1

* Официально: Первая научно-популярная библиотека «Научка» (ГБУК г.Москвы ОКЦ ЦАО ЦДБ 14 "Научка"). — Здесь и далее примечания автора.

2

https://www.sciencedaily.com/terms/artificial_intelligence.htm

3

Copeland J. (2003). Moor, James, ed., “The Turing Test”, The Turing Test: The Elusive Standard of Artificial Intelligence, Springer.

4

Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ

5

Bellman R. E. (1978). An Introduction to Artificial Intelligence: Can Computers Think? Boyd & Fraser Publishing Company.

6

Winston P. H. (1992). Artificial Intelligence (Third edition). Addison-Wesley.

7

Kurzweil R. (1990). The Age of Intelligent Machines. MIT Press.

8

Bellman R. E. (1978). An Introduction to Artificial Intelligence: Can Computers Think? Boyd & Fraser Publishing Company.

9

Poole D., Mackworth A., Goebel R. (1998). Computational Intelligence: A Logical Approach. New York: Oxford University Press.

10

Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ

11

* Исполнитель роли агента Смита в фильме «Матрица» (1999).

12

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

13

Kahn J. (2002). It's Alive! / Wired, 03.01.2002 // https://www.wired.com/2002/03/everywhere/

14

Hofstadter D. R. (2000). Gödel, Escher, Bach: An Eternal Golden Braid. Penguin // https://books.google.ru/books?id=grzEQgAACAAJ

15

Tesler L. CV: Adages & Coinages // http://www.nomodes.com/Larry_Tesler_Consulting/Adages_and_Coinages.html

16

Searle J. (1980). Minds, Brains and Programs / Behavioral and Brain Sciences, 3 (3): 417–457 // https://doi.org/10.1017/S0140525X00005756

17

Kurzweil R. (2005). The Singularity is near: when humans transcend biology. Viking Press // https://books.google.ru/books?id=9FtnppNpsT4C

18

Gubrud M. A. (1997). Nanotechnology and International Security // https://web.archive.org/web/20190430021737/https://foresight.org/Conferences/MNT05/Papers/Gubrud/

19

Seligman J. (2020). artificial Intelligence / Machine Learning In Marketing. Lulu.com // https://books.google.ru/books?id=l6zRDwAAQBAJ

20

Айер А. Д. (2010). Язык, истина и логика / Пер. с англ. В. А. Суровцева, Н. А. Тарабанова. Под общей ред. В. А. Суровцева. — М: «Канон+» РООИ «Реабилитация».

21

Diderot D. (2007). Pensees Philosophiques, Addition aux Pensees Philosophiques[Flammarion], p. 68.

22

Тьюринг А. (1960). Может ли машина мыслить? С приложением статьи Дж. фон Неймана «Общая и логическая теория автоматов» / Пер. с англ. Ю. А. Данилова, редакция и предисловие проф. С. А. Яновской. М.: Государственное издательство физико-математической литературы.

23

Evans R., Collins H. M. (2010). Interactional Expertise and the Imitation Game / Gorman M. E. (2010). Trading Zones and Interactional Expertise: Creating New Kinds of Collaboration. Cambridge: MIT Press, pp. 53—70.

24

Hollings K. (2013). "There must be something wrong with this, Sally…" Faults, Lapses and Imperfections in the Sex Lives of Machines / Leonardo Electronic Almanac, Vol. 19 Iss. 4 // https://www.leonardo.info/journal-issue/leonardo-electronic-almanac/19/4

25

Pruchnic J. (2013). Rhetoric and Ethics in the Cybernetic Age: The Transhuman Condition. Routledge // https://books.google.ru/books?id=sUttAAAAQBAJ

26

Turing A. (1952). Can Automatic Calculating Machines be Said to Think? / Copeland J. B. (2004). The Essential Turing: The ideas that gave birth to the computer age. Clarendon Press // https://books.google.ru/books?id=VlC5MkVIwqkC

27

Sterrett S. G. (2000). Turing's Two Test of Intelligence / Minds and Machines, Vol. 10, Iss. 4, p. 541 // https://doi.org/10.1023/A:1011242120015

28

* Двойной слепой метод — подход, когда ни задающий вопросы, ни взаимодействующие с ним организаторы сами не знают, кто из участников теста является машиной и есть ли вообще машина среди участников теста; то есть задача для жюри должна быть сформулирована следующим образом: «Выберите один из вариантов: только испытуемый 1 является машиной, только испытуемый 2 является машиной, оба испытуемых являются машинами, оба испытуемых являются людьми».

29

Кокшотт У. П., Микаэльсон Г., Коттрел А. (2017). Бёттке, синтаксис и тест Тьюринга / Пер. с англ. Горлова А. В., Маркова С. С // https://22century.ru/popular-science-publications/boettke-syntax-and-the-turing-test

30

Landau L. J. (1997). Penrose's Philosophical Error / Landau L. J., Taylor J. G. (1998). Concepts for Neural Networks. Perspectives in Neural Computing. Springer, London // https://doi.org/10.1007/978-1-4471-3427-5_7

31

* Способность мозга находить причинно-следственные связи.

32

** Представление о том, что в основе разума лежат квантовомеханические эффекты, принципиально невоспроизводимые средствами классической механики.

33

The Emperor’s New Mind: Concerning Computers, Minds and the Laws of Physic, Oxford University Press.

34

Shieber S. M. (1994). Lessons from a Restricted Turing Test / Communications of the ACM, Vol. 37, Iss. 6, pp. 70—78 // https://doi.org/10.1145/175208.175217

35

Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ

36

Mallery J. C. (1988). Thinking About Foreign Policy: Finding an Appropriate Role for Artificially Intelligent Computers / The 1988 Annual Meeting of the International Studies Association., St. Louis, MO.

37

*** Наборы визуальных тестов для оценки способности системы находить простые закономерности, предложенные советским учёным Михаилом Бонгардом.

38

McCarthy J. (1996). “The Philosophy of Artificial Intelligence”, What has AI in Common with Philosophy?

39

**** CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) — полностью автоматизированный публичный тест Тьюринга для различения компьютеров и людей.

40

Луис фон Ан. Массовое онлайн-сотрудничество // Конференция TED, 2011.

41

См. патент Method and system for discriminating a human action from a computerized action. 2004-03-01 (https://patents.google.com/patent/US20050114705A1/en).

42

Samuel A. (1959). Some Studies in Machine Learning Using the Game of Checkers / IBM Journal of Research and Development, Vol. 3, Iss. 3, pp. 210—229 // https://doi.org/10.1147/rd.33.0210

43

Воронцов К. В. Математические методы обучения по прецедентам (теория обучения машин) // http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf

44

Goled S. (2021). Self-Supervised Learning Vs Semi-Supervised Learning: How They Differ / Analytics India Magazine, May 7, 2021 // https://analyticsindiamag.com/self-supervised-learning-vs-semi-supervised-learning-how-they-differ/

45

Воронцов К. В. Математические методы обучения по прецедентам (теория обучения машин) // http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf

46

The measurement of man // http://www.galtoninstitute.org.uk/sir-francis-galton/psychology-statistics-criminology/

47

Galton F. (1886). Regression Towards Mediocrity in Hereditary Stature. The Journal of the Anthropological Institute of Great Britain and Ireland, Vol. 15, pp. 246—263 // http://www.jstor.org/stable/2841583

48

Воронцов К. В. Математические методы обучения по прецедентам (теория обучения машин) // http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf

49

Luong M.-T., Brevdo E., Zhao R. (2017). Neural Machine Translation (seq2seq) Tutorial // https://web.archive.org/web/20171123080802/https://www.tensorflow.org/tutorials/seq2seq

50

См., напр.: Xing Z., Pei J., Keogh E. (2010). A Brief Survey on Sequence Classification / SIGKDD Explorations, Vol. 12, pp. 40—48 // https://doi.org/10.1145/1882471.1882478

51

См., напр.: Gsponer S., Smyth B., Ifrim G. (2017). Efficient sequence regression by learning linear models in all-subsequence space / Ceci M., Hollmén J., Todorovski L., Vens C., Džeroski S. (2017). Machine Learning and Knowledge Discovery in Databases. Springer International Publishing.

52

Roweis S. T., Saul L. K. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding / Science, Vol. 290, Iss. 5500, pp. 2323—2326 // https://doi.org/10.1126/science.290.5500.2323

53

Bishop C. M., Lasserre J. (2007). Generative or discriminative? Getting the best of both worlds / Bayesian Statistics, Vol. 8, Iss. 3, p. 24.

54

* Пиксель (от англ. сокращения от pictures element) — наименьший элемент двумерного цифрового изображения.

55

* Хемоинформатика (химическая информатика, молекулярная информатика) — применение методов информатики при решении химических проблем.

56

Schwab K. (2017). The Fourth Industrial Revolution. World Economic Forum // https://www.google.ru/books?id=ST_FDAAAQBAJ

57

Шваб К. (2016). Четвёртая промышленная революция. Издательство «Э» // https://books.google.com/books?id=rTRnDQAAQBAJ

58

Boyer C. B., Merzbach U. C. (2011). A History of Mathematics. John Wiley & Sons // https://www.google.ru/books?id=bR9HAAAAQBAJ

59

Википедия // https://ru.wikipedia.org/wiki/Абак (версия от 11.03.2018).

60

См., напр.: Большой энциклопедический словарь (2002) / 2-е изд., перераб. и доп., с ил. // https://dic.academic.ru/dic.nsf/enc3p/44770

61

Donnegan J. Patton R. B. (1838). A New Greek and English Lexicon: Principally on the Plan of the Greek and German Lexicon of Schneider: the Words Alphabetically Arranged. Hilliard, Gray & Company.

62

Шанский Н. М., Боброва Т. А. (2004) Школьный этимологический словарь русского языка. Происхождение слов. — М.: Дрофа.

63

A Greek-English lexicon to the New Testament by Greenfield, William, 1799-1831; Green, Thomas Sheldon, 1803 or 1804-1876; Hastings H. L. (Horace Lorenzo), 1831-1899; Stearns, Wallace N. (Wallace Nelson), 1866-; Thayer, Joseph Henry, 1828-1901 // https://www.gutenberg.org/files/40935/40935-h/40935-h.htm

64

Михельсон А. Д. (1865) Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней.

65

A Dictionary of Greek and Roman Antiquities (1890) William Smith, LLD, William Wayte, G. E. Marindin, Ed // http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0063%3Aalphabetic+letter%3DA%3Aentry+group%3D1%3Aentry%3Dabacus-cn

66

Online etymology dictionary © 2001-2018 Douglas Harper. All rights reserved // https://www.etymonline.com/word/abacus

67

Huehnergard J. (2011). "Appendix of Semitic Roots, under the root ʾbq.". American Heritage Dictionary of the English Language (5th ed.). Houghton Mifflin Harcourt Trade.

68

Online etymology dictionary © 2001-2018 Douglas Harper. All rights reserved // https://www.etymonline.com/word/abacus

69

Robertson J. (2019). Robertson's Words for a Modern Age: A Dictionary of English Vocabulary Words Derived Primarily from Latin and Greek Sources, Presented Individually and in Family Units // https://wordinfo.info/

70

Ifrah G. (2001). The Universal History of Computing: From the Abacus to the Quantum Computer. New York, NY: John Wiley & Sons, Inc., р. 11.

71

Ifrah G. (2000). The Universal History of Numbers: From prehistory to the invention of the computer., John Wiley and Sons. Translated from the French by David Bellos, E. F. Harding, Sophie Wood and Ian Monk.

72

Macey S. L. (1989). The Dynamics of Progress: Time, Method, and Measure, Atlanta, Georgia: University of Georgia Press, p. 92.

73

Ndimele O., Chan S.(2016). The Numeral Systems of Nigerian Languages. Oxford: African Books Collective. Retrieved June 21, 2018, from Project MUSE database.

74

Francis W. (1988). Gazetteer of South India. Mittal Publ.

75

Caughley R. C. (1989). Chepang — a Sino-Tibetan language with a duodecimal numeral base?, in D. Bradley et al. (eds.).

76

de Buffon G. L. L., C'epède L. (1839). Oeuvres complètes de Buffon. Rapet et cie.

77

Foundation and First Generation // http://www.dozenal.org/drupal/content/foundation-and-first-generation.html

78

The Dozenal Society of Great Britain // http://www.dozenalsociety.org.uk/

79

Karttunen F. E. (1992). An Analytical Dictionary of Nahuatl. University of Oklahoma Press // https://books.google.ru/books?id=s4LURGT0h2AC

80

Kane N. (2016). Maya Math Simplified. Spangenhelm Publishing // https://books.google.ru/books?id=8vN6DQAAQBAJ

81

Ancient Aztec 'Computer' beats electronic brains / Radford Journal Weekly (November 3, 1977) // https://newspaperarchive.com/radford-journal-weekly-nov-03-1977-p-2/

82

Гуаман Пома де Айяла Ф. (2011) Первая новая хроника и доброе правление (доколумбовый период) / Пер. со староисп. В.А. Кузьмищева; отв. ред. Н.Ю. Кудеярова. — М.: Памятники исторической мысли // http://www.piminfo.ru/catfile/bbook_Pdf_small_275.pdf

83

Florio C. Risposta aperta a Subhash Kak sulla decifrazione della yupana di Guaman Poma // https://www.academia.edu/6343696/Risposta_aperta_a_Subhash_Kak_sulla_yupana_di_Guaman_Poma_de_Ayala

84

Volkov A. K. (1994). Large Numbers and Counting Rods / Extrême-Orient, Extrême-Occident, 1994, n°16. Sous les nombres, le monde: Matériaux pour l'histoire culturelle du nombre en Chine ancienne, pp. 71—92 // https://doi.org/10.3406/oroc.1994.991

85

Igarashi Y., Altman T., Funada M., Kamiyama B. (2014). Computing: A Historical and Technical Perspective. CRC Press // https://books.google.ru/books?id=eabNBQAAQBAJ

86

Moon P. H. (1971). The abacus: its history, its design, its possibilities in the modern world. Gordon and Breach Science Publishers // https://books.google.ru/books?id=G1LxAAAAMAAJ

87

Wagner R. G., Wang B. (2003). A Chinese Reading of the Daodejing: Wang Bi's Commentary on the Laozi with Critical Text and Translation. State University of New York Press // https://books.google.ru/books?id=bUZNAAAAQBAJ

88

Gullberg J., Hilton P., Gullberg P. (1997). Mathematics: From the Birth of Numbers. W. W. Norton // https://books.google.ru/books?id=E09fBi9StpQC

89

Васубандху (2006). Энциклопедия буддийской канонической философии (Абхидхармакоша) / Составление, перевод, комментарии, исследования Е. П. Островской, В. И. Рудого. — СПб.: Изд-во С.-Петерб. ун-та. С. 74 // http://abhidharma.ru/A/Guru%20Mahasiddhi/Content/Vasubandhu/Abhidharmakosha%20O.R.%20V-VI.pdf

90

Витсен Н. (2010). Северная и Восточная Тартария: в 3 т. — Амстердам: Pegasus. 624; 608; 584 с // https://www.pegasusboek.nl/severnaia-i-vostotsnaja-tartarija.html

91

Миллер Г. Ф. (1937). История Сибири. — М.: Издательство АН СССР. 637 с, 2 карты // https://www.runivers.ru/upload/iblock/2f8/miller%201.pdf

92

Карамзин Н. М. История государства Российского // http://www.kulichki.com/inkwell/text/special/history/karamzin/kar09_06.htm

93

* Соседствующего, между прочим, с историей о происхождении фамилии Строганов от умерщвления основателя рода татарами, выполненного путём строгания, то есть изрубливания на мелкие кусочки.

94

Цепков А. И. (сост.). Сочинения Григория Скибинского. Переписная книга домовой казны патриарха Никона. — Рязань: Александрия. С. 463 // https://mirlib.ru/knigi/history/212098-sochineniya-grigoriya-skibinskogo-perepisnaya-kniga-domovoy-kazny-patriarha-nikona.html

95

Спасский И. Г. (1952). Происхождение и история русских счётов // Историко-математические исследования. — М.: ГИТТЛ. № 5. С. 269—420 // http://pyrkov-professor.ru/default.aspx?tabid=195&ArticleId=43

96

The History Of Herodotus. Vol. 1 (of 2). Translator: G. C. Macaulay // https://www.gutenberg.org/files/2707/2707-h/2707-h.htm

97

Smith D. E. (1958). History of Mathematics. Dover Books on Mathematics. 2: Special Topics of Elementary Mathematics. Courier Dover Publications.

98

Smith D. E. (1958). History of Mathematics. Dover Books on Mathematics. 2: Special Topics of Elementary Mathematics. Courier Dover Publications.

99

Aeschylus, Agamemnon (Greek) (ed. Herbert Weir Smyth, Ph. D.) // http://data.perseus.org/citations/urn:cts:greekLit:tlg0085.tlg005.perseus-grc1:538-582

100

Aristophanes. Aristophanes Comoediae, ed. F. W. Hall and W. M. Geldart, vol. 1. F. W. Hall and W. M. Geldart. Oxford. Clarendon Press, Oxford. 1907 // http://data.perseus.org/citations/urn:cts:greekLit:tlg0019.tlg004.perseus-grc1:316-333

101

Aristophanes. Aristophanes Comoediae, ed. F. W. Hall and W. M. Geldart, vol. 1. F. W. Hall and W. M. Geldart. Oxford. Clarendon Press, Oxford. 1907 // http://data.perseus.org/citations/urn:cts:greekLit:tlg0019.tlg004.perseus-grc1:650-695

102

Athenaion Politeia, ed. Kenyon. Oxford. 1920 // http://data.perseus.org/citations/urn:cts:greekLit:tlg0086.tlg003.perseus-eng1:69.1

103

Ifrah G. (2001). The Universal History of Computing: From the Abacus to the Quantum Computer. New York, NY: John Wiley & Sons, Inc.

104

Trendall & Cambitoglou 1982 p. 495, no. 18/38, pl. 176,1; FR pl. 88 // http://www.perseus.tufts.edu/hopper/artifact?name=Naples+3253&object=vase

105

Pullan J. M. (1968). The History of the Abacus. New York, NY: Frederick A. Praeger, Inc., Publishers.

106

Historiae. Polybius. Theodorus Büttner-Wobst after L. Dindorf. Leipzig. Teubner. 1893 // http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0543.tlg001.perseus-eng1:5.26

107

Diogenes Laertius, Lives of Eminent Philosophers R. D. Hicks, Ed. (1972) // http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0004.tlg001.perseus-eng1:1.2

108

Williams M. R. (1997). Baltes, Cheryl, ed. A History of Computing technology (2nd ed.). Los Alamitos, CA: IEEE Computer Society Press.

109

The sponge divers and the original crew. Return to Antikythera. A project of the Hellenic Ministry of Culture and Sports // http://antikythera.org.gr/history/1900-1901/sponge-divers/

110

Nikoli M., Seiradakis J. H. The first newspaper references to the antikythera shipwreck discoveries // http://academy.edu.gr/Antikythera-Digital-Book-Files/08_Magdalini.pdf

111

Мерчант Д. (2017). Антикитерский механизм: Самое загадочное изобретение Античности. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=Kk00DwAAQBAJ

112

Trimmis K. P. (2016). The Forgotten Pioneer: Valerios Stais and his research in Kythera, Antikythera and Thessaly / Bulletin of the History of Archaeology, Vol. 26, Iss. 1 // http://doi.org/10.5334/bha-558

113

Athens, NM Br. 13400 (Sculpture) // http://www.perseus.tufts.edu/hopper/artifact?name=Athens,+NM+Br.+13400&object=sculpture

114

Trimmis K. P. (2016). The Forgotten Pioneer: Valerios Stais and his research in Kythera, Antikythera and Thessaly / Bulletin of the History of Archaeology, Vol. 26, Iss. 1 // http://doi.org/10.5334/bha-558

115

Hederich B. (1827). Novum lexicon manuale Graeco-Latinum et Latino-Graecum: Band 1 // https://books.google.ru/books?id=xHAUAAAAQAAJ

116

Liddell H. G., Scott R. A Greek-English Lexicon // http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dmoirognwmo%2Fnion

117

Большой Энциклопедический словарь (2002) / 2-е изд., перераб. и доп, с ил.

118

https://en.oxforddictionaries.com/definition/astrolabe

119

* Куфическое письмо — один из наиболее древних видов арабского письма, созданный в конце VIII в.; сыграл значительную роль в дальнейшем развитии всей арабской каллиграфии.

120

http://www.historyofinformation.com/expanded.php?id=2340

121

Field J. V., Wright M. T. (1985). The early history of mathematical gearing / Endeavour, Vol. 9, Iss. 4, pp. 198–203 // https://doi.org/10.1016/0160-9327(85)90078-X. (http://www.sciencedirect.com/science/article/pii/016093278590078X).

122

Astrolabe with Geared Calendar, by Muhammad b. Abi Bakr, Isfahan, 1221/2 // http://www.mhs.ox.ac.uk/object/inv/48213

123

Rados C. N. (1905). “Sur Les Trouvailles Astronomiques d’Anticythère” in Comptes rendus du Congrès international d’archéologie, 1re session, Athènes 1905, sous la présidence de S. A. R. le Prince Royal des Hellènes, président de la Société archéologique. 1re Session, 7–13 Avril, Athènes, Athènes, pp. 256–258 // https://archive.org/details/comptesrendusduc00conguoft

124

Жуков А. (2010). По страницам сочинения Герона Александрийского «О диоптре» // Квант. № 3. С. 23–25.

125

Jones A. The Antikythera Mechanism and the Public Face of Greek Science / Proceedings of Science PoS (Antikythera & SKA) 038, 2012 // http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=170.

126

Cicero M. T. Librorum de Re Publica Sex. C. F. W. Mueller. Leipzig. Teubner. 1889 // http://data.perseus.org/citations/urn:cts:latinLit:phi0474.phi043.perseus-lat1:1.21

127

Jones A. R. (2018). Like Opening a Pyramid and Finding an Atomic Bomb: Derek de Solla Price and the Antikythera Mechanism / Proceedings of the American Philosophical Society, Vol. 162, Iss. 3, pp. 259–294 // https://www.amphilsoc.org/sites/default/files/2019-03/attachments/Jones.pdf

128

Мерчант Д. (2017). Антикитерский механизм: Самое загадочное изобретение Античности. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=Kk00DwAAQBAJ

129

de Solla Price D. (1974). Gears from the Greeks. The Antikythera Mechanism: A Calendar Computer from ca. 80 B. C / Transactions of the American Philosophical Society, New Series, Vol. 64, No. 7 (1974), pp. 1–70 // http://www.jstor.org/stable/1006146

130

Poole L. (2017). Bromley’s model of the Antikythera Mechanism // https://maas.museum/inside-the-collection/2017/11/01/bromleys-model-of-the-antikythera-mechanism/

131

Oates S., Bromley A. Decoding the Heavens: Mistakes and misinterpretations // http://www.connectives.com/decoding-the-heavens-bromley-comments.html

132

A Planetarium Display for the Antikythera Mechanism / Horological Journal, vol. 144 no. 5 (May 2002), pp. 169–173, and vol. 144 no. 6 (June 2002), p. 193.

133

Мерчант Д. (2017). Антикитерский механизм: Самое загадочное изобретение Античности. — М.: Альпина нон фикшн // https://www.google.ru/books?id=Kk00DwAAQBAJ

134

Evans J., Carman C. C., Thorndyke A. (2010). Solar anomaly and planetary displays in the Antikythera Mechanism / Journal for the History of Astronomy. xli: pp. 1–39 // http://adsabs.harvard.edu/full/2010JHA….41….1E

135

Freeth T., Higgon D., Dacanalis A., MacDonald L., Georgakopoulou M., Wojcik A. (2021). A Model of the Cosmos in the ancient Greek Antikythera Mechanism / Scientific Reports, Vol. 11, Article number: 5821 // https://doi.org/10.1038/s41598-021-84310-w

136

Experts recreate a mechanical Cosmos for the world’s first computer (2021) / UCL News, 12 March 2021 // https://www.ucl.ac.uk/news/2021/mar/experts-recreate-mechanical-cosmos-worlds-first-computer

137

Byzantine portable universal altitude sundial with geared calendrical device // http://collection.sciencemuseum.org.uk/objects/co1082/byzantine-portable-universal-altitude-sundial-with-geared-calendrical-device-sundial-perpetual-calendar

138

Pappus, Hultsch F. O. (1878). Pappi Alexandrini collectionis quae supersunt. Apud Weidmannos // https://archive.org/stream/pappialexandrin02hultgoog#page/n33/mode/2up

139

Wright M. (2012). The Planetarium of Archimedes // http://hist.science.online.fr/antikythera/DOCS/THE%20PLANETARIUM%20OF%20ARCHIMEDES.pdf

140

Freeth, Tony; Jones, Alexander (2012). The Cosmos in the Antikythera Mechanism. Institute for the Study of the Ancient World // http://dlib.nyu.edu/awdl/isaw/isaw-papers/4/

141

* Пер. Е. Красновой.

142

Математика XVII столетия (1970) // История математики в 3 т / под ред. А. П. Юшкевича. — М.: Наука. Т. II. С. 54–48 // http://ilib.mccme.ru/djvu/istoria/istmat2.htm

143

Клейн Ф. (1987). Элементарная математика с точки зрения высшей. — М.: Наука. Т. I. Арифметика. Алгебра. Анализ. С. 210 // http://ilib.mccme.ru/djvu/klejn-1.htm

144

Карпушкина Н. (2011). Решётчатое умножение // Наука и жизнь. №2 // https://www.nkj.ru/archive/articles/19204/

145

* Османская миниатюра — форма искусства в Османской империи, разновидность живописи, изображающая сцены войн, охоты, значимых для двора и страны событий, уклад и образ жизни людей.

146

** «Девширме» («налог кровью») — система принудительного набора мальчиков из христианских семей для их последующего воспитания и дальнейшей службы в роли «капыкулу» (kapıkulları, «государевы рабы») — лиц рабского статуса на государственной и военной службе. Большая часть чиновников и военных Османской империи в XV–XVI вв. состояла именно из призванных по девширме лиц.

147

Stoianovich T. (2015). Balkan Worlds: The First and Last Europe: The First and Last Europe. Taylor & Francis // https://books.google.ru/books?id=lKVzCQAAQBAJ

148

Woodhead C. (2011). The Ottoman World. Taylor & Francis // https://books.google.ru/books?id=jt_FBQAAQBAJ

149

Corlu M. S., Burlbaw L. M., Capraro R. M., Han S., Çorlu M. A. (2010). The Ottoman palace school and the man with multiple talents, Matrakçı Nasuh / Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, Vol. 14, Iss. 1, pp. 19–31 // https://www.academia.edu/480968/Corlu_M._S._Burlbaw_L._M._Capraro_R._M._Han_S._and_%C3%87orlu_M._A._2010_._The_Ottoman_palace_school_and_the_man_with_multiple_talents_Matrak%C3%A7%C4%B1_Nasuh._Journal_of_the_Korea_Society_of_Mathematical_Education_Series_D_Research_in_Mathematical_Education_14_1_19_31

150

Celebi E., von Hammer-Purgstall J. (1834). Narrative of Travels in Europe, Asia, and Africa in the Seventeenth Century. Oriental Translation Fund // https://books.google.ru/books?id=66hCAAAAcAAJ

151

Karagöz A. (2013). Nasûh Es-Silâhî'nin Umdetü'l Hisâb Adlı Eseri (89b-179a) (İnceleme-Metin-Dizin-Tıpkıbasım) // https://tezarsivi.com/nasuh-es-silahinin-umdetul-hisab-adli-eseri-89b-179a-inceleme-metin-dizin-tipkibasim

152

Цит. по: Bulletin of the Scientific Instrument Society No. 76 (2003) // https://static1.squarespace.com/static/54ec9b40e4b02904f4e09b74/t/5692c4becbced6b74bcb6067/1452459215241/SIS_Bulletin_076.pdf

153

Gradstein S. (1962). The Calculating Machine of Blaise Pascal / Philips technical review, Vol. 24, 1962 // http://nvhrbiblio.nl/biblio/tijdschrift/Philips%20Technical%20Review/Philips-Technical-Review-1962.pdf

154

Dalakov G. The Rechenuhr (Calculating Clock) of Wilhelm Schickard / History of Computers: hardware, software, internet… // http://history-computer.com/MechanicalCalculators/Pioneers/Schickard.html

155

* Сенешаль — глава региональной системы правосудия во Франции в XVII в.

156

Adamson D. (1994). Blaise Pascal: Mathematician, Physicist and Thinker about God. Palgrave Macmillan UK // https://books.google.ru/books?id=qpmGDAAAQBAJ

157

O'Connor J. J., Robertson E. F. Étienne Pascal / MacTutor History of Mathematics archive // http://www-history.mcs.st-andrews.ac.uk/Biographies/Pascal_Etienne.html

158

Тарасов Б. Н. (2006). Паскаль. — М.: Молодая гвардия // https://books.google.ru/books?id=pq59AAAAMAAJ

159

Dalakov G. The Pascaline of Blaise Pascal / History of Computers: hardware, software, internet… // http://history-computer.com/MechanicalCalculators/Pioneers/Pascal.html

160

http://www.historicalstatistics.org/Currencyconverter.html

161

https://www.in2013dollars.com/us/inflation/2015?amount=2310

162

Dalakov G. The arithmometer of Thomas de Colmar / History of Computers: hardware, software, internet… // http://history-computer.com/MechanicalCalculators/19thCentury/Colmar.html

163

Leibniz Invents the Stepped Drum Gear Calculator / Jeremy Norman's HistoryOfInformation.com // http://www.historyofinformation.com/expanded.php?id=453

164

Doron Swade. Babbage, Charles / Oxford Dictionary of National Biography // https://doi.org/10.1093/ref:odnb/962

165

Dubbey J. M., Dubbey J. M. (2004). The Mathematical Work of Charles Babbage. Cambridge University Press // https://books.google.ru/books?id=gkWunaISTsgC

166

LMA/4050. REVEREND STEPHEN FREEMAN'S SCHOOL PONDERS END / London Metropolitan Archives: City of London // http://discovery.nationalarchives.gov.uk/details/r/db8b56cf-ea51-4c0b-ad46-320a2391d714

167

Woodhouse R. (1803). The Principles of Analytical Calculation. Cambridge University Press // https://books.google.ru/books?id=rEbnAAAAMAAJ

168

Lagrange J. L. (1797). Théorie des fonctions analytiques. Imprimerie de la République.

169

Agnesi M. G. (1748). Instituzioni analitiche: ad uso della gioventu' italiana. Nella Regia Ducal Corte // https://books.google.it/books?id=a7znPR4b4XkC

170

Hay D. C. (2002). Charles Babbage / Business Rules Journal Vol. 3, No. 2, Feb // http://www.brcommunity.com/a2002/b096.html

171

Swade D. Babbage, Charles / Oxford Dictionary of National Biography // https://doi.org/10.1093/ref:odnb/962

172

Henry F. H. I. (2019). Love, Sex, and the Noose: The Emotions of Sodomy in 18thCentury England / Electronic Thesis and Dissertation Repository, 6736 // https://ir.lib.uwo.ca/etd/6736

173

A Report of the Trial of the Reverend Thomas Jephson, for a Misdemeanor, at the Cambridge Summer Assizes, 1823, on Wednesday, July 23, Before Mr. Serjeant Bosanquet, and a Common Jury (1823) // https://books.google.ru/books?id=gZPfdOebxO0C

174

Simister L. (2015). Charles Babbage from the Beginning. Lulu.com // https://books.google.ru/books?id=YqJmCgAAQBAJ

175

Campbell-Kelly M., Aspray W., Ensmenger N., Yost J. R. (2013). Computer: A History of the Information Machine. Avalon Publishing // https://books.google.ru/books?id=0MZVDgAAQBAJ

176

Руденко Б. (2008). Бином Ньютона и треугольник Паскаля / Наука и жизнь. №4 // https://www.nkj.ru/archive/articles/13598/

177

Computing the Nautical Almanac, Called the "Seaman's Bible" / Jeremy Norman's HistoryOfInformation.com // http://www.historyofinformation.com/expanded.php?id=485

178

May W. E., Jones S. S. D., Howard J. L., Logsdon T. S., Anderson E. W., Richey M. W. Navigation | technology / Encyclopædia Britannica // https://www.britannica.com/technology/navigation-technology#ref363598

179

Higgitt R., Dunn R., Jones P. (2016). Navigational Enterprises in Europe and its Empires, 1730—1850. Palgrave Macmillan UK // https://books.google.ru/books?id=K8ObCwAAQBAJ

180

Parkinson B. W., Stansell T., Beard R., Gromov K. (1995). A History of Satellite Navigation / Navigation, Vol. 42, pp. 109–164 // https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2161-4296.1995.tb02333.x

181

Stephanie P. (2011). Into the breeches: A makeover for Longitude’s villain / New Scientist, Iss. 2814, published 28 May // https://www.newscientist.com/article/mg21028141-500-into-the-breeches-a-makeover-for-longitudes-villain/

182

Computing the Nautical Almanac, Called the "Seaman's Bible" / Jeremy Norman's HistoryOfInformation.com // http://www.historyofinformation.com/expanded.php?id=485

183

Dalakov G. The Differential Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/DifferentialEngine.html

184

Howe J. (April 1840). “Manufacture of Pins”. American Journal of Science and Arts. 38 (1): Appendix, p. 3 // https://archive.org/stream/mobot31753002152160#page/n225/mode/2up/search/howe

185

Campbell-Kelly M., Aspray W., Ensmenger N., Yost J. R. (2013). Computer: A History of the Information Machine. Avalon Publishing // https://books.google.ru/books?id=0MZVDgAAQBAJ

186

Babbage C., Morrision P., Morrison E. (2013). On the Principles and Development of the Calculator and Other Seminal Writings. Dover Publications // https://books.google.ru/books?id=FTXyAAAAQBAJ

187

Dalakov G. The Differential Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/DifferentialEngine.html

188

https://www.in2013dollars.com/1820-GBP-in-2023?amount=35000

189

Waller D. (2016). Iron Men: How One London Factory Powered the Industrial Revolution and Shaped the Modern World. Anthem Press // https://books.google.ru/books?id=zLs1DgAAQBAJ

190

Toole B. A. (1998). Ada, the Enchantress of Numbers. Mill Valley, California: Strawberry Press // https://archive.org/details/adaenchantressof00tool/page/38

191

Stein D. K. (1984). Lady Lovelace's Notes: Technical Text and Cultural Context / Victorian Studies, Vol. 28, No. 1 (Autumn, 1984), pp. 33–67 // https://www.jstor.org/stable/3826758

192

Campbell-Kelly M., Aspray W., Ensmenger N., Yost J. R. (2013). Computer: A History of the Information Machine. Avalon Publishing // https://books.google.ru/books?id=0MZVDgAAQBAJ

193

Hyman A. (1985). Charles Babbage: Pioneer of the Computer. Princeton University Press // https://books.google.ru/books?id=YCddaWqWK2cC

194

Babbage C., Morrision P., Morrison E. (2013). On the Principles and Development of the Calculator and Other Seminal Writings. Dover Publications // https://books.google.ru/books?id=FTXyAAAAQBAJ

195

Dalakov G. The differential engine of Pehr-Georg and Edvard Scheutz / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/NextDifferentialEngines/Scheutz.html

196

Watson I. (2012). The Universal Machine: From the Dawn of Computing to Digital Consciousness. Springer Berlin Heidelberg // https://books.google.ru/books?id=jlmVKZ1psCkC

197

* Некий студент написал в дипломной работе фразу: «По причине того, что досюда никто не дочитает, сердечник трансформатора рекомендуется сделать из дерева» (вариантов этой байки существует множество: «…выпиливаем турбину из цельного куска дерева, всё равно читать никто не будет» и т. п.).

