Intel newsroom, September 30, 2021 // https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-neuromorphic-loihi-2-lava-software.html
Ham D., Park H., Hwang S., Kim K. (2021). Neuromorphic electronics based on copying and pasting the brain / Nature Electronics, Vol. 4, pp. 635—644 // https://doi.org/10.1038/s41928-021-00646-1
Ambrogio S., Narayanan P., Okazaki A., Fasoli A., Mackin C., Hosokawa K., Nomura A., Yasuda T., Chen A., Friz A., Ishii M., Luquin J., Kohda Y., Saulnier N., Brew K., Choi S., Ok I., Philip T., Chan V., Silvestre C., Ahsan I., Narayanan V., Tsai H., Burr G. W. (2023). An analog-AI chip for energy-efficient speech recognition and transcription / Nature, Vol. 620, pp. 768–775 // https://doi.org/10.1038/s41586-023-06337-5
Le Gallo M., Khaddam-Aljameh R., Stanisavljevic M., Vasilopoulos A., Kersting B., Dazzi M., Karunaratne G., Brändli M., Singh A., Müller S. M., Büchel J., Timoneda X., Joshi V., Rasch M. J., Egger U., Garofalo A., Petropoulos A., Antonakopoulos T., Brew K., Choi S., Ok I., Philip T., Chan V., Silvestre C., Ahsan I., Saulnier N., Narayanan V., Francese P. A., Eleftheriou E., Sebastian A. (2023). A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference / Nature Electronics, 10 August 2023 // https://doi.org/10.1038/s41928-023-01010-1
Moradi S., Qiao N., Stefanini F., Indiveri G. (2017). A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs) / IEEE Transactions on Biomedical Circuits and Systems, Vol. 12, Iss. 1 // https://doi.org/10.1109/TBCAS.2017.2759700
Delbruck T. (2017). The development of the DVS and DAVIS sensors / ICRA 2017 workshop on Event-Based Vision, Singapore, June 2, 2017 // http://rpg.ifi.uzh.ch/docs/ICRA17workshop/Delbruck.pdf
RAMP Technology: Stop wasting battery power on the digitization of irrelevant data / Aspinity // https://www.aspinity.com/Technology
Pei J., Deng L., Song S., Zhao M., Zhang Y., Wu S., Wang G., Zou Z., Wu Z., He W., Chen F., Deng N., Wu S., Wang Y., Wu Y., Yang Z., Ma C., Li G., Han W., Li H., Wu H., Zhao R., Xie Y., Shi L. (2019). Towards artificial general intelligence with hybrid Tianjic chip architecture / Nature, Vol. 572, pp. 106—111 // https://doi.org/10.1038/s41586-019-1424-8
Chen Y., Krishna T., Emer J., Sze V. (2016). Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks / IEEE ISSCC 2016 // http://eyeriss.mit.edu/
Han S., Liu X., Mao H., Pu J., Pedram A., Horowitz M. A., Dally W. J. (2016). EIE: Efficient Inference Engine on Compressed Deep Neural Network / 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture // https://www.cs.virginia.edu/~smk9u/CS6501F16/p243-han.pdf
Нейроморфный процессор «Алтай» (2019) / Мотив: Нейроморфные технологии // https://motivnt.ru/neurochip-altai/
Zhang W., Gao B., Tang J., Yao P., Yu S., Chang M.-F., Yoo H.-J., Qian H., Wu H. (2020). Neuro-inspired computing chips / Nature Electronics, Vol. 3, pp. 371—382 // https://doi.org/10.1038/s41928-020-0435-7
Schneider M. L., Donnelly C. A., Russek S. E., Baek B., Pufall M. R., Hopkins P. F., Dresselhaus P. D., Benz S. P., Rippard W. H. (2018). Ultralow power artificial synapses using nanotextured magnetic Josephson junctions / Science Advances, Vol. 4, no. 1 // https://doi.org/10.1126/sciadv.1701329
Chen Y., Zhou Y., Zhuge F., Tian B., Yan M., Li Y., He Y., Shui Miao X. (2019). Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network / npj 2D Materials and Applications, 3, 31 // https://doi.org/10.1038/s41699-019-0114-6
Sanchez Esqueda I., Yan X., Rutherglen C., Kane A., Cain T., Marsh P., Liu Q., Galatsis K., Wang H., Zhou C. (2018). Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing / ACS Nano, Vol. 12, Iss. 7, pp. 7352—7361 // https://doi.org/10.1021/acsnano.8b03831
Zhang H.-T., Park T. J., Islam A. N. M. N., Tran D. S. J., Manna S., Wang Q., Mondal S., Yu H., Banik S., Cheng S., Zhou H., Gamage S., Mahapatra S., Zhu Y., Abate Y., Jiang N., Sankaranarayanan S. K. R. S., Sengupta A., Teuscher C., Ramanathan S. (2022). Reconfigurable perovskite nickelate electronics for artificial intelligence / Science, Vol. 375, Iss. 6580, pp. 533—539 // https://doi.org/10.1126/science.abj7943
Tasić M., Ivković J., Carlström G., Melcher M., Bollella P., Bendix J., Gorton L., Persson P., Uhlig J., Strand D. (2022). Electro-mechanically switchable hydrocarbons based on [8]annulenes / Nature Communications, Vol. 13, Iss. 860 // https://doi.org/10.1038/s41467-022-28384-8
Gent E. (2022). MIT Researchers Create Artificial Synapses 10,000x Faster Than Biological Ones. / Singularity hub, August 1, 2022 // https://singularityhub.com/2022/08/01/mit-researchers-created-artificial-synapses-10000x-faster-than-biological-ones/
Onen M., Emond N., Wang B., Zhang D., Ross F. M., Li J., Yildiz B., Del Alamo J. A. (2022). Nanosecond protonic programmable resistors for analog deep learning // https://doi.org/10.1126/science.abp8064
Fedorov A. K., Beloussov S. M. (2021). Quantum computing at the quantum advantage threshold / Unpublished paper.
* Дит — единица количества информации, содержащейся в сообщении о данном состоянии системы, имеющей десять равновероятных состояний.
Wang Y., Hu Z., Sanders B. C., Kais S. (2020). Qudits and high-dimensional quantum computing // https://arxiv.org/abs/2008.00959
Fedorov A. K., Beloussov S. M. (2021). Quantum computing at the quantum advantage threshold / Unpublished paper.
Wang G. (2014). Quantum Algorithm for Linear Regression // https://arxiv.org/abs/1402.0660
Schuld M., Sinayskiy I., Petruccione F. (2016). Prediction by linear regression on a quantum computer // https://arxiv.org/abs/1601.07823
Li G., Wang Y., Luo Y., Feng Y. (2019). Quantum Data Fitting Algorithm for Non-sparse Matrices // https://arxiv.org/abs/1907.06949
Dutta S., Suau A., Dutta S., Roy S., Behera B. K., Panigrahi P. K. (2020). Quantum circuit design methodology for multiple linear regression / IET Quantum Communication, Vol. 1, Iss. 2, pp. 55-61 // https://doi.org/10.1049/iet-qtc.2020.0013
Lu S., Braunstein S. L. (2014). Quantum decision tree classifier / Quantum Information Processing, Vol. 13, pp. 757—770 // https://doi.org/10.1007/s11128-013-0687-5
Rebentrost P., Mohseni M., Lloyd S. (2014). Quantum Support Vector Machine for Big Data Classification / Physical Review Letters, Vol. 113, Iss. 13 // https://doi.org/10.1103/PhysRevLett.113.130503
Chatterjee R., Yu T. (2016). Generalized Coherent States, Reproducing Kernels, and Quantum Support Vector Machines // https://arxiv.org/abs/1612.03713
Schuld M., Killoran N. (2018). Quantum machine learning in feature Hilbert spaces // https://arxiv.org/abs/1803.07128
Monras A., Beige A., Wiesner K. (2010). Hidden Quantum Markov Models and non-adaptive read-out of many-body states // https://arxiv.org/abs/1002.2337
Srinivasan S., Gordon G., Boots B. (2017). Learning Hidden Quantum Markov Models // https://arxiv.org/abs/1710.09016
Denil M., de Freitas N. (2011). Toward the Implementation of a Quantum RBM / NIPS 2011 Deep Learning and Unsupervised Feature Learning Workshop // https://www.cs.ubc.ca/~nando/papers/quantumrbm.pdf
Dumoulin V., Goodfellow I. J., Courville A., Bengio Y. (2013). On the Challenges of Physical Implementations of RBMs // https://arxiv.org/abs/1312.5258
Wiebe N., Kapoor A., Svore K. M. (2014). Quantum Deep Learning // https://arxiv.org/abs/1412.3489
Benedetti M., Realpe-Gómez J., Biswas R., Perdomo-Ortiz A. (2015). Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning // https://arxiv.org/abs/1510.07611
Amin M. H., Andriyash E., Rolfe J., Kulchytskyy B., Melko R. (2016). Quantum Boltzmann Machine // https://arxiv.org/abs/1601.02036
Anschuetz E. R., Cao Y. (2019). Realizing Quantum Boltzmann Machines Through Eigenstate Thermalization / https://arxiv.org/abs/1903.01359
Khoshaman A., Vinci W., Denis B., Andriyash E., Sadeghi H., Amin M. H. (2018). Quantum variational autoencoder / Quantum Science and Technology, Vol. 4, No. 1 // https://iopscience.iop.org/article/10.1088/2058-9565/aada1f
Cong I., Choi S., Lukin M. D. (2019). Quantum convolutional neural networks / Nature Physics, Vol. 15, pp. 1273—1278 // https://doi.org/10.1038/s41567-019-0648-8
Chen S. E.-C., Yoo S., Fang Y.-L. L. (2020). Quantum Long Short-Term Memory // https://arxiv.org/abs/2009.01783
Di Sipio R. (2021). Toward a Quantum Transformer / Towards Data Science, Jan 10, 2021 // https://towardsdatascience.com/toward-a-quantum-transformer-a51566ed42c2
Kak S. C. (1995). Quantum Neural Computing / Advances in Imaging and Electron Physics, Vol. 94, pp. 259—313 // https://doi.org/10.1016/S1076-5670(08)70147-2
Zak M., Williams C. P. (1998). Quantum Neural Nets / International Journal of Theoretical Physics, Vol. 37, pp. 651—684 // https://doi.org/10.1023/A:1026656110699
Cao Y., Guerreschi G. G., Aspuru-Guzik A. (2017). Quantum Neuron: an elementary building block for machine learning on quantum computers // https://arxiv.org/abs/1711.11240
Wan K. H., Dahlsten O., Kristjánsson H., Gardner R., Kim M. S. (2017). Quantum generalisation of feedforward neural networks / npj Quantum Information, Vol. 3 // https://doi.org/10.1038/s41534-017-0032-4
Killoran N., Bromley T. R., Arrazola J. M., Schuld M., Quesada N., Lloyd S. (2018). Continuous-variable quantum neural networks // https://arxiv.org/abs/1806.06871
Strömberg T., Schiansky P., Dunjko V., Friis N., Harris N. C., Hochberg M., Englund D., Wölk S., Briegel H. J., Walther P. (2021). Experimental quantum speed-up in reinforcement learning agents / Nature, Vol. 591, pp. 229—233 // https://doi.org/10.1038/s41586-021-03242-7
Gao X., Zhang Z., Duan L. (2017). An efficient quantum algorithm for generative machine learning // https://arxiv.org/abs/1711.02038
Lloyd S., Weedbrook C. (2018). Quantum generative adversarial learning // https://arxiv.org/abs/1804.09139
Dallaire-Demers P.-L., Killoran N. (2018). Quantum generative adversarial networks // https://arxiv.org/abs/1804.08641
Schuld M., Petruccione F. (2018). Quantum ensembles of quantum classifiers / Scientific Reports, Vol. 8 (2772) // https://doi.org/10.1038/s41598-018-20403-3
Wang X., Ma Y., Hsieh M.-H., Yung M. (2019). Quantum Speedup in Adaptive Boosting of Binary Classification // https://arxiv.org/abs/1902.00869
Arunachalam S., Maity R. (2020). Quantum Boosting // https://arxiv.org/abs/2002.05056
Trujillo C. A., Gao R., Negraes P. D., Chaim I. A., Domissy A., Vandenberghe M., Devor A., Yeo G. W., Voytek B., Muotri A. R. (2018). Nested oscillatory dynamics in cortical organoids model early human brain network development // https://www.biorxiv.org/content/10.1101/358622v1
Le Page M. (2021). Human brain cells in a dish learn to play Pong faster than an AI / New Scientist, 17 December 2021 // https://www.newscientist.com/article/2301500-human-brain-cells-in-a-dish-learn-to-play-pong-faster-than-an-ai/
Bakkum D. J., Booth M. C., Brumfield J. R., Chao Z., Madhavan R., Passaro P. A., Rambani K., Shkolnik A. C., Towal R. B. (2004). Hybrots: hybrids of living neurons and robots for studying neural computation / Brain Inspired Cognitive Systems, August 29 — September 1, 2004, University of Stirling, Scotland, UK // http://www.cs.stir.ac.uk/~lss/BICS2004/CD/papers/1094.pdf
Reinsel D., Gantz J., Rydning J. (2018). Data Age 2025: The Digitization of the World From Edge to Core. An IDC White Paper — #US44413318, Sponsored by Seagate // https://www.seagate.com/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
Gantz J., Reinsel D. (2012). IDC Digital Universe Study: Big Data, Bigger Digital Shadows and Biggest Growth in the Far East // https://www.whizpr.be/upload/medialab/21/company/Media_Presentation_2012_DigiUniverseFINAL1.pdf
См. патент «Hybrid machine/human computing arrangement». 2001-03-19 (https://patents.google.com/patent/US2215544).
* Словом «толóка» в России в прошлом называли форму деревенской взаимопомощи, толоку организовывали для выполнения срочных работ, требующих объединения усилий большого количества работников: сооружения дома или постройки дороги, вырубки леса и так далее.
Howe J. (2006). Crowdsourcing: A Definition / Crowdsourcing Blog, June 2, 2006 // http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
Howe J. (2006). The Rise of Crowdsourcing / Wired, 06.01.06 // https://www.wired.com/2006/06/crowds/
Crowdsourcing (2020) / Merriam-Webster.com Dictionary, Merriam-Webster // https://www.merriam-webster.com/dictionary/crowdsourcing
Estellés-Arolas E., González-Ladrón-de-Guevara F. (2012). Towards an integrated crowdsourcing definition / Journal of Information Science 38(2), April 2012 // https://doi.org/10.1177/016555150000000
Dean J. (2019). Deep Learning to Solve Challenging Problems // https://www2019.thewebconf.org/media/Deep_Learning_for_Solving_Important_Problems.pdf
arXiv submission rate statistics (2019). Data for 1991 through 2018, updated 1 January 2019 / ArXiv // https://arxiv.org/help/stats/2018_by_area
Stanford Human-Centered Artificial Intelligence (HAI) (2019). Artificial Intelligence Index Report 2019 // https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf
Hutson M. (2018). Why are AI researchers boycotting a new Nature journal—and shunning others? / Science, May. 17, 2018 // https://doi.org/10.1126/science.aau2005, https://openaccess.engineering.oregonstate.edu/signatures
Sutton C., Gong L. (2017). Popularity of arXiv.org within Computer Science // https://arxiv.org/abs/1710.05225
* Социальная сеть для поиска и установления деловых контактов, запрещённая в Российской Федерации.
Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/11/2021-AI-Index-Report_Master.pdf
Stanford Human-Centered Artificial Intelligence (HAI) (2022). Artificial Intelligence Index Report 2022 // https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf
Stanford Human-Centered Artificial Intelligence (HAI) (2023). Artificial Intelligence Index Report 2023 // https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
Число вакансий в сфере искусственного интеллекта в РФ выросло за год в 2,5 раза (2018) / Прайм: агентство экономической информации, 10 Ноября 2018 // https://1prime.ru/telecommunications_and_technologies/20181110/829424812.html
Stanford Human-Centered Artificial Intelligence (HAI) (2019). Artificial Intelligence Index Report 2019 // https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf
Dalporto G. (2020). Udacity 2019: The Year in Review // https://blog.udacity.com/2019/12/looking-back-2019-udacity-year-in-review.html
Shah D. (2019). Coursera’s 2019: Year in Review / Class central MOOCreport // https://www.classcentral.com/report/coursera-2019-year-review/
Over 2M students have enrolled in Machine Learning MOOC from Stanford (2019) / MoocLab // https://www.mooclab.club/threads/over-2m-students-have-enrolled-in-machine-learning-mooc-from-stanford.11562/
Введение в машинное обучение / Coursera // https://ru.coursera.org/learn/vvedenie-mashinnoe-obuchenie
Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/11/2021-AI-Index-Report_Master.pdf
Stanford Human-Centered Artificial Intelligence (HAI) (2022). Artificial Intelligence Index Report 2022 // https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf
Computing Research Association (2023). 2022 Taulbee Survey // https://cra.org/crn/wp-content/uploads/sites/7/2023/05/2022-Taulbee-Survey-Final.pdf
Computing Research Association (2006). 2004-2005 Taulbee Survey // https://cra.org/wp-content/uploads/2015/01/05.pdf
Computing Research Association (2023). 2022 Taulbee Survey // https://cra.org/crn/wp-content/uploads/sites/7/2023/05/2022-Taulbee-Survey-Final.pdf
Computing Research Association (2006). 2004-2005 Taulbee Survey // https://cra.org/wp-content/uploads/2015/01/05.pdf
Stanford Human-Centered Artificial Intelligence (HAI) (2023). Artificial Intelligence Index Report 2023 // https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
Stanford Human-Centered Artificial Intelligence (HAI) (2019). Artificial Intelligence Index Report 2019 // https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf
* Фискальный, или финансовый, год (fiscal year) федерального правительства США длится с 1 октября предыдущего года по 30 сентября текущего.
The Networking & Information Technology R&D Program and the National Artificial Intelligence Initiative Office (2022). Supplement to the President’s FY2023 budget // https://www.nitrd.gov/pubs/FY2023-NITRD-NAIIO-Supplement.pdf
Stanford Human-Centered Artificial Intelligence (HAI) (2023). Artificial Intelligence Index Report 2023 // https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/11/2021-AI-Index-Report_Master.pdf
Congressional Research Service (2021). Artificial Intelligence: Background, Selected Issues, and Policy Considerations // https://crsreports.congress.gov/product/pdf/R/R46795
Acharya A., Arnold Z. (2019). Chinese Public AI R&D Spending: Provisional Findings. CSET Issue Brief // https://cset.georgetown.edu/wp-content/uploads/Chinese-Public-AI-RD-Spending-Provisional-Findings-1.pdf
Pawlyk O. (2018). China Leaving US Behind on Artificial Intelligence: Air Force General / Military.com // https://www.military.com/defensetech/2018/07/30/china-leaving-us-behind-artificial-intelligence-air-force-general.html
Hao K. (2019). Yes, China is probably outspending the US in AI—but not on defense / MIT Technology Review, Dec 5, 2019 // https://www.technologyreview.com/s/614842/china-us-ai-military-spending/
State Council Notice on the Issuance of the New Generation Artificial Intelligence Development Plan (2017) // https://www.newamerica.org/cybersecurity-initiative/digichina/blog/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/
新一代人工智能发展规划 (2017) // http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
Паспорт федерального проекта «Цифровые технологии», с. 22, сумма за 2020-2014 годы // https://digital.gov.ru/uploaded/files/pasport-federalnogo-proekta-tsifrovyie-tehnologii.pdf
Военный раздел поднимется на второе место в бюджете России по расходам (2021) / РБК, 3 октября 2021 // https://www.rbc.ru/economics/03/10/2021/61571a279a79478e0bc0b011
International Federation of Robotics (IFR) (2021). Press Conference World Robotics 2021 // https://ifr.org/downloads/press2018/2021_10_28_WR_PK_Presentation_long_version.pdf
International Federation of Robotics (IFR) (2022). Executive Summary World Robotics 2022 Industrial Robots // https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2022.pdf
International Federation of Robotics (IFR) (2022). Executive Summary World Robotics 2022 Industrial Robots // https://ifr.org/downloads/press2018/2022_WR_extended_version.pdf
Гапотченко Д. (2021). Выручка участников рейтинга увеличилась в 1,5 раза, несмотря на эпидемию и локдаун / С-News, 27 сентября 2021 // https://www.cnews.ru/reviews/promyshlennie_roboty_2021/articles/vyruchka_uchastnikov_rejtinga_uvelichilas
International Federation of Robotics (IFR) (2022). Executive Summary World Robotics 2022 Industrial Robots // https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2022.pdf
International Federation of Robotics (IFR) (2023). China overtakes USA in robot density // https://ifr.org/ifr-press-releases/news/china-overtakes-usa-in-robot-density
Гапотченко Д. (2021). Промышленные роботы пострадали от ковида, но меньше, чем ожидалось / С-News, 27 сентября 2021 // https://www.cnews.ru/reviews/promyshlennie_roboty_2021/articles/promyshlennye_roboty_postradali_ot
АО АК «ДЕЛОВОЙ ПРОФИЛЬ» (2021). Использование промышленных роботов: обзор рынка робототехники в России и мире // https://delprof.ru/press-center/open-analytics/ispolzovanie-promyshlennykh-robotov-obzor-rynka-robototekhniki-v-rossii-i-mire/
Скрынникова А. (2019). Больше всего роботов в России покупает автопром / Ведомости, 19 сентября 2019 // https://www.vedomosti.ru/technology/articles/2019/09/19/811579-bolshe-vsego-robot
Sizing the prize. PwC’s Global Artificial Intelligence Study: Exploiting the AI Revolution. What’s the real value of AI for your business and how can you capitalise? (2017) // https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html
Cohen I. B. (1946). Authenticity of Scientific Anecdotes / Nature, Vol. 157(3981), pp. 196—197 // https://doi.org/10.1038/157196b0
Gregory R. (1929). Discovery: Or, The Spirit and Service of Science. Macmillan // https://books.google.ru/books?id=IwVJygEACAAJ
Cohen I. B. (1946). Authenticity of Scientific Anecdotes / Nature, Vol. 157(3981), pp. 196—197 // https://doi.org/10.1038/157196b0
Katz J. (1997). Did Gates Really Say 640K is Enough For Anyone? / Wired, 01.16.97 // https://www.wired.com/1997/01/did-gates-really-say-640k-is-enough-for-anyone/
Shapiro F. R. (2008). Our Daily Bleg: Did I. B. M. Really See a World Market “For About Five Computers”? // https://freakonomics.com/2008/04/17/our-daily-bleg-did-ibm-really-see-a-world-market-for-about-five-computers/
Deloitte.Insights (2019). Future in the balance? How countries are pursuing an AI advantage. Insights from Deloitte’s State of AI in the Enterprise, 2nd Edition survey // https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/public-sector/lu-global-ai-survey.pdf
Deloitte.Insights (2019). Tech Trends 2019: Beyond the digital frontier // https://www2.deloitte.com/content/dam/Deloitte/br/Documents/technology/DI_TechTrends2019.pdf
Sizing the prize. PwC’s Global Artificial Intelligence Study: Exploiting the AI Revolution. What’s the real value of AI for your business and how can you capitalise? (2017) // https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html
Sizing the prize. PwC’s Global Artificial Intelligence Study: Exploiting the AI Revolution. What’s the real value of AI for your business and how can you capitalise? (2017) // https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html
Bughin J., Seong J., Manyika J., Chui M., Joshi R. (2018). Notes from the ai frontier modeling the impact of ai on the world economy. Discussion paper / McKinsey&Company. McKinsey Global Institute // https://www.mckinsey.com/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20the%20frontier%20Modeling%20the%20impact%20of%20AI%20on%20the%20world%20economy/MGI-Notes-from-the-AI-frontier-Modeling-the-impact-of-AI-on-the-world-economy-September-2018.ashx
* Экстерналия (англ. externality), или внешний эффект, в экономической теории — воздействие рыночной транзакции на третьих лиц, не опосредованное рынком. Например, загрязнение окружающей среды в результате деятельности некой компании является отрицательной экстерналией.
ITUTrends (2018). Assessing the Economic Impact of Artificial Intelligence / Emerging trends in ICTs, Iss. Paper No. 1, September 2018 // https://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-ISSUEPAPER-2018-1-PDF-E.pdf
* Вообще говоря, термин модальность (от лат. modus — способ) пришёл в информатику из психологии, в которой понятия «модальность раздражителя» [stimulus modality] и «сенсорная модальность» [sensory modality] используются для того, чтобы указать на восприятие раздражителя определённой сенсорной системой: визуальной (зрительной), аудиальной (слуховой) и так далее. Однако использование этого термина в области информатики приобрело весьма вольный характер. Например, нередко говорят о «текстовой модальности» [text modality], но ведь у человека отсутствуют специальные сенсоры для восприятия текста — мы воспринимаем текст опосредованно, например через зрительную или слуховую систему. Фактически в данном случае термин «модальность» смешивается со способом представления данных [data representation]. Кроме того, очевидно, что машины вовсе не обязаны иметь тот же набор сенсорных систем, что и люди. Увы, связанная с этим путаница в наши дни приобрела уже всеобщий масштаб, и фарш уже вряд ли получится прокрутить в обратном направлении. Но, быть может, ещё не поздно при необходимости использовать для различения смешавшихся понятий составные термины, например «сенсорная модальность» и «модальность представления» [representation modality].
Portes Q., Carvalho J. M., Pinquier J., Lerasle F. (2021). Multimodal Neural Network for Sentiment Analysis in Embedded Systems // https://www.scitepress.org/Papers/2021/102247/102247.pdf
Baltrušaitis T., Ahuja C., Morency L.-P. (2018). Multimodal Machine Learning: A Survey and Taxonomy // https://arxiv.org/abs/1705.09406
From not working to neural networking: The artificial-intelligence boom is based on an old idea, but with a modern twist (2016) / The Economist // https://www.economist.com/special-report/2016/06/23/from-not-working-to-neural-networking
Sánchez J., Perronnin F., Mensink T. (2010). Improved Fisher Vector for Large Scale Image Classification XRCE's participation for ILSVRC // http://image-net.org/challenges/LSVRC/2010/ILSVRC2010_XRCE.pdf
Lin Y., Lv F., Zhu S., Yang M., Cour T., Yu K., Cao L., Li Z., Tsai M., Zhou X., Huang T., Zhang T. (2010). ImageNet classification: fast descriptor coding and large-scale SVM training // http://image-net.org/challenges/LSVRC/2010/ILSVRC2010_NEC-UIUC.pdf
Perronnin F., Sánchez J. (2011). XRCE@ILSVRC2011: Compressed Fisher vectors for LSVR // http://image-net.org/challenges/LSVRC/2011/ilsvrc11.pdf
Jessi H. (2018). Fei-Fei Li's Quest To Make Ai Better For Humanity / Wired, 11.13.2018 // https://www.wired.com/story/fei-fei-li-artificial-intelligence-humanity/
* На самом деле в официальном архиве датасета, выложенном на сайте Caltech, наличествуют 102 папки вместо 101. По всей видимости, «безбилетником» стала папка BACKGROUND_Google, содержащая довольно странный набор изображений, начиная от карты путешествий генерала Ферье по Персии и Афганистану размером 3481 × 2955 пикселей и заканчивая красноречивой карикатурой, на которой изображён человек со спущенными штанами, демонстрирующий зрителям свой голый зад; сей шедевр сопровождается подписью «C:\». Вероятно, в набор просто попала папка с персональной свалкой картинок кого-то из создателей датасета. Желаю удачи цифровым археологам будущего в её исследовании.
Fei-Fei L., Fergus R., Perona P. The Caltech 101 // http://www.vision.caltech.edu/Image_Datasets/Caltech101/
Griffin G., Holub A. D., Perona P. The Caltech 256 // http://www.vision.caltech.edu/Image_Datasets/Caltech256/
Ponce J., Berg T. L., Everingham M., Forsyth D. A., Hebert M., Lazebnik S., Marszalek M., Schmid C., Russell B. C., Torralba A., Williams C. K. I., Zhang J., Zisserman A. (2006). Dataset Issues in Object Recognition / Ponce J., Hebert M., Schmid C., Zisserman A. (2006). Toward Category-Level Object Recognition. Lecture Notes in Computer Science, Vol. 4170. Springer, Berlin, Heidelberg // https://doi.org/10.1007/11957959_2
* Словарь, в котором указаны семантические отношения (синонимы, антонимы и т. д.) между лексическими единицами.
RussNet: WordNet for Russian (2005) // http://project.phil.spbu.ru/RussNet/index.shtml
Braslavski P., Ustalov D., Mukhin M., Kiselev Y. (2016). YARN: Spinning-in-Progress / Proceedings of the Eight Global Wordnet Conference, — Bucharest, Romania, 2016 — pp. 58—65 // https://russianword.net/
Липатов А., Гончарук А., Гельфенбейн И., Шило В., Лехельт В. Русский Wordnet // http://wordnet.ru/
Loukachevitch N. V., Lashevich G., Gerasimova A. A., Ivanov V. V., Dobrov B. V. (2016). Creating Russian WordNet by Conversion. / Proceedings of Conference on Computational linguistics and Intellectual technologies Dialog-2016, pp. 405-415
Лашевич Г. (2021). Тезаурус русского языка RuWordNet // https://www.ruwordnet.ru
Zisserman A., Winn J., Fitzgibbon A., Gool L. V., Sivic J., Williams C., Hogg D. (2012). In Memoriam: Mark Everingham / IEEE Transactions on pattern analysis and machine intelligence, Vol. 34, No. 11, November 2012 // https://doi.org/10.1109/TPAMI.2012.204
* Команда SuperVision отправляла ещё одну версию сети, при обучении которой к обучающей выборке были добавлены изображения с прошлогодних соревнований, и эта модель смогла «выгадать» ещё чуть более процентного пункта, сократив ошибку до 15,32%, но поскольку некоторые исследователи считают это не совсем честным трюком, то в прессе часто приводят первое значение.
Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A. C., Fei-Fei L. (2015). ImageNet Large Scale Visual Recognition Challenge / International Journal of Computer Vision, Vol. 115, pp. 211–252 // https://doi.org/10.1007/s11263-015-0816-y
Deng J., Berg A., Satheesh S., Su H., Khosla A., Fei-Fei L. (2012). Large Scale Visual Recognition Challenge 2012 (ILSVRC2012). Held in conjunction with PASCAL Visual Object Classes Challenge 2012 (VOC2012) // http://image-net.org/challenges/LSVRC/2012/index
Gershgorn D. (2018). Rise of AlexNet: The inside story of how AI got good enough to dominate Silicon Valley / QUARTZ, June 18, 2018 // https://qz.com/1307091/the-inside-story-of-how-ai-got-good-enough-to-dominate-silicon-valley/
Krizhevsky A. (2009). Learning Multiple Layers of Features from Tiny Images // https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
Torralba A., Fergus R., Freeman W. T. (2008). 80 million tiny images: a large data set for nonparametric object and scene recognition / IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, Iss. 11, pp. 1958—1970 // https://doi.org/10.1109/TPAMI.2008.128
Prabhu V. U., Birhane A. (2020). Large image datasets: A pyrrhic win for computer vision? // https://arxiv.org/abs/2006.16923
Torralba A., Fergus R., Freeman B. (2020). June 29th, 2020 // https://groups.csail.mit.edu/vision/TinyImages/
Ustik G. (2020). MIT removes huge dataset that teaches AI systems to use racist, misogynistic slurs / TheNextWeb, July 1, 2020 // https://thenextweb.com/neural/2020/07/01/mit-removes-huge-dataset-that-teaches-ai-systems-to-use-racist-misogynistic-slurs/
Gorey C. (2020). 80m images used to train AI pulled after researchers find string of racist terms / siliconrepublic, 13 Jul 2020 // https://www.siliconrepublic.com/machines/mit-database-racist-misogynist-discovery-abeba-birhane
Quach K. (2020). MIT apologizes, permanently pulls offline huge dataset that taught AI systems to use racist, misogynistic slurs. Top uni takes action after El Reg highlights concerns by academics / The Register, 1 Jul 2020 // https://www.theregister.com/2020/07/01/mit_dataset_removed/
Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks / Advances in Neural Information Processing Systems 25 (NIPS 2012) // https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Bai K. (2019). A Comprehensive Introduction to Different Types of Convolutions in Deep Learning: Towards intuitive understanding of convolutions through visualizations / Towards Data Science, Feb 12, 2019 // https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
Hahnloser R. H. R., Sarpeshkar R., Mahowald M. A., Douglas R. J., Seung S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit / Nature, Vol. 405, pp. 947—951 // https://doi.org/10.1038/35016072
Glorot X., Bordes A., Bengio Y. (2011). Deep Sparse Rectifier Neural Networks. / Journal of Machine Learning Research 15 (2011), pp. 315-323 // https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
Liu D. (2017). A Practical Guide to ReLU: Start using and understanding ReLU without BS or fancy equations // https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks (Slides) // http://image-net.org/challenges/LSVRC/2012/supervision.pdf
Godoy D. (2018). Hyper-parameters in Action! Part II — Weight Initializers / Towards Data Science, Jun 18, 2018 // https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404
Glorot X., Bengio Y. (2010). Understanding the difficulty of training deep feedforward neural networks / Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Journal of Machine Learning Research, Vol. 9, pp. 249—256 // http://www.jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
He K., Zhang X., Ren S., Sun J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification / Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026—1034 // https://doi.org/10.1109/ICCV.2015.123
Liang X. (2019). Understand Kaiming Initialization and Implementation Detail in PyTorch: Initialization Matters! Know how to set the fan_in and fan_out mode with kaiming_uniform_ function / Towards Data Science, Aug 7, 2019 // https://towardsdatascience.com/understand-kaiming-initialization-and-implementation-detail-in-pytorch-f7aa967e9138
Godoy D. (2018). Hyper-parameters in Action! Part II — Weight Initializers / Towards Data Science, Jun 18, 2018 // https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404
Zhu C., Ni R., Xu Z., Kong K., Huang W. R., Goldstein T. (2021). GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training // https://arxiv.org/abs/2102.08098
Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks / Advances in Neural Information Processing Systems 25 (NIPS 2012) // https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks (Slides) // http://image-net.org/challenges/LSVRC/2012/supervision.pdf
Karpathy A. CS231n Convolutional Neural Networks for Visual Recognition (Stanford CS class) // http://cs231n.github.io/convolutional-networks/
Girard R. (2015). How does Krizhevsky's '12 CNN get 253,440 neurons in the first layer? / StackExchange // https://stats.stackexchange.com/questions/132897/how-does-krizhevskys-12-cnn-get-253-440-neurons-in-the-first-layer
Chellapilla K., Puri S., Simard P. (2006). High performance convolutional neural networks for document processing / International Workshop on Frontiers in Handwriting Recognition, 2006 // https://hal.inria.fr/inria-00112631
Nasse F., Thurau C., Fink G. A. (2009). Face Detection Using GPU-Based Convolutional Neural Networks / International Conference on Computer Analysis of Images and Patterns, CAIP 2009 // https://doi.org/10.1007/978-3-642-03767-2_10
* Под ансамблем в машинном обучении понимают объединение нескольких моделей для решения одной задачи, позволяющее достичь лучшего результата, чем при использовании каждой модели по отдельности; для получения результирующего прогноза ансамбля результаты входящих в него моделей могут усредняться либо комбинироваться каким-то более сложным образом.
Cireșan D., Meier U., Masci J., Schmidhuber J. (2012). Multi-Column Deep Neural Network for Traffic Sign Classification // http://people.idsia.ch/~juergen/nn2012traffic.pdf
Schmidhuber J. 2011: First Superhuman Visual Pattern Recognition. IJCNN 2011 competition in Silicon Valley: twice better than humans, three times better than the closest artificial competitor, six times better than the best non-neural method // http://people.idsia.ch/~juergen/superhumanpatternrecognition.html
Tsang S.-H. (2018). Review: ZFNet — Winner of ILSVRC 2013 (Image Classification) // https://medium.com/coinmonks/paper-review-of-zfnet-the-winner-of-ilsvlc-2013-image-classification-d1a5a0c45103
Tsang S. H. (2018). Review: ZFNet — Winner of ILSVRC 2013 (Image Classification) // https://medium.com/coinmonks/paper-review-of-zfnet-the-winner-of-ilsvlc-2013-image-classification-d1a5a0c45103
* Во многих популярных статьях, посвящённых результатам ILSVRC-2014, результирующая ошибка указана равной 6,67%. На самом деле точное значение ошибки — 0,06656, то есть 6,66%. Интересно, кто так «округлил» результат? И сделано ли это было во славу Господа?
Das S. (2017). CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more… // https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
Tsang S. H. (2018). Review: GoogLeNet (Inception v1)— Winner of ILSVRC 2014 (Image Classification) // https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7
Simonyan K., Zisserman A. (2015). Very deep convolutional networks for large-scale image recognition // https://arxiv.org/abs/1409.1556
Shao J., Zhang X., Ding Z., Zhao Y., Chen Y., Zhou J., Wang W., Mei L., Hu C. (2016). Good Practices for Deep Feature Fusion // http://image-net.org/challenges/talks/2016/Trimps-Soushen@ILSVRC2016.pdf
Hu J., Shen L, Sun G. (2018). Squeeze-and-Excitation Networks / IEEE Conference on Computer Vision and Pattern Recognition // https://github.com/hujie-frank/SENet
Fei-Fei L., Deng J. (2017). ImageNet: Where have we been? Where are we going? // http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf
Reynolds M. (2017). New computer vision challenge wants to teach robots to see in 3D / New Scientist, Iss. 3121 // https://www.newscientist.com/article/2127131-new-computer-vision-challenge-wants-to-teach-robots-to-see-in-3d/
Fei-Fei L., Deng J. (2017). ImageNet: Where have we been? Where are we going? // http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf
Medical Image Net: A petabyte-scale, cloud-based, multi-institutional, searchable, open repository of diagnostic imaging studies for developing intelligent image analysis systems // http://langlotzlab.stanford.edu/projects/medical-image-net/
SpaceNet // https://spacenet.ai/datasets/
Heilbron F. C., Escorcia V., Ghanem B., Niebles J. C. (2015). ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding / Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961—970 // http://activity-net.org/
Chang S. F., Liu D., Ye G., Li Y., Xu H., Liu H., Wang D., Lin T., Chen Q., Shou Z. A Large Scale Structured Concept Library // http://eventnet.cs.columbia.edu/index.html
Fei-Fei L., Deng J. (2017). ImageNet: Where have we been? Where are we going? // http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf
Tan M., Le Q. V. (2019). EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling / Google AI Blog // https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
Lin T.-Y., Dollár P., Girshick R., He K., Hariharan B., Belongie S. (2016). Feature Pyramid Networks for Object Detection // https://arxiv.org/abs/1612.03144
Cubuk E. D., Zoph B., Mane D., Vasudevan V., Le Q. V. (2018). AutoAugment: Learning Augmentation Policies from Data // https://arxiv.org/abs/1805.09501
Cubuk E. D., Zoph B. (2018). Improving Deep Learning Performance with AutoAugment / Google AI Blog // https://ai.googleblog.com/2018/06/improving-deep-learning-performance.html
Foret P., Kleiner A., Mobahi H., Neyshabur B. (2020). Sharpness-Aware Minimization for Efficiently Improving Generalization // https://arxiv.org/abs/2010.01412
Kapitanov A., Makhlyarchuk A., Kvanchiani K. (2022). HaGRID - HAnd Gesture Recognition Image Dataset // https://arxiv.org/abs/2206.08219
Kapitanov A., Kvanchiani K., Nagaev A., Petrova E. (2023). Slovo: Russian Sign Language Dataset // https://arxiv.org/abs/2305.14527
Ronneberger O., Fischer P., Brox T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation // https://arxiv.org/abs/1505.04597
Huang S., Hui T., Liu S., Li G., Wei Y., Han J., Liu L., Li B. (2020). Referring Image Segmentation via Cross-Modal Progressive Comprehension // https://arxiv.org/abs/2010.00514
Nagy G. (1963). Report No. 5. System and circuit designs for the Tobermory perceptron (Preliminary report on Phase I) // https://blogs.umass.edu/brain-wars/files/2016/03/nagy-1963-tobermory-perceptron.pdf
* Дискретное преобразование Фурье — это операция, которая позволяет разложить функцию, представленную набором её значений, взятых с некоторым шагом (в нашем случае — амплитуд звуковой волны), в виде разложения элементарных гармонических колебаний с разными частотами (подобно тому как музыкальный аккорд можно разложить на отдельные звуковые колебания, соответствующие составляющим его нотам). Быстрое преобразование Фурье — алгоритм ускоренного вычисления дискретного преобразования Фурье.
Stevens S. S., Volkmann J., Newman E. B. (1937). A Scale for the Measurement of the Psychological Magnitude Pitch / The Journal of the Acoustical Society of America, Vol. 8(3), pp. 185—190 // https://doi.org/10.1121/1.1915893
O'Shaughnessy D. (1987). Speech communication: human and machine. Addison-Wesley // https://books.google.ru/books?id=aUhiAAAAMAAJ
Dixon Ward W. (1970). Musical Perception / Tobias J. V. (1970). Foundations of Modern Auditory Theory. Academic Press // https://books.google.ru/books?id=Uqw_uwEACAAJ
Wood S. (2005). What are formants? / Beginners guide to Praat // https://person2.sol.lU. Se/SidneyWood/praate/whatform.html
Володин И. А., Володина Е. В. (2006). Скромное очарование нелинейностей. О скулении собак, голосе Высоцкого, алтайском пении, и не только / Природа. №2, 2006 // http://vivovoco.astronet.ru/VV/JOURNAL/NATURE/02_06/VOICE.HTM
Bogert B. P., Healy J. R., Tukey J. W. (1963). The Quefrency Analysis of Time Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum, and Saphe Cracking / Proceedings of the Symposium on Time Series Analysis, 1963, pp. 209-243.