198

Dalakov G. The differential engine of Pehr-Georg and Edvard Scheutz / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/NextDifferentialEngines/Scheutz.html

199

Collier B. (1991). Little Engines That Could'Ve: The Calculating Machines of Charles Babbage. Garland Publishing, Inc // http://robroy.dyndns.info/collier/

200

Giudice J. P. (2001). Complejidad y dimensiones en los estudios sobre Babbage: la máquina analítica. Un análisis del fracaso cultural del primer proyecto de calculadora digital programable secuencialmente / Argumentos de Razón Téchnica. No.4 (2001), pp. 13–56 // http://institucional.us.es/revistas/argumentos/4/art_1.pdf

201

Babbage C., Morrision P., Morrison E. (2013). On the Principles and Development of the Calculator and Other Seminal Writings. Dover Publications // https://books.google.ru/books?id=FTXyAAAAQBAJ

202

Dalakov G. The differential engine of Pehr-Georg and Edvard Scheutz / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/NextDifferentialEngines/Scheutz.html

203

Swade D. D. (2005). The Construction of Charles Babbage's Difference Engine No. 2 / IEEE Annals of the History of Computing, Vol. 27, pp. 70–78 // https://ieeexplore.ieee.org/document/1498720/

204

Babbage printer finally runs (2000) / BBC News // http://news.bbc.co.uk/2/hi/science/nature/710950.stm

205

Dalakov G. The Analytical Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/AnalyticalEngine.html

206

Collier B. (1991). Little Engines That Could'Ve: The Calculating Machines of Charles Babbage. Garland Publishing, Inc // http://robroy.dyndns.info/collier/

207

Bromley A. G. (1998). Charles Babbage's Analytical Engine, 1838. IEEE Ann. Hist. Comput., 20, 29–45 // http://athena.union.edu/~hemmendd/Courses/cs80/an-engine.pdf

208

Shuttleworth M. (2011). Heron's Inventions. / Explorable.com, Retrieved Sep 03, 2023 // https://explorable.com/heron-inventions

209

Rice W. G. (1915). Tower Music of Belgium and Holland / The Musical Quarterly, Vol. 1, pp. 198–215 // http://www.jstor.org/stable/737846

210

Fowler C. B. (1967). The Museum of Music: A History of Mechanical Instruments. Music Educators Journal, Vol. 54, Iss. 2, pp. 45–49 // https://doi.org/10.2307/3391092

211

Keranen R. (2016). Inventions in Computing: From the Abacus to Personal Computers. Cavendish Square Publishing // https://books.google.ru/books?id=BHdmDwAAQBAJ

212

Dalakov G. Basile Bouchon / History of Computers: hardware, software, internet… // http://history-computer.com/Dreamers/Bouchon.html

213

Broudy E. (1993). The Book of Looms: A History of the Handloom from Ancient Times to the Present. University Press of New England // https://books.google.ru/books?id=shN5_-W1RzcC

214

Dalakov G. Jacques de Vaucanson / History of Computers: hardware, software, internet… // http://history-computer.com/Dreamers/Vaucanson.html

215

Keranen R. (2016). Inventions in Computing: From the Abacus to Personal Computers. Cavendish Square Publishing // https://books.google.ru/books?id=BHdmDwAAQBAJ

216

Dalakov G. Joseph-Marie Jacquard / History of Computers: hardware, software, internet… // http://history-computer.com/Dreamers/Jacquard.html

217

Полетаев В. Н. Жаккарда машина / Большая советская энциклопедия. — М.: Советская энциклопедия, 1969–1978 // https://dic.academic.ru/dic.nsf/bse/86903/Жаккарда

218

http://www.historicalstatistics.org/Currencyconverter.html

219

Dalakov G. Joseph-Marie Jacquard / History of Computers: hardware, software, internet… // http://history-computer.com/Dreamers/Jacquard.html

220

Sterling B. (2017). Charles Babbage left a computer program in Turin in 1840. Here it is / Wired, 05.14.2017 // https://www.wired.com/beyond-the-beyond/2017/05/charles-babbage-left-computer-program-turin-1840/

221

Oliveira-Pinto F. (1991). On a Visit by Charles Babbage to Turin in 1840. UC Biblioteca Geral 1 // https://books.google.ru/books?id=h8z2RKVV1B0C

222

Sterling B. (2017). Charles Babbage left a computer program in Turin in 1840. Here it is / Wired, 05.14.2017 // https://www.wired.com/beyond-the-beyond/2017/05/charles-babbage-left-computer-program-turin-1840/

223

Babbage C. (1864). Passages from the Life of a Philosopher. Longman, Green, Longman, Roberts & Green // https://archive.org/details/passagesfromlif01babbgoog/page/n150

224

Menabrea L. F. (1842) Notions sur la machine analytique de M. Charles Babbage / Bibliothèque Universelle de Genève, Nouvelle série 41, pp. 352–376 // http://www.bibnum.education.fr/sites/default/files/babage-menabrea-texte-final.pdf

225

Menabrea L. F., Babbage C., Lovelace A. K. C., L A. A. (1843). Sketch of the Analytical Engine invented by Charles Babbage … with notes by the translator. Extracted from the 'Scientific Memoirs,' etc. [The translator's notes signed: A.L.L. ie. Augusta Ada King, Countess Lovelace.]. R. & J. E. Taylor // https://books.google.ru/books?id=hPRmnQEACAAJ

226

Wolfram S. (2015). Untangling the Tale of Ada Lovelace / Stephen Wolfram Writings // https://writings.stephenwolfram.com/2015/12/untangling-the-tale-of-ada-lovelace/

227

Chiaverini J. (2017). Enchantress of Numbers: A Novel of Ada Lovelace. Penguin Publishing Group // https://books.google.ru/books?id=r5BTDgAAQBAJ

228

Misa T. J. (2015). Charles Babbage, Ada Lovelace, and the Bernoulli Numbers / Hammerman R., Russell A. L. (2015). Ada's Legacy: Cultures of Computing from the Victorian to the Digital Age. Association for Computing Machinery and Morgan & Claypool // https://doi.org/10.1145/2809523.2809527

229

De Morgan S. E., De Morgan A. (2010). Memoir of Augustus De Morgan: With Selections from His Letters. Cambridge University Press // https://books.google.ru/books?id=QsaQb6r3dwMC

230

Bromley A. G. (1982). Charles Babbage's Analytical Engine, 1838 / IEEE Annals of the History of Computing, Vol. 4, Iss. 3, pp. 197–217 // https://doi.org/10.1109/mahc.1982.10028

231

Menabrea L. F., Babbage C., Lovelace A. K. C., L A. A. (1843). Sketch of the Analytical Engine invented by Charles Babbage … with notes by the translator. Extracted from the 'Scientific Memoirs,' etc. [The translator's notes signed: A.L.L. ie. Augusta Ada King, Countess Lovelace.]. R. & J. E. Taylor // https://books.google.ru/books?id=hPRmnQEACAAJ

232

Collier B., MacLachlan J. (2000). Charles Babbage: And the Engines of Perfection. Oxford University Press // https://books.google.ru/books?id=-vzMEwf-bHEC

233

Toole B. A. (2010). Ada, the Enchantress of Numbers: Poetical Science. Critical Connection // https://books.google.ru/books?id=eWBpjlLMdQ4C

234

Stein D. (1985), Ada: A Life and a Legacy, MIT Press Series in the History of Computing, Cambridge, MA: The MIT Press // https://monoskop.org/images/e/e7/Stein_Dorothy_Ada_A_Life_and_a_Legacy.pdf

235

Brunel I. (2011). The Life of Isambard Kingdom Brunel, Civil Engineer. Cambridge University Press // https://books.google.ru/books?id=7kbGklaeTQQC

236

Lienhard J. H. (2003). The Engines of Our Ingenuity: An Engineer Looks at Technology and Culture. OUP USA // https://books.google.ru/books?id=qJdXre60T0kC

237

Risk R. B. (1893). Observed and Noted. Examiner printing house // https://books.google.ru/books?id=-HIUAQAAMAAJ

238

Ahearn B. (2012). Tennyson and Babbage / Tennyson Research Bulletin, Vol. 10, No. 1 (November 2012), pp. 53–65 // http://www.jstor.org/stable/45288571

239

Tennyson A., Collins J. C. (1900). The early poems of Alfred, Lord Tennyson. Frowde // https://books.google.ru/books?id=cITRcQAACAAJ

240

Dalakov G. The Analytical Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/AnalyticalEngine.html

241

Henry Babbage's Analytical Engine Mill, 1910 // http://collection.sciencemuseum.org.uk/objects/co62246/henry-babbages-analytical-engine-mill-1910-analytical-engine-mills

242

Cohen I. B. (2000). Howard Aiken: Portrait of a Computer Pioneer. MIT Press // https://books.google.ru/books?id=Ld7TgLeQXs4C

243

Cohen I. B. (1988). Babbage and Aiken / IEEE Annals of the History of Computing, Vol. 10, pp. 171–193 // http://doi.ieeecomputersociety.org/10.1109/MAHC.1988.10029

244

Swade D. (2017). Spring 2017 report to the Computer Conservation Society / Plan 28 Blog // http://blog.plan28.org/2017/05/spring-2017-report-to-computer.html

245

Babbage Analytical Engine designs to be digitized / BBC News, 21 September 2011 // https://www.bbc.com/news/technology-15001514

246

Babbage’s last laugh / The Economist, 9 September 1999 // https://www.economist.com/science-and-technology/1999/09/09/babbages-last-laugh

247

Sheepshanks R. (1860). A letter to the Board of visitors of the Greenwich royal observatory in reply to the calumnies of Mr. Babbage at their meeting in June 1853, and in his book entitled The exposition of 1851. London, Printed by G. Barclay // https://archive.org/details/alettertoboardv00babbgoog/page/n101

248

Bromley A. G. (1982). Charles Babbage’s Analytical Engine, 1838 / Annals of the History of Computing, Vol. 4, Num. 3 // https://anthony-zhang.me/blog/rod-logic/an-engine.pdf

249

Bard A., Söderqvist J. (2012). The Futurica Trilogy. Stockholm Text // https://books.google.ru/books?id=l-WCBwAAQBAJ

250

Hacking I. (1982). Biopower and the avalanche of printed numbers / Humanities in Society // https://s3.amazonaws.com/arena-attachments/778687/622e0ba69d28d9ff4049b1bc81462079.pdf

251

Hacking I. (1990). The Taming of Chance. Cambridge University Press // https://books.google.ru/books?id=KffZAQAAQBAJ

252

* В период с 1784 по 1896 г. Колумбийским колледжем назывался будущий Колумбийский университет.

253

Dalakov G. Tabulating machine of Herman Hollerith / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Basis/TabulatingMachine_Hollerith.html

254

Muirhead J. F. (1963). John Shaw Billings. New England Journal of Medicine, Vol. 268, Iss. 14, pp. 778–779 // https://doi.org/10.1056/nejm196304042681409

255

Dalakov G. Tabulating machine of Herman Hollerith / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Basis/TabulatingMachine_Hollerith.html

256

Truesdell L. E. (1965). The development of punch card tabulation in the Bureau of the Census, 1890–1940: with outlines of actual tabulation programs. U. S. G.P.O // https://books.google.ru/books?id=MGZqAAAAMAAJ

257

Wright C. D. (1966). The history and growth of the United States census[1790–1890] prepared for the Senate Committee on the Census. U. S. Govt. Print. Off, Johnson Reprint Corp // http://hdl.handle.net/2027/mdp.39015007025003

258

* Ин-кварто (лат. in quarto «в четвёртую часть листа», «в четвёртку» от лат. quartus «четвёртый») — полиграфический термин, обозначающий размер страницы в одну четверть типографского листа. На одном листе при этом помещается 4 листа (8 страниц) книги. Размеры страницы составляют 241,5 × 305 мм.

259

Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. №2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf

260

Dalakov G. Tabulating machine of Herman Hollerith / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Basis/TabulatingMachine_Hollerith.html

261

Truesdell L. E. (1965). The development of punch card tabulation in the Bureau of the Census, 1890–1940: with outlines of actual tabulation programs. U. S. G.P.O // https://books.google.ru/books?id=MGZqAAAAMAAJ

262

Strickland J. (2014). Hollerith and the “Punched Photograph” / Computer History Museum: Volunteer Information Exchange, Vol. 4, Iss. 3, February 20 // https://s3.amazonaws.com/s3data.computerhistory.org/chmedu/VIE_04_003.pdf

263

Karsakof S. (1832). Apercu d`un procédé nouveau d`investigation au moyen de machines à comparer les idées. St. Petersbourg.

264

Корсаков С. Н. (2009). Начертание нового способа исследования при помощи машин, сравнивающих идеи / Пер. с франц., под ред. А. С. Михайлова. — М.: МИФИ // http://www.raai.org/library/books/korsakov/korsakov_book.pdf

265

Михайлов А. С. (2016). Усиление возможностей разума — изобретения С. Н. Корсакова / Искусственный интеллект и принятие решений. № 2. С. 5–15 // http://www.aidt.ru/images/documents/2016-02/5_15.pdf

266

Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf

267

Austrian G. D. (2016). Herman Hollerith: Forgotten Giant of Information Processing. BookBaby // https://books.google.ru/books?id=Kn1vjwEACAAJ

268

Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf

269

Cartmell D. (2012). A Companion to Literature, Film, and Adaptation. Wiley // https://books.google.ru/books?id=63y9jREP6QEC

270

Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf

271

Merriam W. R. (1903). The Evolution of American Census Taking / The Century illustrated monthly magazine, Vol. LXV, Apr. 1903 // https://babel.hathitrust.org/cgi/pt?id=mdp.39015016778998;view=1up;seq=836

272

Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf

273

Truesdell L. E. (1965). The development of punch card tabulation in the Bureau of the Census, 1890–1940: with outlines of actual tabulation programs. U. S. G.P.O // https://books.google.ru/books?id=MGZqAAAAMAAJ

274

Heide L. (2009). Punched-Card Systems and the Early Information Explosion, 1880–1945. Johns Hopkins University Press // https://books.google.ru/books?id=KVVIkZhuPnQC

275

Ruggles S., Magnuson D. L. (2018). Capturing the American People: Census Technology and Institutional Change, 1790–2020 / MPC Working Papers Series. № 2 // https://pop.umn.edu/sites/pop.umn.edu/files/ruggles_magnuson_capturing-2.pdf

276

Austrian G. D. (2016). Herman Hollerith: Forgotten Giant of Information Processing. BookBaby // https://books.google.ru/books?id=Kn1vjwEACAAJ

277

Dalakov G. Biography of Herman Hollerith / History of Computers: hardware, software, internet… // https://history-computer.com/People/HollerithBio.html

278

* Lieutenant Commander, соответствует званию капитана третьего ранга или армейского майора.

279

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

280

** Примерно 1280 м.

281

*** Примерно 7300 м.

282

**** Примерно 46,3 км/ч.

283

* Гиростат (gyrostat) — модифицированный вариант гироскопа. Гироскоп — используемый для автоматического регулирования устойчивости прибор с диском и свободной осью, всегда сохраняющей неизменное положение.

284

** Примерно 45 м.

285

*** Примерно 565 м.

286

**** Примерно 18 200 м.

287

Friedman N. (2013). Naval Firepower: Battleship Guns and Gunnery in the Dreadnought Era. Pen & Sword Books Limited // https://books.google.ru/books?id=h5m9AwAAQBAJ

288

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

289

Cockshott W. P., Cockshott P., Mackenzie L. M., Michaelson G. (2012). Computation and Its Limits. OUP Oxford // https://books.google.ru/books?id=U1Gcp1S__hEC

290

Sweetman J. (1997). The Great Admirals: Command at Sea, 1587–1945. Naval Institute Press // https://books.google.ru/books?id=_9Wi8IYe00wC

291

* Channel Fleet, старейший английский флот, чьей задачей являлась защита Британских островов со стороны Ла-Манша.

292

* Captain, соответствует званию капитана первого ранга или армейского полковника.

293

** Commander, соответствует званию капитана второго ранга, или армейского подполковника.

294

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

295

Stewart W. (2014). Admirals of the World: A Biographical Dictionary, 1500 to the Present. McFarland, Incorporated, Publishers // https://books.google.ru/books?id=S1VimlFIjQoC

296

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

297

* Примерно 13 700 м.

298

Sambrook S. C. (2015). The Optical Munitions Industry in Great Britain, 1888–1923. Taylor & Francis // https://books.google.ru/books?id=gJBECgAAQBAJ

299

Sumida J. T. (1989). In Defence of Naval Supremacy: Finance, Technology and British Naval Policy, 1889–1914. Unwin Hyman Limited // https://books.google.ru/books?id=_Z7fAAAAMAAJ

300

** «Арго» здесь — название новой компании Поллена, созданной им в 1909 г.

301

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

302

Sumida J. T. (1989). In Defence of Naval Supremacy: Finance, Technology and British Naval Policy, 1889–1914. Unwin Hyman Limited // https://books.google.ru/books?id=_Z7fAAAAMAAJ

303

Jellicoe N. (2016). Jutland: The Unfinished Battle: A Personal History of a Naval Controversy. Seaforth Publishing // https://books.google.ru/books?id=2oMmDQAAQBAJ

304

Brooks J. (2016). The Battle of Jutland. Cambridge University Press // https://books.google.ru/books?id=lu0IDAAAQBAJ

305

Pollen A. (1916). Naval events reviewed / Land & water, August 10 // https://archive.org/details/1916landawater200belluoft/page/152

306

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

307

Mindell D. A. (2002). Between Human and Machine: Feedback, Control, and Computing Before Cybernetics. Johns Hopkins University Press //https://archive.org/details/B-001-002-575/page/n39

308

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

309

Nathanial G. Ott (2010). Battlecruisers at Jutland: A Comparative Analysis of British and German Warship Design and its Impact on the Naval War. The Ohio State University // https://kb.osu.edu/bitstream/handle/1811/46765/Nathan_Ott_Thesis.pdf

310

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

311

Pollen A. (1980). The Great Gunnery Scandal: The Mystery of Jutland. Collins // https://books.google.ru/books?id=3yggAAAAMAAJ

312

Dreyer D. (1986). Early Developments in Naval Fire Control / The Naval Review, July 1986, pp. 238–241.

313

Jellicoe N. (2016). Jutland: The Unfinished Battle: A Personal History of a Naval Controversy. Seaforth Publishing // https://books.google.ru/books?id=2oMmDQAAQBAJ

314

Brooks J. (2004). Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control. Taylor & Francis // https://books.google.ru/books?id=dEmRAgAAQBAJ

315

* Гирокомпас — механический указатель направления истинного (географического) меридиана, предназначенный для определения курса объекта, а также азимута (пеленга) ориентируемого направления. Принцип действия гирокомпаса основан на использовании свойств гироскопа и суточного вращения Земли. Идея гирокомпаса была предложена французским учёным Жаном Фуко.

316

Clymer A. B. (1993). The mechanical analog computers of Hannibal Ford and William Newell. IEEE Annals of the History of Computing, Vol. 15, Iss. 2, pp. 19–34.

317

Gallagher S. (2020). Gears of war: When mechanical analog computers ruled the waves / Ars Technica // https://arstechnica.com/information-technology/2020/05/gears-of-war-when-mechanical-analog-computers-ruled-the-waves/

318

Gallagher S. (2020). Gears of war: When mechanical analog computers ruled the waves / Ars Technica // https://arstechnica.com/information-technology/2020/05/gears-of-war-when-mechanical-analog-computers-ruled-the-waves/

319

Фейнман Р. Ф. (2001). Вы, конечно, шутите, мистер Фейнман! / Пер. с англ. Н. А. Зубченко, О. Л. Тиходеевой, М. Шифмана. — М.: НИЦ «Регулярная и хаотическая динамика» // http://lib.ru/ANEKDOTY/FEINMAN/feinman.txt_with-big-pictures.html

320

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

321

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

322

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

323

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

324

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

325

Dalakov G. Konrad Zuse / History of Computers: hardware, software, internet… // https://history-computer.com/People/ZuseBio.html

326

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

327

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

328

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

329

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

330

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

331

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

332

Alex J. (1997). Wege und Irrwege des Konrad Zuse / Spektrum der Wissenschaft № 1 // https://www.spektrum.de/magazin/wege-und-irrwege-des-konrad-zuse/823599

333

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

334

Rojas R. (2016). The Design Principles of Konrad Zuse's Mechanical Computers // https://arxiv.org/ftp/arxiv/papers/1603/1603.02396.pdf

335

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

336

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

337

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

338

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

339

Zuse K. (1987). My First Computer and First Thoughts About Data Processing. Computer Design-Past, Present, Future, talk given by Prof. Konrad Zuse, in Lund / Sweden, Oct. 2; Lee J. A. N. (1995). Computer Pioneers // https://history.computer.org/pioneers/zuse.html

340

Dalakov G. Konrad Zuse — the first relay computer / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Zuse.html

341

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

342

Alex J. (1997). Wege und Irrwege des Konrad Zuse / Spektrum der Wissenschaft № 1 // https://www.spektrum.de/magazin/wege-und-irrwege-des-konrad-zuse/823599

343

Zuse K. (1969). Rechnender Raum. Braunschweig: Friedrich Vieweg & Sohn.

344

Zuse K. (1970). Calculating Space (Rechnender Raum). MIT Technical Translation AZT-70-164-GEMIT, Massachusetts Institute of Technology (Project MAC), Cambridge, Mass. 02139. Adrian German and Hector Zenil (eds) re-edition in LaTeX with permission of MIT and Zuse's family, 2012 // http://www.mathrix.org/zenil/ZuseCalculatingSpace-GermanZenil.pdf

345

Peters A. (2000). Was ist und wie verwirklicht sich Computer-Sozialismus: Gespräche mit Konrad Zuse. Verlag Neues Leben, Berlin.

346

Dalakov G. The MARK computers of Howard Aiken / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Aiken.html

347

Chase G. C. (1980). History of Mechanical Computing Machinery (with foreword by I. Bernard Cohen) / Annals of the History of Computing, Vol. 2, pp. 198–226 // http://www.rechenmaschinen-illustrated.com/pdf/chase.pdf

348

Aiken H. (1989). Perspectives on the Computer Revolution. Ablex Publishing Corp // https://history-computer.com/Library/AikenProposal.pdf

349

Dalakov G. The MARK computers of Howard Aiken / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Aiken.html

350

Edison to Puskas, 13 ноября 1878, Edison papers, Edison National Laboratory, U. S. National Park Service, West Orange, N. J., цит. по: Forsyth M. (2011). The Etymologicon: A Circular Stroll through the Hidden Connections of the English Language. Icon Books Limited.

351

Dalakov G. The MARK computers of Howard Aiken / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Aiken.html

352

Wilkes M. V. (1956). Automatic Digital Computers. New York: John Wiley & Sons. pp. 16–20 // https://books.google.ru/books?id=n_oNAAAAQAAJ

353

Cohen I. B., Welch G. W., Campbell R. V. D. (1999). Makin' Numbers: Howard Aiken and the Computer. MIT Press // https://books.google.ru/books?id=lVfX5wMkI7oC

354

https://www.reddit.com/r/AskScienceDiscussion/comments/49ut8e/ive_seen_a_whole_bunch_of_things_nominated_for/

355

Ceruzzi P. E. (1991). When Computers Were Human / IEEE Annals of the History of Computing, Vol. 13, Iss. 3 // https://ieeexplore.ieee.org/document/4638252

356

Wikipedia contributors. (2019, March 26). Church–Turing thesis. In Wikipedia, The Free Encyclopedia. Retrieved 03:00, March 28, 2019, from https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

357

Herbrand J., van Heijenoort J., Goldfarb W. D. (2012). Logical Writings. Springer Netherlands // https://books.google.ru/books?id=zOXqCAAAQBAJ

358

Kreisel G. (1980). Kurt Godel. 28 April 1906 — 14 January 1978 / Biographical Memoirs of Fellows of the Royal Society, Vol. 26, pp. 148–224 // https://doi.org/10.1098/rsbm.1980.0005

359

Dawson J. (2005). Logical Dilemmas: The Life and Work of Kurt Gödel. Taylor & Francis // https://books.google.ru/books?id=gA8SucCU1AYC

360

Goldstein R. (2006). Incompleteness: The Proof and Paradox of Kurt Gödel (Great Discoveries). W. W. Norton // https://books.google.ru/books?id=tXk2AAAAQBAJ

361

Wang H. (1997). A Logical Journey: From Gödel to Philosophy. MIT Press // https://books.google.ru/books?id=pckvCy6L_ocC

362

Dawson J. (2005). Logical Dilemmas: The Life and Work of Kurt Gödel. Taylor & Francis // https://books.google.ru/books?id=gA8SucCU1AYC

363

Wang H. (1997). A Logical Journey: From Gödel to Philosophy. MIT Press // https://books.google.ru/books?id=pckvCy6L_ocC

364

Feferman S. (1998). In the Light of Logic // https://books.google.ru/books?id=AadVrcnschMC

365

Dawson J. (2005). Logical Dilemmas: The Life and Work of Kurt Gödel. Taylor & Francis // https://books.google.ru/books?id=gA8SucCU1AYC

366

Dawson J. (2005). Logical Dilemmas: The Life and Work of Kurt Gödel. Taylor & Francis // https://books.google.ru/books?id=gA8SucCU1AYC

367

Morgan D. F. (2008). Descendants of Sir John Turing and Henry Turing // https://www.mit.edu/~dfm/genealogy/turing.html

368

M'Kenzie H. (1850). The lay of the Turings: (A.D. 1316-1849.) A sketch of the family history, feebly conceived and imperfectly executed: now dedicated to the Chief with the sincerest respect and affection, by H. M'K // https://deriv.nls.uk/dcn23/9549/95491600.23.pdf

369

Тюрин Е. А. (2012). Сквозь пространство и время (к столетию Алана Тюринга) / Вестник государственного и муниципального управления. № 2 // https://cyberleninka.ru/article/n/skvoz-prostranstvo-i-vremya

370

Turing S. (2012). Alan M. Turing: Centenary Edition. Cambridge University Press // https://books.google.ru/books?id=07_ckaHY-2QC

371

Тюрин Е. А. (2012). Сквозь пространство и время (к столетию Алана Тюринга) / Вестник государственного и муниципального управления. № 2 // https://cyberleninka.ru/article/n/skvoz-prostranstvo-i-vremya

372

Hedron N. (2012). A Valentine Memoriam: Alan Turing + Christopher Morcom / The Turing Centenary (+ Bicentennial), February 13, 2012 // https://theturingcentenary.wordpress.com/2012/02/13/a-valentine-memoriam-alan-turing-christopher-morcom/

373

Тюрин Е. А. (2012). Сквозь пространство и время (к столетию Алана Тюринга) / Вестник государственного и муниципального управления. № 2 // https://cyberleninka.ru/article/n/skvoz-prostranstvo-i-vremya

374

Turing A. M. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1), pp. 230–265 // https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

375

Кокшотт У. П., Микаэльсон Г., Коттрел А. (2017). Бёттке, синтаксис и тест Тьюринга / Пер. с англ. Горлова А.В., Маркова С.С // https://22century.ru/popular-science-publications/boettke-syntax-and-the-turing-test

376

Rojas R. (1996). Konrad Zuse's Legacy: The Architecture of the Z1 and Z3 / IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997 // http://page.mi.fu-berlin.de/rojas/1996/Konrad_Zuses_Legacy.pdf

377

Профессор Рауль Рохас, персональные коммуникации.

378

Bloch R. (1984-02-22). Oral history interview with Richard M. Bloch // https://conservancy.umn.edu/bitstream/handle/11299/107123/oh066rb.pdf

379

Dalakov G. The ENIAC of John Mauchly and John Eckert / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/ENIAC.html

380

Sendov B. (2001). John Atanasoff. The Man Who Invented the Computer // https://web.archive.org/web/20180306172639/http://www.johnatanasoff.com:80/pride_in_Bulgaria.php

381

Атанасов Дж. (1985). До моята бащина земя // https://webstage.bg/istoriya/4187-do-moyata-bashtina-zemya-dzhon-atanasov.html

382

https://www.census.gov/prod/cen2010/cph-1-11.pdf

383

Taylor J. M. (1882). A College Algebra. Boston. Allyn and Bacon // https://books.google.ru/books?id=0wg_AQAAMAAJ

384

Mollenhoff C. R. (1988). Atanasoff: Forgotten Father of the Computer. Iowa State University Press // https://books.google.ru/books?id=n5omAAAAMAAJ

385

Howarth R. J. (2017). Dictionary of Mathematical Geosciences: With Historical Notes. Springer International Publishing // https://books.google.ru/books?id=MNwlDwAAQBAJ

386

Mobley B. P. (2001). The ingenuity of common workmen: and the invention of the computer. Retrospective Theses and Dissertations. 660. Iowa State University // https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1659&context=rtd

387

Соловьёва О. (2000). Водяные вычислительные машины / Наука и жизнь. № 4 // https://www.nkj.ru/archive/articles/7033/

388

Smiley J. (2010). The Man Who Invented the Computer. Knopf Doubleday Publishing Group // https://books.google.ru/books?id=3ImIFEZrDjYC

389

Burton T. (2006). World Changer: Atanasoff and the Computer. Tangra TanNakRa // https://books.google.ru/books?id=1YMfAQAAIAAJ

390

* Тиратрон — ионный (газоразрядный) прибор для управления электрическим током с помощью напряжений, поданных на его электроды.

391

Burks A. R., Burks A. W. (1989). The First Electronic Computer: The Atanasoff Story. University of Michigan Press // https://books.google.ru/books?id=_Zja6hoP4psC

392

da Cruz F. Programming the ENIAC / Columbia University Computing History: A Chronology of Computing at Columbia University // http://www.columbia.edu/cu/computinghistory/eniac.html

393

Dalakov G. The ABC of John Atanasoff and Clifford Berry / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Atanasoff.html

394

Alt F. L. (1972). Archaelogy of computers: reminiscences, 1945–1947 / Communications of the ACM, Vol. 15, Iss. 7, pp. 693–694 // https://doi.org/10.1145/361454.361528

395

Grier D. (2004). From the Editor's Desk / IEEE Annals of the History of Computing, Vol. 26, Iss. 3, pp. 2–3 // https://doi.org/10.1109/MAHC.2004.9

396

Alt F. L. (1972). Archaelogy of computers: reminiscences, 1945–1947 / Communications of the ACM, Vol. 15, Iss. 7, pp. 693–694 // https://doi.org/10.1145/361454.361528

397

Fritz W. B. (1996). The Women of ENIAC / IEEE Annals of the History of Computing, Vol. 18, Iss. 3, pp. 13–28 // https://doi.org/10.1109/85.511940

398

Randall 5th, Alexander (2006-02-14). "A lost interview with ENIAC co-inventor J. Presper Eckert". Computer World // https://www.computerworld.com/article/2561813/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html

399

Igarashi Y., Altman T., Funada M., Kamiyama B. (2014). Computing: A Historical and Technical Perspective. Taylor & Francis // https://books.google.ru/books?id=58ySAwAAQBAJ

400

Rejewski M. (1981). How Polish Mathematicians Deciphered the Enigma / IEEE Annals of the History of Computing. Vol. 3. No. 3, July // http://chc60.fgcu.edu/images/articles/rejewski.pdf

401

Singh S. (2000). The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography. Anchor Books // https://books.google.ru/books?id=skt7TrLK5uYC

402

Rejewski M. (1981). How Polish Mathematicians Deciphered the Enigma / IEEE Annals of the History of Computing. Vol. 3. Iss. 3 // http://chc60.fgcu.edu/images/articles/rejewski.pdf

403

Stengers J. (2004). Enigma, the French, the Poles and the British 1931–1940. Revue belge de Philologie et d'Histoire, 82-1-2 // https://www.persee.fr/doc/rbph_0035-0818_2004_num_82_1_4836

404

Hinsley F. H. (1996). The Influence of ULTRA in the Second World War // https://web.archive.org/web/20120417052645/http://www.cl.cam.ac.uk/research/security/Historical/hinsley.html

405

Cawthorne N. (2014). Alan Turing: The Enigma Man. Arcturus Publishing // https://books.google.ru/books?id=6qmJBAAAQBAJ

406

Budiansky S. (2000). Battle of Wits: The Complete Story of Codebreaking in World War II. Free Press // https://books.google.ru/books?id=uccLlgJDk4gC

407

Toms S. (2005). Enigma and the Eastcote connection // https://web.archive.org/web/20081204105055/http://www.ruislip.co.uk/eastcotemod/enigma.htm

408

Alexander C. H. O'D. (c. 1945). Cryptographic History of Work on the German Naval Enigma / The National Archives, Kew, Reference HW 25/1 // http://www.ellsbury.com/gne/gne-000.htm

409

Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html

410

Hinsley F. H., Stripp A. (2001). Codebreakers: The Inside Story of Bletchley Park. Oxford University Press // https://books.google.ru/books?id=j1MC2d2LPAcC

411

Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html

412

Copeland B. J. (2010). Colossus: The Secrets of Bletchley Park’s Code-breaking Computers. OUP Oxford // https://books.google.ru/books?id=M2sVDAAAQBAJ

413

Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html

414

Copeland B. J. (2010). Colossus: The Secrets of Bletchley Park’s Codebreaking Computers. OUP Oxford // https://books.google.ru/books?id=M2sVDAAAQBAJ

415

Neumann C. E. (2004). The Labouchère Amendment (1885–1967) // http://www.glbtqarchive.com/ssh/labouchere_amendment_S.pdf

416

Hodges A. (2014). Alan Turing: The Enigma: The Book That Inspired the Film The Imitation Game — Updated Edition. Princeton University Press // https://books.google.ru/books?id=QnUPBAAAQBAJ

417

Leavitt D. (2015). The Man Who Knew Too Much: Alan Turing and the Invention of the Computer. Hachette UK // https://books.google.ru/books?id=OPVGBQAAQBAJ

418

Hodges A. (2014). Alan Turing: The Enigma: The Book That Inspired the Film The Imitation Game — Updated Edition. Princeton University Press // https://books.google.ru/books?id=QnUPBAAAQBAJ

419

Garner A. (2011). My hero: Alan Turing, by Alan Garner / The Guardian, 11 Nov // https://www.theguardian.com/books/2011/nov/11/alan-turing-my-hero-alan-garner

420

Leavitt D. (2015). The Man Who Knew Too Much: Alan Turing and the Invention of the Computer. Hachette UK // https://books.google.ru/books?id=OPVGBQAAQBAJ

421

* * Гинекомастия — увеличение размера грудных желёз у лиц мужского пола.

422

Cohn J. (2019). The Burden of Choice: Recommendations, Subversion, and Algorithmic Culture. Rutgers University Press // https://books.google.ru/books?id=DAC-DwAAQBAJ

423

Hailperin M., Kaiser B., Knight K. (1999). Concrete Abstractions: An Introduction to Computer Science Using Scheme // https://books.google.ru/books?id=yYyVRueWlZ8C

424

Copeland B. J. (2012). Turing suicide verdict in doubt// https://web.archive.org/web/20120629090527/http://fds.oup.com/www.oup.co.uk/pdf/general/popularscience/jackcopelandjune

425

Hodges A. (2014). Alan Turing: The Enigma: The Book That Inspired the Film The Imitation Game — Updated Edition. Princeton University Press // https://books.google.ru/books?id=QnUPBAAAQBAJ

426

Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html

427

Honour for Colossus code-cracker (2008) / BBC News // http://news.bbc.co.uk/2/hi/technology/7213215.stm

428

Dalakov G. Colossus computer of Max Newman and Tommy Flowers / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Electronic/Colossus.html

429

Башир Рамеев: отец советских компьютеров, внук Дэрдменда и друг Ботвинника / БИЗНЕС Online, 16.12.2018 // https://www.business-gazeta.ru/article/406454

430

История, которую стоит переписать: где на самом деле сделали первый советский компьютер / Индикатор: интернет-издание // https://indicator.ru/article/2018/04/17/pervyj-sovetskij-kompyuter/

431

Малиновский Б. Н. (2012) Первая отечественная ЭВМ и её создатели (к 40-летию ввода МЭСМ в регулярную эксплуатацию) / Кибертония. № 1 // http://www.computer-museum.ru/books/lebedev_kibertonia.pdf

432

Сергей Алексеевич Лебедев. К 100-летию со дня рождения основоположника отечественной электронной вычислительной техники / Отв. ред. В. С. Бурцев. Составители Ю. Н. Никольская, А. Н. Томилин, Ю. В. Никитин, Н. С. Лебедева. — М.: ФИЗМАТЛИТ, 2002 // http://padaread.com/?book=39476

433

История, которую стоит переписать: где на самом деле сделали первый советский компьютер / Индикатор: интернет-издание // https://indicator.ru/article/2018/04/17/pervyj-sovetskij-kompyuter/

434

Рогачёв Ю. В. (2008). АЦВМ М-1 / Виртуальный компьютерный музей // http://www.computer-museum.ru/histussr/m1_2.htm

435

* Впрочем, считать M-1 в полной мере полупроводниковой ЭВМ неправильно, поскольку в её схеме было также задействовано 730 электровакуумных ламп.

436

История, которую стоит переписать: где на самом деле сделали первый советский компьютер / Индикатор: интернет-издание // https://indicator.ru/article/2018/04/17/pervyj-sovetskij-kompyuter/

437

Дмитриева И. (2002). Эскиз к портрету на фоне ЭВМ. К 100-летию И. С. Брука / itWeek №42 (360) // https://www.itweek.ru/themes/detail.php?ID=63019

438

Коган Б. Я., Казьмин А. И., Назарова В. П., Спиро А. Г. (1967). Гибридные вычислительные системы и основные области их применения. Итоги науки. Теория вероятностей, Математическая статистика, Теория кибернетики. М.: ВИНИТИ // http://mi.mathnet.ru/intv9

439

Федотов А. М. (2013). Компьютер аналоговый / Словарь терминов в коллекции «Современные проблемы информатики» & «Вычислительные системы». Новосибирский государственный университет // http://www.nsc.ru/win/elbib/data/show_page.dhtml?77+87

440

Брусенцов Н. П. (2008). Из истории создания троичных цифровых машин в МГУ / Виртуальный компьютерный музей // http://www.computer-museum.ru/histussr/setun_hist.htm

441

Of ozone and fruit flies. A german, a dutchman and seven americans win the science prizes (1995) / Time, Oct. 23, 1995 // http://content.time.com/time/subscriber/article/0,33009,983602-1,00.html

442

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

443

Пчела / Подготовка текста, перевод и комментарии В. В. Колесова. Текст приводится по новгородской рукописи XIV в. РНБ, F.п.I.44, в издании: Семенов В. Древнерусская «Пчела» по пергаменному списку. СП6., 1893, стр. 1–444 / Электронные публикации Института русской литературы (Пушкинского Дома) РАН // http://lib2.pushkinskijdom.ru/tabid-4968

444

* Пер. И. Бродского.

445

Яглом И. М. (1971). Две игры со спичками / Квант. № 2 // http://kvant.mccme.ru/1971/02/dve_igry_so_spichkami.htm

446

Jorgensen A. H. (2009). Context and driving forces in the development of the early computer game Nimbi / IEEE Annals of the History of Computing, Vol. 31, Iss. 3, pp. 44–53 // https://doi.org/10.1109/MAHC.2009.41

447

Bouton C. L. (1901–1902). Nim, A Game with a Complete Mathematical Theory / The Annals of Mathematics, 2nd Ser., Vol. 3, No. 1/4. (1901–1902), pp. 35–39 // https://paradise.caltech.edu/ist4/lectures/Bouton1901.pdf

448

Dalakov G. The Nimatron of Edward Condon / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Condon.html

449

Weiner C. (1968). Edward Condon – Session II. Oral History Interviews. Interviews that offer unique insights into the lives, works, and personalities of modern scientists / American Institute of Physics // https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4997-2

450

См. патент «Machine to play game of nim». 1940-09-24 (https://patents.google.com/patent/US2215544).

451

Dreher T. (2015). History of Computer Art // http://iasl.uni-muenchen.de/links/GCA.pdf

452

Flesch R. (1951). The Art of Clear Thinking. — 1. — New York, USA: Harper & Brothers Publishers // https://dc135.files.wordpress.com/2012/11/flesch-the-art-of-clear-thinking.pdf

453

Rougetet L. (2016). Machines designed to play Nim games. Teaching supports for mathematics, algorithmics and computer science (1940–1970) // https://hal.archives-ouvertes.fr/hal-01349260/document

454

Dalakov G. The Nimatron of Edward Condon / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Condon.html

455

Rougetet L. (2016). Machines designed to play Nim games. Teaching supports for mathematics, algorithmics and computer science (1940–1970) // https://hal.archives-ouvertes.fr/hal-01349260/document

456

Dalakov G. The Nimatron of Edward Condon / History of Computers: hardware, software, internet… // https://history-computer.com/ModernComputer/Relays/Condon.html

457

Redheffer R. (1948). A Machine for Playing the Game Nim / The American Mathematical Monthly, Vol. 55, Iss. 6, pp. 343–349 // https://doi.org/10.1080/00029890.1948.11999249

458

Rougetet L. (2016). Machines designed to play Nim games. Teaching supports for mathematics, algorithmics and computer science (1940–1970) // https://hal.archives-ouvertes.fr/hal-01349260/document

459

Moynihan D. P. (1998). Secrecy: The American Experience. Yale University Press // https://books.google.ru/books?id=FWq-5a5tqH0C

460

Sagan C. (1996). The Demon-Haunted World: Science as a Candle in the Dark. New York: Ballantine Books // https://books.google.ru/books?id=Yz8Y6KfXf9UC

461

Wheeler J. A. (1998). Geons, Black Holes, and Quantum Foam: A Life in Physics. New York: W. W. Norton // https://books.google.ru/books?id=zGFkK2tTXPsC

462

Sturrock P. A. (1987). An Analysis of the Condon Report on the Colorado UFO Project / Journal of Scientific Exploration // https://web.archive.org/web/20120717083947/http://www.ufoskeptic.org/sturrock/1.html

463

Carlisle R. P. (2009). Encyclopedia of Play in Today’s Society. SAGE Publications // https://books.google.ru/books?id=jLqXM3U_pzEC

464

Applebaum B., DiSorbo D., Ferrari M. (2016). Recess: From Dodgeball to Double Dutch: Classic Games for Players of Today. Chronicle Books LLC // https://books.google.ru/books?id=SzQBCwAAQBAJ

465

Wikipedia contributors. (2019, April 15). Tic-tac-toe. In Wikipedia, The Free Encyclopedia. Retrieved 04:41, April 15, 2019, from https://en.wikipedia.org/wiki/Tic-tac-toe

466

Parker M. (1995). She Does Math!: Real-life Problems from Women on the Job. Mathematical Association of America // https://books.google.ru/books?id=N4nmGjq5dWsC

467

Zaslavsky C. (1998). Math Games and Activities from Around the World. Chicago Review Press, Incorporated // https://books.google.ru/books?id=38o9k9YeOvwC

468

Parker H. (1909). Ancient Ceylon: An Account of the Aborigines and of Part of the Early Civilisation. Luzac and Co, Publishes to the India office // https://archive.org/details/in.ernet.dli.2015.69695/page/n633

469

Murray H. J. R. (1952). A history of board-games other than chess. Clarendon Press // https://books.google.ru/books?id=P2UNAQAAMAAJ

470

Bell R. C. (1969). Board and Table Games From Many Civilizations. Vol. I. 2nd ed. London, New York[etc.] Oxford U.P // https://archive.org/details/B-001-002-771/page/n127

471

Berger F. (2004). From circle and square to the image of the world: a possible interpretation for some petroglyphs of merels boards / Rock Art Research, Vol. 21, Iss. 1, pp. 11–25 // https://web.archive.org/web/20041121040028/http://mc2.vicnet.net.au/home/aura/shared_files/Berger1.pdf

472

Uberti M. (2012). The Merels Board Enigma. With the worldwide census. Marisa Uberti.