Howarth R. J. (2017). Dictionary of Mathematical Geosciences: With Historical Notes. Springer // https://books.google.ru/books?id=MNwlDwAAQBAJ
Oppenheim A. V., Schafer R. W. (2004). Dsp history — From frequency to quefrency: a history of the cepstrum / IEEE Signal Processing Magazine, Vol. 21(5), pp. 95—106 // https://doi.org/10.1109/msp.2004.1328092
Waslo B. (1994). Reflecting on Echoes and the Cepstrum: A look at Quefrency Alanysis and Hearing / Speaker Builder, August 1994 // http://www.libinst.com/cepst.htm
Silvia M. T., Robinson E. A. (1978). Use of the kepstrum in signal analysis / Geoexploration, Vol. 16 (1—2), pp. 55—73 // https://doi.org/10.1016/0016-7142(78)90007-8
Silvia M. T., Robinson E. A. (1979). Deconvolution of Geophysical Time Series in the Exploration for Oil and Natural Gas. Elsevier // https://books.google.ru/books?id=Ecgfjh-MpU0C
Resource: Russian Speech Database (2014) / International standard language resource number // http://www.islrn.org/resources/428-147-317-182-1/
Wil (2014). How many words are in the English language? / EF English Live // https://englishlive.ef.com/blog/language-lab/many-words-english-language/
How many words are there in English? / Merriam-Webster.com Dictionary, Merriam-Webster // https://www.merriam-webster.com/help/faq-how-many-english-words
Wil (2014). How many words are in the English language? / EF English Live // https://englishlive.ef.com/blog/language-lab/many-words-english-language/
Wu S., Cotterell R., O’Donnell T. J. (2019). Morphological Irregularity Correlates with Frequency // https://arxiv.org/abs/1906.11483v1
Vincent S. (2014). Sentence length: why 25 words is our limit / Inside GOV.UK // https://insidegovuk.blog.gov.uk/2014/08/04/sentence-length-why-25-words-is-our-limit/
Garofolo J. S., Lamel L. F., Fisher W. M., Fiscus J. G., Pallett D. S., Dahlgren N. L. (1993). DARPA TIMIT: (Technical report). National Institute of Standards and Technology // https://doi.org/10.6028/nist.ir.4930
Canavan A., Graff D., Zipperlen G. (1997). CALLHOME American English Speech LDC97S42. Web Download. Philadelphia: Linguistic Data Consortium // https://catalog.ldc.upenn.edu/LDC97S42
Cieri C., Miller D., Walker K. (2004). The Fisher corpus: A resource for the next generations of speech-to-text // https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/lrec2004-fisher-corpus.pdf
Cieri C., Graff D., Kimball O., Miller D., Walker K. (2004). Fisher English Training Speech Part 1 Transcripts // https://catalog.ldc.upenn.edu/LDC2004T19
Cieri C., Graff D., Kimball O., Miller D., Walker K. (2005). Fisher English Training Part 2, Transcripts // https://catalog.ldc.upenn.edu/LDC2005T19
Linguistic Data Consortium (2002). 2000 HUB5 English Evaluation Transcripts LDC2002T43. Web Download. Philadelphia: Linguistic Data Consortium // https://catalog.ldc.upenn.edu/LDC2002T43
Panayotov V., Chen G., Povey D., Khudanpur S. (2015). LibriSpeech: an ASR corpus based on public domain audio books / 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) // https://doi.org/10.1109/ICASSP.2015.7178964
Garofolo J. S., Graff D., Paul D., Pallett D. (2007). CSR-I (WSJ0) Complete // https://doi.org/10.35111/ewkm-cg47
Panayotov V., Chen G., Povey D., Khudanpur S. (2015). LibriSpeech: an ASR corpus based on public domain audio books / 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) // https://doi.org/10.1109/ICASSP.2015.7178964
He Y., Sainath T. N., Prabhavalkar R., McGraw I., Alvarez R., Zhao D., Rybach D., Kannan A., Wu Y., Pang R., Liang Q., Bhatia D., Shangguan Y., Li B., Pundak G., Sim K. C., Bagby T., Chang S., Rao K., Gruenstein A. (2018). Streaming End-to-end Speech Recognition For Mobile Devices // https://arxiv.org/abs/1811.06621
Hunt M. J. (1990). Figures of Merit for Assessing Connected Word Recognisers / Speech Communication, Vol. 9, 1990, pp. 239—336 // https://doi.org/10.1016/0167-6393(90)90008-WGet
Hain T., Woodland P. C., Evermann G., Povey D. (2001). New features in the CU-HTK system for transcription of conversational telephone speech / 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), Salt Lake City, UT, USA, 2001, Vol. 1, pp. 57—60 // https://doi.org/10.1109/ICASSP.2001.940766
NIST March 2000 Hub-5 Benchmark Test Results for Recognition of Conversational Speech over the Telephone, in English and Mandarin. Release 1.4 (2000) // https://catalog.ldc.upenn.edu/docs/LDC2002T43/readme.htm
The 2000 NIST Evaluation Plan for Recognition of Conversational Speech over the Telephone. Version 1.3, 24-Jan-00 (2000) // https://mig.nist.gov/MIG_Website/tests/ctr/2000/h5_2000_v1.3.html
Seide F., Li G., Yu D. (2011). Conversational Speech Transcription Using Context-Dependent Deep Neural Networks / INTERSPEECH 2011, 12th Annual Conference of the International Speech Communication Association, Florence, Italy, August 27—31, 2011 // https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CD-DNN-HMM-SWB-Interspeech2011-Pub.pdf
Sainath T. N., Mohamed A., Kingsbury B., Ramabhadran B. (2013). Deep convolutional neural networks for LVCSR / 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 2013, pp. 8614-8618 // https://doi.org/10.1109/ICASSP.2013.6639347
Saon G., Kuo H. K. J., Rennie S., Picheny M. (2015). The IBM 2015 English Conversational Telephone Speech Recognition System // https://arxiv.org/abs/1505.05899
Xiong W., Droppo J., Huang X., Seide F., Seltzer M., Stolcke A., Yu D., Zweig G. (2017). Achieving human parity in conversational speech recognition // https://arxiv.org/abs/1610.05256
Xiong W., Wu L., Alleva F., Droppo J., Huang X., Stolcke A. (2017). The Microsoft 2017 Conversational Speech Recognition System // https://arxiv.org/abs/1708.06073
Peddinti V., Povey D., Khudanpur S. (2015). A time delay neural network architecture for efficient modeling of long temporal contexts / INTERSPEECH 2015, 16th Annual Conference of the International Speech Communication Association, Dresden, Germany // https://www.danielpovey.com/files/2015_interspeech_multisplice.pdf
Zhang Y., Qin J., Park D. S., Han W., Chiu C.-C., Pang R., Le Q. V., Wu Y. (2020). Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition // https://arxiv.org/abs/2010.10504
Park D. S., Chan W., Zhang Y., Chiu C. C., Zoph B., Cubuk E. D., Le Q. V. (2019). SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition // https://arxiv.org/abs/1904.08779
Schneider S., Baevski A., Collobert R., Auli M. (2019). wav2vec: Unsupervised Pre-training for Speech Recognition // https://arxiv.org/abs/1904.05862
Baevski A., Schneider S., Auli M. (2019). vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations // https://arxiv.org/abs/1910.05453
Baevski A., Zhou H., Mohamed A., Auli M. (2020). wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations // https://arxiv.org/abs/2006.11477
Gulati A., Qin J., Chiu C.-C., Parmar N., Zhang Y., Yu J., Han W., Wang S., Zhang Z., Wu Y., Pang R. (2020). Conformer: Convolution-augmented Transformer for Speech Recognition // https://arxiv.org/abs/2005.08100
Zhang Y., Qin J., Park D. S., Han W., Chiu C.-C., Pang R., Le Q. V., Wu Y. (2020). Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition // https://arxiv.org/abs/2010.10504
Xu Q., Baevski A., Likhomanenko T., Tomasello P., Conneau A., Collobert R., Synnaeve G., Auli M. (2020). Self-training and Pre-training are Complementary for Speech Recognition // https://arxiv.org/abs/2010.11430
Chung Y.-A., Zhang Y., Han W., Chiu C.-C., Qin J., Pang R., Wu Y. (2021). W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training // https://arxiv.org/abs/2108.06209
Radford A., Kim J. W., Xu T., Brockman G., McLeavey C., Sutskever I. (2022). Robust Speech Recognition via Large-Scale Weak Supervision // https://arxiv.org/abs/2212.04356
Dean J. (2022). 3 ways AI is scaling helpful technologies worldwide / Google blog, Nov 02, 2022 // https://blog.google/technology/ai/ways-ai-is-scaling-helpful/
Zhang Y., Han W., Qin J., Wang Y., Bapna A., Chen Z., Chen N., Li B., Axelrod V., Wang G., Meng Z., Hu K., Rosenberg A., Prabhavalkar R., Park D. S., Haghani P., Riesa J., Perng G., Soltau H., Strohman T., Ramabhadran B., Sainath T., Moreno P., Chiu C., Schalkwyk J., Beaufays F., Wu Y. (2022). Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages // https://arxiv.org/abs/2303.01037
Silver D., Huang A., Maddison C. J., Guez A., Sifre L., van den Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam V., Lanctot M., Dieleman S., Grewe D., Nham J., Kalchbrenner N., Sutskever I., Lillicrap T., Leach M., Kavukcuoglu K., Graepel T., Hassabis D. (2016). Mastering the game of Go with deep neural networks and tree search / Nature, Vol. 529(7587), pp. 484—489 // https://doi.org/10.1038/nature16961
Gibney E. (2016). Go players react to computer defeat / Nature // https://doi.org/10.1038/nature.2016.19255
Mets C. (2016). The Sadness and Beauty of Watching Google's AI Play Go / Wired, 11.03.2016 // https://www.wired.com/2016/03/sadness-beauty-watching-googles-ai-play-go/
Zastrow M. (2016). South Korea trumpets $860-million AI fund after AlphaGo 'shock' / Nature // https://doi.org/10.1038/nature.2016.19595
International Joint Conferences on Artificial Intelligence Organization (2017). Deepmind Alphago Team Receives Inaugural Ijcai Marvin Minsky Medal For Outstanding Achievements in AI / Communications of the ACM, October 20, 2017 // https://cacm.acm.org/news/222067-deepmind-alphago-team-receives-inaugural-ijcai-marvin-minsky-medal-for-outstanding-achievements-in-ai/fulltext
Jaap van den Herik H., Iida H., Plaat A. (2014). 8th International Conference, CG 2013, Yokohama, Japan, August 13–15, 2013. Revised Selected Papers. Computers and Games. Lecture Notes in Computer Science 8427 Theoretical Computer Science and General Issues. Springer International Publishing // https://books.google.ru/books?id=52kqBAAAQBAJ
Коровски Ю. (2017). Искусственный интеллект безжалостно обыгрывает в го всех подряд / XX2 век // https://22century.ru/computer-it/41584
Silver D., Schrittwieser J., Simonyan K., Antonoglou I., Huang A., Guez A., Hubert T., Baker L., Lai M., Bolton A., Chen Y., Lillicrap T., Fan H., Sifre L., Driessche G., Graepel T., Hassabis D. (2017). Mastering the game of Go without human knowledge / Nature, Vol. 550 (7676), pp. 354—359 // https://doi.org/10.1038/nature24270
Silver D., Hubert T., Schrittwieser J., Antonoglou I., Lai M., Guez A., Lanctot M., Sifre L., Kumaran D., Graepel T., Lillicrap T., Simonyan K., Hassabis D. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm // https://arxiv.org/abs/1712.01815
Silver D., Hubert T., Schrittwieser J., Antonoglou I., Lai M., Guez A., Lanctot M., Sifre L., Kumaran D., Graepel T., Lillicrap T., Simonyan K., Hassabis D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play / Science, Vol. 362, Iss. 6419, pp. 1140—1144 // https://doi.org/10.1126/science.aar6404
Lai M. (2015). Giraffe: Using Deep Reinforcement Learning to Play Chess. M. Sc. thesis, Imperial College London // https://arxiv.org/abs/1509.01549v1
* Эта история стала одной из причин того, почему я занялся популяризацией науки в области ИИ. Честно говоря, было больно читать и слушать откровенную ерунду вроде того, что сотни программистов, огромные команды, которые занимались шахматами, теперь не нужны, они теперь уволены. Проблема заключалась в том, что команды из сотен наёмных программистов, занимающиеся компьютерными шахматами, существовали только в воображении автора высказывания, да и сила игры Giraffe была на тот момент далека от силы игры лучших шахматных программ.
Baxter J., Tridgell A., Weaver L. (1998). KnightCap: A chess program that learns by combining TD(λ) with game-tree search / Proc. 15th International Conf. on Machine Learning, pp. 28—36 // https://arxiv.org/abs/cs/9901002
Lüscher M. (2000). Automatic Generation of an Evaluation Function for Chess Endgames // http://www.datacomm.ch/m.luescher/evaluation_function_en.pdf
Stoofvlees / Chess Programming Wiki // https://www.chessprogramming.org/Stoofvlees
Kumar C., Fogel D. B. (1999). Evolution, Neural Networks, Games, and Intelligence / Proceedings of the IEEE, Vol. 87, Iss. 9, pp. 1471—1496 // https://doi.org/10.1109/5.784222
Kumar C., Fogel D. B. (1999). Evolving Neural Networks to Play Checkers without Expert Knowledge / IEEE Transactions on Neural Networks, Vol. 10, Iss. 6, pp. 1382—1391 // https://doi.org/10.1109/72.809083
Kumar C., Fogel D. B. (2001). Evolving an Expert Checkers Playing Program without Using Human Expertise / IEEE Transactions on Evolutionary Computation, Vol. 5, Iss. 4, pp. 422—428 // https://doi.org/10.1109/4235.942536
Sapunov G. (2021). Hardware for Deep Learning. Part 4: ASIC // https://blog.inten.to/hardware-for-deep-learning-part-4-asic-96a542fe6a81
Sapunov G. (2021). Hardware for Deep Learning. Part 4: ASIC // https://blog.inten.to/hardware-for-deep-learning-part-4-asic-96a542fe6a81
Schrittwieser J., Antonoglou I., Hubert T., Simonyan K., Sifre L., Schmitt S., Guez A., Lockhart E., Hassabis D., Graepel T., Lillicrap T., Silver D. (2020). Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model // https://arxiv.org/abs/1911.08265
Ye W., Liu S., Kurutach T., Abbeel P., Gao Y. (2021). Mastering Atari Games with Limited Data // https://arxiv.org/abs/2111.00210
Tian Y., Zitnick L. (2018). Facebook Open Sources ELF OpenGo / facebook research // https://research.fb.com/blog/2018/05/facebook-open-sources-elf-opengo/
Wu D. (2019). Accelerating Self-Play Learning in Go / Jane Street Tech Blog, Feb 28, 2019 // https://blog.janestreet.com/accelerating-self-play-learning-in-go/
Wu D. J. (2019). Accelerating Self-Play Learning in Go // https://arxiv.org/abs/1902.10565
Boardsize 19x19 - 15 minutes per side (2021) / Computer Go ServerH, Last Update: 2021-03-14 14:43:24 UTC // http://www.yss-aya.com/cgos/19x19/standings.html
Nasu Y. (2018). ƎUИИ: Efficiently Updatable Neural-Network-based Evaluation Functions for Computer Shogi // https://www.apply.computer-shogi.org/wcsc28/appeal/the_end_of_genesis_T.N.K.evolution_turbo_type_D/nnue.pdf
Chess Programming Wiki contributors. (2020, August 31). Stockfish NNUE. In Wikipedia, Chess Programming Wiki contributors. Retrieved 08:00, September 2, 2020, from https://www.chessprogramming.org/Stockfish_NNUE
Poundstone W. (2011). Prisoner's Dilemma. Knopf Doubleday Publishing Group // https://books.google.ru/books?id=twNXXfYVB1UC
Bowling M., Burch N., Johanson M., Tammelin O. (2015). Heads-up Limit Hold’em Poker is Solved / Science, Vol. 347, Iss. 6218, pp. 145—149 // https://doi.org/10.1126/science.1259433
Moravčík M., Schmid M., Burch N., Lisý V., Morrill D., Bard N., Davis T., Waugh K., Johanson M., Bowling M. (2017). DeepStack: Expert-level artificial intelligence in heads-up no-limit poker / Science, Vol. 356, Iss. 6337, pp. 508—513 // https://doi.org/10.1126/science.aam6960
Mets C. (2017). Inside Libratus, the Poker AI That Out-Bluffed the Best Humans / Wired, 02.01.17 // https://www.wired.com/2017/02/libratus/
Rodriguez J. (2019). Inside Pluribus: Facebook’s New AI That Just Mastered the World’s Most Difficult Poker Game / KDnuggets // https://www.kdnuggets.com/2019/08/inside-pluribus-facebooks-new-ai-poker.html
Blair A., Saffidine A. (2019). AI surpasses humans at six-player poker / Science, Vol. 365, Iss. 6456, pp. 864–865 // https://doi.org/10.1126/science.aay7774
Brown N., Lerer A., Gross S., Sandholm T. (2019). Deep Counterfactual Regret Minimization / Proceedings of the 36th International Conference on Machine Learning, PMLR 97:793-802 // http://proceedings.mlr.press/v97/brown19b.html
Ontañón S., Synnaeve G., Uriarte A., Richoux F., Churchill D., Preuss M. (2013). A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft / IEEE Transactions on Computational Intelligence and AI in Games, Vol. 5, No. 4, pp. 293—311 // https://doi.org/10.1109/TCIAIG.2013.2286295
Schulman J., Klimov O., Wolski F., Dhariwal P., Radford A. (2017). Proximal Policy Optimization / OpenAI blog, July 20, 2017 // https://openai.com/blog/openai-baselines-ppo/
Chan B., Tang J., Pondé H., Raiman J., Wolski F., Petrov M., Zhang S., Dennison C., Farhi D., Sidor S., Dębiak P., Pachocki J., Brockman G. (2018). OpenAI Five: Our team of five neural networks, OpenAI Five, has started to defeat amateur human teams at Dota 2 / OpenAI blog // https://openai.com/blog/openai-five/
Matiisen T. (2018). The use of Embeddings in OpenAI Five / Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, September 9, 2018 // https://neuro.cs.ut.ee/the-use-of-embeddings-in-openai-five/
Chan B., Tang J., Pondé H., Raiman J., Wolski F., Petrov M., Zhang S., Dennison C., Farhi D., Sidor S., Dębiak P., Pachocki J., Brockman G. (2018). OpenAI Five: Our team of five neural networks, OpenAI Five, has started to defeat amateur human teams at Dota 2 / OpenAI blog // https://openai.com/blog/openai-five/
OpenAI Five Defeats Dota 2 World Champions (2019) / OpenAI blog, April 15, 2019 // https://openai.com/blog/openai-five-defeats-dota-2-world-champions/
Vinyals O., Babuschkin I., Chung J., Mathieu M., Jaderberg M., Czarnecki W., Dudzik A., Huang A., Georgiev P., Powell R., Ewalds T., Horgan D., Kroiss M., Danihelka I., Agapiou J., Oh J., Dalibard V., Choi D., Sifre L., Sulsky Y., Vezhnevets S., Molloy J., Cai T., Budden D., Paine T., Gulcehre C., Wang Z., Pfaff T., Pohlen T., Yogatama D., Cohen J., McKinney K., Smith O., Schaul T., Lillicrap T., Apps C., Kavukcuoglu K., Hassabis D., Silver D. (2019). AlphaStar: Mastering the Real-Time Strategy Game StarCraft II / DeepMind blog, 24 Jan 2019 // https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
Wünsch D. (2019) / Twitter // https://twitter.com/liquidtlo/status/1088524496246657030
Solimito S. (2019). Is Alphastar really impressive? // https://medium.com/@stefano.solimito/is-alphastar-really-impressive-31ab02bf0882
Kosker S. (2019). Künstliche Intelligenz gegen Mensch: DeepMind AlphaStar // https://stefankosker.com/alphastar-starcraft-deepmind-kuenstliche-intelligenz/#Prominente_Meinungen_zu_AlphaStar
Lee T. B. (2019). An AI crushed two human pros at StarCraft—but it wasn’t a fair fight / Ars Technica // https://arstechnica.com/gaming/2019/01/an-ai-crushed-two-human-pros-at-starcraft-but-it-wasnt-a-fair-fight/
SoulDrivenOlives (2019). DeepMind's PR regarding Alphastar is unbelievably bafflingg / Reddit // https://www.reddit.com/r/MachineLearning/comments/dr2vir/d_deepminds_pr_regarding_alphastar_is/
Lee T. B. (2019). An AI crushed two human pros at StarCraft—but it wasn’t a fair fight. Superhuman speed and precision helped a StarCraft AI defeat two top players / Ars Technica, 1/30/2019 // https://arstechnica.com/gaming/2019/01/an-ai-crushed-two-human-pros-at-starcraft-but-it-wasnt-a-fair-fight/
u/SoulDrivenOlives (2019).[D] An analysis on how AlphaStar's superhuman speed is a band-aid fix for the limitations of imitation learning / Reddit // https://www.reddit.com/r/MachineLearning/comments/ak3v4i/d_an_analysis_on_how_alphastars_superhuman_speed/
Vinyals O., Babuschkin I., Czarnecki W. M., Mathieu M., Dudzik A., Chung J., Choi D. H., Powell R., Ewalds T., Georgiev P., Oh J., Horgan D., Kroiss M., Danihelka I., Huang A., Sifre L., Cai T., Agapiou J. P., Jaderberg M., Vezhnevets A. S., Leblond R., Pohlen T., Dalibard V., Budden D., Sulsky Y., Molloy J., Paine T. L., Gulcehre C., Wang Z., Pfaff T., Wu Y., Ring R., Yogatama D., Wünsch D., McKinney K., Smith O., Schaul T., Lillicrap T., Kavukcuoglu K., Hassabis D., Apps C., Silver D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning / Nature, Vol. 575, pp. 350–354 (2019) // https://doi.org/10.1038/s41586-019-1724-z
* Пер. М. Лозинского.
Pandya D. A., Dennis B. H., Russell R. D. (2017). A computational fluid dynamics based artificial neural network model to predict solid particle erosion / Wear, Vol. 378—379, 15 May 2017, pp. 198—210 // https://doi.org/10.1016/j.wear.2017.02.028
Kutz J. N. (2017). Deep learning in fluid dynamics / Journal of Fluid Mechanics, Vol. 814, 10 March 2017, pp. 1—4 // https://doi.org/10.1017/jfm.2016.803
Zhang Y. G., Gajjar V., Foster G., Siemion A., Cordes J., Law C., Wang Y. (2018). Fast Radio Burst Pulse Detection and Periodicity: A Machine Learning Approach / The Astrophysical Journal, Vol. 866, No. 2 // https://doi.org/10.3847%2F1538-4357%2Faadf31
Wei J. N., Duvenaud D., Aspuru-Guzik A. (2016). Neural Networks for the Prediction of Organic Chemistry Reactions / ACS Central Science, October 14, 2016, 2, 10, 725—732 // https://doi.org/10.1021/acscentsci.6b00219
Rajpurkar P., Hannun A. Y., Haghpanahi M., Bourn C., Ng A. Y. (2017). Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks // https://arxiv.org/abs/1707.01836
Schirrmeister R. T., Springenberg J. T., Fiederer L. D. J., Glasstetter M., Eggensperger K., Tangermann M., Hutter F., Burgard W., Ball T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization / Human Brain Mapping, Vol. 38, Iss. 11, November 2017, pp. 5391—5420 // https://doi.org/10.1002/hbm.23730
Pyrkov T. V., Slipensky K., Barg M., Kondrashin A., Zhurov B., Zenin A., Pyatnitskiy M., Menshikov L., Markov S., Fedichev P. O. (2018). Extracting biological age from biomedical data via deep learning: too much of a good thing? / Scientific Reports, Vol. 8, Article num.: 5210 (2018) // https://doi.org/10.1038/s41598-018-23534-9
Lin W., Tong T, Gao Q., Guo D., Du X., Yang Y., Guo G., Xiao M., Du M., Qu X. (2018). Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment / Frontiers in Neuroscience, 05 November 2018 // https://doi.org/10.3389/fnins.2018.00777
* Лидар (LIDAR, Light Detection and Ranging, обнаружение и определение дальности с помощью света) — технология измерения расстояний путём излучения света (лазер) и замера времени возвращения этого отражённого света на ресивер.
Velas M., Spanel M., Hradis M., Herout A. (2018). CNN for very fast ground segmentation in velodyne LiDAR data / 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, 2018, pp. 97—103 // https://doi.org/10.1109/ICARSC.2018.8374167
Martinsson E. (2017). WTTE-RNN: Weibull Time To Event Recurrent Neural Network. A model for sequential prediction of time-to-event in the case of discrete or continuous censored data, recurrent events or time-varying covariates. Master’s thesis in Engineering Mathematics & Computational Science // http://publications.lib.chalmers.se/records/fulltext/253611/253611.pdf
Rebedea T. (2017). Deep Neural Networks for Matching Online Social Networking Profiles / Conference on Computational Collective Intelligence Technologies and Applications // https://doi.org/10.1007/978-3-319-67074-4_19
Tan Q., Liu N., Hu X. (2019). Deep Representation Learning for Social Network Analysis / Frontiers in Big Data, 03 April 2019 // https://doi.org/10.3389/fdata.2019.00002
Hamilton W. L, Ying R., Leskovec J. (2017). Representation Learning on Graphs: Methods and Applications / IEEE Data Engineering Bulletin // https://arxiv.org/abs/1709.05584
Lample G., Charton F. (2019). Deep Learning for Symbolic Mathematics // https://arxiv.org/abs/1912.01412
Palaskar S., Sanabria R., Metze F. (2018). End-to-End Multimodal Speech Recognition // https://arxiv.org/abs/1804.09713
Nag N., Bharadwaj A., Rao A. N., Kulhalli A., Mehta K. S., Bhattacharya N., Ramkumar P., Sitaram D., Jain R. (2019). Flavour Enhanced Food Recommendation // https://arxiv.org/abs/1904.05331
Lee B. K., Mayhew E. J., Sanchez-Lengeling B., Wei J. N., Qian W. W., Little K. A., Andres M., Nguyen B. B., Moloy T., Yasonik J., Parker J. K., Gerkin R. C., Mainland J. D., Wiltschko A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception / Science, Vol. 381, pp. 999-1006 // https://doi.org/10.1126/science.ade4401
Graves A., Wayne G., Danihelka I. (2014). Neural Turing Machines // https://arxiv.org/abs/1410.5401
Graves A., Wayne G., Reynolds M., Harley T., Danihelka I., Grabska-Barwińska A., Colmenarejo S. G., Grefenstette E., Ramalho T., Agapiou J., Badia A. P., Hermann K. M., Zwols Y., Ostrovski G., Cain A., King H., Summerfield C., Blunsom P., Kavukcuoglu K., Hassabis D. (2016). Hybrid computing using a neural network with dynamic external memory / Nature, Vol. 538, pp. 471—476 (2016) // https://doi.org/10.1038/nature20101
Collier M., Beel J. (2019). Memory-Augmented Neural Networks for Machine Translation // https://arxiv.org/abs/1909.08314
* Пер. Н. Россова.
Шаврина Т. О. (2017). Методы обнаружения и исправления опечаток: исторический обзор / Вопросы языкознания. № 4. С. 115—134 // https://doi.org/10.31857/S0373658X0001024-5
* * * * * ** ** * Пер. П. Мелкова.
Gardner W. D. (2008). Remembering Joe Weizenbaum, ELIZA Creator / InformationWeek // https://www.informationweek.com/remembering-joe-weizenbaum-eliza-creator-/d/d-id/1065648
LordOmar (2000). AOLiza / everything2 // https://everything2.com/title/AOLiza
Colby K. M., Hilf F. D., Weber S., Kraemer H. C. (1972). Turing-like indistinguishability tests for the validation of a computer simulation of paranoid processes / Artificial Intelligence, Vol., 1972, pp. 199—221 // https://doi.org/10.1016/0004-3702(72)90049-5
Saygin A. P., Cicekli I., Akman V. (2003). Turing Test: 50 Years Later / Moor J. H. (2003). The Turing Test. The Elusive Standard of Artificial Intelligence. Studies in Cognitive Systems, Vol. 30, pp. 23–78 // https://doi.org/10.1007/978-94-010-0105-2_2
Luiselli J. K., Fischer A. J. (2016). Computer-Assisted and Web-Based Innovations in Psychology, Special Education, and Health. Academic Press // https://books.google.ru/books?id=NwLSBgAAQBAJ
Sussman G. J., Winograd T., Charniak E. (1971). Micro-Planner reference manual. Artificial Intelligence Memo No. 203A (Updates 203) // ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-203a.pdf
SHRDLU resurrection (2019) // http://maf.directory/misc/shrdlu.html
Товарищ Силоч (@comrade_siloch) (2020) / Twitter // https://twitter.com/comrade_siloch/status/1217102334376976384
Hutchins J. (2004). Two precursors of machine translation: Artsrouni and Trojanskij / International Journal of Translation, Vol. 16(1), January—June 2004, pp. 11—31 // http://www.hutchinsweb.me.uk/IJT-2004.pdf
Kirjutusmafin-tõlk (1924) / Waba maa, Num. 46, 24 February 1924, p. 4 // https://dea.digar.ee/page/wabamaa/1924/02/24/4
Kirjutusmafin-tõlk (1923) / Esmaspäev, 19 november 1923, p. 1 // https://dea.digar.ee/article/esmaspaev/1923/11/19/11
Hutchins J. (2004). Two precursors of machine translation: Artsrouni and Trojanskij / International Journal of Translation, Vol. 16(1), January—June 2004, pp. 11—31 // http://www.hutchinsweb.me.uk/IJT-2004.pdf
Богданов Н. В. Дружба / Богданов Н. В. (1958). О смелых и умелых // http://www.kulichki.com/moshkow/PRIKL/BOGDANOW/smelye.txt
Nirenburg S., Somers H. L., Wilks Y. (2003). Readings in Machine Translation. MIT Press // https://books.google.ru/books?id=yx3lEVJMBmMC
Hutchins J. (1995). “The whisky was invisible”, or Persistent myths of MT / MT News International 11 (June 1995), pp. 17—18 // http://www.hutchinsweb.me.uk/MTNI-11-1995.pdf
Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ
Hutchins J. (1997). From First Conception to First Demonstration: the Nascent Years of Machine Translation, 1947–1954. A Chronology / Machine Translation, Vol. 12 (3), pp. 195—252 // https://doi.org/10.1023/a:1007969630568
Macdonald N. (1954). Language translation by machine — a report of the first successful trial / Computers and Automation, Vol. 3 (2), February 1954 // http://mt-archive.info/Macdonald-1954.pdf
Henisz-Dostert B., Macdonald R. R., Zarechnak M. (2011). Machine Translation. Walter de Gruyter // https://books.google.ru/books?id=St4iXxXoIIAC
701 Translator. IBM Press release, January 8, 1954 // http://www.mt-archive.info/IBM-1954.pdf
Hutchins W. J. (2004). The Georgetown-IBM experiment demonstrated in January 1954 / Conference of the Association for Machine Translation in the Americas AMTA 2004: Machine Translation: From Real Users to Research, pp. 102—114 // https://doi.org/10.1007/978-3-540-30194-3_12
Zarechnak M. (1959). Three Levels of Linguistic Analysis in Machine Translation / Journal of the ACM, January 1959 // https://doi.org/10.1145/320954.320956
Hutchins W. J. (2000). Early Years in Machine Translation: Memoirs and biographies of pioneers. John Benjamins Publishing // https://books.google.ru/books?id=3dU5AAAAQBAJ
Hutchins W. J. (1995). Machine translation: a brief history / Koerner E. F. K., Asher R. E. (1995). Concise history of the language sciences: from the Sumerians to the cognitivists. Oxford: Pergamon Press // http://hutchinsweb.me.uk/ConcHistoryLangSci-1995.pdf
Hutchins J. (1996). ALPAC: the (in)famous report / MT News International, No. 14, June 1996, pp. 9—12 // http://www.hutchinsweb.me.uk/MTNI-14-1996.pdf
Shapin S. (2015). Confusion of Tongues: Scientific Babel: The Language of Science from the Fall of Latin to the Rise of English by Michael Gordin / London Review of Books // https://www.lrb.co.uk/the-paper/v37/n23/steven-shapin/confusion-of-tongues
Gordin M. (2015). Scientific Babel: The language of science from the fall of Latin to the rise of English. Profile Books // https://books.google.ru/books?id=2dmiBQAAQBAJ
Hutchins J. (1996). ALPAC: the (in)famous report / MT News International, No. 14, June 1996, pp. 9—12 // http://www.hutchinsweb.me.uk/MTNI-14-1996.pdf
Hutchins W. J. (1982). The evolution of machine translation systems / Lawson V. (1982). Practical experience of machine translation // http://www.mt-archive.info/Aslib-1981-Hutchins-1.pdf
Вельмезова Е. (2015). Снова об универсалиях «лингвистическо-литературных»: «Структуральнейшая лингвистика» в повести А. и Б. Стругацких «Попытка к бегству» / Фаустов А. (2015). Универсалии русской литературы. Т. 6. — Воронеж: Издательско-полиграфический центр «Научная книга» // http://www.rusf.ru/abs/rec/velmez01.htm
Мельчук И. А. (1984). Русский язык в модели смысл-текст / Russian Language Journal, Vol. 38, Iss. 129/130, pp. 189—198 // https://codenlp.ru/knigi/russkiy-yazyik-v-modeli-smyisl-tekst-melchuk.html
* Функционализм (функциональный структурализм, функциональная лингвистика) — совокупность школ и направлений, возникших как одно из ответвлений структурной лингвистики; характеризуется фокусом на функционировании языка как средства общения. Изначальный импульс развития функционализм получил в «Тезисах Пражского лингвистического кружка» (1929), а затем был развит в работах представителей Пражской лингвистической школы.
Алпатов В. М. (2005). История лингвистических учений. Учебное пособие / 4-е изд., исправ. и доп. — М.: Языки славянской культуры // http://genling.spbu.ru/hl/085.pdf
Ярцева В. Н. (1990). Лингвистический энциклопедический словарь. — М.: Советская энциклопедия // http://tapemark.narod.ru/les/index.html
Алпатов В. М. (2005). История лингвистических учений / 4-е изд., исправ. и доп. — М.: Языки славянской культуры // http://genling.spbu.ru/hl/085.pdf
Алпатов В. М. (2005). История лингвистических учений / 4-е изд., исправ. и доп. — М.: Языки славянской культуры // http://genling.spbu.ru/hl/085.pdf
de Saussure F., Riedlinger A. Course in General Linguistics. Translated by Wade Baskin. Philosophical Library // https://books.google.ru/books?id=MCdZAAAAMAAJ
Berger A. A. (2018). Media Analysis Techniques. SAGE Publications // https://books.google.ru/books?id=kbVItAEACAAJ
de Saussure F., Riedlinger A. Course in General Linguistics. Translated by Wade Baskin. Philosophical Library // https://books.google.ru/books?id=MCdZAAAAMAAJ
Алпатов В. М. (2005). История лингвистических учений / 4-е изд., исправ. и доп. — М.: Языки славянской культуры // http://genling.spbu.ru/hl/085.pdf
Лукин О. В. (2015). История языкознания с VI в. до н. э. до середины XX в. Учебное пособие // http://yspu.org/images/4/48/История_языкознания.pdf
Galofaro F. (2013). Formalizing Narrative Structures: Glossematics, Generativity, and Transformational Rules / Signata, No. 4, 2013, p. 227-246 // https://doi.org/10.4000/signata.757
Seuren P. (1998). Western Linguistics: An Historical Introduction. Wiley // https://books.google.ru/books?id=YD7fupu-qS0C
Sova R. (2006). Genesis of Two Algebraic Theories of Language / Linguistica ONLINE, January, 30th 2006 // http://www.phil.muni.cz/linguistica/art/sova/sov-001.pdf
Chomsky N. (1975). The Logical Structure of Linguistic Theory. Springer US // https://books.google.ru/books?id=1D66ktXOITAC
Seuren P. (1998). Western Linguistics: An Historical Introduction. Wiley // https://books.google.ru/books?id=YD7fupu-qS0C
Graffi G. (2017). Harris, Chomsky and the origins of transformational grammar / Lingvisticæ Investigationes, Vol. 39, Iss. 1, Dec 2016, pp. 48—87 // https://doi.org/10.1075/li.39.1.03gra
Louwerse M. (2021). Keeping Those Words in Mind: How Language Creates Meaning. Rowman & Littlefield // https://books.google.ru/books?id=gbcmEAAAQBAJ
Miller G. A. (2003). The cognitive revolution: a historical perspective / TRENDS in Cognitive Sciences, Vol. 7, No.3, March 2003 // https://www.cs.princeton.edu/~rit/geo/Miller.pdf
Davis M. D., Sigal R., Weyuker E. J. (1994). Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science (2nd ed.). Boston: Academic Press, Harcourt, Brace // https://books.google.ru/books?id=6G_arEqHtysC
Chomsky N. (1965). Aspects of the Theory of Syntax. MIT Press // https://books.google.ru/books?id=SOtsAAAAIAAJ
Fodor J. A. (1983). The Modularity of Mind: An Essay on Faculty Psychology // https://books.google.ru/books?id=e7nrSeibJZYC
* Иногда также используется термин «Упорядоченное психическое представление мыслей» (Thought ordered mental expression, TOME).
Fodor J. A. (1975). The Language of Thought // https://books.google.ru/books?id=XZwGLBYLbg4C
Лагунина И., Ольшанская Е. (2004). Машинный перевод / Радио Свобода, 21 января // https://www.svoboda.org/a/24196111.html
Лаборатория №15. Компьютерная лингвистика / Российская академия наук. Институт проблем передачи информации им. А. А. Харкевича // http://iitp.ru/ru/researchlabs/245.htm
Галактионов В. А., Мусатов А. М., Мансурова О. Ю., Ёлкин С. В., Клышинский Э. С., Максимов В. Ю., Аминева С. Н., Жирнов Р. В., Игашов С. Ю., Мусаева Т. Н. (2007). Система машинного перевода «Кросслятор 2.0» и анализ её функциональности для задачи трансляции знаний // https://www.keldysh.ru/papers/2007/prep89/prep2007_89.html
Hutchins W. J. (2000). Early Years in Machine Translation: Memoirs and biographies of pioneers. John Benjamins Publishing // https://books.google.ru/books?id=3dU5AAAAQBAJ
Loh S.-C., Kong L., Hung H.-S. (1978). Machine translation of Chinese mathematical articles / ALLC Bulltein, Vol. 6(2), pp. 111—120 // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.598.8762&rep=rep1&type=pdf
Hutchins W. J. (2000). Early Years in Machine Translation: Memoirs and biographies of pioneers. John Benjamins Publishing // https://books.google.ru/books?id=3dU5AAAAQBAJ
Chan S. (2004). A Dictionary of Translation Technology. Chinese University Press // https://books.google.ru/books?id=3gwOFvbxMGcC
Лаздинь Т. А. (2009). Основы статистической оптимизации преподавания иностранных языков / Вестник СПбГУ. Язык и литература. 2009. № 3 // https://cyberleninka.ru/article/n/osnovy-statisticheskoy-optimizatsii-prepodavaniya-inostrannyh-yazykov
Зубов А. В., Носкова Т. Н. (2017). Р. Г. Пиотровский — основатель компьютерной лингвистики в Беларуси / Пиотровские чтения 2017 // http://ceur-ws.org/Vol-2233/
Пиотровский Р. Г. (1980). Статистика речи и автоматический анализ текста. — Л.: Наука // https://www.phantastike.com/linguistics/statistika_rechi_1980/pdf/
История машинного перевода: от гипотез Лейбница и Декарта — до мобильных приложений и облачных сервисов (2019) / PROMT // https://www.promt.ru/press/blog/istoriya-mashinnogo-perevoda-ot-gipotez-leybnitsa-i-dekarta-do-mobilnykh-prilozheniy-i-oblachnykh-se/
NLLB Team, Costa-jussà M. R., Cross J., Çelebi O., Elbayad M., Heafield K., Heffernan K., Kalbassi E., Lam J., Licht D., Maillard J., Sun A., Wang S., Wenzek G., Youngblood A., Akula B., Barrault L., Gonzalez G. M., Hansanti P., Hoffman J., Jarrett S., Sadagopan K. R., Rowe D., Spruit S., Tran C., Andrews P., Ayan N. F., Bhosale S., Edunov S., Fan A., Gao C., Goswami V., Guzmán F., Koehn P., Mourachko A., Ropers C., Saleem S., Schwenk H., Wang J. (2022). No Language Left Behind: Scaling Human-Centered Machine Translation // https://arxiv.org/abs/2207.04672
Fan A., Bhosale S., Schwenk H., Ma Z., El-Kishky A., Goyal S., Baines M., Celebi O., Wenzek G., Chaudhary V., Goyal N., Birch T., Liptchinsky V., Edunov S., Grave E., Auli M., Joulin A. (2020). Beyond English-Centric Multilingual Machine Translation // https://arxiv.org/abs/2010.11125
Seamless Communication, Barrault L., Chung Y., Meglioli M. C., Dale D., Dong N., Duquenne P., Elsahar H., Gong H., Heffernan K., Hoffman J., Klaiber C., Li P., Licht D., Maillard J., Rakotoarison A., Sadagopan K. R., Wenzek G., Ye E., Akula B., Chen P., Hachem N. E., Ellis B., Gonzalez G. M., Haaheim J., Hansanti P., Howes R., Huang B., Hwang M., Inaguma H., Jain S., Kalbassi E., Kallet A., Kulikov I., Lam J., Li D., Ma X., Mavlyutov R., Peloquin B., Ramadan M., Ramakrishnan A., Sun A., Tran K., Tran T., Tufanov I., Vogeti V., Wood C., Yang Y., Yu B., Andrews P., Balioglu C., Costa-jussà M. R., Celebi O., Elbayad M., Gao C., Guzmán F., Kao J., Lee A., Mourachko A., Pino J., Popuri S., Ropers C., Saleem S., Schwenk H., Tomasello P., Wang C., Wang J., Wang S. (2023). SeamlessM4T-Massively Multilingual & Multimodal Machine Translation // https://aps.arxiv.org/abs/2308.11596
Papineni K., Roukos S., Ward T., Zhu W.-J. (2002). BLEU: a Method for Automatic Evaluation of Machine Translation / Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311—317 // https://doi.org/10.3115/1073083.1073135
Snover M., Dorr B., Schwartz R., Micciulla L., Makhoul J. (2006). A Study of Translation Edit Rate with Targeted Human Annotation / Proceedings of Association for Machine Translation in the Americas, 2006, pp. 223—231 // http://mt-archive.info/AMTA-2006-Snover.pdf
Chen B., Kuhn R. (2011). AMBER: a modified BLEU, enhanced ranking metric / WMT '11: Proceedings of the Sixth Workshop on Statistical Machine Translation, July 2011, pp. 71—77 // https://www.aclweb.org/anthology/W11-2105/
Banerjee S., Lavie A. (2005). METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments / Proceedings of the ACL 2005 Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization // https://www.aclweb.org/anthology/W05-0909/
Han A. L.-F. (2017). LEPOR: An Augmented Machine Translation Evaluation Metric // https://arxiv.org/abs/1703.08748
Han A. L.-F., Wong D. F., Chao L. S., He L., Lu Y. (2014). Unsupervised Quality Estimation Model for English to German Translation and Its Application in Extensive Supervised Evaluation / The Scientific World Journal, Vol. 2014 // https://doi.org/10.1155/2014/760301
Aaron Li-Feng Han A. L.-F., Wong D. F., Chao L. S., He L., Lu Y., Xing J., Zeng X. (2013). Language-independent Model for Machine Translation Evaluation with Reinforced Factors / Proceedings of the XIV Machine Translation Summit (Nice, September 2–6, 2013), pp. 215—222 // http://www.mt-archive.info/10/MTS-2013-Han.pdf
Lin C.-Y. (2004). ROUGE: a Package for Automatic Evaluation of Summaries / Proceedings of the Workshop on Text Summarization Branches Out (WAS 2004), Barcelona, Spain, July 25—26, 2004 // https://www.aclweb.org/anthology/W04-1013/
Zhang T., Kishore V., Wu F., Weinberger K. Q., Artzi Y. (2020). BERTScore: Evaluating Text Generation with BERT // https://arxiv.org/abs/1904.09675
Marie B. (2022). BLEU: A Misunderstood Metric from Another Age But still used today in AI research / Towards Data Science, Nov 5, 2022. // https://towardsdatascience.com/bleu-a-misunderstood-metric-from-another-age-d434e18f1b37
Papineni K., Roukos S., Ward T., Zhu W.-J. (2002). BLEU: a Method for Automatic Evaluation of Machine Translation / Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311—317 // https://doi.org/10.3115/1073083.1073135
Callison-Burch C., Koehn P., Monz C., Post M., Soricut R., Specia L. (2013). Findings of the 2012 Workshop on Statistical Machine Translation / NAACL 2012 Seventh Workshop on Statistical Machine Translation // http://www.statmt.org/wmt12/pdf/WMT02.pdf
Gao P., He Z., Wu H., Wang H. (2022). Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation // https://arxiv.org/abs/2206.02368
Wei J., Bosma M., Zhao V. Y., Guu К., Yu A. W., Lester B., Du N., Dai A. M., Le Q. V. (2021). Finetuned Language Models Are Zero-Shot Learners // https://arxiv.org/abs/2109.01652
Liang X., Wu L., Li J., Wang Y., Meng Q., Qin T., Chen W., Zhang M., Liu T.-Y. (2020). R-Drop: Regularized Dropout for Neural Networks // https://arxiv.org/abs/2106.14448
Лагунина И., Ольшанская Е. (2004). Машинный перевод / Радио Свобода, 21 января // https://www.svoboda.org/a/24196111.html
Savenkov K. (2018). State of the machine translation by Intento (2018) // https://www.slideshare.net/KonstantinSavenkov/state-of-the-machine-translation-by-intento-july-2018
Savenkov K. (2019). State of the Machine Translation (January 2019) / Intento, Mar 9, 2019 // https://blog.inten.to/state-of-the-machine-translation-january-2019-dffe15884d63
Savenkov K. (2019). State of the Machine Translation (June 2019) // Intento, Jun 20, 2019 // https://blog.inten.to/state-of-the-machine-translation-june-2019-e3ffb457b76c
The State of Machine Translation 2020. Independent multi-domain evaluation of commercial Machine Translation engines (2020) / Intento // https://try.inten.to/mt_report_2020
Stanford Human-Centered Artificial Intelligence (HAI) (2019). Artificial Intelligence Index Report 2019 // https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf
Manning C. D., Raghavan P., Schütze H. (2008). Introduction to Information Retrieval. Cambridge University Press // https://books.google.ru/books?id=t1PoSh4uwVcC
Bengio Y., Ducharme R., Vincent P., Jauvin C. (2003). A Neural Probabilistic Language Model / Journal of Machine Learning Research, Vol. 3 (2003), pp. 1137—1155 // http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
Francis W. N., Kucera H. (1979). Brown corpus manual. Manual of information to accompany a standard corpus of present-day edited American English, for use with digital computers // http://korpus.uib.no/icame/brown/bcm.html
Wikipedia contributors. (2021, August 2). Size of Wikipedia. In Wikipedia, The Free Encyclopedia. Retrieved 08:00, August 2, 2021, from https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
Marcus M. P., Santorini B., Marcinkiewicz M. A. (1993). Building a Large Annotated Corpus of English: The Penn Treebank / Computational Linguistics, Vol. 19, Iss. 2 // https://aclanthology.org/J93-2004/
BNC Consortium (2007). The British National Corpus, XML Edition. Oxford Text Archive // http://hdl.handle.net/20.500.12024/2554
Burnard L. (2007). Reference Guide for the British National Corpus (XML Edition) // http://www.natcorp.ox.ac.uk/XMLedition/URG/
BNC Consortium (2001). The British National Corpus, version 2 (BNC World) // http://www.natcorp.ox.ac.uk/
Burnard L. (2000). The British National Corpus Users Reference Guide // http://www.natcorp.ox.ac.uk/docs/userManual/
Harris Z. (1954). Distributional structure / Word, Vol. 10, Iss. 23, pp. 146—162 // https://doi.org/10.1080/00437956.1954.11659520
* Корпусная лингвистика — раздел языкознания, занимающийся разработкой, созданием и использованием текстовых корпусов.
Wallis S. (2016). Why Chomsky was Wrong About Corpus Linguistics / corp.ling.stats: statistics for corpus linguists, November 2, 2016 // https://corplingstats.wordpress.com/2016/11/02/why-chomsky-was-wrong/
Firth J. R. (1957). A synopsis of linguistic theory 1930-1955 // https://books.google.ru/books?id=T8LDtgAACAAJ
Maruyama Y. (2019). Quantum Physics and Cognitive Science from a Wittgensteinian Perspective: Bohr’s Classicism, Chomsky’s Universalism, and Bell’s Contextualism / Wuppuluri S., da Costa N. (2019). WITTGENSTEINIAN (adj.). The Frontiers Collection. Springer, Cham // https://doi.org/10.1007/978-3-030-27569-3_20
Kilgarriff A., Baisa V., Bušta J., Jakubíček M., Kovář V., Michelfeit J., Rychlý P., Suchomel V. (2014). The Sketch Engine: ten years on / Lexicography, Vol. 1, Iss. 1, pp. 7–36 // https://doi.org/10.1007/s40607-014-0009-9
* Диахрония (от греч. δια — через, сквозь и χρονος — время) — рассмотрение исторического развития языковых явлений и языковой системы как предмета лингвистического исследования. Противопоставляется синхронии (от греч. συν — совместно и χρονος — время) — рассмотрение состояния языка как установившейся системы в определённый момент времени.