473

Berger F. (2004). From circle and square to the image of the world: a possible interpretation for some petroglyphs of merels boards / Rock Art Research, Vol. 21, Iss. 1, pp. 11–25 // https://web.archive.org/web/20041121040028/http://mc2.vicnet.net.au/home/aura/shared_files/Berger1.pdf

474

Berlekamp E. R., Conway J. H., Guy R. K. (1983). Winning ways for your mathematical plays: Games in particular. Acad. Pr // https://books.google.ru/books?id=1PfuAAAAMAAJ

475

Lanciani R. (1892). Gambling and Cheating in Ancient Rome / The North American Review, Volume 155 // https://archive.org/details/jstor-25102412/page/n1

476

Heimann F., Schädler U. (2014). The loop within circular three men’s morris / Game Studies, Vol. 8, pp. 51–61 // https://www.researchgate.net/publication/312118169_The_loop_within_circular_three_men's_morris

477

Murray H. J. R. (2015). A History of Chess. Skyhorse Publishing // https://books.google.ru/books?id=dNSBCgAAQBAJ

478

Bell R. C. (2012). Board and Table Games from Many Civilizations. Dover Publications // https://books.google.ru/books?id=2vvBAgAAQBAJ

479

* Пер. Татьяны Стамовой.

480

Стамова Т., Халтрин-Халтурина Е. (2011). Уильям Вордсворт. Прелюдия, или Становление сознания поэта. Фрагменты поэмы / Перевод Татьяны Стамовой. Вступление Елены Халтрин-Халтуриной / Иностранная литература. № 3 // http://magazines.russ.ru/inostran/2011/3/vo9.html

481

Notes and Queries, 2nd Series Volume VI 152, Nov. 27 1858 // https://archive.org/details/notesqueries2621unse/page/434

482

Wikipedia contributors. (2020, November 6). Tic-tac-toe. In Wikipedia, The Free Encyclopedia. Retrieved 02:40, November 12, 2020, from https://en.wikipedia.org/wiki/Tic-tac-toe

483

Monnens D. (2013). “I commenced an examination of a game called 'tit-tat-to'”: Charles Babbage and the “First” Computer Game / DiGRA Conference 2013 // http://www.digra.org/wp-content/uploads/digital-library/paper_436.pdf

484

Bateman C. (2014). Meet Bertie the Brain, the world’s first arcade game, built in Toronto / Spacing Toronto, August 13 // http://spacing.ca/toronto/2014/08/13/meet-bertie-brain-worlds-first-arcade-game-built-toronto/

485

Wolf M. J. P. (2012). Encyclopedia of Video Games: The Culture, Technology, and Art of Gaming. Greenwood Publishing Group // https://books.google.ru/books?id=deBFx7QAwsQC

486

Michie D. (1963). Experiments on the mechanization of game-learning // http://people.csail.mit.edu/brooks/idocs/matchbox.pdf

487

Brooks R. (2019). Interesting Stuff for Download / Rodney Brooks — Roboticist // http://people.csail.mit.edu/brooks/documents.html

488

* Пер. В. Филиппова.

489

Schwalbe U., Walker P. (1997, 1999). Zermelo and the Early History of Game Theory // http://abel.math.harvard.edu/~elkies/FS23j.03/zermelo.pdf

490

Aumann R. J. (1989). Game Theory / Eatwell J., Milgate M., Newman P. (1989). The New Palgrave: Game Theory, Macmillan Press, London.

491

Eichberger J. (1993). Game Theory for Economists, Academic Press, San Diego.

492

Hart S. (1992). Games in Extensive and Strategic Forms, in Robert J. Aumann and Sergiu Hart (eds.), Handbook of Game Theory, Volume 1, NorthHolland, Amsterdam.

493

Mas-Colell A., Whinston M. D., Green J. R. (1995). Microeconomic Theory, Oxford University Press, New York.

494

Dimand M. A., Dimand R. W. (1996). A History of Game Theory, Volume 1: From the Beginnings to 1945, Routledge, London.

495

Binmore K. (1992). Fun and Games: A Text on Game Theory, D. C. Heath and Company, Lexington

496

Zermelo E. (1913). Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels / Proceedings of the Fifth Congress Mathematicians (Cambridge 1912), pp. 501–504 // https://doi.org/10.1007/978-3-540-79384-7_9

497

Kőnig D. (1927). Uber eine Schlussweise aus dem Endlichen ins Unendliche / Acta Scientiarum Mathematicarum, Vol. 3, pp. 121–130.

498

Kalmár L. (1928, 1929), Zur Theorie der abstrakten Spiele / Acta Scientiarum Mathematicarum, Vol. 4, pp. 65–85.

499

Dimand M. A., Dimand R. W. (1997). The Foundations of Game Theory, Volume I. Edward Elgar, Aldershot.

500

Schwalbe U., Walker P. (1997, 1999). Zermelo and the Early History of Game Theory // http://abel.math.harvard.edu/~elkies/FS23j.03/zermelo.pdf

501

Godden K. (2007). The Longest Possible Chess Game / Blog at Chess.com // https://www.chess.com/blog/kurtgodden/the-longest-possible-chess-game

502

von Neumann J., Morgenstern O. (1944). Theory of Games and Economic Behavior. Science Editions, J. Wiley // https://archive.org/details/game_theo_econ/page/n139

503

Israel G., Gasca A. M. (2009). The World as a Mathematical Game: John von Neumann and Twentieth Century Science. Birkhäuser Basel // https://books.google.at/books?id=6o52lsjG83UC

504

* Маргиттаи означает «из Маргиты», а окончание –i — типичное окончание, используемое при образовании венгерских дворянских имён от названия местности; но семья Неймана не имела никакого отношения к городу Маргита, фамилию старший Нейман, по всей видимости, избрал по имени жены, а на выбранном гербе были изображены три маргаритки на зелёном поле.

505

Leonard R. (2010). Von Neumann, Morgenstern, and the Creation of Game Theory: From Chess to Social Science, 1900–1960. Cambridge University Press // https://books.google.ru/books?id=uV6sAwAAQBAJ

506

Aspray W. (1990). John Von Neumann and the Origins of Modern Computing. MIT Press // https://books.google.ru/books?id=M6DmngEACAAJ

507

Macrae N. (1992). John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence, and Much More. Pantheon Press // https://books.google.ru/books?id=ratFAAAAYAAJ

508

Brown T. A. (1941). Elementary Inequalities. The Mathematical Gazette, Vol. 25, Iss. 263, pp. 2–11 // https://doi.org/10.2307/3606471

509

Bellman R. (1954). Inequalities / Mathematics Magazine, Vol. 28, Iss. 1, pp. 21–26 // https://doi.org/10.2307/3029433

510

Stiller L. B. (1995). Exploiting symmetry on parallel architectures. Ph. D. Thesis, Johns Hopkins University. Archived from the original on 30 September 2007. Retrieved 4 May 2007 // https://web.archive.org/web/20070930063855/http://users.rcn.com/lstiller/thesis.pdf

511

Bellman R. E. (1961). On the reduction of dimensionality for classes of dynamic programming processes. Technical report, The RAND Corporation, Santa Monica, CA, 7 March 1961 // https://www.rand.org/pubs/papers/P2243.html

512

Bellman R. E. (1965). On the application of dynamic programming to the determination of optimal play in chess and checkers. Proceedings of the National Academy of Sciences of the United States of America, 53(2):244–246, February // https://www.ncbi.nlm.nih.gov/pmc/articles/PMC219499/pdf/pnas00154-0020.pdf

513

Гик Е. Я. (1976). Математика на шахматной доске. — М.: Наука // https://books.google.ru/books?id=bPQPAQAAIAAJ

514

Брудно А., Ландау И. (1969). Неприкасаемый король // Шахматы. № 19.

515

Ströhlein T. (1970). Untersuchungen über kombinatorische Spiele. Technische Hochschule München // https://books.google.ru/books?id=VowgHAAACAAJ

516

Ströhlein T., Zagler L. (1977). Analyzing games by Boolean matrix iteration / Discrete Mathematics, Vol. 19, Iss. 2, pp. 183–193 // https://doi.org/10.1016/0012-365X(77)90033-4

517

Stiller L. B. (1995). Exploiting symmetry on parallel architectures. Ph. D. Thesis, Johns Hopkins University. Archived from the original on 30 September 2007. Retrieved 4 May 2007 // https://web.archive.org/web/20070930063855/http://users.rcn.com/lstiller/thesis.pdf

518

Комиссарчик Е. А., Футер А. Л. (1974). Об анализе ферзевого эндшпиля при помощи ЭВМ // Проблемы кибернетики. № 29.

519

Футер А. Л. (1978). Программирование малофигурных эндшпилей: Докл. АН СССР, 242:2 (1978). С. 302–305 // http://mi.mathnet.ru/dan41980

520

Александров А. Г., Бараев А. М., Гольфанд Я. Ю., Комиссарчик Э. А., Футер А. Л. (1977). Анализ ладейного эндшпиля на ЭВМ / Автоматика и телемеханика. № 8. С. 113–117 // http://mi.mathnet.ru/at7425

521

Levy D. (2007). Love and Sex with Robots: The Evolution of Human-Robot Relationships. HarperCollins // https://books.google.ru/books?id=PJ4sAAAAYAAJ

522

https://www.in2013dollars.com/uk/inflation/1968?endYear=2023&amount=500

523

Baraniuk C. (2015). BBC – Future – The cyborg chess players that can’t be beaten, December 04 // http://www.bbc.com/future/story/20151201-the-cyborg-chess-players-that-cant-be-beaten

524

Douglas J. R. (1978). Chess 4.7 versus David Levy / BYTE. p. 84. Retrieved 17 October 2013 // https://archive.org/stream/byte-magazine-1978-12/1978_12_BYTE_03-12_Life#page/n85/mode/2up

525

Levy D. N. L., Newborn M. (1980). More chess and computers: the microcomputer revolution, the challenge match. Computer Science Press // https://books.google.ru/books?id=uDtQAQAAIAAJ

526

Levy D. (1984). Chess Master versus Computer // ICCA Journal, Vol. 7, No. 2.

527

Levy D. (2013). Computer Chess Compendium. Springer New York // https://books.google.ru/books?id=vwbkBwAAQBAJ

528

Levy D., Newborn M. (2012). All About Chess and Computers: Chess and Computers and More Chess and Computers. Springer Science & Business Media // https://books.google.ru/books?id=Ao6qCAAAQBAJ

529

Mashey J. (2005). Oral History of Ken Thompson // http://archive.computerhistory.org/resources/text/Oral_History/Thompson_Ken/thompson.oral_history_transcript.2005.102657921.pdf

530

* В английском языке тут присутствует дополнительная игра слов: earful of beer означает «пивная взбучка», а созвучное ему ear full of beer — «полное ухо пива».

531

Bourzutschky M., Kryukov K. (2022). All about chess endgames study // https://www.arves.org/arves/index.php/en/endgamestudies/theory/endgame-tablebases-check-a-7-men-position?id=1509

532

Bourzutschky M., Kryukov K. (2022). All about chess endgames study // https://www.arves.org/arves/index.php/en/endgamestudies/theory/endgame-tablebases-check-a-7-men-position?id=1533

533

Hicks J. (1966). Close-up / Piet Hein bestrides art and science / LIFE, Oct. 14 // https://books.google.ru/books?id=lFYEAAAAMBAJ&pg=PA64

534

Варденга Г. Л. (1997). П. Хэйн. Груки / Вопросы истории естествознания и техники. № 3 // http://vivovoco.ibmh.msk.su/VV/PAPERS/BONMOTS/GROOKS/HEIN.HTM

535

Toft H. (2019). Hex, Inside and Out: The Full Story. CRC Press // https://doi.org/10.1201/9780429031960

536

Nash J. (1952). Rand Corp. technical report D-1164: Some Games and Machines for Playing Them // https://www.rand.org/content/dam/rand/pubs/documents/2015/D1164.pdf

537

Gale D. (1979). The Game of Hex and Brouwer Fixed-Point Theorem / The American Mathematical Monthly. Mathematical Association of America, Vol. 86, Iss. 10, pp. 818–827 //https://doi.org/10.2307/2320146

538

Nash J. (1952). Rand Corp. technical report D-1164: Some Games and Machines for Playing Them // https://www.rand.org/content/dam/rand/pubs/documents/2015/D1164.pdf

539

Woolley C. L. (1930). Ur of the Chaldees // https://books.google.ru/books?id=JBRHtd-o0iYC

540

Гомер. Одиссея // http://data.perseus.org/citations/urn:cts:greekLit:tlg0012.tlg002.perseus-grc1:1.80-1.124

541

Peck H. T. (1898). Harpers Dictionary of Classical Antiquities // http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0062:id=latrunculi-harpers

542

Сократ. Федр // http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0059.tlg012.perseus-grc1:274d http://psylib.org.ua/books/plato01/21fedr.htm

543

Westerveld G. (2013). The History of Alquerque-12. Spain and France. Volume I. Lulu.com // https://books.google.ru/books?id=Bp0pBgAAQBAJ

544

Neto J. P. (2016). Latrunculi / The World of Abstract Games // https://www.di.fc.ul.pt/~jpn/gv/latrunculi.htm

545

Цит. по: Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

546

Epstein R., Roberts G., Beber G. (2007). Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer. Springer Netherlands // https://books.google.ru/books?id=aggUJL_5_oQC

547

Turing A. M. (2000). Alan Turing’s Manual for the Ferranti Mk. I. Transcribed by Robert S. Thau // http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/kgill/mark1/RobertTau/turing.pdf

548

Doornbusch P. (2017). MuSA 2017 Conference — Early Computer Music Experiments in Australia, England and the USA // https://www.researchgate.net/publication/319130809_MuSA_2017_Conference_-_Early_Computer_Music_Experiments_in_Australia_England_and_the_USA

549

https://soundcloud.com/musicandcomputerscience/ferranti-mark-1-computer-god-save-the-queen-baa-baa-black-sheep-in-the-mood/s-NKOm6

550

Doornbusch P. (2004). Computer Sound Synthesis in 1951: The Music of CSIRAC / Computer Music Journal, Vol. 28 // https://www.mitpressjournals.org/doi/10.1162/014892604322970616

551

Barron D. (2008). Pioneer Profiles — Christopher Strachey / RESURRECTION: The Bulletin of the Computer Conservation Society, Vol. 43 // http://www.cs.man.ac.uk/CCS/res/res43.htm

552

Peter Norvig (2012). Systems Analysis and Programming: Thoughts from the Attic / eter@Norvig.com // http://norvig.com/sciam/sciam.html

553

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

554

Turing A. M. (2000). Alan Turing’s Manual for the Ferranti Mk. I. Transcribed by Robert S. Thau // http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/kgill/mark1/RobertTau/turing.pdf

555

J. C. Bik A. (2012). Computing Deep Perft and Divide Numbers for Checkers. ICGA Journal, 35, 206–213 // https://doi.org/10.3233/ICG-2012-35403

556

Samuel A.L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II-Recent Progress / IBM Journal, November 1967 // https://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf

557

von Neumann J. (1928). Zur Theorie der Gesellschaftsspiele / Mathematische Annalen, Vol. 100, Iss. 1, pp. 295–320 // https://doi.org/10.1007/BF01448847

558

van den Herik H. J. (1983). Computerschaak, schaakwereld en kunstmatige intelligentie. Herik // https://books.google.ru/books?id=5HcWAAAACAAJ

559

Beal D. (1999). The Nature of MINIMAX Search. Ph. D. thesis // https://project.dke.maastrichtuniversity.nl/games/files/phd/Beal_thesis.pdf

560

Wiener N. (1948). Cybernetics or Control and Communication in the Animal and the Machine – MIT Press, Cambridge, MA // https://books.google.ru/books?id=NnM-uISyywAC

561

Epstein R., Roberts G., Beber G. (2007). Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer. Springer Netherlands // https://books.google.ru/books?id=aggUJL_5_oQC

562

Sampson J. R. (2012). Adaptive Information Processing: An Introductory Survey. Springer Science & Business Media // https://books.google.ru/books?id=OsaqCAAAQBAJ

563

Samuel A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II-Recent Progress / IBM Journal, November 1967 // https://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf

564

Knuth D. E., Moore R. W. (1974). An Analysis of Alpha-Beta Pruning / Artificial Intelligence, Vol. 6, pp. 293–326 // https://pdfs.semanticscholar.org/dce2/6118156e5bc287bca2465a62e75af39c7e85.pdf

565

Samuel A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II-Recent Progress / IBM Journal, November 1967 // https://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf

566

* В ряде источников встречается, что он предсказал рост цены акций IBM на 15 пунктов ввиду выхода телевизионного сюжета и оказался прав. Однако более скрупулёзный анализ динамики котировок акций компании свидетельствует о том, что это не более чем миф. В действительности в тот день торговля акциями IBM закрылась с незначительным снижением, а рост котировок в последующие недели происходил со среднерыночными темпами.

567

Fogel D. B. (2001). Blondie24: Playing at the Edge of AI // https://books.google.ru/books?id=M9qLGRPkOVsC

568

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

569

Feigenbaum E. A., Feldman J. (1963). Computers and thought. McGraw-Hill // https://books.google.ru/books?id=OfT9tQEACAAJ

570

Kosharsky R. (1980). Robert Nealey, world blind checker champ / St. Petersburg Times, February 26th, 1980 // https://news.google.com/newspapers?nid=888&dat=19800226&id=GRsmAAAAIBAJ&sjid=dloDAAAAIBAJ&pg=6459,2508946&hl=ru

571

* Duke значит «герцог» и в то же время совпадает с названием университета; шахматная программа, в разработке которой также участвовал Траскотт, называлась Duchess — «герцогиня».

572

Эрик Дженсен, личные коммуникации.

573

World War I Soldier / Stuck Record (2021) / MontyPython.net // https://montycasinos.com/montypython/scripts/ww1soldier.php.html

574

Reilly E. D. (2003). Milestones in Computer Science and Information Technology. Greenwood Press // https://books.google.ru/books?id=JTYPKxug49IC

575

Gardner M. (2007). The Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications. Springer New York // https://books.google.ru/books?id=RHCkV2YaGoEC

576

https://www.in2013dollars.com/us/inflation/1977?endYear=2023&amount=5000

577

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

578

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

579

* Здесь и далее я буду использовать мужской род для программ Chinook, Fritz и нескольких других. Формально это неправильно, но фразы типа «Chinook играла» или «Fritz выиграла» звучат неестественно и режут мне слух.

580

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

581

Shuffett R. L. (1982). Checkers, the Tinsley Way: Featuring the Checker Games of the World’s Greatest Player, Dr. Marion F. Tinsley. R.L. Shuffett // https://books.google.ru/books?id=LHOxHAAACAAJ

582

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

583

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

584

1st Computer Olympiad, Checkers / ICGA Tournaments. Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=126

585

Millett A. (1994). Derek Oldbury: A Eulogy / Journal of the International Computer Chess Association, 17, Vol. 3, pp. 174–175 // https://content.iospress.com/download/icga-journal/icg17-3-14?id=icga-journal%2Ficg17-3-14

586

2nd Computer Olympiad, Checkers / ICGA Tournaments. Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=136

587

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

588

1st Computer Olympiad, Checkers / ICGA Tournaments. Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=126

589

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

590

Mephisto (Computer) vs Deep Thought (Computer). 20th NACCC (1989), Reno, NV USA, rd 5, Nov-15. Queen's Gambit Accepted: Janowski-Larsen Variation (D25). 1-0 / chessgames.com: online chess database and community // http://www.chessgames.com/perl/chessgame?gid=1472135

591

Mephisto Portorose / Chess Programming Wiki // https://www.chessprogramming.org/Mephisto_Portorose

592

1990 3-Move Nationals Location: Tupelo, Mississippi / The American Checker Federation // https://www.usacheckers.com/nats1990.php

593

Schaeffer J. (2013). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer New York // https://books.google.ru/books?id=HKfqBwAAQBAJ

594

Knuth D. (1990) Arthur Lee Samuel, 1901–1990 / TUGboat, Volume 11, No. 4 // https://tug.org/TUGboat/tb11-4/tb30knut-samuel.pdf

595

Propp J. (1999). Chinook (a report on the 1994 Man-Machine World Checkers Championship) // http://faculty.uml.edu/jpropp/chinook.html

596

Kucharski A. (2016). The Perfect Bet: How Science and Math Are Taking the Luck Out of Gambling. Basic Books // https://books.google.ru/books?id=abBVDgAAQBAJ

597

Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC

598

Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC

599

Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC

600

1994 3-Move Nationals Location: Garland, Texas / The American Checker Federation // https://www.usacheckers.com/nats1994.php

601

Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC

602

1996 3-Move Nationals Location: Danville, Virginia / The American Checker Federation // https://www.usacheckers.com/nats1996.php

603

Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC

604

Westerveld G. (2013). The History of Checkers (Draughts). Lulu.com // https://books.google.ru/books?id=wwotBgAAQBAJ

605

Sturges J. (1800). Guide to the Game of Draughts: Containing Five Hundred Select Games, Together with One Hundred and Forty Striking Situations, Exhibiting Games Drawn, and Won, by Critical Strokes; Comprising Almost Every Possible Variety which the Board Can Display… // https://books.google.ru/books?id=jmR2ugEACAAJ

606

Dunn A. (1998). The Ontology of Checkers / The New York Times, February 25, 1998 // http://movies2.nytimes.com/library/cyber/surf/022598mind.html

607

Grayson B. (2007). The Next Jump in Artificial Intelligence: Computer program is unbeatable at checkers / Dicsover, July 19 // https://www.discovermagazine.com/technology/the-next-jump-in-artificial-intelligence

608

Blanvillain X. A. P. (2012). Oware: The Oldest Game of the World Will Not Be Solved by Computers // https://www.slideshare.net/XavierBlanvillain/abstract-oware-solutionxavierblanvillain120226

609

Romein J. W., Bal H. E. (2002). Awari is solved / ICGA Journal Vol. 25, Iss. 3 // https://icga.org/icga/journal/contents/content25-3.htm#AWARI%20IS%20SOLVED

610

Schaeffer J., Bjornsson Y., Burch N., Lake R., Lu P., Sutphen S. (2003). Building the Checkers 10-piece Endgame Databases / Advances in Computer Games 10, Kluwer Academic Publishers, pp. 193—210 // https://www.researchgate.net/publication/220717027_Building_the_Checkers_10-Piece_Endgame_Databases

611

Bjornsson Y., Schaeffer J., Sturtevant N. (2005). Partial Information Endgame Databases / Advances in Computer Games 11, Lecture Notes in Computing Science #4250, Springer-Verlag, 2005, pp. 11—22 // https://www.researchgate.net/publication/220716997_Partial_Information_Endgame_Databases

612

Schaeffer J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer US // https://books.google.ru/books?id=IVumOsLLqgAC

613

Schaeffer J., Burch N., Björnsson Y., Kishimoto A., Müller M., Lake R., Lu P., Sutphen S. (2007). Checkers Is Solved / Science, Vol. 317 (5844), pp. 1518—1522 // https://doi.org/10.1126/science.1144079

614

The Scientist News Staff (2007). The Runners-Up / Science, Vol. 318, Iss. 5858, pp. 1844—1849 // https://science.sciencemag.org/content/318/5858/1844.1.full

615

Schaeffer J., Burch N., Björnsson Y., Kishimoto A., Müller M., Lake R., Lu P., Sutphen S. (2007). Checkers Is Solved / Science, Vol. 317 (5844), pp. 1518—1522 // https://doi.org/10.1126/science.1144079

616

Шахматы: энциклопедический словарь / гл. ред. А. Е. Карпов. — М.: Советская энциклопедия, 1990. С. 8—9 // http://whychess.ru/835encuklopedicheskiy-slovar.html

617

von Windisch K. G. (1783). Briefe über den schachspieler des herrn von Kempelen. A. Löwe // https://books.google.ru/books?id=vS4VAAAAYAAJ

618

http://www.historicalstatistics.org/Currencyconverter.html

619

Wilson J. G., Fiske J. (1900). Maelzl, John Nepomuk. Appletons' Cyclopædia of American Biography. New York: D. Appleton // https://archive.org/details/appletonscyclopa04wils/page/170

620

Joseph Earl Arrington (1960). John Maelzel, Master Showman of Automata and Panoramas / Pennsylvania Magazine of History and Biography, vol.84, issue 1, January // https://journals.psu.edu/pmhb/article/view/41542

621

Standage T. (2003). The Turk: The Life and Times of the Famous Eighteenth-Century Chess-Playing Machine. Berkley Books // https://books.google.ru/books?id=bITZAAAAMAAJ

622

Hunneman W., Hunnemann W. (1820). Chess: A Selection of Fifty Games from Those Played by the Automaton Chess Player, During Its Exhibition in London in 1820: Taken Down, by Permission of Mr. Maelzel, at the Time They Were Played. Sold at the exhibition room, no 29, St. James's Street; and by A. Maxwell, Bell Yard, Lincolns Inn // https://books.google.ru/books?id=iP5dAAAAcAAJ

623

Le Magasin picturesque edited by E. Charton, (1834) p. 155 // https://babel.hathitrust.org/cgi/pt?id=chi.12785572;view=1up;seq=165

624

Walker G. (1850). Chess & Chess-Players: Consisting of Original Stories and Sketches: By George Walker. Charles J. Skeet // https://books.google.ru/books?id=MfUIAAAAQAAJ

625

Willis R. (1821). An Attempt to Analyse the Automaton Chess Player, of Mr. de Kempelen … to which is Added, a … Collection of the Knight's Moves Over the Chess Board. Booth // https://books.google.ru/books?id=N7kUAAAAYAAJ

626

Silas W. M. (1857). The Last of a Veteran Chess Player / The Chess Monthly. № 1—2 // https://www.chess.com/blog/batgirl/the-last-of-a-veteran-chess-player---the-turk

627

Шахматы: энциклопедический словарь / гл. ред. А. Е. Карпов. — М.: Советская энциклопедия // http://whychess.ru/835encuklopedicheskiy-slovar.html

628

Robert-Houdin J., Wraxall F. (1859). Memoirs of Robert-Houdin, written by himself[tr. by sir F. C. L. Wraxall. Copyright ed. Oxford University Press // https://books.google.ru/books?id=ZjkBAAAAQAAJ

629

Funaro L. E. (2012). Morosi, Giuseppe / Dizionario Biografico degli Italiani, Vol. 77 // http://www.treccani.it/enciclopedia/giuseppe-morosi_(Dizionario-Biografico)/

630

Croft L. (2012). George Anton Schaeffer: Killing Napoleon From The Air. Sphynx Publications // https://books.google.ru/books?id=0z5enQEACAAJ

631

Шахматы: энциклопедический словарь / гл. ред. А. Е. Карпов. — М.: Советская энциклопедия // http://whychess.ru/835encuklopedicheskiy-slovar.html

632

Hobbes T. (1969). Leviathan, 1651. Scolar P // https://books.google.ru/books?id=8xyDAAAAMAAJ

633

Lee J. A. N. (1995, 2013). Leonardo Torres y Quevedo / IEEE Compputer Society: Computer Pioneers by J. A. N. Lee // https://history.computer.org/pioneers/torres.html

634

Dalakov G. Leonardo Torres's chess-machine / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Torres_chess.html

635

Williams A. (2017). History of Digital Games: Developments in Art, Design and Interaction. CRC Press // https://books.google.ru/books?id=xLVdDgAAQBAJ

636

Bowden B. (1953). Faster than thought: a symposium on digital computing machines. Pitman // https://books.google.ru/books?id=5HZQAAAAMAAJ

637

Torres and his Remarkable Automatic Devices: He Would Substitute Machinery for the Human Mind / Scientific American Supplement, No 2079 (November, 1915) // http://doi.org/10.1038%2Fscientificamerican11061915-296supp

638

Williams A. (2017). History of Digital Games: Developments in Art, Design and Interaction. CRC Press // https://books.google.ru/books?id=xLVdDgAAQBAJ

639

Dalakov G. Leonardo Torres's chess-machine / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Torres_chess.html

640

Museo “Torres Quevedo” / Universidad Politécnica de Madrid // http://www.upm.es/UPM/MuseosUPM/MuseoTorresQuevedo

641

Mccain N. (2016). Light on forlorn ropeway / news24.com, 01 Mar 2016 // https://www.news24.com/news24/SouthAfrica/Local/Peoples-Post/light-on-forlorn-ropeway-20160229

642

Levy D. (2005). Robots Unlimited: Life in a Virtual Age. CRC Press // https://books.google.ru/books?id=tiesCQAAQBAJ

643

Francisco González de Posada (2007). Leonardo Torres Quevedo Y La Conquista Del Aire. Centenario De La Botadura Del Dirigible Torres Quevedo 1907. Guadalajara 2007 // https://www.torresquevedo.org/LTQ10/images/LTQConquistaDelAire.pdf

644

Dalakov G. Leonardo Torres y Quevedo / History of Computers: hardware, software, internet… // https://history-computer.com/People/TorresBio.html

645

Yuste A. P. Palma M. S. (2005). Scanning our Past from Madrid: Leonardo Torres Quevedo. Proceedings of the IEEE 93(v. 1), pp. 1379—1382 // https://ieeexplore.ieee.org/document/1461596

646

Dalakov G. Leonardo Torres y Quevedo / History of Computers: hardware, software, internet… // https://history-computer.com/Babbage/LeonardoTorres.html

647

Turing A. M. (1945). Proposed electronic calculator // http://www.alanturing.net/proposed_electronic_calculator/

648

Turing A. M. (1948). Intelligent machinery: a report // http://www.alanturing.net/intelligent_machinery/

649

Copeland J., Bowen J., Sprevak M., Wilson R. (2017). The Turing Guide. OUP Oxford // https://books.google.ru/books?id=y1MjDgAAQBAJ

650

Copeland J., Bowen J., Sprevak M., Wilson R. (2017). The Turing Guide. OUP Oxford // https://books.google.ru/books?id=y1MjDgAAQBAJ

651

Pritchard E. (1980). Origins of computer chess / Personal Computing 1980-01 // https://archive.org/details/198001/page/n79

652

Bowden B. (1953). Faster than thought: a symposium on digital computing machines. Pitman // https://books.google.ru/books?id=5HZQAAAAMAAJ

653

Turing A. (1953). Digital computers applied to games. n.d. Turing's contribution to “Faster than thought”, ed. B. V. Bowden, London 1953. Published by Pitman Publishing. TS with MS corrections. R.S. 1953b / The Turing digital archive // http://www.turingarchive.org/viewer/?id=461&title=1

654

Friedel F. (2017). Reconstructing Turing's “Paper Machine” // https://en.chessbase.com/post/reconstructing-turing-s-paper-machine

655

Bauer F. L., Wössner H. (1972). The "Plankalkül" of Konrad Zuse: A Forerunner of Today's Programming Languages. Commun. ACM 15(7), pp. 678—685.

656

Zuse K., Bauer F. L., McKenna P., Ross J. A., Zemanek H. (1993). The Computer — My Life. Springer // https://books.google.ru/books?id=Ro5JOskbChAC

657

Shannon C. E. (1950). Programming a Computer for Playing Chess / Philosophical Magazine, Ser.7, Vol. 41, No. 314 // https://vision.unipv.it/IA1/aa2009-2010/ProgrammingaComputerforPlayingChess.pdf

658

Copeland J., Bowen J., Sprevak M., Wilson R. (2017). The Turing Guide. OUP Oxford // https://books.google.ru/books?id=y1MjDgAAQBAJ

659

Schliebs G. (1953). Über die Gründzuge eines Programms für eine Schachspielende Rechenmaschine / Funk und Ton, 1953, vol. 7, pp. 257—265.

660

Китов А.И. (1956). Электронные цифровые машины // http://www.kitov-anatoly.ru/naucnye-trudy/izbrannye-naucnye-trudy-anatolia-ivanovica-v-pdf/elektronnye-cifrovye-masiny

661

Китов А.И., Криницкий Н.А. (1958). Электронные вычислительные машины и программирование // http://elib.ict.nsc.ru/jspui/bitstream/ICT/862/3/kitov1958.pdf

662

Безбородов Ю. М., Орлов Б. В. (1961). Машина играет в шахматы / Математическое просвещение, вып. 6. С. 139—164 // http://mi.mathnet.ru/mp682

663

Лаут В.Н. Как я попал в ИТМ? // http://www.ipmce.ru/about/history/leading/lebedev/remembrance/laut/print/

664

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

665

Ensmenger N. (2012). The Computer Boys Take Over: Computers, Programmers, and the Politics of Technical Expertise. New York, NY, USA: MIT Press // https://books.google.ru/books?id=VCcsTPQ738oC

666

Misa T. (2011). Gender Codes.: Why Women Are Leaving Computing. Wiley // https://books.google.ru/books?id=EjDYh_KHls8C

667

Mazliak L., Perfettini T. (2019). Under the protection of alien wings. Mathematicians in the Russian emigration in inter war France // https://hal.archives-ouvertes.fr/hal-02280296/document

668

Элизабет Рэнд, личные коммуникации.

669

Макс Бернстайн, личные коммуникации.

670

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

671

Bernstein A., Van Roberts R. (1958). Computer V. Chess player / Scientific American 198, pp. 96—105.

672

Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ

673

Logan A., Gill B. (1958). Runner-up / The New Yorker, November 29, p. 43 // https://www.newyorker.com/magazine/1958/11/29/runner-up-4

674

Solomonof G. (2006). Ray Solomonoff and the Dartmouth Summer Research Project in Artificial Intelligence, 1956 // http://raysolomonoff.com/dartmouth/dartray.pdf

675

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

676

McCarthy J. (2006). The Dartmouth Workshop--as planned and as it happened // http://www-formal.stanford.edu/jmc/slides/dartmouth/dartmouth/node1.html

677

Logan A., Gill B. (1958). Runner-up / The New Yorker, November 29, p. 43 // https://www.newyorker.com/magazine/1958/11/29/runner-up-4

678

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

679

Википедия // https://ru.wikipedia.org/wiki/Понедельник_начинается_в_субботу (версия от 29.05.2019).

680

OFF-LINE интервью с Борисом Стругацким. Сентябрь 2009 / Аркадий и Борис Стругацкие: официальный сайт // http://www.rusf.ru/abs/int0132.htm

681

Глушкова А., Жабин С. (2019). Виртуальная страна Кибертония — субкультура советских программистов / Спильне. 8 апреля // https://commons.com.ua/uk/virtualnaya-strana-kibertoniya/

682

Игорь Осипчук (2013). Дочь академика Глушкова: «Прочтя 20 страниц математического текста, отец запоминал его наизусть» / Факты // https://fakty.ua/169041-prochtya-20-stranic-matematicheskogo-teksta-otec-zapominal-ego-naizust

683

* Сегодня слово «хакер» обычно используется для обозначения компьютерных взломщиков, но изначально оно имело иной смысл; хакер — это тот, кто «врубается», компьютерный энтузиаст и эксперт.

684

Глушкова А., Жабин С. (2019). Виртуальная страна Кибертония — субкультура советских программистов / Спильне. 8 апреля // https://commons.com.ua/uk/virtualnaya-strana-kibertoniya/

685

Волошин А. (1965). Кибертония-65 / Вечерний Киев. Суббота 16 янв. С. 2 // http://ogas.kiev.ua/library/kybertonyya-65-694

686

Глушкова А., Жабин С. (2019). Виртуальная страна Кибертония — субкультура советских программистов / Спильне. 8 апреля // https://commons.com.ua/uk/virtualnaya-strana-kibertoniya/

687

Игорь Осипчук (2013). Дочь академика Глушкова: «Прочтя 20 страниц математического текста, отец запоминал его наизусть» / Факты // https://fakty.ua/169041-prochtya-20-stranic-matematicheskogo-teksta-otec-zapominal-ego-naizust

688

Глушкова А., Жабин С. (2019). Виртуальная страна Кибертония — субкультура советских программистов / Спильне. 8 апреля // https://commons.com.ua/uk/virtualnaya-strana-kibertoniya/

689

Смилга В. П. (1956). Возможен ли шахматный автомат? / Шахматы в СССР. № 6.

690

Смилга В. П. (1963). Электронный гроссмейстер / Знание — сила. № 12.

691

Евграфов М. А., Задыхайло И. Б. (1965). Некоторые соображения о программировании шахматной игры / Проблемы кибернетики. № 15.

692

Туманов В. «„Лучший ход“ — за 58 секунд» // Таль — Ботвинник: матч-реванш на первенство мира. Бюллетень Центрального шахматного клуба СССР. 1961. № 8. С. 4—5.

693

Ландис Е. М., Яглом И. М. (2001). Об Александре Семёновиче Кронроде / Успехи математических наук. Т. 56, вып. 5(341). С. 191–201 // https://doi.org/10.4213/rm448

694

Гутер Р.С., Полунов Ю.Л. (1981). От абака до компьютера / Изд. 2-е исп. и доп. — М.: Знание // http://elib.ict.nsc.ru/jspui/bitstream/ICT/1354/4/abacus_1981b.pdf

695

Ландис Е. М., Яглом И. М. (2001). Об Александре Семёновиче Кронроде / Успехи математических наук. Т. 56, вып. 5(341). С. 191–201 // https://doi.org/10.4213/rm448

696

Академия наук СССР, Трапезников В.А., Национальный комитет СССР по автоматическому управлению (1967). Оптимальные системы, статистические методы: труды III Всесоюзного совещания по автоматическому управлению (технической кибернетике), Одесса, 20–26 сентября 1965 г. Наука // https://books.google.ru/books?id=S_fmAAAAMAAJ

697

Nelson W. L. (2011). 1965 USSR Trip / MYBELLLABSDAYS // https://mybelllabsdays.wordpress.com/2011/12/04/1965-ussr-trip/

698

Маккарти Д. (2006). Вспоминая Андрея Петровича Ершова / Андрей Петрович Ершов — учёный и человек / под ред. А. Г. Марчука. — Новосибирск: Издательство Сибирского отделения РАН // https://www.iis.nsk.su/files/book/file/Ershov_kniga.pdf

699

Маккарти Д. (1965). Письмо Андрею Ершову / Архив академика А. П. Ершова // http://ershov.iis.nsk.su/node/777848

700

Маккарти Д. (2006). Вспоминая Андрея Петровича Ершова / Андрей Петрович Ершов — учёный и человек / под ред. А. Г. Марчука. — Новосибирск: Издательство Сибирского отделения РАН // https://www.iis.nsk.su/files/book/file/Ershov_kniga.pdf

701

McCarthy J. (2005). The History of Computer Chess: An AI Perspective (Video). Mountain View, CA, USA: Computer History Museum // https://www.youtube.com/watch?v=AvU_fnLWRRk

702

Кронрод А.С. (2004) Беседы о программировании / Предисл. Л. А. Кронрод. Послесл. В. Л. Арлазарова. Изд. 2-е, стереотипное. — М.: Едиториал УРСС // https://nsu.ru/xmlui/handle/nsu/9050

703

http://greko.su/m20-itef.pdf

704

Рузайкин Г. И., Коновалов С. П. (2005). Рассказ «бабки-повитухи» / Мир ПК. № 10 // https://www.osp.ru/pcworld/2005/10/317270/

705

Адельсон-Вельский Г. М., Арлазаров В. Л., Битман А. Р., Животовский А. А., Усков А. В. (1970). О программировании игры вычислительной машины в шахматы / Успехи математических наук. Т. 25, вып. 2 (152). С. 221—260 // http://mi.mathnet.ru/umn5324

706

Гутер Р. С., Арлазаров В. Л., Усков А. В. (1965). Практика программирования: Справочник. — М.: Наука.

707

Ершов А.П., Лавров С.С., Семендяев К.А. (1966). Письмо в «Литературную газету» / Архив академика А. П. Ершова // http://ershov.iis.nsk.su/node/806835

708

Гутер Р. С., Арлазаров В. Л., Усков А. В. (1965). Практика программирования: Справочник. — М.: Наука.

709

* Язык ассемблера (assembly language) — язык программирования низкого уровня. Он представляет собой систему обозначений, используемую для представления в удобочитаемой форме программ, записанных в машинном коде. Команды языка соответствуют отдельным командам, выполняемым процессором машины, или их коротким последовательностям. Поскольку наборы команд различаются в зависимости от используемой аппаратной платформы, в действительности мы имеем дело не с единым языком, а с классом аппаратно-специфичных языков, хотя и разделяющих обычно некоторые условные обозначения. Например, команда ADD, используемая для сложения чисел, почти во всех этих языках называется именно так.

710

Костинский А. (2002). Компьютерные программы, как конец спортивных шахмат / Радио Свобода // https://www.svoboda.org/a/24203756.html

711

Berenyi I. (1970). Computers in Eastern Europe / Scientific American, Vol. 223, Iss. 4.

712

Малиновский Б. Н. (1995). История вычислительной техники в лицах. — К.: фирма «КИТ», ПТОО «А.С.К.» // http://lib.ru/MEMUARY/MALINOWSKIJ/0.txt

713

Донской М. История «Каиссы» / Виртуальный компьютерный музей // http://www.computer-museum.ru/games/kaissa1.htm

714

Chess: Ancient precursors and related games / Encyclopædia Britannica. 2002 // https://www.britannica.com/topic/chess

715

Chalmers A., Johnson S. (1810). The Works of the English Poets, from Chaucer to Cowper: Including the Series Edited with Prefaces, Biographical and Critical. J. Johnson // https://books.google.ru/books?id=b0LVAAAAMAAJ

716

Murray H. J. R. (2015). A History of Chess. Skyhorse Publishing // https://books.google.ru/books?id=dNSBCgAAQBAJ

717

Донской М. История «Каиссы» / Виртуальный компьютерный музей // http://www.computer-museum.ru/games/kaissa1.htm

718

Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ

719

Донской М. История «Каиссы» / Виртуальный компьютерный музей // http://www.computer-museum.ru/games/kaissa1.htm

720

Wall B. Kaissa // http://billwall.phpwebhosting.com/articles/Kaissa.htm

721

* Первый разряд соответствует силе игры в 1800–2000 пунктов Эло, рейтинг Эло — метод расчёта относительной силы игроков в играх с двумя игроками; эту систему рейтингов разработал американский профессор физики венгерского происхождения Арпад Эло; новичкам соответствует рейтинг Эло 1000–1200, разница в 100 пунктов между двумя игроками означает, что сильнейший игрок набирает в среднем 64% очков, разница в 200 пунктов — 76% очков.

722

** Архитектура машины позволяла выполнять быстрые операции с 64-разрядными целыми числами, в которых каждый разряд соответствует одному из полей шахматной доски; сегодня эти технологии называются bitboards — дословно «битовые доски»; впервые этот подход предложил ещё Шура-Бура.

723

Владимир Арлазаров: Персона дня — 19.10.2018 / Российская Шахматная Федерация // https://ruchess.ru/persons_of_day/vladimir_arlazarov_pd/?sphrase_id=180658

724

Computer chess pioneer Mikhail Donskoy passes on // https://en.chessbase.com/post/computer-che-pioneer-mikhail-donskoy-paes-on

725

3rd World Computer Chess Championship / ICGA Tournaments: Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=68

726

Reseña histórica del ajedrez por computadora (VI) // http://www.anacadigital.com/historia/anaca5_1_89.htm

727

Horváth Z. (1990). Report on the 2nd Computer Olympiad. ICCA Journal, Vol. 13, No. 3.

728

2nd Computer Olympiad, Chess / ICGA Tournaments: Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=142

729

Костинский А. (2002). Компьютерные программы как конец спортивных шахмат / Радио Свобода // https://www.svoboda.org/a/24203756.html

730

Арлазаров В. Л., Битман А. Р. (1968). Обыграет ли машина человека? / Шахматы в СССР. № 2. С. 9—11.

731

Адельсон-Вельский Г. М., Арлазаров В. Л., Битман А. Р., Животовский А. А., Усков А. В. (1969). О программировании шахматной игры / Труды первой зимней школы по математическому программированию. Вып. II. С. 216—252.

732

Адельсон-Вельский Г. М., Арлазаров В. Л., Битман А. Р., Животовский А. А., Усков А. В. (1970). О программировании игры вычислительной машины в шахматы / Успехи математических наук. Т. 25, вып. 2 (152). С. 221—260 // http://www.mathnet.ru/links/e353ff456f77590009af6ba9f008f4cb/rm5324.pdf

733

Adelson-Velsky G., Arlazarov V., Donskoy M. (1975). Some Methods of Controlling the Tree Search in Chess Programs. Artificial Ingelligence, Vol. 6, No. 4, pp. 361–371.

734

Adelson-Velsky G., Arlazarov V., Donskoy M. (1977). On the Structure of an Important Class of Exhaustive Problems and Methods of Search Reduction for them. Advances in Computer Chess 1

735

Адельсон-Вельский Г. М., Арлазаров В. Л., Битман А. Р., Донской М. В. (1983). Машина играет в шахматы. — М.: Наука // http://www.computer-museum.ru/books/kaissa.pdf

736

Haugeland J. (1985). Symbolic Computation. Artificial Intelligence: The Very Idea. MIT Press // https://books.google.ru/books?id=UuQbnAEACAAJ

737

Turing A. (1953). Digital computers applied to games. n.d. Turing's contribution to “Faster than thought”, ed. B. V. Bowden, London 1953. Published by Pitman Publishing. TS with MS corrections. R.S. 1953b / The Turing digital archive // http://www.turingarchive.org/viewer/?id=461&title=1

738

Carrera P., Cherubino G., Tortelli M., Rossi G. d., Romano G. (1617). Il gioco de gli scacchi di D. Pietro Carrera diuiso in otto libri, ne' quali s'insegnano i precetti, le vscite, e i tratti posticci del gioco, e si discorre della vera origine di esso. Con due discorsi, l'vno del padre D. Gio. Battista Chèrubino, l'altro del dottor Mario Tortelli, opera non meno vtile a' professori del gioco, che diletteuole a' gli studiosi per la varieta' della eruditione cauata dalle tenebre dell'antichita'. per Giouanni de' Rossi da Trento // https://books.google.ru/books?id=RPvGROWRIikC

739

Lolli G. (1763). Osservazioni teorico-pratiche sopra il giuoco degli scacchi ossia il Giuoco degli Scacchi: esposto nel sus miglian lume. Stamp. di S. Tommaso d'Aquino // https://books.google.ru/books?id=zych5drFRuQC

740

Ботвинник М. (1979). От шахматиста — к машине. М.: Физкультура и спорт // https://books.google.ru/books?id=W8aptgEACAAJ

741

Phony Benoni. Wageningen Caltex (1958) / Chessgames.com: online chess database and community // http://www.chessgames.com/perl/chesscollection?cid=1026124

742

Мюннингхофф А. (1979). Макс Эйве / Пер. с нидерландского В. И. Мурахвери — М.: Физкультура и спорт.

743

* Европейское сообщество по атомной энергии.

744

O'Connor J. J., Robertson E. F. (2003). Machgielis Euwe. School of Mathematics and Statistics University of St Andrews // http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Euwe.html

745

Ботвинник М. (1979). От шахматиста — к машине. М.: Физкультура и спорт // https://books.google.ru/books?id=W8aptgEACAAJ

746

Ботвинник М. М. (1961). Люди и машины за шахматной доской / Шахматы в СССР. № 3.

747

Жанна Михайловна Таль, персональные коммуникации.

748

В шахматы «играет» ЭВМ. Телевизионные новости. Эфир 24.11.1968 // https://www.youtube.com/watch?v=LZEd6ZtSxCo

749

Goodman R., Soni J. (2017). The Man Who Built The Chess Machine / Chess.com // https://www.chess.com/article/view/the-man-who-built-the-chess-machine

750

Ботвинник, М. (1979). От шахматиста — к машине. М.: Физкультура и спорт // https://books.google.ru/books?id=W8aptgEACAAJ

751

Ботвинник М. М. (1966). Математическое отображение шахматной игры (Пособие для шахматного анализа) / Бюллетень центрального шахматного клуба СССР. № 3.

752

Кухарева А. (2003). Михаил Донской: Я Билла Гейтса ни в чем не виню. ИД «Компьютерра, 2003. Сайт «Домашний компьютер» — приложение к интернет-изданию «Компьюлента» / Сайт Александра Тимофеева // http://atimopheyev.narod.ru/AfterPIONEER/info/PIONEER/2.htm

753

Карпов А. (2022). «Мальчик понятия не имеет о шахматах». Гроссмейстер Карпов — о школе, первых деньгах и знакомстве с Ботвинником / Мел, 25.01.2022 // https://mel.fm/zhizn/knigi/4218760-malchik-ponyatiya-ne-imeyet-o-shakhmatakh-grossmeyster-karpov--o-shkole-pervykh-dengakh-i-znakomstve

754

Botvinnik M., Brown A. (1970). Computers, chess and long-range planning. Springer-Verlag // https://books.google.ru/books?id=ZYxRAAAAMAAJ

755

Ботвинник М. М. (1968). Алгоритм игры в шахматы. — М. // http://whychess.ru/776algoritm-igru-v-shahmatu.html

756

Книжник С. (2009). Наставник для компьютера / Наука в Сибири. № 17 (2702), 30 апреля // http://www.nsc.ru/HBC/hbc.phtml?5+500+1

757

Ботвинник М. М. (1987). Аналитические и критические работы. Статьи и воспоминания // http://whychess.ru/botvinnik-stati-vospominaniua.html

758

Ботвинник, М. (1979). От шахматиста — к машине. М.: Физкультура и спорт // https://books.google.ru/books?id=W8aptgEACAAJ

759

* Этюд Рети — знаменитый этюд (белые: Крh8, пешка с6, чёрные: Крa6, пешка h5), в котором используется неевклидова геометрия шахматной доски: движение короля по диагонали занимает столько же ходов, сколько движение по прямой.

760

** Сила игры международного мастера соответствует 2400–2500 пунктов Эло, к 1981 г. звание «международный мастер» было присвоено 897 шахматистам.

761

Lopez R., Sentef J. (2017). Comments / Marginal Revolution // https://marginalrevolution.com/marginalrevolution/2017/03/new-george-steiner-book.html

762

*** Рейтинг Эло свыше 2500, в 1988 г. в мире было 338 международных гроссмейстеров.

763

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

764

* По неведомым причинам в советских научно-популярных изданиях её именовали на славянский манер — «Хитеч».

765

* Миттельшпиль (от нем. Mittelspiel — середина игры) — следующая за дебютом стадия шахматной партии, в которой обычно происходят основные события.

766

** Эндшпиль (от нем. Endspiel — «заключительная игра») — заключительная часть шахматной партии, после размена большинства фигур.

767

Berliner H. J. (1977). Experiences in Evaluation with BKG, a Program That Plays Backgammon / Proceedings of IJCAI, 1977 (1979), pp. 428–433 // http://www.bkgm.com/articles/Berliner/ExperiencesInEvaluationWithBKG/index.html

768

Berliner H. J. (1980). Backgammon Computer Program Beats World Champion / Artificial Intelligence, vol. 14 (1980), pp. 205—220 // http://www.bkgm.com/articles/Berliner/BackgammonProgramBeatsWorldChamp/

769

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

770

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

771

Theo van der Storm (2002). North American Computer-Chess Championships: Complete History of Tournament Results and Games // https://old.csvn.nl/ncc_hist.html#17th

772

Atkinson G. (1998). Chess and Machine Intuition. Intellect Books // https://books.google.ru/books?id=ZuTvVo4zo6oC

773

6th World Computer Chess Championship / ICGA Tournaments: Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=14

774

All Time Rankings / Edinburgh University Chess Club Home Page // https://web.archive.org/web/20100724043700/http://chess.eusa.ed.ac.uk/Chess/Trivia/AlltimeList.html

775

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

776

Volker Jeschonnek (2000). A Visit to My Opponent's Camp: Introducing Man vs. Machine (CC) Challenges and Wchess / Ralph Marconi Chess Page // https://web.archive.org/web/20001218000600/http://correspondencechess.com/marconi/volkerart.htm

777

Kasparov versus Deep Thought documentary / PBS Nova // https://www.youtube.com/watch?v=mhnDzk9IVAA

778

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

779

Laswon D. (1989). The Pentagon plays chess / The Spectator, 28 Janyary 1989, p. 9 // http://archive.spectator.co.uk/article/28th-january-1989/9/the-pentagon-plays-chess

780

Krauthammer C. (1989). Checkmated by a monster of calculation / The Washington Post, 24 February 1989 // https://www.washingtonpost.com/archive/opinions/1989/02/24/checkmated-by-a-monster-of-calculation/9afad6af-939b-4c6a-8641-7cf5016f2cd5/

781

* «Глубокая глотка» — это кодовое имя информатора журналистов-расследователей из The Washington Post в ходе Уотергейтского скандала, а также название фильма, на просмотр которого не стоит приглашать свою маму.

782

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

783

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

784

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

785

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

786

Theo van der Storm (2002). North American Computer-Chess Championships: Complete History of Tournament Results and Games // https://old.csvn.nl/ncc_hist.html#22th

787

Jiu H. (1993). P. C. CORNER // https://www.thecrimson.com/article/1993/11/9/p-c-corner-pwhen-current-us

788

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

789

Theo van der Storm. Harvard Cup Human vs. Computer Chess Challenge // https://old.csvn.nl/harvhist.html#4th

790

8th World Computer Chess Championship / ICGA Tournaments: Tournaments between computer programs: chess, draughts, checkers, Go, backgammon, and more // https://www.game-ai-forum.org/icga-tournaments/tournament.php?id=29

791

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

792

Newborn M. (2012). Kasparov versus Deep Blue: Computer Chess Comes of Age. Springer New York // https://books.google.ru/books?id=IiXjBwAAQBAJ

793

All Time Rankings / Edinburgh University Chess Club Home Page // https://web.archive.org/web/20100724043700/http://chess.eusa.ed.ac.uk/Chess/Trivia/AlltimeList.html

794

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

795

Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ

796

Antonoff M. (1996). Curtains for Kasparov? / Popular Science. №3, 1996 // https://books.google.ru/books?id=-TKv7UHgoTQC&pg=PA43

797

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

798

Isenberg G. (2018). Frans Morsch / Chess Programming Wiki // https://www.chessprogramming.org/Frans_Morsch

799

Гниренко В. (2012). Рекорды двух символических клубов / Шахматное обозрение. №1.

800

Jones B. (2007). Grandmaster Maurice Ashley comes to Baltimore, playing chess – and teacher / The Baltimore Sun, October 3 // https://www.baltimoresun.com/news/bs-xpm-2007-10-03-0710030152-story.html

801

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

802

* HAL 9000 — вымышленный компьютер из цикла произведений «Космическая одиссея» Артура Кларка, обладающий способностью к самообучению и являющийся примером искусственного интеллекта в научной фантастике; поскольку HAL вступил в конфликт с людьми, его образ нередко использовался в качестве архетипического «злого ИИ».

803

Gaulin E. (1996). Computer 1, chess champion 0 / Atlanta Journal and Constitution, February 11.

804

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

805

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

806

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

807

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

808

* Сотрудник автоинспекции тормозит всех подряд и задаёт один и тот же вопрос:

— Если я у тебя свечу выкручу, какое колесо спустит?

— Не знаю…

— Не знаешь правил — плати штраф!

И так весь день, пока не остановил «запорожец»:

— Если я у тебя свечу выкручу, какое колесо спустит?

— А если я тебе монтировкой по голове ударю, какой шнурок развяжется?

809

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

810

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

811

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

812

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

813

Waga P. (1996). Kasparov, IBM plan man vs. machine rematch / The Reporter Dispatch, Gannett Suburban Newspapers, August 21,1996.

814

Saylor M. (1997). Computers cast a long shadow on chessboard / Los Angeles Times, May 1 // https://www.latimes.com/archives/la-xpm-1997-05-01-mn-54193-story.html

815

Antonoff M. (1997). Game, net & match / Yahoo Internet Life, May.

816

Kasparov challenger receives an upgrade / The New York Times, May 1, 1997.

817

Kim J. (1997). More than just chess. But not as simple as man vs.computer / USA Today, May 2.

818

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

819

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

820

Lieserson C., Newborn M. (2013). Deep Blue: An Artificial Intelligence Milestone. Springer New York // https://books.google.ru/books?id=rWPgBwAAQBAJ

821

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

822

Chess Opening Explorer / 365Chess.com: Biggest Chess Games Database Online // https://www.365chess.com/opening.php

823

Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ

824

Ingo Althoefer vs Deep Thought (Computer), Hanover (1991). Mieses Opening: Reversed Rat (A00), 0-1 / chessgames.com: online chess database and community // http://www.chessgames.com/perl/chessgame?gid=1472153

825

Althöfer I. (2013). Random Structures from Lego Bricks and Analog Monte Carlo Procedures // https://www.althofer.de/random-lego-structures.pdf

826

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

827

Bonesteel, Mark (2017). Diego Maradona admits video replay would have erased his 'Hand of God' goal / The Washington Post, 26 July // https://www.washingtonpost.com/news/early-lead/wp/2017/07/26/diego-maradona-admits-video-replay-would-have-erased-his-hand-of-god-goal/

828

* Этот гол вошёл в историю мирового футбола под названием «рука Бога», поскольку на послематчевой конференции автор гола заявил, что спорный гол был забит «отчасти головой Марадоны, а отчасти рукой Бога».

829

Weber B. (1996). Chess Computer Seeking Revenge Against Kasparov / New York Times, August 20 // https://www.nytimes.com/1996/08/20/nyregion/chess-computer-seeking-revenge-against-kasparov.html

830

Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ

831

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

832

Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ

833

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

834

Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ

835

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

836

Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ

837

Deep Blue (Computer) vs Garry Kasparov, New York (1997). Caro-Kann Defense: Karpov. Modern Variation (B17), 1-0 / chessgames.com: online chess database and community // http://www.chessgames.com/perl/chessgame?gid=1070917

838

Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ

839

Dirk Jan ten Geuzendam (2009). Interview: Miguel Illescas / New In Chess magazine. № 5.

840

Kasparov G., Greengard M. (2017). Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins. John Murray Press // https://books.google.ru/books?id=ffYZDQAAQBAJ

841

Hoffman P. (2003). Retooling Machine and Man For Next Big Chess Faceoff / The New York Times, Jan. 21 // https://www.nytimes.com/2003/01/21/science/retooling-machine-and-man-for-next-big-chess-faceoff.html

842

Rebel vs Yusupov // http://www.rebel.nl/italy.htm

843

Rebel vs Anand // http://www.rebel.nl/anand.htm

844

Kramnik-Deep Fritz match ends in 4-4 draw! / The Chess Drum // https://www.thechessdrum.net/newsbriefs/2002/NB_BrainGames2.html

845

An interview with world chess champion Vladimir Kramnik on Man vs Machine and Classical World Championships // https://en.chessbase.com/post/vladimir-kramnik-on-man-vs-machine-and-world-championships

846

Shabazz D. (2003). Kasparov & Deep Junior fight 3–3 to draw! / The Chess Drum // https://www.thechessdrum.net/tournaments/Kasparov-DeepJr/

847

Biever C. (2003). Kasparov 'forced' to draw with X3D Fritz / New Scientist, 12 November // https://www.newscientist.com/article/dn4376-kasparov-forced-to-draw-with-x3d-fritz/

848

Bilbao Man vs Machine – a resume // https://en.chessbase.com/post/bilbao-man-vs-machine-a-resume

849

8:4 final score for the machines – what next? // https://en.chessbase.com/post/8-4-final-score-for-the-machines-what-next-

850

Adams vs Hydra: Man 0.5 – Machine 5.5 // https://en.chessbase.com/post/adams-vs-hydra-man-0-5-machine-5-5

851

Schulz A. (2006). Kramnik gegen Deep Fritz: Das letzte Match Mensch gegen Maschine? / Spiegel Online // https://www.spiegel.de/netzwelt/tech/kramnik-gegen-deep-fritz-das-letzte-match-mensch-gegen-maschine-a-450147.html

852

* Термин «движок» требует некоторых объяснений. В 2000-е годы окончательно закрепилось разделение шахматных программ на две независимые части — «оболочку» (Graphic User Interface, GUI) и «движок» (engine), связанные между собой при помощи одного из стандартных интерфейсов, например WinBoard или UCI (Universal Chess Interface). Эта практика возникла в 1990-е годы в продуктах ChessBase, в которых оболочка от ChessBase поставлялась с несколькими шахматными движками, такими как Fritz, Junior, Shredder, Hiarcs, связанными с оболочкой при помощи программного интерфейса. Затем эта практика была перенята и остальной частью сообщества компьютерных шахмат. Теперь шахматные программисты могли не тратить время на разработку собственного интерфейса, а сосредоточиться на создании «шахматного мозга» программы, сконцентрированного в её движке. Стандартизация интерфейсов шахматных движков позволила автоматизировать проведение матчей и турниров между шахматными программами, исключив из процесса человека. Теперь движки могли обмениваться ходами внутри единой оболочки, которая выполняла роль своеобразного рефери, наблюдая за расходованием времени, корректностью ходов и при необходимости присуждая результаты игры в очевидных ситуациях. Кроме того, оболочке могли быть переданы некоторые дополнительные функции, например выбор ходов из дебютной библиотеки, что позволяло, например, устраивать турниры программ с одинаковой библиотекой дебютов у всех участников.

853

Crowther M. (2009). The week in chess, 771, 17th August 2009 // https://web.archive.org/web/20110930232108/http://www.chess.co.uk/twic/twic771.html#13

854

Ertel W., Black N. (2018). Introduction to Artificial Intelligence. Springer International Publishing // https://books.google.ru/books?id=geFHDwAAQBAJ

855

Kaufman L. (2008). The Dzindzi – Rybka 3 Handicap Match // https://en.chessbase.com/post/the-dzindzi-rybka-3-handicap-match

856

Kaufman L. (2008). The Milov vs. Rybka Handicap Match // https://en.chessbase.com/post/the-milov-vs-rybka-handicap-match

857

Komodo handicap matches / Komodo chess engine // http://komodochess.com/store/pages.php?cmsid=17

858

Осень шахматиста. Михаил Ботвинник (1990) // https://www.youtube.com/watch?v=IQZqN0b6Op0

859

Tahan M. (1993). The Man Who Counted: A Collection of Mathematical Adventures. New York: W. W. Norton & Co., pp. 113—115 // https://books.google.ru/books?id=WMv_2aSlXOoC&pg=PA113

860

Crops (2017) / FAOSTAT. Retrieved 2019-08-18. Countries - Select All; Regions - World + (Total); Elements - Production Quantity; Items - Wheat; Years – 2017 // http://www.fao.org/faostat/en/#data/QC/

861

Shannon C. E. (1950). Programming a Computer for Playing Chess / Philosophical Magazine, Ser. 7, Vol. 41, No. 314 // https://vision.unipv.it/IA1/aa2009-2010/ProgrammingaComputerforPlayingChess.pdf

862

Allis V. (1994). Searching for Solutions in Games and Artificial Intelligence (PDF). Ph. D. Thesis, University of Limburg, Maastricht, The Netherlands // http://fragrieu.free.fr/SearchingForSolutions.pdf

863

Saul E. (2013). The Coded Universe: The Path to Eternity. Red Lead Press // https://books.google.ru/books?id=E22mj8ImiKwC

864

Tromp J. (2010). John's Chess Playground // https://tromp.github.io/chess/chess.html

865

Bob23 (2018). GUIDE: Setting up Leela on a Chess GUI / Lc0 blog // http://blog.lczero.org/2018/09/guide-setting-up-leela-on-chess-gui.html

866

Левенчук А. (2015). Интеллект-стек // https://youtu.be/1mL2DL6ZBSw?t=965

867

Hsu F. (2004). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press // https://books.google.ru/books?id=WOk9DwAAQBAJ

868

CCRL 40/40 Downloads and Statistics: Complete rating list, retrieved 2022-01-27 // https://ccrl.chessdom.com/ccrl/4040/rating_list_all.html

869

Azevedo F. A., Carvalho L. R., Grinberg L. T., Farfel J. M., Ferretti R. E., Leite R. E. P., Filho W. J., Lent R., Herculano-Houzel S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain / Journal of Comparative Neurology. Vol. 513(5), pp. 532—541 // https://www.ncbi.nlm.nih.gov/pubmed/19226510/

870

Dresbach T., Qualmann B., Kessels M. M., Garner C. C., Gundelfinger E. D. (2001). The presynaptic cytomatrix of brain synapses / Cellular and Molecular Life Sciences, Vol. 58, pp. 94—116 // https://doi.org/10.1007/PL00000781

871

Donald C. Cooper (2014). Introduction to Neuroscience. CU Neuroscience Series // https://books.google.ru/books?id=jXnkai44PxYC

872

Goldman B. (2010). New imaging method developed at Stanford reveals stunning details of brain connections // https://med.stanford.edu/news/all-news/2010/11/new-imaging-method-developed-at-stanford-reveals-stunning-details-of-brain-connections.html

873

Hu E. Y., Yu G., Song D., Bouteiller C. J., Berger W. T. (2018). Modeling Nonlinear Synaptic Dynamics: A Laguerre-Volterra Network Framework for Improved Computational Efficiency in Large Scale Simulations. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 64 (2), pp. 6129—6132 // http://europepmc.org/articles/PMC6462142

874

Beniaguev D., Segev I., London M. (2021). Single cortical neurons as deep artificial neural networks / Neuron, Vol. 109, Iss. 17, pp. 2727—2739.e3 // https://doi.org/10.1016/j.neuron.2021.07.002

875

Whitten A. (2021). How Computationally Complex Is a Single Neuron? / Quanta Magazine, September 2, 2021 // https://www.quantamagazine.org/how-computationally-complex-is-a-single-neuron-20210902

876

Уиттен Э. (2021). Насколько сложной должна быть компьютерная модель одного нейрона? / Пер. с англ. Горлова А // https://22century.ru/popular-science-publications/a-single-neuron-is-very-complex

877

NVIDIA H100 SXM5 80 GB (2023). / TechPowerUp // https://www.techpowerup.com/gpu-specs/h100-sxm5-80-gb.c3900

878

* Скорее всего, этот показатель будет немного улучшен с выходом GPU семейства Hopper-Next от Nvidia в 2024 году.

879

Creating Tomorrow’s Next-Generation Technologies Today // https://forums.xilinx.com/t5/Xilinx-Xclusive-Blog/Creating-Tomorrow-s-Next-Generation-Technologies-Today/ba-p/1156382

880

Gerstner W., Kistler W. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press // https://books.google.ru/books?id=Rs4oc7HfxIUC

881

** Максимальная частота глобального иерархического дерева тактовых импульсов; сеть распределения тактовых импульсов (или дерево тактовых импульсов, когда эта сеть формирует дерево) — часть электрической схемы, которая распределяет сигнал(ы) тактовых импульсов (т. е. импульсов, предназначенных для синхронизации различных процессов в схеме) от общего источника до всех элементов, которые в них нуждаются.

882

Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching Characteristics // https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf

883

John Tromp (2016). Number of legal Go positions // https://tromp.github.io/go/legal.html

884

Allis V. (1994). Searching for Solutions in Games and Artificial Intelligence (Ph. D. thesis). University of Limburg, Maastricht, The Netherlands // https://project.dke.maastrichtuniversity.nl/games/files/phd/SearchingForSolutions.pdf

885

Good I. J. (1965). The Mystery of Go / New Scientist, 21 January // http://www.chilton-computing.org.uk/acl/literature/reports/p019.htm

886

Wedd N. (2016). Human-Computer Go Challenges / computer-go.info // http://www.computer-go.info/h-c/index.html

887

Cho A. (2016). ‘Huge leap forward’: Computer that mimics human brain beats professional at game of Go / Science // https://www.sciencemag.org/news/2016/01/huge-leap-forward-computer-mimics-human-brain-beats-professional-game-go

888

Millen J. K. (1981). Programming the Game of Go / Byte, April 1981 // https://archive.org/stream/byte-magazine-1981-04/1981_04_BYTE_06-04_Future_Computers#page/n101/mode/2up

889

Webster B. (1984). A Go Board for the Macintosh / Byte, November 1981 // https://archive.org/stream/byte-magazine-1984-11/1984_11_BYTE_09-12_New_Chips#page/n125/mode/2up

890

Macfadyen M. (1984). Computer Go / British Go Journal No. 61. March 1984 // https://www.britgo.org/bgj/06123.html

891

History of Go-playing Programs / Go British Association // https://www.britgo.org/computergo/history

892

Bronislaw Przybyla (1984). Acornsoft Go / Sensei's Library // https://senseis.xmp.net/?AcornsoftGo

893

History of Go-playing Programs / Go British Association // https://www.britgo.org/computergo/history

894

Burmeister J., Wiles J. CS-TR-339 Computer Go Tech Report // https://staff.itee.uq.edu.au/janetw/Computer%20Go/CS-TR-339.html#6.2

895

History of Go-playing Programs / Go British Association // https://www.britgo.org/computergo/history

896

Strickland J. (2010). Top 5 Computer vs. Human Game Matchups / howstuffworks // https://electronics.howstuffworks.com/5-computer-vs-human-game-matchups5.htm

897

Aydinian H., Cicalese F., Deppe C. (2013). Information Theory, Combinatorics, and Search Theory: In Memory of Rudolf Ahlswede. Springer Berlin Heidelberg // https://books.google.ru/books?id=qVW5BQAAQBAJ

898

Cosmic Style V.S. Zen (Computer Go) / The Nihon Ki-in[Японская ассоциация го] // https://www.nihonkiin.or.jp/english/topics/12/topics2012_03.htm#120326f

899

Shotwell P. (2011). Go! More Than a Game. Tuttle Publishing // https://books.google.ru/books?id=qf_QAgAAQBAJ

900

House P. (2014). The Electronic Holy War / The Ney Yorker, March 25, 2014 // https://www.newyorker.com/tech/annals-of-technology/the-electronic-holy-war

901

Althöfer I., Snatzke R. G. (2016). The codecentric Go Challenge 2014: Franz-Josef Dickhut vs. CRAZY STONE / ICGA Journal, Vol. 37, Iss. 4, pp. 232—236 // https://www.researchgate.net/publication/293799776_The_codecentric_Go_Challenge_2014_Franz-Josef_Dickhut_vs_CRAZY_STONE

902

Syed O. The Creation of Arimaa // http://arimaa.com/arimaa/

903

Натансон Л., Серов А., Лесной Д. МАРЬЯЖ для Windows: академическое издание // https://dr-vamp-r.ucoz.ru/load/1-1-0-5

904

The Computer Is A Cheating Bastard: Civilization / TV Tropes // https://tvtropes.org/pmwiki/pmwiki.php/TheComputerIsACheatingBastard/Civilization

905

Müller K., Schaeffer J. (2018). Man Vs. Machine: Challenging Human Supremacy at Chess. New York, NY, USA: Russell Enterprises, Incorporated // https://books.google.ru/books?id=0GV2DwAAQBAJ

906

Victor Allis (1994). Searching for Solutions in Games and Artificial Intelligence (PDF). Ph. D. Thesis, University of Limburg, Maastricht, The Netherlands // http://fragrieu.free.fr/SearchingForSolutions.pdf

907

Tesauro G. (1992). Practical issues in temporal difference learning / Machine Learning, Vol. 8, Iss. 3—4, pp. 257—277 // https:// doi.org/10.1007/BF00992697

908

Coulom R. (2011). CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning // https://www.remi-coulom.fr/CLOP/

909

Stockfish Testing Queue, retrieved 2020-04-25 // http://tests.stockfishchess.org

910

Stockfish Testing Queue, retrieved 2022-01-28 // http://tests.stockfishchess.org

911

* Реверс-инжиниринг — так в технике и программировании называют исследование некоторого устройства или программы, а также сопроводительной документации в целях обнаружения недокументированных возможностей, изменения исходной системы или её воспроизводства без прямого копирования.

912

Goujon P. (2001). From Biotechnology to Genomes: The Meaning of the Double Helix. World Scientific Publishing Company // https://books.google.ru/books?id=qRJsTiUAO_AC

913

Kline R. (2015). The Cybernetics Moment: Or Why We Call Our Age the Information Age. Johns Hopkins University Press // https://books.google.ru/books?id=WgPHCQAAQBAJ

914

Mayer J. (2009). Jack Ellwood Steele // http://www.ilasting.com/jacksteele.php

915

Bionics / Online Ethymology Dictionary // https://www.etymonline.com/word/bionics

916

Goujon P. (2001). From Biotechnology to Genomes: The Meaning of the Double Helix. World Scientific Publishing Company // https://books.google.ru/books?id=qRJsTiUAO_AC

917

Meet the Board of Directors: Janine Benyus / Biomimicry Institute // https://biomimicry.org/board/

918

Jacobs S. (2014). Biomimetics: A simple foundation will lead to new insight about process. International Journal of Design & Nature and Ecodynamics, Vol. 9, pp. 83—94 // https://doi.org/10.2495/DNE-V9-N2-83-94.

919

Hallion R. (2003). Taking Flight: Inventing the Aerial Age, from Antiquity Through the First World War. Oxford University Press, USA // https://books.google.ru/books?id=YRqV_PayIKIC

920

Opdycke L. (1999). French Aeroplanes Before the Great War. Schiffer Pub // https://books.google.ru/books?id=qAAKAQAAMAAJ

921

Crouch T. D. (2019). Ader Éole / Encyclopædia Britannica // https://www.britannica.com/topic/Ader-Eole

922

Suddath C. (2010). A Brief History of: Velcro / Time, Tuesday, June 15, 2010 // http://content.time.com/time/nation/article/0,8599,1996883,00.html

923

Brian D., Bharat B. (2010). Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review / Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 28 October 2010 // http://doi.org/10.1098/rsta.2010.0201

924

Mann E. E., Mettetal M. R., May R. M., Drinker M. C., Stevenson B. C., Baiamonte V. L., Marso J. M., Dannemiller E. A., Parker A. E., Reddy S. T., Sande M. K. (2014). Surface Micropattern Resists Bacterial Contamination Transferred by Healthcare Practitioners / Journal of Microbiology & Experimentation, Vol. 1, Iss. 5 // https://www.sharklet.com/2015/01/19/surface-micropattern-resists-bacterial-contamination-transferred-by-healthcare-practitioners-2014/

925

Elliott D. (2009). Designing packs as nature intended / PackagingNews, 30 September 2009 // https://www.packagingnews.co.uk/news/designing-packs-as-nature-intended-30-09-2009

926

Mahdavi A., Ferreira L., Sundback C., Nichol J. W., Chan E. P., Carter D. J. D., Bettinger C. J., Patanavanich S., Chignozha L., Ben-Joseph E., Galakatos A., Pryor H., Pomerantseva I., Masiakos P. T., Faquin W., Zumbuehl A., Hong S., Borenstein J., Vacanti J., Langer R., Karp J. M. (2008). A biodegradable and biocompatible gecko-inspired tissue adhesive / Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, Iss. 7, pp. 2307—2312 // https://doi.org/10.1073/pnas.0712117105

927

Kastrup C. J., Nahrendorf M., Figueiredo J. L., Lee H., Kambhampati S., Lee T., Cho S.-W., Gorbatov R., Iwamoto Y., Dang T. T., Dutta P., Yeon J. H., Cheng H., Pritchard C. D., Vegas A. J., Siegel C. D., MacDougall S., Okonkwo M., Thai A., Stone J. R., Coury A. J., Weissleder R., Langer R., Anderson D. G. (2012). Painting blood vessels and atherosclerotic plaques with an adhesive drug depot / Proceedings of the National Academy of Sciences, Dec 26, 2012 // https://www.pnas.org/content/early/2012/12/10/1217972110

928

* Адгезив — вещество, способное соединять материалы путём поверхностного сцепления.