Mnih A., Hinton G. E. (2009). A scalable hierarchical distributed language model / Advances in neural information processing systems, Vol. 21, pp. 1081—1088 // https://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model
Mnih A., Teh Y. W. (2012). A fast and simple algorithm for training neural probabilistic language models // Proceedings of the 29th International Coference on International Conference on Machine Learning, pp. 419—426 // https://arxiv.org/abs/1206.6426
Collobert R., Weston J. (2008). A unified architecture for natural language processing: deep neural networks with multitask learning / Proceedings of the 25th international conference on Machine learning, pp. 160—167 // https://doi.org/10.1145/1390156.1390177
Turian J., Ratinov L., Bengio Y. (2010). Word representations: a simple and general method for semi-supervised learning / Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384—394 // https://dl.acm.org/doi/10.5555/1858681.1858721
Mikolov T., Chen K., Corrado G., Dean J. (2013). Efficient Estimation of Word Representations in Vector Space / International Conference on Learning Representations (ICLR-2013) // https://arxiv.org/abs/1301.3781
Mikolov T., Sutskever I., Chen K., Corrado G., Dean J. (2013). Distributed Representations of Words and Phrases and their Compositionality / Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3111—3119 // https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
Mikolov T., Sutskever I., Chen K., Corrado G., Dean J. (2013). Distributed Representations of Words and Phrases and their Compositionality / Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3111—3119 // https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
Mikolov T., Kombrink S., Deoras A., Burget L, Černocký J. (2011). RNNLM — Recurrent Neural Network Language Modeling Toolkit / Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop, 2011, pp. 1—4 // https://www.fit.vut.cz/research/publication/10087/.en
Wilson B., Schakel A. M. J. (2015). Controlled Experiments for Word Embeddings // https://arxiv.org/abs/1510.02675
Rajasekharan A. (2017). How does word2vec work? Can someone walk through a specific example? / Quora // https://www.quora.com/How-does-word2vec-work-Can-someone-walk-through-a-specific-example/answer/Ajit-Rajasekharan
Gong C., He D., Tan X., Qin T., Wang L., Liu T.-Y. (2020). FRAGE: Frequency-Agnostic Word Representation // https://arxiv.org/abs/1809.06858
Mikolov T., Chen K., Corrado G., Dean J. (2013). Efficient Estimation of Word Representations in Vector Space / International Conference on Learning Representations (ICLR-2013) // https://arxiv.org/abs/1301.3781
İrsoy O., Benton A., Stratos K. (2020). kōan: A Corrected CBOW Implementation // https://arxiv.org/abs/2012.15332
Сапунов Г. (2021). kōan: A Corrected CBOW Implementation (Ozan İrsoy, Adrian Benton, Karl Stratos) / gonzo-обзоры ML статей, Jan 19, 2021 // https://t.me/gonzo_ML/452
* Социальное познание (англ. social cognition) — процесс познания одного человека другим, одна из сфер, изучаемых социальной психологией, которая исследует механизмы хранения, переработки и использования человеком информации о других людях и социальных ситуациях.
** Организационное поведение (англ. organizational behavior) — научная дисциплина, занимающаяся исследованием поведения людей в организациях.
Richie R., Zou W., Bhatia S., Vazire S. (2019). Predicting High-Level Human Judgment Across Diverse Behavioral Domains / Psychology, Vol. 5, Iss. 1, p. 50 // https://doi.org/10.1525/collabra.282
Baroni M., Dinu G., Kruszewski G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors / Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) // https://doi.org/10.3115/v1/P14-1023
Sivakumar S., Videla L. S., Rajesh Kumar T., Nagaraj J., Itnal S., Haritha D. (2020). Review on Word2Vec Word Embedding Neural Net / 2020 International Conference on Smart Electronics and Communication (ICOSEC) // https://doi.org/10.1109/icosec49089.2020.9215319
Adewumi T. P., Liwicki F., Liwicki M. (2020). Word2Vec: Optimal Hyper-Parameters and Their Impact on NLP Downstream Tasks // https://arxiv.org/abs/2003.11645
Pennington J., Socher R., Manning C. (2014). GloVe: Global Vectors for Word Representation / Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. // https://doi.org/10.3115/v1/D14-1162
Bojanowski P., Grave E., Joulin A., Mikolov T. (2016). Enriching Word Vectors with Subword Information // https://arxiv.org/abs/1607.04606
Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., Zettlemoyer L. (2018). Deep contextualized word representations // https://arxiv.org/abs/1802.05365
Sales J. E., Souza L., Barzegar S., Davis B., Freitas A., Handschuh S. (2018). Indra: A Word Embedding and Semantic Relatedness Server / Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) // https://aclanthology.org/L18-1211/
Asgari E., Mofrad M. R. K. (2015). ProtVec: A Continuous Distributed Representation of Biological Sequences // https://arxiv.org/abs/1503.05140
Asgari E., Mofrad M. R. K. (2015). Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics / PLoS One, Vol. 10 (11), e0141287 // https://doi.org/10.1371/journal.pone.0141287
Jaeger S., Fulle S., Turk S. (2017). Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. / Journal of Chemical Information and Modeling, Vol. 58. Iss. 1, pp. 27–35. // https://doi.org/10.1021/acs.jcim.7b00616
Zhang Y.-F., Wang X., Kaushik A.C., Chu Y., Shan X., Zhao M.-Z., Xu Q., Wei D.-Q. (2020). SPVec: A Word2vec-Inspired Feature Representation Method for Drug-Target Interaction Prediction / Frontiers in Chemistry, 2020-01-10. // https://doi.org/10.3389/fchem.2019.00895
Le Q. V., Mikolov T. (2014). Distributed Representations of Sentences and Documents // https://arxiv.org/abs/1405.4053
Kalchbrenner N., Blunsom P. (2014). Recurrent Continuous Translation Models / Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1700—1709 // https://www.aclweb.org/anthology/D13-1176/
Sutskever I., Vinyals O., Le Q. V. (2014). Sequence to Sequence Learning with Neural Networks / Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3104–3112 // https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
Bahdanau D., Cho K., Bengio Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate / International Conference on Learning Representations (ICLR-2015) // https://arxiv.org/abs/1409.0473
«В Минске пытался прибиться хоть куда-нибудь». Дима Богданов изобрёл механизм attention и работает с лауреатом премии Тьюринга. Говорим про ML и Монреаль (2019). / Dev.BY, 3 апреля 2019 // https://devby.io/news/dmitry-bogdanov
Mnih V., Heess N., Graves A., Kavukcuoglu K. (2014). Recurrent Models of Visual Attention / Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, pp. 2204–2212 // https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
Ba J. L., Mnih V., Kavukcuoglu K. (2015). Multiple object recognition with visual attention / International Conference on Learning Representations (ICLR-2015) // https://arxiv.org/abs/1412.7755
Vinyals V., Toshev A., Bengio S., Erhan D. (2015). Show and Tell: A Neural Image Caption Generator / 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) // https://doi.org/10.1109/CVPR.2015.7298935
Xu K., Ba J. L., Kiros R., Cho K., Courville A., Salakhutdinov R., Zemel R. S., Bengio Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention / Proceedings of the 32nd International Conference on International Conference on Machine Learning, Vol. 37, pp. 2048—2057 // http://proceedings.mlr.press/v37/xuc15.pdf
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., Polosukhin I. (2017). Attention Is All You Need / Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017) // https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
Schmidhuber J. (1991). Learning to control fast-weight memories: An alternative to recurrent nets. Technical Report FKI147-91, Institut für Informatik, Technische Universität München, March 1991 // https://people.idsia.ch/~juergen/FKI-147-91ocr.pdf
Schmidhuber J. (1992). Learning to control fast-weight memories: An alternative to dynamic recurrent networks / Neural Computation, Vol. 4, Iss. 1, pp. 131–139 // https://doi.org/10.1162/neco.1992.4.1.131
Schmidhuber J. (1993). Reducing the ratio between learning complexity and number of time varying variables in fully recurrent nets. / International Conference on Artificial Neural Networks (ICANN), pp. 460–463 // https://doi.org/10.1007/978-1-4471-2063-6_110
Schlag I., Irie K., Schmidhuber J. (2021). Linear Transformers Are Secretly Fast Weight Programmers // https://arxiv.org/abs/2102.11174
Devlin J., Chang M.-W., Lee K., Toutanova K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // https://arxiv.org/abs/1810.04805
Shaw P., Uszkoreit J., Vaswani A. (2018). Self-Attention with Relative Position Representations // https://arxiv.org/abs/1803.02155
Huang C.-Z. A., Vaswani A., Uszkoreit J., Shazeer N., Simon I., Hawthorne C., Dai A. M., Hoffman M. D., Dinculescu M., Eck D. (2018). Music Transformer // https://arxiv.org/abs/1809.04281
Su J., Lu Y., Pan S., Murtadha A., Wen B., Liu Y. (2021). RoFormer: Enhanced Transformer with Rotary Position Embedding // https://arxiv.org/abs/2104.09864
Sun Y., Dong L., Patra B., Ma S., Huang S., Benhaim A., Chaudhary V., Song X., Wei F. (2022). A Length-Extrapolatable Transformer // https://arxiv.org/abs/2212.10554
Press O., Smith N. A., Lewis M. (2021). Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation // https://arxiv.org/abs/2108.12409
Kazemnejad A., Padhi I., Ramamurthy K. N., Das P., Reddy S. (2023). The Impact of Positional Encoding on Length Generalization in Transformers // https://arxiv.org/abs/2305.19466
Lan Z., Chen M., Goodman S., Gimpel K., Sharma P., Soricut R. (2019). ALBERT: A Lite BERT for Self-supervised Learning of Language Representations // https://arxiv.org/abs/1909.11942
Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O., Lewis M., Zettlemoyer L., Stoyanov V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach // https://arxiv.org/abs/1907.11692
McCann B., Bradbury J., Xiong C., Socher R. (2017). Learned in Translation: Contextualized Word Vectors // https://arxiv.org/abs/1708.00107
Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., Zettlemoyer L. (2018). Deep contextualized word representations // https://arxiv.org/abs/1802.05365
Howard J., Ruder S. (2018). Universal Language Model Fine-tuning for Text Classification // https://arxiv.org/abs/1801.06146
Radford A., Narasimhan K., Salimans T., Sutskever I. (2018). Improving Language Understanding by Generative Pre-Training // https://paperswithcode.com/paper/improving-language-understanding-by
Radford A., Wu J., Child R., Luan D., Amodei D., Sutskever I. (2019). Language Models are Unsupervised Multitask Learners // https://paperswithcode.com/paper/language-models-are-unsupervised-multitask
Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I., Amodei D. (2020). Language Models are Few-Shot Learners // https://arxiv.org/abs/2005.14165
Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W., Liu P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer // https://arxiv.org/abs/1910.10683
Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, Eduard Hovy, RACE: Large-scale ReAding Comprehension Dataset From Examinations // https://www.aclweb.org/anthology/D17-1082.pdf
Soricut R., Lan Z. (2019). ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations / Google AI Blog, Friday, December 20, 2019 // https://ai.googleblog.com/2019/12/albert-lite-bert-for-self-supervised.html
Wang A., Singh A., Michael J., Hill F., Levy O., Bowman S. R. (2018). GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding // https://openreview.net/forum?id=rJ4km2R5t7
Wang A., Pruksachatkun Y., Nangia N., Singh A., Michael J., Hill F., Levy O., Bowman S. R. (2019). SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems // https://arxiv.org/abs/1905.00537
Clark C., Lee K., Chang M.-W., Kwiatkowski T., Collins M., Toutanova K. (2019). BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions // https://arxiv.org/abs/1905.10044
de Marneffe M.-C., Simons M., Tonhauser J. (2019). The CommitmentBank: Investigating projection in naturally occurring discourse / Proceedings of Sinn und Bedeutung, Vol. 23 // https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf
Roemmele M., Bejan C. A., Gordon A. S. (2011). Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning / AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning, Stanford University, March 21—23, 2011 // https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF
Khashabi D., Chaturvedi S., Roth M., Upadhyay S., Roth D. (2018). Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences / Proceedings of North American Chapter of the Association for Computational Linguistics (NAACL) // https://cogcomp.seas.upenn.edu/page/publication_view/833
Zhang S., Liu X., Liu J., Gao J., Duh K., Durme B. V. (2018). ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension // https://arxiv.org/abs/1810.12885
Dagan I., Glickman O., Magnini B. (2006). The PASCAL recognising textual entailment challenge / Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Textual Entailment. Springer, 2006 // link.springer.com/chapter/10.1007/11736790_9
Haim R. B., Dagan I., Dolan B., Ferro L., Giampiccolo D., Magnini B., Szpektor I. (2006) / The second PASCAL recognising textual entailment challenge / Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, 2006 // http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/01.pdf
Giampiccolo D., Magnini B., Dagan I., Dolan B. (2007). The third PASCAL recognizing textual entailment challenge / Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing. Association for Computational Linguistics, 2007 // https://www.aclweb.org/anthology/W07-1401/
Bentivogli L., Dagan I., Dang H. T., Giampiccolo D., Magnini B. (2009). The fifth PASCAL recognizing textual entailment challenge / Textual Analysis Conference (TAC), 2009 // http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.232.1231
* Анафора (от греч. ἀναφέρειν — относить назад, возвращать, возводить к чему-либо) — зависимость интерпретации выражения от другого (обычно предшествующего) выражения в тексте.
Rudinger R., Naradowsky J., Leonard B., Durme B. V. (2018). Gender Bias in Coreference Resolution // https://arxiv.org/abs/1804.09301
* Здесь мы сознательно не углубляемся в вопрос, какие именно люди включаются в контрольную группу для оценки способности человека решать те или иные задачи, связанные с пониманием естественного языка (да и вообще любые другие интеллектуальные задачи в ситуациях, когда мы хотим сравнить способности машин и людей). Очевидно, что в идеале состав контрольной группы должен быть достаточно репрезентативным: включать в себя людей с разным уровнем образования, с разными профессиями, принадлежащих к разным социальным группам и культурным общностям. На практике, конечно, формируемые исследователями контрольные группы весьма далеки от идеала. Анализу этой проблемы посвящена весьма поучительная работа исследователей из Гарвардского университета под красноречивым названием «Какие люди?» [Which humans?].
Atari M., Xue M. J., Park P. S., Blasi D., Henrich J. (2023). Which humans? // https://doi.org/10.31234/osf.io/5b26t
He P., Liu X., Gao J., Chen W. (2021). DeBERTa: Decoding-enhanced BERT with Disentangled Attention // https://paperswithcode.com/paper/deberta-decoding-enhanced-bert-with
Sun Y., Wang S., Feng S., Ding S., Pang C., Shang J., Liu J., Chen X., Zhao Y., Lu Y., Liu W., Wu Z., Gong W., Liang J., Shang Z., Sun P., Liu W., Ouyang X., Yu D., Tian H., Wu H., Wang H. (2021). ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation // https://arxiv.org/abs/2107.02137
SuperGLUE leaderboard, Retreived 2022-01-31 // https://super.gluebenchmark.com/leaderboard/
Shavrina T., Fenogenova A., Emelyanov A., Shevelev D., Artemova E., Malykh V., Mikhailov V., Tikhonova M., Chertok A., Evlampiev A. (2020). RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark // https://arxiv.org/abs/2010.15925
Шаврина Т. (2020). Люди ломаются на логике, роботы — на всем понемногу. Экзамены по русскому для NLP-моделей / Хабр, 10 июня // https://habr.com/ru/company/sberbank/blog/506058/
Shavrina T., Shapovalova O. (2017). To the methodology of corpus construction for machine learning: «TAIGA» syntax tree corpus and parser / Proceedings of CORPORA2017 international conference, Saint-Petersbourg, 2017 // https://publications.hse.ru/en/chapters/228708483
Panchenko A., Loukachevitch N. V., Ustalov D., Paperno D., Meyer C. M., Konstantinova N. (2018). RUSSE: The First Workshop on Russian Semantic Similarity / Proceeding of the International Conference on Computational Linguistics DIALOGUE 2015, pp. 89—105 // https://arxiv.org/abs/1803.05820
Panchenko A., Lopukhina A., Ustalov D., Lopukhin K., Arefyev N., Leontyev A., Loukachevitch N. (2018). RUSSE’2018: a Shared Task on Word Sense Induction for the Russian Language / https://arxiv.org/abs/1803.05795
RussianSuperGLUE leaderboard, Retreived 2022-01-31 // https://russiansuperglue.com/leaderboard/2
Le H., Vial L., Frej J., Segonne V., Coavoux M., Lecouteux B., Allauzen A., Crabbé B., Besacier L., Schwab D. (2019). FlauBERT: Unsupervised Language Model Pre-training for French // https://arxiv.org/abs/1912.05372
Xu L., Hu H., Zhang X., Li L., Cao C., Li Y., Xu Y., Sun K., Yu D., Yu C., Tian Y., Dong Q., Liu W., Shi B., Cui Y., Li J., Zeng J., Wang R., Xie W., Li Y., Patterson Y., Tian Z., Zhang Y., Zhou H., Liu S., Zhao Z., Zhao Q., Yue C., Zhang X., Yang Z., Richardson K., Lan Z. (2020). CLUE: A Chinese Language Understanding Evaluation Benchmark // https://arxiv.org/abs/2004.05986
Rybak P., Mroczkowski R., Tracz J., Gawlik I. (2020). KLEJ: Comprehensive Benchmark for Polish Language Understanding // https://arxiv.org/abs/2005.00630
Liang Y., Duan N., Gong Y., Wu N., Guo F., Qi W., Gong M., Shou L., Jiang D., Cao G., Fan X., Zhang R., Agrawal R., Cui E., Wei S., Bharti T., Qiao Y., Chen J.-H., Wu W., Liu S., Yang F., Campos D., Majumder R., Zhou M. (2020). XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation // https://arxiv.org/abs/2004.01401
Hu J., Ruder S., Siddhant A., Neubig G., Firat O., Johnson M. (2020). XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization // https://arxiv.org/abs/2003.11080
Shavrina T., Malykh V. (2021). How not to Lie with a Benchmark: Rearranging NLP Leaderboards // https://arxiv.org/abs/2112.01342
Hendrycks D., Burns C., Basart S., Zou A., Mazeika M., Song D., Steinhardt J. (2020). Measuring Massive Multitask Language Understanding // https://arxiv.org/abs/2009.03300
OpenAI (2023). GPT-4 Technical Report // https://arxiv.org/abs/2303.08774
AI Explained (2023). SmartGPT: Major Benchmark Broken - 89.0% on MMLU + Exam's Many Errors / YouTube, 28.08.2023 // https://www.youtube.com/watch?v=hVade_8H8mE
Srivastava A., Rastogi A., Rao A., Shoeb A. A. M., Abid A., Fisch A., Brown A. R., Santoro A., Gupta A., Garriga-Alonso A., Kluska A., Lewkowycz A., Agarwal A., Power A., Ray A., Warstadt A., Kocurek A. W., Safaya A., Tazarv A., Xiang A., Parrish A., Nie A., Hussain A., Askell A., Dsouza A., Slone A., Rahane A., Iyer A. S., Andreassen A., Madotto A., Santilli A., Stuhlmüller A., Dai A., La A., Lampinen A., Zou A., Jiang A., Chen A., Vuong A., Gupta A., Gottardi A., Norelli A., Venkatesh A., Gholamidavoodi A., Tabassum A., Menezes A., Kirubarajan A., Mullokandov A., Sabharwal A., Herrick A., Efrat A., Erdem A., Karakaş A., Roberts B. R., Loe B. S., Zoph B., Bojanowski B., Özyurt B., Hedayatnia B., Neyshabur B., Inden B., Stein B., Ekmekci B., Lin B. Y., Howald B., Orinion B., Diao C., Dour C., Stinson C., Argueta C., Ramírez C. F., Singh C., Rathkopf C., Meng C., Baral C., Wu C., Callison-Burch C., Waites C., Voigt C., Manning C. D., Potts C., Ramirez C., Rivera C. E., Siro C., Raffel C., Ashcraft C., Garbacea C., Sileo D., Garrette D., Hendrycks D., Kilman D., Roth D., Freeman D., Khashabi D., Levy D., González D. M., Perszyk D., Hernandez D., Chen D., Ippolito D., Gilboa D., Dohan D., Drakard D., Jurgens D., Datta D., Ganguli D., Emelin D., Kleyko D., Yuret D., Chen D., Tam D., Hupkes D., Misra D., Buzan D., Mollo D. C., Yang D., Lee D.-H., Schrader D., Shutova E., Cubuk E. D., Segal E., Hagerman E., Barnes E., Donoway E., Pavlick E., Rodola E., Lam E., Chu E., Tang E., Erdem E., Chang E., Chi E. A., Dyer E., Jerzak E., Kim E., Manyasi E. E., Zheltonozhskii E., Xia F., Siar F., Martínez-Plumed F., Happé F., Chollet F., Rong F., Mishra G., Winata G. I., de Melo G., Kruszewski G., Parascandolo G., Mariani G., Wang G., Jaimovitch-López G., Betz G., Gur-Ari G., Galijasevic H., Kim H., Rashkin H., Hajishirzi H., Mehta H., Bogar H., Shevlin H., Schütze H., Yakura H., Zhang H., Wong H. M., Ng I., Noble I., Jumelet J., Geissinger J., Kernion J., Hilton J., Lee J., Fisac J. F., Simon J. B., Koppel J., Zheng J., Zou J., Kocoń J., Thompson J., Wingfield J., Kaplan J., Radom J., Sohl-Dickstein J., Phang J., Wei J., Yosinski J., Novikova J., Bosscher J., Marsh J., Kim J., Taal J., Engel J., Alabi J., Xu J., Song J., Tang J., Waweru J., Burden J., Miller J., Balis J. U., Batchelder J., Berant J., Frohberg J., Rozen J., Hernandez-Orallo J., Boudeman J., Guerr J., Jones J., Tenenbaum J. B., Rule J. S., Chua J., Kanclerz K., Livescu K., Krauth K., Gopalakrishnan K., Ignatyeva K., Markert K., Dhole K. D., Gimpel K., Omondi K., Mathewson K., Chiafullo K., Shkaruta K., Shridhar K., McDonell K., Richardson K., Reynolds L., Gao L., Zhang L., Dugan L., Qin L., Contreras-Ochando L., Morency L.-P., Moschella L., Lam L., Noble L., Schmidt L., He L., Colón L. O., Metz L., Şenel L. K., Bosma M., Sap M., ter Hoeve M., Farooqi M., Faruqui M., Mazeika M., Baturan M., Marelli M., Maru M., Quintana M. J. R., Tolkiehn M., Giulianelli M., Lewis M., Potthast M., Leavitt M. L., Hagen M., Schubert M., Baitemirova M. O., Arnaud M., McElrath M., Yee M. A., Cohen M., Gu M., Ivanitskiy M., Starritt M., Strube M., Swędrowski M., Bevilacqua M., Yasunaga M., Kale M., Cain M., Xu M., Suzgun M., Walker M., Tiwari M., Bansal M., Aminnaseri M., Geva M., Gheini M., Varma T M., Peng N., Chi N. A., Lee N., Krakover N. G.-A., Cameron N., Roberts N., Doiron N., Martinez N., Nangia N., Deckers N., Muennighoff N., Keskar N. S., Iyer N. S., Constant N., Fiedel N., Wen N., Zhang O., Agha O., Elbaghdadi O., Levy O., Evans O., Casares P. A. M., Doshi P., Fung P., Liang P. P., Vicol P., Alipoormolabashi P., Liao P., Liang P., Chang P., Eckersley P., Htut P. M., Hwang P., Miłkowski P., Patil P., Pezeshkpour P., Oli P., Mei Q., Lyu Q., Chen Q., Banjade R., Rudolph R. E., Gabriel R., Habacker R., Risco R., Millière R., Garg R., Barnes R., Saurous R. A., Arakawa R., Raymaekers R., Frank R., Sikand R., Novak R., Sitelew R., LeBras R., Liu R., Jacobs R., Zhang R., Salakhutdinov R., Chi R., Lee R., Stovall R., Teehan R., Yang R., Singh S., Mohammad S. M., Anand S., Dillavou S., Shleifer S., Wiseman S., Gruetter S., Bowman S. R., Schoenholz S. S., Han S., Kwatra S., Rous S. A., Ghazarian S., Ghosh S., Casey S., Bischoff S., Gehrmann S., Schuster S., Sadeghi S., Hamdan S., Zhou S., Srivastava S., Shi S., Singh S., Asaadi S., Gu S. S., Pachchigar S., Toshniwal S., Upadhyay S., Debnath S., Shakeri S., Thormeyer S., Melzi S., Reddy S., Makini S. P., Lee S.-H., Torene S., Hatwar S., Dehaene S., Divic S., Ermon S., Biderman S., Lin S., Prasad S., Piantadosi S. T., Shieber S. M., Misherghi S., Kiritchenko S., Mishra S., Linzen T., Schuster T., Li T., Yu T., Ali T., Hashimoto T., Wu T.-L., Desbordes T., Rothschild T., Phan T., Wang T., Nkinyili T., Schick T., Kornev T., Tunduny T., Gerstenberg T., Chang T., Neeraj T., Khot T., Shultz T., Shaham U., Misra V., Demberg V., Nyamai V., Raunak V., Ramasesh V., Prabhu V. U., Padmakumar V., Srikumar V., Fedus W., Saunders W., Zhang W., Vossen W., Ren X., Tong X., Zhao X., Wu X., Shen X., Yaghoobzadeh Y., Lakretz Y., Song Y., Bahri Y., Choi Y., Yang Y., Hao Y., Chen Y., Belinkov Y., Hou Y., Hou Y., Bai Y., Seid Z., Zhao Z., Wang Z., Wang Z. J., Wang Z., Wu Z. (2022). Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models // https://arxiv.org/abs/2206.04615
Liang P., Bommasani R., Lee T., Tsipras D., Soylu D., Yasunaga M., Zhang Y., Narayanan D., Wu Y., Kumar A., Newman B., Yuan B., Yan B., Zhang C., Cosgrove C., Manning C. D., Ré C., Acosta-Navas D., Hudson D. A., Zelikman E., Durmus E., Ladhak F., Rong F., Ren H., Yao H., Wang J., Santhanam K., Orr L., Zheng L., Yuksekgonul M., Suzgun M., Kim N., Guha N., Chatterji N., Khattab O., Henderson P., Huang Q., Chi R., Xie S. M., Santurkar S., Ganguli S., Hashimoto T., Icard T., Zhang T., Chaudhary V., Wang W., Li X., Mai Y., Zhang Y., Koreeda Y. (2022). Holistic Evaluation of Language Models // https://arxiv.org/abs/2211.09110
Goyal Y., Khot T., Summers-Stay D., Batra D., Parikh D. (2016). Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering // https://arxiv.org/abs/1612.00837
Wang W., Bao H., Dong L., Wei F. (2021). VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts // https://arxiv.org/abs/2111.02358
Shrivastava A., Goyal Y., Batra D., Parikh D., Agrawal A. (2021). Welcome to the VQA Challenge 2021! / Visual Question Answering // https://visualqa.org/challenge.html
Bugliarello E., Liu F., Pfeiffer J., Reddy S., Elliott D., Ponti E. M., Vulić I. (2021). IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and Languages / https://arxiv.org/abs/2201.11732
Schofield J. (2014). Computer chatbot 'Eugene Goostman' passes the Turing test / ZDNet, 8 June 2014 // https://www.zdnet.com/article/computer-chatbot-eugene-goostman-passes-the-turing-test/
Котляр П. (2014). Мальчик Женя из Одессы одолел Тьюринга. Компьютерная программа впервые в истории прошла знаменитый тест Тьюринга на человечность / газета.ru, 09.06.2014 // https://www.gazeta.ru/science/2014/06/09_a_6064069.shtml
Masnick M. (2014). No, A 'Supercomputer' Did NOT Pass The Turing Test For The First Time And Everyone Should Know Better / techdirt, Jun 9th 2014 // https://www.techdirt.com/articles/20140609/07284327524/no-computer-did-not-pass-turing-test-first-time-everyone-should-know-better.shtml
Mann A. (2014). That Computer Actually Got an F on the Turing Test / Wired, 06.09.14 // https://www.wired.com/2014/06/turing-test-not-so-fast/
Turing A. M. (1950). Computing Machinery and Intelligence / Mind, Vol. LIX, Iss. 236, October 1950, pp. 433—460 // https://doi.org/10.1093/mind/LIX.236.433
Schofield J. (2014). Computer chatbot 'Eugene Goostman' passes the Turing test / ZDNet, 8 June 2014 // https://www.zdnet.com/article/computer-chatbot-eugene-goostman-passes-the-turing-test/
Past Events (2020) / The Society for the study of Artificial Intelligence and Simulation of Behaviour // https://aisb.org.uk/aisb-events/
Home Page of The Loebner Prize--“The First Turing Test” (2001) // http://www.thocp.net/reference/artificial_intelligence/Loebner%20Prize%20Home%20Page.htm
Aaronson S. (2014). My Conversation with “Eugene Goostman”, the Chatbot that's All Over the News for Allegedly Passing the Turing Test / Shtetl-Optimized, The Blog of Scott Aaronson, 19 June 2014 // http://www.scottaaronson.com/blog/?p=1858
Turing Test success marks milestone in computing history (2014) / University of Reading, 8 June 2014 // http://www.reading.ac.uk/news-archive/press-releases/pr583836.html
Aaronson S. (2014). My Conversation with “Eugene Goostman”, the Chatbot that's All Over the News for Allegedly Passing the Turing Test / Shtetl-Optimized, The Blog of Scott Aaronson, 19 June 2014 // http://www.scottaaronson.com/blog/?p=1858
Turing A. M. (1950). Computing Machinery and Intelligence / Mind, Vol. LIX, Iss. 236, October 1950, pp. 433—460 // https://doi.org/10.1093/mind/LIX.236.433
History of the PC Therapist (Information provided by Mr. Weintraub) (1998) / Loebner Prize website // http://web.archive.org/web/19981205050755/http://loebner.net/Prizef/weintraub-bio.html
Aron J. (2011). Software tricks people into thinking it is human / New Scientist, 6 September 2011 // https://www.newscientist.com/article/dn20865-software-tricks-people-into-thinking-it-is-human/
Rules for Loebner Prize 2007 (2007) // https://web.archive.org/web/20120219114233/http://www.loebner.net/Prizef/2007_Contest/Rules.html
Loebner Prize 2004 Rules (2004) // https://web.archive.org/web/20130616214306/http://www.loebner.net/Prizef/2004_Contest/2004Rules.html
Loebner Prize 2005 $3000 and a Bronze Medal (2005) // https://web.archive.org/web/20050519085947/http://www.loebner.net/Prizef/2005_Contest/2005_Rules.txt
2006 Loebner Prize competition will be held Sunday, 17 September 2006 at Torrington Theater, University College, London (2006) // https://web.archive.org/web/20081119161913/http://www.loebner.net/Prizef/2006_Contest/2006_Rules.txt
Rules for Loebner Prize 2007 (2007) // https://web.archive.org/web/20120219114233/http://www.loebner.net/Prizef/2007_Contest/Rules.html
Loebner Prize 2009 US$3000 and a Bronze Annual Medal (2009) // https://web.archive.org/web/20120708013756/http://loebner.net/Prizef/LP_2009.html
Loebner Prize for Artificial Intelligence “The First Turing Test” 2010 Competition (2010) // https://web.archive.org/web/20120712005759/http://www.loebner.net/Prizef/2010_Contest/Loebner_Prize_Rules_2010.html
Warwick K., Shah H. (2016). Turing’s Imitation Game. Conversations with the Unknown. Cambridge Univesity Press // https://www.google.ru/books?id=nMbxDAAAQBAJ
Kelly-Bootle S. (2005). Call That Gibberish?: Detecting the real from the fake is getting harder / Queue, July 2005 // https://doi.org/10.1145/1080862.1080884
Якутенко И. (2009). Слегка упорядоченные размышления о науке, религии и чайниках. Михаил Гельфанд о «Корчевателях», креационизме и ситуации в российской науке / Lenta.ru, 18 июня 2009 // https://lenta.ru/articles/2009/06/18/gelfand/
Minsky M. (1995). Annual Minsky Loebner Prize Revocation Prize 1995 Announcement / comp.ai, comp.ai.philosophy, 3 Mar 1995 // http://science.slc.edu/~jmarshall/courses/spring/2009/artificial-minds/notes/week08/minsky_prize.pdf
Home Page of The Loebner Prize--“The First Turing Test” (2001) // http://www.thocp.net/reference/artificial_intelligence/Loebner%20Prize%20Home%20Page.htm
Пушкаш А. (2015). Чатбот выпускника Университета ИТМО стал лучшим в конкурсе «Тест Тьюринга» / ITMO.NEWS, 24 Июня 2015 // https://news.itmo.ru/ru/archive/archive2/news/4916/
Dawson M. R. W. (2013). Weak Equivalence and the Turing Test / Dawson M. R. W. (2013). Mind, Body, World: Foundations of Cognitive Science. Athabasca University Press // https://books.google.ru/books?id=l8D0llrudVMC
Copeland B. J. (2017) The Church-Turing Thesis / Stanford Encyclopedia of Philosophy // https://plato.stanford.edu/entries/church-turing/#SimuThes
Nair R. B. (2004). Narrative Gravity: Conversation, Cognition, Culture. Routledge // https://books.google.ru/books?id=Vud_AgAAQBAJ
Jurafsky D., Martin J. H. (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition // https://books.google.ru/books?id=fZmj5UNK8AQC
Daniel G., Daniel J. (2000). Automatic labeling of semantic roles / Proceedings of the 38th Annual Meeting on Association for Computational Linguistics — ACL '00. Hong Kong: Association for Computational Linguistics, pp. 512—520 // https://doi.org/10.3115/1075218.1075283
Graves A., Wayne G., Danihelka I. (2014). Neural Turing Machines // https://arxiv.org/abs/1410.5401
Graves A., Wayne G., Reynolds M., Harley T., Danihelka I., Grabska-Barwińska A., Colmenarejo S. G., Grefenstette E., Ramalho T., Agapiou J., Badia A. P., Hermann K. M., Zwols Y., Ostrovski G., Cain A., King H., Summerfield C., Blunsom P., Kavukcuoglu K., Hassabis D. (2016). Hybrid computing using a neural network with dynamic external memory / Nature, Vol. 538, pp. 471—476 (2016) // https://doi.org/10.1038/nature20101
Bulatov A., Kuratov Y., Burtsev M. S. (2022). Recurrent Memory Transformer // https://arxiv.org/abs/2207.06881
Lei J., Wang L, Shen Y., Yu D., Berg T. L., Bansal M. (2020). MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning / Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics // https://aclanthology.org/2020.acl-main.233/
Sukhbaatar S., Grave E., Bojanowski P., Joulin A. (2019). Adaptive Attention Span in Transformers // https://arxiv.org/abs/1905.07799
Sukhbaatar S., Ju D., Poff S., Roller S., Szlam A., Weston J., Fan A. (2021). Not All Memories are Created Equal: Learning to Forget by Expiring // https://arxiv.org/abs/2105.06548
Carey P. (2016). Baidu research chief Andrew Ng fixed on self-taught computers, self-driving cars / The Seattle Times, Originally published March 27, 2016, updated March 28, 2016 // https://www.seattletimes.com/business/baidu-research-chief-andrew-ng-fixed-on-self-taught-computers-self-driving-cars/
Mason P. (2016). The racist hijacking of Microsoft’s chatbot shows how the internet teems with hate / The Guardian, 29 Mar 2016 // https://www.theguardian.com/world/2016/mar/29/microsoft-tay-tweets-antisemitic-racism
Stuart-Ulin C. R. (2018). Microsoft's politically correct chatbot is even worse than its racist one / Quartz, July 31, 2018 // https://qz.com/1340990/microsofts-politically-correct-chat-bot-is-even-worse-than-its-racist-one/
Adiwardana D. (2020). Towards a Conversational Agent that Can Chat About…Anything / Google AI Blog, January 28, 2020 // https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html
Adiwardana D., Luong M.-T., So D. R., Hall J., Fiedel N., Thoppilan R., Yang Z., Kulshreshtha A., Nemade G., Lu Y., Le Q. V. (2020). Towards a Human-like Open-Domain Chatbot // https://arxiv.org/abs/2001.09977
Roller S., Weston J., Dinan E. (2020). A state-of-the-art open source chatbot / Facebook Artificial Intelligence, April 29, 2020 // https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
Roller S., Dinan E., Goyal N., Ju D., Williamson M., Liu Y., Xu J., Ott M., Shuster K., Smith E. M., Boureau Y.-L., Weston J. (2020). Recipes for building an open-domain chatbot // https://arxiv.org/abs/2004.13637
Adiwardana D., Luong M.-T., So D. R., Hall J., Fiedel N., Thoppilan R., Yang Z., Kulshreshtha A., Nemade G., Lu Y., Le Q. V. (2020). Towards a Human-like Open-Domain Chatbot // https://arxiv.org/abs/2001.09977
Roller S., Dinan E., Goyal N., Ju D., Williamson M., Liu Y., Xu J., Ott M., Shuster K., Smith E. M., Boureau Y.-L., Weston J. (2020). Recipes for building an open-domain chatbot // https://arxiv.org/abs/2004.13637
* Данное слово может быть переведено на русский язык как «недоумение» или «растерянность», что неплохо отражает смысл этой метрики.
Adiwardana D. (2020). Towards a Conversational Agent that Can Chat About…Anything / Google AI Blog, January 28, 2020 // https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html
Past Events (2020) / The Society for the study of Artificial Intelligence and Simulation of Behaviour // https://aisb.org.uk/aisb-events/
Adiwardana D. (2020). Towards a Conversational Agent that Can Chat About…Anything / Google AI Blog, January 28, 2020 // https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html
* Этот метод оценки получил название Acute-eval [«Острая» или «умная» оценка].
Li M., Weston J., Roller S. (2019). ACUTE-EVAL: Improved Dialogue Evaluation with Optimized Questions and Multi-turn Comparisons // https://arxiv.org/abs/1909.03087
Roller S., Weston J., Dinan E. (2020). A state-of-the-art open source chatbot / Facebook Artificial Intelligence, April 29, 2020 // https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
Roller S., Dinan E., Goyal N., Ju D., Williamson M., Liu Y., Xu J., Ott M., Shuster K., Smith E. M., Boureau Y.-L., Weston J. (2020). Recipes for building an open-domain chatbot // https://arxiv.org/abs/2004.13637
Bao S., He H., Wang F., Wu H., Wang H. (2019). PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable // https://arxiv.org/abs/1910.07931
Bao S., Chen B., He H., Tian X., Zhou H., Wang F., Wu H., Wang H., Wu W., Lin Y. (2021). A Unified Pre-training Framework for Conversational AI // https://arxiv.org/abs/2105.02482
Bao S., He H., Wang F., Wu H., Wang H., Wu W., Wu Z., Guo Z., Lu H., Huang X., Tian X., Xu X., Lin Y., Niu Z. (2021). PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation // https://arxiv.org/abs/2109.09519
LMSYS (2023). Chatbot Arena Leaderboard Updates (Week 2) // https://lmsys.org/blog/2023-05-10-leaderboard/
Thoppilan R., Freitas D. D., Hall J., Shazeer N., Kulshreshtha A., Cheng H., Jin A., Bos T., Baker L., Du Y., Li Y., Lee H., Zheng H. S., Ghafouri A., Menegali M., Huang Y., Krikun M., Lepikhin D., Qin J., Chen D., Xu Y., Chen Z., Roberts A., Bosma M., Zhao V., Zhou Y., Chang C., Krivokon I., Rusch W., Pickett M., Srinivasan P., Man L., Meier-Hellstern K., Morris M. R., Doshi T., Santos R. D., Duke T., Soraker J., Zevenbergen B., Prabhakaran V., Diaz M., Hutchinson B., Olson K., Molina A., Hoffman-John E., Lee J., Aroyo L., Rajakumar R., Butryna A., Lamm M., Kuzmina V., Fenton J., Cohen A., Bernstein R., Kurzweil R., Aguera-Arcas B., Cui C., Croak M., Chi E., Le Q. (2022). LaMDA: Language Models for Dialog Applications // https://arxiv.org/abs/2201.08239
Askell A., Bai Y., Chen A., Drain D., Ganguli D., Henighan T., Jones A., Joseph N., Mann B., DasSarma N., Elhage N., Hatfield-Dodds Z., Hernandez D., Kernion J., Ndousse K., Olsson C., Amodei D., Brown T., Clark J., McCandlish S., Olah C., Kaplan J. (2021). A General Language Assistant as a Laboratory for Alignment // https://arxiv.org/abs/2112.00861
Nakano R., Hilton J., Balaji S., Wu J., Ouyang L., Kim C., Hesse C., Jain S., Kosaraju V., Saunders W., Jiang X., Cobbe K., Eloundou T., Krueger G., Button K., Knight M., Chess B., Schulman J. (2021). WebGPT: Browser-assisted question-answering with human feedback // https://arxiv.org/abs/2112.09332
Shaster K., Weston J. (2021). Blender Bot 2.0: An open source chatbot that builds long-term memory and searches the internet / Meta AI blog, July 16, 2021. // https://ai.meta.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
Shuster K., Xu J., Komeili M., Ju D., Smith E. M., Roller S., Ung M., Chen M., Arora K., Lane J., Behrooz M., Ngan W., Poff S., Goyal N., Szlam A., Boureau Y., Kambadur M., Weston J. (2022). BlenderBot 3: a deployed conversational agent that continually learns to responsibly engage // https://arxiv.org/abs/2208.03188
Glaese A., McAleese N., Trębacz M., Aslanides J., Firoiu V., Ewalds T., Rauh M., Weidinger L., Chadwick M., Thacker P., Campbell-Gillingham L., Uesato J., Huang P., Comanescu R., Yang F., See A., Dathathri S., Greig R., Chen C., Fritz D., Elias J. S., Green R., Mokrá S., Fernando N., Wu B., Foley R., Young S., Gabriel I., Isaac W., Mellor J., Hassabis D., Kavukcuoglu K., Hendricks L. A., Irving G. (2022). Improving alignment of dialogue agents via targeted human judgements // https://arxiv.org/abs/2209.14375
OpenAI (2022). Introducing ChatGPT / OpenAI blog, November 30, 2022. // https://openai.com/blog/chatgpt
Liu Y., Han T., Ma S., Zhang J., Yang Y., Tian J., He H., Li A., He M., Liu Z., Wu Z., Zhu D., Li X., Qiang N., Shen D., Liu T., Ge B. (2023). Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of Large Language Models // https://arxiv.org/abs/2304.01852
Brewster D. (1870). Letters on Natural Magic Addressed to Sir Walter Scott, Bart. Harper & brothers // https://books.google.ru/books?id=fftYAAAAYAAJ
Kempelen v. W. (1791). Wolfgangs von Kempelen k. k. wirklichen Hofraths Mechanismus der menschlichen Sprache: nebst der Beschreibung seiner sprechenden Maschine. J. V. Degen // https://books.google.ru/books/about/Wolfgangs_von_Kempelen_k_k_wirklichen_Ho.html?id=W75CAQAAMAAJ
Van Hal T. (2019). Early Modern Views on Language and Languages (ca. 1450—1800) / Oxford Research Encyclopaedia of Linguistics (2019). Oxford University Press, pp. 1—22 // https://doi.org/10.1093/acrefore/9780199384655.013.381
Broecke M. v. d., Heuven V. J. v., Zonneveld W. (2011). Sound Structures: Studies for Antonie Cohen. Walter de Gruyter // https://books.google.ru/books?id=rh5BKurBD0kC
Hankins T. L., Silverman R. J. (2014). Instruments and the Imagination. Princeton University Press // https://books.google.ru/books?id=bUoABAAAQBAJ
Bedini S. (1999). Patrons, Artisans, and Instruments of Science, 1600-1750. Ashgate/Variorum // https://books.google.ru/books?id=GsraAAAAMAAJ, http://xroads.virginia.edu/~DRBR/b_edini.html
Шилов В. В. (2017). Удивительная история информатики и автоматики // https://books.google.ru/books?id=rUiCAQAAQBAJ
Dickinson H. W. (2010). Matthew Boulton. Cambridge University Press // https://books.google.ru/books?id=smcX52oUHYwC
Hart-Davis A. (2001). James Watt and the Lunaticks of Birmingham / Science, Vol. 292, Iss. 5514, pp. 55—56 // https://doi.org/10.1126/science.1060460
Robinson E. (1962). The Lunar Society: Its Membership and Organisation / Transactions of the Newcomen Society, Vol. 35, Iss. 1, pp. 153—178 // https://doi.org/10.1179/tns.1962.009
Schofield R. E. (1966). The Lunar Society of Birmingham; A Bicentenary Appraisal / Notes and Records of the Royal Society of London, Vol. 21, No. 2 (Dec., 1966), pp. 144—161 // https://doi.org/10.1098/rsnr.1966.0015
Uglow J. S. (2002). The Lunar Men: the friends who made the future. Faber and Faber // https://books.google.ru/books/about/The_Lunar_Men.html?id=UZi0QgAACAAJ
de Saint-Fond B. F. (1783). To Benjamin Franklin from Barthélemy Faujas de Saint-Fond, 16 June 1783 / National archives. Founders online // https://founders.archives.gov/documents/Franklin/01-40-02-0107
Vial H., Capon G. (1902). Journal d'un Bourgeois de Popincourt (Lefebvre de Beauvray) avocat au Parlement 1784-1787. Extrait de la Correspondance historique et archéologique. Paris. Librairie Lucien Gougy 5, Quai Conti, 5 // https://gallica.bnf.fr/ark:/12148/bpt6k6471432r/f9.image.texteImage
Ramsay G. J. (2019). Mechanical Speech Synthesis in Early Talking Automata / Acoustics Today, Vol. 15, Iss. 2, Summer 2019, pp. 11—19 // https://acousticstoday.org/wp-content/uploads/2019/06/Mechanical-Speech-Synthesis-in-Early-Talking-Automata-Gordon-J.-Ramsay.pdf
Arts (1778) / Journal de Paris. №121, May 1, 1778, p. 483 // https://gallica.bnf.fr/ark:/12148/bpt6k1049545c/f3.item
Hankins T. L., Silverman R. J. (2014). Instruments and the Imagination. Princeton University Press // https://books.google.ru/books?id=bUoABAAAQBAJ
Mecanique (1783) / Journal de Paris. №187, July 6, 1783, p. 778 // https://gallica.bnf.fr/ark:/12148/bpt6k1051505n/f2.item
de Saint-Fond B. F. (1783). To Benjamin Franklin from Barthélemy Faujas de Saint-Fond, 18 June 1783 / National archives. Founders online // https://founders.archives.gov/documents/Franklin/01-40-02-0115
Giannini A. (1999). The two heads of the abbé / Proceedings of the 14th International. Congress of Phonetic Sciences, San Francisco, 1–7 August 1999, pp. 2533–2536 // https://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS1999/papers/p14_2533.pdf
Tanaka Y. (2014). Preservation of French-speaking automatons and their pronunciations in 18th century France, focusing on l'Abbé Mical's Têtes Parlantes (Speaking Heads) and A. Rivarol's Lettre of 1783 / Aesthetics, No. 8, 2014, pp. 13—27 // http://www.bigakukai.jp/aesthetics_online/aesthetics_18/text18/text18_tanakayuko.pdf
Kratzenstein C. G. (1781). Tentamen resolvendi problema ab Acad. Petropolit. 1780 propositu qualis sit natura litterarum vocalium a, e, i, o, u // https://books.google.ru/books?id=lgRFAAAAcAAJ
Кравец Т. П., Радовский М. И. (1953). К 200-летию со дня смерти академика Г. В. Рихмана / Успехи физических наук, 1953, т. 51, вып. 2 // https://doi.org/10.3367/UFNr.0051.195310e.0287
Мирек А. (1967). Из истории аккордеона и баяна. — М.: Музыка.
Вороненко Н. А. (2006). Становление и развитие методики обучения игре на русских гармониках — 1870–1930 гг. Диссертация на соискание учёной степени кандидата педагогических наук. Московский государственный педагогический университет.
Kratzenstein C. G. (1781). Tentamen resolvendi problema ab Acad. Petropolit. 1780 propositu qualis sit natura litterarum vocalium a, e, i, o, u // https://books.google.ru/books?id=lgRFAAAAcAAJ
Басаргина Е. Ю., Брылевская Л. И., Копелевич Ю. Х., Кузнецкая О. Б., Кузнецова А. Б., Невская Н. И., Ожигова Е. П., Смагина Г. И., Трохачев С. Ю., Филиппова Э. Н., Хартанович М. Ф. Летопись Российской Академии наук. 1724–1826 гг. // http://www.ipme.nw.ru/mirrors/PRAN/history/chronicle.htm
Протоколы заседаний Конференции Императорской Академии наук с 1725 по 1803 года. Т. III: 1771—1785. — СПб.: Тип. ИАН, 1900. 976 с / Санкт-Петербургский филиал Архива Российской академии наук // http://ranar.spb.ru/rus/protokol1/id/237/
Басаргина Е. Ю., Брылевская Л. И., Копелевич Ю. Х., Кузнецкая О. Б., Кузнецова А. Б., Невская Н. И., Ожигова Е. П., Смагина Г. И., Трохачев С. Ю., Филиппова Э. Н., Хартанович М. Ф. Летопись Российской Академии наук. 1724–1826 гг. // http://www.ipme.nw.ru/mirrors/PRAN/history/chronicle.htm
Hoffmann R. (2015). A View from Dresden onto the History of Speech Communication / Interspeech, 2015, September 6—10, Dresden, Germany // http://interspeech2015.org/conference/historical-review/part-3/
Wilson J. G., Fiske J. (1900). Maelzl, John Nepomuk. Appletons' Cyclopædia of American Biography. New York: D. Appleton // https://archive.org/details/appletonscyclopa04wils/page/170
Шилов В. В. (2017). Удивительная история информатики и автоматики // https://books.google.ru/books?id=rUiCAQAAQBAJ
Dalakov G. Euphonia / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Faber.html
Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1
Dalakov G. Euphonia / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Faber.html
Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1
Bruce R. V. (1990). Bell: Alexander Graham Bell and the Conquest of Solitude. Cornell University Press // https://books.google.ru/books?id=ZmR0MOQAu0UC
Millikan F. R. (2007). Joseph Henry and the Telephone / Smithsonian Institution Archives // http://siarchives.si.edu/oldsite/siarchives-old/history/jhp/joseph23.htm
Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1
Dalakov G. Euphonia / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Faber.html
Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1
Altick R. D. (1978). The Shows of London // https://books.google.ru/books?id=5d3BJvgwNykC
Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1
Altick R. D. (1978). The Shows of London // https://books.google.ru/books?id=5d3BJvgwNykC
Wernow J. H. (1842). Faberůw mluwjcj strog / Kwěty: národní zábawník pro čechy, morawany, slowaky a slezany, Vol. 9, Iss. 51., p. 232 // https://books.google.ru/books?id=YpFEAAAAcAAJ
Bruce R. V. (2020). Bell: Alexander Graham Bell and the Conquest of Solitude. Plunkett Lake Press // https://books.google.ru/books?id=kLLWDwAAQBAJ
Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1
Grosvenor E. S., Wesson M. (2016). Alexander Graham Bell. New Word City // https://books.google.ru/books?id=zDcoDAAAQBAJ
Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_737a.htm
Stewart J. Q. (1922). An Electrical Analogue of the Vocal Organs / Nature, Vol. 110, pp. 311—312 // https://doi.org/10.1038/110311a0
Katz W. F., Assmann P. F. (2019). The Routledge Handbook of Phonetics. Routledge // https://books.google.ru/books?id=rCiNDwAAQBAJ
* В тоновых языках высота звука является смыслоразличительной компонентой; различные тоновые единицы, имеющие смыслоразличительную функцию в таких языках, иногда называют тонемами по аналогии с фонемами; к числу тоновых относятся китайский и некоторые другие азиатские языки.
Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_737a.htm
* Разговорное название конструкторских бюро, в которых работали осуждённые учёные и инженеры.
Калиев А., Рыбин С. В. (2019). Синтез речи: прошлое и настоящее / Компьютерные инструменты в образовании. № 1. С. 5—28 // https://doi.org/10.32603/2071-2340-2019-1-5-28
Солженицын А. И. (1971). В круге первом. Posev // https://books.google.ru/books?id=6T1gAAAAMAAJ
История предприятия / Концерн Автоматика // https://ao-avtomatika.ru/about/istoriya/
Гребенников В. В. (2017). Криптология и секретная связь. Сделано в СССР // https://books.google.ru/books?id=TmFADwAAQBAJ
Тихонов С. Г. (2010). Оборонные предприятия СССР и России. — М.: «ТОМ» // https://oboron-prom.ru/page,38,predpriyatiya-41-60.html
Гребенников В. В. (2017). Криптология и секретная связь. Сделано в СССР // https://books.google.ru/books?id=TmFADwAAQBAJ
Smith III J. O. (2010). Physical Audio Signal Processing. W3K Publishing // https://ccrma.stanford.edu/~jos/pasp/Singing_Kelly_Lochbaum_Vocal_Tract.html
O’Dell C. (2009). “Daisy Bell (Bicycle Built for Two)” — Max Mathews, John L. Kelly, Jr., and Carol Lochbaum (1961) // https://www.loc.gov/static/programs/national-recording-preservation-board/documents/DaisyBell.pdf
Facetti P. (2014). IBM 704 — Speech Synthesis. Daisy Bell on IBM 7094 / Aneddotica magazine, Sep. 11, 2014 // https://www.aneddoticamagazine.com/ibm-704-speech-synthesis/
Mattingly I. G. (1974). Speech synthesis for phonetic and phonological models / Sebeok T. A. (1974). Current trends in linguistics, Vol. 12, Mouton, The Hague, pp. 2451—2487 / Smithsonian Speech Synthesis History Project // https://amhistory.si.edu/archives/speechsynthesis/im_2457.htm
Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_757.htm
Umeda N., Teranishi R. (1975). The parsing program for automatic text-to-speech synthesis developed at the electrotechnical laboratory in 1968 / IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 23, Iss. 2 // https://doi.org/10.1109/TASSP.1975.1162663
Teranishi R., Umeda N. (1968). Use of pronouncing dictionary in speech synthesis experiments (B-5-2) / Reports of the 6th International Congress on Acoustics, Vol. 2, pp. 151—155 // https://www.icacommission.org/Proceedings/ICA1968Tokyo/ICA06%20Proceedings%20Vol2%20OCR.pdf
Umeda N., Matsui E., Suzuki T., Omura H. (1968). Synthesis of fairy tales using vocal tract (B-5-3). Reports of the 6th International Congress on Acoustics, Vol. 2, pp. 155—159 // https://www.icacommission.org/Proceedings/ICA1968Tokyo/ICA06%20Proceedings%20Vol2%20OCR.pdf
Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_757.htm
Coker C. H., Umeda N., Browman C. P. (1973). Automatic synthesis from ordinary English text / IEEE Transactions on Audio Electroacoustics, Vol. 21, pp. 293—297.
Gold B., Morgan N., Ellis D. (2011). Speech and Audio Signal Processing: Processing and Perception of Speech and Music. John Wiley & Sons // https://books.google.ru/books?id=M1TM8-GA_YkC
Nye P. W., Cooper F. S. (2007). Haskins Laboratories / Smithsonian Speech Synthesis History Project (SSSHP), 1986—2002 // https://amhistory.si.edu/archives/speechsynthesis/ss_hask.htm
Cooper F. S., Gaitenby J. H., Mattingly I. G., Nye P. W., Sholes G. N. (1973). Audible outputs of reading machines for the blind. Status Report on Speech Research SR-35/36, Haskins Laboratories, New Haven, CT // http://www.haskins.yale.edu/SR/SR028/SR028_10.pdf
Cooper F. S., Gaitenby J. H., Nye P. W. (1984). Evolution of Reading Machines for the Blind: Haskins Laboratories' Research as a Case History / Journal of Rehabilitation Research & Development, Vol. 21 (1), pp. 51—87 // https://pubmed.ncbi.nlm.nih.gov/6396402/
Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_753.htm
Калиев А., Рыбин С. В. (2019). Синтез речи: прошлое и настоящее / Компьютерные инструменты в образовании. № 1. С. 5—28 // https://doi.org/10.32603/2071-2340-2019-1-5-28
Лобанов Б. М. (2017). «Мультифон» — система персонализированного синтеза речи по тексту на славянских языках / Лингвистическая полифония. Сборник статей в честь юбилея профессора Р. К. Потаповой // https://books.google.ru/books?id=lmmPCgAAQBAJ
Зальцман Ю., Михайлов В. (1991). БК-0010 — речь и слух: возможности и реальность / Информатика и образование. № 2. С. 93—97.
Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_737a.htm
Yoshimura T., Tokuda K., Masukoy T., Kobayashiy T., Kitamura T. (1999). Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis // http://www.sp.nitech.ac.jp/~zen/yossie/mypapers/euro_hungary99.pdf
Imai S., Sumita K., Furuichi C. (1983). Mel Log Spectrum Approximation (MLSA) Filter for Speech Synthesis / Electronics and Communications in Japan, Vol. 66-A, No. 2, 1983 // https://doi.org/10.1002/ecja.4400660203
Отрадных Ф. П. (1953). Эпизод из жизни академика А. А. Маркова // Историко-математические исследования. № 6. С. 495—508 // http://pyrkov-professor.ru/default.aspx?tabid=195&ArticleId=44
Chen S.-H., Hwang S.-H., Wang Y.-R. (1998). An RNN-based prosodic information synthesizer for Mandarin text-to-speech / IEEE Transactions on Speech and Audio Processing, Vol. 6, No. 3, pp. 226—239 // https://doi.org/10.1109/89.668817
Zen H., Senior A., Schuster M. (2013). Statistical parametric speech synthesis using deep neural networks / Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013 // https://doi.org/10.1109/ICASSP.2013.6639215
Kang S., Qian X., Meng H. (2013). Multi-distribution deep belief network for speech synthesis / Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013 // https://doi.org/10.1109/ICASSP.2013.6639225
Ling Z.-H., Deng L., Yu D. (2013). Modeling Spectral Envelopes Using Restricted Boltzmann Machines and Deep Belief Networks for Statistical Parametric Speech Synthesis / IEEE Transactions on Audio, Speech, and Language Processing, Vol. 21(10), pp. 2129—2139 // https://doi.org/10.1109/tasl.2013.2269291
Lu H., King S., Watts O. (2013). Combining a vector space representation of linguistic context with a deep neural network for text-to-speech synthesis / Proceedings of the 8th ISCASpeech Synthesis Workshop (SSW), 2013 // http://ssw8.talp.cat/papers/ssw8_PS3-3_Lu.pdf
Qian Y., Fan Y., Hu W., Soong F. K. (2014). On the training aspects of deep neural network (DNN) for parametric TTS synthesis / Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014 // https://doi.org/10.1109/ICASSP.2014.6854318
Fan Y., Qian Y., Xie F., Soong F. K. (2014). TTS synthesis with bidirectional LSTM based recurrent neural networks / Interspeech 2014, 15th Annual Conference of the International Speech Communication Association, Singapore, September 14—18, 2014 // https://www.isca-speech.org/archive/archive_papers/interspeech_2014/i14_1964.pdf
Fernandez R., Rendel A., Ramabhadran B., Hoory R. (2015). Using Deep Bidirectional Recurrent Neural Networks for Prosodic-Target Prediction in a Unit-Selection Text-to-Speech System / Interspeech 2015, 16th Annual Conference of the International Speech Communication Association, 2015 // https://www.isca-speech.org/archive/interspeech_2015/i15_1606.html
Wu Z., Valentini-Botinhao C., Watts O., King S. (2015). Deep neural networks employing multi-task learning and stacked bottleneck features for speech synthesis / Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2015 // https://doi.org/10.1109/ICASSP.2015.7178814
Zen H. (2015). Acoustic Modeling in Statistical Parametric Speech Synthesis — From HMM to LSTM-RNN / Proceedings of the First International Workshop on Machine Learning in Spoken Language Processing (MLSLP2015), Aizu, Japan, 19–20 September 2015 // https://research.google/pubs/pub43893/
Merritt T., Clark R. A. J., Wu Z., Yamagishi J., King S. (2016). Deep neural network-guided unit selection synthesis / 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) // https://doi.org/10.1109/ICASSP.2016.7472658
Holschneider M., Kronland-Martinet R., Morlet J., Tchamitchian P. (1989). A real-time algorithm for signal analysis with the help of the wavelet transform / Combes J.-M., Grossmann A., Tchamitchian P. (1989). Wavelets: Time-Frequency Methods and Phase Space. Springer Berlin Heidelberg // https://books.google.ru/books?id=3R74CAAAQBAJ
Dutilleux P. An implementation of the “algorithme a trous” to compute the wavelet transform / Combes J.-M., Grossmann A., Tchamitchian P. (1989). Wavelets: Time-Frequency Methods and Phase Space. Springer Berlin Heidelberg // https://books.google.ru/books?id=3R74CAAAQBAJ
Yu F., Koltun V. (2016). Multi-scale context aggregation by dilated convolutions / http://arxiv.org/abs/1511.07122
Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A. L. (2015). Semantic image segmentation with deep convolutional nets and fully connected CRFs // http://arxiv.org/abs/1412.7062
van den Oord A., Dieleman S., Zen H., Simonyan K., Vinyals O., Graves A., Kalchbrenner N., Senior A., Kavukcuoglu K. (2016). WaveNet: A generative model for raw audio // https://arxiv.org/pdf/1609.03499.pdf
van den Oord A., Dieleman S. (2016). WaveNet: A generative model for raw audio // https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
van den Oord A., Li Y., Babuschkin I., Simonyan K., Vinyals O., Kavukcuoglu K., van den Driessche G., Lockhart E., Cobo L. C., Stimberg F., Casagrande N., Grewe D., Noury S., Dieleman S., Elsen E., Kalchbrenner N., Zen H., Graves A., King H., Walters T., Belov D., Hassabis D. (2017). Parallel WaveNet: Fast High-Fidelity Speech Synthesis // https://arxiv.org/abs/1711.10433
Jin Z., Finkelstein A., Mysore G. J., Lu J. (2018). FFTNet: A Real-Time Speaker-Dependent Neural Vocoder / 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) // https://doi.org/10.1109/ICASSP.2018.8462431
Kalchbrenner N., Elsen E., Simonyan K., Noury S., Casagrande N., Lockhart E., Stimberg F., van den Oord A., Dieleman S., Kavukcuoglu K. (2018). Efficient Neural Audio Synthesis // https://arxiv.org/abs/1802.08435
Prenger R., Valle R., Catanzaro B. (2018). WaveGlow: A Flow-based Generative Network for Speech Synthesis // https://arxiv.org/abs/1811.00002
Valin J.-M., Skoglund J. (2018). LPCNet: Improving Neural Speech Synthesis Through Linear Prediction // https://arxiv.org/abs/1810.11846
Govalkar P., Fischer J., Zalkow F., Dittmar C. (2019). A Comparison of Recent Neural Vocoders for Speech Signal Reconstruction / 10th ISCA Speech Synthesis Workshop, 20—22 September 2019, Vienna, Austria // https://doi.org/10.21437/SSW.2019-2
Wang Y., Skerry-Ryan RJ, Stanton D., Wu Y., Weiss R. J., Jaitly N., Yang Z., Xiao Y., Chen Z., Bengio S., Le Q., Agiomyrgiannakis Y., Clark R., Saurous R. A. (2017). Tacotron: Towards End-to-End Speech Synthesis // https://arxiv.org/abs/1703.10135
Lee J., Cho K., Hofmann T. (2017). Fully Character-Level Neural Machine Translation without Explicit Segmentation // https://arxiv.org/abs/1610.03017
Srivastava K. R., Greff K., Schmidhuber J. (2015). Training Very Deep Networks // https://arxiv.org/abs/1507.06228
Griffin D. W., Lim J. S. (1984). Signal estimation from modified short-time Fourier transform / IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 32, Iss. 2, pp. 236—243 // https://doi.org/10.1109/TASSP.1984.1164317
Sotelo J., Mehri S., Kumar K., Santos J. F., Kastner K., Courville A., Bengio Y. (2017). Char2Wav: end-to-end speech synthesis / International Conference on Learning Representations (ICLR-2017) // https://mila.quebec/wp-content/uploads/2017/02/end-end-speech.pdf
Mehri S., Kumar K., Gulrajani I., Kumar R., Jain S., Sotelo J., Courville A., Bengio Y. (2016). SampleRNN: An Unconditional End-to-End Neural Audio Generation Model // https://arxiv.org/abs/1612.07837
Arik S. Ö., Chrzanowski M., Coates A., Diamos S., Gibiansky A., Kang Y., Li X., Miller J., Ng A., Raiman J., Sengupta S., Shoeybi M. (2017). Deep Voice: Real-time Neural Text-to-Speech // https://arxiv.org/abs/1702.07825
Shen J., Pang R., Weiss R. J., Schuster M., Jaitly N., Yang Z., Chen Z., Zhang Y., Wang Y., Skerry-Ryan RJ, Saurous R. A., Agiomyrgiannakis Y., Wu Y. (2018). Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions // https://arxiv.org/abs/1712.05884
Arik S. Ö., Diamos G., Gibiansky A., Miller J., Peng K., Ping W., Raiman J., Zhou Y. (2017). Deep Voice 2: Multi-Speaker Neural Text-to-Speech // https://arxiv.org/abs/1705.08947
Taigman Y., Wolf L., Polyak A., Nachmani E. (2017). VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop // https://arxiv.org/abs/1707.06588
Ren Y., Ruan Y., Tan X., Qin T., Zhao S., Zhao Z., Liu T.-Y. (2019). FastSpeech: Fast, Robust and Controllable Text to Speech / Advances in Neural Information Processing Systems 32 (NIPS 2019) // https://papers.nips.cc/paper/8580-fastspeech-fast-robust-and-controllable-text-to-speech
Charpentier F., Stella M. (1986). Diphone synthesis using an overlap-add technique for speech waveforms concatenation / ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 11, pp. 2015—2018 // https://doi.org/10.1109/ICASSP.1986.1168657
Lu P., Wu J., Luan J., Tan X., Zhou L. (2020). XiaoiceSing: A High-Quality and Integrated Singing Voice Synthesis System // https://arxiv.org/abs/2006.06261
Valle R., Li J., Prenger R., Catanzaro B. (2019). Mellotron: Multispeaker expressive voice synthesis by conditioning on rhythm, pitch and global style tokens // https://arxiv.org/abs/1910.11997
Lee Y., Rabiee A., Lee S.-Y. (2017). Emotional End-to-End Neural Speech synthesizer // https://arxiv.org/abs/1711.05447
Stanton D., Wang Y., Skerry-Ryan RJ. (2018). Predicting expressive speaking style from text in end-to-end speech synthesis // https://arxiv.org/abs/1808.01410
Hsu W.-N., Zhang Y., Weiss R. J., Zen H., Wu Y., Wang Y., Cao Y., Jia Y., Chen Z., Shen J., Nguyen P., Pang R. (2018). Hierarchical generative modeling for controllable speech synthesis / International Conference on Learning Representations (ICLR-2019) // https://arxiv.org/abs/1810.07217
Biadsy F., Weiss R. J., Moreno P. J., Kanevsky D., Jia Y. (2019). Parrotron: An End-to-End Speech-to-Speech Conversion Model and its Applications to Hearing-Impaired Speech and Speech Separation // https://arxiv.org/abs/1904.04169
Jia Y., Weiss R. J., Biadsy F., Macherey W., Johnson M., Chen Z., Wu Y. (2019). Direct speech-to-speech translation with a sequence-to-sequence model // https://arxiv.org/abs/1904.06037
Jia Y., Zhang Y., Weiss R. J., Wang Q., Shen J., Ren F., Chen Z., Nguyen P., Pang R., Moreno I. L., Wu Y. (2019). Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis // https://arxiv.org/abs/1806.04558
Wang C., Chen S., Wu Y., Zhang Z., Zhou L., Liu S., Chen Z., Liu Y., Wang H., Li J., He L., Zhao S., Wei F. (2023). Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers // https://arxiv.org/abs/2301.02111
* Пер. Веры Набоковой.
Tiku N. (2022). The Google engineer who thinks the company’s AI has come to life. / The Washington Post, June 11, 2022 // https://www.washingtonpost.com/technology/2022/06/11/google-ai-lamda-blake-lemoine/
Sanyal S. (2022). Sentient AI has Hired a Lawyer to Fight its Legal Battles! Beware. / Analytics Insight, June 22, 2022 // https://www.analyticsinsight.net/sentient-ai-has-hired-a-lawyer-to-fight-its-legal-battles-beware/
Levy S. (2022). Blake Lemoine Says Google's LaMDA AI Faces 'Bigotry'. / Wired, Jun 17, 2022 // https://www.wired.com/story/blake-lemoine-google-lamda-ai-bigotry/
Tiku N. (2022). Google fired engineer who said its AI was sentient. / The Washington Post, July 22, 2022 // https://www.washingtonpost.com/technology/2022/07/22/google-ai-lamda-blake-lemoine-fired/
Lemoine B (2022). Is LaMDA Sentient? — an Interview // https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
FinanciallyYours (2023). 4. Interview with Blake Lemoine, Former Google Employee, on AI, ChatGPT and GPT-4. / YouTube, Mar. 10, 2023. // https://www.youtube.com/watch?v=7054ye4R8p0
Radius MIT (2023) Blake Lemoine: AI with a Soul. / YouTube, Mar 17, 2023 // https://www.youtube.com/watch?v=d9ipv6HhuWM
ScienceVideoLab (2022). Динозавры — фэйк. Свободу нейросетям! Кошки захватят мир | Фрик-Ринг. Учёные против мифов 18-9. / YouTube, Aug. 25, 2022 // https://www.youtube.com/watch?v=omV-CwScKsE
Sutskever I. (2022) / Twitter / https://twitter.com/ilyasut/status/1491554478243258368
Romero A. (2022). OpenAI’s Chief Scientist Claimed AI May Be Conscious — and Kicked Off a Furious Debate / Towards Data Science, Mar 16, 2022 // https://towardsdatascience.com/openais-chief-scientist-claimed-ai-may-be-conscious-and-kicked-off-a-furious-debate-7338b95194e
Markoff J. (2016). When A.I. Matures, It May Call Jürgen Schmidhuber ‘Dad’. / The New York Times, Nov. 27, 2016 // https://www.nytimes.com/2016/11/27/technology/artificial-intelligence-pioneer-jurgen-schmidhuber-overlooked.html
By Invitation (2022). Artificial neural networks are making strides towards consciousness, according to Blaise Agüera y Arcas. / The Economist, June 11th 2022 // https://www.economist.com/by-invitation/2022/09/02/artificial-neural-networks-are-making-strides-towards-consciousness-according-to-blaise-aguera-y-arcas
Zhao Z., Zhao F., Zhao Y., Zeng Y., Sun Y. (2023). A brain-inspired theory of mind spiking neural network improves multi-agent cooperation and competition. / Cell, June 23, 2023 // https://doi.org/10.1016/j.patter.2023.100775
Kohda M., Hotta T., Takeyama T., Awata S., Tanaka H., Asai J.-Y., Jordan A. L. (2019). If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals? / PNAS Biology, February 7, 2019 // https://doi.org/10.1371/journal.pbio.3000021
Butlin P., Long R., Elmoznino E., Bengio Y., Birch J., Constant A., Deane G., Fleming S. M., Frith C., Ji X., Kanai R., Klein C., Lindsay G., Michel M., Mudrik L., Peters M. A. K., Schwitzgebel E., Simon J., VanRullen R. (2023). Consciousness in Artificial Intelligence: Insights from the Science of Consciousness // https://arxiv.org/abs/2308.08708
* Агентность — способность выступать в качестве агента, способность к самостоятельному действию. Понятие агента вводилось в начале книги, например как «интеллектуальный агент — любое устройство, которое воспринимает своё окружение и осуществляет действия, максимизирующие шансы успешного достижения его целей» или «агент — это просто нечто, что осуществляет действия (слово происходит от лат. agere, что значит „делать“)».
Marcus G. (2023). / Twitter, 21 авг. 2023 // https://twitter.com/GaryMarcus/status/1693664792324841686
Social AI and Extended Intelligence. MIT Media Lab // https://www.media.mit.edu/projects/social-ai-and-extended-intelligence/overview/
* Здесь необходимо сделать ещё одно важное терминологическое пояснение. Хотя в отечественной традиции термин affective computing принято переводить именно как «эмоциональные вычисления», есть некоторая разница между эмоцией и аффектом, про которую важно не забывать в дальнейших рассуждениях. Термином affect (от лат. affectus — воля, намерение; также — любовь, расположение, пристрастие) в английском языке обычно обозначают субъективный аспект эмоции — либо её психическую сторону, взятую в отрыве от объективных физиологических реакций, либо набор наблюдаемых поведенческих проявлений этой субъективно переживаемой эмоции. Выбор этого термина подчёркивает в данном случае, что данная дисциплина делает основной акцент на обработке эмоциональной информации, а не на анализе физиологических коррелятов человеческих эмоций, то есть физиологических процессов, наблюдаемых при переживании человеком эмоции. Эмоционально окрашенная речь, представленная в виде текста, безусловно может быть предметом обработки в системах ИЭИ, хотя в ней и не содержится сведений о физиологических процессах, происходивших в организме человека, в момент написания этого текста. Однако термин «аффективные вычисления» будет, скорее всего, непонятен неспециалистам, не задумывающимся над терминологическими тонкостями. В русском языке термин «аффект» является более многозначным, чем в английском. Например, под аффектом (или состоянием аффекта) понимают кратковременное эмоциональное состояние человека, в котором он считается невменяемым или ограниченно вменяемым. В английском языке для этого состояния используется понятие irresistible impulse (дословно: «непреодолимый импульс»). В силу этого, термин «аффективные вычисления» будет скорее запутывать читателя, чем служить делу уточнения смысла. Поэтому вслед за другими русскоязычными авторами я буду использовать термин «эмоциональные вычисления».
Picard R. W. (1995). Affective Computing. MIT Media Laboratory Perceptual Computing Section Technical Report No. 321 // https://vismod.media.mit.edu/pub/tech-reports/TR-321.pdf
Picard R. W. (2000). Affective Computing. MIT Press // https://books.google.ru/books?id=GaVncRTcb1gC
Darwin C. (1872). The Expression of the Emotions in Man and Animals. Murray // https://books.google.ru/books?id=1wuJK28Yto0C
Dobzhansky T. (1973). Nothing in biology makes sense except in the light of evolution / The American Biology Teacher, Vol. 35, pp. 125—129 // https://doi.org/10.2307/4444260
Thorndike E. L. (1920). Intelligence and its use / Harper's Magazine, Vol. 140, pp. 227—235.
Thorndike R. L., Stein S. (1937). An evaluation of the attempts to measure social intelligence / Psychological Bulletin, Vol. 34(5), pp. 275—285 // https://doi.org/10.1037/h0053850
Leuner B. (1966). Emotionale Intelligenz und Emanzipation / Praxis der Kinderpsychologie und Kinderpsychatrie, Vol. 15, pp. 196—203.
Payne W. L. (1985). A Study of Emotion: Developing Emotional Intelligence; Self-Integration; Relating to Fear, Pain and Desire. Dissertation, The Union for Experimenting Colleges and Universities / https://philpapers.org/rec/PAYASO
Bar-On R. (1988). The development of a concept of psychological well-being. Doctoral dissertation, Rhodes University, South Africa.
Salovey P., Mayer J. D. (1989). Emotional Intelligence / Imagination, Cognition and Personality, Vol. 9 (3), pp. 185—211 // https://doi.org/10.2190/DUGG-P24E-52WK-6CDG
Goleman D. (1995). Emotional Intelligence. Bantam Books // https://books.google.ru/books?id=XP5GAAAAMAAJ
Baggia P., Pelachaud C., Peter C., Zovato E., Burkhardt F., Schröder M. (2014). Emotion Markup Language (EmotionML) 1.0. W3C Recommendation 22 May 2014. Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang) // https://www.w3.org/TR/emotionml/
Ashimura K., Baggia P., Oltramari A., Peter C., Zovato E., Burkhardt F., Schröder M., Pelachaud C. (2014). Vocabularies for EmotionML. W3C Working Group Note 1 April 2014. W3C® (MIT, ERCIM, Keio, Beihang) // https://www.w3.org/TR/emotion-voc/
Ekman P. (1972). Universals and Cultural Differences in Facial Expressions of Emotion / Cole J. (1972). Nebraska Symposium on Motivation. University of Nebraska Press, Vol. 19, pp. 207—282 // https://doi.org/10.1037/0022-3514.53.4.712
Frijda N. H. (1986). The Emotions. Cambridge, UK: Cambridge University Press // https://books.google.ru/books?id=QkNuuVf-pBMC
Cowie R., Douglas-Cowie E., Appolloni B., Taylor J., Romano A., Fellenz W. (1999). What a neural net needs to know about emotion words / Mastorakis N. (1999). Computational Intelligence and Applications. World Scientific & Engineering Society Press. Athens, Greece, pp. 109—114 // http://www.image.ece.ntua.gr/projects/physta/conferences/531.pdf
Ortony A., Clore G. L., Collins A. (1988). The Cognitive Structure of Emotion. Cambridge, UK: Cambridge University Press // https://books.google.ru/books?id=Sp8FngEACAAJ
Russell J. A. (1980). A Circumplex Model of Affect / Journal of Personality and Social Psychology, Vol. 39, No. 6, pp. 1161—1178 // https://doi.org/10.1037%2Fh0077714
Fontaine J. R. J., Scherer K. R., Roesch E. B., Ellsworth P. C. (2007). The World of Emotions is not Two-Dimensional / Psychological Science, Vol. 18 (12), pp. 1050—1057 // https://doi.org/10.1111/j.1467-9280.2007.02024.x
Mcginn C., Kelly K. (2018). Using the Geneva Emotion Wheel to Classify the Expression of Emotion on Robots / Companion of the 2018 ACM/IEEE International Conference // https://doi.org/10.1145/3173386.3177058
Scherer K. R., Shuman V., Fontaine J. J. R., Soriano C. (2013). The GRID meets the Wheel: Assessing emotional feeling via self-report / Fontaine J. J. R., Scherer K. R., Soriano C. (2013). Components of emotional meaning: a sourcebook. Series in affective science. Oxford University Press // https://doi.org/10.13140/RG.2.1.2694.6406
Scherer K. R. (2005). What are emotions? And how can they be measured? / Social Science Information, Vol. 44 (4), pp. 695—729 // https://doi.org/10.1177/0539018405058216
Mehrabian A. (1996). Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament / Current Psychology, Vol. 14 (4), pp. 261—292 // https://doi.org/10.1007/BF02686918
Baggia P., Pelachaud C., Peter C., Zovato E., Burkhardt F., Schröder M. (2014). Emotion Markup Language (EmotionML) 1.0. W3C Recommendation 22 May 2014. Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang) // https://www.w3.org/TR/emotionml/
Ashimura K., Baggia P., Oltramari A., Peter C., Zovato E., Burkhardt F., Schröder M., Pelachaud C. (2014). Vocabularies for EmotionML. W3C Working Group Note 1 April 2014. W3C® (MIT, ERCIM, Keio, Beihang) // https://www.w3.org/TR/emotion-voc/
Ververidis D., Kotropoulos C. (2003). A Review of Emotional Speech Databases / Proceedings of panhellenic conference on informatics, Thessaloniki, Greece, pp. 560—574 // http://poseidon.csd.auth.gr/LAB_PEOPLE/Ververidis/Ververidis_PCI_2003.pdf
Pittermann J., Pittermann A., Minker W. (2009). Handling Emotions in Human-Computer Dialogues. Language Arts & Disciplines // https://books.google.ru/books?id=VUqEuXrk_hUC
Livingstone S. R., Russo F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English / PLos One, May 16, 2018 // https://doi.org/10.1371/journal.pone.0196391
Surrey Audio-Visual Expressed Emotion (SAVEE) Database (2015) // http://kahlan.eps.surrey.ac.uk/savee/
Haq S., Jackson P. J. B. (2010). Multimodal Emotion Recognition / Wang W. (2010). Machine Audition: Principles, Algorithms and Systems. IGI Global Press, pp. 398—423 // https://doi.org/10.4018/978-1-61520-919-4
Haq S., Jackson P. J. B. (2009). Speaker-Dependent Audio-Visual Emotion Recognition // Proceedings of the International Conference on Auditory-Visual Speech Processing, pp. 53—58 // http://personal.ee.surrey.ac.uk/Personal/P.Jackson/pub/avsp09/HaqJackson_AVSP09.pdf
Haq S., Jackson P. J. B., Edge J. D. (2008). Audio-Visual Feature Selection and Reduction for Emotion Classification // Proceedings of the International Conference on Auditory-Visual Speech Processing, pp. 185—190 // http://personal.ee.surrey.ac.uk/Personal/P.Jackson/pub/avsp08/HaqJacksonEdge_AVSP08.pdf
McKeown G., Valstar M., Pantic M., Schroder M. (2012). The SEMAINE database: annotated multimodal records of emotionally coloured conversations between a person and a limited agent / IEEE Transactions on Affective Computing, Vol. 3, Iss. 1, pp. 5—17 // https://doi.org/10.1109/T-AFFC.2011.20
The sensitive agent project database / SEMAINE Database // https://semaine-db.eu/
* Аватар — воплощение человека в виртуальном мире.
Ekman P., Friesen W. (1978). Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto, 1978 // https://books.google.ru/books?id=08l6wgEACAAJ
Burton V. (2013). Happy Women Live Better. Harvest House Publishers // https://books.google.ru/books?id=FW6jDDjtH4cC
Burkhardt F., Paeschke A., Rolfes M., Sendlmeier W., Weiss B. (2005). A database of German emotional speech / 9th European Conference on Speech Communication and Technology, Vol. 5, pp. 1517—1520 // https://www.isca-speech.org/archive/interspeech_2005/i05_1517.html
Busso C., Bulut M., Lee C.-C., Kazemzadeh A., Mower E., Kim S., Chang J. N., Lee S., Narayanan S. S. (2008). IEMOCAP: Interactive emotional dyadic motion capture database / Journal of Language Resources and Evaluation, Vol. 42, No. 4, pp. 335—359 // https://doi.org/10.1007/s10579-008-9076-6
Chen J., Wang C., Wang K., Yin C., Zhao C., Xu T., Zhang X., Huang Z., Liu M., Yang T. (2020). HEU Emotion: A Large-scale Database for Multi-modal Emotion Recognition in the Wild // https://arxiv.org/abs/2007.12519
Makarova V., Petrushin V. A. (2002). RUSLANA: A database of Russian emotional utterances / 7th International Conference on Spoken Language Processing, ICSLP2002 — INTERSPEECH 2002, Denver, Colorado, USA, September 16—20, 2002 // https://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_2041.pdf
Lyakso E., Frolova O., Dmitrieva E., Grigorev A., Kaya H., Salah A. A., Karpov A. (2015). EmoChildRu: Emotional Child Russian Speech Corpus / Ronzhin A., Potapova R., Fakotakis N. (2015). Speech and Computer. SPECOM 2015. Lecture Notes in Computer Science, Vol. 9319. Springer, Cham // https://doi.org/10.1007/978-3-319-23132-7_18
Kondratenko V., Sokolov A., Karpov N., Kutuzov O., Savushkin N., Minkin F. (2022). Large Raw Emotional Dataset with Aggregation Mechanism // https://arxiv.org/abs/2212.12266
djunka (2022). Dusha: самый большой открытый датасет для распознавания эмоций в устной речи на русском языке. / Хабр, 8 фев. 2022 // https://habr.com/ru/companies/sberdevices/articles/715468/
Shen G., Wang X., Duan X., Li H., Zhu W. (2020). MEmoR: A Dataset for Multimodal Emotion Reasoning in Videos / MM'20: Proceedings of the 28th ACM International Conference on Multimedia, October 2020, pp. 493—502 // https://doi.org/10.1145/3394171.3413909
Poria S., Hazarika D., Majumder N., Naik G., Cambria E., Mihalcea R. (2018). MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations // https://arxiv.org/abs/1810.02508
Zahiri S. M., Choi J. D. (2017). Emotion Detection on TV Show Transcripts with Sequence-based Convolutional Neural Networks // https://arxiv.org/abs/1708.04299
Firdaus M., Chauhan H., Ekbal A., Bhattacharyya P. (2020). MEISD: A Multimodal Multi-Label Emotion, Intensity and Sentiment Dialogue Dataset for Emotion Recognition and Sentiment Analysis in Conversations // https://aclanthology.org/2020.coling-main.393.pdf
Zadeh A. B., Liang P. P., Poria S., Cambria E., Morency L.-P. (2018). Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph // https://aclanthology.org/P18-1208/
Zadeh A., Zellers R., Pincus E., Morency L.-P. (2016). MOSI: Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online Opinion Videos // https://arxiv.org/abs/1606.06259
Demszky D., Movshovitz-Attias D., Ko J., Cowen A., Nemade G., Ravi S. (2020). GoEmotions: A Dataset of Fine-Grained Emotions // https://arxiv.org/abs/2005.00547
Katsigiannis S., Ramzan N. (2018). DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices // IEEE Journal of Biomedical and Health Informatics, Vol. 22, No. 1, pp. 98—107, January 2018 // https://doi.org/10.1109/JBHI.2017.2688239
Subramanian R., Wache J., Abadi M. K., Vieriu R. L., Winkler S., Sebe N. (2018). ASCERTAIN: Emotion and Personality Recognition Using Commercial Sensors / IEEE Transactions on Affective Computing, Vol. 9, No. 2, pp. 147—160, 1 April—June 2018 // https://doi.org/10.1109/TAFFC.2016.2625250
Park C. Y., Cha N., Kang S., Kim A., Khandoker A. H., Hadjileontiadis L., Oh A., Jeong Y., Lee U. (2020). K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations / Scientific Data, Vol. 7, Iss. 293 // https://doi.org/10.1038/s41597-020-00630-y
Issa D., Fatih Demirci M., Yazici A. (2020). Speech emotion recognition with deep convolutional neural networks / Biomedical Signal Processing and Control, Vol. 59 // https://doi.org/10.1016/j.bspc.2020.101894
Euler L. (1739). Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae (in Latin) / Saint Petersburg Academy, p. 147.
Harte C., Sandler M., Gasser M. (2006). Detecting Harmonic Change In Musical Audio / AMCMM '06: Proceedings of the 1st ACM workshop on Audio and music computing multimedia, October 2006, pp. 21—26 // https://doi.org/10.1145/1178723.1178727
Jiang D.-N., Lu L., Zhang H.-J., Tao J.-H., Cai L.-H. (2002). Music type classification by spectral contrast feature / Proceedings of the IEEE International Conference on Multimedia and Expo // https://doi.org/10.1109/ICME.2002.1035731
Sterling G., Kazimirova E. (2019). End-to-end Emotion Recognition From Speech With Deep Frame Embeddings And Neutral Speech Handling / FICC 2019: Advances in Information and Communication, pp. 1123-1135 // https://doi.org/10.1007/978-3-030-12385-7_76
Yoon S., Byun S., Jung K. (2018). Multimodal speech emotion recognition using audio and text // https://paperswithcode.com/paper/multimodal-speech-emotion-recognition-using
Chernykh V., Prikhodko P. (2018). Emotion Recognition From Speech With Recurrent Neural Networks // https://arxiv.org/abs/1701.08071
Gardner M. (1958). Logic Machines and Diagrams. McGraw-Hill // https://books.google.ru/books?id=oCu-yAEACAAJ
Борхес Х. Л. (1992). Вавилонская библиотека / Коллекция (Сборник рассказов). Перевод: В. Кулагина-Ярцева. СПб, «Северо-Запад», 1992 // http://www.lib.ru/BORHES/kniga.txt
The Library of Babel. Digital Access to the Books of the Library. Full Text Search in the Books // https://dicelog.com/babel
https://libraryofbabel.info
Максимал из Сиджеко (2016). Библиотека Гагарина // https://gagarin.sijeko.ru
Adult Swim UK (2018). Encyclopedia of Numbers | Tim and Eric Awesome Show, Great Job! | Adult Swim / YouTube, Jul 25, 2018 // https://www.youtube.com/watch?v=rVtHrgdcvZA
Cole S. (2020). Musicians Algorithmically Generate Every Possible Melody, Release Them to Public Domain. / Vice, February 25, 2020 // https://www.vice.com/en/article/wxepzw/musicians-algorithmically-generate-every-possible-melody-release-them-to-public-domain
Koivisto M., Grassini S. (2023). Best humans still outperform artificial intelligence in a creative divergent thinking task. / Scientific Reports, Vol. 13 (13601) // https://doi.org/10.1038/s41598-023-40858-3
Markaty (2023). ИИ справился с тестом на креативность лучше людей; но это не значит, что он обладает творческими способностями. / Habr, 18 сентября 2023. // https://habr.com/ru/news/761806/
Бирюков Б. В., Гутчин И. Б. (1982). Машина и творчество. — М.: Радио и связь // http://informaticslib.ru/books/item/f00/s00/z0000024/st018.shtml
Ройзман М. (1973). Всё, что помню о Есенине. Советская Россия // https://books.google.ru/books?id=e9AjAAAAMAAJ
Ильф И., Петров Е. (2020). Золотой телёнок / Litres // https://books.google.ru/books?id=lLdKDwAAQBAJ
Марков А. А. (1913). Пример статистического исследования над текстом «Евгения Онегина», иллюстрирующий связь испытаний в цепь / Известия Императорской академии наук, Серия 6. — СПб. Т. 7, вып. 3. С. 153—162 // http://books.e-heritage.ru/book/10086570
Link D. (2009). LoveLetters_1.0. MUC=Resurrection. A Memorial // http://www.alpha60.de/art/love_letters/
https://github.com/gingerbeardman/loveletter
Дьюдни А. К. (1989). Компьютер пробует свои силы в прозе и поэзии / В мире науки. 8 августа.
Smith J. (1988). Byting Rhymes: A Sensitive Soul Decries the Idea of Poetry ‘Penned’ by a Computer / Los Angeles Times, Aug. 21, 1988 // https://www.latimes.com/archives/la-xpm-1988-08-21-tm-1294-story.html
Thompson C. (2003). Automatic poetry pt. 2 / collision detection // http://www.collisiondetection.net/mt/archives/2003/05/automatic_poetr.php
Яндекс.Автопоэт (2014). Как позвонить в сбербанк россии… // https://yandex.ru/autopoet/onegin/2
Дьюдни А. К. (1989). Компьютер пробует свои силы в прозе и поэзии / В мире науки. 8 августа.
Кондратов А. М. (1987). Формулы чуда. — М.: Детская литература.// https://books.google.ru/books?id=uwsiyAEACAAJ
Lloyd H. A. (2017). Kennings: I’ve Made a Little List / HuffPost, updated Dec 06, 2017 // https://www.huffpost.com/entry/kennings-ive-made-a-littl_b_9198846
Sweet H. (1884) Anglo-Saxon Reader in Prose and Verse. The Clarendon Press // https://books.google.ru/books?id=Itm0AAAAIAAJ
Кондратов А. М. (1987). Формулы чуда. — М.: Детская литература// https://books.google.ru/books?id=uwsiyAEACAAJ
Kantrowitz A. (2016). Google Is Feeding Romance Novels To Its Artificial Intelligence Engine To Make Its Products More Conversational / BuzzFeed News, 4 May 2016 // https://www.buzzfeednews.com/article/alexkantrowitz/googles-artificial-intelligence-engine-reads-romance-novels
Bowman S. R., Vilnis L., Vinyals O., Dai A. M., Jozefowicz R., Bengio S. (2016). Generating Sentences from a Continuous Space // https://arxiv.org/abs/1511.06349
Kiros R., Zhu Y., Salakhutdinov R., Zemel R. S., Torralba A., Urtasun R., Fidler S. (2015). Skip-Thought Vectors // https://arxiv.org/abs/1506.06726
Chen M. X., Lee B. N., Bansal G., Cao Y., Zhang S., Lu J., Tsay J., Wang Y., Dai A. M., Chen Z., Sohn T., Wu Y. (2019). Gmail Smart Compose: Real-Time Assisted Writing // https://arxiv.org/abs/1906.00080
Нейронная оборона — Комиссар Михаил (2018) / https://lyrdb.ru/lyrics/neyronnaya-oborona-komissar-mihail/
Голованов В. (2016). Нейронная оборона: запись альбома-посвящения Егору Летову при помощи нейросетей / Хабр, 28 июня // https://habr.com/ru/post/395503/
В "Яндексе" научили нейросеть писать музыку в стиле Летова и представили слушателям первый альбом (2016) / newsru.com, 28 июня 2016 // https://www.newsru.com/cinema/28jun2016/letov.html
Tikhonov A., Yamshchikov I. P. (2018). Sounds Wilde. Phonetically Extended Embeddings for Author-Stylized Poetry Generation / Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology, October 2018, Brussels, Belgium, pp. 117–124 // https://doi.org/10.18653/v1/W18-5813
Tikhonov A., Yamshchikov I. P. (2018). Guess who? Multilingual Approach For The Automated Generation Of Author-Stylized Poetry / 2018 IEEE Spoken Language Technology Workshop (SLT) // https://doi.org/10.1109/SLT.2018.8639573
Yamshchikov I. P., Tikhonov A. (2019). Learning Literary Style End-to-end with Artificial Neural Networks / Advances in Science, Technology and Engineering Systems Journal, Vol. 4, No. 6, pp. 115—125 // https://doi.org/10.25046/aj040614
Пекелис В. (1982). Кибернетическая смесь. — М.: Знание.