929

Li Y., Huang X. J., Heo S. H., Li C. C., Choi Y. K., Cai W. P., Cho S. O. (2007). Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays / Langmuir 2007, Vol. 23, Iss. 4, pp. 2169—2174, November 16, 2006 // https://doi.org/10.1021/la0620758

930

Potyrailo R. A., Bonam R. K., Hartley J. G., Starkey T. A., Vukusic P., Vasudev M., Bunning T., Naik R. R., Tang Z., Palacios M. A., Larsen M., Le Tarte L. A., Grande J. C., Zhong S., Deng T. (2015). Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies / Nature Communications, Vol. 6, Article number: 7959 // https://www.nature.com/articles/ncomms8959

931

Platé N. (1993). Liquid-Crystal Polymers. Springer US // https://books.google.ru/books?id=a3wjjzrmwf0C

932

Spencer N. J., Hu H. (2020). Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility / Nature Reviews Gastroenterology & Hepatology, Vol. 17, pp. 338—351 // https://doi.org/10.1038/s41575-020-0271-2

933

Banhey J., von Bartheld C. S. (2017). The Cellular Composition and Glia-Neuron Ratio in the Spinal Cord of a Human and a Non-Human Primate: Comparison with other Species and Brain Regions / Anatomical record (Hoboken, N. J.), Vol. 301, Iss. 4, pp. 697—710 // https://doi.org/10.1002/ar.23728

934

Huffman C. (2017). Alcmaeon / Stanford Encyclopedia of Philosophy // https://plato.stanford.edu/entries/alcmaeon/

935

Elhadi A. M., Kalb S., Perez-Orribo L., Little A. S., Spetzler R. F., Preul M. C. (2012). The Journey of Discovering Skull Base Anatomy in Ancient Egypt and the Special Influence of Alexandria / Neurosurgical Focus, Vol. 33, Iss. 2:e2 // https://www.medscape.com/viewarticle/769263_6

936

Hobbes T. (1969). Leviathan, 1651. Scolar P // https://books.google.ru/books?id=8xyDAAAAMAAJ

937

Kulstad M., Carlin L. (2013). Leibniz’s Philosophy of Mind / Stanford Encyclopedia of Philosophy // https://plato.stanford.edu/entries/leibniz-mind/

938

Robbins J. (2008). A Symphony in the Brain: The Evolution of the New Brain Wave Biofeedback. Grove Press // https://books.google.ru/books?id=ucRimHppmv0C

939

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

940

Robbins J. (2008). A Symphony in the Brain: The Evolution of the New Brain Wave Biofeedback. Grove Press // https://books.google.ru/books?id=ucRimHppmv0C

941

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

942

Robbins J. (2008). A Symphony in the Brain: The Evolution of the New Brain Wave Biofeedback. Grove Press // https://books.google.ru/books?id=ucRimHppmv0C

943

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

944

Yamada T., Meng E. (2009). Practical Guide for Clinical Neurophysiologic Testing: EEG. Lippincott Williams & Wilkins // https://books.google.ru/books?id=VdsUrV8jeZ4C

945

Beck A. (1890). Die Bestimmung der Localisation des Gehirn — und Rückenmarksfunctionen vermittelst der electrischen Erscheinungen / Zentralblatt für Physiologie, Vol. 4, pp. 473—476 // https://www.biodiversitylibrary.org/item/49793#page/481/mode/1up

946

Yamada T., Meng E. (2009). Practical Guide for Clinical Neurophysiologic Testing: EEG. Lippincott Williams & Wilkins // https://books.google.ru/books?id=VdsUrV8jeZ4C

947

Jabr F. (2012). Know Your Neurons: The Discovery and Naming of the Neuron / Scientific American, May 14, 2012 // https://blogs.scientificamerican.com/brainwaves/know-your-neurons-the-discovery-and-naming-of-the-neuron/

948

The Nobel Prize in Physiology or Medicine 1906 / NobelPrize.org, Nobel Media AB 2020, 6 May 2020 // https://www.nobelprize.org/prizes/medicine/1906/summary/

949

Douglas Fields R. (2017). Why the First Drawings of Neurons Were Defaced / Quantamagazine, September 28, 2017 // https://www.quantamagazine.org/why-the-first-drawings-of-neurons-were-defaced-20170928/

950

* Исторически анатомы подразделяли ткани мозга на серое вещество (лат. substantia grisea) и белое вещество (лат. substantia alba), руководствуясь цветом соответствующих тканей. Их цветовая дифференциация обусловлена белым цветом миелина и серым цветом кровеносных капилляров и клеточных тел.

951

Borch-Jacobsen M. (2012). Ernst Fleischl von Marxow (1846-1891): Freud's first therapeutic blunder and how he lied about it / Psychology Today, Feb 07, 2012 // https://www.psychologytoday.com/intl/blog/freuds-patients-serial/201202/ernst-fleischl-von-marxow-1846-1891

952

Medwed H. (1997). Ernst Fleischl von Marxow (1846—1891): Leben und Werk. Medienverl. Köhler // https://books.google.ru/books?id=lGB4AAAACAAJ

953

Wickens A. (2009). Introduction to Biopsychology. Pearson Education // https://books.google.ru/books?id=DlBHRK6NGsoC

954

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

955

Данилевский В. Я. (1949). Электрические явления в головном мозге / Первые отечественные исследования по электроэнцефалографии. — М. С. 87—88.

956

История изучения биоэлектрической активности головного мозга (2020) / Центр Медицинской Информации. Научная библиотека лаборатории электрофизиологии НЦИЛС // https://cmi.to/электрофизиология-2/электрофизиология-головного-мозга/история-изучения-биоэлектрической-а/

957

Шойфет М. С. (2011). Сто великих врачей. Вече // https://books.google.ru/books?id=-f2xkgEACAAJ

958

Караченцев Ю. И. (2009). К 90-летию со дня основания Института проблем эндокринной патологии им. В.Я. Данилевского: страницы истории, достижения и перспективы / Новости медицины и фармации. №10 (284) // http://www.mif-ua.com/archive/issue-9091/article-9106/

959

Введенский Н.Е. (1884). Телефонические исследования над электрическими явлениями в мышечных и нервных аппаратах. — СПб. // http://books.e-heritage.ru/book/10070047

960

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

961

Pravdich-Neminsky, VV. (1913). Ein Versuch der Registrierung der elektrischen Gehirnerscheinungen / Zentralblatt für Physiologie, Vol. 27, pp. 951—60 // https://www.biodiversitylibrary.org/item/50775#page/967/mode/1up

962

* В те годы неврология и психиатрия составляли одну специальность — нейропсихиатрию, чистая неврология в немецкоязычных странах только начинала становиться отдельной дисциплиной.

963

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

964

Ibañez D. (2014). Hans Berger: Lights and Shadows of the Inventor of Electroencephalography / NE neuroelectrics // https://www.neuroelectrics.com/blog/2014/12/18/hans-berger-lights-and-shadows-of-the-inventor-of-electroencephalography/

965

Rooney A. (2017). The History of Neuroscience. The Rosen Publishing Group, Inc // https://books.google.ru/books?id=Hd1hDwAAQBAJ

966

Radin D. (2009). Entangled Minds: Extrasensory Experiences in a Quantum Reality. New York: Paraview Pocket Books // https://books.google.ru/books?id=sUM1Hc-KwJQC

967

Wiedemann H. R. (1994). Hans Berger / European Journal of Pediatrics, Vol. 153, Iss. 10, p. 705 // https://doi.org/10.1007/BF01954482

968

Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C

969

Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C

970

Berger H. (1929). Über das Elektrenkephalogramm des Menschen / Archiv Für Psychiatrie Und Nervenkrankheiten, Bd. 87, Ausg. 1, S. 527—570 // https://doi.org/10.1007/bf01797193 // http://www.audiomentaltraining.com/app/wp-content/uploads/Berger-1929-FirstEEG.pdf

971

* Бергер отверг неудачный, по его мнению, термин «электроцереброграмма» из-за сочетания в нём греческого и латинских корней, предложив вместо него более логичный вариант «электроэнкефалограмма» (Elektrenkephalogram), в общем-то, фонетически более правильный, чем термин, принятый в итоге научным сообществом.

972

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

973

Grass A. M. (1984). The Electroencephalographic Heritage Until 1960 / American Journal of EEG Technology, Vol. 24, pp. 133–173 // https://doi.org/10.1080/00029238.1984.11080140

974

* Сегодня их часто называют волнами или ритмом Бергера, хотя сам учёный из скромности возражал против этого названия.

975

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

976

Berger H. (1929). Über das Elektrenkephalogramm des Menschen. Archiv Für Psychiatrie Und Nervenkrankheiten, Bd. 87, Ausg. 1, S. 527—570 // https://doi.org/10.1007/bf01797193

977

** Пароксизмальный разряд — группа колебаний, резко отличных по структуре и амплитуде от фоновой активности; пароксизмальный разряд внезапно появляется, продолжается от долей секунды до нескольких секунд, а затем так же внезапно прекращается.

978

Niedermeyer E., Silva F. d. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins // https://books.google.ru/books?id=tndqYGPHQdEC

979

Zeidman L. A., Stone J., Kondziella D. (2013). New revelations about Hans Berger, father of the EEG, and his ties to the Third Reich // https://doi.org/10.1177/0883073813486558

980

Zeidman L. A., Kondziella D., Stone J. L. (2016). Authors’ Response to Letter to the Editor / Journal of Child Neurology, Vol 31, Iss. 14, 2016 // https://doi.org/10.1177/0883073816662419

981

Berger H. (1940). Psyche. Jena: Gustav Fischer // https://books.google.ru/books?id=mbOgvQEACAAJ

982

du Bois-Reymond E. (1848). Untersuchungen über tierische Elektrizität / Von den allgemeinen Gesetzen der Nervenerregung durch den elektrischen Strom (Band 1, Chapter 2.2). G. Reimer, Berlin // https://archive.org/details/bub_gb_AtkPAAAAQAAJ/page/n6

983

Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC

984

Fick A. (1863). Beiträge zur vergleichenden Physiologie der irritabelen Substanzen: Mit in den Text eingedruckten Holzstichen. Vieweg // https://books.google.ru/books?id=zCFCAAAAcAAJ

985

von Kries J. (1882). Ueber die Erregung des motorischen Nerven durch Wechselströme / Berichte über die Verhandlungen der Naturforschenden Gesellschaft zu Freiburg im Breisgau, Vol. 8, Iss. 2, pp. 170—204 // https://www.biodiversitylibrary.org/item/42625#page/198/mode/1up

986

Pflüger E. (1859). Untersuchungen über die Physiologie des Electrotonus. August Hirschwald.

987

Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC

988

* Элемент Лекланше — марганцево-цинковый элемент питания (источник тока), катод которого изготовлен из смеси графита с диоксидом марганца (MnO2), анод — из металлического цинка, а в роли электролита выступает раствор хлорида аммония NH4Cl.

989

Горбунов Б. Б., Востриков В. А., Нестеренко И. В., Телышев Д. В. (2018). История открытия закона Гоорвега-Вейса-Лапика / Медицинская техника. № 5 (311) // http://www.defibrillation.ru/download/Medicinskaya_texnika,2018,5,48-50.pdf

990

Hoorweg J. L. (1892). Ueber die elektrische Nervenerregung / Archiv für die gesame Physiologie des Menschen und der Tiere, Vol. 52, Iss. 3—4, pp. 87—108 // https://doi.org/10.1007/BF01661875

991

Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC

992

Pflüger E. (1893). J. L. Hoorweg und die electrische Nervenerregung / Archiv für die gesame Physiologie des Menschen und der Tiere, Vol. 53, Iss. 11—12, p. 616

993

Weiss G. (1901). Sur la possibilité de rendre comparables entre eux les appareils servant à l’excitation électricque / Archives Italiennes de Biologie, Vol. 35, Iss. 1, pp. 413—446 // http://www.architalbiol.org/aib/article/view/35413

994

van Dongen M., Serdijn W. (2016). Design of Efficient and Safe Neural Stimulators: A Multidisciplinary Approach. Analog Circuits and Signal Processing. Springer International Publishing // https://books.google.ru/books?id=UGahCwAAQBAJ

995

Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC

996

Lapicque L. (1909). Définition expérimentale de l'excitabilité / Comptes rendus des séances de la Société de biologie, 67, 280—283 // https://gallica.bnf.fr/ark:/12148/bpt6k6541404v/f288.image

997

Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0

998

Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis

999

M. Max Lebaudy's yacht: A Mother's Neat Little Scheme Fails Of Its Aim, but Benefits Science / Los Angeles Herald, Volume 41, Number 25, 5 November 1893 // https://cdnc.ucr.edu/?a=d&d=LAH18931105&e=-------en--20--1--txt-txIN--------1

1000

Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis

1001

Pinault M. (2000). Frédéric Joliot-Curie. O. Jacob // https://books.google.ru/books?id=ZQF1O1DLvHsC

1002

Duclert V. (1998). La Ligue de “l’epoque heroique”: la politique des savants / Le Mouvement Social, Vol. 183 (27) // https://doi:10.2307/3779613

1003

Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis

1004

Lapicque L. (1907). Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization / Journal of Physiol Pathol Générale, 9, 620-635 // https://fr.wikisource.org/wiki/Recherches_quantitatives_sur_l%27excitation_%C3%A9lectrique_des_nerfs_trait%C3%A9e_comme_une_polarisation

1005

Lapicque L. (2007). Quantitative investigations of electrical nerve excitation treated as polarization. Translated by: Nicolas Brunel, Mark C. W. van Rossum / Biological Cybernetics, 2007 // https://core.ac.uk/download/pdf/21172797.pdf

1006

Горбунов Б. Б., Востриков В. А., Нестеренко И. В., Телышев Д. В. (2018). История открытия закона Гоорвега-Вейса-Лапика / Медицинская техника, октябрь // https://www.researchgate.net/publication/328579029_The_History_of_the_Discovery_of_the_Hoorweg-Weiss-Lapicque_Law

1007

Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0

1008

* Потенциалом действия называют волну возбуждения, перемещающуюся по мембране живой клетки в виде кратковременного изменения мембранного потенциала (т. е. разницы в электрическом потенциале между зарядами внутренней и внешней стороны мембраны) на небольшом участке нейрона или кардиомиоцита. Далее по тексту книги мы часто для простоты будем использовать термин «импульс», хотя среди нейрофизиологов принято использовать более строгий термин «потенциал действия».

1009

** Нейромедиаторами называют биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса через синаптическое пространство между нейронами.

1010

Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis

1011

Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC

1012

Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis

1013

Davis H. (1923). The relationship of the “Chronaxie” of muscle to the size of the stimulating electrode / Journal of Physiology, Vol. 57, pp. 81—82.

1014

Rushton W. A. H. (1935). The time factor in electrical excitation / Biological Reviews, Vol. 10, Iss. 1, pp. 1—17 // https://doi.org/10.1111/j.1469-185X.1935.tb00474.x

1015

Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC

1016

Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis

1017

Lapicque L., Gaultier P. (1943). La machine nerveuse. (Flammarion) réédition numérique FeniXX // https://books.google.ru/books?id=r2qJDwAAQBAJ

1018

Mazliak L., Shafer G. (2011). What Does the Arrest and Release of Emile Borel and His Colleagues in 1941 Tell Us about the German Occupation of France? / Science in Context, Vol. 24, Iss. 4, pp. 587—623, December 2011 // https://doi.org/10.1017/S0269889711000238

1019

Peltier C. Louis Édouard Lapicque (1866–1952) // http://www.charleslapicque.fr/a-propos-de/biographie/biographie-detaillee/resources/pdf/Louis_Lapicque.pdf

1020

Lykknes A., Opitz D. L., Van Tiggelen B. (2012). For Better or For Worse? Collaborative Couples in the Sciences. Science Networks. Historical Studies. Springer Basel // https://books.google.ru/books?id=yR0fPFFbKqsC

1021

Abbott L. F. (1997). Lapicque’s introduction of the integrate-and-fire model neuron / Brain Research Bulletin, Vol. 50, Iss. 5—6, November—December 1999, pp. 303—304 // https://doi.org/10.1016/S0361-9230(99)00161-6

1022

Liang P., Wu S., Gu F. (2015). An Introduction to Neural Information Processing. Springer Netherlands // https://books.google.ru/books?id=XFZECwAAQBAJ

1023

Calvo P., Gomila T. (2008). Handbook of Cognitive Science: An Embodied Approach. Elsevier Science // https://books.google.ru/books?id=jxnhqHuo3gQC

1024

Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0

1025

Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/

1026

Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C

1027

Bowditch H. P (1871). Über die Eigenthümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen / Arbeiten aus der Physiologischen Anstalt zu Leipzig // https://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/permanent/vlp/lit1387/index.meta

1028

Rosenblueth A. (1935). The All-or-None Principle and the Nerve Effector Systems / The Quarterly Review of Biology, Vol. 10, No. 3, pp. 334-340 // https://doi.org/10.1086/394489

1029

Lucas K. (1905). On the gradation of activity in a skeletal muscle-fibre / The Journal of Physiology, Vol. 33, Iss. 2, pp. 125—137 // https://doi.org/10.1113/jphysiol.1905.sp001115

1030

Lucas K. (1909). The "all-or-none" contraction of the amphibian skeletal muscle fibre / The Journal of Physiology, Vol. 38, Iss. 2—3, pp. 113-133 // https://doi.org/10.1113/jphysiol.1909.sp001298

1031

Smith D. L. (1963). Basic Concepts in Physiology: II. Keith Lucas and the Nerve-Muscle Response / The American Biology Teacher, Vol. 25, Iss. 8, pp. 610—615 // https://doi.org/10.2307/4440465

1032

Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C

1033

Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006

1034

Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/

1035

Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C

1036

Piccolino M., Bresadola M. (2013). Shocking Frogs: Galvani, Volta, and the Electric Origins of Neuroscience. Oxford University Press // https://books.google.ru/books?id=_VYGAQAAQBAJ

1037

Lucas K., Adrian E. D. (1917). The Conduction of the Nervous Impulse. Longmans, Green and Company // https://books.google.ru/books?id=fNVOAAAAMAAJ

1038

Cowan W. M., Südhof T. C., Stevens C. P. (2003). Synapses. JHU Press // https://books.google.ru/books?id=FO5efrKGVQoC

1039

Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C

1040

Gasser H. S., Newcomer H. S. (1921). Physiological action currents in the phrenic nerve. An application of the thermionic vacuum tube to nerve physiology / The American Journal of Physiology, Vol. 57, Iss. 1, pp. 1—26 // https://doi.org/10.1152/ajplegacy.1921.57.1.1

1041

Павлов А. 5 июля 1888 г / Critical: Сайт медицины критических состояний. Календарь // https://www.critical.ru/calendar/0507gasser.htm

1042

Gasser H. S., Erlanger J. (1929). Role of size in establishment of nerve block by pressure or cocaine / The American Journal of Physiology, Vol. 88, pp. 581—589.

1043

Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006

1044

Kato G.-I. (1970). The road a scientist followed. Notes of Japanese Physiology as I myself experienced it / Annual Review of Physiology, 1970, Vol. 32, pp. 1—22 // https://doi.org/10.1146/annurev.ph.32.030170.000245

1045

Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/

1046

The Nobel Prize in Physiology or Medicine 1944. NobelPrize.org. Nobel Media AB 2020, 30 Oct 2020 // https://www.nobelprize.org/prizes/medicine/1944/summary/

1047

* Частотно-импульсная модуляция — такой вид импульсной модуляции, при которой управление средним значением выходного параметра осуществляется за счёт изменения частоты следования импульсов, обладающих неизменной длительностью.

1048

Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006

1049

Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C

1050

Сандаков Д. Б. (2011). Возбуждение и его механизмы / Электронный учебник по курсу «Физиология человека и животных» // http://www.bio.bsu.by/phha/01/01_text.html

1051

Сазонов В. Ф. (2011). Функциональная классификация мембранных ионных каналов / Научные труды III Съезда физиологов СНГ. — М.: Медицина-Здоровье. С. 72 // http://www.physiology-cis.org/files/YA2011_Proceedings.pdf

1052

Сазонов В. Ф. (2017). Ионные каналы мембраны / Кинезиолог // http://kineziolog.bodhy.ru/content/ionnye-kanaly-membrany

1053

Zangari A., Micheli D., Galeazzi R., Tozzi A. (2018). Node of Ranvier as an Array of Bio-Nanoantennas for Infrared Communication in Nerve Tissue / Scientific Reports, Vol. 8, p. 539 // https://doi.org/10.1038/s41598-017-18866-x

1054

Castelfranco A. M., Hartline D. K. (2015). The evolution of vertebrate and invertebrate myelin: a theoretical computational study / Journal of Computational Neuroscience, Vol. 38, pp. 521—538 // https://doi.org/10.1007/s10827-015-0552-x

1055

Hodgkin A. L., Huxley A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve / The Journal of Physiology. 117 (4): 500–44 // https://doi.org/10.1113%2Fjphysiol.1952.sp004764

1056

Forrest M. D. (2014). Can the Thermodynamic Hodgkin–Huxley Model of Voltage-Dependent Conductance Extrapolate for Temperature? / Computation, Vol. 2, Iss. 2, pp. 47—60 // https://doi.org/10.3390%2Fcomputation2020047

1057

Pakdaman K., Thieullen M., Wainrib G. (2010). Fluid limit theorems for stochastic hybrid systems with applications to neuron models / Advances in Applied Probability, Vol. 42, Iss. 3, pp. 761—794 // https://doi.org/10.1239/aap/1282924062

1058

Zheng Q., Wei G. W. (2011). Poisson-Boltzmann-Nernst-Planck model / Journal of Chemical Physics, 134 (19): 194101 // https://doi.org/10.1063%2F1.3581031

1059

Tai-Chia Lin T.-C. (2011). The Poisson The Poisson-Nernst-Planck (PNP) system for ion transport (PNP) system for ion transport / 3rd OCAMI-TIMS Workshop in Japan, Osaka, March 13—16, 2011 // http://www.sci.osaka-cu.ac.jp/~ohnita/2010/TCLin.pdf

1060

Nagumo J., Arimoto S., Yoshizawa S. (1962). An active pulse transmission line simulating nerve axon / Proceedings of the IRE, Vol. 50, pp. 2061—2070 // https://ieeexplore.ieee.org/document/4066548

1061

Izhikevich E. M. (2003). Simple model of spiking neurons / IEEE transactions on neural networks, Vol. 14, No. 6, November 2003 // http://www.rctn.org/vs265/izhikevich-nn03.pdf

1062

MacGregor R. (2012). Neural and Brain Modeling. Elsevier // https://books.google.ru/books?id=0vOiz7Ztx10C

1063

Briggman K. L., Helmstaedter M., Denk W. (2011). Wiring specificity in the direction-selectivity circuit of the retina / Nature, vol. 471, Iss. 7337, pp. 183—188 // https://doi.org/10.1038/nature09818

1064

Kim J. S., Greene M. J., Zlateski A., Lee K., Richardson M., Turaga S. C., Purcaro M., Balkam M., Robinson A., Behabadi B. F., Campos M., Denk W., Seung H. S. (2014). Space–time wiring specificity supports direction selectivity in the retina / Nature, Vol. 509, Iss. 7500, pp. 331—336 // https://doi.org/10.1038%2Fnature13240

1065

* Биполярные клетки (bipolar cells) обычно имеют веретенообразную форму и два отростка (один аксон и один дендрит), именно поэтому их и называют биполярными. В сетчатке они соединяют через синапсы одну колбочку или несколько палочек зрительной системы с одной ганглионарной или амакриновой клеткой (последнее характерно для биполярных клеток палочек).

1066

** Амакриновые клетки (amacrine cells) получили название от греческой приставки α (не-) и слов μακρός (длинный) и ίνα (волокно). Амакриновые клетки — это тормозящие нейроны, выходы которых соединяются с ганглионарными клетками сетчатки и/или с биполярными клетками.

1067

*** Ганглионарные клетки (retinal ganglion cells, RGC) — слой нейронов, расположенных в непосредственной близости от внутренней поверхности сетчатки. Они генерируют сигналы, которые затем передаются в зрительную кору.

1068

Коровски Ю. (2015). Игры ради науки / XX2 век, 23 марта // https://22century.ru/popular-science-publications/games-for-science

1069

Zlateski A., Lee K., Seung H. S. (2017). Scalable training of 3D convolutional networks on multi-and many-cores / Journal of Parallel and Distributed Computing, Vol. 106, pp. 195—204 // https://doi.org/10.1016/j.jpdc.2017.02.006

1070

* Нейронаука — междисциплинарная область знаний, занимающаяся изучением нейронных процессов.

1071

Alivisatos P. A., Chun M., Church G. M., Greenspan R. J., Roukes M. L., Yuste R. (2012). The Brain Activity Map Project and the Challenge of Functional Connectomics / Neuron, Vol. 74, Iss. 6, pp. 970—974, June 21, 2012 // https://doi.org/10.1016/j.neuron.2012.06.006

1072

Jürgens K. D. (2002). Etruscan shrew muscle: the consequences of being small. The Journal of Experimental Biology. 205 (Pt 15): 2161–2166 // https://www.ncbi.nlm.nih.gov/pubmed/12110649

1073

Alivisatos P. A., Chun M., Church G. M., Greenspan R. J., Roukes M. L., Yuste R. (2012). The Brain Activity Map Project and the Challenge of Functional Connectomics / Neuron, Vol. 74, Iss. 6, pp. 970—974, June 21, 2012 // https://doi.org/10.1016/j.neuron.2012.06.006

1074

White J. G., Southgate E., Thomson J. N., Brenner S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans / Philosophical Transactions of the Royal Society B, Vol. 314, Iss. 1165, 12 November 1986, pp. 1—340 // https://doi.org/10.1098/rstb.1986.0056

1075

Ryan R., Lu Z., Meinertzhagen I. A. (2016). The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling / eLife 2016; 5:e16962 // https://doi.org/10.7554/eLife.16962

1076

DeWeerdt S. (2019). How to map the brain / Nature, Vol. 571, S6-S8, 24 July 2019 // https://www.nature.com/articles/d41586-019-02208-0

1077

Cook S. J., Jarrell T. A., Brittin C. A., Wang Y., Bloniarz A. E., Yakovlev M. A., Nguyen K. C. Q., Tang L. T.-H., Bayer E. A., Duerr J. S., Bülow H. E., Hobert O., Hall D. H., Emmons S. W. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes / Nature, Vol. 571, pp. 63—71 // https://doi.org/10.1038/s41586-019-1352-7

1078

Zheng Z., Lauritzen J. S., Perlman E., Robinson C. G., Nichols M., Milkie D., Torrens O., Price J., Fisher C. B., Sharifi N., Calle-Schuler S. A., Kmecova L., Ali I. J., Karsh B., Trautman E. T., Bogovic J. A., Hanslovsky P., Jefferis G. S. X. E., Kazhdan M., Khairy K., Saalfeld S., Fetter R. D., Bock D. D. A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster / Cell, Vol. 174, Iss. 3, pp. 730—743.E22, July 26, 2018 // https://doi.org/10.1016/j.cell.2018.06.019

1079

Li P. H., Maitin-Shepard J. (2019). An Interactive, Automated 3D Reconstruction of a Fly Brain / Google AI Blog, August 5, 2019 // https://ai.googleblog.com/2019/08/an-interactive-automated-3d.html

1080

Li P. H., Lindsey L. F., Januszewski M., Zheng Z., Bates A. S., Taisz I., Tyka M., Nichols M., Li F., Perlman E., Maitin-Shepard J., Blakely T., Leavitt L., Jefferis G. S. X. E., Bock D., Jain V. (2019). Automated Reconstruction of a Serial-Section EM Drosophila Brain with Flood-Filling Networks and Local Realignment // https://doi.org/10.1101/605634

1081

Jain V., Januszewski M. (2018). Improving Connectomics by an Order of Magnitude / Google AI Blog, July 16, 2018 // https://ai.googleblog.com/2018/07/improving-connectomics-by-order-of.html

1082

Blakely T. (2021). A Browsable Petascale Reconstruction of the Human Cortex / Google AI Blog, June 1, 2021 // https://ai.googleblog.com/2021/06/a-browsable-petascale-reconstruction-of.html

1083

Shapson-Coe A., Januszewski M., Berger D. R., Pope A., Wu Y., Blakely T., Schalek R. L., Li P., Wang S., Maitin-Shepard J., Karlupia N., Dorkenwald S., Sjostedt E., Leavitt L., Lee D., Bailey L., Fitzmaurice A., Kar R., Field B., Wu H., Wagner-Carena J., Aley D., Lau J., Lin Z., Wei D., Pfister H., Peleg A., Jain V., Lichtman J. W. (2021). A connectomic study of a petascale fragment of human cerebral cortex // https://doi.org/10.1101/2021.05.29.446289

1084

Explore H01: One cubic millimeter of the human cerebral cortex (2021) // https://h01-release.storage.googleapis.com/explore.html

1085

Wilhelm B. G., Mandad S., Truckenbrodt S., Kröhnert K., Schäfer C., Rammner B., Koo S. J., Claßen G. A., Krauss M., Haucke V., Urlaub H., Rizzoli S. O. (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. / Science, Vol. 344, Iss. 6187, pp. 1023—1028 // https://doi.org/10.1126/science.1252884

1086

Doerr A. (2014). Modeling the synapse / Nature Methods, Vol. 11, pp. 788–789 // https://doi.org/10.1038/nmeth.3057

1087

* Астроцит (от греч. άστρον — звезда и κύτος — клетка) — тип нейроглиальной клетки звёздчатой формы с многочисленными отростками.

1088

Jolivet R., Coggan J. S., Allaman I., Magistretti P. J. (2015). Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble / PLOS Computational Biology, February 26, 2015. // https://doi.org/10.1371/journal.pcbi.1004036

1089

de Ceglia R., Ledonne A., Litvin D. G., Lind B. L., Carriero G., Latagliata E. C., Bindocci E., Di Castro M. A., Savtchouk I., Vitali I., Ranjak A., Congiu M., Canonica T., Wisden W., Harris K., Mameli M., Mercuri N., Telley L., Volterra A. (2023). Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. / Nature, Vol. 262, 06 September 2023. // https://doi.org/10.1038/s41586-023-06502-w

1090

DeWeerdt S. (2019). How to map the brain / Nature, Vol. 571, S6-S8, 24 July 2019 // https://www.nature.com/articles/d41586-019-02208-0

1091

OpenWorm foundation (2022). OpenWorm // https://openworm.org/

1092

Haspel G., Boyden E. S., Brown J., Church G., Cohen N., Fang-Yen C., Flavell S., Goodman M. B., Hart A. C., Hobert O., Kagias K., Lockery S., Lu Y., Marblestone A., Matelsky J., Pfister H., Rotstein H. G., Scholz M., Shlizerman E., Simeon Q., Skuhersky M. A., Venkatachalam V., Yang G. R., Yemini E., Zimmer M., Kording K. P. (2023). To reverse engineer an entire nervous system // https://arxiv.org/abs/2308.06578

1093

Сегеда Г. (2022). Цифровой двойник головастика — ещё один шаг на пути к искусственному разуму? / Наука в Сибири, 31 янв. // https://sbras.info/articles/nauka-dlya-obschestva/cifrovoy-dvoynik-golovastika-esche-odin-shag-na-puti-k

1094

Ferrario A., Palyanov A., Koutsikou S., Li W., Soffe S., Roberts A., Borisyuk R. (2021). From decision to action: Detailed modelling of frog tadpoles reveals neuronal mechanisms of decision-making and reproduces unpredictable swimming movements in response to sensory signals / PLOS Computational Biology, December 13, 2021 // https://doi.org/10.1371/journal.pcbi.1009654

1095

McCulloch W. S., Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity / Bulletin of Mathematical Biophysics, 5: 115 // https://doi.org/10.1007/BF02478259

1096

Heims S. J. (1991). Describing “Embodiments of mind”: McCulloch and his cohorts / Chrisley R., Begeer S. (2000). Artificial Intelligence: Critical Concepts. Routledge // https://books.google.ru/books?id=dLQ3bDy2tgYC

1097

Conway F., Siegelman J. (2009). Dark Hero of the Information Age: In Search of Norbert Wiener, The Father of Cybernetics. Basic Books // https://books.google.ru/books?id=u_w4DgAAQBAJ

1098

Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // https://nautil.us/the-man-who-tried-to-redeem-the-world-with-logic-235253/

1099

* Венский кружок (нем. Wiener Kreis) — группа учёных, регулярно собиравшаяся в Вене в конце 20-х — середине 30-х гг. XX в. С деятельностью Венского кружка обычно связывают появление логического позитивизма.

1100

Arbib M. A. (2016). Foreword to the 2016 reussue / McCulloch W. S., Papert S. (2016). Embodiments of Mind. MIT Press // https://books.google.ru/books?id=ITxMDQAAQBAJ

1101

Conway F., Siegelman J. (2009). Dark Hero of the Information Age: In Search of Norbert Wiener, The Father of Cybernetics. Basic Books // https://books.google.ru/books?id=u_w4DgAAQBAJ

1102

Abraham T. H. (2002). (Physio)logical circuits: The intellectual origins of the McCulloch-Pitts neural networks / Journal of the History of the Behavioral Sciences, Vol. 38, Iss. 1, pp. 3—25 // https://doi.org/10.1002/jhbs.1094

1103

Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ

1104

Орехова К. В. (2010). Дворянский Род Ржевских в Дзержинске / Городской журнал Светский в Дзержинске // http://www.svetsky.com/dvoryanskoe-gnezdo-dzerzhinska/dvorianskii-rod-rzhevskikh-v-dzerzhinske

1105

Модзалевский В. Л. (2012). Малороссийский родословник. Т. 4. С. 220—432 // https://books.google.ru/books?id=OuaWBgAAQBAJ

1106

Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ

1107

Рашевский Н. П. (1920). Н. П. Рашевский — В. И. Вернадскому. № 706, 23 октября 1920 / Вернадський В. I. (2012). Вибрані наукові праці академіка В.І. Вернадського. Т. 2: Володимир Іванович Вернадський. Листування з українськими вченими.

1108

Невзорова И. М. (2007). Таврида в изгнании / «Серебряный век» в Крыму: взгляд из XXI столетия. Материалы Четвёртых Герцыковских чтений в г. Судаке 6—10 июня 2005 года.

1109

Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ

1110

Harman O., Dietrich M. R. (2012). Outsider Scientists: Routes to Innovation in Biology. University of Chicago Press // https://books.google.ru/books?id=yffPAQAAQBAJ

1111

Nicolas Rashevsky / Worddisk // https://www.worddisk.com/wiki/Nicholas_Rashevsky/

1112

Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ

1113

Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ

1114

Rashevsky N. P. (1924). Is Time the Fourth Dimension? / Scientific American, Vol. 131, Iss. 6 / https://www.scientificamerican.com/article/is-time-the-fourth-dimension/

1115

Current Opinion, Vol. 78, 1924, p. 78.

1116

* Дисперсными называют системы, состоящие как минимум из двух фаз, одна из которых мелко раздроблена и равномерно распределена во второй, сплошной фазе. В зависимости от размера частиц дисперсной фазы выделяют грубодисперсные (с размером частиц больше 100 нм) и тонкодисперсные (с размером частиц от 1 до 100 нм), или коллоидные, системы. Если же размер частиц дисперсной фазы становится меньше 1 нм, то система становится раствором.

1117

Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ

1118

Rosen R. (1991). Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life. Columbia University Press // https://books.google.ru/books?id=DR8L4snDnkIC

1119

Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ

1120

* Один из вариантов этого анекдота: «Собрали биолога, математика и физика и попросили их придумать что-нибудь, чтобы всегда выигрывать на бегах. Через год учёные рассказывают о своих достижениях.

Биолог: Зная точную родословную лошади, успехи её родителей, чем её кормили, как лечили, я могу точно назвать максимальную скорость.

Математик: Имея точные статистические данные предыдущих забегов этих лошадей, я могу назвать приблизительные результаты этого.

Физик: Мне нужно ещё десять лет, пятьдесят миллионов долларов, несколько помощников и лаборатория, но я уже построил модель движения сферического коня в вакууме».

1121

Anderson J., Rosenfeld E. (2000). Talking Nets: An Oral History of Neural Networks. New York, NY, USA: MIT Press // https://books.google.ru/books?id=-l-yim2lNRUC

1122

Shmailov M. M. (2012). Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology // https://books.google.ru/books?id=usHsDAAAQBAJ

1123

Abraham T. H. (2004). Nicolas Rashevsky’s Mathematical Biophysics / Journal of the History of Biology, Vol. 37, Iss. 2, pp. 333—385 / https://doi.org/10.1023/b:hist.0000038267.09413.0d

1124

Conway F., Siegelman J. (2009). Dark Hero of the Information Age: In Search of Norbert Wiener, The Father of Cybernetics. Basic Books // https://books.google.ru/books?id=u_w4DgAAQBAJ

1125

Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic

1126

Day Staff Writer (2009). Old Lyme family looks to future of land with guidance from past / The Day, published March 13.2000, updated December 29, 2009 // https://www.theday.com/article/20000313/DAYARC/303139970

1127

Malapi-Nelson A. (2017). The Nature of the Machine and the Collapse of Cybernetics: A Transhumanist Lesson for Emerging Technologies. Palgrave Studies in the Future of Humanity and its Successors. Springer International Publishing // https://books.google.ru/books?id=-g0rDwAAQBAJ

1128

Levine Y. (2019). Surveillance Valley: The Secret Military History of the Internet. Icon Books Limited // https://books.google.ru/books?id=Rph5DwAAQBAJ

1129

Levine Y. (2019). Surveillance Valley: The Secret Military History of the Internet. Icon Books Limited // https://books.google.ru/books?id=Rph5DwAAQBAJ

1130

Joby Milo A. (1994). In Eves' circles. MAA notes 34. Mathematical Association of America // https://books.google.ru/books?id=CNzuAAAAMAAJ

1131

Chang S. (2011). Academic Genealogy of Mathematicians. World Scientific // https://books.google.ru/books?id=4siw31DPONUC

1132

Powell A. B., Frankenstein M. (2000). Remembering Dirk Jan Struik, 1894-2000 // https://www.maa.org/news/remembering-dirk-jan-struik-1894-2000

1133

Chang S. (2013). The Secret Guide to Computers. Springer Science & Business Media // https://books.google.ru/books?id=gMYGCAAAQBAJ

1134

Hardesty L. (2011). The Original Absent-Minded Professor / MIT Technology Review, Jun 21, 2011 // https://www.technologyreview.com/s/424363/the-original-absent-minded-professor/

1135

Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic

1136

Priestley M. (2011). A Science of Operations: Machines, Logic and the Invention of Programming. Springer London // https://books.google.ru/books?id=uflV0_q-FEUC

1137

Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic

1138

Rosenbluelh А., Wiener N., Bigelow J. (1943). Behavior, Purpose and Teleology / Philosophy of Science, 1943, Vol. 10, No. 1, pp. 18—24 // https://doi.org/10.1086/286788

1139

Masani P. R. (1990). Norbert Wiener 1894–1964. Vita Mathematica. Birkhäuser // https://books.google.ru/books?id=TpT_GfMId-sC

1140

The Coalescence of Cybernetics / American Society for Cybernetics: Foundations: History of Cybernetics // http://www.asc-cybernetics.org/foundations/history2.htm

1141

Kline R. R. (2015). The Cybernetics Moment: Or Why We Call Our Age the Information Age. New Studies in American Intellectual and Cultural History. JHU Press // https://books.google.ru/books?id=NQPHCQAAQBAJ

1142

Josiah Macy, Jr. Foundation. (1960). A review of activities, 1956-1960. New York: Josiah Macy, Jr. Foundation, p. 7 // https://books.google.ru/books/about/Josiah_Macy_Jr_Foundation.html?id=shJrAAAAMAAJ

1143

Шутина Ю. (2017). Год разоблачения сенсаций. Главные открытия и достижения археологов в 2016 г. / Meduza, 5 янв. // https://meduza.io/feature/2017/01/05/god-razoblacheniya-sensatsiy

1144

von Neumann J. (1945). First Draft of a Report on the EDVAC. Moore School of Electrical Engineering. University of Pennsylvania / IEEE Annals of the History of Computing, vol. 15, No. 1, 1993 // http://web.mit.edu/STS.035/www/PDFs/edvac.pdf

1145

Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic

1146

Moye W. T. (1996). ENIAC: The Army-Sponsored Revolution. United States Army Research Laboratory // http://ftp.arl.army.mil/mike/comphist/96summary/index.html

1147

Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic

1148

Smalheiser N. (2000). Walter Pitts / Perspectives in biology and medicine, 43, pp. 217—226 // https://doi.org/10.1353/pbm.2000.0009

1149

Kline R. (2015). The Cybernetics Moment: Or Why We Call Our Age the Information Age. Johns Hopkins University Press // https://books.google.ru/books?id=WgPHCQAAQBAJ

1150

Soni J., Goodman R. (2017). A Mind at Play: How Claude Shannon Invented the Information Age. Simon & Schuster // https://books.google.ru/books?id=ABlpDQAAQBAJ

1151

Smalheiser N. (2000). Walter Pitts / Perspectives in biology and medicine, 43, pp. 217—226 // https://doi.org/10.1353/pbm.2000.0009

1152

* Пенеплен (в геоморфологии) — практически ровная, местами слабовсхолмлённая поверхность, которая была сформирована на месте древних гор.