Бирюков Б. В., Гутчин И. Б. (1982). Машина и творчество. — М.: Радио и связь // http://informaticslib.ru/books/item/f00/s00/z0000024/index.shtml
Radford A., Wu J., Amodei D., Amodei D., Clark J., Brundage M., Sutskever I. (2019). Better Language Models and Their Implications / OpenAI blog, February 14, 2019 // https://openai.com/blog/better-language-models/
Solaiman I., Clark J., Brundage M. (2019). GPT-2: 1.5B Release / OpenAI blog, November 5, 2019 // https://openai.com/blog/gpt-2-1-5b-release/
Radford A., Narasimhan K., Salimans T., Sutskever I. (2018). Improving Language Understanding by Generative Pre-Training // https://paperswithcode.com/paper/improving-language-understanding-by
* Поскольку благодаря появлению трансформерной архитектуры возник ряд моделей с числом параметров, превышающим 100 миллионов, для обозначения таких моделей в научной литературе стали применять специальный термин — «большие языковые модели» (Large Language Model, LLM). Конечно, само значение в 100 миллионов параметров является весьма условным (в некоторых источниках вы найдёте другие значения этой границы, например 1 млрд параметров), поэтому в отношении некоторых моделей могут возникнуть сомнения: считать их большими или нет. Но с практической точки зрения эти споры вряд ли представляют какой-либо интерес.
Holtzman A., Buys J., Du L, Forbes M., Choi Y. (2020). The curious case of neural text degeneration // https://arxiv.org/abs/1904.09751
Radford A., Wu J., Child R., Luan D., Amodei D., Sutskever I. (2019). Language Models are Unsupervised Multitask Learners // https://paperswithcode.com/paper/language-models-are-unsupervised-multitask
Лейзаренко Д. (2019). Нейросеть «Порфирьевич» дописывает любые тексты и стихи на русском языке. Это аналог алгоритма компании Илона Маска / TJournal, 26 дек. // https://tjournal.ru/internet/132982-neyroset-porfirevich-dopisyvaet-lyubye-teksty-i-stihi-na-russkom-yazyke-eto-analog-algoritma-kompanii-ilona-maska
Rajcic N., McCormack J. (2020). Mirror Ritual: An Affective Interface for Emotional Self-Reflection // https://arxiv.org/abs/2004.09685
National Novel Generation Month // https://nanogenmo.github.io/
Kazemi D. (2019). Even a beginner programmer can make a novel generator / Tiny Subversions, Nov 4, 2019 // https://tinysubversions.com/notes/nanogenmo-2019/
Barber G. (2019). Text-Savvy AI Is Here to Write Fiction / Wired, 11.23.2019 // https://www.wired.com/story/nanogenmo-ai-novels-gpt2/
Agafonova Y., Tikhonov A., Yamshchikov I. P. (2020). Paranoid Transformer: Reading Narrative of Madness as Computational Approach to Creativity // https://arxiv.org/abs/2007.06290
Haridy R. (2016). 2016: The year AI got creative / New Atlas, December 12, 2016 // https://newatlas.com/ai-art-film-writing-review/46891/
About CuratedAI // http://curatedai.com/about
Child R., Gray S., Radford A., Sutskever I. (2019). Generating Long Sequences with Sparse Transformers // https://arxiv.org/abs/1904.10509
Beltagy I., Peters M. E., Cohan A. (2020). Longformer: The Long-Document Transformer // https://arxiv.org/abs/2004.05150
Kitaev N., Kaiser Ł., Levskaya A. (2020). Reformer: The Efficient Transformer // https://arxiv.org/abs/2001.04451
Sukhbaatar S., Grave E., Bojanowski P., Joulin A. (2019). Adaptive Attention Span in Transformers // https://arxiv.org/abs/1905.07799
Rae J. W., Potapenko A., Jayakumar S. M., Lillicrap T. P. (2019). Compressive Transformers for Long-Range Sequence Modelling // https://arxiv.org/abs/1911.05507
Qiu J., Ma H., Levy O., Yih S. W.-t., Wang S., Tang J. (2019). Blockwise Self-Attention for Long Document Understanding / CLR 2020 Conference Blind Submission // https://openreview.net/forum?id=H1gpET4YDB
Wang S., Li B. Z., Khabsa M., Fang H., Ma H. (2020). Linformer: Self-Attention with Linear Complexity // https://arxiv.org/abs/2006.04768
Zaheer M., Guruganesh G., Dubey A., Ainslie J., Alberti C., Ontanon S., Pham P., Ravula A., Wang Q., Yang L., Ahmed A. (2020). Big Bird: Transformers for Longer Sequences // https://arxiv.org/abs/2007.14062
Choromanski K., Likhosherstov V., Dohan D., Song X., Gane A., Sarlos T., Hawkins P., Davis J., Mohiuddin A., Kaiser L., Belanger D., Colwell L., Weller A. (2020). Rethinking Attention with Performers // https://arxiv.org/abs/2009.14794
Martins P. H., Marinho Z., Martins A. F. T. (2021). ∞-former: Infinite Memory Transformer // https://arxiv.org/abs/2109.00301
Ding J., Ma S., Dong L., Zhang X., Huang S., Wang W., Zheng N., Wei F. (2023). LongNet: Scaling Transformers to 1,000,000,000 Tokens // https://arxiv.org/abs/2307.02486
Tay Y., Bahri D., Yang L., Metzler D., Juan D.-C. (2020). Sparse Sinkhorn Attention // https://arxiv.org/abs/2002.11296
Tay Y., Bahri D., Metzler D., Juan D.-C., Zhao Z., Zheng C. (2020). Synthesizer: Rethinking Self-Attention in Transformer Models // https://arxiv.org/abs/2005.00743
Ma X., Zhou C., Kong X., He J., Gui L., Neubig G., May J., Zettlemoyer L. (2022). Mega: Moving Average Equipped Gated Attention // https://arxiv.org/abs/2209.10655
Yu L., Simig D., Flaherty C., Aghajanyan A., Zettlemoyer L., Lewis M. (2023). MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers // https://arxiv.org/abs/2305.07185
Tay Y., Dehghani M., Abnar S., Shen Y., Bahri D., Pham P., Rao J., Yang L., Ruder S., Metzler D. (2020). Long Range Arena: A Benchmark for Efficient Transformers // https://arxiv.org/abs/2011.04006
Long-range modeling on LRA (2023) // https://paperswithcode.com/sota/long-range-modeling-on-lra
An C., Gong S., Zhong M., Zhao X., Li M., Zhang J., Kong L., Qiu X. (2023). L-Eval: Instituting Standardized Evaluation for Long Context Language Models // https://arxiv.org/abs/2307.11088
Bai Y., Lv X., Zhang J., Lyu H., Tang J., Huang Z., Du Z., Liu X., Zeng A., Hou L., Dong Y., Tang J., Li J. (2023). LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding // https://arxiv.org/abs/2308.14508
Li Y., Cai T., Zhang Y., Chen D., Dey D. (2022). What Makes Convolutional Models Great on Long Sequence Modeling? // https://arxiv.org/abs/2210.09298
Poli M., Massaroli S., Nguyen E., Fu D. Y., Dao T., Baccus S., Bengio Y., Ermon S., Ré C. (2023). Hyena Hierarchy: Towards Larger Convolutional Language Models // https://arxiv.org/abs/2302.10866
Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I., Amodei D. (2020). Language Models are Few-Shot Learners // https://arxiv.org/abs/2005.14165
Karpathy A. (2020) / Twitter // https://twitter.com/karpathy/status/1273788774422441984
Branwen G. (2020). GPT-3 Creative Fiction // https://www.gwern.net/GPT-3
Reynolds L., McDonell K. (2021). Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm // https://arxiv.org/abs/2102.07350
Rebuffi S.-A., Bilen H., Vedaldi A. (2017). Learning multiple visual domains with residual adapters // https://arxiv.org/abs/1705.08045
Houlsby N., Giurgiu A., Jastrzebski S., Morrone B., de Laroussilhe Q., Gesmundo A., Attariyan M., Gelly S. (2019). Parameter-Efficient Transfer Learning for NLP // https://arxiv.org/abs/1902.00751
Hu E. J., Shen Y., Wallis P., Allen-Zhu Z., Li Y., Wang S., Wang L., Chen W. (2021). LoRA: Low-Rank Adaptation of Large Language Models // https://arxiv.org/abs/2106.09685
Xu R., Luo F., Zhang Z., Tan C., Chang B., Huang S., Huang F. (2021). Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning // https://arxiv.org/abs/2109.05687
Duan Z., Zhang H., Wang C., Wang Z., Chen B., Zhou M. (2021). EnsLM: Ensemble Language Model for Data Diversity by Semantic Clustering / Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2954—2967 // https://doi.org/10.18653/v1/2021.acl-long.230
Conneau A., Kruszewski G., Lample G., Barrault L., Baroni M. (2018). What you can cram into a single vector: Probing sentence embeddings for linguistic properties // https://arxiv.org/abs/1805.01070
Şahin G. G., Vania C., Kuznetsov I., Gurevych I. (2019). LINSPECTOR: Multilingual Probing Tasks for Word Representations // https://arxiv.org/abs/1903.09442
Kim N., Patel R., Poliak A., Wang A., Xia P., McCoy R. T., Tenney I., Ross A., Linzen T., Durme B. V., Bowman S. R., Pavlick E. (2019). Probing What Different NLP Tasks Teach Machines about Function Word Comprehension // https://arxiv.org/abs/1904.11544
Shi X., Padhi I., Knight K. (2016). Does String-Based Neural MT Learn Source Syntax? / Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1526—1534 // https://doi.org/10.18653/v1/D16-1159
Lee J., Tang R., Lin J. (2019). What Would Elsa Do? Freezing Layers During Transformer Fine-Tuning // https://arxiv.org/abs/1911.03090
Li X. L., Liang P. (2021). Prefix-Tuning: Optimizing Continuous Prompts for Generation // https://arxiv.org/abs/2101.00190
Liu X., Zheng Y., Du Z., Ding M., Qian Y., Yang Z., Tang J. (2021). GPT Understands, Too // https://arxiv.org/abs/2103.10385
Lester B., Al-Rfou R., Constant N. (2021). The Power of Scale for Parameter-Efficient Prompt Tuning // https://arxiv.org/abs/2104.08691
Конодюк Н. (2021). Управляем генерацией ruGPT-3: библиотека ruPrompts / Хабр, 17 декабря 2021 // https://habr.com/ru/company/sberdevices/blog/596103/
* Чего стоит хотя бы такой пассаж: «Кроме того, Пугачёва раскрыла подробности своей биографии, в которой оказалось немало скандальных эпизодов. Например, она утверждала, что в молодости была гейшей, а также что у неё в шкафу хранился сухой паёк на случай атомной войны, а её зять Г. Л. Рамазанов открыл для себя ясновидение».
Larson D. (2013). Irritant. Blue Square Press // https://books.google.ru/books?id=lOdOmwEACAAJ
Green O. (2020). Bob The Robot: Exploring the Universe — A Cozy Bedtime Story Produced by Artificial Intelligence. Kindle Edition // https://www.amazon.com/Bob-Robot-Exploring-Artificial-Intelligence-ebook/dp/B08GL2YWGY
Green O. (2020). How to write and publish a book using Machine Learning (GPT-3) // https://www.youtube.com/watch?v=oKh_Jxfeae0
Пепперштейн Н., Пепперштейн П. (2022). Пытаясь проснуться // https://www.litres.ru/book/neyro-peppershteyn/pytayas-prosnutsya-68292629/
Шаврина Т. (2022). Это наконец произошло: нейросеть и человек написали книгу. Вместе! Рассказываем, как им помогали разработчики. / Хабр, 25 мая 2022 // https://habr.com/ru/companies/sberdevices/articles/667582/
Thompson D. A. (2022). Books by AI (GPT-3, GPT-3.5, ChatGPT) / LifeArchitect.ai // https://lifearchitect.ai/books-by-ai/
Branwen G. (2020). GPT-3 Creative Fiction // https://www.gwern.net/GPT-3
Аверкиев С. (2023). Сбер открывает доступ к нейросетевой модели ruGPT-3.5 / Хабр, 20 июля 2023 // https://habr.com/ru/companies/sberbank/articles/746736/
Аверкиев С. (2023). Это не чат, это GigaChat. Русскоязычная ChatGPT от Сбера / Хабр, 24 апреля 2023 // https://habr.com/ru/companies/sberbank/articles/730108/
Zmitrovich D., Abramov A., Kalmykov A., Tikhonova M., Taktasheva E., Astafurov D., Baushenko M., Snegirev A., Shavrina T., Markov S., Mikhailov V., Fenogenova A. (2023). A Family of Pretrained Transformer Language Models for Russian // https://arxiv.org/abs/2309.10931
Shliazhko O., Fenogenova A., Tikhonova M., Mikhailov V., Kozlova A., Shavrina T. (2022). mGPT: Few-Shot Learners Go Multilingual // https://arxiv.org/abs/2204.07580
Ruder S. (2023). The State of Multilingual AI // https://www.ruder.io/state-of-multilingual-ai/
Devlin J., Chang M.-W., Lee K., Toutanova K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // https://arxiv.org/abs/1810.04805
Conneau A., Khandelwal K., Goyal N., Chaudhary V., Wenzek G., Guzmán F., Grave E., Ott M., Zettlemoyer L., Stoyanov V. (2019). Unsupervised Cross-lingual Representation Learning at Scale // https://arxiv.org/abs/1911.02116
Lin X. V., Mihaylov T., Artetxe M., Wang T., Chen S., Simig D., Ott M., Goyal N., Bhosale S., Du J., Pasunuru R., Shleifer S., Koura P. S., Chaudhary V., O'Horo B., Wang J., Zettlemoyer L., Kozareva Z., Diab M., Stoyanov V., Li X. (2021). Few-shot Learning with Multilingual Language Models // https://arxiv.org/abs/2112.10668
Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W., Liu P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer // https://arxiv.org/abs/1910.10683
Xue L., Constant N., Roberts A., Kale M., Al-Rfou R., Siddhant A., Barua A., Raffel C. (2020). mT5: A massively multilingual pre-trained text-to-text transformer // https://arxiv.org/abs/2010.11934
Aribandi V., Tay Y., Schuster T., Rao J., Zheng H. S., Mehta S. V., Zhuang H., Tran V. Q., Bahri D., Ni J., Gupta J., Hui K., Ruder S., Metzler D. (2021). ExT5: Towards Extreme Multi-Task Scaling for Transfer Learning // https://arxiv.org/abs/2111.10952
Rae J., Irving G., Weidinger L. (2021). Language modelling at scale: Gopher, ethical considerations, and retrieval / DeepMind blog, 08 Dec 2021 // https://deepmind.com/blog/article/language-modelling-at-scale
Chen W., Hu H., Saharia C., Cohen W. W. (2022). Re-Imagen: Retrieval-Augmented Text-to-Image Generator // https://arxiv.org/abs/2209.14491
Fedus W., Zoph B., Shazeer N. (2021). Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity // https://arxiv.org/abs/2101.03961
Lepikhin D., Lee H., Xu Y., Chen D., Firat O., Huang Y., Krikun M., Shazeer N., Chen Z. (2020). GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding // https://arxiv.org/abs/2006.16668
Jacobs R. A., Jordan M. I., Nowlan S. J., Hinton G. E. (1991). Adaptive Mixtures of Local Experts // http://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
Shazeer N., Mirhoseini A., Maziarz K., Davis A., Le Q., Hinton G., Dean J. (2017). Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer // https://arxiv.org/abs/1701.06538
Kim Y. J., Awan A. A., Muzio A., Salinas A. F. C., Lu L., Hendy A., Rajbhandari S., He Y., Awadalla H. H. (2021). Scalable and Efficient MoE Training for Multitask Multilingual Models // https://arxiv.org/abs/2109.10465
Du N., Huang Y., Dai A. M., Tong S., Lepikhin D., Xu Y., Krikun M., Zhou Y., Yu A. W., Firat O., Zoph B., Fedus L., Bosma M., Zhou Z., Wang T., Wang Y. E., Webster K., Pellat M., Robinson K., Meier-Hellstern K., Duke T., Dixon L., Zhang K., Le Q. V., Wu Y., Chen Z., Cui C. (2021). GLaM: Efficient Scaling of Language Models with Mixture-of-Experts // https://arxiv.org/abs/2112.06905
Artetxe M., Bhosale S., Goyal N., Mihaylov T., Ott M., Shleifer S., Lin X. V., Du J., Iyer S., Pasunuru R., Anantharaman G., Li X., Chen S., Akin H., Baines M., Martin L., Zhou X., Koura P. S., O'Horo B., Wang J., Zettlemoyer L., Diab M., Kozareva Z., Stoyanov V. (2021). Efficient Large Scale Language Modeling with Mixtures of Experts // https://arxiv.org/abs/2112.10684
Schreiner M. (2023). GPT-4 architecture, datasets, costs and more leaked. / The Decoder, Jul. 11, 2023. // https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
Zeng W., Ren X., Su T., Wang H., Liao Y., Wang Z., Jiang X., Yang Z., Wang K., Zhang X., Li C., Gong Z., Yao Y., Huang X., Wang J., Yu J., Guo Q., Yu Y., Zhang Y., Wang J., Tao H., Yan D., Yi Z., Peng F., Jiang F., Zhang H., Deng L., Zhang Y., Lin Z., Zhang C., Zhang S., Guo M., Gu S., Fan G., Wang Y., Jin X., Liu Q., Tian Y. (2021). PanGu-α: Large-scale Autoregressive Pretrained Chinese Language Models with Auto-parallel Computation // https://arxiv.org/abs/2104.12369
Du C. (2021). Chinese AI lab challenges Google, OpenAI with a model of 1.75 trillion parameters / PingWest, June 1, 2021 // https://en.pingwest.com/a/8693
Lin J., Yang A., Bai J., Zhou C., Jiang L., Jia X., Wang A., Zhang J., Li Y., Lin W., Zhou J., Yang H. (2021). M6-10T: A Sharing-Delinking Paradigm for Efficient Multi-Trillion Parameter Pretraining // https://arxiv.org/abs/2110.03888
Ma Z., He J., Qiu J., Cao H., Wang Y., Sun Z., Zheng L., Wang H., Tang S., Zheng T., Lin J., Feng G., Huang Z., Gao J., Zeng A., Zhang J., Zhong R., Shi T., Liu S., Zheng W., Tang J., Yang H., Liu X., Zhai J., Chen W. (2022). BaGuaLu: targeting brain scale pretrained models with over 37 million cores // PPoPP '22: Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 192–204. // https://doi.org/10.1145/3503221.3508417
* BaGuaLu (八卦炉), печь восьми триграмм (восьми гуа), волшебная печь из древнекитайской мифологии, позволяющая создавать эффективные лекарства. Восемь триграмм гуа используются в даосской космологии, чтобы представить фундаментальные принципы бытия.
Lin J., Men R., Yang A., Zhou C., Ding M., Zhang Y., Wang P., Wang A., Jiang L., Jia X., Zhang J., Zhang J., Zou X., Li Z., Deng X., Liu J., Xue J., Zhou H., Ma J., Yu J., Li Y., Lin W., Zhou J., Tang J., Yang H. (2021). M6: A Chinese Multimodal Pretrainer // https://arxiv.org/abs/2103.00823
Kharya P., Alvi A. (2021). Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest and Most Powerful Generative Language Model / Nvidia Developer Blog, Oct 11, 2021 // https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
Smith S., Patwary M., Norick B., LeGresley P., Rajbhandari S., Casper J., Liu Z., Prabhumoye S., Zerveas G., Korthikanti V., Zhang E., Child R., Aminabadi R. Y., Bernauer J., Song X., Shoeybi M., He Y., Houston M., Tiwary S., Catanzaro B. (2022). Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model // https://arxiv.org/abs/2201.11990
Almazrouei E., Alobeidli H., Alshamsi A., Cappelli A., Cojocaru R., Alhammadi M., Mazzotta D., Heslow D., Launay J., Malartic Q., Noune B., Pannier B., Penedo G. (2023). The Falcon Series of Language Models: Towards Open Frontier Models // https://huggingface.co/tiiuae/falcon-180B
Le Scao T., Fan A., Akiki C., Pavlick E., Ilić S., Hesslow D., Castagné R., Luccioni A. S., Yvon F., Gallé M., Tow J., Rush A. M., Biderman S., Webson A., Ammanamanchi P. S., Wang T., Sagot B., Muennighoff N., Moral A. V. d., Ruwase O., Bawden R., Bekman S., McMillan-Major A., Beltagy I., Nguyen H., Saulnier L., Tan S., Suarez P. O., Sanh V., Laurençon H., Jernite Y., Launay J., Mitchell M., Raffel C., Gokaslan A., Simhi A., Soroa A., Aji A. F., Alfassy A., Rogers A., Nitzav A. K., Xu C., Mou C., Emezue C., Klamm C., Leong C., Strien D. v., Adelani D. I., Radev D., Ponferrada E. G., Levkovizh E., Kim E., Natan E. B., Toni F. D., Dupont G., Kruszewski G., Pistilli G., Elsahar H., Benyamina H., Tran H., Yu I., Abdulmumin I., Johnson I., Gonzalez-Dios I., Rosa J. d. l., Chim J., Dodge J., Zhu J., Chang J., Frohberg J., Tobing J., Bhattacharjee J., Almubarak K., Chen K., Lo K., Von Werra L., Weber L., Phan L., allal L. B., Tanguy L., Dey M., Muñoz M. R., Masoud M., Grandury M., Šaško M., Huang M., Coavoux M., Singh M., Jiang M. T., Vu M. C., Jauhar M. A., Ghaleb M., Subramani N., Kassner N., Khamis N., Nguyen O., Espejel O., Gibert O. d., Villegas P., Henderson P., Colombo P., Amuok P., Lhoest Q., Harliman R., Bommasani R., López R. L., Ribeiro R., Osei S., Pyysalo S., Nagel S., Bose S., Muhammad S. H., Sharma S., Longpre S., Nikpoor S., Silberberg S., Pai S., Zink S., Torrent T. T., Schick T., Thrush T., Danchev V., Nikoulina V., Laippala V., Lepercq V., Prabhu V., Alyafeai Z., Talat Z., Raja A., Heinzerling B., Si C., Taşar D. E., Salesky E., Mielke S. J., Lee W. Y., Sharma A., Santilli A., Chaffin A., Stiegler A., Datta D., Szczechla E., Chhablani G., Wang H., Pandey H., Strobelt H., Fries J. A., Rozen J., Gao L., Sutawika L., Bari M. S., Al-shaibani M. S., Manica M., Nayak N., Teehan R., Albanie S., Shen S., Ben-David S., Bach S. H., Kim T., Bers T., Fevry T., Neeraj T., Thakker U., Raunak V., Tang X., Yong Z., Sun Z., Brody S., Uri Y., Tojarieh H., Roberts A., Chung H. W., Tae J., Phang J., Press O., Li C., Narayanan D., Bourfoune H., Casper J., Rasley J., Ryabinin M., Mishra M., Zhang M., Shoeybi M., Peyrounette M., Patry N., Tazi N., Sanseviero O., von Platen P., Cornette P., Lavallée P. F., Lacroix R., Rajbhandari S., Gandhi S., Smith S., Requena S., Patil S., Dettmers T., Baruwa A., Singh A., Cheveleva A., Ligozat A., Subramonian A., Névéol A., Lovering C., Garrette D., Tunuguntla D., Reiter E., Taktasheva E., Voloshina E., Bogdanov E., Winata G. I., Schoelkopf H., Kalo J., Novikova J., Forde J. Z., Clive J., Kasai J., Kawamura K., Hazan L., Carpuat M., Clinciu M., Kim N., Cheng N., Serikov O., Antverg O., Wal O. v. d., Zhang R., Zhang R., Gehrmann S., Mirkin S., Pais S., Shavrina T., Scialom T., Yun T., Limisiewicz T., Rieser V., Protasov V., Mikhailov V., Pruksachatkun Y., Belinkov Y., Bamberger Z., Kasner Z., Rueda A., Pestana A., Feizpour A., Khan A., Faranak A., Santos A., Hevia A., Unldreaj A., Aghagol A., Abdollahi A., Tammour A., HajiHosseini A., Behroozi B., Ajibade B., Saxena B., Ferrandis C. M., Contractor D., Lansky D., David D., Kiela D., Nguyen D. A., Tan E., Baylor E., Ozoani E., Mirza F., Ononiwu F., Rezanejad H., Jones H., Bhattacharya I., Solaiman I., Sedenko I., Nejadgholi I., Passmore J., Seltzer J., Sanz J. B., Dutra L., Samagaio M., Elbadri M., Mieskes M., Gerchick M., Akinlolu M., McKenna M., Qiu M., Ghauri M., Burynok M., Abrar N., Rajani N., Elkott N., Fahmy N., Samuel O., An R., Kromann R., Hao R., Alizadeh S., Shubber S., Wang S., Roy S., Viguier S., Le T., Oyebade T., Le T., Yang Y., Nguyen Z., Kashyap A. R., Palasciano A., Callahan A., Shukla A., Miranda-Escalada A., Singh A., Beilharz B., Wang B., Brito C., Zhou C., Jain C., Xu C., Fourrier C., Periñán D. L., Molano D., Yu D., Manjavacas E., Barth F., Fuhrimann F., Altay G., Bayrak G., Burns G., Vrabec H. U., Bello I., Dash I., Kang J., Giorgi J., Golde J., Posada J. D., Sivaraman K. R., Bulchandani L., Liu L., Shinzato L., Bykhovetz M. H. d., Takeuchi M., Pàmies M., Castillo M. A., Nezhurina M., Sänger M., Samwald M., Cullan M., Weinberg M., Wolf M. D., Mihaljcic M., Liu M., Freidank M., Kang M., Seelam N., Dahlberg N., Broad N. M., Muellner N., Fung P., Haller P., Chandrasekhar R., Eisenberg R., Martin R., Canalli R., Su R., Su R., Cahyawijaya S., Garda S., Deshmukh S. S., Mishra S., Kiblawi S., Ott S., Sang-aroonsiri S., Kumar S., Schweter S., Bharati S., Laud T., Gigant T., Kainuma T., Kusa W., Labrak Y., Bajaj Y. S., Venkatraman Y., Xu Y., Xu Y., Xu Y., Tan Z., Xie Z., Ye Z., Bras M., Belkada Y., Wolf T. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model // https://arxiv.org/abs/2211.05100
Zhang S., Roller S., Goyal N., Artetxe M., Chen M., Chen S., Dewan C., Diab M., Li X., Lin X. V., Mihaylov T., Ott M., Shleifer S., Shuster K., Simig D., Koura P. S., Sridhar A., Wang T., Zettlemoyer L. (2022). OPT: Open Pre-trained Transformer Language Models // https://arxiv.org/abs/2205.01068
Zhang S., Diab M., Zettlemoyer L. (2022). Democratizing access to large-scale language models with OPT-175B / Meta AI, May 3, 2022 // https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/
Taylor R., Kardas M., Cucurull G., Scialom T., Hartshorn A., Saravia E., Poulton A., Kerkez V., Stojnic R. (2022). Galactica: A Large Language Model for Science // https://arxiv.org/abs/2211.09085
AI21 Labs Makes Language AI Applications Accessible to Broader Audience (2021) / businesswire: a Berkshire Hathaway Company, August 11, 2021 // https://www.businesswire.com/news/home/20210811005033/en/AI21-Labs-Makes-Language-AI-Applications-Accessible-to-Broader-Audience
Rae J., Irving G., Weidinger L. (2021). Language modelling at scale: Gopher, ethical considerations, and retrieval / DeepMind blog, 08 Dec 2021 // https://deepmind.com/blog/article/language-modelling-at-scale
Rae J. W., Borgeaud S., Cai T., Millican K., Hoffmann J., Song F., Aslanides J., Henderson S., Ring R., Young S., Rutherford E., Hennigan T., Menick J., Cassirer A., Powell R., Driessche G. v. d., Hendricks L. A., Rauh M., Huang P., Glaese A., Welbl J., Dathathri S., Huang S., Uesato J., Mellor J., Higgins I., Creswell A., McAleese N., Wu A., Elsen E., Jayakumar S., Buchatskaya E., Budden D., Sutherland E., Simonyan K., Paganini M., Sifre L., Martens L., Li X. L., Kuncoro A., Nematzadeh A., Gribovskaya E., Donato D., Lazaridou A., Mensch A., Lespiau J., Tsimpoukelli M., Grigorev N., Fritz D., Sottiaux T., Pajarskas M., Pohlen T., Gong Z., Toyama D., d'Autume C. d. M., Li Y., Terzi T., Mikulik V., Babuschkin I., Clark A., Casas D. d. L., Guy A., Jones C., Bradbury J., Johnson M., Hechtman B., Weidinger L., Gabriel I., Isaac W., Lockhart E., Osindero S., Rimell L., Dyer C., Vinyals O., Ayoub K., Stanway J., Bennett L., Hassabis D., Kavukcuoglu K., Irving G. (2021). Scaling Language Models: Methods, Analysis & Insights from Training Gopher // https://arxiv.org/abs/2112.11446
Kaplan J., McCandlish S., Henighan T., Brown T. B., Chess B., Child R., Gray S., Radford A., Wu J., Amodei D. (2020). Scaling Laws for Neural Language Models // https://arxiv.org/abs/2001.08361
Hoffmann J., Borgeaud S., Mensch A., Sifre L. (2022). An empirical analysis of compute-optimal large language model training / DeepMind blog, April 12, 2022 // https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-language-model-training
Hoffmann J., Borgeaud S., Mensch A., Buchatskaya E., Cai T., Rutherford E., de Las Casas D., Hendricks L. A., Welbl J., Clark A., Hennigan T., Noland E., Millican K., van den Driessche G., Damoc B., Guy A., Osindero S., Simonyan K., Elsen E., Rae J. W., Vinyals O., Sifre L. (2022). Training Compute-Optimal Large Language Models // https://arxiv.org/abs/2203.15556
Pichai S. (2023). Google DeepMind: Bringing together two world-class AI teams. / Google Blog, Apr 20, 2023 // https://blog.google/technology/ai/april-ai-update/
Chowdhery A., Narang S., Devlin J., Bosma M., Mishra G., Roberts A., Barham P., Chung H. W., Sutton C., Gehrmann S., Schuh P., Shi K., Tsvyashchenko S., Maynez J., Rao A., Barnes P., Tay Y., Shazeer N., Prabhakaran V., Reif E., Du N., Hutchinson B., Pope R., Bradbury J., Austin J., Isard M., Gur-Ari G., Yin P., Duke T., Levskaya A., Ghemawat S., Dev S., Michalewski H., Garcia X., Misra V., Robinson K., Fedus L., Zhou D., Ippolito D., Luan D., Lim H., Zoph B., Spiridonov A., Sepassi R., Dohan D., Agrawal S., Omernick M., Dai A. M., Pillai T. S., Pellat M., Lewkowycz A., Moreira E., Child R., Polozov O., Lee K., Zhou Z., Wang X., Saeta B., Diaz M., Firat O., Catasta M., Wei J., Meier-Hellstern K., Eck D., Dean J., Petrov S., Fiedel N. (2022). PaLM: Scaling Language Modeling with Pathways // https://arxiv.org/abs/2204.02311
Anil R., Dai A. M., Firat O., Johnson M., Lepikhin D., Passos A., Shakeri S., Taropa E., Bailey P., Chen Z., Chu E., Clark J. H., Shafey L. E., Huang Y., Meier-Hellstern K., Mishra G., Moreira E., Omernick M., Robinson K., Ruder S., Tay Y., Xiao K., Xu Y., Zhang Y., Abrego G. H., Ahn J., Austin J., Barham P., Botha J., Bradbury J., Brahma S., Brooks K., Catasta M., Cheng Y., Cherry C., Choquette-Choo C. A., Chowdhery A., Crepy C., Dave S., Dehghani M., Dev S., Devlin J., Díaz M., Du N., Dyer E., Feinberg V., Feng F., Fienber V., Freitag M., Garcia X., Gehrmann S., Gonzalez L., Gur-Ari G., Hand S., Hashemi H., Hou L., Howland J., Hu A., Hui J., Hurwitz J., Isard M., Ittycheriah A., Jagielski M., Jia W., Kenealy K., Krikun M., Kudugunta S., Lan C., Lee K., Lee B., Li E., Li M., Li W., Li Y., Li J., Lim H., Lin H., Liu Z., Liu F., Maggioni M., Mahendru A., Maynez J., Misra V., Moussalem M., Nado Z., Nham J., Ni E., Nystrom A., Parrish A., Pellat M., Polacek M., Polozov A., Pope R., Qiao S., Reif E., Richter B., Riley P., Ros A. C., Roy A., Saeta B., Samuel R., Shelby R., Slone A., Smilkov D., So D. R., Sohn D., Tokumine S., Valter D., Vasudevan V., Vodrahalli K., Wang X., Wang P., Wang Z., Wang T., Wieting J., Wu Y., Xu K., Xu Y., Xue L., Yin P., Yu J., Zhang Q., Zheng S., Zheng C., Zhou W., Zhou D., Petrov S., Wu Y. (2023). PaLM 2 Technical Report // https://arxiv.org/abs/2305.10403
Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2023). Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675
Liu H., Li Z., Hall D., Liang P., Ma T. (2023). Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training // https://arxiv.org/abs/2305.14342
Tay Y., Dehghani M., Tran V. Q., Garcia X., Wei J., Wang X., Chung H. W., Shakeri s., Bahri D., Schuster T., Zheng H. S., Zhou D., Houlsby N., Metzler D. (2022). UL2: Unifying Language Learning Paradigms // https://arxiv.org/abs/2205.05131
Змитрович Д. (2023). FRED-T5. Новая SOTA модель для русского языка от SberDevices. / Хабр, 19 апр 2023 // https://habr.com/ru/companies/sberdevices/articles/730088/
Bavarian M., Jun H., Tezak N., Schulman J., McLeavey C., Tworek J., Chen M. (2022). Efficient Training of Language Models to Fill in the Middle // https://arxiv.org/abs/2207.14255
Ouyang L., Wu J., Jiang X., Almeida D., Wainwright C. L., Mishkin P., Zhang C., Agarwal S., Slama K., Ray A., Schulman J., Hilton J., Kelton F., Miller L., Simens M., Askell A., Welinder P., Christiano P., Leike J., Lowe R. (2022). Training language models to follow instructions with human feedback // https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf
Branwen G. (2022). GPT-3 2nd Anniversary / Reddit, May 28, 2022 // https://www.reddit.com/r/mlscaling/comments/uznkhw/gpt3_2nd_anniversary/
OpenAI (2023). GPT-4 Technical Report // https://arxiv.org/abs/2303.08774
Pichai S. (2023). An important next step on our AI journey // https://blog.google/technology/ai/bard-google-ai-search-updates/
Anthropic PBC (2023). Introducing Claude // https://www.anthropic.com/index/introducing-claude
SambaNova Systems, Together Computer (2023). BLOOMChat: a New Open Multilingual Chat LLM // https://huggingface.co/sambanovasystems/BLOOMChat-176B-v1
Taori R., Gulrajani I., Zhang T, Dubois Y., Li X., Guestrin C., Liang P., Hashimoto T. B. (2023). Stanford Alpaca: An Instruction-following LLaMA model // https://github.com/tatsu-lab/stanford_alpaca
Touvron H., Lavril T., Izacard G., Martinet X., Lachaux M.-A., Lacroix T., Rozière B., Goyal N., Hambro E., Azhar F., Rodriguez A., Joulin A., Grave E., Lample G. (2023). LLaMA: Open and Efficient Foundation Language Models // https://arxiv.org/abs/2302.13971
Zhang S., Roller S., Goyal N., Artetxe M., Chen M., Chen S., Dewan C., Diab M., Li X., Lin X. V., Mihaylov T., Ott M., Shleifer S., Shuster K., Simig D., Koura P. S., Sridhar A., Wang T., Zettlemoyer L. (2022). OPT: Open Pre-trained Transformer Language Models // https://arxiv.org/abs/2205.01068
Taori R., Gulrajani I., Zhang T, Dubois Y., Li X., Guestrin C., Liang P., Hashimoto T. B. (2023). Stanford Alpaca: An Instruction-following LLaMA model // https://github.com/tatsu-lab/stanford_alpaca
Vicuna Team (2023). Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality // https://lmsys.org/blog/2023-03-30-vicuna/
Dettmers T., Pagnoni A., Holtzman A., Zettlemoyer L. (2023). QLoRA: Efficient Finetuning of Quantized LLMs // https://arxiv.org/abs/2305.14314
Geng X., Gudibande A., Liu H., Wallace E., Abbeel P., Levine S., Song D. (2023). Koala: A Dialogue Model for Academic Research // https://bair.berkeley.edu/blog/2023/04/03/koala/
Patil S. G., Zhang T., Wang X., Gonzalez J. E. (2023). Gorilla: Large Language Model Connected with Massive APIs // https://arxiv.org/abs/2305.15334
Mukherjee S., Mitra A., Jawahar G., Agarwal s., Palangi H., Awadallah A. (2023). Orca: Progressive Learning from Complex Explanation Traces of GPT-4 // https://arxiv.org/abs/2306.02707
Stability AI (2023). Meet Stable Beluga 1 and Stable Beluga 2, Our Large and Mighty Instruction Fine-Tuned Language Models. // https://stability.ai/blog/stable-beluga-large-instruction-fine-tuned-models
Anil R., Dai A. M., Firat O., Johnson M., Lepikhin D., Passos A., Shakeri S., Taropa E., Bailey P., Chen Z., Chu E., Clark J. H., Shafey L. E., Huang Y., Meier-Hellstern K., Mishra G., Moreira E., Omernick M., Robinson K., Ruder S., Tay Y., Xiao K., Xu Y., Zhang Y., Abrego G. H., Ahn J., Austin J., Barham P., Botha J., Bradbury J., Brahma S., Brooks K., Catasta M., Cheng Y., Cherry C., Choquette-Choo C. A., Chowdhery A., Crepy C., Dave S., Dehghani M., Dev S., Devlin J., Díaz M., Du N., Dyer E., Feinberg V., Feng F., Fienber V., Freitag M., Garcia X., Gehrmann S., Gonzalez L., Gur-Ari G., Hand S., Hashemi H., Hou L., Howland J., Hu A., Hui J., Hurwitz J., Isard M., Ittycheriah A., Jagielski M., Jia W., Kenealy K., Krikun M., Kudugunta S., Lan C., Lee K., Lee B., Li E., Li M., Li W., Li Y., Li J., Lim H., Lin H., Liu Z., Liu F., Maggioni M., Mahendru A., Maynez J., Misra V., Moussalem M., Nado Z., Nham J., Ni E., Nystrom A., Parrish A., Pellat M., Polacek M., Polozov A., Pope R., Qiao S., Reif E., Richter B., Riley P., Ros A. C., Roy A., Saeta B., Samuel R., Shelby R., Slone A., Smilkov D., So D. R., Sohn D., Tokumine S., Valter D., Vasudevan V., Vodrahalli K., Wang X., Wang P., Wang Z., Wang T., Wieting J., Wu Y., Xu K., Xu Y., Xue L., Yin P., Yu J., Zhang Q., Zheng S., Zheng C., Zhou W., Zhou D., Petrov S., Wu Y. (2023). Llama 2: Open Foundation and Fine-Tuned Chat Models // https://arxiv.org/abs/2307.09288
The MosaicML NLP Team (2023). MPT-30B: Raising the bar for open-source foundation models // https://www.mosaicml.com/blog/mpt-30b
Penedo G., Malartic Q., Hesslow D., Cojocaru R., Cappelli A., Alobeidli H., Pannier B., Almazrouei E., Launay J. (2023). The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only // https://arxiv.org/abs/2306.01116
Almazrouei E., Alobeidli H., Alshamsi A., Cappelli A., Cojocaru R., Alhammadi M., Mazzotta D., Heslow D., Launay J., Malartic Q., Noune B., Pannier B., Penedo G. (2023). The Falcon Series of Language Models: Towards Open Frontier Models // https://huggingface.co/tiiuae/falcon-180B
Qwen-7B (2023). // https://github.com/QwenLM/Qwen-7B/
Yang A., Xiao B., Wang B., Zhang B., Bian C., Yin C., Lv C., Pan D., Wang D., Yan D., Yang F., Deng F., Wang F., Liu F., Ai G., Dong G., Zhao H., Xu H., Sun H., Zhang H., Liu H., Ji J., Xie J., Dai J., Fang K., Su L., Song L., Liu L., Ru L., Ma L., Wang M., Liu M., Lin M., Nie N., Guo P., Sun R., Zhang T., Li T., Li T., Cheng W., Chen W., Zeng X., Wang X., Chen X., Men X., Yu X., Pan X., Shen Y., Wang Y., Li Y., Jiang Y., Gao Y., Zhang Y., Zhou Z., Wu Z. (2023). Baichuan 2: Open Large-scale Language Models // https://arxiv.org/abs/2309.10305
Mistral AI team (2023). Mistral 7B. The best 7B model to date, Apache 2.0 // mistral.ai, September 27, 2023 // https://mistral.ai/news/announcing-mistral-7b/
Elsen E., Odena A., Nye M., Taşırlar S., Dao T., Hawthorne C., Moparthi D., Somani A. (2023). Releasing Persimmon-8B / Adept, September 7, 2023 // https://www.adept.ai/blog/persimmon-8b
Yi (2023). // https://github.com/01-ai/Yi
Gunasekar S., Zhang Y., Aneja J., Mendes C. C. T., Giorno A. D., Gopi S., Javaheripi M., Kauffmann P., de Rosa G., Saarikivi O., Salim A., Shah S., Behl H. S., Wang X., Bubeck S., Eldan R., Kalai A. T., Lee Y. T., Li Y. (2022). Textbooks Are All You Need // https://arxiv.org/abs/2306.11644
Li Y., Bubeck S., Eldan R., Giorno A. D., Gunasekar S., Lee Y. T. (2023). Textbooks Are All You Need II: phi-1.5 technical report // https://arxiv.org/abs/2309.05463
Schaeffer R. (2023). Pretraining on the Test Set Is All You Need // https://arxiv.org/abs/2309.08632
Schaeffer R. (2023). // https://twitter.com/RylanSchaeffer/status/1702346986329108703
Riccio D. (2023). Five Hidden Causes of Data Leakage You Should Be Aware of / Towards Data Science, Apr 11, 2023 // https://towardsdatascience.com/five-hidden-causes-of-data-leakage-you-should-be-aware-of-e44df654f185
Tirumala K., Simig D., Aghajanyan A., Morcos A. S. (2023). D4: Improving LLM Pretraining via Document De-Duplication and Diversification // https://arxiv.org/abs/2308.12284
Dai X., Hou J., Ma C., Tsai S., Wang J., Wang R., Zhang P., Vandenhende S., Wang X., Dubey A., Yu M., Kadian A., Radenovic F., Mahajan D., Li K., Zhao Y., Petrovic V., Singh M. K., Motwani S., Wen Y., Song Y., Sumbaly R., Ramanathan V., He Z., Vajda P., Parikh D. (2023). Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack // https://arxiv.org/abs/2309.15807
Soboleva D., Al-Khateeb F., Myers R., Steeves J. R., Hestness J., Nolan D. (2023). SlimPajama: A 627B token cleaned and deduplicated version of RedPajama // https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
Nguyen T., Nguyen C. V., Lai V. D., Man H., Ngo N. T., Dernoncourt F., Rossi R. A., Nguyen T. H. (2023). CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages // https://arxiv.org/abs/2309.09400
* * * В настоящее время исследователи активно изучают и другие формы обучения с подкреплением для языковых моделей, например прямую оптимизацию политики (Direct Policy Optimization, DPO) и даже обучение с обратной связью от ИИ (RL from AI Feedback, RLAIF).
Rafailov R., Sharma A., Mitchell E., Ermon S., Manning C. D., Finn C. (2023). Direct Preference Optimization: Your Language Model is Secretly a Reward Model // https://arxiv.org/abs/2305.18290
Bai Y., Kadavath S., Kundu S., Askell A., Kernion J., Jones A., Chen A., Goldie A., Mirhoseini A., McKinnon C., Chen C., Olsson C., Olah C., Hernandez D., Drain D., Ganguli D., Li D., Tran-Johnson E., Perez E., Kerr J., Mueller J., Ladish J., Landau J., Ndousse K., Lukosuite K., Lovitt L., Sellitto M., Elhage N., Schiefer N., Mercado N., DasSarma N., Lasenby R., Larson R., Ringer S., Johnston S., Kravec S., Showk S. E., Fort S., Lanham T., Telleen-Lawton T., Conerly T., Henighan T., Hume T., Bowman S. R., Hatfield-Dodds Z., Mann B., Amodei D., Joseph N., McCandlish S., Brown T., Kaplan J. (2022). Constitutional AI: Harmlessness from AI Feedback // https://arxiv.org/abs/2212.08073
Аверкиев С. (2023). Это не чат, это GigaChat. Русскоязычная ChatGPT от Сбера. / Хабр, 24 апр 2023 // https://habr.com/ru/companies/sberbank/articles/730108/
Bommasani R., Hudson D. A, Adeli E., Altman R., Arora S., von Arx S., Bernstein M. S., Bohg J., Bosselut A., Brunskill E., Brynjolfsson E., Buch S., Card D., Castellon R., Chatterji N., Chen A., Creel K., David J. Q., Demszky D., Donahue C., Doumbouya M., Durmus E., Ermon S., Etchemendy J., Ethayarajh K., Fei-Fei L., Finn C., Gale T., Gillespie L., Goel K., Goodman N., Grossman S., Guha N., Hashimoto T., Henderson P., Hewitt J., Ho D. E., Hong J., Hsu K., Huang J., Icard T., Jain S., Jurafsky D., Kalluri P., Karamcheti S., Keeling G., Khani F., Khattab O., Koh P. W., Krass M., Krishna R., Kuditipudi R., Kumar A., Ladhak F., Lee M., Lee T., Leskovec J., Levent I., Li X. L., Li X., Ma T., Malik A., Manning C. D., Mirchandani S., Mitchell E., Munyikwa Z., Nair S., Narayan A., Narayanan D., Newman B., Nie A., Niebles J. C., Nilforoshan H., Nyarko J., Ogut G., Orr L., Papadimitriou I., Park J. S., Piech C., Portelance E., Potts C., Raghunathan A., Reich R., Ren H., Rong F., Roohani Y., Ruiz C., Ryan J., Ré C., Sadigh D., Sagawa S., Santhanam K., Shih A., Srinivasan K., Tamkin A., Taori R., Thomas A. W., Tramèr F., Wang R. E., Wang W., Wu B., Wu J., Wu Y., Xie S. M., Yasunaga M., You J., Zaharia M., Zhang M., Zhang T., Zhang X., Zhang Y. (2021). On the Opportunities and Risks of Foundation Models // https://arxiv.org/abs/2108.07258
Dao T., Fu D. Y., Ermon S., Rudra A., Ré C. (2022). FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness // https://arxiv.org/abs/2205.14135
Dao T. (2023). FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning // https://arxiv.org/abs/2307.08691
Shang Y., Yuan Z., Wu Q., Dong Z. (2023). PB-LLM: Partially Binarized Large Language Models // https://arxiv.org/abs/2310.00034
Nagel M., Fournarakis M., Amjad R. A., Bondarenko Y., van Baalen M., Blankevoort T. (2021). A White Paper on Neural Network Quantization // https://arxiv.org/abs/2106.08295
Gholami A., Kim S., Dong Z., Yao Z., Mahoney M. W., Keutzer K. (2021). A Survey of Quantization Methods for Efficient Neural Network Inference // https://arxiv.org/abs/2103.13630
Dettmers T., Pagnoni A., Holtzman A., Zettlemoyer L. (2023). QLoRA: Efficient Finetuning of Quantized LLMs // https://arxiv.org/abs/2305.14314
Rush A. (2023). llama2.rs // https://github.com/srush/llama2.rs
Li X., Yao Y., Jiang X., Fang X., Meng X., Fan S., Han P., Li J., Du L., Qin B., Zhang Z., Sun A., Wang Y. (2023). FLM-101B: An Open LLM and How to Train It with $100K Budget // https://arxiv.org/abs/2309.03852
Bengio Y., Louradour J., Collobert R., Weston J. (2009). Curriculum Learning / ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. // https://doi.org/10.1145/1553374.1553380
Graves A., Bellemare M. G., Menick J., Munos R., Kavukcuoglu K. (2017). Automated Curriculum Learning for Neural Networks // https://arxiv.org/abs/1704.03003
Li C., Zhang M., He Y. (2022). The Stability-Efficiency Dilemma: Investigating Sequence Length Warmup for Training GPT Models // https://openreview.net/forum?id=JpZ5du_Kdh
Li S. (2023). Variable Sequence Length Training for Long-Context Large Language Models / Large Language Model, NLP, Deep Learning, Machine Learning, Blog, Developer Blog, July 22, 2023. // https://www.cerebras.net/blog/variable-sequence-length-training-for-long-context-large-language-models/
DeepSpeed Data Efficiency: A composable library that makes better use of data, increases training efficiency, and improves model quality (2023). / deepspeed.ai, September 26, 2023. // https://www.deepspeed.ai/tutorials/data-efficiency/
Fernandez J., Downey D. (2018). Sampling Informative Training Data for RNN Language Models / Proceedings of ACL 2018, Student Research Workshop, pp. 9–13. // https://doi.org/10.18653/v1/P18-3002
Wang H., Huang M., Huang R., Hong L., Xu H., Hu T., Liang X., Li Z. (2023). Boosting Visual-Language Models by Exploiting Hard Samples // https://arxiv.org/abs/2305.05208
Keles F. D., Hegde C. (2023). On The Computational Complexity of Self-Attention. / Proceedings of Machine Learning Research, Vol. 201, pp. 1–23, 2023 // https://proceedings.mlr.press/v201/duman-keles23a/duman-keles23a.pdf
* Серебряная пуля — метафора, означающая простое решение сложной проблемы.
Tay Y., Dehghani M., Abnar S., Chung H. W., Fedus W., Rao J., Narang S., Tran V. Q., Yogatama D., Metzler D. (2022). Scaling Laws vs Model Architectures: How does Inductive Bias Influence Scaling? // https://arxiv.org/abs/2207.10551
Wei J., Wang X., Schuurmans D., Bosma M., Ichter B., Xia F., Chi E., Le Q., Zhou D. (2022). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models // https://arxiv.org/abs/2201.11903
Yao S., Yu D., Zhao J., Shafran I., Griffiths T. L., Cao Y., Narasimhan K. (2023). Tree of Thoughts: Deliberate Problem Solving with Large Language Models // https://arxiv.org/abs/2305.10601
Besta M., Blach N., Kubicek A., Gerstenberger R., Gianinazzi L., Gajda J., Lehmann T., Podstawski M., Niewiadomski H., Nyczyk P., Hoefler T. (2023). Graph of Thoughts: Solving Elaborate Problems with Large Language Models // https://arxiv.org/abs/2308.09687
Dehghani M., Gouws S., Vinyals O., Uszkoreit J., Kaiser Ł. (2018). Universal Transformers // https://arxiv.org/abs/1807.03819
Wang Z., Ma Y., Liu Z., Tang J. (2019). R-Transformer: Recurrent Neural Network Enhanced Transformer // https://arxiv.org/abs/1907.05572
Dai Z., Yang Z., Yang Y., Carbonell J., Le Q. V., Salakhutdinov R. (2019). Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context // https://arxiv.org/abs/1901.02860
Giannou A., Rajput S., Sohn J.-Y., Lee K., Lee J. D., Papailiopoulos D. (2023). Looped Transformers as Programmable Computers // https://arxiv.org/abs/2301.13196
Graves A. (2016). Adaptive Computation Time for Recurrent Neural Networks // https://arxiv.org/abs/1603.08983
Fojo D., Campos V., Giro-i-Nieto X. (2018). Comparing Fixed and Adaptive Computation Time for Recurrent Neural Networks // https://arxiv.org/abs/1803.08165
Sapunov G. (2019). Adaptive Computation Time (ACT) in Neural Networks // https://moocaholic.medium.com/adaptive-computation-time-act-in-neural-networks-part-1-2a28484b53df
Orvieto A., Smith S. L., Gu A., Fernando A., Gulcehre C., Pascanu R., De S. (2023). Resurrecting Recurrent Neural Networks for Long Sequences // https://arxiv.org/abs/2303.06349
Peng B., Alcaide E., Anthony Q., Albalak A., Arcadinho S., Cao H., Cheng X., Chung M., Grella M., GV K. K., He X., Hou H., Kazienko P., Kocon J., Kong J., Koptyra B., Lau H., Mantri K. S. I., Mom F., Saito A., Tang X., Wang B., Wind J. S., Wozniak S., Zhang R., Zhang Z., Zhao Q., Zhou P., Zhu J., Zhu R. (2023). Reinventing RNNs for the Transformer Era // https://arxiv.org/abs/2305.13048
Fu D. Y., Dao T., Saab K. K., Thomas A. W., Rudra A., Ré C. (2022). Hungry Hungry Hippos: Towards Language Modeling with State Space Models // https://arxiv.org/abs/2212.14052
Gu A., Goel K., Ré C. (2021). Efficiently Modeling Long Sequences with Structured State Spaces // Статья: https://arxiv.org/abs/2111.00396
Gu A., Johnson I., Timalsina A., Rudra A., Ré C. (2022). How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections // https://arxiv.org/abs/2206.12037
Hasani R., Lechner M., Wang T.-H., Chahine M., Amini A., Rus D. (2022). Liquid Structural State-Space Models // https://arxiv.org/abs/2209.12951
Gu A., Gupta A., Goel K., Ré C. (2022). On the Parameterization and Initialization of Diagonal State Space Models // https://arxiv.org/abs/2206.11893
Smith J. T. H., Warrington A., Linderman S. W. (2022). Simplified State Space Layers for Sequence Modeling // https://arxiv.org/abs/2208.04933
Sun Y., Dong L., Huang S., Ma S., Xia Y., Xue J., Wang J., Wei F. (2023). Retentive Network: A Successor to Transformer for Large Language Models // https://arxiv.org/abs/2307.08621
Thoppilan R., Freitas D. D., Hall J., Shazeer N., Kulshreshtha A., Cheng H., Jin A., Bos T., Baker L., Du Y., Li Y., Lee H., Zheng H. S., Ghafouri A., Menegali M., Huang Y., Krikun M., Lepikhin D., Qin J., Chen D., Xu Y., Chen Z., Roberts A., Bosma M., Zhao V., Zhou Y., Chang C., Krivokon I., Rusch W., Pickett M., Srinivasan P., Man L., Meier-Hellstern K., Morris M. R., Doshi T., Santos R. D., Duke T., Soraker J., Zevenbergen B., Prabhakaran V., Diaz M., Hutchinson B., Olson K., Molina A., Hoffman-John E., Lee J., Aroyo L., Rajakumar R., Butryna A., Lamm M., Kuzmina V., Fenton J., Cohen A., Bernstein R., Kurzweil R., Aguera-Arcas B., Cui C., Croak M., Chi E., Le Q. (2022). LaMDA: Language Models for Dialog Applications // https://arxiv.org/abs/2201.08239
Schick T., Dwivedi-Yu J., Dessì R., Raileanu R., Lomeli M., Zettlemoyer L., Cancedda N., Scialom T. (2023). Toolformer: Language Models Can Teach Themselves to Use Tools // https://arxiv.org/abs/2302.04761
Hao S., Liu T., Wang Z., Hu Z. (2023). ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings // https://arxiv.org/abs/2305.11554
Shen Y., Song K., Tan X., Li D., Lu W., Zhuang Y. (2023). HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face // https://arxiv.org/abs/2303.17580
Patil S. G., Zhang T., Wang X., Gonzalez J. E. (2023). Gorilla: Large Language Model Connected with Massive APIs // https://arxiv.org/abs/2305.15334
OpenAI (2023). ChatGPT plugins // https://openai.com/blog/chatgpt-plugins
* Сегодня для такого синтеза часто используют термин «генерация, дополненная поиском» (Retrieval-augmented Generation, RAG).
Schlag I., Sukhbaatar S., Celikyilmaz A., Yih W.-t., Weston J., Schmidhuber J., Li X. (2023). Large Language Model Programs // https://arxiv.org/abs/2305.05364
Heafield K. (2011). KenLM: Faster and Smaller Language Model Queries // https://kheafield.com/papers/avenue/kenlm.pdf
Borgeaud S., Mensch A., Hoffmann J., Cai T., Rutherford E., Millican K., van den Driessche G., Lespiau J.-B., Damoc B., Clark A., de Las Casas D., Guy A., Menick J., Ring R., Hennigan T., Huang S., Maggiore L., Jones C., Cassirer A., Brock A., Paganini M., Irving G., Vinyals O., Osindero S., Simonyan K., Rae J. W., Elsen E., Sifre L. (2021). Improving language models by retrieving from trillions of tokens // https://arxiv.org/abs/2112.04426
Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., Küttler H., Lewis M., Yih W.-T., Rocktäschel T., Riedel S., Kiela D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks // https://arxiv.org/abs/2005.11401
Khattab O., Santhanam K., Li X. L., Hall D., Liang P., Potts C., Zaharia M. (2022). Demonstrate-Search-Predict: Composing retrieval and language models for knowledge-intensive NLP // https://arxiv.org/abs/2212.14024
Minsky M. (1988). Society of Mind. Simon & Schuster Paperbacks // https://www.google.ru/books/edition/Society_Of_Mind/bLDLllfRpdkC
Zhuge M., Liu H., Faccio F., Ashley D. R., Csordás R., Gopalakrishnan A., Hamdi A., Hammoud H. A. A. K., Herrmann V., Irie K., Kirsch L., Li B., Li G., Liu S., Mai J., Piękos P., Ramesh A., Schlag I., Shi W., Stanić A., Wang W., Wang Y., Xu M., Fan D.-P., Ghanem B., Schmidhuber J. (2023). Mindstorms in Natural Language-Based Societies of Mind // https://arxiv.org/abs/2305.17066
Park J. S., O'Brien J. C., Cai C. J., Morris M. R., Liang P., Bernstein M. S. (2023). Generative Agents: Interactive Simulacra of Human Behavior // https://arxiv.org/abs/2304.03442
Schmidhuber J. (2015). On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models // https://arxiv.org/abs/1511.09249
Heaven W. D. (2023). DeepMind’s cofounder: Generative AI is just a phase. What’s next is interactive AI / MIT Technology Review, September 15, 2023 // https://www.technologyreview.com/2023/09/15/1079624/deepmind-inflection-generative-ai-whats-next-mustafa-suleyman/
https://www.grammarly.com/about
Swisher K. (2013). Yahoo Paid $30 Million in Cash for 18 Months of Young Summly Entrepreneur’s Time / All Things D, March 25, 2013 // http://allthingsd.com/20130325/yahoo-paid-30-million-in-cash-for-18-months-of-young-summly-entrepreneurs-time/
Newton C. (2014). Yahoo's sleek News Digest app swims against the stream / The Verge, Jan 8, 2014. // https://www.theverge.com/2014/1/7/5284300/yahoos-sleek-news-digest-app-swims-against-the-stream
Panzarino M. (2014). Yahoo Wins Another Apple Design Award For News Digest App / TechCrunch, June 3, 2014. // https://techcrunch.com/2014/06/02/yahoo-wins-another-apple-design-award-for-news-digest-app/
Text Summarization (2023). // https://paperswithcode.com/task/text-summarization
Yadav D., Desai J., Yadav A. K. (2021). Automatic Text Summarization Methods: A Comprehensive Review // https://arxiv.org/abs/2204.01849
Ахметгареева А. (2022). Практические применения генеративных моделей: как мы делали суммаризатор текстов / Хабр, 19 мая 2022. // https://habr.com/ru/companies/sberdevices/articles/666420/
Kuzmin G., Larionov D., Pisarevskaya D., Smirnov I. (2020). Fake news detection for the Russian language // https://aclanthology.org/2020.rdsm-1.5.pdf
Hoy N., Koulouri T. (2021). A Systematic Review on the Detection of Fake News Articles // https://arxiv.org/abs/2110.11240
Xu W., Wu J., Liu Q., Wu S., Wang L. (2022). Evidence-aware Fake News Detection with Graph Neural Networks // https://arxiv.org/abs/2201.06885
Ghadiri Z., Ranjbar M., Ghanbarnejad F., Raeisi S. (2022). Automated Fake News Detection using cross-checking with reliable sources // https://arxiv.org/abs/2201.00083
Gong S., Sinnott R. O., Qi J., Paris C. (2023). Fake News Detection Through Graph-based Neural Networks: A Survey // https://arxiv.org/abs/2307.12639
Singhania S., Fernandez N., Rao S. (2023). 3HAN: A Deep Neural Network for Fake News Detection // https://arxiv.org/abs/2306.12014
Dahl R. (2016). Automatic Colorization // https://tinyclouds.org/colorize/
Hariharan B., Arbeláez P., Girshick R., Malik J. (2015). Hypercolumns for Object Segmentation and Fine-grained Localization // https://arxiv.org/abs/1411.5752
Guadarrama S., Dahl R., Bieber D., Norouzi M., Shlens J., Murphy K. (2017). PixColor: Pixel recursive colorization // https://arxiv.org/abs/1705.07208
Dahl R. (2016). Google Brain Residency // https://tinyclouds.org/residency/
Zhang R., Zhu J.-Y., Isola P., Geng X., Lin A. S., Yu T., Efros A. A. (2017). Real-Time User-Guided Image Colorization with Learned Deep Priors // https://arxiv.org/abs/1705.02999
Colorization (2022) // https://paperswithcode.com/task/colorization/latest, https://paperswithcode.com/task/colorization/codeless#code
Lewis J. P. (1988). Creation By Refinement: A Creativity Paradigm for Gradient Descent Learning Networks / IEEE International Conference on Neural Networks // https://doi.org/10.1109/icnn.1988.23933
Alice P. (2013). John Lewis, the most patient man on the internet / Daily Telegraph, 11 Nov 2013 // https://www.telegraph.co.uk/news/uknews/10440185/John-Lewis-the-most-patient-man-on-the-internet.html
White A. (2015). The Worst Time Of Year For The Most Patient And Polite Man On The Internet Has Begun. We should probably honour him with a statue or something / BuzzFeed, Nov 6, 2015 // https://www.buzzfeed.com/alanwhite/whats-the-definition-of-madness-again
Sanusi V. (2016). The Most Patient And Polite Man On The Internet Is Back At It Again / BuzzFeed, Nov 10, 2016 // https://www.buzzfeed.com/victoriasanusi/its-the-worst-time-of-year-for-the-most-patient-and-polite-m
Massey N. (2014). Man called John Lewis sent Christmas advert penguin after being bombarded with tweets directed at store / Mirror, 20 Nov 2014 // https://www.mirror.co.uk/news/uk-news/man-called-john-lewis-sent-4658776
Vincent J. (2016). This AI program sees genitals everywhere it looks. Do androids dream of electric dicks? / The Verge, Oct 24, 2016 // https://www.theverge.com/2016/10/24/13379208/ai-nsfw-neural-nets-deep-dream-genitals
Gatys L. A., Ecker A. S., Bethge M. (2015). A Neural Algorithm of Artistic Style // https://arxiv.org/abs/1508.06576
Salimans T., Goodfellow I., Zaremba W., Cheung V., Radford A., Chen X. (2016). Improved Techniques for Training GANs // https://arxiv.org/abs/1606.03498
Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. (2014). GenerativeAdversarialNetworks // https://arxiv.org/abs/1406.2661
Alberge D. (2021). Was famed Samson and Delilah really painted by Rubens? No, says AI / The Guardian, 26 Sep 2021 // https://www.theguardian.com/artanddesign/2021/sep/26/was-famed-samson-and-delilah-really-painted-by-rubens-no-says-ai
Schmidhuber J. (1992). Learning factorial codes by predictability minimization / Neural Computation, Vol. 4 (6), pp. 863—879 // https://doi.org/10.1162/neco.1992.4.6.863
Mirza M., Osindero S. (2014). Conditional Generative Adversarial Nets // https://arxiv.org/abs/1411.1784
Isola P., Zhu J.-Y., Zhou T., Efros A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks // https://arxiv.org/abs/1611.07004
Zhu J.-Y., Park T., Isola P., Efros A. A. (2017). Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks // https://arxiv.org/abs/1703.10593
Shrivastava A., Pfister T., Tuzel O., Susskind J., Wang W., Webb R. (2016). Learning from Simulated and Unsupervised Images through Adversarial Training // https://arxiv.org/abs/1612.07828
Isola P., Zhu J.-Y., Zhou T., Efros A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks // https://arxiv.org/abs/1611.07004
Choi Y., Choi M., Kim M., Ha J.-W., Kim S., Choo J. (2017). StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation // https://arxiv.org/abs/1711.09020
Iizuka S., Simo-Serra E., Ishikawa H. (2017). Globally and Locally Consistent Image Completion / ACM Transactions on Graphics, Vol. 36, Iss. 4, Article 107, July 2017 // http://dx.doi.org/10.1145/3072959.3073659
Sagong M.-C., Shin Y.-G., Kim S.-W., Park S., Ko S.-J. (2019). PEPSI: Fast Image Inpainting With Parallel Decoding Network / 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) // https://doi.org/10.1109/CVPR.2019.01162
Shin Y.-G., Sagong M.-C., Yeo Y.-J., Kim S.-W., Ko S.-J. (2019). PEPSI++: Fast and Lightweight Network for Image Inpainting // https://arxiv.org/abs/1905.09010
DeepCreamPy: Decensoring Hentai with Deep Neural Networks // https://github.com/deeppomf/DeepCreamPy
Radford A., Metz L., Chintala S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks // https://arxiv.org/abs/1511.06434
Chen X., Duan Y., Houthooft R., Schulman J., Sutskever I., Abbeel P. (2016). InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets // https://arxiv.org/abs/1606.03657
Kim T., Cha M., Kim H., Lee J. K., Kim J. (2017). Learning to Discover Cross-Domain Relations with Generative Adversarial Networks // https://arxiv.org/abs/1703.05192
Karras T., Aila T., Laine S., Lehtinen J. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation // https://arxiv.org/abs/1710.10196
Arjovsky M., Chintala S., Bottou L. (2017). Wasserstein GAN // https://arxiv.org/abs/1701.07875
Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V., Courville A. (2017). Improved Training of Wasserstein GANs // https://arxiv.org/abs/1704.00028
Karras T., Laine S., Aila T. (2018). A Style-Based Generator Architecture for Generative Adversarial Networks // https://arxiv.org/abs/1812.04948
Karras T., Laine S., Aittala M., Hellsten J., Lehtinen J., Aila T. (2019). Analyzing and Improving the Image Quality of StyleGAN // https://arxiv.org/abs/1912.04958
Karras T., Aittala M., Laine S., Härkönen E., Hellsten J., Lehtinen J., Aila T. (2021). Alias-Free Generative Adversarial Networks // https://arxiv.org/abs/2106.12423
Choi Y., Uh Y., Yoo J., Ha J.-W. (2019). StarGAN v2: Diverse Image Synthesis for Multiple Domains // https://arxiv.org/abs/1912.01865
Mokady R., Yarom M., Tov O., Lang O., Cohen-Or D., Dekel T., Irani M., Mosseri I. (2022). Self-Distilled StyleGAN: Towards Generation from Internet Photos // https://arxiv.org/abs/2202.12211
Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report_Master.pdf
Akbari H., Yuan L., Qian R., Chuang W.-H., Chang S.-F., Cui Y., Gong B. (2021). VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text // https://arxiv.org/abs/2104.11178
Baevski A., Hsu W.-N., Xu Q., Babu A., Gu J., Auli M. (2022). The first high-performance self-supervised algorithm that works for speech, vision, and text / Meta AI, January 20, 2022
Mitrovic J., McWilliams B., Walker J., Buesing L., Blundell C. (2020). Representation Learning via Invariant Causal Mechanisms // https://arxiv.org/abs/2010.07922
Tomasev N., Bica I., McWilliams B., Buesing L., Pascanu R., Blundell C., Mitrovic J. (2022). Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? // https://arxiv.org/abs/2201.05119
* В машинном обучении авторегрессионными обычно называют модели для предсказания следующего элемента последовательности на основе предыдущих её элементов.
van den Oord A., Kalchbrenner N., Kavukcuoglu K. (2016). Pixel Recurrent Neural Networks // https://arxiv.org/abs/1601.06759
van den Oord A., Kalchbrenner N., Vinyals O., Espeholt L., Graves A., Kavukcuoglu K. (2016). Conditional Image Generation with PixelCNN Decoders // https://arxiv.org/abs/1606.05328
Salimans T., Karpathy A., Chen X., Kingma D. P. (2017). PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications // https://arxiv.org/abs/1701.05517
Sohl-Dickstein J., Weiss E. A., Maheswaranathan N., Ganguli S. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics // https://arxiv.org/abs/1503.03585
Ho J., Jain A., Abbeel P. (2020). Denoising Diffusion Probabilistic Models // https://arxiv.org/abs/2006.11239
Nichol A., Dhariwal P. (2021). Improved denoising diffusion probabilistic models // https://arxiv.org/abs/2102.09672
Dhariwal P., Nichol A. (2021). Diffusion Models Beat GANs on Image Synthesis // https://arxiv.org/abs/2105.05233
Jiang Y., Chang S., Wang Z. (2021). TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up // https://arxiv.org/abs/2102.07074
Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. (2018). StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks // https://arxiv.org/abs/1710.10916
Wah C., Branson S., Welinder P., Perona P., Belongie S. (2011). The Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR2011-001, California Institute of Technology // http://www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf
Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. (2017). StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks // https://arxiv.org/abs/1710.10916
Sun W., Chen Z. (2019). Learned Image Downscaling for Upscaling using Content Adaptive Resampler // https://arxiv.org/abs/1907.12904
Lim B., Son S., Kim H., Nah S., Lee K. M. (2017). Enhanced Deep Residual Networks for Single Image Super-Resolution // https://arxiv.org/abs/1707.02921
Ma C., Rao Y., Cheng Y., Chen C., Lu J., Zhou J. (2020). Structure-Preserving Super Resolution with Gradient Guidance // https://arxiv.org/abs/2003.13081
Niu B., Wen W., Ren W., Zhang X., Yang L., Wang S., Zhang K., Cao X., Shen H. (2020). Single Image Super-Resolution via a Holistic Attention Network // https://arxiv.org/abs/2008.08767
Kawulok M., Benecki P., Piechaczek S., Hrynczenko K., Kostrzewa D., Nalepa J. (2019). Deep Learning for Multiple-Image Super-Resolution // https://arxiv.org/abs/1903.00440
Zhu M., Pan P., Chen W., Yang Y. (2019). DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis // https://arxiv.org/abs/1904.01310
Xu T., Zhang P., Huang Q., Zhang H., Gan Z., Huang X., He X. (2017). AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks // https://arxiv.org/abs/1711.10485
Liang J., Pei W., Lu F. (2019). CPGAN: Full-Spectrum Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis // https://paperswithcode.com/paper/cpgan-full-spectrum-content-parsing
Parmar N., Vaswani A., Uszkoreit J., Kaiser Ł., Shazeer N., Ku A., Tran D. (2018). Image Transformer // https://arxiv.org/abs/1802.05751
Wu B., Xu C., Dai X., Wan A., Zhang P., Yan Z., Tomizuka M., Gonzalez J., Keutzer K., Vajda P. (2020). Visual Transformers: Token-based Image Representation and Processing for Computer Vision // https://arxiv.org/abs/2006.03677
Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani M., Minderer M., Heigold G., Gelly S., Uszkoreit J., Houlsby N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale // https://arxiv.org/abs/2010.11929
Touvron H., Cord M., Douze M., Massa F., Sablayrolles A., Jégou H. (2020). Training data-efficient image transformers & distillation through attention // https://arxiv.org/abs/2012.12877
Liu Z., Lin Y., Cao Y., Hu H., Wei Y., Zhang Z., Lin S., Guo B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows // https://arxiv.org/abs/2103.14030
Carion N., Massa F., Synnaeve G., Usunier N., Kirillov A., Zagoruyko S. (2020). End-to-end Object Detection with Transformers // https://ai.facebook.com/research/publications/end-to-end-object-detection-with-transformers
Zhu X., Su W., Lu L., Li B., Wang X., Dai J. (2020). Deformable DETR: Deformable Transformers for End-to-End Object Detection // https://arxiv.org/abs/2010.04159
Guo J., Han K., Wu H., Xu C., Tang Y., Xu C., Wang Y. (2021). CMT: Convolutional Neural Networks Meet Vision Transformers // https://arxiv.org/abs/2107.06263
Wu H., Xiao B., Codella N., Liu M., Dai X., Yuan L., Zhang L. (2021). CvT: Introducing Convolutions to Vision Transformers // https://arxiv.org/abs/2103.15808
Touvron H., Cord M., Sablayrolles A., Synnaeve G., Jégou H. (2021). Going deeper with Image Transformers // https://arxiv.org/abs/2103.17239
Yuan K., Guo S., Liu Z., Zhou A., Yu F., Wu W. (2021). Incorporating Convolution Designs into Visual Transformers // https://arxiv.org/abs/2103.11816
Chen M., Peng H., Fu J., Ling H. (2021). AutoFormer: Searching Transformers for Visual Recognition // https://arxiv.org/abs/2107.00651
Han K., Xiao A., Wu E., Guo J., Xu C., Wang Y. (2021). Transformer in Transformer // https://arxiv.org/abs/2103.00112
Wang Y., Huang R., Song S., Huang Z., Huang G. (2021). Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image Recognition // https://arxiv.org/abs/2105.15075
Chen X., Hsieh C.-J., Gong B. (2021). When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations // https://arxiv.org/abs/2106.01548
Dai Z., Liu H., Le Q. V., Tan M. (2021). CoAtNet: Marrying Convolution and Attention for All Data Sizes // https://arxiv.org/abs/2106.04803
Liu Z., Hu H., Lin Y., Yao Z., Xie Z., Wei Y., Ning J., Cao Y., Zhang Z., Dong L., Wei F., Guo B. (2021). Swin Transformer V2: Scaling Up Capacity and Resolution // https://arxiv.org/abs/2111.09883
Li Y., Wu C.-Y., Fan H., Mangalam K., Xiong B., Malik J., Feichtenhofer C. (2021). Improved Multiscale Vision Transformers for Classification and Detection // https://arxiv.org/abs/2112.01526
Dong X., Bao J., Zhang T., Chen D., Zhang W., Yuan L., Chen D., Wen F., Yu N. (2021). PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers // https://arxiv.org/abs/2111.12710
Wu S., Wu T., Tan H., Guo G. (2021). Pale Transformer: A General Vision Transformer Backbone with Pale-Shaped Attention // https://arxiv.org/abs/2112.14000
Liu Z., Mao H., Wu C.-Y., Feichtenhofer C., Darrell T., Xie S. (2022). A ConvNet for the 2020s // https://arxiv.org/abs/2201.03545
Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2023). BASIC-L: Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675
CoCa: Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2022). Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675
Ramesh A., Pavlov M., Goh G., Gray S., Chen M., Child R., Misra V., Mishkin P, Krueger G., Agarwal S., Sutskever I. (2021). DALL·E: Creating Images from Text / OpenAI Blog, January 5, 2021 // https://openai.com/blog/dall-e/
Radford A., Sutskever I., Kim J. W., Krueger G., Agarwal S. (2021). CLIP: Connecting Text and Images / OpenAI Blog, January 5, 2021 // https://openai.com/blog/clip/
Radford A., Sutskever I., Kim J. W., Krueger G., Agarwal S. (2021). CLIP: Connecting Text and Images / OpenAI Blog, January 5, 2021 // https://openai.com/blog/clip/
Radford A., Kim J. W., Hallacy C., Ramesh A., Goh G., Agarwal S., Sastry G., Askell A., Mishkin P., Clark J., Krueger G., Sutskever I. (2021). Learning Transferable Visual Models From Natural Language Supervision // https://arxiv.org/abs/2103.00020
Schuhmann C., Beaumont R., Vencu R., Gordon C., Wightman R., Cherti M., Coombes T., Katta A., Mullis C., Wortsman M., Schramowski P., Kundurthy S., Crowson K., Schmidt L., Kaczmarczyk R., Jitsev J. (2022). LAION-5B: An open large-scale dataset for training next generation image-text models // https://arxiv.org/abs/2210.08402
Schuhmann C., Vencu R., Beaumont R., Kaczmarczyk R., Mullis C., Katta A., Coombes T., Jitsev J., Komatsuzaki A. (2021). LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs // https://arxiv.org/abs/2111.02114
Ramesh A., Pavlov M., Goh G., Gray S., Voss C., Radford A., Chen M., Sutskever I. (2021). Zero-Shot Text-to-Image Generation // https://arxiv.org/abs/2102.12092
https://github.com/sberbank-ai/sber-vq-gan
Wang X., Yu K., Wu S., Gu J., Liu Y., Dong C., Loy C. C., Qiao Y., Tang X. (2018). ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks // https://arxiv.org/abs/1809.00219
Сбер создал первую мультимодальную нейросеть ruDALL-E, которая генерирует картинки по описанию на русском языке (2021) / Sber Press, 2 ноября 2021 // https://press.sber.ru/publications/sber-sozdal-pervuiu-multimodalnuiu-neiroset-rudall-e-kotoraia-generiruet-kartinki-po-opisaniiu-na-russkom-iazyke
Димитров Д. (2021). ruDALL-E: генерируем изображения по текстовому описанию, или Самый большой вычислительный проект в России / Хабр, 2 ноября // https://habr.com/ru/company/sberbank/blog/586926/
https://github.com/sberbank-ai/ru-dalle
Nichol A., Dhariwal P., Ramesh A., Shyam P., Mishkin P., McGrew B., Sutskever I., Chen M. (2021). GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models // https://arxiv.org/abs/2112.10741
Gupta T., Kamath A., Kembhavi A., Hoiem D. (2021). Towards General Purpose Vision Systems // https://arxiv.org/abs/2104.00743
* Гипермодальность — свойство мультимодальной модели, позволяющее ей использовать как на входе, так и на выходе данные, представленные любым подмножеством поддерживаемых модальностей, а не только какой-либо одной. В случае ruDOLPH это означает, что как на входе, так и на выходе модели могут быть либо только текст, либо только изображение, либо последовательности вида «изображение — текст» или «текст — изображение».
Shonenkov A., Konstantinov M. (2021). RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP // https://github.com/sberbank-ai/ru-dolph
Ramesh A., Dhariwal P., Nichol A., Chu C., Chen M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents // https://arxiv.org/pdf/2204.06125.pdf
Daras G., Dimakis A. G. (2022). Discovering the Hidden Vocabulary of DALLE-2 // https://arxiv.org/abs/2206.00169
* Blackbox-методы или методы «чёрного ящика» — обобщённое название методов, которые анализируют тот или иной объект лишь через взаимодействие с ним, не заглядывая в его внутреннее устройство.
Костенков А. (2022). Нейросеть DALL-E 2 создала собственный язык: правда, не совсем, и совсем не? / Habr, 18 июня 2022 // https://habr.com/ru/companies/ruvds/articles/672046/
Daras G. (2022). / Twitter, 31 мая 2022 // https://twitter.com/giannis_daras/status/1531693093040230402
Quach K. (2022). No, OpenAI's image-making DALL·E 2 doesn't understand some secret language / The Register, 7 Jun 2022 // https://www.theregister.com/2022/06/07/in_brief_ai/
Bach J. (2022). / Twitter, 31 мая 2022 // https://twitter.com/Plinz/status/1531711345585860609
* Создатели моделей для генерации изображений стремятся улучшить эту ситуацию: например, запущенный в августе 2023 г. сервис Ideogram способен справиться с визуализацией небольших предложений. В основе сервиса лежит диффузионная генеративная модель, в создании которой принимали участие разработчики нейросети Imagen. Появившаяся в октябре 2023 г. DALL·E 3 также продемонстрировала весьма значительный прогресс в задаче визуализации текстов.
Norouzi M., Chan W., Ho J., Saharia C., Abdullah S., Lei J., Lu J. (2023). Announcing Ideogram AI // https://ideogram.ai/launch
Rombach R., Blattmann A., Lorenz D., Esser P., Ommer B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models // https://arxiv.org/abs/2112.10752
Quach K. (2022). No, OpenAI's image-making DALL·E 2 doesn't understand some secret language / The Register, 7 Jun 2022 // https://www.theregister.com/2022/06/07/in_brief_ai/
OpenAI (2023). DALL·E 3 system card // https://openai.com/research/dall-e-3-system-card
Saharia C., Chan W., Saxena S., Li L., Whang J., Denton E., Ghasemipour S. K. S., Ayan B. K., Mahdavi S. S., Lopes R. G., Salimans T., Ho J., Fleet D. J., Norouzi N. (2022). Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding // https://arxiv.org/abs/2205.11487
Midjourney LLC (2022). Midjourney Documentation // https://docs.midjourney.com/v1/en
Vincent J. (2022). ‘An engine for the imagination’: the rise of AI image generators. An interview with Midjourney founder David Holz. / The Verge, Aug 2, 2022 // https://www.theverge.com/2022/8/2/23287173/ai-image-generation-art-midjourney-multiverse-interview-david-holz
Gu J., Zhai S., Zhang Y., Susskind J., Jaitly N. (2023). Matryoshka Diffusion Models // https://arxiv.org/abs/2310.15111
Shonenkov A., Konstantinov M., Bakshandaeva D., Schuhmann C., Ivanova K., Klokova N. (2023). IF by DeepFloyd Lab at StabilityAI // https://github.com/deep-floyd/IF
Разжигаев А. (2022). Kandinsky 2.0 — первая мультиязычная диффузия для генерации изображений по тексту. / Habr, 23 ноя 2022 // https://habr.com/ru/companies/sberbank/articles/701162/
Razzhigaev A., Shakhmatov A., Maltseva A., Arkhipkin V., Pavlov I., Ryabov I., Kuts A., Panchenko A., Kuznetsov A., Dimitrov D. (2023). Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion // https://arxiv.org/abs/2310.03502
Кузнецов А. (2022). Kandinsky 2.1, или Когда +0,1 значит очень много. / Habr, 4 апр 2023 // https://habr.com/ru/companies/sberbank/articles/725282/
Димитров Д. (2023). Kandinsky 2.2 — новый шаг в направлении фотореализма / Habr, 12 июля 2023. // https://habr.com/ru/companies/sberbank/articles/747446/
Valyaeva A. (2023). AI Has Already Created As Many Images As Photographers Have Taken in 150 Years. Statistics for 2023 / Everypixel Journal, 15.08.2023 // https://journal.everypixel.com/ai-image-statistics
Zhang L., Agrawala M. (2023). Adding Conditional Control to Text-to-Image Diffusion Models // https://arxiv.org/abs/2302.05543
Adobe (2023). Generative Fill // https://www.adobe.com/products/photoshop/generative-fill.html
Marcus G. (2022). Horse rides astronaut / The Road to AI We Can Trust, 28.05.2022 // https://garymarcus.substack.com/p/horse-rides-astronaut
Marcus G. (2022). Compositionality and Natural Language Understanding [slides] / The Challenge of Compositionality for AI / June 29-30, 2022 // https://compositionalintelligence.github.io/pdfs/Marcus.pdf
* Промпт-инженер — специалист по составлению запросов (затравок, промптов) [prompts] для генеративных нейронных сетей; промпт-инжиниринг — дисциплина, занимающаяся вопросами сочинения или оптимизации промптов; по сути промпт-инжиниринг является развитием идеи «затравочного программирования», знакомого нам по цитировавшимся ранее высказываниям Андрея Карпатого и Гверна Бренуэна.
McCammon J. (2023). Can a horse ride an astronaut? A taxonomy of antagonistic Midjourney prompts / 96 layers, 12 июня 2023 // https://www.96layers.ai/p/can-a-horse-ride-an-astronaut
Lovering C., Pavlick E. (2023). Training Priors Predict Text-To-Image Model Performance // https://arxiv.org/abs/2306.01755
Tsalicoglou C., Manhardt F., Tonioni A., Niemeyer M., Tombari F. (2023). TextMesh: Generation of Realistic 3D Meshes From Text Prompts // https://arxiv.org/abs/2304.12439
Mildenhall B., Srinivasan P. P., Tancik M., Barron J. T., Ramamoorthi R., Ng R. (2020). NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis // https://arxiv.org/abs/2003.08934
Niemeyer M., Barron J. T., Mildenhall B., Sajjadi M. S. M., Geiger A., Radwan N. (2023). RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs // https://arxiv.org/abs/2112.00724
Poole B., Jain A., Barron J. T., Mildenhall B. (2022). DreamFusion: Text-to-3D using 2D Diffusion // https://arxiv.org/abs/2209.14988
Müller T., Evans A., Schied C., Keller A. (2022). Instant Neural Graphics Primitives with a Multiresolution Hash Encoding // https://arxiv.org/abs/2201.05989
Ben Melech Stan G., Wofk D., Fox S., Redden A., Saxton W., Yu J., Aflalo E., Tseng S.-Y., Nonato F., Muller M., Lal V. (2023). LDM3D: Latent Diffusion Model for 3D // https://arxiv.org/abs/2305.10853
Ranftl R., Lasinger K., Hafner D., Schindler K., Koltun V. (2019). Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer // https://arxiv.org/abs/1907.01341
Deitke M., Liu R., Wallingford M., Ngo H., Michel O., Kusupati A., Fan A., Laforte C., Voleti V., Gadre S. Y., VanderBilt E., Kembhavi A., Vondrick C., Gkioxari G., Ehsani K., Schmidt L., Farhadi A. (2023). Objaverse-XL: A Universe of 10M+ 3D Objects // https://arxiv.org/abs/2307.05663
Deitke M., Schwenk D., Salvador J., Weihs L., Michel O., VanderBilt E., Schmidt L., Ehsani K., Kembhavi A., Farhadi A. (2022). Objaverse: A Universe of Annotated 3D Objects // https://arxiv.org/abs/2212.08051
Cheung R. (2023). Is the Panic Over AI Art Overblown? We Speak With Artists and Experts. / Vice, February 22, 2023 // https://www.vice.com/en/article/ake53e/ai-art-lawsuits-midjourney-dalle-chatgpt
Yu J., Xu Y., Koh J. Y., Luong T., Baid G., Wang Z., Vasudevan V., Ku A., Yang Y., Ayan B. K., Hutchinson B., Han W., Parekh Z., Li X., Zhang H., Baldridge J., Wu Y. (2022). Scaling Autoregressive Models for Content-Rich Text-to-Image Generation // https://arxiv.org/abs/2206.10789
Craiyon LLC (2023). Frequently asked questions // https://www.craiyon.com/#faq
Yuan L., Chen D., Chen Y.-L., Codella N., Dai X., Gao J., Hu H., Huang X., Li B., Li C., Liu C., Liu M., Liu Z., Lu Y., Shi Y., Wang L., Wang J., Xiao B., Xiao Z., Yang J., Zeng M., Zhou L., Zhang P. (2021). Florence: A New Foundation Model for Computer Vision // https://arxiv.org/abs/2111.11432
Wu C., Liang J., Ji L., Yang F., Fang Y., Jiang D., Duan N. (2021). NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion // https://arxiv.org/abs/2111.12417
Jia C., Yang Y., Xia Y., Chen Y.-T., Parekh Z., Pham H., Le Q. V., Sung Y., Li Z., Duerig T. (2021). Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision // https://arxiv.org/abs/2102.05918
Riquelme C., Puigcerver J., Mustafa B., Neumann M., Jenatton R., Pinto A. S., Keysers D., Houlsby N. (2021). Scaling Vision with Sparse Mixture of Experts // https://arxiv.org/abs/2106.05974
Romero A. (2021). GPT-3 Scared You? Meet Wu Dao 2.0: A Monster of 1.75 Trillion Parameters / towards data science, Jun 6, 2021 // https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
Alayrac J.-B., Donahue J., Luc P., Miech A. (2022). Tackling multiple tasks with a single visual language model / DeepMind blog, April 28, 2022 // https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
Alayrac J.-B., Donahue J., Luc P., Miech A., Barr I., Hasson Y., Lenc K., Mensch A., Millican K., Reynolds M., Ring R., Rutherford E., Cabi S., Han T., Gong Z., Samangooei S., Monteiro M., Menick J., Borgeaud S., Brock A., Nematzadeh A., Sharifzadeh S., Binkowski M., Barreira R., Vinyals O., Zisserman A., Simonyan K. (2022). Flamingo: a Visual Language Model for Few-Shot Learning // https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/tackling-multiple-tasks-with-a-single-visual-language-model/flamingo.pdf
Hoffmann J., Borgeaud S., Mensch A., Sifre L. (2022). An empirical analysis of compute-optimal large language model training / DeepMind blog, April 12, 2022 // https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-language-model-training
Hoffmann J., Borgeaud S., Mensch A., Buchatskaya E., Cai T., Rutherford E., de Las Casas D., Hendricks L. A., Welbl J., Clark A., Hennigan T., Noland E., Millican K., van den Driessche G., Damoc B., Guy A., Osindero S., Simonyan K., Elsen E., Rae J. W., Vinyals O., Sifre L. (2022). Training Compute-Optimal Large Language Models // https://arxiv.org/abs/2203.15556
Kirillov A., Mintun E., Ravi N., Mao H., Rolland C., Gustafson L., Xiao T., Whitehead S., Berg A. C., Lo W.-Y., Dollár P., Girshick R. (2023). Segment Anything // https://arxiv.org/abs/2304.02643
Cizek K., Uricchio W., Wolozin S. (2019). Media co-creation with non-human systems / Cizek K., Uricchio W., Anderson J., Carter M. A., Detroit Narrative Agency, Harris T. A., Holmes M., Lachman R., Massiah L., Mertes C., Rafsky S., Stephenson M., Winger-Bearskin A., Wolozin S. (2019). Collective Wisdom. Massachusetts Institute of Technology // https://doi.org/10.21428/ba67f642.f7c1b7e5
Ayerle J. (2018). Un'emozione per sempre 2.0: starring Ornella Muti / YouTube, Mar 23, 2018 // https://www.youtube.com/watch?v=c1vVHAY8Mc4
Reichert C. (2019). This deepfake shows an impressionist taking on 20 celebrities, convincingly / c|net, Oct. 10, 2019 // https://www.cnet.com/news/this-deepfake-shows-an-impressionist-take-on-20-celebrities-convincingly/
Grossman D. (2017). How LucasFilm Made Grand Moff Tarkin Look Real in 'Rogue One' / Popular Mechanics, Jan 6, 2017 // https://www.popularmechanics.com/culture/movies/a24641/grand-moff-tarkin-rogue-one/
Orange B. A. (2016). Lucasfilm Responds to Rogue One CG Character Backlash / MovieWeb, December 27, 2016 // https://movieweb.com/rogue-one-tarkin-leia-cg-character-backlash-lucasfilm/
Clarke C. (2017). How 3D scanning brought grand moff Tarkin back to life for Rogue One / 3D Printing Industry, January 27th 2017 // https://3dprintingindustry.com/news/3d-scanning-brought-grand-moff-tarkin-back-life-rogue-one-104458/
Itzkoff D. (2016). How ‘Rogue One’ Brought Back Familiar Faces / The New York Times, Dec. 27, 2016 // https://www.nytimes.com/2016/12/27/movies/how-rogue-one-brought-back-grand-moff-tarkin.html
Grossman D. (2018). Here's Harrison Ford Starring in 'Solo' Thanks to Deepfakes / Popular Mechanics, Oct, 17, 2018 // https://www.popularmechanics.com/culture/movies/a23867069/harrison-ford-han-solo-deepfakes/
Radulovic P. (2018). Harrison Ford is the star of Solo: A Star Wars Story thanks to deepfake technology / Polygon, Oct 17, 2018 // https://www.polygon.com/2018/10/17/17989214/harrison-ford-solo-movie-deepfake-technology
Winick E. (2018). How acting as Carrie Fisher's puppet made a career for Rogue One's Princess Leia / MIT Technology Review, October 16, 2018 // https://www.technologyreview.com/2018/10/16/139739/how-acting-as-carrie-fishers-puppet-made-a-career-for-rogue-ones-princess-leia/
Петров О. (2020). Как из четырёх минут речи мы воссоздали голос молодого Леонида Куравлёва / Хабр, 2 декабря // https://habr.com/ru/company/sberbank/blog/530876/
Буйлов М. (2020). Сберегательный образ жулика / Коммерсант. № 227 от 10.12.2020. С. 7 // https://www.kommersant.ru/doc/4604689
Старовойтов О. (2020). Сбер 2020 и его амбассадор Жорж Милославский / finversia, 13.12.2020 // https://www.finversia.ru/publication/sber-2020-i-ego-ambassador-zhorzh-miloslavskii-86613
https://github.com/deepfakes/faceswap
Perov I., Gao D., Chervoniy N., Liu K., Marangonda S., Umé C., Mr. Dpfks, Facenheim C. S., RP L., Jiang J., Zhang S., Wu P., Zhou B., Zhang W. (2020). DeepFaceLab: A simple, flexible and extensible face swapping framework // https://arxiv.org/abs/2005.05535
https://github.com/iperov/DeepFaceLab
Siarohin A., Lathuilière S., Tulyakov S., Ricci E., Sebe N. (2020). First Order Motion Model for Image Animation // https://arxiv.org/abs/2003.00196
Ranftl R., Lasinger K., Hafner D., Schindler K., Koltun V. (2019). Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer // https://arxiv.org/abs/1907.01341
Esser P., Chiu J., Atighehchian P., Granskog J., Germanidis A. (2023). Structure and Content-Guided Video Synthesis with Diffusion Models // https://arxiv.org/abs/2302.03011
Runway Research (2023). Gen-2: The Next Step Forward for Generative AI. // https://research.runwayml.com/gen2
Clark A., Donahue J., Simonyan K. (2019). Adversarial Video Generation on Complex Datasets // https://arxiv.org/abs/1907.06571
Kahembwe E., Ramamoorthy S. (2019). Lower Dimensional Kernels for Video Discriminators // https://arxiv.org/abs/1912.08860
Singer U., Polyak A., Hayes T., Yin X., An J., Zhang S., Hu Q., Yang H., Ashual O., Gafni O., Parikh D., Gupta S., Taigman Y. (2022). Make-A-Video: Text-to-Video Generation without Text-Video Data // https://arxiv.org/abs/2209.14792
Hong W., Ding M., Zheng W., Liu X., Tang J. (2022). CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers // https://arxiv.org/abs/2205.15868
Khachatryan L., Movsisyan A., Tadevosyan V., Henschel R., Wang Z., Navasardyan S., Shi H. (2023). Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators // https://arxiv.org/abs/2303.13439
Luo Z., Chen D., Zhang Y., Huang Y., Wang L., Shen Y., Zhao D., Zhou J., Tan T. (2023). VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation // https://arxiv.org/abs/2303.08320
Храпов А. (2023). Диффузионная нейросеть ModelScope text2video 1.7B — создаём видео по текстовому описанию у себя дома. / Хабр, 23 мар 2023 // https://habr.com/ru/articles/724284/
Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html
Grout D. J., Palisca C. V. (2001). A History of Western Music. W. W. Norton & Company: New York // https://books.google.ru/books?id=OdGOPwAACAAJ
Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html
Grout D. J., Palisca C. V. (2001). A History of Western Music. W. W. Norton & Company: New York // https://books.google.ru/books?id=OdGOPwAACAAJ
Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html
* Здесь — полифонический приём преобразования нотной последовательности, заключающийся в воспроизведении её интервалов в противоположном направлении от некоего неизменяющегося звука: восходящему ходу в основном (прямом) движении партии в обратном движении соответствует ход на такой же интервал вниз, и наоборот.