1153

** Аноэтический — не полностью сознающий; находящийся на грани сознания.

1154

*** Номотет — законодатель; у афинян: член совета, назначенный для испытания перемен, предполагавшихся в законах Солона.

1155

Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic

1156

Malapi-Nelson A. (2017). The Nature of the Machine and the Collapse of Cybernetics: A Transhumanist Lesson for Emerging Technologies. Palgrave Studies in the Future of Humanity and its Successors. Springer International Publishing // https://books.google.ru/books?id=-g0rDwAAQBAJ

1157

Gefter A. (2015). The Man Who Tried to Redeem the World with Logic: Walter Pitts rose from the streets to MIT, but couldn’t escape himself / Nautilus, February 5, 2015 // https://nautil.us/the-man-who-tried-to-redeem-the-world-with-logic-235253/

1158

Franchi S., Bianchini F. (2011). The Search for a Theory of Cognition: Early Mechanisms and New Ideas. Rodopi // https://books.google.ru/books?id=aRzSx0Jse-0C

1159

Malapi-Nelson A. (2017). The Nature of the Machine and the Collapse of Cybernetics: A Transhumanist Lesson for Emerging Technologies. Palgrave Studies in the Future of Humanity and its Successors. Springer International Publishing // https://books.google.ru/books?id=-g0rDwAAQBAJ

1160

McCulloch W. S., Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity / Bulletin of Mathematical Biophysics, 5: 115 // https://doi.org/10.1007/BF02478259

1161

Kleene S. (1951). Representation of events in nerve nets and finite automata // https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf

1162

* Это буква «тета», а не ноль, перерубленный пополам; я мог бы заменить её на другую букву без перемены смысла, но всё-таки решил оставить её ради аутентичности, а также для того, чтобы читателям, боящимся математических выражений, в этом месте было страшнее.

1163

McCulloch W. S., Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity / Bulletin of Mathematical Biophysics, 5: 115 // https://doi.org/10.1007/BF02478259

1164

von Neumann J. (1951). The General and Logical Theory of Automata / Jeffress L. A. (1951). Cerebral Mechanisms in Behavior: The Hixon Symposium. Wiley. New York // https://books.google.ru/books?id=0vgMAAAAIAAJ

1165

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1166

Piccinini G. (2004). The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts's “Logical Calculus of Ideas Immanent in Nervous Activity” / Synthese, Vol. 141 (2) // https://doi.org/10.1023/B:SYNT.0000043018.52445.3e

1167

Kleene S. (1951). Representation of events in nerve nets and finite automata // https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf

1168

Pierpoint N. (2009). Why are regular expressions called “regular” expressions? / StackOverflow, Jun 10 '09 // https://stackoverflow.com/questions/975465/why-are-regular-expressions-called-regular-expressions

1169

Wright P. (2012). Why is a regular language called 'regular'? / StackExchange, May 10 '12 // https://cs.stackexchange.com/questions/1771/why-is-a-regular-language-called-regular/1772

1170

Weller T. (2016). How did Regex get its name? / StackExchange, Mar 9 '16 // https://ell.stackexchange.com/questions/83917/how-did-regex-get-its-name

1171

Piccinini G. (2004). The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts's “Logical Calculus of Ideas Immanent in Nervous Activity” / Synthese, Vol. 141 (2) // https://doi.org/10.1023/B:SYNT.0000043018.52445.3e

1172

Kleene S. (1951). Representation of events in nerve nets and finite automata // https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf

1173

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1174

Landahl H. D., McCulloch W. S., Pitts W. (1943). A statistical consequence of the logical calculus of nervous nets. The Bulletin of Mathematical Biophysics, 5(4), 135–137 // https://doi.org/10.1007/bf02478260

1175

Turing A. (1946). Turing Letter to W. Ross Ashby // http://www.rossashby.info/letters/turing.html

1176

Copeland B. J. (2012). Alan Turing's Electronic Brain: The Struggle to Build the ACE, the World's Fastest Computer. OUP Oxford // https://books.google.ru/books?id=YhQZnczOS7kC

1177

Turing A. (1948). Intelligent Machinery // http://www.alanturing.net/intelligent_machinery/

1178

Gabbay D., Woods J., Thagard P. (2006). Philosophy of Psychology and Cognitive Science. Handbook of the Philosophy of Science. Elsevier Science // https://books.google.ru/books?id=Lp93PtrvM0MC

1179

Turing A. (1948). Intelligent Machinery // http://www.alanturing.net/intelligent_machinery/

1180

Shimbel A., Rapoport A. (1948). A statistical approach to the theory of the central nervous system. The Bulletin of Mathematical Biophysics, 10(1), 41–55 // https://doi.org/10.1007/bf02478329

1181

Hebb D. (1949). The Organization of Behavior: A Neuropsychological Theory. A Wiley book in clinical psychology. Wiley // https://books.google.ru/books?id=dZ0eDiLTwuEC

1182

Thorndike E. L., Bruce D. (1970). Animal Intelligence: Experimental Studies. Transaction Publishers // https://books.google.ru/books?id=Go8XozILUJYC

1183

Thorndike E. L. (1932). The Fundamentals Of Learning. Teachers College, Columbia University // https://archive.org/details/in.ernet.dli.2015.157080/page/n29

1184

Thorndike E. L. (1911). Animal intelligence: experimental studies. Animal behavior series. New York, The Macmillan Company // https://doi.org/10.5962/bhl.title.55072

1185

Майоров Ф. П. (1948). История учения об условных рефлексах. — М.: Академия Медицинских наук СССР // http://anfiz.ru/books/item/f00/s00/z0000021/index.shtml

1186

Pavlov I. P., Anrep G. V. (1927). Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford university press: Humphrey milford // https://books.google.ru/books?id=aGMSyQEACAAJ

1187

* Гиропилот (также гирорулевой) — электронавигационный прибор, работающий на основании показаний гирокомпаса. Гиропилот осуществляет автоматическое удержание судна на заданном курсе с гораздо большей точностью, чем это может делать человек, использующий компас.

1188

Hoggett R. (2009). 1951 — SNARC Maze Solver — Minsky / Edmonds (American) / cyberneticzoo.com: a history of cybernetic animals and early robots // http://cyberneticzoo.com/mazesolvers/1951-maze-solver-minsky-edmonds-american/

1189

Bernstein J. (1981). A.I / The New Yorker, December 6, 1981 // https://www.newyorker.com/magazine/1981/12/14/a-i

1190

Klein D. (2018). Mighty mouse / MIT Technology Review, December 19, 2018 // https://www.technologyreview.com/2018/12/19/138508/mighty-mouse/

1191

Cannon W. B. (1932). The Wisdom of the Body, Vol. 10. W. W. Norton, Incorporated // https://books.google.ru/books?id=zdkEAQAAIAAJ

1192

Pfeiffer J. E. (1949). The Stuff That Dreams Are Made On; CYBERNETICS: Or Control and Communication in the Animal and the Machine. By Norbert Wiener. 191 pp. New York: John Wiley & Sons / The New York Times, Jan. 23, 1949 // https://www.nytimes.com/1949/01/23/archives/the-stuff-that-dreams-are-made-on-cybernetics-or-control-and.html

1193

Science: The Thinking Machine (1949) / Time, Monday, Jan. 24, 1949 // http://content.time.com/time/subscriber/article/0,33009,799721,00.html

1194

Ashby W. R. (1960). Design for a Brain. The origin of adaptive behaviour. Second edition. Springer Netherlands // https://books.google.ru/books?id=QsIXAAAAMAAJ

1195

Ashby W. R. (1949). The Electronic Brain / Radio-Electronics, Mar. 1949 // http://www.rossashby.info/gallery/Radio%20Electronics%20March%201949%20The%20Electronic%20Brain.pdf

1196

Ashby W. R. (1948). Design for a Brain / Electronic Engineering, Vol. 20, pp. 379—383.

1197

Pickering A. (2009). Psychiatry, synthetic brains and cybernetics in the work of W. Ross Ashby / International Journal of General Systems, Vol. 38, Iss. 2, pp. 213—230 // https://doi.org/10.1080/03081070802712025

1198

Rid T. (2016). Rise of the Machines: A Cybernetic History. W. W. Norton & Company // https://books.google.ru/books?id=WByZCgAAQBAJ

1199

Рид Т. (2020). Рождение машин. Неизвестная история кибернетики / Пер. с англ. Е. Васильченко, Е. Кузьмина. Litres // https://books.google.ru/books?id=0CCNDwAAQBAJ

1200

Cariani P. A. (2009). The homeostat as embodiment of adaptive control / International Journal of General Systems, Vol. 38, No. 2, pp. 139—154 // https://doi.org/ 10.1080/03081070802633593

1201

Pickering A. (2002). Cybernetics And The Mangle: Ashby, Beer And Pask / Social Studies of Science, Vol. 32, Iss. 3 // https://doi.org/10.1177/0306312702032003003

1202

Pilcher H. (1948). 390625 thoughts. The clicking brain is clever than man's / Daily Herald, No. 10227, Dec. 13, 1948 // https://www.britishnewspaperarchive.co.uk/viewer/BL/0000681/19481213/001/0001

1203

Pias C., Foerster G. v. (2016). Cybernetics: The Macy Conferences 1946-1953: The Complete Transactions. The University of Chicago Press // https://books.google.ru/books?id=zOincQAACAAJ

1204

Boden M. A. (2006). Mind as Machine: A History of Cognitive Science. Oxford University Press // https://books.google.ru/books?id=b4SE3C8PYU0C

1205

Boden M. A. (2006). Grey Walter’s Anticipatory Tortoises / The Rutherford Journal, Vol. 2, 2006-2007 // http://www.rutherfordjournal.org/article020101.html

1206

Marsh A. (2020). Meet the Roomba’s Ancestor: The Cybernetic Tortoise / IEEE Spectrum, 28 Feb 2020 // https://spectrum.ieee.org/tech-history/space-age/meet-roombas-ancestor-cybernetic-tortoise

1207

Марш А. (2020). Познакомьтесь с кибернетической черепахой, предшественником Roomba / Пер. с англ. Голованов А. / Хабр, 24 марта 2020 // https://habr.com/ru/post/493482/

1208

Pickering A. (2010). The cybernetic brain. Sketches of another future. The University of Chicago Press // http://www.arise.mae.usp.br/wp-content/uploads/2018/03/Andrew-Pickering-Cybernetic-Brain_Cap.3.pdf

1209

* Паттерн (от англ. pattern — узор, шаблон, образец, схема) здесь часто означает образ, шаблон, повторяющийся элемент.

1210

Gabbay D., Woods J., Thagard P. (2006). Philosophy of Psychology and Cognitive Science. Elsevier Science // https://books.google.ru/books?id=Lp93PtrvM0MC

1211

Farley B., Clark W. (1954). Simulation of self-organizing systems by digital computer / Transactions of the IRE Professional Group on Information Theory, Vol. 4 (4), pp. 76—84 // https://doi.org/10.1109/tit.1954.1057468

1212

Clark W., Farley B. (1954). Generalization of pattern recognition in a self-organizing system / Proceedings of the March 1-3, 1955, western joint computer conference, pp. 86—91 //https://doi.org/10.1145/1455292.1455309

1213

Rochester N., Holland J., Haibt L., Duda W. (1956). Tests on a cell assembly theory of the action of the brain, using a large digital computer. IEEE Transactions on Information Theory, 2(3), 80–93 // https://doi.org/10.1109/tit.1956.1056810

1214

Gabbay D., Woods J., Thagard P. (2006). Philosophy of Psychology and Cognitive Science. Elsevier Science // https://books.google.ru/books?id=Lp93PtrvM0MC

1215

Davis B. (2012). New Rochelle. Arcadia Publishing // https://books.google.ru/books?id=v5o78L0q_wQC

1216

Kennedy K. (2016). Lasting Impact: One Team, One Season. What Happens When Our Sons Play Football. Time Incorporated Books // https://books.google.ru/books?id=qMi_DAAAQBAJ

1217

YIVO Institute of Jewish Research (2013). Frank Rosenblatt / Guide to the YIVO archives // http://www.yivoarchives.org/index.php?p=collections/controlcard&id=33295

1218

Goldsmith S. A. (1927). Dr. Frank F. Rosenblatt / The Jewish Social Service Quarterly. Stanford. The Berman Jewish Policy Archive // https://www.jewishdatabank.org/search-results/publication/12586

1219

Coblentz S., Elliot J., Burgess S. (1993). Adventures of a Freelancer: The Literary Exploits and Autobiography of Stanton A. Coblentz. Borgo Press // https://books.google.ru/books?id=Bd9R-hcy7iEC

1220

Бейзер М. (2014). Трудности «дистанционного управления» в истории «Джойнта» на примере его работы в России — СССР / Труды по еврейской истории и культуре. Материалы XXI ежегодной конференции по иудаике, вып. 50 // https://sefer.ru/upload/Conf-21.text.1-575(25.12.14).pdf

1221

Scates S. (2006). Maurice Rosenblatt and the Fall of Joseph McCarthy. University of Washington Press // https://books.google.ru/books?id=8y53AAAAMAAJ

1222

Schudel M. (2005). Lobbyist Maurice Rosenblatt Dies / The Washington Post, August 15, 2005 // https://www.washingtonpost.com/archive/local/2005/08/15/lobbyist-maurice-rosenblatt-dies/572aad97-92b3-42fa-9e32-c0636e12be99/

1223

Dorrien G. (2018). Breaking White Supremacy: Martin Luther King Jr. and the Black Social Gospel. Yale University Press // https://books.google.ru/books?id=rjlFDwAAQBAJ

1224

Sejnowski T. (2018). The Deep Learning Revolution. New York, NY, USA: MIT Press // https://books.google.ru/books?id=9xZxDwAAQBAJ

1225

Emlen S. T., Howland H. C., O’Brien R. D. (1971). Frank Rosenblatt, July 11, 1928 — July 11, 1971: Cornell University Faculty Memorial Statement // https://ecommons.cornell.edu/bitstream/handle/1813/18965/Rosenblatt_Frank_1971.pdf

1226

Rosenblatt F. (1957). The Perceptron: A Perceiving and Recognizing Automaton. Project Para Report No. 85-460-1, Cornell Aeronautical Laboratory // https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf

1227

Rosenblatt F. (1957). The perceptron: A Probabilistic model for Visual Perception / Proceedings of the 15th International Congress of Psychology, North Holland, pp. 290—297

1228

Rosenblatt F. (1957). The Perceptron: A Perceiving and Recognizing Automaton. Project Para Report No. 85-460-1, Cornell Aeronautical Laboratory // https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf

1229

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1230

LeCun Y., Cortes C., Burges C. J. C. (1998). The MNIST database of handwritten digits // http://yann.lecun.com/exdb/mnist/

1231

Kussul E., Baidyk T., Kasatkina L., Lukovich V. (2001). Rosenblatt perceptrons for handwritten digit recognition / IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222) // https://doi.org/10.1109/ijcnn.2001.939589

1232

Backus J. (1978). Can Programming Be Liberated from the Von Neumann Style? A Functional Style and Its Algebra of Programs / Communications of the ACM, 21(8), pp. 613—641 // http://doi.acm.org/10.1145/359576.359579

1233

Anderson J., Rosenfeld E. (2000). Talking Nets: An Oral History of Neural Networks. New York, NY, USA: MIT Press // https://books.google.ru/books?id=-l-yim2lNRUC

1234

Douglas S. C. (1995). Generalized gradient adaptive step sizes for stochastic gradient adaptive filters / 1995 International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, Iss. 8, pp. 1396—1399 // https://doi.org/10.1109/ICASSP.1995.480502

1235

Anderson J., Rosenfeld E. (2000). Talking Nets: An Oral History of Neural Networks. New York, NY, USA: MIT Press // https://books.google.ru/books?id=-l-yim2lNRUC

1236

Hilberg v. W. (1995). Karl Steinbuch, ein zu Unrecht vergessener Pionier der künstlichen neuronalen Systeme / Frequenz, Vol. 49, pp. 1—2 // https://www.degruyter.com/downloadpdf/j/freq.1995.49.1-2/freq.1995.49.1-2.28/freq.1995.49.1-2.28.pdf

1237

Karl Steinbuch: von der Kybernetik zur Politik (2017) / Heinz Nixdorf MuseumsForum Blog, 15.06.2017 // https://blog.hnf.de/karl-steinbuch-von-der-kybernetik-zur-politik/

1238

Bishop C. M. (2006). Pattern Recognition and Machine Learning. Information science and statistics. Springer New York // https://books.google.ru/books?id=kOXDtAEACAAJ

1239

United States. Office of Naval Research (1960). Research device recognizes objects or patterns / Naval Research Reviews, Volume 13, 4-Feb-1960 // https://books.google.ru/books?id=ve9cbfGDaywC

1240

* Brain (англ.) — мозг.

1241

** В греческой мифологии Минос был сыном Зевса и Европы и властителем Крита, а после смерти стал одним из трёх судей в подземном мире.

1242

Nilsson N. J. (2009). The Quest for Artificial Intelligence. Cambridge University Press // https://books.google.ru/books?id=nUJdAAAAQBAJ

1243

Huber W. A. (1968). Graphical data processing / Pattern Identification by Man and Machine. Proceedings of a Planning Conference Held at Texas Christian University, Fort Worth, Texas, 12-13 December, 1968 // https://books.google.ru/books?id=vaQlAAAAMAAJ

1244

Duda R. O., Nilsson N. J. (1965). Calculus of networks of adaptive elements. Proposal for Research SRI No. ESU 65-12R. Proposal Request 1-6-4400 // https://www.sri.com/wp-content/uploads/pdf/1284.pdf

1245

Nilsson N. J. (2009). The Quest for Artificial Intelligence. Cambridge University Press // https://books.google.ru/books?id=nUJdAAAAQBAJ

1246

* Shake (англ.) — дрожь.

1247

Fan S. (2019). Will AI Replace Us: A Primer for the 21st Century. Volume 0 of The Big Idea Series. Thames & Hudson // https://books.google.ru/books?id=5iapDwAAQBAJ

1248

Keay A., Silicon Valley Robotics (2017). Shakey is first robot to receive IEEE Milestone award / Robohub, February 28, 2017 // https://robohub.org/shakey-is-first-robot-to-receive-ieee-milestone-award/

1249

Mao L. (2017). Comprehensive Proof of Perceptron Convergence Theorem // https://leimao.github.io/blog/Perceptron-Convergence-Theorem/

1250

Витушкин А. Г. (2004). 13-я проблема Гильберта и смежные вопросы / Успехи математических наук. Т. 59, вып. 1 (355). С. 11—24 // https://doi.org/10.4213/rm698

1251

Tavora M. (2018). Connections between Neural Networks and Pure Mathematics / freeCodeCamp, 12 December 2018 // https://www.freecodecamp.org/news/connections-between-deep-learning-physics-and-pure-mathematics-part-i-947abeb3a5dd/

1252

Hu J. (2015). Between Us: A Queer Theorist’s Devoted Husband and Enduring Legacy / The New Yorker, December 9, 2015 // https://www.newyorker.com/books/page-turner/between-us-a-queer-theorists-devoted-husband-and-enduring-legacy

1253

Sedgwick H. A. (2017). Life of Eve Kosofsky Sedgwick / A resource for the exploration of the life and work of Eve Kosofsky Sedgwick // https://eveksedgwickfoundation.org/biography/biography.html

1254

Sedgwick H. A. (2016). The Cornell Student Homophile League // http://www.jearldmoldenhauer.com/wp-content/uploads/Cornell-Final5X.pdf

1255

* Интрацистернально — в подпаутинное пространство головного мозга.

1256

Røigaard-Petersen, H. H., Nissen, T., Fjerdingstad, E. J. (1968). Effect of ribonucleic acid (RNA) extracted from the brain of trained animals on learning in rats / Scandinavian Journal of Psychology, Vol. 9, Iss. 1, pp. 1–16 // https://doi.org/10.1111/j.1467-9450.1968.tb00512.x

1257

Ungar G., Oceguera-Navarro C. (1965). Transfer of Habituation by Material extracted from Brain / Nature, vol. 207, 1965, pp. 301—302 // https://doi.org/10.1038/207301a0

1258

Setlow B. (1997). Georges Ungar and memory transfer / Journal of the history of the neurosciences, 6, pp. 181—192 // https://doi.org/10.1080/09647049709525701

1259

Babich F. R., Jacobson A. L., Bubash S., Jacobson A. (1965). Transfer of a Response to Naive Rats by Injection of Ribonucleic Acid Extracted from Trained Rats / Science, 06-Aug-1965, pp. 656—657 // https://doi.org/10.1126/science.149.3684.656

1260

Rosenblatt F., Farrow J. T., Herblin W. F. (1966). Transfer of Conditioned Responses from Trained Rats to Untrained Rats by Means of a Brain Extract / Nature, Vol. 209, Iss. 5018, pp. 46–48 // https://doi.org/10.1038/209046a0

1261

Fields R. D. (2011). Imaging Learning: The Search for a Memory Trace / The Neuroscientist, Vol. 17, Iss. 2, pp. 185—196 // https://doi.org/10.1177/1073858410383696

1262

Bédécarrats A., Chen S., Pearce K., Cai D., Glanzman D. L. (2018). RNA from Trained Aplysia Can Induce an Epigenetic Engram for Long-Term Sensitization in Untrained Aplysia / eNeuro, 14 May 2018, Vol. 5, Iss. 3 // https://doi.org/10.1523/ENEURO.0038-18.2018

1263

Lehnert W. G. (2013). Cognition, Computers, and Car Bombs: How Yale Prepared Me for the 90’s / Schank R. C., Langer E. (2013). Beliefs, Reasoning, and Decision Making: Psycho-Logic in Honor of Bob Abelson. Psychology Press, Jun 17, 2013 // https://books.google.ru/books?id=EA01vM2uQd4C

1264

* Семантика — раздел лингвистики, изучающий смысловое значение единиц языка. Иногда термин также употребляется в качестве синонима понятия «смысл».

1265

Crevier D. (1993). AI: the tumultuous history of the search for artificial intelligence // https://archive.org/details/aitumultuoushist00crev/page/168

1266

Brügger N., Milligan I. (2018). The SAGE Handbook of Web History. SAGE Publications // https://books.google.ru/books?id=PENeDwAAQBAJ

1267

Pike D. (1985). Lukács and Brecht. Studien und Texte zur Sozialgeschichte der Literatur. University of North Carolina Press // https://books.google.ru/books?id=nGSk4a7kTBgC

1268

Sternberg R. J., Kaufman S. B. (2011). The Cambridge Handbook of Intelligence. Cambridge Handbooks in Psychology. Cambridge University Press // https://books.google.ru/books?id=FtYeTcNwzQ4C

1269

Holyoak K. J., Thagard P. (1996). Mental Leaps: Analogy in Creative Thought. MIT Press // https://books.google.ru/books/about/Mental_Leaps.html?id=8ZRHYv59154C

1270

Schank R. C., Cleary C. (1995). Engines for education. Lawrence Erlbaum Associates // https://books.google.ru/books/about/Engines_for_education.html?id=fWruAAAAMAAJ

1271

Kolodner J. L. (2002). The “Neat” and the “Scruffy” in Promoting Learning From Analogy: We Need to Pay Attention to Both / The Journal of the Learning Sciences, Vol. 11, No. 1 (2002), pp. 139—152 // https://www.jstor.org/stable/1466725

1272

Marx K. (1845). Thesen über Feuerbach. Geschrieben im Frühjahr // http://www.mlwerke.de/me/me03/me03_005.htm

1273

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

1274

Pentland A. P., Fischler M. A. (1983). A More Rational View of Logic or, Up Against The Wall, Logic Imperialists! / AI Magazine, Vol. 4, Num. 4 (1983) // https://www.aaai.org/ojs/index.php/aimagazine/article/view/412/348

1275

Papert S. (1994). The Children's Machine — Rethinking School in the Age of the Computer. New York: Basic Books // https://books.google.ru/books?id=SqYGtAEACAAJ

1276

Broussard M. (2019). Artificial Unintelligence: How Computers Misunderstand the World. MIT Press // https://books.google.ru/books?id=67NMvAEACAAJ

1277

Boyle M. (1997). The History of Mr. Papert. 20 - 31. Logo in Australia: 21 Years On., Melbourne Vic Australia // http://www.stager.org/omaet2004/papertbio.html

1278

Papert S. (1998). Transcript of Child Power: Keys to the New Learning of the Digital Century at the 11th Colin Cherry Memorial Lecture on Communication, Imperial College, London // http://pirun.ku.ac.th/~btun/papert/childpower.pdf

1279

Boyle M. (1997). The History of Mr. Papert. 20 - 31. Logo in Australia: 21 Years On., Melbourne Vic Australia // http://www.stager.org/omaet2004/papertbio.html

1280

Broussard M. (2019). Artificial Unintelligence: How Computers Misunderstand the World. MIT Press // https://books.google.ru/books?id=67NMvAEACAAJ

1281

Silberman S. (2005). Life After Darth / Wired, 05.01.2005 // https://www.wired.com/2005/05/lucas-2/

1282

Martin S. (2012). Roman Kroitor, 85, revolutionized the film world / The globe and mail, October 5, 2012 // https://www.theglobeandmail.com/news/toronto/roman-kroitor-85-revolutionized-the-film-world/article4593837/?page=all

1283

Dreyfus H. L. (1965). Alchemy and artificial intelligence / P-3244, December 1965 // https://www.rand.org/content/dam/rand/pubs/papers/2006/P3244.pdf

1284

Horgan J. (2000). The Undiscovered Mind: How the Human Brain Defies Replication, Medication, and Explanation. A Touchstone book. Simon and Schuster // https://books.google.ru/books?id=zMjxO7HHftUC

1285

MacKenzie D. (1995). The Automation of Proof: A Historical and Sociological Exploration / IEEE Annals of the History of Computing, Vol. 17, No. 3, 1995 // http://www.cs.cornell.edu/courses/cs4860/2012fa/MacKenzie-TheAutomationOfProof.pdf

1286

Dreyfus H. L. (1965). Alchemy and artificial intelligence / P-3244, December 1965 // https://www.rand.org/content/dam/rand/pubs/papers/2006/P3244.pdf

1287

Dreyfus H. L. (1979). What Computers Can't Do: The Limits of Artificial Intelligence. Colophon books. Harper & Row // https://books.google.ru/books?id=9SGdAQAACAAJ

1288

Славин С. (1994). Лететь или катиться? / Юный техник. № 2 // http://www.nehudlit.ru/journals/detail1184287.html

1289

Puck, Vol. 52, No. 1347, p. 2, Published at the Puck Building, New York, Copyright Keppler and Schwarzmann, New York // https://hdl.handle.net/2027/umn.31951002801288o?urlappend=%3Bseq=358

1290

People Who Say It Cannot Be Done Should Not Interrupt Those Who Are Doing It: George Bernard Shaw? Puck? Saxby’s Magazine? Elbert Hubbard? Confucius? Anonymous? / Quote Investigator, Posted onJanuary 26, 2015 // https://quoteinvestigator.com/2015/01/26/doing/

1291

Newborn M., Standish T. A. (2014). Computer Chess. ACM monograph series. Elsevier Science // https://books.google.ru/books?id=KKGjBQAAQBAJ

1292

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

1293

MacKenzie D. (1995). The Automation of Proof: A Historical and Sociological Exploration / IEEE Annals of the History of Computing, Vol. 17, No. 3, 1995 // http://www.cs.cornell.edu/courses/cs4860/2012fa/MacKenzie-TheAutomationOfProof.pdf

1294

* «Охота на Снарка» (The Hunting of the Snark) — поэма Льюиса Кэрролла, написанная в 1876 г., образец литературы нонсенса. Основа сюжета: команда из девяти человек и бобра охотится за таинственным Снарком. Буджум (Boojum) — особо опасная разновидность Снарка, встреча с которым может привести к исчезновению охотника.

1295

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

1296

Crevier D. (1993). AI: the tumultuous history of the search for artificial intelligence // https://archive.org/details/aitumultuoushist00crev

1297

Boyle M. (1997). The History of Mr. Papert. 20 - 31. Logo in Australia: 21 Years On., Melbourne Vic Australia // http://www.stager.org/omaet2004/papertbio.html

1298

Papert S. (1992). One AI or Many? / Beakley B., Ludlow P. (1992). The philosophy of mind: Classical problems/contemporary issues. Cambridge, MA, US: The MIT Press // https://books.google.ru/books/about/The_Philosophy_of_Mind.html?id=pBV526wnJigC

1299

Александр (rgen3). (2011). Что такое искусственные нейронные сети? / Хабр, 21 декабря 2011 // https://habr.com/ru/post/134998/

1300

Сергей (tac). (2012). Перцептрон Розенблатта — что забыто и придумано историей? / Хабр, 20 марта // https://habr.com/ru/post/140301/

1301

Minsky M., Papert S. A. (1969). Perceptrons: An Introduction to Computational Geometry. MIT Press // https://books.google.ru/books?id=KhI-uwEACAAJ

1302

Block H. D. (1970). A review of 'Perceptrons' / Information and Control, Vol. 17, pp. 510—522 // https://doi.org/10.1016/S0019-9958(70)90409-2

1303

Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8

1304

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1305

Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8

1306

Block H. D. (1970). A review of 'Perceptrons' / Information and Control, Vol. 17, pp. 510—522 // https://doi.org/10.1016/S0019-9958(70)90409-2

1307

Minsky M., Papert S. A. (1969). Perceptrons: An Introduction to Computational Geometry. MIT Press // https://books.google.ru/books?id=KhI-uwEACAAJ

1308

Anderson J., Rosenfeld E. (2000). Talking Nets: An Oral History of Neural Networks. New York, NY, USA: MIT Press // https://books.google.ru/books?id=-l-yim2lNRUC

1309

Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8

1310

Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8

1311

Dr. Frank Rosenblatt Dies at 43; Taught Neurobiology at Cornell / The New York Times, July 13, 1971, p.36 // https://www.nytimes.com/1971/07/13/archives/dr-frank-rosenblatt-dies-at-43-taught-neurobiology-at-cornell.html

1312

Olazaran M. (1993). A Sociological History of the Neural Network Controversy / Advances in Computers, Vol. 37 // https://doi.org/10.1016/S0065-2458(08)60408-8

1313

Dreyfus H. L., Dreyfus S. E. (1995). Making a mind vs. Modeling the brain: AI back at a branchpoint / Informatica, 1995, Num. 4, Vol. 19 // http://www.ccs.fau.edu/~bressler/EDU/CompNeuro/Resources/Mind_Modelling_Brain.pdf

1314

Tofts D., Jonson A., Cavallaro A. (2004). Prefiguring Cyberculture: An Intellectual History. MIT Press // https://books.google.ru/books?id=LNyvD79vNVEC

1315

Sedgwick H. A. (2016). The Cornell Student Homophile League // http://www.jearldmoldenhauer.com/wp-content/uploads/Cornell-Final5X.pdf

1316

Edwards J., Campbell M. B., Boulton M., Brown A., Edwards J., Kent K. R., Sedgwick E. K., Pearl M., Westwood B. (2017). Bathroom Songs: Eve Kosofsky Sedgwick as a Poet. Earth, Milky Way: punctum books // https://doi.rog/10.21983/P3.0189.1.00

1317

Alexander T. (1984). Why Computers Can't Outthink the Experts / Fortune, Vol. 110, August 20, 1984, pp. 105—118 // https://exhibits.stanford.edu/feigenbaum/catalog/nr990gh3548

1318

Crevier D. (1993). AI: the tumultuous history of the search for artificial intelligence // https://archive.org/details/aitumultuoushist00crev/page/203

1319

Bloom J. (2016). Rise of Intelligent Machines as Artificial Intelligence Goes Mainstream / Experfy. Big Data and Technology, Jan 16, 2016 // https://www.experfy.com/blog/rise-of-intelligent-machines-as-artificial-intelligence-goes-mainstream

1320

Kurzweil R. (2005). The Singularity is near: when humans transcend biology. Viking Press // https://books.google.ru/books?id=9FtnppNpsT4C

1321

Lighthill J. (1973): Artificial Intelligence: A General Survey / Artificial Intelligence: a paper symposium, Science Research Council // http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm

1322

Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ

1323

Schuchmann S. (2019). History of the first AI Winter / Towrds Data Science, 5-May-2019 // https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b

1324

* После четвёртого поколения, построенного на сверхбольших интегральных схемах, предполагалось появление следующего поколения ЭВМ, ориентированного на распределённые вычисления; при этом считалось, что пятое поколение станет базой для создания устройств, способных к моделированию мышления.

1325

Aleksander I. (2013). Decision and Intelligence. Volume 6 of NSRDS Bibliographic Series. Springer Science & Business Media // https://books.google.ru/books?id=_h7lBwAAQBAJ

1326

Roland A., Shiman P. (2002). Strategic Computing: DARPA and the Quest for Machine Intelligence, 1983-1993. Cambridge, Mass.: MIT Press // https://books.google.ru/books?id=eD4taFgeTUYC

1327

McCorduck P. (2004). Machines who think: a personal inquiry into the history and prospects of artificial intelligence. A. K. Peters // https://books.google.ru/books?id=aH9QAAAAMAAJ

1328

Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ

1329

Hewitt C., Woods J., Spurr J. (2015). Inconsistency Robustness. Studies in Logic. 52. College Publications // https://books.google.ru/books?id=dJkaswEACAAJ

1330

Panetta K. (2017). Enterprises should explain the business potential of blockchain, artificial intelligence and augmented reality // https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/

1331

Делюкин Е. (2018). Стоит ли доверять аналитикам: разбор прогнозов исследовательской компании Gartner за 16 лет / vc.ru, 27 июля // https://vc.ru/flood/42736-stoit-li-doveryat-analitikam-razbor-prognozov-issledovatelskoy-kompanii-gartner-za-16-let

1332

Бехтерев В.М. (1908). Внушение и его роль в общественной жизни. — СПб.: Издание К.Л.Риккера // http://psylib.org.ua/books/behtv01/index.htm

1333

Mackay C. (1852). Memoirs of Extraordinary Popular Delusions and the Madness of Crowds. Office of the National Illustrated Library // https://books.google.ru/books?id=NmEOAAAAQAAJ

1334

Скоренко Т. (2015). Радиоактивное мыло, таблетки, вода и другие странности радиационной медицины / Популярная механика, 6 дек. // https://www.popmech.ru/science/233421-radioaktivnoe-mylo-tabletki-voda-i-drugie-strannosti-radiatsionnoy-meditsiny/

1335

Ng A. (2016). Deep Learning in Practice: Speech Recognition and Beyond / MIT Technology Review, May 23, 2016 // https://events.technologyreview.com/video/watch/andrew-ng-deep-learning/

1336

* Пер. С. Земляного.

1337

Католин Л. (1967). Кибернетические путешествия. — М.: Знание // http://informaticslib.ru/books/item/f00/s00/z0000013/st003.shtml

1338

Джура С. Г. (1992). Теория информации в контексте построения нейросетей / Электронный архив Донец. нац. техн. ун-та (г. Донецк) // http://ea.donntu.org:8080/jspui/bitstream/123456789/5218/1/buharest.doc

1339

Глушков В. М. — Ляпунову А. А., 19.XII.1959 г / Музей А. А. Ляпунова // http://lyapunov.vixpo.nsu.ru/?int=VIEW&el=915&templ=VIEW_TYPE

1340

Католин Л. (1967). Кибернетические путешествия. — М.: Знание // http://informaticslib.ru/books/item/f00/s00/z0000013/st003.shtml

1341

Ивахненко А. Г. (1971). Системы эвристической самоорганизации в технической кибернетике. — Киев: Технiка.

1342

Schmidhuber J. (2015). Deep learning in neural networks: An overview / Neural Networks. Volume 61, January 2015, pp. 85—117 // https://doi.org/10.1016/j.neunet.2014.09.003

1343

Schmidhuber J. (2015). Critique of Paper by “Deep Learning Conspiracy” (Nature 521 p. 436) // http://people.idsia.ch/~juergen/deep-learning-conspiracy.html

1344

Ивахненко А. Г. (1971). Системы эвристической самоорганизации в технической кибернетике. Киев: Технiка.

1345

Parasuraman R., Rizzo M. (2008). Neuroergonomics. Volume 3 of Human-Technology Interaction Series. Oxford University Press // https://books.google.ru/books?id=9ERRDAAAQBAJ

1346

Joseph R. D. (1961). Contributions to perceptron theory (Ph. D. thesis), Cornell Univ.

1347

Viglione S. (1970). Applications of pattern recognition technology / Mendel J. M., Fu K. S. Adaptive, learning, and pattern recognition systems. Academic Press.

1348

Ivakhnenko A. G. (1970). Heuristic self-organization in problems of engineering cybernetics / Automatica. Volume 6, Issue 2, March 1970, pp. 207—219 // https://doi.org/10.1016/0005-1098(70)90092-0

1349

Ивахненко А. Г. (1971). Системы эвристической самоорганизации в технической кибернетике. Киев: Технiка.

1350

Ивахненко О. Г., Лапа В. Г. (1969). Предсказание случайных процессов. — Киев: Наукова думка.

1351

Ивахненко А. Г. (1971). Системы эвристической самоорганизации в технической кибернетике. — Киев: Технiка.