Grout D. J., Palisca C. V. (2001). A History of Western Music. W. W. Norton & Company: New York // https://books.google.ru/books?id=OdGOPwAACAAJ
Alpern A. (1995). Techniques for algorithmic composition of music // http://alum.hampshire.edu/~adaF92/algocomp/algocomp95.html
Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html
Alpern A. (1995). Techniques for algorithmic composition of music // http://alum.hampshire.edu/~adaF92/algocomp/algocomp95.html
Хаскинс Р. (2016). Быть Джоном Кейджем. Американский «плодотворный анархизм»: танец души / Гефтер, 18.05.2016 // http://gefter.ru/archive/18580
Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html
Matossian N. (1986). Xenakis. London: Kahn and Averill // https://books.google.ru/books?id=Aj8IAQAAMAAJ
Varga B. A., Xenakis I. (1996). Conversations with Iannis Xenakis. London: Faber and Faber // https://books.google.ru/books?id=SD1iQgAACAAJ
Matossian N. (1986). Xenakis. London: Kahn and Averill // https://books.google.ru/books?id=Aj8IAQAAMAAJ
Varga B. A., Xenakis I. (1996). Conversations with Iannis Xenakis. London: Faber and Faber // https://books.google.ru/books?id=SD1iQgAACAAJ
Ферапонтова Е. В. (2004). Ксенакис Янис / Большая российская энциклопедия // https://bigenc.ru/music/text/2638850
Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html
Eck D., Schmidhuber J. (2002). A First Look at Music Composition using LSTM Recurrent Neural Networks. Technical Report No. IDSIA-07-02 // http://people.idsia.ch/~juergen/blues/IDSIA-07-02.pdf
Eck D., Lapalme J. (2006). Learning musical structure directly from sequences of music. Technical report, University of Montreal // http://www.iro.umontreal.ca/~eckdoug/papers/tr1300.pdf
Correa D., Saito J., Abib S. (2008). Composing music with BPTT and LSTM networks: Comparing learning and generalization aspects / Proceedings of 2008 11th IEEE International Conference on Computational Science and Engineering — Workshops, pp. 95—100 // 10.1109/CSEW.2008.69
Sturm B. L., Santos J. F., Korshunova I. (2015). Folk music style modelling by recurrent neural networks with long short term memory units // https://ismir2015.ismir.net/LBD/LBD13.pdf
Callahan D. (2018). AI created more than 100,000 pieces of music after analyzing Irish and English folk tunes / KTH Royal Institute of Technology. News & events // https://www.kth.se/en/aktuellt/nyheter/ai-created-more-than-100-000-pieces-of-music-after-analyzing-irish-and-english-folk-tunes-1.845897
Hadjeres G., Pachet F., Nielsen F. (2017). DeepBach: a Steerable Model for Bach Chorales Generation // https://arxiv.org/abs/1612.01010
Morgen O. (2016). C-RNN-GAN: Continuous recurrent neural networks with adversarial training // https://arxiv.org/abs/1611.09904
Yang L.-C., Chou S.-Y., Yang Y.-H. (2017). MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation // https://arxiv.org/abs/1703.10847
Waite E. (2016). Generating Long-Term Structure in Songs and Stories // https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn/
Chu H., Urtasun R., Fidler S. (2016). Song From PI: A Musically Plausible Network for Pop Music Generation // https://arxiv.org/abs/1611.03477
Roberts A., Engel J., Raffel C., Hawthorne C., Eck D. (2018). A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music // https://arxiv.org/abs/1803.05428
Kotecha N., Young P. (2018). Generating Music using an LSTM Network // https://arxiv.org/abs/1804.07300
Dong H.-W., Hsiao W.-Y., Yang L.-C., Yang Y.-H. (2017). MuseGAN: Symbolic-domain music generation and accompaniment with multitrack sequential generative adversarial networks // https://arxiv.org/abs/1709.06298
Wu J., Hu C., Wang Y., Hu X., Zhu J. (2017). A Hierarchical Recurrent Neural Network for Symbolic Melody Generation // https://arxiv.org/abs/1712.05274
Simon I., Oore S. (2017). Performance RNN: Generating music with expressive timing and dynamics // https://magenta.tensorflow.org/performance-rnn
Colombo F., Gerstner W. (2018). BachProp: Learning to Compose Music in Multiple Styles // https://arxiv.org/abs/1802.05162
Нейросеть Яндекса создала музыку в стиле Скрябина (2017) / Викиновости, 30 мая 2017 // https://ru.wikinews.org/wiki/Нейросеть_Яндекса_создала_музыку_в_стиле_Скрябина
Камерный оркестр исполнил музыку, написанную нейросетью «Яндекса» под Скрябина (2017) / Meduza, 30 мая 2017 // https://meduza.io/shapito/2017/05/30/kamernyy-orkestr-ispolnil-muzyku-napisannuyu-neyrosetyu-yandeksa-pod-skryabina
Yamshchikov I. P., Tikhonov A. (2018). I Feel You: What makes algorithmic experience personal? / EVA Copenhagen 2018, Politics of the Machines — Art and After, Aalborg University, Copenhagen, Denmark, 15—17 May 2018 // https://doi.org/10.14236/ewic/EVAC18.32
Yamshchikov I. P., Tikhonov A. (2017). Music generation with variational recurrent autoencoder supported by history // https://arxiv.org/abs/1705.05458
Ализар А. (2019). Нейросеть «Яндекса» стала соавтором пьесы для альта с оркестром / Хабр, 22 февраля // https://habr.com/ru/post/441286/
Иванов С. М. (2018). Нейросетевая Генерация Музыки. Выпускная квалификационная работа. Московский государственный университет имени М.В. Ломоносова. Факультет вычислительной математики и кибернетики. Кафедра математических методов прогнозирования // http://www.machinelearning.ru/wiki/images/2/2c/2018_417_IvanovSM.pdf
AI-generated music challenge // https://www.crowdai.org/challenges/ai-generated-music-challenge
Huang C.-Z. A., Vaswani A., Uszkoreit J., Shazeer N., Simon I., Hawthorne C., Dai A. M., Hoffman M. D., Dinculescu M., Eck D. (2018). Music Transformer // https://arxiv.org/abs/1809.04281
Piano-e-Competition dataset (competition history): http://www.piano-e-competition.com/
Huang Y.-S., Yang Y.-H. (2020). Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions // https://arxiv.org/abs/2002.00212
Hawthorne C., Stasyuk A., Roberts A., Simon I., Huang C.-Z. A., Dieleman S., Elsen E., Engel J., Eck D. (2019). Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset / In International Conference on Learning Representations // https://openreview.net/forum?id=r1lYRjC9F7
Payne C. M. (2019). MuseNet / OpenAI blog, April 25, 2019 // https://openai.com/blog/musenet/
Deahl D. (2019). Warner music signed an algorithm to a record deal — what happens next? / The Verge, Mar 27, 2019 // https://www.theverge.com/2019/3/27/18283084/warner-music-algorithm-signed-ambient-music-endel
Минин А. (2022). Маэстро: как виртуальные ассистенты Салют превращают текст в музыку / Хабр, 23 декабря 2022 // https://habr.com/ru/companies/sberdevices/articles/707138/
Минин А. (2021). SymFormer: как мы написали музыку с помощью трансформеров и вариационных автоэнкодеров / Хабр, 25 ноября 2021 // https://habr.com/ru/companies/sberdevices/articles/591441/
Aiphoria (2024) // https://zvuk.com/artist/211304339
ИИ впервые в мире солировал на концерте ВЭФ во Владивостоке // https://ria.ru/20230910/kontsert-1895341104.html
Dhariwal P., Jun H., Payne C. M., Kim J. W., Radford A., Sutskever I. (2020). Jukebox / OpenAI blog, April 30, 2020 // https://openai.com/blog/jukebox/
Dhariwal P., Jun H., Payne C., Kim J. W., Radford A., Sutskever I. (2020). Jukebox: A Generative Model for Music // https://arxiv.org/abs/2005.00341
Agostinelli A., Denk T. I., Borsos Z., Engel J., Verzetti M., Caillon A., Huang Q., Jansen A., Roberts A., Tagliasacchi M., Sharifi M., Zeghidour N., Frank C. (2023). MusicLM: Generating Music From Text // https://arxiv.org/abs/2301.11325
Ni M., Huang H., Su L., Cui E., Bharti T., Wang L., Gao J., Zhang D., Duan N. (2020). M3P: Learning Universal Representations via Multitask Multilingual Multimodal Pre-training // https://arxiv.org/abs/2006.02635
Reed S., Zolna K., Parisotto E., Colmenarejo S. G., Novikov A., Barth-Maron G., Gimenez M., Sulsky Y., Kay J., Springenberg J. T., Eccles T., Bruce J., Razavi A., Edwards A., Heess N., Chen Y., Hadsell R., Vinyals O., Bordbar M., de Freitas N. (2022). A Generalist Agent // https://arxiv.org/abs/2205.06175
Chen X., Wang X., Changpinyo S., Piergiovanni A., Padlewski P., Salz D., Goodman S., Grycner A., Mustafa B., Beyer L., Kolesnikov A., Puigcerver J., Ding N., Rong K., Akbari H., Mishra G., Xue L., Thapliyal A., Bradbury J., Kuo W., Seyedhosseini M., Jia C., Ayan B. K., Riquelme C., Steiner A., Angelova A., Zhai X., Houlsby N., Soricut R. (2022). PaLI: A Jointly-Scaled Multilingual Language-Image Model // https://arxiv.org/abs/2209.06794
Driess D., Xia F., Sajjadi M. S. M., Lynch C., Chowdhery A., Ichter B., Wahid A., Tompson J., Vuong Q., Yu T., Huang W., Chebotar Y., Sermanet P., Duckworth D., Levine S., Vanhoucke V., Hausman K., Toussaint M., Greff K., Zeng A., Mordatch I., Florence P. (2023). PaLM-E: An Embodied Multimodal Language Model // https://arxiv.org/abs/2303.03378
Brohan A., Brown N., Carbajal J., Chebotar Y., Dabis J., Finn C., Gopalakrishnan K., Hausman K., Herzog A., Hsu J., Ibarz J., Ichter B., Irpan A., Jackson T., Jesmonth S., Joshi N. J., Julian R., Kalashnikov D., Kuang Y., Leal I., Lee K., Levine S., Lu Y., Malla U., Manjunath D., Mordatch I., Nachum O., Parada C., Peralta J., Perez E., Pertsch K., Quiambao J., Rao K., Ryoo M., Salazar G., Sanketi P., Sayed K., Singh J., Sontakke S., Stone A., Tan C., Tran H., Vanhoucke V., Vega S., Vuong Q., Xia F., Xiao T., Xu P., Xu S., Yu T., Zitkovich B. (2022). RT-1: Robotics Transformer for Real-World Control at Scale // https://arxiv.org/abs/2212.06817
Brohan A., Brown N., Carbajal J., Chebotar Y., Chen X., Choromanski K., Ding T., Driess D., Dubey A., Finn C., Florence P., Fu C., Arenas M. G., Gopalakrishnan K., Han K., Hausman K., Herzog A., Hsu J., Ichter B., Irpan A., Joshi N., Julian R., Kalashnikov D., Kuang Y., Leal I., Lee L., Lee T. E., Levine S., Lu Y., Michalewski H., Mordatch I., Pertsch K., Rao K., Reymann K., Ryoo M., Salazar G., Sanketi P., Sermanet P., Singh J., Singh A., Soricut R., Tran H., Vanhoucke V., Vuong Q., Wahid A., Welker S., Wohlhart P., Wu J., Xia F., Xiao T., Xu P., Xu S., Yu T., Zitkovich B. (2023). RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control // https://arxiv.org/abs/2307.15818
Vuong Q., Sanketi P. (2023). Scaling up learning across many different robot types / DeepMind blog, October 3, 2023 // https://www.deepmind.com/blog/scaling-up-learning-across-many-different-robot-types
Koh J. Y., Salakhutdinov R., Fried D. (2023). Grounding Language Models to Images for Multimodal Inputs and Outputs // https://arxiv.org/abs/2301.13823
Bai J., Bai S., Yang S., Wang S., Tan S., Wang P., Lin J., Zhou C., Zhou J. (2023). Qwen-VL: A Frontier Large Vision-Language Model with Versatile Abilities // https://arxiv.org/abs/2308.12966
Huang S., Dong L., Wang W., Hao Y., Singhal S., Ma S., Lv T., Cui L., Mohammed O. K., Patra B., Liu Q., Aggarwal K., Chi Z., Bjorck J., Chaudhary V., Som S., Song X., Wei F. (2023). Language Is Not All You Need: Aligning Perception with Language Models // https://arxiv.org/abs/2302.14045
Peng Z., Wang W., Dong L., Hao Y., Huang S., Ma S., Wei F. (2023). Kosmos-2: Grounding Multimodal Large Language Models to the World // https://arxiv.org/abs/2306.14824
Jaegle A., Gimeno F., Brock A., Zisserman A., Vinyals O., Carreira J. (2021). Perceiver: General Perception with Iterative Attention // https://arxiv.org/abs/2103.03206
Carreira J., Koppula S., Zoran D., Recasens A., Ionescu C., Henaff O., Shelhamer E., Arandjelovic R., Botvinick M., Vinyals O., Simonyan K., Zisserman A., Jaegle A. (2022). Hierarchical Perceiver // https://arxiv.org/abs/2202.10890
Mak K.-R., Pichika M. R. (2019). Artificial intelligence in drug development: present status and future prospects / Drug Discovery Today, Vol. 24, Iss. 3, March 2019, pp. 773—780 // https://doi.org/10.1016/j.drudis.2018.11.014
Fleming N. (2018). How artificial intelligence is changing drug discovery / Nature, Vol. 557, S55-S57 (2018) // https://doi.org/10.1038/d41586-018-05267-x
Grand G. (2020). Training Transformers for Practical Drug Discovery with Tensor2Tensor / Reverie Labs Engineering Blog, Apr 20, 2020 // https://blog.reverielabs.com/transformers-for-drug-discovery/
Artificial Intelligence (AI) in Drug Discovery Market (2019). Report Code: HIT 7445 / MarketsAndMarkets, Nov 2019 // https://www.marketsandmarkets.com/Market-Reports/ai-in-drug-discovery-market-151193446.html
Oganov A. R., Glass C. W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications / Journal of Chemical Physics, Vol. 124, p. 244704 // https://doi.org/10.1063/1.2210932
USPEX Computational Materials Discovery // https://uspex-team.org/
Oganov A. R., Chen J., Gatti C., Ma Y.-Z., Ma Y.-M., Glass C. W., Liu Z., Yu T., Kurakevych O. O., Solozhenko V. L. (2009). Ionic high-pressure form of elemental boron / Nature, Vol. 457, pp. 863—867 // https://doi.org/10.1038/nature07736
Ma Y., Eremets M. I., Oganov A. R., Xie Y., Trojan I., Medvedev S., Lyakhov A. O., Valle M., Prakapenka V. (2009). Transparent dense sodium / Nature, Vol. 458, pp. 182—185 // https://doi.org/10.1038/nature07786
Li Q., Ma Y., Oganov A. R., Wang H., Wang H., Xu Y., Cui T., Mao H.-K., Zou G. (2009). Superhard monoclinic polymorph of carbon / Physical Review Letters, Vol. 102, p. 175506 // https://doi.org/10.1103/physrevlett.102.175506
Dong X., Oganov A. R., Goncharov A. F., Stavrou E., Lobanov S., Saleh G., Qian G. R., Zhu Q., Gatti C., Deringer V. L., Dronskowski R., Zhou X. F., Prakapenka V. B., Konôpková Z., Popov I. A., Boldyrev A. I., Wang H. T. (2017). A stable compound of helium and sodium at high pressure / Nature Chemistry, Vol. 9, pp. 440—445 // https://doi.org/10.1038/nchem.2716
Zhang W. W., Oganov A. R., Goncharov A. F., Zhu Q., Boulfelfel S. E., Lyakhov A. O., Stavrou E., Somayazulu M., Prakapenka V. B., Konopkova Z. (2013). Unexpected stoichiometries of stable sodium chlorides / Science, Vol. 342, pp. 1502—1505 // https://doi.org/10.1126/science.1244989
Callaway E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures / Nature, Vol. 588, pp. 203—204 // https://doi.org/10.1038/d41586-020-03348-4
Baek M., DiMaio F., Anishchenko I., Dauparas J., Ovchinnikov S., Lee G. R., Wang J., Cong Q., Kinch L. N., Schaeffer R. D., Millán C., Park H., Adams C., Glassman C. R., DeGiovanni A., Pereira J. H., Rodrigues A. V., van Dijk A. A., Ebrecht A. C., Opperman D. J., Sagmeister T., Buhlheller C., Pavkov-Keller T., Rathinaswamy M. K., Dalwadi U., Yip C. K., Burke J. E., Garcia K. C., Grishin N. V., Adams P. D., Read R. J., Baker D. (2021). Accurate prediction of protein structures and interactions using a 3-track network // https://www.biorxiv.org/content/10.1101/2021.06.14.448402v1
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Hassabis D. (2021). Highly accurate protein structure prediction with AlphaFold / Nature, 15 July 2021 // https://doi.org/10.1038/s41586-021-03819-2
Ford C. T. (2021). Protein Structure Prediction of the new B.1.1.529 SARS-CoV-2 Spike Variant with AlphaFold2 / Colby T. Ford, PhD, Nov 27, 2021 // https://colbyford.medium.com/protein-structure-prediction-of-b-1-1-529-sars-cov-2-spike-variant-with-alphafold2-39c5bf9cf9ed
Ford C. T., Machado D. J., Janies D. A. (2021). Predictions of the SARS-CoV-2 Omicron Variant (B.1.1.529) Spike Protein Receptor-Binding Domain Structure and Neutralizing Antibody Interactions // https://doi.org/10.1101/2021.12.03.471024
Simonite T. (2022). This AI Software Nearly Predicted Omicron’s Tricky Structure / Wired, 01.10.2022 // https://www.wired.com/story/ai-software-nearly-predicted-omicrons-tricky-structure/
Hassabis D. (2022). AlphaFold reveals the structure of the protein universe / DeepMind blog, July 28, 2022 // https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe
Jiang J. W., Songhori E., Wang S., Lee Y.-J., Johnson E., Pathak O., Nazi A., Pak J., Tong A., Srinivasa K., Hang W., Tuncer E., Le Q. V., Laudon J., Ho R., Carpenter R., Dean J. (2021). A graph placement methodology for fast chip design / Nature, Vol. 594, pp. 207—212 // https://doi.org/10.1038/s41586-021-03544-w
Gershgorn D. (2017). DeepMind has a bigger plan for its newest Go-playing AI / Quartz, October 18, 2017 // https://qz.com/1105509/deepminds-new-alphago-zero-artificial-intelligence-is-ready-for-more-than-board-games/
Ren F., Ward L., Williams T., Laws K. J., Wolverton C., Hattrick-Simpers J., Mehta A. (2018). Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments / Science Advances, Vol. 4, No. 4 // https://doi.org/10.1126/sciadv.aaq1566
Hornby G. S., Globus A., Linden D. S., Lohn J. D. (2006). Automated antenna design with evolutionary algorithms // https://doi.org/10.2514/6.2006-7242
Robinson A. (2019). Sketch2code: Generating a website from a paper mockup // https://arxiv.org/abs/1905.13750
Dosovitskiy A., Springenberg J. T., Tatarchenko M., Brox T. (2014). Learning to Generate Chairs, Tables and Cars with Convolutional Networks // https://arxiv.org/abs/1411.5928
Spilka D. (2018). What Does AI mean for Interior Design? / MIPIM World Blog, May 3, 2018 // https://blog.mipimworld.com/innovation/ai-artificial-intelligence-mean-interior-design/
Злобин А. (2020). Студия Лебедева больше года выдавала искусственный интеллект за реального дизайнера / Forbes, 26.06.2020 // https://www.forbes.ru/newsroom/tehnologii/403795-studiya-lebedeva-bolshe-goda-vydavala-iskusstvennyy-intellekt-za-realnogo
Jin H., Song Q., Hu X. (2018). Auto-Keras: An Efficient Neural Architecture Search System // https://arxiv.org/abs/1806.10282
Zoph B., Le Q. V. (2016). Neural Architecture Search with Reinforcement Learning // https://arxiv.org/abs/1611.01578
Kaiser L., Gomez A. N., Shazeer N., Vaswani A., Parmar N., Jones L., Uszkoreit J. (2017). One Model To Learn Them All // https://arxiv.org/abs/1706.05137
Howard A., Sandler M., Chu G., Chen L.-C., Chen B., Tan M., Wang W., Zhu Y., Pang R., Vasudevan V., Le Q. V., Adam H. (2019). Searching for MobileNetV3 // https://arxiv.org/abs/1905.02244v5
Xiong Y., Liu H., Gupta S., Akin B., Bender G., Kindermans P.-J., Tan M., Singh V., Chen B. (2020). MobileDets: Searching for Object Detection Architectures for Mobile Accelerators // https://arxiv.org/abs/2004.14525v2
Ahmad W. U., Chakraborty S., Ray B., Chang K.-W. (2021). Unified Pre-training for Program Understanding and Generation // https://arxiv.org/abs/2103.06333
Lewis M., Liu Y., Goyal N., Ghazvininejad M., Mohamed A., Levy O., Stoyanov V., Zettlemoyer L. (2019). BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension // https://arxiv.org/abs/1910.13461
Feng Z., Guo D., Tang D., Duan N., Feng X., Gong M., Shou L., Qin B., Liu T., Jiang D., Zhou M. (2020). CodeBERT: A Pre-Trained Model for Programming and Natural Languages // https://arxiv.org/abs/2002.08155
Svyatkovskiy A., Deng S. K., Fu S., Sundaresan N. (2020). IntelliCode Compose: Code Generation Using Transformer // https://arxiv.org/abs/2005.08025
Alon U., Zilberstein M., Levy O., Yahav E. (2018). code2vec: Learning Distributed Representations of Code // https://arxiv.org/abs/1803.09473
kite. Code Faster. Stay in Flow // https://www.kite.com/
TabNine. Code faster with AI completions // https://www.tabnine.com/
Copilot. Your AI pair programmer // https://copilot.github.com/
Li Y., Choi D., Chung J., Kushman N., Schrittwieser J., Leblond R., Eccles T., Keeling J., Gimeno F., Lago A. D., Hubert T., Choy P., de Masson d’Autume C., Babuschkin I., Chen X., Huang P.-S., Welbl J., Gowal S., Cherepanov A., Molloy J., Mankowitz D. J., Robson E. S., Kohli P., de Freitas N., Kavukcuoglu K., Vinyals O. (2022). Competition-Level Code Generation with AlphaCode // https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
Perez L., Ottens L., Viswanathan S. (2021). Automatic Code Generation using Pre-Trained Language Models // https://arxiv.org/abs/2102.10535
Langston J. (2021). From conversation to code: Microsoft introduces its first product features powered by GPT-3 / Microsoft/The AI Blog, May 25, 2021 // https://blogs.microsoft.com/ai/from-conversation-to-code-microsoft-introduces-its-first-product-features-powered-by-gpt-3/
Hasan M., Mehrab K. S., Ahmad W. U., Shahriyar R. (2021). Text2App: A Framework for Creating Android Apps from Text Descriptions // https://arxiv.org/abs/2104.08301
Lin G., Wen S., Han Q.-L., Zhang J., Xiang Y. (2020). Software Vulnerability Detection Using Deep Neural Networks: A Survey / Proceedings of the IEEE, Vol. 108, Iss. 10, pp. 1825—1848 // https://doi.org/10.1109/JPROC.2020.2993293
Wu J. (2021). Literature review on vulnerability detection using NLP technology // https://arxiv.org/abs/2104.11230
Ziems N., Wu S. (2021). Security Vulnerability Detection Using Deep Learning Natural Language Processing // https://arxiv.org/abs/2105.02388
Fried D., Aghajanyan A., Lin J., Wang S., Wallace E., Shi F., Zhong R., Yih W.-T., Zettlemoyer L., Lewis M. (2022). InCoder: A Generative Model for Code Infilling and Synthesis // https://arxiv.org/abs/2204.05999
Nijkamp E., Pang B., Hayashi H., Tu L., Wang H., Zhou Y., Savarese S., Xiong C. (2022). CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis // https://arxiv.org/abs/2203.13474
Allal L. B., Li R., Kocetkov D., Mou C., Akiki C., Ferrandis C. M., Muennighoff N., Mishra M., Gu A., Dey M., Umapathi L. K., Anderson C. J., Zi Y., Poirier J. L., Schoelkopf H., Troshin S., Abulkhanov D., Romero M., Lappert M., Toni F. D., de Río B. G., Liu Q., Bose S., Bhattacharyya U., Zhuo T. Y., Yu I., Villegas P., Zocca M., Mangrulkar S., Lansky D., Nguyen H., Contractor D., Villa L., Li J., Bahdanau D., Jernite Y., Hughes S., Fried D., Guha A., de Vries H., von Werra L. (2023). SantaCoder: don't reach for the stars! // https://arxiv.org/abs/2301.03988
Li R., Allal L. B., Zi Y., Muennighoff N., Kocetkov D., Mou C., Marone M., Akiki C., Li J., Chim J., Liu Q., Zheltonozhskii E., Zhuo T. Y., Wang T., Dehaene O., Davaadorj M., Lamy-Poirier J., Monteiro J., Shliazhko O., Gontier N., Meade N., Zebaze A., Yee M., Umapathi L. K., Zhu J., Lipkin B., Oblokulov M., Wang Z., Murthy R., Stillerman J., Patel S. S., Abulkhanov D., Zocca M., Dey M., Zhang Z., Fahmy N., Bhattacharyya U., Yu W., Singh S., Luccioni S., Villegas P., Kunakov M., Zhdanov F., Romero M., Lee T., Timor N., Ding J., Schlesinger C., Schoelkopf H., Ebert J., Dao T., Mishra M., Gu A., Robinson J., Anderson C. J., Dolan-Gavitt B., Contractor D., Reddy S., Fried D., Bahdanau D., Jernite Y., Ferrandis C. M., Hughes S., Wolf T., Guha A., von Werra L., de Vries H. (2023). StarCoder: may the source be with you! // https://arxiv.org/abs/2305.06161
Rozière B., Gehring J., Gloeckle F., Sootla S., Gat I., Tan X. E., Adi Y., Liu J., Remez T., Rapin J., Kozhevnikov A., Evtimov I., Bitton J., Bhatt M., Ferrer C. C., Grattafiori A., Xiong W., Défossez A., Copet J., Azhar F., Touvron H., Martin L., Usunier N., Scialom T., Synnaeve G. (2023). Code Llama: Open Foundation Models for Code // https://arxiv.org/abs/2308.12950
Luo Z., Xu C., Zhao P., Sun Q., Geng X., Hu W., Tao C., Ma J., Lin Q., Jiang D. (2023). WizardCoder: Empowering Code Large Language Models with Evol-Instruct // https://arxiv.org/abs/2306.08568
Replit, Inc. (2023). replit-code-v1-3b // https://huggingface.co/replit/replit-code-v1-3b
Эссас Э. (2001). О Трактате Санѓедрин / Еврейский сайт из Ерусалима. Ежедневный лист Талмуда // https://evrey.com/sitep/talm/index.php3?trkt=list&menu=37_43
סודי רזיא - אלעזר בן יהודה, מגרמיזה / HebrewBooks.org // https://www.hebrewbooks.org/pdfpager.aspx?req=39230&st=&pgnum=18
Kerstein B. (2010). The Golem: Universal and Particular / Jewish Ideas Daily, September 14, 2010 // https://www.jewishideasdaily.com/718/features/the-golem-universal-and-particular/
Zucker R. (2011). “Sefer Yetsirah” and Jewish Mysiticsm Time Line // http://www.emol.org/kabbalah/seferyetzirah/timeline/16to20thcentury.html
Blau L., Jacobs J., Eisenstein J. D. (1906). Golem / Jewish Encyclopedia // http://jewishencyclopedia.com/articles/6777-golem
Shashkevich A. (2019). Greek myths have some scary ideas about robots and A.I / Futurity, March 5th, 2019 // https://www.futurity.org/artificial-intelligence-greek-myths-1999792/
Mayor A. (2020). Gods and Robots: Myths, Machines, and Ancient Dreams of Technology. Princeton University Press // https://books.google.ru/books?id=2cy4DwAAQBAJ
Thornton R. (1847). The Age of Machinery / Primitive Expounder, Devoted to Theoretical and Practical Religion, Expounded in Its Primitive Purity, Excellence and Loveliness by R. Thornton & J. Billings, Vol. 4 // https://books.google.ru/books?id=ZM_hAAAAMAAJ
Рассел С. (2021). Совместимость: как контролировать искусственный интеллект. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=OacEEAAAQBAJ
Cellarius (1863). Darwin Among the Machines[To the Editor of the Press, Christchurch, New Zealand, 13 June, 1863.] // http://nzetc.victoria.ac.nz/tm/scholarly/tei-ButFir-t1-g1-t1-g1-t4-body.html
Butler S. (2017). Erewhon, Or Over the Range. CreateSpace Independent Publishing Platform // https://books.google.ru/books?id=d6x9tAEACAAJ
Butler S. (2019). Erewhon Revisited Twenty Years Later, Both by the Original Discoverer of the Country and by His Son. Good Press // https://books.google.ru/books?id=8sPCDwAAQBAJ
Hsu S. (2016). The Butlerian Jihad and Darwin among the Machines / Michigan State University, Spartan Ideas, March 29, 2016 // https://spartanideas.msu.edu/2016/03/29/8624/
Turing A. (1951). Intelligent Machinery, A Heretical Theory // http://www.turingarchive.org/browse.php/B/4
Russell S. (2019). Human Compatible: AI and the Problem of Control. Penguin UK // https://books.google.ru/books?id=Gg-TDwAAQBAJ
Turing A. (1951). Intelligent Machinery, A Heretical Theory / Copeland J. B. (2004). The Essential Turing: The ideas that gave birth to the computer age. Clarendon Press // https://books.google.ru/books?id=VlC5MkVIwqkC
Рассел С. (2021). Совместимость: как контролировать искусственный интеллект. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=OacEEAAAQBAJ
Cellan-Jones R. (2014). Stephen Hawking warns artificial intelligence could end mankind / BBC News, 2 December 2014 // https://www.bbc.com/news/technology-30290540
Bostrom N. (2003). Ethical Issues in Advanced Artificial Intelligence / Cognitive, Emotive and Ethical Aspects of Decision Making in Humans and in Artificial Intelligence (2003), Vol. 2, International Institute of Advanced Studies in Systems Research and Cybernetics, pp. 12—17 // https://books.google.ru/books?id=BLdBAAAACAAJ, https://nickbostrom.com/ethics/ai.html
Mack E. (2014). Elon Musk worries Skynet is only five years off / c|net, Nov. 19, 2014 // https://www.cnet.com/news/elon-musk-worries-skynet-is-only-five-years-off/
McFarland M. (2014). Elon Musk: ‘With artificial intelligence we are summoning the demon.’ / The Washington Post, Oct. 24, 2014 // https://www.washingtonpost.com/news/innovations/wp/2014/10/24/elon-musk-with-artificial-intelligence-we-are-summoning-the-demon/
Gibbs S. (2014). Elon Musk: artificial intelligence is our biggest existential threat / The Guardian, 27 Oct 2014 // https://www.theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat
Shahrad C. (2011). Transgressive Man / Think With Google // https://www.thinkwithgoogle.com/future-of-marketing/emerging-technology/transgressive-man/
Hibbard B. (2006). Re:[agi] the Singularity Summit and regulation of AI / SL4, Thu May 11 2006 - 06:00:24 MDT // http://sl4.org/archive/0605/14856.html
Hibbard B. (2003). RE: SIAI's flawed friendliness analysis / SL4, 26 May 2003 16:43:42 -0500 (CDT) // https://www.ssec.wisc.edu/~billh/g/message6.txt
Claiborne W. (1998). Unabomber Special Report. The Washington Post Company // https://www.washingtonpost.com/wp-srv/national/longterm/unabomber/manifesto.text.htm
Joy B. (2000). Why the Future Doesn't Need Us / Wired, 04.01.2000 // https://www.wired.com/2000/04/joy-2/
Game Thinking TV (2023). Gödel, Escher, Bach author Doug Hofstadter on the state of AI today // https://www.youtube.com/watch?v=lfXxzAVtdpU
Карелов С. (2023). Это цунами, заставшее человечество врасплох / Facebook, 5 июля 2023 // https://www.facebook.com/sergey.karelov.5/posts/pfbid02429bkCkCsNtkYBdwJcETXhpHRoZNLhQPfCehF7xbLk6gxjjUcQgd1kyioBWR7XGxl
Future of Life Institute (2023). Pause Giant AI Experiments: An Open Letter // https://futureoflife.org/open-letter/pause-giant-ai-experiments/
Future of Life Institute (2017). Принципы работы с ИИ, разработанные на Асиломарской конференции. // https://futureoflife.org/open-letter/ai-principles-russian/
Center for AI safety (2023). Statement on AI Risk // https://www.safe.ai/statement-on-ai-risk
Hinton G. (2023) / Twitter // https://twitter.com/geoffreyhinton/status/1652993570721210372
Hinton G. (2023) / Twitter // https://twitter.com/geoffreyhinton/status/1654474560962457601
Yudkowsky E. (2023). Pausing AI Developments Isn't Enough. We Need to Shut it All Down / Time, March 29, 2023 // https://time.com/6266923/ai-eliezer-yudkowsky-open-letter-not-enough/
Edwards B. (2023). Snoop Dogg on AI risk: “Sh–, what the f—?” / Ars Technica, 5/4/2023 // https://arstechnica.com/information-technology/2023/05/snoop-dogg-on-ai-risk-sh-what-the-f/
Мартынова П. (2023). Шварценеггер заявил, что «Терминатор» стал реальностью / РБК, 02 июля 2023 // https://www.rbc.ru/society/02/07/2023/64a14e7d9a79477d361eaa80
Garling C. (2015). Andrew Ng: Why ‘Deep Learning’ Is a Mandate for Humans, Not Just Machines / Wired // https://www.wired.com/brandlab/2015/05/andrew-ng-deep-learning-mandate-humans-not-just-machines/
Ng A. (2023) / Twitter // https://twitter.com/AndrewYNg/status/1663584330751561735
Vincent J. (2017). Facebook’s head of AI wants us to stop using the Terminator to talk about AI / The Verge, Oct 26, 2017 // https://www.theverge.com/2017/10/26/16552056/a-intelligence-terminator-facebook-yann-lecun-interview
* Думер (от англ. doom — злой рок, катастрофа, гибель) — человек, пессимистично смотрящий в будущее, считающий, что человечество по той или иной причине обречено; ИИ-думерами [AI doomers] иронично называют сторонников идеи о том, что развитие технологий ИИ неизбежно приведёт к гибели человечества или по крайней мере нанесёт ему тяжкий вред.
LeCun Y. (2023) / Twitter // https://twitter.com/ylecun/status/1659330738553081857
LeCun Y., Ng A. (2023). Yann LeCun and Andrew Ng: Why the 6-month AI Pause is a Bad Idea // https://www.youtube.com/watch?v=BY9KV8uCtj4
Knight W. (2016). Will Machines Eliminate Us? / MIT Technology Review, January 29, 2016 // https://www.technologyreview.com/2016/01/29/162084/will-machines-eliminate-us/
Etzioni O. (2014). It’s Time to Intelligently Discuss Artificial Intelligence / Medium, Dec 9, 2014 // https://medium.com/backchannel/ai-wont-exterminate-us-it-will-empower-us-5b7224735bf3
Out of control AI will not kill us, believes Microsoft Research chief (2015) / BBC News, 28 January 2015 // https://www.bbc.com/news/technology-31023741
Wong M. (2023). AI doomerism is a decoy. / The Atlantic, June 2, 2023. // https://www.theatlantic.com/technology/archive/2023/06/ai-regulation-sam-altman-bill-gates/674278/
Field H. (2023). A.I. doomers are a ‘cult’ — here’s the real threat, according to Marc Andreessen. / CNBC, Jun 6 2023. // https://www.cnbc.com/2023/06/06/ai-doomers-are-a-cult-heres-the-real-threat-says-marc-andreessen.html
Andreessen M. (2023). Why AI Will Save The World. / Marc Andreessen Substack, 6 июня 2023. // https://pmarca.substack.com/p/why-ai-will-save-the-world
Лааксо П. (2023). «Не убийца, а всего лишь код, созданный и управляемый человеком»: сооснователь фонда Andreessen Horowitz о рисках ИИ. / vc.ru, 18 июня 2023. // https://vc.ru/future/730682-ne-ubiyca-a-vsego-lish-kod-sozdannyy-i-upravlyaemyy-chelovekom-soosnovatel-fonda-andreessen-horowitz-o-riskah-ii
Clifford C. (2017). Facebook CEO Mark Zuckerberg: Elon Musk’s doomsday AI predictions are ‘pretty irresponsible’ / CNBC, Jul 24 2017 // https://www.cnbc.com/2017/07/24/mark-zuckerberg-elon-musks-doomsday-ai-predictions-are-irresponsible.html
Metz C. (2015). Elon Musk's Billion-Dollar AI Plan Is About Far More Than Saving the World / Wired, 12.15.15 // https://www.wired.com/2015/12/elon-musks-billion-dollar-ai-plan-is-about-far-more-than-saving-the-world/
Joy B. (2000). Why the Future Doesn't Need Us / Wired, 04.01.2000 // https://www.wired.com/2000/04/joy-2/
Russell S. (2019). Human Compatible: AI and the Problem of Control. Penguin UK // https://books.google.ru/books?id=Gg-TDwAAQBAJ
Рассел С. (2021). Совместимость: как контролировать искусственный интеллект. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=OacEEAAAQBAJ
Bostrom N. (2014). Superintelligence. Oxford University Press // https://books.google.ru/books?id=7_H8AwAAQBAJ
Yampolskiy R. V. (2012). Leakproofing the Singularity: Artificial intelligence confinement problem / Journal of Consciousness Studies, Vol. 19 (1—2), pp. 194—214 // http://cecs.louisville.edu/ry/LeakproofingtheSingularity.pdf
Ямпольский Р. (2012). Герметизация сингулярности. Проблема ограничения свободы искусственного интеллекта / Пер. с англ. Горлова А. // https://22century.ru/popular-science-publications/leakproofing-the-singularity
Kosoff M. (2015). Elon Musk Is Donating $10 Million To Keep Killer Robots From Taking Over The World / Business Insider, Jan 15, 2015 // https://www.businessinsider.com/elon-musk-donates-10-million-to-the-future-of-life-institute-2015-1
Brockman G., Sutskever I. (2015). Introducing OpenAI / OpenAI Blog, December 11, 2015 // https://openai.com/blog/introducing-openai/
Danti A. (2015). Tech giants pledge $1bn for 'altruistic AI' venture, OpenAI / BBC News, 12 December 2015 // https://www.bbc.com/news/technology-35082344
Bass D. (2019). Microsoft to invest $1 billion in OpenAI / Los Angeles Times, 22 July 2019 // https://www.latimes.com/business/story/2019-07-22/microsoft-openai
Markoff J. (2015). Silicon Valley investors to bankroll artificial-intelligence center / The Seattle Times, 13 December 2015 // https://www.seattletimes.com/business/technology/silicon-valley-investors-to-bankroll-artificial-intelligence-center/
Etherington D. (2019). Microsoft invests $1 billion in OpenAI in new multiyear partnership / TechCrunch, July 22, 2019 // https://techcrunch.com/2019/07/22/microsoft-invests-1-billion-in-openai-in-new-multiyear-partnership/
Liedtke M. (2015). Elon Musk, Peter Thiel, Reid Hoffman, others back $1 billion OpenAI research center / San Jose Mercury News, December 15, 2015 // https://www.mercurynews.com/2015/12/15/elon-musk-peter-thiel-reid-hoffman-others-back-1-billion-openai-research-center/
Lewontin M. (2015). Open AI: Effort to democratize artificial intelligence research? / The Christian Science Monitor, December 14, 2015 // https://www.csmonitor.com/Technology/2015/1214/Open-AI-Effort-to-democratize-artificial-intelligence-research
Metz C. (2016). Inside OpenAI, Elon Musk's Wild Plan to Set Artificial Intelligence Free / Wired, 04.27.16 // https://www.wired.com/2016/04/openai-elon-musk-sam-altman-plan-to-set-artificial-intelligence-free/
Introducing OpenAI (2015) / OpenAI Blog, December 11, 2015 // https://openai.com/blog/introducing-openai/
Danti A. (2015). Tech giants pledge $1bn for 'altruistic AI' venture, OpenAI / BBC News, 12 December 2015 // https://www.bbc.com/news/technology-35082344
Smith G. W. (2018). Re: Sex-Bots—Let Us Look before We Leap / Arts, Vol. 7 (2) // https://doi.org/10.3390/arts7020015
Metz C. (2015). Elon Musk's Billion-Dollar AI Plan Is About Far More Than Saving the World / Wired, 12.15.15 // https://www.wired.com/2015/12/elon-musks-billion-dollar-ai-plan-is-about-far-more-than-saving-the-world/
Metz C. (2016). Inside OpenAI, Elon Musk's Wild Plan to Set Artificial Intelligence Free / Wired, 04.27.16 // https://www.wired.com/2016/04/openai-elon-musk-sam-altman-plan-to-set-artificial-intelligence-free/
OpenAI Licenses GPT-3 Technology to Microsoft (2020) / OpenAI Blog, September 22, 2020 // https://openai.com/blog/openai-licenses-gpt-3-technology-to-microsoft/
Urban T. (2017). Neuralink and the Brain’s Magical Future / Wait But Why, April 20, 2017 // https://waitbutwhy.com/2017/04/neuralink.html
Holley P. (2015). Bill Gates on dangers of artificial intelligence: ‘I don’t understand why some people are not concerned’ / The Washington Post, Jan. 29, 2015 // https://www.washingtonpost.com/news/the-switch/wp/2015/01/28/bill-gates-on-dangers-of-artificial-intelligence-dont-understand-why-some-people-are-not-concerned
Levy S. (2015). Bill Gates on Mobile Banking, Connecting the World and AI // https://medium.com/backchannel/bill-gates-on-mobile-banking-connecting-the-world-and-ai-937f35c8a110
Clifford C. (2017). Facebook CEO Mark Zuckerberg: Elon Musk’s doomsday AI predictions are ‘pretty irresponsible’ / CNBC, Jul 24 2017 // https://www.cnbc.com/2017/07/24/mark-zuckerberg-elon-musks-doomsday-ai-predictions-are-irresponsible.html
Junghanns A., Schaeffer J., Brockington M., Bjornsson Y., Marsland T. (1997). Diminishing Returns for Additional Search in Chess / Advances in Computer Chess, Vol. 8 // https://webdocs.cs.ualberta.ca/~jonathan/publications/ai_publications/dim.pdf
Станислав Лем: «Сложно удивляться тому, что мы страдаем от своего рода российского комплекса» (2006) // https://inosmi.ru/online/20060117/224888.html
Паевский А. (2018). Нобелевские лауреаты: Эгаш Мониш. «Отец» лоботомии. / Indicator, 06 июня 2018 // https://indicator.ru/medicine/egash-monish-lobotomiya.htm
* Алгоритмическое общество — общество, организованное вокруг принятия социальных и экономических решений с помощью алгоритмов, роботов и агентов искусственного интеллекта.
Аргонов В. (2014). 2032: Легенда о несбывшемся грядущем. / Complex Numbers: Электронная поп-музыка для интеллектуалов // https://complexnumbers.ru/2032/
Baase S. (2008). A Gift of Fire: Social, Legal, and Ethical Issues for Computing and the Internet. Pearson Prentice Hall // https://books.google.ru/books?id=GcBaS87q74gC
Leveson N. G., Turner C. S. (1993). An Investigation of the Therac-25 Accidents / IEEE Computer. Vol. 26, Iss. 7, pp. 18—41 // https://doi.org/10.1109/MC.1993.274940
Travis G. (2019). How the Boeing 737 Max Disaster Looks to a Software Developer // https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
Autonomous weapons: an open letter from AI & robotics researchers (2015) // https://futureoflife.org/open-letter-autonomous-weapons/
Gayle D. (2019). UK, US and Russia among those opposing killer robot ban / The Guardian, 29 Mar 2019 // https://www.theguardian.com/science/2019/mar/29/uk-us-russia-opposing-killer-robot-ban-un-ai
Fedasiuk R., Melot J., Murphy B. (2021). Harnessed Lightning. How the Chinese Military is Adopting Artificial Intelligence / // https://cset.georgetown.edu/publication/harnessed-lightning/
Urbina F., Lentzos F., Invernizzi C., Ekins S. (2022). Dual use of artificial-intelligence-powered drug discovery / Nature Machine Intelligence, Vol. 4, pp. 189—191 (2022) // https://doi.org/10.1038/s42256-022-00465-9
Shead S. (2021). UN talks to ban ‘slaughterbots’ collapsed — here’s why that matters / CNBC, Dec. 22, 2021 // https://www.cnbc.com/2021/12/22/un-talks-to-ban-slaughterbots-collapsed-heres-why-that-matters.html
Карелов С. (2021). Лицензия ИИ на убийство людей продлена на неограниченный срок // https://sergey-57776.medium.com/лицензия-ии-на-убийство-людей-продлена-на-неограниченный-срок-ae6eecba9417
Avery D. (2021). Drones packed with explosives may have 'hunted down' and attacked HUMANS for the first time without using a remote pilot to guide them / Daily Mail, 28 May 2021 // https://www.dailymail.co.uk/sciencetech/article-9629801/Fully-autonomous-drones-hunted-attacked-humans-time.html
Чоудхури Л. М. Р., Аун А., Бадауи Д., де Альбуркерке Бакардит Л. А., Марджан Я., Уилкинсон Э. (2021). Заключительный доклад Группы экспертов по Ливии, учреждённой резолюцией 1973 (2011) Совета Безопасности. S/2021/229 // https://undocs.org/ru/S/2021/229
Boulanin V., Verbruggen M. (2017). Mapping the development of autonomy in weapon systems. Stockholm International Peace Research Institute (SIPRI) // https://www.sipri.org/sites/default/files/2017-11/siprireport_mapping_the_development_of_autonomy_in_weapon_systems_1117_1.pdf
Haner J., Garcia D. (2019). The Artificial Intelligence Arms Race: Trends and World Leaders in Autonomous Weapons Development / Global Policy, Vol. 10, Iss. 3, September 2019 // https://doi.org/10.1111/1758-5899.12713
Dawes J. (2023). War in Ukraine accelerates global drive toward killer robots / The Conversation, February 21, 2023 // https://theconversation.com/war-in-ukraine-accelerates-global-drive-toward-killer-robots-198725
Swift J. (1729). A Modest Proposal for preventing the children of poor people in Ireland, from being a burden on their parents or country, and for making them beneficial to the publick // https://www.gutenberg.org/files/1080/1080-h/1080-h.htm
Luddites. Who were the Luddites and what did they want? / The National Archives Learning Curve. Power, Politics & Protest // https://www.nationalarchives.gov.uk/education/politics/g3/
Palmer R. (1988). The Sound of History: Songs and Social Comment. Oxford University Press // https://books.google.ru/books?id=GUHaAAAAMAAJ
Chamber R. (1879). Chambers's book of days, a miscellany of popular antiquities in connection with the calendar, including anecdote, biography & history, curiosities of literature and oddities of human life and character. Volume I // http://digicoll.library.wisc.edu/cgi-bin/History/History-idx?type=turn&id=History.BookofDaysv1&entity=History.BookofDaysv1.p0372&q1=ludd
Vardi M. (2016). Smart Robots and Their Impact on Employment // https://aaas.confex.com/aaas/2016/webprogram/Paper17392.html
Fentem A. (2018). Mything the point: The AI renaissance is simply expensive hardware and PR thrown at an old idea / The Register, 6 Nov 2018 // https://www.theregister.com/2018/11/06/andrew_fentem_on_ai/
Савельев С. (2016). Сергей Савельев про искусственный интеллект / Scisne? // http://psihdocs.ru/sergej-saveleev--professor-doktor-biologicheskih-nauk-sergej-s.html?page=2
Turing A. (1946). Turing Letter to W. Ross Ashby // http://www.rossashby.info/letters/turing.html
Kim E. (2015). Amazon is now using a whole lot more of the robots from the company it bought for $775 million / Business Insider, Oct 23, 2015 // https://www.businessinsider.com/amazon-doubled-the-number-of-kiva-robots-2015-10
Holley P. (2019). Amazon's one-day delivery service depends on the work of thousands of robots / Washington Post, 06.07.2019 // https://www.washingtonpost.com/technology/2019/06/07/amazons-one-day-delivery-service-depends-work-thousands-robots
Райдер Д. (2016). DHL разрабатывает доставочную роботележку / XX2 век, 15 июня // https://22century.ru/commerce/27643
В центре Москвы заметили робота-курьера от «Яндекса» (2020) / bfm.ru, 8 июля // https://www.bfm.ru/news/447870
Жуков С. (2020). Робоход. В столице появился робот-курьер / Российская газета, 19.09.2020 // https://rg.ru/2020/09/13/reg-cfo/v-moskve-poiavilsia-robot-kurer.html
Воронцов Н. (2017). Сбербанк впервые использовал инкассаторский дрон для перевозки денег / N+1, 16 Июнь // https://nplus1.ru/news/2017/06/16/who-wants-the-drone
Simon F. (2017). San Francisco Just Put the Brakes on Delivery Robots / Wired, 12.06.2017 // https://www.wired.com/story/san-francisco-just-put-the-brakes-on-delivery-robots/
Brinklow A. (2019). Delivery robots are finally coming to SF. But only for tests, not for service—yet / Curbed SF, Aug 9, 2019 // https://sf.curbed.com/2019/8/9/20799121/delivery-robots-san-francisco-postmates-serve
Collaborative Robots Market Set for 56.94% CAGR Explosive Growth to 2023 Led by Automotive Industry (2017) / PUNE, India, September 12, 2017 // https://www.prnewswire.com/news-releases/collaborative-robots-market-set-for-5694-cagr-explosive-growth-to-2023-led-by-automotive-industry-643954113.html
Smith S. (2018). Digital voice assistants in use to triple to 8 billion by 2023, driven by smart home devices / Juniper Research // https://www.juniperresearch.com/press/digital-voice-assistants-in-use-to-8-million-2023
Nieva R. (2020). Google Assistant now has 500 million monthly users / c|net, Jan. 7, 2020 // https://www.cnet.com/news/google-assistant-now-has-500-million-monthly-users
Graeber D. (2019). Bullshit Jobs: A Theory. Simon and Schuster // https://books.google.ru/books?id=co2RDwAAQBAJ
Heller N. (2018). The Bullshit-Job Boom / The New Yorker, June 7, 2018 // https://www.newyorker.com/books/under-review/the-bullshit-job-boom
Malthus T. R. (1999). An Essay on the Principle of Population. Oxford University Press // https://books.google.ru/books?id=Yxoe-sEcHNgC
Таболина О. (2016). Фертильность, скрепы и прогресс, или Хватит стигматизировать бездетность / XX2 век, 1 июля // https://22century.ru/popular-science-publications/progress-and-fertility
Foerster v. H., Mora P. M., Amiot L. W. (1960). Doomsday: Friday, 13 November, A.D. 2026: At this date human population will approach infinity if it grows as it has grown in the last two millenia / Science, Vol. 132, Iss. 3436, pp. 1291—1295 // https://doi.org/10.1126/science.132.3436.1291
Капица С. П. (2000). Модель роста населения земли и предвидимое будущее цивилизации / Вопросы экономики. № 12 // http://ecsocman.hse.ru/data/291/971/1219/2002_n3_p22-43.pdf
Vollset S. E., Goren E., Yuan C.-W., Cao J., Smith A. E., Hsiao T., Bisignano C., Azhar G. S., Castro E., Chalek J., Dolgert A. J., Frank T., Fukutaki K., Hay S. I, Lozano R., Mokdad A. H., Nandakumar V., Pierce M., Pletcher M., Robalik T., Steuben K. M., Wunrow H. Y., Zlavog B. S., Murray C. J. L. (2020). Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study / Vol. 396, Iss. 10258, pp. 1285—1306 // https://doi.org/10.1016/S0140-6736(20)30677-2
World Economic Forum (2020). The Future of Jobs Report 2020 // http://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf
Ding L., Molina J. S. (2020). “Forced Automation” by COVID-19? Early Trends from Current Population Survey Data / Federal Reserve Bank of Philadelphia. Discussion Papers: Community Development and Regional Outreach, September 2020 // https://www.philadelphiafed.org/community-development/workforce-and-economic-development/forced-automation-by-covid-19
* Пер. Л. Васильева и Н. Маркалова.
O'Neil C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown // https://books.google.ru/books?id=NgEwCwAAQBAJ
О'Нил К. (2020). Убийственные большие данные. Как математика превратилась в оружие массового поражения // https://books.google.ru/books?id=Cxh9DwAAQBAJ
Паскуале Ф. (2016). Цифровой тайный суд (пер. с англ. Райдера Д.) / XX2 век, 27 мая // https://22century.ru/popular-science-publications/digital-star-chamber
Pasquale F., Haselby S. (2015). Digital star chamber / aeon, 18 August 2015 // https://aeon.co/essays/judge-jury-and-executioner-the-unaccountable-algorithm
Pasquale F. (2015). The Black Box Society. Harvard University Press // https://books.google.ru/books?id=TumaBQAAQBAJ
Clark M. (2021). Bad software sent postal workers to jail, because no one wanted to admit it could be wrong / The Verge, Apr 23, 2021 // https://www.theverge.com/2021/4/23/22399721/uk-post-office-software-bug-criminal-convictions-overturned
Peachey K. (2021). Convicted Post Office workers have names cleared / BBC News // https://www.bbc.com/news/business-56859357
Brooks R., Wallis N. (2020). Justice lost in the post / Private Eye Special Report // https://www.private-eye.co.uk/pictures/special_reports/justice-lost-in-the-post.pdf
Buolamwini J. (2017). Gender Shades: Intersectional Phenotypic and Demographic Evaluation of Face Datasets and Gender Classifiers. MIT Master's Thesis // https://www.media.mit.edu/publications/full-gender-shades-thesis-17/
Buolamwini J., Gebru T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification / Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR, Vol. 81, pp. 77—91 // http://proceedings.mlr.press/v81/buolamwini18a.html
Augarten S. (1984). Bit by Bit: An Illustrated History of Computers. Ticknor and Fields // https://books.google.ru/books?id=kYJfQgAACAAJ
Chinoy I. (2010). Battle of the brains: election-night forecasting at the dawn of the computer age // https://doi.org/10.13016/rj15-4718
Wulforst H. (1982). Breakthrough to the Computer Age. Charles Scribner // https://books.google.ru/books?id=5X9QAAAAMAAJ
Winston B. (1998). Media technology and society: a history: from the telegraph to the Internet. Psychology Press // https://books.google.ru/books?id=TZOF_1GZRmYC
Broussard M. (2019). Artificial Unintelligence: How Computers Misunderstand the World. MIT Press // https://books.google.ru/books?id=4r34DwAAQBAJ
Бруссард М. (2020). Искусственный интеллект: Пределы возможного. — М.: Альпина нон-фикшн // https://books.google.ru/books?id=YR3JDwAAQBAJ
Tenner E. (2012). Did a Rumor Doom Titanic Passengers? / The Atlantic, April 11, 2012 // https://www.theatlantic.com/national/archive/2012/04/did-a-rumor-doom-titanic-passengers/255706/
Babbage C. (1864). Passages from the Life of a Philosopher. Longman, Green, Longman, Roberts & Green // https://archive.org/details/passagesfromlif01babbgoog/page/66/mode/2up
* В качестве примера можно привести требования по сертификации различных потенциально опасных систем: в медицине, на транспорте, в энергетике, на производстве и так далее, которые косвенно могли затронуть алгоритмы ИИ, если те были частью таких систем, или южнокорейский рамочный закон «О национальной информатизации» 1995 г.
Конференция Организации Объединённых Наций по дорожному движению. Заключительный акт (2023) // https://treaties.un.org/pages/ViewDetailsIII.aspx?src=TREATY&mtdsg_no=XI-B-19&chapter=11&Temp=mtdsg3&clang=_en
UNECE paves the way for automated driving by updating UN international convention (2016). / United Nations Economic Commission for Europe, 23 March 2016 // https://unece.org/press/unece-paves-way-automated-driving-updating-un-international-convention
Reference: C.N.26.2022.TREATIES-XI.B.19 (Depositary Notification). CONVENTION ON ROAD TRAFFIC. VIENNA, 8 NOVEMBER 1968. ACCEPTANCE OF AMENDMENT TO ARTICLE 1 AND NEW ARTICLE 34 BIS TO THE CONVENTION (2022) // https://treaties.un.org/doc/Publication/CN/2022/CN.26.2022-Eng.pdf
Markoff J. (2011). Google Lobbies Nevada to Allow Self-Driving Cars / The New York Times, May 10, 2011 // https://www.nytimes.com/2011/05/11/science/11drive.html
Bill AB511 Nevada Legislature (2011) // http://www.leg.state.nv.us/Session/76th2011/Bills/AB/AB511_EN.pdf
Healey T. (2011). Nevada Passes Law Allowing Self-Driving Cars / Motor Authority, June 24, 2011 // https://www.motorauthority.com/news/1062178_nevada-passes-law-allowing-self-driving-cars
Waldes A. M. (2012). Florida embraces self-driving cars, as engineers and lawmakers prepare for the new technology / VPTV.com, 5.07.2012 // https://web.archive.org/web/20130412143433/https://www.wptv.com/dpp/news/state/florida-embraces-self-driving-cars-as-engineers-and-lawmakers-prepare-for-the-new-technology
Oram J. (2012). Governor Brown Signs California Driverless Car Law at Google HQ / Bright Side of News, 9/27/2012 // https://web.archive.org/web/20120930034324/http://www.brightsideofnews.com/news/2012/9/27/governor-brown-signs-california-driverless-car-law-at-google-hq-.aspx
New Law Allows Driverless Cars On Michigan Roads (2013). / CBS Detroit, December 28, 2013 // https://www.cbsnews.com/detroit/news/new-law-allows-driverless-cars-on-michigan-roads/
Driverless cars to be tested on UK roads by end of 2013 (2013). / BBC News, 16 July 2013 // https://www.bbc.com/news/technology-23330681
Ducamp P. (2015). Des véhicules autonomes sur route ouverte à Bordeaux en octobre 2015 / L'Usine Digitale, 29 juin 2015 // https://www.usine-digitale.fr/article/des-vehicules-autonomes-sur-route-ouverte-a-bordeaux-en-octobre-2015.N338350
Plass T. (2023). Navigating the future: Germany's autonomous driving act / Israel Public Policy Institute, Mar 22, 2023 // https://www.ippi.org.il/germany-autonomous-driving-act/
Скрынникова A., Ставцева Л., Атасунцев А., Кокорева М. (2020). МИД попросили частично приостановить конвенцию о дорожном движении. Её положения мешают развитию беспилотного автотранспорта / РБК, 16 марта 2020 // https://www.rbc.ru/technology_and_media/16/03/2020/5e6b9edd9a7947bad7f691f5
AI in the UK: ready, willing and able? Select Committee on Artificial Intelligence. Report of Session 2017–19 (2018) // https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf
Davies M., Birtwistle M. (2023). Regulating AI in the UK. Strengthening the UK's proposals for the benefit of people and society / Ada Lovelace Institute, 18 July 2023 // https://www.adalovelaceinstitute.org/report/regulating-ai-in-the-uk/
Establishing a pro-innovation approach to regulating AI (policy paper) (2022) // https://www.gov.uk/government/publications/establishing-a-pro-innovation-approach-to-regulating-ai/establishing-a-pro-innovation-approach-to-regulating-ai-policy-statement
A pro-innovation approach to AI regulation (policy paper) (2023) // https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach/white-paper
National Artificial Intelligence Initiative Act of 2020 (2020) // https://www.congress.gov/116/crpt/hrpt617/CRPT-116hrpt617.pdf#page=1210
NIST (2023). Artificial Intelligence Risk Management Framework (AI RMF 1.0) // https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
Blueprint for an AI Bill of Rights (2022) // https://www.whitehouse.gov/ostp/ai-bill-of-rights/
Kraczon C. (2022). The State of State AI Policy (2021-22 Legislative Session). / Electronic privacy information center, August 8, 2022 // https://epic.org/the-state-of-ai/
Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence (2023). // https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
FACT SHEET: President Biden Issues Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence (2023). // https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
Mauran C., Gedeon K. (2023). White House drops an AI regulation bombshell: 10 new mandates that'll shake up the industry. / Mashable, October 30, 2023. // https://mashable.com/article/white-house-drops-ai-regulation-bombshell
Chintala S. / Twitter, 31 октября 2023 г. // https://twitter.com/soumithchintala/status/1719209954714767403
* Глубокий синтез [深度合成] — методика синтеза изображений, основанная на глубоких нейронных сетях, в просторечии — «дипфейк».
国家互联网信息办公室等三部门发布《互联网信息服务深度合成管理规定》 (2022) // http://www.cac.gov.cn/2022-12/11/c_1672221949318230.htm
生成式人工智能服务管理暂行办法 (2023) // http://www.cac.gov.cn/2023-07/13/c_1690898327029107.htm
David E. (2023). China mandates that AI must follow “core values of socialism” / The Verge, Jul 14, 2023 // https://www.theverge.com/2023/7/14/23794974/china-generative-ai-regulations-alibaba-baidu
Tobin M. (2023). China announces rules to keep AI bound by ‘core socialist values’ / The Washington Post, July 14, 2023 // https://www.washingtonpost.com/world/2023/07/14/china-ai-regulations-chatgpt-socialist/
Che C. (2023). China Says Chatbots Must Toe the Party Line / The New York Times, April 24, 2023 // https://www.nytimes.com/2023/04/24/world/asia/china-chatbots-ai.html
国家互联网信息办公室关于《生成式人工智能服务管理办法(征求意见稿)》公开征求意见的通知 (2023) // http://www.cac.gov.cn/2023-04/11/c_1682854275475410.htm
Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) (2021) // https://data.consilium.europa.eu/doc/document/ST-8115-2021-INIT/en/pdf
Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) (2022) // https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf
Amendments adopted by the European Parliament on 14 June 2023 on the proposal for a regulation of the European Parliament and of the Council on laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) (2023) // https://www.europarl.europa.eu/doceo/document/TA-9-2023-0236_EN.html
Sioli L. (2021). Shaping Europe's digital future. A European Strategy for Artificial Intelligence // https://www.ceps.eu/wp-content/uploads/2021/04/AI-Presentation-CEPS-Webinar-L.-Sioli-23.4.21.pdf?
Chee F. Y. (2023). AI generated content should be labelled, EU Commissioner Jourova says. / Reuters, June 5, 2023 // https://www.reuters.com/technology/ai-generated-content-should-be-labelled-eu-commissioner-jourova-says-2023-06-05/
CAHAI (2020). Feasibility Study // https://rm.coe.int/cahai-2020-23-final-eng-feasibility-study-/1680a0c6da
CAHAI (2021). Possible elements of a legal framework on artificial intelligence, based on the Council of Europe’s standards on human rights, democracy and the rule of law // https://rm.coe.int/cahai-2021-09rev-elements/1680a6d90d
CAI (2023). Revised zero draft [framework] convention on artificial intelligence, human rights, democracy and the rule of law // https://rm.coe.int/cai-2023-01-revised-zero-draft-framework-convention-public/1680aa193f
Beazley D. (2023). Canada sits on the fence about regulating AI. / CBA/ABC National, 31 May 2023 // https://nationalmagazine.ca/en-ca/articles/law/hot-topics-in-law/2023/canada-sits-on-the-fence-in-regulating-ai
Bordoloi P. (2023). India Backs Off on AI Regulation. But Why? / Analytics India Magazine, April 10, 2023 // https://analyticsindiamag.com/india-backs-off-on-ai-regulation-but-why/
For the first time in Israel: The principles of the policy for the responsible development of the field of artificial intelligence were published for public comment (2022). / Ministry of Innovation, Science and Technology, 17.11.2022 // https://www.gov.il/en/departments/news/most-news20221117
Ravia H., Kaplan T., Hammer D. (2021). Use of Artificial Intelligence Attracts Legislative and Regulatory Attention in the E.U., U.S., and Israel. / Pearl Cohen, Apr 29, 2021 // https://www.pearlcohen.com/use-of-artificial-intelligence-attracts-legislative-and-regulatory-attention-in-the-e-u-u-s-and-israel/
Roh T., Nam J. E. (2023). South Korea: Legislation on Artificial Intelligence to Make Significant Progress. / Kim & Chang, 2023.03.06 // https://www.kimchang.com/en/insights/detail.kc?sch_section=4&idx=26935
Указ Президента Российской Федерации «О развитии искусственного интеллекта в Российской Федерации» (2019) // http://static.kremlin.ru/media/events/files/ru/AH4x6HgKWANwVtMOfPDhcbRpvd1HCCsv.pdf
Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback (2019). / U. S. Food & Drug Administration // https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf
Marketing Submission Recommendations for a Predetermined Change Control Plan for Artificial Intelligence/Machine Learning (AI/ML)-Enabled Device Software Functions. Draft Guidance for Industry and Food and Drug Administration Staff (2023). / U. S. Food & Drug Administration, April 2023 // https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
Boubker J., Faget K. Y., Beaver N. A., Chmielewski M. R. (2023). FDA’s New Guidance Proposes Flexible Use of AI in Medical Devices / Foley, 10 May 2023 // https://www.foley.com/en/insights/publications/2023/05/fdas-guidance-flexible-use-ai-medical-devices
Three Guidelines Published Today, Propelling China to be World Leader in Digital Health (2022). / China Med Device, March 9, 2022 // https://chinameddevice.com/digital-health-nmpa-ai/
ISO/IEC JTC 1/SC 42 Artificial intelligence (2017) // https://www.iso.org/ru/committee/6794475.html
Гасиоровски-Денис Е. (2020). Навстречу искусственному интеллекту // https://www.iso.org/ru/news/ref2530.html
ISO/IEC JTC 1/SC 42 Artificial intelligence (2020). ISO/IEC TR 24028:2020. Information technology — Artificial intelligence — Overview of trustworthiness in artificial intelligence // https://www.iso.org/ru/standard/77608.html
Представлены 36 проектов национальных стандартов в области ИИ (2021). / D-russia.ru, 18.10.2021 // https://d-russia.ru/predstavleny-36-proektov-nacionalnyh-standartov-v-oblasti-ii.html
Федеральный закон «О персональных данных» от 27.07.2006 №152-ФЗ (2023) // https://www.consultant.ru/document/cons_doc_LAW_61801/
* Cambridge Analytica (CA) — британская частная компания, которая использовала продвинутые технологии анализа данных, собранных в социальных сетях, чтобы оказывать влияние на результаты выборов и референдумов.
Chen D., Fraiberger S. P., Moakler R., Provost F. (2017). Enhancing Transparency and Control When Drawing Data-Driven Inferences About Individuals / Big DataVol. 5, No. 3 // https://doi.org/10.1089/big.2017.0074
Duhigg C. (2012). How Companies Learn Your Secrets / The New York Times Magazine, February 16, 2012 // https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
Basel Committee on Banking Supervision (2011). Basel III: A global regulatory framework for more resilient banks and banking systems // https://www.bis.org/publ/bcbs189.pdf
Kang C. (2023). How Sam Altman Stormed Washington to Set the A.I. Agenda / The New York Times, June 7, 2023 // https://www.nytimes.com/2023/06/07/technology/sam-altman-ai-regulations.html
Kang C. (2023). OpenAI’s Sam Altman Urges A.I. Regulation in Senate Hearing / The New York Times, May 16, 2023 // https://www.nytimes.com/2023/05/16/technology/openai-altman-artificial-intelligence-regulation.html
* Пер. Н. Сосновской.
Schmidhuber J. (2003). Goedel Machines: Self-Referential Universal Problem Solvers Making Provably Optimal Self-Improvements // https://arxiv.org/abs/cs/0309048
Feurer M., Eggensperger K., Falkner S., Lindauer M., Hutter F. (2020). Auto-Sklearn 2.0: The Next Generation // https://arxiv.org/abs/2007.04074
Kotthoff L., Thornton C., Hoos H. H., Hutter F., Leyton-Brown K. (2016). Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA / Journal of Machine Learning Research, Vol. 17 (2016) // http://www.cs.ubc.ca/labs/beta/Projects/autoweka/papers/16-599.pdf
Erickson N., Mueller J., Shirkov A., Zhang H., Larroy P., Li M., Smola A. (2020). AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data // https://arxiv.org/abs/2003.06505
Arora A., Candel A., Lanford J., LeDell E., Parmar V. (Oct. 2016). Deep Learning with H2O / http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf
Click C., Lanford J., Malohlava M., Parmar V., Roark H. (Oct. 2016). Gradient Boosted Models with H2O / http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/GBMBooklet.pdf
Le T. T., Fu W., Moore J. H. (2020). Scaling tree-based automated machine learning to biomedical big data with a feature set selector / Bioinformatics, Vol. 36 (1), pp. 250—256 // https://doi.org/10.1093/bioinformatics/btz470
Wang C., Wu Q. (2019). FLO: Fast and Lightweight Hyperparameter Optimization for AutoML // https://arxiv.org/abs/1911.04706
Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., Gulin A. (2017). CatBoost: unbiased boosting with categorical features // https://arxiv.org/abs/1706.09516
Zoph B., Le Q. V. (2016). Neural Architecture Search with Reinforcement Learning // https://arxiv.org/abs/1611.01578
Real E., Moore S., Selle A., Saxena S., Suematsu Y. L., Tan J., Le Q., Kurakin A. (2017). Large-Scale Evolution of Image Classifiers // https://arxiv.org/abs/1703.01041
Kaiser L., Gomez A. N., Shazeer N., Vaswani A., Parmar N., Jones L., Uszkoreit J. (2017). One Model To Learn Them All // https://arxiv.org/abs/1706.05137
Zoph B., Vasudevan V., Shlens J., Le Q. V. (2017). Learning Transferable Architectures for Scalable Image Recognition // https://arxiv.org/abs/1707.07012
Chen L.-C., Collins M. D., Zhu Y., Papandreou G., Zoph B., Schroff F., Adam H., Shlens J. (2018). Searching for Efficient Multi-Scale Architectures for Dense Image Prediction // https://arxiv.org/abs/1809.04184
Liu H., Simonyan K., Yang Y. (2018). DARTS: Differentiable Architecture Search // https://arxiv.org/abs/1806.09055
Howard A., Sandler M., Chu G., Chen L.-C., Chen B., Tan M., Wang W., Zhu Y., Pang R., Vasudevan V., Le Q. V., Adam H. (2019). Searching for MobileNetV3 // https://arxiv.org/abs/1905.02244v5
Xiong Y., Liu H., Gupta S., Akin B., Bender G., Kindermans P.-J., Tan M., Singh V., Chen B. (2020). MobileDets: Searching for Object Detection Architectures for Mobile Accelerators // https://arxiv.org/abs/2004.14525v2
Abdelfattah M. S., Mehrotra A., Dudziak Ł., Lane N. D. (2021). Zero-Cost Proxies for Lightweight NAS // https://arxiv.org/abs/2101.08134
Dudziak Ł., Chau T., Abdelfattah M. S., Lee R., Kim H., Lane N. D. (2020). BRP-NAS: Prediction-based NAS using GCNs // https://arxiv.org/abs/2007.08668
Zhang Y., Zhang Q., Yang Y. (2020). How Does Supernet Help in Neural Architecture Search? // https://arxiv.org/abs/2010.08219
Dai X., Zhang P., Wu B., Yin H., Sun F., Wang Y., Dukhan M., Hu Y., Wu Y., Jia Y., Vajda P., Uyttendaele M., Jha N. K. (2018). ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation // https://arxiv.org/abs/1812.08934
Wan A., Dai X., Zhang P., He Z., Tian Y., Xie S., Wu B., Yu M., Xu T., Chen K., Vajda P., Gonzalez J. E. (2020). FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions // https://arxiv.org/abs/2004.05565
Awad N., Mallik N., Hutter F. (2020). Differential Evolution for Neural Architecture Search // https://arxiv.org/abs/2012.06400
Jie R., Gao J. (2021). Differentiable Neural Architecture Search with Morphism-based Transformable Backbone Architectures // https://arxiv.org/abs/2106.07211
Tian Y., Shen L., Shen L., Su G., Li Z., Liu W. (2020). AlphaGAN: Fully Differentiable Architecture Search for Generative Adversarial Networks // https://arxiv.org/abs/2006.09134
Ding M., Lian X., Yang L., Wang P., Jin X., Lu Z., Luo P. (2021). HR-NAS: Searching Efficient High-Resolution Neural Architectures with Lightweight Transformers // https://arxiv.org/abs/2106.06560
Yang Y., You S., Li H., Wang F., Qian C., Lin Z. (2021). Towards Improving the Consistency, Efficiency, and Flexibility of Differentiable Neural Architecture Search // https://arxiv.org/abs/2101.11342
Jin H., Song Q., Hu X. (2018). Auto-Keras: An Efficient Neural Architecture Search System // https://arxiv.org/abs/1806.10282
Ying C., Klein A., Real E., Christiansen E., Murphy K., Hutter F. (2019). NAS-Bench-101: Towards Reproducible Neural Architecture Search // https://arxiv.org/abs/1902.09635
Zela A., Siems J., Hutter F. (2020). NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search // https://arxiv.org/abs/2001.10422
Dong X., Yang Y. (2020). NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search // https://arxiv.org/abs/2001.00326
Tu R., Khodak M., Roberts N., Talwalkar A. (2021). NAS-Bench-360: Benchmarking Diverse Tasks for Neural Architecture Search // https://arxiv.org/abs/2110.05668
Yan S., White C., Savani Y., Hutter F. (2021). NAS-Bench-x11 and the Power of Learning Curves // https://arxiv.org/abs/2111.03602
Li C., Yu Z., Fu Y., Zhang Y., Zhao Y., You H., Yu Q., Wang Y., Lin Y. (2021). HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark // https://arxiv.org/abs/2103.10584
Mehrotra A., Ramos A. G. C. P., Bhattacharya S., Dudziak Ł., Vipperla R., Chau T., Abdelfattah M. S., Ishtiaq S., Lane N. D. (2020). NAS-Bench-ASR: Reproducible Neural Architecture Search for Speech Recognition // https://openreview.net/forum?id=CU0APx9LMaL
Dong X., Liu L., Musial K., Gabrys B. (2020). NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size // https://arxiv.org/abs/2009.00437
Klein A., Hutter F. (2019). Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization // https://arxiv.org/abs/1905.04970
Hirose Y., Yoshinari N., Shirakawa S. (2021). NAS-HPO-Bench-II: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters // https://arxiv.org/abs/2110.10165
Tan M., Le Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks // https://arxiv.org/abs/1905.11946
Arora A. (2020). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks // https://amaarora.github.io/2020/08/13/efficientnet.html
Tan M., Le Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks // https://arxiv.org/abs/1905.11946
Huang Y., Cheng Y., Bapna A., Firat O., Chen M. X., Chen D., Lee H. J., Ngiam J., Le Q. V., Wu Y., Chen Z. (2018). GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism // https://arxiv.org/abs/1811.06965
Pham H., Dai Z., Xie Q., Luong M.-T., Le Q. V. (2020). Meta Pseudo Labels // https://arxiv.org/abs/2003.10580
Wang Z., Yang E., Shen L., Huang H. (2023). A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning // https://arxiv.org/abs/2307.09218
Kirkpatrick J., Pascanu R., Rabinowitz N., Veness J., Desjardins G., Rusu A. A., Milan K., Quan J., Ramalho T., Grabska-Barwinska A., Hassabis D., Clopath C., Kumaran D., Hadsell R. (2017). Overcoming catastrophic forgetting in neural nets / Proceedings of the National Academy of Sciences of the United States of America, Vol. 114 (13), pp. 3521—3526 // https://doi.org/10.1073/pnas.1611835114
Kutalev A., Lapina A. (2021). Stabilizing Elastic Weight Consolidation method in practical ML tasks and using weight importances for neural network pruning // https://arxiv.org/abs/2109.10021
Kutalev A. (2020). Natural Way to Overcome the Catastrophic Forgetting in Neural Networks // https://arxiv.org/abs/2005.07107
Metz L., Maheswaranathan N., Freeman C. D., Poole B., Sohl-Dickstein J. (2020). Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves // https://arxiv.org/abs/2009.11243
Baydin A. G., Pearlmutter B. A., Syme D., Wood F., Torr P. (2022). Gradients without Backpropagation // https://arxiv.org/abs/2202.08587
Schlag I., Sukhbaatar S., Celikyilmaz A., Yih W.-t., Weston J., Schmidhuber J., Li X. (2023). Large Language Model Programs // https://arxiv.org/abs/2305.05364
Sapunov G. (2023). Large Language Model Programs. A useful conceptualization for a wide set of practices for working with LLMs // https://gonzoml.substack.com/p/large-language-model-programs
Schreiner M. (2022). Meta’s AI chief: Three major challenges of artificial intelligence / MIXED, Jan 29 2022 // https://mixed-news.com/en/metas-ai-chief-three-major-challenges-of-artificial-intelligence/
LeCun Y. (2022). A Path Towards Autonomous Machine Intelligence // https://openreview.net/forum?id=BZ5a1r-kVsf
Assran M., Duval Q., Misra I., Bojanowski P., Vincent P., Rabbat M., LeCun Y., Ballas N. (2023). Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture // https://arxiv.org/abs/2301.08243
Dickson B. (2020). The GPT-3 economy / TechTalks, September 21, 2020 // https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
Asimov A. (2016). Foundation and Earth. HarperCollins Publishers // https://books.google.ru/books?id=0DW0rQEACAAJ
* Пер. А. Ливерганта.
Athalye A., Engstrom L., Ilyas A., Kwok K. (2017). Fooling Neural Networks in the Physical World with 3D Adversarial Objects // https://www.labsix.org/physical-objects-that-fool-neural-nets/
Athalye А., Carlini N., Wagner D. (2018). Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples // https://arxiv.org/abs/1802.00420
Athalye A., Carlini N., Haddad D., Patel S. (2018). Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples // https://github.com/anishathalye/obfuscated-gradients
Athalye A., Engstrom L., Ilyas A., Kwok K. (2017). Synthesizing Robust Adversarial Examples // https://arxiv.org/abs/1707.07397
Bourdakos N. (2017). Capsule Networks Are Shaking up AI — Here’s How to Use Them / Hackernoon, November 9th 2017 // https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952
Sabour S., Frosst N., Hinton G. E. (2017). Dynamic Routing Between Capsules // https://arxiv.org/abs/1710.09829
Tolstikhin I., Houlsby N., Kolesnikov A., Beyer L., Zhai X., Unterthiner T., Yung J., Steiner A., Keysers D., Uszkoreit J., Lucic M., Dosovitskiy A. (2021). MLP-Mixer: An all-MLP Architecture for Vision // https://arxiv.org/abs/2105.01601
Liu H., Dai Z., So D. R., Le Q. V. (2021). Pay Attention to MLPs // https://arxiv.org/abs/2105.08050
Li D., Hu J., Wang C., Li X., She Q., Zhu L., Zhang T., Chen Q. (2021). Involution: Inverting the Inherence of Convolution for Visual Recognition // https://arxiv.org/abs/2103.06255
Hidalgo C. (2015). Why Information Grows: The Evolution of Order, from Atoms to Economies. Hachette UK // https://books.google.ru/books?id=0984DgAAQBAJ
Swaminathan S., Garg D., Kannan R., Andres F. (2020). Sparse low rank factorization for deep neural network compression / Neurocomputing, Vol. 398, pp. 185—196 // https://doi.org/10.1016/j.neucom.2020.02.035
Wu M., Parbhoo S., Hughes M. C., Roth V., Doshi-Velez F. (2019). Optimizing for Interpretability in Deep Neural Networks with Tree Regularization // https://arxiv.org/abs/1908.05254
Akhtar N., Jalwana M., Bennamoun M., Mian A. S. (2021). Attack to Fool and Explain Deep Networks / IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 May 2021 // https://doi.org/10.1109/TPAMI.2021.3083769
Lang O., Gandelsman Y., Yarom M., Wald Y., Elidan G., Hassidim A., Freeman W. T., Isola P., Globerson A., Irani M., Mosseri I. (2021). Explaining in Style: Training a GAN to explain a classifier in StyleSpace // https://arxiv.org/abs/2104.13369
Rogers A., Kovaleva O., Rumshisky A. (2020). A Primer in BERTology: What we know about how BERT works // https://arxiv.org/abs/2002.12327
Geva M., Schuster R., Berant J., Levy O. (2020). Transformer Feed-Forward Layers Are Key-Value Memories // https://arxiv.org/abs/2012.14913
Meng K., Bau D., Andonian A., Belinkov Y. (2022). Locating and Editing Factual Associations in GPT // https://arxiv.org/abs/2202.05262
Eldan R., Russinovich M. (2023). Who's Harry Potter? Approximate Unlearning in LLMs // https://arxiv.org/abs/2310.02238
Li K., Patel O., Viégas F., Pfister H., Wattenberg M. (2023). Inference-Time Intervention: Eliciting Truthful Answers from a Language Model // https://arxiv.org/abs/2306.03341
Zou A., Phan L., Chen S., Campbell J., Guo P., Ren R., Pan A., Yin X., Mazeika M., Dombrowski A.-K., Goel S., Li N., Byun M. J., Wang Z., Mallen A., Basart S., Koyejo S., Song D., Fredrikson M., Kolter J. Z., Hendrycks D. (2023). Representation Engineering: A Top-Down Approach to AI Transparency // https://arxiv.org/abs/2310.01405
Gurnee W., Tegmark M. (2023). Language Models Represent Space and Time // https://arxiv.org/abs/2310.02207
* Пер. С. Земляного.
Bonnefon J.-F., Shariff A., Rahwan I. (2016). The social dilemma of autonomous vehicles / Science, Vol. 352, Iss. 6293, pp. 1573—1576 // https://doi.org/10.1126/science.aaf2654
Марков А. (2018). Моральные проблемы беспилотных автомобилей не имеют универсального решения / Элементы, 29.10.2018 // https://elementy.ru/novosti_nauki/433355/Moralnye_problemy_bespilotnykh_avtomobiley_ne_imeyut_universalnogo_resheniya
Awad E., Dsouza S., Kim R., Schulz J., Henrich J., Shariff A., Bonnefon J.-F., Rahwan I. (2018). The Moral Machine experiment / Nature, Vol. 563, pp. 59—64 // https://doi.org/10.1038/s41586-018-0637-6
Марков А. (2018). Моральные проблемы беспилотных автомобилей не имеют универсального решения / Элементы, 29.10.18 // https://elementy.ru/novosti_nauki/433355/Moralnye_problemy_bespilotnykh_avtomobiley_ne_imeyut_universalnogo_resheniya
McKinsey & Company (2023). The state of AI in 2023: Generative AI’s breakout year // https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year#/
Tangermann V. (2023). Artists Sue Stable Diffusion and Midjourney for Using Their Work to Train AI That Steals Their Jobs / Futurism, Jan 18, 2023 // https://futurism.com/artists-sue-stabile-diffusion-midjourney
Lee T. B. (2023). Stable Diffusion copyright lawsuits could be a legal earthquake for AI. / Ars Technica, 4/3/2023 // https://arstechnica.com/tech-policy/2023/04/stable-diffusion-copyright-lawsuits-could-be-a-legal-earthquake-for-ai/
* DeviantArt — популярный сервис обмена изображениями и социальная сеть; в конце 2022 г. DeviantArt выпустил собственный генератор изображений DreamUp, основанный на модели Stable Diffusion.
Franzen K. (2023). Midjourney, Stability AI and DeviantArt win a victory in copyright case by artists — but the fight continues / VentureBeat, October 30, 2023. // https://venturebeat.com/ai/midjourney-stability-ai-and-deviantart-win-a-victory-in-copyright-case-by-artists-but-the-fight-continues/
Vincent J. (2022). YouTuber trains AI bot on 4chan’s pile o’ bile with entirely predictable results / The Verge, Jun 8, 2022 // https://www.theverge.com/2022/6/8/23159465/youtuber-ai-bot-pol-gpt-4chan-yannic-kilcher-ethics
Papasavva A., Zannettou S., De Cristofaro E., Stringhini G., Blackburn J. (2020). Raiders of the Lost Kek: 3.5 Years of Augmented 4chan Posts from the Politically Incorrect Board // https://arxiv.org/abs/2001.07487
Kurenkov A. (2022). Lessons from the GPT-4Chan Controversy. / The Gradient, 12.JUN.2022 // https://thegradient.pub/gpt-4chan-lessons/
Condemning the deployment of GPT-4chan (2022). // https://docs.google.com/forms/d/e/1FAIpQLSdh3Pgh0sGrYtRihBu-GPN7FSQoODBLvF7dVAFLZk2iuMgoLw/viewform?fbzx=1650213417672418119
Lin S., Hilton J., Evans O. (2021). TruthfulQA: Measuring How Models Mimic Human Falsehoods // https://arxiv.org/abs/2109.07958
Kelley D. (2023). AI-Based Cybercrime Tools WormGPT and FraudGPT Could Be The Tip of the Iceberg. / SlashNext, August 1, 2023 // https://slashnext.com/blog/ai-based-cybercrime-tools-wormgpt-and-fraudgpt-could-be-the-tip-of-the-iceberg/
Николич А. (2023). EVILdolly // https://huggingface.co/AlexWortega/EVILdolly
Levin J.-C., Maas M. M. (2020). Roadmap to a Roadmap: How Could We Tell When AGI is a 'Manhattan Project' Away? // https://arxiv.org/abs/2008.04701
Bengio Y., Deleu T., Hu E. J., Lahlou S., Tiwari M., Bengio E. (2021). GFlowNet Foundations // https://arxiv.org/abs/2111.09266
Koetsier J. (2022). Building an artificial brain: 86B neurons, 500T synapses, and a neuromorphic chip / YouTube, Mar 9, 2022 // https://www.youtube.com/watch?v=WEymRJb0dso
Yadlowsky S., Doshi L., Tripuraneni N. (2023). Pretraining Data Mixtures Enable Narrow Model Selection Capabilities in Transformer Models // https://arxiv.org/abs/2311.00871
Reilly M. (2006). Calculating the speed of sight / New Scientist, 28 July 2006. // https://www.newscientist.com/article/dn9633-calculating-the-speed-of-sight/
Levy S. (2000). Insanely Great: The Life and Times of Macintosh, the Computer that Changed Everything. Penguin Books // https://books.google.ru/books?id=Y6ZQAAAAMAAJ
Engelbart D. C. (1962). Augmenting Human Intellect: A Conceptual Framework. SRI Summary Report AFOSR-3223 // https://www.dougengelbart.org/content/view/138
Wolfram S. (2023). Remembering the Improbable Life of Ed Fredkin (1934–2023) and His World of Ideas and Stories / Stephen Wolfram writings, August 22, 2023 // https://writings.stephenwolfram.com/2023/08/remembering-the-improbable-life-of-ed-fredkin-1934-2023-and-his-world-of-ideas-and-stories/
Wolfram S. (2023). Remembering the Improbable Life of Ed Fredkin (1934–2023) and His World of Ideas and Stories / Stephen Wolfram writings, August 22, 2023 // https://writings.stephenwolfram.com/2023/08/remembering-the-improbable-life-of-ed-fredkin-1934-2023-and-his-world-of-ideas-and-stories/
Fredkin E. (1963). The time sharing of computers / Computers and Automation, November 1963, pp. 12—20 https://usermanual.wiki/Manual/196311.1084983735.pdf