1352

David E. Rumelhart: A Scientific Biography / The David E. Rumelhart Prize For Contributions to the Theoretical Foundations of Human Cognition // https://web.archive.org/web/20131030220027/http://rumelhartprize.org/?page_id=10

1353

Klahr D. (2014). Cognition and Instruction. Carnegie Mellon Symposia on Cognition Series. Psychology Press // https://books.google.ru/books?id=GmWYAgAAQBAJ

1354

Frankish K., Ramsey W. (2012). The Cambridge Handbook of Cognitive Science. Cambridge University Press // https://books.google.ru/books?id=JjEzjrZ6ZG4C

1355

Bobrow D. G., Collins A. F. (1975). Representation and Understanding: Studies in Cognitive Science. Academic Press, Inc // https://dl.acm.org/doi/book/10.5555/1102011

1356

Thagard P., Zalta E. N. (2008). Cognitive Science / The Stanford Encyclopedia of Philosophy // https://plato.stanford.edu/archives/fall2008/entries/cognitive-science/

1357

Willingham D. T. (2002). Ask the Cognitive Scientist. Allocating Student Study Time: “Massed” versus “Distributed” Practice / American Federation of Teachers // https://www.aft.org/periodical/american-educator/summer-2002/ask-cognitive-scientist

1358

Miller G. A. (2003). The cognitive revolution: a historical perspective / TRENDS in Cognitive Sciences, Vol. 7, No.3, March 2003 // https://www.cs.princeton.edu/~rit/geo/Miller.pdf

1359

Frankish K., Ramsey W. (2012). The Cambridge Handbook of Cognitive Science. Cambridge University Press // https://books.google.ru/books?id=JjEzjrZ6ZG4C

1360

Hinton G. E., Anderson J. A. (1981). Parallel Models of Associative Memory. Erlbaum // https://books.google.ru/books/about/Parallel_Models_of_Associative_Memory.html?id=rZ99AAAAMAAJ

1361

Fernandino L., Tong J.-Q., Conant L. L., Humphries C. J., Binder J. R. (2022). Decoding the information structure underlying the neural representation of concepts / PNAS, Vol. 119, Iss. 6 // https://doi.org/10.1073/pnas.2108091119

1362

Quinlan P. T. (1987) Theoretical notes on “Parallel models of associative memory” / Cognitive Neuropsychology, Vol. 4, Iss. 3, pp. 333—364 // https://doi.org/10.1080/02643298708252043

1363

Bohannon J. (2016). Who’s the Michael Jordan of computer science? New tool ranks researchers' influence / Science, Apr. 20, 2016 // https://www.sciencemag.org/news/2016/04/who-s-michael-jordan-computer-science-new-tool-ranks-researchers-influence

1364

Rumelhart D. E. (1990). Brain Style Computation: Learning and Generalization / Zornetzer S. E., Davis J. L., Lau C. (1990). An Introduction to Neural and Electronic Networks. San Diego: Academic Press // https://books.google.ru/books?id=6ZNQAAAAMAAJ

1365

Сергей (tac). (2012). Какова роль первого «случайного» слоя в перцептроне Розенблатта / Хабр, 21 марта // https://habr.com/ru/post/140387/

1366

Rumelhart D. E., McClelland J. L. (1986). Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Cambridge, MA: MIT Press // https://doi.org/10.7551/mitpress/5236.001.0001

1367

McClelland J. L., Rumelhart D. E. (1989). Explorations in Parallel Distributed Processing — Macintosh version: A Handbook of Models, Programs, and Exercises. MIT Press // https://books.google.ru/books?id=3WkcZOWmljEC

1368

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1369

Kang N. (2017). Multi-Layer Neural Networks with Sigmoid Function — Deep Learning for Rookies (2) / Towards Data Science, Jun 27 // https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f

1370

Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning representations by back-propagating errors / Nature, Vol. 323, Iss. 6088, pp. 533—536 // https://doi.org/10.1038/323533a0

1371

Dreyfus S. E. (1990). Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure / Journal of Guidance, Control, and Dynamics, Vol. 13, Num. 5 // https://doi.org/10.2514/3.25422

1372

Schmidhuber J. (2015). Deep learning in neural networks: An overview / Neural Networks. Volume 61, January 2015, pp. 85—117 // https://doi.org/10.1016/j.neunet.2014.09.003

1373

Kelley H. J. (1960). Gradient Theory of Optimal Flight Paths / American Rocket Society Journal, Vol. 30, Num. 10, October 1960 // https://doi.org/10.2514/8.5282

1374

Dreyfus S. E. (1990). Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure / Journal of Guidance, Control, and Dynamics, Vol. 13, Num. 5 // https://doi.org/10.2514/3.25422

1375

Schmidhuber J. (2015). Who Invented Backpropagation? // http://people.idsia.ch/~juergen/who-invented-backpropagation.html

1376

Понтрягин Л. С. (1998). Жизнеописание Л. С. Понтрягина, математика, составленное им самим. — М.: КомКнига // https://e-libra.ru/books/243417-zhizneopisanie-l-s-pontryagina-matematika-sostavlennoe-im-samim.html

1377

Schmidhuber J. (2015). Who Invented Backpropagation? // http://people.idsia.ch/~juergen/who-invented-backpropagation.html

1378

Chauvin Y., Rumelhart D. E. (2013). Backpropagation: Theory, Architectures, and Applications. Psychology Press // https://books.google.ru/books?id=B71nu3LDpREC

1379

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1380

Widrow B., Lehr M. A. (1990). 30 years of adaptive neural networks: perceptron, Madaline, and backpropagation / Proceedings of the IEEE, Vol. 78, Iss. 9, pp. 1415—1442 // https://doi.org/10.1109/5.58323

1381

Werbos P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA.

1382

Werbos J. P. (2006). Backwards Differentiation in AD and Neural Nets: Past Links and New Opportunities / Bücker M, Corliss G., Naumann U., Hovland P., Norris B. (2006). Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 50). Springer Berlin Heidelberg // https://books.google.ru/books?id=nyvRV4J89VoC

1383

Werbos P. J. (1994). The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. Wiley & Sons Ltd // https://books.google.ru/books?id=WdR3OOM2gBwC

1384

Freud S. (1950). Project for a Scientific Psychology (1950[1895]). The Standard Edition of the Complete Psychological Works of Sigmund Freud, Volume I (1886-1899): Pre-Psycho-Analytic Publications and Unpublished Drafts // http://users.clas.ufl.edu/burt/freud%20fleiss%20letters/200711781-013.pdf

1385

Gresser M. (2012). Dual Allegiance: Freud as a Modern Jew. SUNY Press // https://books.google.ru/books?id=Gh9OF0JJVw0C

1386

Jones E. (1993). The Life and Work of Sigmund Freud. Penguin Books // https://books.google.ru/books?id=_XqhPwAACAAJ

1387

Gottwaldt A. (2004). Sigmund Freud's sisters and death. Notes on their fate in deportation and mass-murder / Psyche. Vol. 58. pp. 533-543 // https://www.researchgate.net/publication/292510186_Sigmund_Freud's_sisters_and_death_Notes_on_their_fate_in_deportation_and_mass-murder

1388

Rice E. (1990). Freud and Moses: The Long Journey Home. SUNY Press // https://books.google.ru/books?id=g5JFAgAAQBAJ

1389

Costandi M. (2014). Freud was a pioneering neuroscientist / The Guardian, 10 Mar // https://www.theguardian.com/science/neurophilosophy/2014/mar/10/neuroscience-history-science

1390

Galbis-Reig D. (2003). Sigmund Freud, M. D.: Forgotten Contributions to Neurology, Neuropathology, and Anesthesia / Internet Journal of Neurology. Vol. 3 (1), Jan 2003 // https://www.researchgate.net/publication/275833594_Sigmund_Freud_MD_Forgotten_Contributions_to_Neurology_Neuropathology_and_Anesthesia

1391

Triarhou L. C. (2009). Exploring the mind with a microscope: Freud's beginnings in Neurobiology / Hellenic Journal of Psychology // https://www.academia.edu/9914521/Exploring_the_mind_with_a_microscope_Freuds_beginnings_in_Neurobiology

1392

Freud S. (1885). A new histological method for the study of nerve-tracts in the brain and spinal chord / Brain: a journal of neurology, Vol. IV // https://archive.org/details/brainjournalofne07londuoft/page/86

1393

Barford D., Geerardyn F., van de Vijver G. (2018). The Pre-Psychoanalytic Writings of Sigmund Freud. Routledge // https://books.google.ru/books?id=Fx-yDwAAQBAJ

1394

Reshe J. (2018). Freud’s living corpse: psychoanalysis vs neuroscience / Brev Spread, Vol. 18, pp. 20—37 // https://www.academia.edu/37323128/Freuds_living_corpse_psychoanalysis_vs_neuroscience

1395

Ramón y Cajal S. (2002). Texture of the Nervous System of Man and the Vertebrates: Volume III An annotated and edited translation of the original Spanish text with the additions of the French version by Pedro Pasik and Tauba Pasik. Springer Science & Business Media // https://books.google.ru/books?id=DMETOdFiJwMC

1396

Freud S. (1950). Project for a Scientific Psychology (1950[1895]). The Standard Edition of the Complete Psychological Works of Sigmund Freud, Volume I (1886-1899): Pre-Psycho-Analytic Publications and Unpublished Drafts // http://users.clas.ufl.edu/burt/freud%20fleiss%20letters/200711781-013.pdf

1397

Fancher R. E., Rutherford A. (2016). Pioneers of Psychology (Fifth International Edition). W. W. Norton // https://books.google.ru/books?id=gmnKswEACAAJ

1398

Freud S. (1950). Project for a Scientific Psychology (1950[1895]). The Standard Edition of the Complete Psychological Works of Sigmund Freud, Volume I (1886-1899): Pre-Psycho-Analytic Publications and Unpublished Drafts // http://users.clas.ufl.edu/burt/freud%20fleiss%20letters/200711781-013.pdf

1399

Werbos P. (1982). Applications of Advances in Nonlinear Sensitivity Analysis / Drenick R., Kozin F. (1982). System Modeling and Optimization. Proceedings of the 10th IFIP Conference New York City, USA, August 31–September 4, 1981. Springer-Verlag // https://books.google.ru/books?id=oczhwgEACAAJ

1400

Kurenkov A. (2015). A 'Brief' History of Neural Nets and Deep Learning // https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

1401

* Значение метода наименьших квадратов, разработанного в начале XVIII в. Гауссом и Лежандром, для машинного обучения столь значительно, что один из отцов современных нейронных сетей Юрген Шмидхубер даже называет модели Гаусса и Лежандра «линейными нейронными сетями» или «линейными перцептронами».

1402

Machine Learning Street Talk (2023). ORIGINAL FATHER OF AI ON DANGERS! (Prof. Jürgen Schmidhuber) / YouTube, Aug 13, 2023 // https://www.youtube.com/watch?v=q27XMPm5wg8

1403

Werbos P. J. (2006) Backwards Differentiation in AD and Neural Nets: Past Links and New Opportunities / Bücker M., Corliss G., Naumann U., Hovland P., Norris B. (2006). Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computational Science and Engineering, Vol 50. Springer, Berlin, Heidelberg // https://doi.org/10.1007/3-540-28438-9_2

1404

Werbos P. J. (1994). The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. Wiley & Sons Ltd // https://books.google.ru/books?id=WdR3OOM2gBwC

1405

Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning representations by back-propagating errors / Nature, 323(6088), pp. 533–536 // https://doi.org/10.1038/323533a0

1406

Галушкин А. И. (1974). Синтез многослойных систем распознавания образов. — М.: Энергия.

1407

Галушкин А. И. (1971). Реализация критериев первичной оптимизации в системах распознавания образов, настраивающихся по замкнутому циклу в режиме обучения // Труды МИЭМ. Вып. 23.

1408

Галушкин А. И., Василькова Т. А., Слободенюк В. А., Тюхов Б. П. (1971). Анализ динамики систем распознавания нестационарных образов // Труды МИЭМ. Вып. 23.

1409

Галушкин А. И., Василькова Т. А., Слободенюк В. А., Тюхов Б. П. (1971). Анализ динамики систем распознавания нестационарных образов // Труды МИЭМ. Вып. 23; Галушкин А. И. (1973). Об алгоритмах адаптации в многослойных системах распознавания образов / Докл. АН Укр. ССР, А, 91. № 1. С. 15—20

1410

Ванюшин В. А., Галушкин А. И., Тюхов Б. П. (1972). Построение и исследование многослойных систем распознавания образов / Берг А. И. (1972). Некоторые проблемы биологической кибернетики. — Л.: Наука.

1411

Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning representations by back-propagating errors / Nature, 323(6088), pp. 533–536 // https://doi.org/10.1038/323533a0

1412

Галушкин А. И. (1974). Синтез многослойных систем распознавания образов. — М.: Энергия.

1413

Пупков К. А., Нариманов В. Х., Галушкин А. И. Специализированное распознающее устройство // Труды МИЭМ, вып. 23, 1971. С. 156–165.

1414

Galushkin A. I. (2007). Neural Networks Theory. Springer Science & Business Media // https://books.google.ru/books?id=ULds8NuzLtkC

1415

* На деле, конечно, псевдослучайным, поскольку источниками «случайности» чаще всего являются генераторы псевдослучайных чисел.

1416

Robbins H., Monro S. (1951). A Stochastic Approximation Method. / Annals of Mathematical Statistics, Vol. 22, Iss. 3, pp. 400—407, September, 1951 // https://doi.org/10.1214/aoms/1177729586

1417

Kiefer J., Wolfowitz J. (1952). Stochastic Estimation of the Maximum of a Regression Function. / Annals of Mathematical Statistics, Vol. 23, Iss. 3, September, 1952, pp. 462—466 // https://doi.org/10.1214/aoms/1177729392

1418

Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning representations by back-propagating errors / Nature, 323(6088), pp. 533–536 // https://doi.org/10.1038/323533a0

1419

Поляк Б. Т. (1964). О некоторых способах ускорения сходимости итерационных методов. / Журнал вычислительной математики и математической физики, том 4, номер 5, 1964, с. 791—803 // https://www.mathnet.ru/rus/zvmmf7713

1420

Polyak B. T. (1964). Some methods of speeding up the convergence of iteration methods. / USSR Computational Mathematics and Mathematical Physics, Vol. 4, Iss. 5, 1964, pp. 1—17 // https://doi.org/10.1016/0041-5553(64)90137-5

1421

Duchi J., Hazan E., Singer Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. / Journal of Machine Learning Research 12 (2011) 2121-2159 // https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

1422

Zeiler M. D. (2012). ADADELTA: An Adaptive Learning Rate Method // https://arxiv.org/abs/1212.5701

1423

Tieleman T., Hinton G. (2012). Lecture 6.5 - rmsprop: Divide the gradient by a running average of its recent magnitude // https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

1424

Kingma D. P., Ba J. (2014). Adam: A Method for Stochastic Optimization // https://arxiv.org/abs/1412.6980

1425

Dozat T. (2016). Incorporating nesterov momentum into Adam. / In International Conference on Learning Representations Workshops, 2016 // https://cs229.stanford.edu/proj2015/054_report.pdf

1426

Loshchilov I., Hutter F. (2017). Decoupled Weight Decay Regularization // https://arxiv.org/abs/1711.05101

1427

Xie X., Zhou P., Li H., Lin Z., Yan S. (2022). Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models // https://arxiv.org/abs/2208.06677

1428

Zimmer M. F. (2020). Neograd: Near-Ideal Gradient Descent // https://arxiv.org/abs/2010.07873

1429

Ginsburg B., Castonguay P., Hrinchuk O., Kuchaiev O., Lavrukhin V., Leary R., Li J., Nguyen H., Zhang Y., Cohen J. M. (2019). Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks // https://arxiv.org/abs/1905.11286

1430

Xie Z., Wang X., Zhang H., Sato I., Sugiyama M. (2020). Adai: Separating the Effects of Adaptive Learning Rate and Momentum Inertia // https://arxiv.org/abs/2006.15815

1431

Gupta V., Koren T., Singer Y. (2018). Shampoo: Preconditioned Stochastic Tensor Optimization // https://arxiv.org/abs/1802.09568

1432

Anil R., Gupta V., Koren T., Regan K., Singer Y. (2021). Scalable Second Order Optimization for Deep Learning // https://arxiv.org/abs/2002.09018

1433

Liu H., Li Z., Hall D., Liang P., Ma T. (2023). Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training // https://arxiv.org/abs/2305.14342

1434

Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2023). Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675

1435

Schmidt R. M., Schneider F., Hennig P. (2020). Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers // https://arxiv.org/abs/2007.01547

1436

Dechter R. (1986). Learning While Searching in Constraint-Satisfaction-Problems / Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, August 11—15, 1986, Vol. 1: Science // https://www.researchgate.net/publication/221605378_Learning_While_Searching_in_Constraint-Satisfaction-Problems

1437

Kelleher J. D. (2019). Deep Learning. MIT Press // https://books.google.ru/books?id=ZU6qDwAAQBAJ

1438

Kharlamov A., Pilgun M. (2020). Neuroinformatics and Semantic Representations: Theory and Applications. Cambridge Scholars Publishing // https://books.google.ru/books?id=jEfhDwAAQBAJ

1439

Jain V. K. (2019). Machine Learning. Khanna Publishing House // https://books.google.ru/books?id=c6YEEAAAQBAJ

1440

Aizenberg I. N., Aizenberg N. N., Vandewalle J. (2000). Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer Science & Business Media // https://books.google.ru/books?id=g9LlraAp2-8C

1441

Dertouzos M. L. (1965). Threshold Logic: A Synthesis Approach. M.I.T. Press // https://books.google.ru/books?id=u2ZqQgAACAAJ

1442

Muroga S. (1971). Threshold Logic and Its Applications. John Wiley & Sons, New York // https://books.google.ru/books?id=wvtQAAAAMAAJ

1443

Hinton G. E., Salakhutdinov R. R. (2006). Reducing the Dimensionality of Data with Neural Networks / Science. — 2006-07-28. — Vol. 313, iss. 5786, pp. 504–507 // https://dx.doi.org/10.1126%2Fscience.1127647

1444

Hinton G. E., Osindero S. (2006). A fast learning algorithm for deep belief nets // http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

1445

Horita T., Murata T., Takanami I. (2006). A Multiple-Weight-and-Neuron-Fault Tolerant Digital Multilayer Neural Network / 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems // https://doi.org/10.1109/DFT.2006.8

1446

LeCun Y., Bengio Y., Hinton G. (2015). Deep learning / Nature, Vol. 521, pp. 436—444 // https://doi.org/10.1038/nature14539

1447

Raymond E. S., Steele G. L. (1996). The New Hacker's Dictionary. MIT Press // https://books.google.ru/books?id=g80P_4v4QbIC

1448

Levy S. (2010). Hackers: Heroes of the Computer Revolution. 25th Anniversary Edition. O'Reilly Media, Inc // https://books.google.ru/books?id=mShXzzKtpmEC

1449

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1450

Pater J. (2017). Did Frank Rosenblatt invent deep learning in 1962? // https://blogs.umass.edu/comphon/2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/

1451

Rosenblatt F. (1964). Analytic Techniques for the Study of Neural Nets / IEEE Transactions on Applications and Industry, Vol. 83(74), pp. 285–292 // https://doi.org/10.1109/tai.1964.5407758

1452

Rosenblatt F. (1967). Recent Work on Theoretical Models of Biological Memory / Computer and Information Sciences, Vol. 2, pp. 33—56 // https://blogs.umass.edu/brain-wars/files/2016/01/rosenblatt-1967.pdf

1453

Roberts P. A. (1992). Neuroanatomy. Springer-Verlag, p. 86 // https://books.google.ru/books?id=7zywoAEACAAJ

1454

Toro R., Perron M., Pike B., Richer L., Veillette S., Pausova Z., Paus T. (2008). Brain Size and Folding of the Human Cerebral Cortex / Cerebral Cortex, Vol. 18, Iss. 10, pp. 2352—2357 // https://doi.org/10.1093/cercor/bhm261

1455

Woolsey C. N., Marshall W. H., Bard P. (1942). Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials / Bulletin of the Johns Hopkins Hospital, Vol. 70, pp. 399—441.

1456

Adrian E. D. (1943). Afferent areas in the brain of ungulates / Brain, Vol. 66, Iss. 2, pp. 89—103 // https://doi.org/10.1093/brain/66.2.89

1457

Catania K. C. (2007). Evolution of the Somatosensory System — Clues from Specialized Species / Kaas J. S. (2007). Evolution of Nervous Systems: a comprehensive reference // https://books.google.ru/books?id=UX1PAQAAIAAJ

1458

Hubel D. H., Wiesel T. N. (1979). Brain Mechanisms of Vision / Scientific American, 241(3), pp. 150–162 // https://doi.org/10.1038/scientificamerican0979-150

1459

Minsky M., Papert S. A. (1969). Perceptrons: An Introduction to Computational Geometry. MIT Press // https://books.google.ru/books?id=KhI-uwEACAAJ

1460

Block H. D. (1970). A review of 'Perceptrons' / Information and Control, Vol. 17, pp. 510—522 // https://doi.org/10.1016/S0019-9958(70)90409-2

1461

Павлов И. П. (1923). Двадцатилетний опыт объективного изучения высшей нервной деятельности животных. Государственное издательство Москва—Петроград.

1462

Nicholls J. G., Martin A. R., Fuchs P. A., Brown D. A., Diamond M. E., Weisblat D. A. (2012). From Neuron to Brain. Sinauer // https://books.google.ru/books?id=eTLzXwAACAAJ

1463

Erling N. (2016). Nobel Prizes And Notable Discoveries. World Scientific // https://books.google.ru/books?id=IU4tDQAAQBAJ

1464

Nicholls J. G., Martin A. R., Fuchs P. A., Brown D. A., Diamond M. E., Weisblat D. A. (2012). From Neuron to Brain. Sinauer // https://books.google.ru/books?id=eTLzXwAACAAJ

1465

Цит. по: Николлс Д., Мартин Р., Валлас Б., Фукс П. (2017). От нейрона к мозгу / изд. 4-е. — М.: УРРС: Книжный дом «Либерком».

1466

Hubel D. H., Wiesel T. N. (1959). Receptive fields of single neurons in the cat's striate cortex / Journal of Physiology, 1959, vol. 148, pp. 574—591 // https://doi.org/10.1113/jphysiol.1959.sp006308

1467

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1468

Contributors (1983) / IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-13, No. 5, September/October 1983

1469

Fukushima K. (1975). Cognitron: A self-organizing multilayered neural network / Biological Cybernetics, 20(3-4), 121–136 // https://doi.org/10.1007/bf00342633

1470

Draelos R. (2019). Convolution vs. Cross-Correlation / GLASS BOX: Machine Learning and Medicine, by Rachel Lea Ballantyne Draelos, July 26, 2019 // https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

1471

Rosebrock A. (2021). Convolution and cross-correlation in neural networks / pyimagesearch, May 14, 2021 // https://www.pyimagesearch.com/2021/05/14/convolution-and-cross-correlation-in-neural-networks/

1472

Yann LeCun (2018) / Heidelberg Laureate Forum // https://www.heidelberg-laureate-forum.org/laureate/yann-lecun.html

1473

Lecun Y. Fun stuff / Yann LeCun home page // http://yann.lecun.com/ex/fun/

1474

Lecun Y. (2014). Biographical Sketch / Yann LeCun home page // http://yann.lecun.com/ex/bio.html

1475

Lecun Y. Fun stuff / Yann LeCun home page // http://yann.lecun.com/ex/fun/

1476

Denker J. S., Gardner W. R., Graf H. P., Henderson D., Howard R. E., Hubbard W., Jackel L. D., Baird H. S., Guyon I. (1989). Neural network recognizer for hand-written zip code digits / Advances in neural information processing systems, 1-Dec-1989, pp. 323—331 // https://dl.acm.org/doi/10.5555/89851.89898

1477

LeCun Y., Boser B., Denker J. S., Henderson D., Howard R. E., Hubbard W., Jackel L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories // http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf

1478

LeCun Y., Bottou L., Bengio Y., Haffner P. (1998). Gradient-based learning applied to document recognition / Proceedings of the IEEE. 86 (11): 2278–2324 // https://doi:10.1109/5.726791

1479

Guyon I., Boser B., Vapnik V. (1993). Automatic Capacity Tuning of Very Large VC-dimension Classifers / Advances in Neural Information Processing Systems // https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.7215

1480

Айзерман М. А., Браверман Э. М., Розоноэр Л. И. (1964). Теоретические основы метода потенциальных функций в задаче об обучении автоматов разделению входных ситуаций на классы // Автоматика и телемеханика. 1964. №6. с. 917-936.

1481

Вапник В. Н., Червоненкис А. Я. Теория распознавания образов (статистические проблемы обучения). Москва: Наука, 1974 // https://books.google.ru/books?id=LAGzAAAAIAAJ

1482

LeCun Y., Bottou L., Bengio Y., Haffner P. (1998). Gradient-based learning applied to document recognition / Proceedings of the IEEE. 86 (11): 2278–2324 // https://doi:10.1109/5.726791

1483

Arbib M. Review of “Computation: Finite and Infinite Machines” (Minsky, Marvin; 1967) / IEEE Transactions on Information Theory, 1968; 14:354–355 // https://doi.org/10.1109/TIT.1968.1054133

1484

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1485

Rosenblatt F. (1961). Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Cornell aeronautical lab inc., Buffalo, New York. Defense Technical Information Center // https://books.google.ru/books?id=Tk2tDAEACAAJ

1486

Tarique A. (2018). Where can I find the original paper that introduced RNNs? / StackExchange: Artificial Intelligence // https://ai.stackexchange.com/questions/8190/where-can-i-find-the-original-paper-that-introduced-rnns

1487

Nilsson N. J. (2009). The Quest for Artificial Intelligence. Cambridge University Press // https://books.google.ru/books?id=nUJdAAAAQBAJ

1488

Dobnikar A., Šter B. (2009). Structural Properties of Recurrent Neural Networks / Neural Processing Letters, Vol. 29, pp. 75—88 // https://doi.org/10.1007/s11063-009-9096-2

1489

Elman J. (1990). Finding structure in time / Cognitive Science, 14(2), pp. 179–211 // https://doi.org/10.1016/0364-0213(90)90002-e

1490

Jordan M. J. (1986). Serial order: a parallel distributed processing approach. ICS Report 8604 // http://cseweb.ucsd.edu/~gary/258/jordan-tr.pdf

1491

Pascanu R., Mikolov T., Bengio Y. (2012). On the difficulty of training recurrent neural networks // https://arxiv.org/abs/1211.5063

1492

Hochreiter S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut f. Informatik, Technische Univ. Munich // http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf

1493

Hochreiter S., Bengio Y., Frasconi P., Schmidhuber J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies / Kremer S. C., Kolen J. F. (2001). A Field Guide to Dynamical Recurrent Neural Networks. John Wiley & Sons // https://books.google.ru/books?id=NWOcMVA64aAC

1494

Hochreiter S., Schmidhuber J. (1997). Long short-term memory / Neural Computation journal, 1997, Vol. 9, No. 8, pp. 1735—1780 // https://doi.org/10.1162/neco.1997.9.8.1735

1495

Borges J. L. (1988). Funes el memorioso. Umbriel Libros // https://books.google.ru/books?id=hCYxuwEACAAJ

1496

user124589 (2016). Understanding LSTM units vs. cells / StackExchange. CrossValidated, Oct 23 '16 // https://stats.stackexchange.com/questions/241985/understanding-lstm-units-vs-cells

1497

* Один из вариантов этого анекдота: «Некий студент решил поставить опыт. Поймал таракана, положил на стол и начал стучать по столу. Таракан убежал. Затем студент начал отрывать по одной лапке у таракана и обнаружил, что с каждым разом таракан реагирует на стук всё хуже. Потом, когда все лапки были оторваны, студент постучал по столу, но таракан никуда не убежал. В итоге студент сделал вывод, что таракан оглох».

1498

Merity S., Keskar N. S., Socher R. (2017). Regularizing and Optimizing LSTM Language Models // https://arxiv.org/abs/1708.02182

1499

Melis G., Kočiský T., Blunsom P. (2019). Mogrifier LSTM // https://arxiv.org/abs/1909.01792

1500

Rusch T. K., Mishra S., Erichson N. B., Mahoney M. W. (2021). Long Expressive Memory for Sequence Modeling // https://arxiv.org/abs/2110.04744

1501

Kingma D. P., Welling M. (2019). An Introduction to Variational Autoencoders // https://arxiv.org/abs/1906.02691

1502

Berthelot D., Raffel C., Roy A., Goodfellow I. (2018). Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer // https://arxiv.org/abs/1807.07543

1503

Hinton G. E., Salakhutdinov R. R. (2006). Reducing the Dimensionality of Data with Neural Networks / Science. — 2006-07-28. — Vol. 313, iss. 5786, pp. 504–507 // https://dx.doi.org/10.1126%2Fscience.1127647

1504

Pascal V., Hugo L. (2010). Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion / Journal of Machine Learning Research. 11: 3371–3408 // http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

1505

Pearson K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space / Philosophical Magazine. 2 (11): 559–572 // https://doi.org/10.1080/14786440109462720

1506

Kohonen T. (1981). Automatic formation of topological maps of patterns in a self-organizing system / Oja E., Simula O. (1981). Proceedings of the 2nd Scandinavian Conference on Image Analysis. Espoo: Suomen Hahmontunnistustutkimuksen Seura, pp. 214–220

1507

Kohonen T. (1982). Self-organized formation of topologically correct feature maps / Biological Cybernetics, Vol. 43, pp. 59—69 // https://doi.org/10.1007/BF00337288

1508

Kohonen T. (1984). Self-organization and associative memory. Springer-Verlag // https://books.google.ru/books?id=LYZQAAAAMAAJ

1509

Hinton G. E., Sejnowski T. J., Ackley D. H. (1984). Boltzmann Machines: Constraint satisfaction network that learn. Technical Report No. CMU-CS-84-119. Pittsburgh, PA: Carnegie-Mellon University.

1510

Ackley D. H., Hinton G. E., Sejnowski T. J. (1985). A Learning Algorithm for Boltzmann Machines / Cognitive Science, Vol. 9, pp. 145—169 // https://doi.org/10.1207/s15516709cog0901_7

1511

LeCun Y. (1987). Modeles connexionistes de l’apprentissage. PhD thesis, Universite de Paris VI // https://www.persee.fr/doc/intel_0769-4113_1987_num_2_1_1804

1512

Gallinari P., LeCun Y., Thiria S., Fogelman-Soulie F. (1987). Memoires associatives distribuees / Proceedings of COGNITIVA 87. Paris, La Villette // https://www.researchgate.net/publication/216792895_Memoires_associatives_distribuees_une_comparaison_distributed_associative_memories_a_comparison

1513

Bourlard H., Kamp Y. (1988). Auto-Association by Multilayer Perceptrons and Singular Value Decomposition / Biological Cybernetics, Vol. 59, Iss. 4—5, pp. 291–294 // https://doi.org/10.1007/BF00332918

1514

Kramer M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks / AIChE Journal, Vol. 37, No. 2, pp. 233—243 // https://doi.rog/10.1002/aic.690370209

1515

Hinton G. E., Zemel R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy / Advances in neural information processing systems, Vol. 6, pp. 3—10.

1516

Hinton G. E., Salakhutdinov R. R. (2006). Reducing the Dimensionality of Data with Neural Networks / Science. — 2006-07-28. — Vol. 313, Iss. 5786, pp. 504—507 // https://dx.doi.org/10.1126%2Fscience.1127647

1517

Hinton G. E., Osindero S., Teh Y. W. (2006). A Fast Learning Algorithm for Deep Belief Nets // https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

1518

Masci J., Meier U., Cireșan D., Schmidhuber J. (2011). Stacked convolutional autoencoders for hierarchical feature extraction / International Conference on Artificial Neural Networks, pp. 52—59 // http://people.idsia.ch/~juergen/icann2011stack.pdf

1519

Bromley J., Bentz J. W., Bottou L., Guyon I., LeCun Y., Moore C., Sackinger E., Shah R. (1993). Signature verification using a siamese time delay neural network / International Journal of Pattern Recognition and Artificial Intelligence, Vol. 7, Iss. 4, pp. 669—688 // https://dl.acm.org/doi/10.5555/2987189.2987282

1520

He K., Fan H., Wu Y., Xie S., Girshick R. (2019). Momentum Contrast for Unsupervised Visual Representation Learning // https://arxiv.org/abs/1911.05722

1521

Chen X., Fan H., Girshick R., He K. (2020). Improved Baselines with Momentum Contrastive Learning // https://arxiv.org/abs/2003.04297

1522

Caron M., Misra I., Mairal J., Goyal P., Bojanowski P., Joulin A. (2020). Unsupervised Learning of Visual Features by Contrasting Cluster Assignments // https://arxiv.org/abs/2006.09882

1523

Grill J.-B., Strub F., Altché F., Tallec C., Richemond P. H., Buchatskaya E., Doersch C., Pires B. A., Guo Z. D., Azar M. G., Piot B., Kavukcuoglu K., Munos R., Valko M. (2020). Bootstrap your own latent: A new approach to self-supervised Learning // https://arxiv.org/abs/2006.07733

1524

Chen T., Kornblith S., Norouzi M., Hinton G. (2020). A Simple Framework for Contrastive Learning of Visual Representations // https://arxiv.org/abs/2002.05709

1525

Chen T., Kornblith S., Swersky K., Norouzi M., Hinton G. (2020). Big Self-Supervised Models are Strong Semi-Supervised Learners // https://arxiv.org/abs/2006.10029

1526

Zbontar J., Jing L., Misra I., LeCun Y., Deny S. (2021). Barlow Twins: Self-Supervised Learning via Redundancy Reduction // https://arxiv.org/abs/2103.03230

1527

Barlow H. (1961). Possible Principles Underlying the Transformations of Sensory Messages // https://doi.org/10.7551/mitpress/9780262518420.003.0013

1528

Tishby N., Pereira F. C., Bialek W. (1999). The Information Bottleneck Method / The 37th annual Allerton Conference on Communication, Control, and Computing, pp. 368—377 // https://arxiv.org/abs/physics/0004057

1529

Tsai Y.-H. H., Bai S., Morency L.-P., Salakhutdinov R. (2021). A Note on Connecting Barlow Twins with Negative-Sample-Free Contrastive Learning // https://arxiv.org/abs/2104.13712

1530

Gretton A., Fukumizu K., Teo C. H., Song L., Schölkopf B., Smola A. J. (2007). A kernel statistical test of independence / NIPS'07: Proceedings of the 20th International Conference on Neural Information Processing Systems, pp. 585—592 // https://dl.acm.org/doi/10.5555/2981562.2981636

1531

Moore G. E. (1998). Cramming More Components Onto Integrated Circuits. Reprinter from Electronics, volume 38, number 8, April 19, 1965, p.114 / Proceedings of the IEEE, Vol. 86, Iss. 1 // https://doi.org/10.1109/jproc.1998.658762

1532

Lécuyer C., Brock D. C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press // https://books.google.ru/books?id=LaZpUpkG70QC

1533

Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC

1534

Moll J. (1995). Wiliam Bradford Shockley. A biographical memoir / Biographical Memoirs, Vol. 68. National Academies Press // https://books.google.ru/books?id=5NgoqLe_B5kC

1535

Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC

1536

Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC

1537

Berlin L. (2007). Tracing Silicon Valley's roots / San Francisco Chronicle, 2007, September 30 // https://www.sfgate.com/business/article/Tracing-Silicon-Valley-s-roots-2520298.php

1538

Lojek B. (2007). History of semiconductor engineering. Springer Science & Business Media // https://books.google.ru/books?id=2cu1Oh_COv8C

1539

Lécuyer C., Brock D. C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press // https://books.google.ru/books?id=LaZpUpkG70QC

1540

* Иногда в популярных источниках называют срок, равный 18 месяцам, — он связан с прогнозом Давида Хауса, многолетнего главы компании Intel, который считал, что производительность процессоров должна удваиваться каждые 18 месяцев за счёт комбинации действия закона Мура и увеличения тактовых частот процессоров. Ретроспективная оценка показывает, что прогноз Хауса был близок к истине, более поздние оценки дают величину, равную примерно 20 месяцам.

1541

Kanellos M. (2003). Moore's Law to roll on for another decade / c|net, Feb. 11, 2003 // https://www.cnet.com/news/moores-law-to-roll-on-for-another-decade/

1542

Denning P. J., Lewis T. G. (2017). Exponential Laws of Computing Growth / Communications of the ACM, January 2017, Vol. 60, No. 1, pp. 54—65 // https://doi.org/10.1145/2976758

1543

Moore G. E. (1998). Cramming More Components Onto Integrated Circuits. Reprinter from Electronics, volume 38, number 8, April 19, 1965, p. 114 / Proceedings of the IEEE, Vol. 86, Iss. 1 // https://doi.org/10.1109/jproc.1998.658762

1544

DuBravac S. (2016). Moore’s Law Begins and Ends with Economics / Tech.pinions | Perspective, insight, analysis, July 18, 2016 // https://techpinions.com/moores-law-begins-and-ends-with-economics/46575

1545

TSMC (2023). TSMC Holds 3nm Volume Production and Capacity Expansion Ceremony, Marking a Key Milestone for Advanced Manufacturing. / TSMC, 29.12.2022 // https://pr.tsmc.com/english/news/2986

1546

Касми Э. (2021). Создан первый в мире процессор с топологией 2 нм / C•News, 06.05.2021 // https://www.cnews.ru/news/top/2021-05-06_sozdan_pervyj_v_mire_protsessor

1547

Philip E. Ross (2003). The rules engineers live by weren’t always set in stone / IEEE Spectrum, December 2003 // https://www.gwern.net/docs/cs/2003-ross.pdf

1548

* Её также называют уравнением Ферхюльста. Пьер Ферхюльст — бельгийский математик, занимавшийся среди прочего моделированием изменения численности населения, рост которого ограничен имеющимися в распоряжении популяции ресурсами, позже эту же кривую неоднократно переоткрывали и применяли для описания динамики различных процессов, например автокаталитических реакций, роста опухолей, изменения лексики в естественных языках и, наконец, распространения инноваций.

1549

Lloyd P. J. (1967). American, German and British Antecedents to Pearl and Reed's Logistic Curve / Population Studies, Vol. 21, No. 2 (Sep., 1967), pp. 99—108 // https://doi.org/10.2307/2172714

1550

Green500 Release (2023). June 2023 / TOP500 The List // https://www.top500.org/lists/green500/2023/06/

1551

Green500 Release (2013). June 2013 / TOP500 The List // https://www.top500.org/lists/green500/2013/06/

1552

Cavin R. K., Zhirnov V. V., Herr D. J. C., Avila A., Hutchby J. (2006). Research directions and challenges in nanoelectronics / Journal of Nanoparticle Research, p. 865 // https://www.researchgate.net/publication/225404354_Research_directions_and_challenges_in_nanoelectronics

1553

Cockshott W. P., Cockshott P., Mackenzie L. M., Michaelson G. (2012). Computation and Its Limits. OUP Oxford // https://books.google.ru/books?id=U1Gcp1S__hEC

1554

Schneider D. (2021). Frontier supercomputer to usher in exascale computing / IEEE Spectrum, 23 Dec 2021 // https://spectrum.ieee.org/exascale-supercomputing

1555

TOP500 Release (2023). June 2023 / TOP500 The List // https://www.top500.org/lists/top500/2023/06/

1556

Weiss T. R. (2021). Google Launches TPU v4 AI Chips / HPC wire, May 20, 2021 // https://www.hpcwire.com/2021/05/20/google-launches-tpu-v4-ai-chips/

1557

Mayersen I. (2020). Intel is sacrificing previous AI acquisitions for Habana: They've traded one AI startup for another / TechSpot, February 2, 2020 // https://www.techspot.com/news/83826-intel-sacrificing-their-previous-ai-acquisitions-habana.html

1558

Toon N. (2020). Intr‍odu‌cing‍ 2‌nd‍ g‌‍enera‌tio‍n IPU systems fo‌r AI a‍t sc‍ale // https://www.graphcore.ai/posts/introducing-second-generation-ipu-systems-for-ai-at-scale

1559

Cerebras Systems Smashes the 2.5 Trillion Transistor Mark with New Second Generation Wafer Scale Engine (2021) // https://www.cerebras.net/press-release/cerebras-systems-smashes-the-2-5-trillion-transistor-mark-with-new-second-generation-wafer-scale-engine/

1560

Suryavansh M. (2019). How to make your own deep learning accelerator chip! / Towards Data Science, Sep 18, 2019 // https://towardsdatascience.com/how-to-make-your-own-deep-learning-accelerator-chip-1ff69b78ece4

1561

Locken Lui (2018). “Tensors” in TensorFlow… / Medium, Aug 24, 2018 // https://medium.com/@lockenluy/tensors-in-tensorflow-have-nothing-to-do-with-tensors-2ffb75172d05

1562

Sapunov G. (2021). Hardware for Deep Learning / Intento, Feb 26, 2018 — Jan, 11, 2021 // https://blog.inten.to/hardware-for-deep-learning-current-state-and-trends-51c01ebbb6dc

1563

Maass W. (1997). Networks of spiking neurons: The third generation of neural network models / Neural Networks, Vol. 10, Iss. 9, December 1997, pp. 1659—1671 // https://doi.org/10.1016/S0893-6080(97)00011-7

1564

Schmitt O. H. (1937). Mechanical Solution of the Equations of Nerve Impulse Propagation / Proceedings of the American Physiological Society, 49th Annual Meeting, Memphis, TN, April, 1937.

1565

Hézard T., Hélie T., Doval B., Bernardoni N. H., Kob M. (2012). Non-invasive vocal-folds monitoring using electrical imaging methods / 100 years of electrical imaging, Jul 2012, Paris, France. pp. 1—4 // https://hal.archives-ouvertes.fr/hal-00769567

1566

Fabre P. (1940). Retour Sur Un Modèle Du Nerf (Première Partie) / Archives Internationales de Physiologie, 50(1), pp. 12—32 // https://doi.org/10.3109/13813454009148741

1567

Fabre P. (1940). Retour Sur Un Modèle Du Nerf (Deuxième Partie) / Archives Internationales de Physiologie, 50(2), pp. 185–196 // https://doi.org/10.3109/13813454009145553

1568

Zaghloul M. E., Meador J. L., Newcomb R. W. (2012). Silicon Implementation of Pulse Coded Neural Networks. Springer Science & Business Media // https://books.google.ru/books?id=rE3hBwAAQBAJ

1569

Crane H. D. (1960). The Neuristor / IEEE Transactions on Electronic Computers, EC-9(3), pp. 370—371 // https://doi.org/10.1109/tec.1960.5219861

1570

Zaghloul M. E., Meador J. L., Newcomb R. W. (2012). Silicon Implementation of Pulse Coded Neural Networks. Springer Science & Business Media // https://books.google.ru/books?id=rE3hBwAAQBAJ

1571

Морозов В. Н., Смолович А. М. (1974). О возможности создания оптической нейристорной логики на основе эффекта индуцированной самопрозрачности / Квантовая электроника. №2, 1974 // http://mi.mathnet.ru/qe6693

1572

* Фотоникой (от греческого φῶς, φωτὁς — свет) называют дисциплину, занимающуюся различными аспектами работы с оптическими сигналами, а также созданием разных устройств на их основе; нанофотоника — это раздел фотоники, изучающий физические процессы, возникающие при взаимодействии фотонов с объектами нанометрового масштаба.

1573

Wagner K., Psaltis D. (1988). Adaptive optical networks using photorefractive crystals / Applied Optics, Vol. 27, Iss. 9, pp. 1752–1759 // https://doi.org/10.1364/AO.27.001752

1574

Weverka R., Wagner K., Saffman M. (1991). Fully interconnected, two-dimensional neural arrays using wavelength-multiplexed volume holograms / Optics Letters, Vol. 16, Iss. 11, pp. 826–828 // https://doi.org/10.1364/OL.16.000826

1575

Jang J. S., Jung S. W., Lee S. Y., Shin S. Y. (1988). Optical implementation of the Hopfield model for two-dimensional associative memory // https://doi.org/10.1364/ol.13.000248

1576

Lin S., Liu L., Wang Z. (1989). Optical implementation of the 2-D Hopfield model for a 2-D associative memory // Optics Communications, Vol. 70, Iss. 2, 15 February 1989, pp. 87–91 // https://doi.org/10.1016/0030-4018(89)90274-5

1577

Ramachandran R., Gunasekaran N. (2000). Optical Implementation of Two Dimensional Bipolar Hopfield Model Neural Network / Proceedings of the National Science Council, Republic of China, Part A, Physical Science and Engineering, Vol. 24, Iss. 1, pp. 73–78

1578

Duvillier J., Killinger M., Heggarty K., Yao K., de Bougrenet de la Tocnaye J. L. (1994). All-optical implementation of a self-organizing map: a preliminary approach / Applied Optics, Vol. 33, Iss. 2, pp. 258–266 // https://doi.org/10.1364/AO.33.000258

1579

George J., Mehrabian A., Amin R., Meng J., de Lima T. F., Tait A. N., Shastri B. J., El-Ghazawi T., Prucnal P. R., Sorger V. J. (2019). Neuromorphic photonics with electro-absorption modulators // https://arxiv.org/abs/1809.03545

1580

Shainline J. M. (2020). Fluxonic Processing of Photonic Synapse Events. / IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, Iss. 1, pp. 1–15. // https://doi.org/10.1109/JSTQE.2019.2927473

1581

Romeira B., Javaloyes J., Ironside C. N., Figueiredo J. M., Balle S., Piro O. (2013). Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors/ Optics Express, Vol. 21, Iss. 18, pp. 20931–20940. // https://doi.org/10.1364/OE.21.020931

1582

Hejda M., Robertson J., Bueno J., Alanis J., Hurtado A. (2021). Neuromorphic encoding of image pixel data into rate-coded optical spike trains with a photonic VCSEL-neuron / APL Photonics, Vol. 6, Iss. 6, 060802. // https://doi.org/10.1063/5.0048674

1583

Robertson J., Hejda M., Bueno J., Hurtado A. (2020). Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons / Scientific Reports, Vol. 10, Iss. 1, 6098. // https://doi.org/10.1038/s41598-020-62945-5

1584

Белкин М., Яковлев В. (2015). Викселоника — новое направление оптоэлектронной обработки радиосигналов / Электроника. №3 (00143) // http://www.electronics.ru/files/article_pdf/4/article_4594_289.pdf

1585

Zuo Y., Li B., Zhao Y., Jiang Y., Chen Y., Chen P., Jo G., Liu J., Du S. (2019). All-optical neural network with nonlinear activation functions / Optica, Vol. 6, Iss. 9, pp. 1132—1137 // https://doi.org/10.1364/OPTICA.6.001132

1586

Wang T., Sohoni M. M., Wright L. G., Stein M. M., Ma S.-Y., Onodera T., Anderson M. G., McMahon P. L. (2022). Image sensing with multilayer, nonlinear optical neural networks // https://arxiv.org/abs/2207.14293

1587

Wang T., Sohoni M. M., Wright L. G., Stein M. M., Ma S.-Y., Onodera T., Anderson M. G., McMahon P. L. (2023). Image sensing with multilayer, nonlinear optical neural networks / Nature Photonics, Vol. 17, pp. 408–415. // https://doi.org/10.1038/s41566-023-01170-8

1588

Johnson J. L. (1994). Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images / Applied Optics, Vol. 33, Iss. 26, pp. 6239—6253 // https://doi.org/10.1364/AO.33.006239

1589

Eckhorn R., Bauer R., Rosch M., Jordan W., Kruse W., Munk M. (1988). Functionally related modules of cat visual cortex shows stimulus-evoked coherent oscillations: a multiple electrode study / Investigative Ophthalmology & Visual Science, Vol. 29, 331—343 // https://doi.org/10.1364/ao.33.006239

1590

Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse M., Munk M., Reitboeck H. J. (1988). Coherent Oscillations: A Mechanism of Feature Linking in the Visual Cortex? Multiple Electrode and Correlation Analyses in the Cat / Biological Cybernetics, Vol. 60, pp. 121—130 // https://doi.org/10.1007/BF00202899

1591

Lee C., Panda P., Srinivasan G., Roy K. (2018). Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning / Frontiers in Neuroscience, Vol. 12, 2018 // https://doi.org/10.3389/fnins.2018.00435

1592

Shrestha A., Ahmed K., Wang Y., Widemann D. P., Moody A. T., Van Essen B. C., Qiu Q. (2017). A spike-based long short-term memory on a neurosynaptic processor / IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, 2017, pp. 631—637 // https://doi.org/10.1109/ICCAD.2017.8203836

1593

Burbank K. S. (2015). Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons / PLoS: Computational biology, December 3, 2015 // https://doi.org/10.1371/journal.pcbi.1004566

1594

Zhu R.-J., Zhao Q., Li G., Eshraghian J. K. (2023). SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks // https://arxiv.org/abs/2302.1393

1595

Izhikevich E. M. (2007). Dynamical Systems in Neuroscience. MIT Press // https://books.google.ru/books?id=kVjM6DFk-twC

1596

Izhikevich E. M. (2005). Simulation of Large-Scale Brain Models / The Neurosciences Institute: Eugene M. Izhikevich // https://www.izhikevich.org/human_brain_simulation/Blue_Brain.htm

1597

Wong T. M., Preissl R., Datta P., Flickner M., Singh R., Esser S. K., McQuinn E., Appuswamy R., Risk W. P., Simon H. D., Modha D. S. (2012). 1014. IBM Research Report, RJ10502 (ALM1211-004), November 13, 2012 // https://dominoweb.draco.res.ibm.com/reports/RJ10502.pdf

1598

Makino J., Fukushige T., Koga M., Namura K. (2003). GRAPE-6: Massively-Parallel Special-Purpose Computer for Astrophysical Particle Simulations / Publications of the Astronomical Society of Japan, Vol. 55, Iss. 6, 25 December 2003, pp. 1163—1187 // https://doi.org/10.1093/pasj/55.6.1163

1599

The Board: Neurogrid (2009) / Stanford University: Brains in Silicon // https://web.stanford.edu/group/brainsinsilicon/neurogrid.html

1600

Benjamin B. V., Gao P., McQuinn E., Choudhary S., Chandrasekaran A. R., Bussat J., Alvarez-Icaza R., Arthur J. V., Merolla P. A., Boahen K. (2014). Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations / Proceedings of the IEEE, Vol. 102, No. 5, May 2014 // https://doi.org/10.1109/JPROC.2014.2313565

1601

Davison A. P., Müller E., Schmitt S., Vogginger B., Lester D., Pfeil T. (2020). HBP Neuromorphic Computing Platform Guidebook. Release 2020-01-21 09:32:46 (cc9c98a) / Human Brain Project — Neuromorphic Computing Platform // https://flagship.kip.uni-heidelberg.de/jss/FileExchange/HBPNeuromorphicComputingPlatformGuidebook.pdf?fID=1504&s=qqdXDg6HuX3&uID=65

1602

Schmitt S., Klähn J., Bellec G., Grüb A., Güttler M., Hartel A., Hartmann S., Husmann D., Husmann K., Jeltsch S., Karasenko V., Kleider M., Koke C., Kononov A., Mauch C., Müller E., Müller P., Partzsch J., Petrovici M. A., Schiefer S., Scholze S., Thanasoulis V., Vogginger B., Legenstein R., Maass W., Mayr C., Schüffny R., Schemmel J., Meier K. (2017). Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System / 2017 International Joint Conference on Neural Network // https://doi.rog/10.1109/IJCNN.2017.7966125

1603

Hardware (2020) / Human Brain Project // https://www.humanbrainproject.eu/en/silicon-brains/how-we-work/hardware/

1604

Schemmel J., Kriener L., Müller P., Meier K. (2017). An Accelerated Analog Neuromorphic Hardware System Emulating NMDA- and Calcium-Based Non-Linear Dendrites // 2017 International Joint Conference on Neural Networks / https://doi.org/10.1109/IJCNN.2017.7966124

1605

Schmitt S., Müller E. (2019). BrainScaleS Hands-On Tutorial: Overview / NICE Workshop, 2019 // https://niceworkshop.org/wp-content/uploads/2019/04/NICE-2019-Day-4a_BrainScaleS-Overview.pdf

1606

Hardware (2020) / Human Brain Project // https://www.humanbrainproject.eu/en/silicon-brains/how-we-work/hardware/

1607

Illing D., Gerstner W., Brea J. (2019). Biologically plausible deep learning — But how far can we go with shallow networks? / Neural Networks, Vol. 118, pp. 90—101 // https://doi.org/10.1016/j.neunet.2019.06.001

1608

Bliss T. V. P. (1979). Synaptic plasticity in the hippocampus / Trends in Neurosciences, Vol. 2, pp. 42—45 // https://doi.org/10.1016/0166-2236(79)90019-5

1609

Kandel E. R., Tauc L. (1965). Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans / The Journal of Physiology, Vol. 181, Iss. 1, pp. 1—27 // https://doi.org/10.1113/jphysiol.1965.sp007742

1610

Taylor M. M. (1973). The Problem of Stimulus Structure in the Behavioural Theory of Perception / South African Journal of Psychology, Vol. 3, pp. 23—45 // https://www.researchgate.net/publication/298214719_The_Problem_of_Stimulus_Structure_in_the_Behavioural_Theory_of_Perception

1611

Bliss T. V., Lomo T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path / The Journal Of Physiology, Vol. 232, No. 2, pp. 331—356 // https://doi.org/10.1113/jphysiol.1973.sp010273

1612

Rall W., Rinzel J. (1971). Dendritic spine function and synaptic attenuation calculations / Program and Abstracts: Society for Neuroscience First annual meeting, p. 64

1613

Zemlyanukhin A. I., Bochkarev A. V. (2019). Analytical Properties and Solutions of the FitzHugh—Rinzel Model / Russian Journal of Nonlinear Dynamics, 2019, vol. 15, no. 1, pp. 3–12 // https://doi.org/10.20537/nd190101

1614

Rahimian E., Zabihi S., Amiri M., Linares-Barranco B. (2017). Digital Implementation of the Two-Compartmental Pinsky-Rinzel Pyramidal Neuron Model / IEEE Transactions on Biomedical Circuits and Systems, 2018-Feb; 12(1):47-57 // https://doi.org/10.1109/TBCAS.2017.2753541

1615

Lynch M. A. (2004). Long-term potentiation and memory / Physiological Reviews, Vol. 84, Iss. 1, pp. 87—136 // https://doi.org/10.1152/physrev.00014.2003

1616

Segal M., Murphy D. D. (1999). CREB activation mediates plasticity in cultured hippocampal neurons / Neural Plasticity, Vol. 6, Iss. 3, pp. 1—7 // https://doi.org/10.1155/NP.1998.1

1617

Emptage N. J., Reid C. A., Fine A., Bliss T. V. (2003). Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses / Neuron, Vol. 38, Iss. 5, pp. 797—804 // https://doi.org/10.1016/S0896-6273(03)00325-8

1618

Tang Y. P., Shimizu E., Dube G. R., Rampon C., Kerchner G. A., Zhuo M., Liu G., Tsien J. Z. (1999). Genetic enhancement of learning and memory in mice / Nature, Vol. 401 (6748), pp. 63—69 // https://doi.org/10.1038/43432

1619

Tang Y., Wang H., Feng R., Kyin M., Tsien J. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice / Neuropharmacology, Vol. 41, Iss. 6, pp. 779—790 // https://doi.org/10.1016/S0028-3908(01)00122-8

1620

Malinow R. (2003). AMPA receptor trafficking and long-term potentiation / Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 358 (1432), pp. 707—14 // https://doi.org/10.1098/rstb.2002.1233

1621

Malenka R. C., Bear M. F. (2004). LTP and LTD: an embarrassment of riches / Neuron, Vol. 44, Iss. 1, pp. 5—21 // https://doi.oeg/10.1016/j.neuron.2004.09.012

1622

Araya R., Vogels T. P., Yuste R. (2014). Activity-dependent dendritic spine neck changes are correlated with synaptic strength // PNAS, Vol. 111, Iss. 28, pp. E2895—E2904 // https://doi.org/10.1073/pnas.1321869111

1623

Douglas R. M., Goddard G. V. (1975). Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus / Brain Research, Vol. 86, Iss. 2, 21-Mar-1975, pp. 205—215 // https://doi.org/10.1016/0006-8993(75)90697-6

1624

McNaughton B. L., Douglas R. M., Goddard G. V. (1978). Synaptic enhancement in fascia dentata: cooperativity among coactive afferents / Brain Research, 1978 Nov 24; 157(2):277-93 // https://doi.org/10.1016/0006-8993(78)90030-6

1625

Lynch G. S., Dunwiddie T., Gribkoff V. (1977). Heterosynaptic depression: a postsynaptic correlate of long-term potentiation / Nature, Vol. 266, pp. 737—739 // https://doi.org/10.1038/266737a0

1626

Dunwiddie T., Lynch G. (1978). Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency / The Journal of Physiology, Vol. 276, pp. 353—367 // https://doi.org/10.1113/jphysiol.1978.sp012239

1627

Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1628

Ito M., Sakurai M., Tongroach P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells / The Journal of Physiology, Vol. 324, pp. 113—134 // https://doi.org/10.1113/jphysiol.1982.sp014103

1629

Herculano-Houzel S. (2009). The Human Brain in Numbers: A Linearly Scaled-up Primate Brain / Frontiers in Human Neuroscience, Vol. 3, Iss. 21, 2009 // https://doi.org/10.3389/neuro.09.031.2009

1630

Марков Д. (2021). Удалось увидеть, как в мозжечке личинок данио-рерио строятся модели взаимодействия тела с внешним миром / Элементы, 17.12.2021 // https://elementy.ru/novosti_nauki/433910/Udalos_uvidet_kak_v_mozzhechke_lichinok_danio_rerio_stroyatsya_modeli_vzaimodeystviya_tela_s_vneshnim_mirom

1631

Markov D. A., Petrucco L., Kist A. M., Portugues R. (2021). A cerebellar internal model calibrates a feedback controller involved in sensorimotor control / Nature Communications, Vol. 12, 2021 // https://doi.org/10.1038/s41467-021-26988-0

1632

Levy W. B., Steward O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus / Neuroscience, Vol. 8, Iss. 4, April 1983, pp. 799—808 // https://doi.org/10.1016/0306-4522(83)90011-8

1633

Artola A., Brocher S., Singer W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex / Nature, Vol. 347, pp. 69—72 // https://doi.org/10.1038/347069a0

1634

Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1635

Debanne D., Gahwiler B. H., Thompson S. M. (1994). Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro / Proceedings of the National Academy of Sciences of the United States of America, Vol. 91 (3), pp. 1148—1152 // https://doi.org/10.1073/pnas.91.3.1148

1636

Malinow R. (1991). Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP / Science, Vol. 252, Iss. 5006, pp. 722—724 // https://doi.org/10.1126/science.1850871

1637

Verstraelen P., Van Dyck M., Verschuuren M., Kashikar N. D., Nuydens R., Timmermans J.-P., De Vos W. H. (2018). Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture / Frontiers in Neuroscience, 26 June 2018 // https://doi.org/10.3389/fnins.2018.00389

1638

Danielson E., Lee S. H. (2014). SynPAnal: Software for Rapid Quantification of the Density and Intensity of Protein Puncta from Fluorescence Microscopy Images of Neurons / PLoS One, Vol. 9 (12), e115298 // https://doi.org/10.1371/journal.pone.0115298

1639

Kashiwagi Y., Higashi T., Obashi K., Sato Y., Komiyama N. H., Grant S. G. N., Okabe S. (2019). Computational geometry analysis of dendritic spines by structured illumination microscopy / Nature Communications, Vol. 10, Article number: 1285 // https://doi.org/10.1038/s41467-019-09337-0

1640

Markram H., Sakmann B. (1995). Action potentials propogating back into dendrites triggers changes in efficacy of single-axon synapses between layer V pyramidal cells / Society for Neuroscience abstracts, Vol. 21.

1641

Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1642

Song S., Miller K. D., Abbott L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity / Nature Neuroscience. Vol. 3, pp. 919—926 // https://doi.org/10.1038/78829

1643

Markram H., Gerstner W., Sjöström P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1644

Izhikevich E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling / Cerebral Cortex, Vol. 17, pp. 2443—2452 // https://doi.org/10.1093/cercor/bhl152

1645

Frémaux N., Gerstner W. (2016). Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules / Frontiers in Neural Circuits, Vol. 9 // https://doi.org/10.3389/fncir.2015.00085

1646

Tavanaei A., Maida A. (2019). BP-STDP: Approximating backpropagation using spike timing dependent plasticity / Neurocomputing, Vol. 330, pp. 39—47 // https://doi.org/10.1016/j.neucom.2018.11.014

1647

Bengio Y., Mesnard T., Fischer A., Zhang S., Wu Y. (2017). STDP-compatible approximation of backpropagation in an energy-based model / Neural computation, Vol. 29, Iss. 3, pp. 555—577 // https://doi.org/10.1162/NECO_a_00934

1648

Millidge B., Tschantz A., Buckley C. L. (2020). Predictive coding approximates backprop along arbitrary computation graphs // https://arxiv.org/abs/2006.04182

1649

Mozafari M., Ganjtabesh M., Nowzari-Dalini A., Thorpe S. J., Masquelier T. (2019). Bio-Inspired Digit Recognition UsingSpike-Timing-Dependent Plasticity (STDP) and Reward-Modulated STDP in Deep Convolutional Networks / Pattern Recognition, Vol. 94, pp. 87—95 // https://doi.org/10.1016/j.patcog.2019.05.015

1650

Lee C., Panda P., Srinivasan G., Roy K. (2018). Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning / Frontiers in Neuroscience, Vol. 12, 2018 // https://doi.org/10.3389/fnins.2018.00435

1651

Mozafari M., Kheradpisheh S. R., Masquelier T., Nowzari-Dalini A., Ganjtabesh M. (2018). First-Spike-Based Visual Categorization Using Reward-Modulated STDP / IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 12, pp. 6178—6190 // https://doi.org/10.1109/TNNLS.2018.2826721

1652

Vaila R., Chiasson J., Saxena V. (2019). Deep Convolutional Spiking Neural Networks for Image Classification // https://arxiv.org/abs/1903.12272

1653

Wunderlich T., Kungl A. F., Müller E., Hartel A., Stradmann Y., Aamir S. A., Grübl A., Heimbrecht A., Schreiber K., Stöckel D., Pehle C., Billaudelle S., Kiene G., Mauch C., Schemmel J., Meier K., Petrovici M. A. (2019). Demonstrating Advantages of Neuromorphic Computation: A Pilot Study / Frontiers in Neuroscience: Neuromorphic Engineering, 26-Mar-2019 // https://doi.org/10.3389/fnins.2019.00260

1654

SpiNNaker Project — Architectural Overview / The University of Manchester: APT Advanced Processor Technologies Research Group // http://apt.cs.manchester.ac.uk/projects/SpiNNaker/architecture/

1655

SpiNNaker Project — Boards and Machines / The University of Manchester: APT Advanced Processor Technologies Research Group // http://apt.cs.manchester.ac.uk/projects/SpiNNaker/hardware/

1656

Saxon Science Ministry delivers 8 Mio Euro to TU Dresden for second generation SpiNNaker machine (2019) / Human Brain Project // https://www.humanbrainproject.eu/en/follow-hbp/news/second-generation-spinnaker-neurorphic-supercomputer-to-be-built-at-tu-dresden/

1657

Mayr С., Höppner S., Furber S. (2019). SpiNNaker 2: A 10 Million Core Processor System for Brain Simulation and Machine Learning // https://arxiv.org/abs/1911.02385

1658

Höppner S., Mayr C. (2018). SpiNNaker2 — Towards Extremely Efficient Digital Neuromorphics and Multi-scale Brain Emulation / NICE Workshop, 2018 // https://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf

1659

Мамаева О. (2018). Самую дорогую квартиру в Москве оценили в 7 млрд рублей / РБК, 19 сентября 2018 // https://realty.rbc.ru/news/5ba225279a7947b0b1ce8985

1660

Human Brain Project, Framework Partnership Agreement // https://sos-ch-dk-2.exo.io/public-website-production/filer_public/0d/95/0d95ec21-276a-478d-a2a9-d0c5922fb83a/fpa_annex_1_part_b.pdf

1661

Defense Spending by Country: Total annual defense spending by nation (2020) / www.GlobalFirepower.com // https://www.globalfirepower.com/defense-spending-budget.asp

1662

Cleared Initiatives (2019) / NIH: The BrainInitiative® // https://braininitiative.nih.gov/funding/cleared-initiatives

1663

Moon G., Zaghloul M. E., Newcomb R. W. (1992). VLSI implementation of synaptic weighting and summing in pulse coded neural-type cells / IEEE Transactions on Neural Networks, Vol. 3, Iss. 3 // https://doi.org/10.1109/72.129412

1664

Zaghloul M., Meador J. L., Newcomb R. W. (1994). Silicon Implementation of Pulse Coded Neural Networks. Volume 266 of The Springer International Series in Engineering and Computer Science. Springer US // https://books.google.ru/books?id=MqdQAAAAMAAJ

1665

Ota Y., Wilamowski B. W. (2000). CMOS Architecture of Synchronous Pulse-Coupled Neural Network / 26th Annual Confjerence of the IEEE, Vol. 2 // https://doi.org/10.1109/IECON.2000.972295

1666

Huo J., Murray A., Wei D. (2012). Adaptive Visual and Auditory Map Alignment in Barn Owl Superior Colliculus and Its Neuromorphic Implementation / IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, No. 9, pp. 1486—1497 // https://doi.org/10.1109/TNNLS.2012.2204771

1667

Strukov D., Snider G., Stewart D. R., Williams R. S. (2008). The missing memristor found / Nature, Vol. 453, pp. 80—83 // https://doi.org/10.1038/nature06932

1668

Vaidyanathan S., Volos C. (2016). Advances and Applications in Nonlinear Control Systems. Studies in Computational Intelligence. Springer International Publishing // https://books.google.ru/books?id=NxDNCwAAQBAJ

1669

* Диоксид титана — весьма распространённое химическое соединение. Это белый неорганический пигмент, широко применяемый в пищевой, косметической и фармацевтической промышленности. В качестве пищевой добавки (E171) он применяется для отбеливания рыбного фарша (сурими), в кондитерском производстве — для придания белизны сахарной и жировой глазури и конфетам. Диоксид титана можно легко встретить в числе компонентов зубной пасты, солнцезащитного крема, изделий из стекла и керамики, а также других повседневных вещей. По всей видимости, именно в силу своей распространённости в качестве пищевой добавки диоксид титана является источником лютого баттхёрта у многих хемофобов.

1670

Meuffels P., Soni R. (2012). Fundamental Issues and Problems in the Realization of Memristors // https://arxiv.org/abs/1207.7319

1671

Chua L. (2011). Resistance switching memories are memristors / Applied Physycs A, Vol. 102, pp. 765—783 // https://doi.org/10.1007/s00339-011-6264-9

1672

Пизастор таинственный (2008) / Томская группа и студенческое отделение Института инженеров по электротехнике и радиоэлектронике // https://web.archive.org/web/20200128145235/http://ieee.tpu.ru/smex/pizastor_01.html

1673

Yi W., Tsang K. K., Lam S. K., Bai X., Crowell J. A., Flores E. A. (2018). Biological plausibility and stochasticity in scalable VO2 active memristor neurons / Nature Communications, Vol. 9, Article number: 4661 // https://doi.org/10.1038/s41467-018-07052-w

1674

Wilson S. W. (1986). Knowledge Growth in an Artificial Animal / Narendra K. S. (1986). Adaptive and Learning Systems. Springer, Boston, MA // https://doi.org/10.1007/978-1-4757-1895-9_18

1675

Versace M., Chandler B. (2010). MoNETA: A Mind Made from Memristors / IEEE Spectrum, 23 Nov 2010 // https://spectrum.ieee.org/robotics/artificial-intelligence/moneta-a-mind-made-from-memristors

1676

Kozma R., Pino R. E., Pazienza G. E. (2012). Advances in Neuromorphic Memristor Science and Applications. Springer Science & Business Media // https://books.google.ru/books?id=ATdIfAol_k4C

1677

Hus S. M., Ge R., Chen P.-A., Liang L., Donnelly G. E., Ko W., Huang F., Chiang M.-H., Li A.-P., Akinwande D. (2020). Observation of single-defect memristor in an MoS2 atomic sheet / Nature Nanotechnology, Vol. 16, pp. 58—62 // https://www.nature.com/articles/s41565-020-00789-w

1678

Merolla P. A., Arthur J. V., Alvarez-Icaza R., Cassidy A. S., Sawada J., Akopyan F., Jackson B. L., Imam N., Guo C., Nakamura Y., Brezzo B., Vo I., Esser S. K., Appuswamy R., Taba B., Amir A., Flickner M. D., Risk W. P., Manohar R., Modha D. S. (2014). A million spiking-neuron integrated circuit with a scalable communication network and interface / Science, Vol. 345 (6197): 668 // https://doi.org/10.1126/science.1254642

1679

Yu S., Chen P.-Y., Cao Y., Xia L., Wang Y., Wu H. (2015). Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect / 2015 IEEE International Electron Devices Meeting / https://doi.org/10.1109/IEDM.2015.7409718

1680

Gao L., Wang I.-T., Chen P.-Y., Vrudhula S., Seo J.-s., Cao Y., Hou T.-H., Yu S. (2015). Fully parallel write/read in resistive synaptic array for accelerating on-chip learning / Nanotechnology, Vol. 26, Num. 45 // https://doi.org/10.1088/0957-4484/26/45/455204

1681

Prezioso M., Merrikh-Bayat F., Hoskins B. D., Adam G. C., Likharev K. K., Strukov D. B. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors / Nature, Vol. 521, pp. 61—64 // https://doi.org/10.1038/nature14441

1682

Jang J.-W., Park S., Burr G. W., Hwang H., Jeong Y.-H. (2015). Optimization of conductance change in Pr1−xCaxMnO3-based synaptic devices for neuromorphic systems / IEEE Electron Device Letters, Vol. 36, No. 5, pp. 457—459 // https://researcher.watson.ibm.com/researcher/files/us-gwburr/PCMO_neuromorphic_EDL2015.pdf

1683

Jeong Y. J., Kim S., Lu W. D. (2015). Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor / Applied Physics Letters, Vol. 107 // https://doi.org/10.1063/1.4934818

1684

van de Burgt Y., Lubberman E., Fuller E. J., Keene S. T., Faria G. C., Agarwal S., Marinella M. J., Talin A. A., Salleo A. (2017). A non-volatile organic electrochemical device as a low-voltage artifcial synapse for neuromorphic computing / Nature Materials, Vol. 16, pp. 414—418 // https://doi.org/10.1038/nmat4856

1685

Agarwal S., Jacobs Gedrim R. B., Hsia A. H., Hughart D. R., Fuller E. J., Talin A. A., James C. D., Plimpton S. J., Marinella M. J. (2017). Achieving ideal accuracies in analog neuromorphic computing using periodic carry / 2017 Symposium on VLSI Technology // https://doi.org/10.23919/VLSIT.2017.7998164

1686

Upadhyay N. K., Jiang H., Wang Z., Asapu S., Xia Q., Joshua Yang J. (2019). Emerging Memory Devices for Neuromorphic Computing / Advanced Materials Technologies, 1800589 // https://doi:10.1002/admt.201800589

1687

Oh S., Shi Y., del Valle J., Salev P., Lu Y., Huang Z., Kalcheim Y., Schuller I. K., Kuzum D. (2021). Energy-efficient Mott activation neuron for full-hardware implementation of neural networks / Nature Nanotechnology, Vol. 16, pp. 680—687 // https://doi.org/10.1038/s41565-021-00874-8

1688

Ambrogio S., Narayanan P., Tsai H., Shelby R. M., Boybat I., Nolfo C., Sidler S., Giordano M., Bodini M., Farinha N. C. P., Killeen B., Cheng C., Jaoudi Y., Burr G. W. (2018). Equivalent-accuracy accelerated neural-network training using analogue memory / Nature, Vol. 558, pp. 60—67 // https://doi.org/10.1038/s41586-018-0180-5

1689

Mayberry M. (2017). Intel’s New Self-Learning Chip Promises to Accelerate Artificial Intelligence / Intel newsroom, September 25, 2017 // https://newsroom.intel.com/editorials/intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/

1690

Davies M. (2018). Loihi — a brief introduction // http://niceworkshop.org/wp-content/uploads/2018/05/Mike-Davies-NICE-Loihi-Intro-Talk-2018.pdf

1691

Loihi – Intel / WikiChip // https://en.wikichip.org/wiki/intel/loihi

1692

Mayberry M. (2018). Intel Creates Neuromorphic Research Community to Advance ‘Loihi’ Test Chip / Intel newsroom, March 1, 2018 // https://newsroom.intel.com/editorials/intel-creates-neuromorphic-research-community/

1693

News Byte (2020). Intel Scales Neuromorphic Research System to 100 Million Neurons / Intel newsroom, March 18, 2020 // https://newsroom.intel.com/news/intel-scales-neuromorphic-research-system-100-million-neurons/

1694

Intel Advances Neuromorphic with Loihi 2, New Lava Software Framework and New Partners (2021) / Intel newsroom, September 30, 2021 // https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-neuromorphic-loihi-2-lava-software.html

1695

Ham D., Park H., Hwang S., Kim K. (2021). Neuromorphic electronics based on copying and pasting the brain / Nature Electronics, Vol. 4, pp. 635—644 // https://doi.org/10.1038/s41928-021-00646-1

1696

Ambrogio S., Narayanan P., Okazaki A., Fasoli A., Mackin C., Hosokawa K., Nomura A., Yasuda T., Chen A., Friz A., Ishii M., Luquin J., Kohda Y., Saulnier N., Brew K., Choi S., Ok I., Philip T., Chan V., Silvestre C., Ahsan I., Narayanan V., Tsai H., Burr G. W. (2023). An analog-AI chip for energy-efficient speech recognition and transcription / Nature, Vol. 620, pp. 768–775 // https://doi.org/10.1038/s41586-023-06337-5

1697

Le Gallo M., Khaddam-Aljameh R., Stanisavljevic M., Vasilopoulos A., Kersting B., Dazzi M., Karunaratne G., Brändli M., Singh A., Müller S. M., Büchel J., Timoneda X., Joshi V., Rasch M. J., Egger U., Garofalo A., Petropoulos A., Antonakopoulos T., Brew K., Choi S., Ok I., Philip T., Chan V., Silvestre C., Ahsan I., Saulnier N., Narayanan V., Francese P. A., Eleftheriou E., Sebastian A. (2023). A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference / Nature Electronics, 10 August 2023 // https://doi.org/10.1038/s41928-023-01010-1

1698

Moradi S., Qiao N., Stefanini F., Indiveri G. (2017). A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs) / IEEE Transactions on Biomedical Circuits and Systems, Vol. 12, Iss. 1 // https://doi.org/10.1109/TBCAS.2017.2759700

1699

Delbruck T. (2017). The development of the DVS and DAVIS sensors / ICRA 2017 workshop on Event-Based Vision, Singapore, June 2, 2017 // http://rpg.ifi.uzh.ch/docs/ICRA17workshop/Delbruck.pdf

1700

RAMP Technology: Stop wasting battery power on the digitization of irrelevant data / Aspinity // https://www.aspinity.com/Technology

1701

Pei J., Deng L., Song S., Zhao M., Zhang Y., Wu S., Wang G., Zou Z., Wu Z., He W., Chen F., Deng N., Wu S., Wang Y., Wu Y., Yang Z., Ma C., Li G., Han W., Li H., Wu H., Zhao R., Xie Y., Shi L. (2019). Towards artificial general intelligence with hybrid Tianjic chip architecture / Nature, Vol. 572, pp. 106—111 // https://doi.org/10.1038/s41586-019-1424-8

1702

Chen Y., Krishna T., Emer J., Sze V. (2016). Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks / IEEE ISSCC 2016 // http://eyeriss.mit.edu/

1703

Han S., Liu X., Mao H., Pu J., Pedram A., Horowitz M. A., Dally W. J. (2016). EIE: Efficient Inference Engine on Compressed Deep Neural Network / 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture // https://www.cs.virginia.edu/~smk9u/CS6501F16/p243-han.pdf

1704

Нейроморфный процессор «Алтай» (2019) / Мотив: Нейроморфные технологии // https://motivnt.ru/neurochip-altai/

1705

Zhang W., Gao B., Tang J., Yao P., Yu S., Chang M.-F., Yoo H.-J., Qian H., Wu H. (2020). Neuro-inspired computing chips / Nature Electronics, Vol. 3, pp. 371—382 // https://doi.org/10.1038/s41928-020-0435-7

1706

Schneider M. L., Donnelly C. A., Russek S. E., Baek B., Pufall M. R., Hopkins P. F., Dresselhaus P. D., Benz S. P., Rippard W. H. (2018). Ultralow power artificial synapses using nanotextured magnetic Josephson junctions / Science Advances, Vol. 4, no. 1 // https://doi.org/10.1126/sciadv.1701329

1707

Chen Y., Zhou Y., Zhuge F., Tian B., Yan M., Li Y., He Y., Shui Miao X. (2019). Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network / npj 2D Materials and Applications, 3, 31 // https://doi.org/10.1038/s41699-019-0114-6

1708

Sanchez Esqueda I., Yan X., Rutherglen C., Kane A., Cain T., Marsh P., Liu Q., Galatsis K., Wang H., Zhou C. (2018). Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing / ACS Nano, Vol. 12, Iss. 7, pp. 7352—7361 // https://doi.org/10.1021/acsnano.8b03831

1709

Zhang H.-T., Park T. J., Islam A. N. M. N., Tran D. S. J., Manna S., Wang Q., Mondal S., Yu H., Banik S., Cheng S., Zhou H., Gamage S., Mahapatra S., Zhu Y., Abate Y., Jiang N., Sankaranarayanan S. K. R. S., Sengupta A., Teuscher C., Ramanathan S. (2022). Reconfigurable perovskite nickelate electronics for artificial intelligence / Science, Vol. 375, Iss. 6580, pp. 533—539 // https://doi.org/10.1126/science.abj7943

1710

Tasić M., Ivković J., Carlström G., Melcher M., Bollella P., Bendix J., Gorton L., Persson P., Uhlig J., Strand D. (2022). Electro-mechanically switchable hydrocarbons based on [8]annulenes / Nature Communications, Vol. 13, Iss. 860 // https://doi.org/10.1038/s41467-022-28384-8

1711

Gent E. (2022). MIT Researchers Create Artificial Synapses 10,000x Faster Than Biological Ones. / Singularity hub, August 1, 2022 // https://singularityhub.com/2022/08/01/mit-researchers-created-artificial-synapses-10000x-faster-than-biological-ones/

1712

Onen M., Emond N., Wang B., Zhang D., Ross F. M., Li J., Yildiz B., Del Alamo J. A. (2022). Nanosecond protonic programmable resistors for analog deep learning // https://doi.org/10.1126/science.abp8064

1713

Fedorov A. K., Beloussov S. M. (2021). Quantum computing at the quantum advantage threshold / Unpublished paper.

1714

* Дит — единица количества информации, содержащейся в сообщении о данном состоянии системы, имеющей десять равновероятных состояний.

1715

Wang Y., Hu Z., Sanders B. C., Kais S. (2020). Qudits and high-dimensional quantum computing // https://arxiv.org/abs/2008.00959

1716

Fedorov A. K., Beloussov S. M. (2021). Quantum computing at the quantum advantage threshold / Unpublished paper.

1717

Wang G. (2014). Quantum Algorithm for Linear Regression // https://arxiv.org/abs/1402.0660

1718

Schuld M., Sinayskiy I., Petruccione F. (2016). Prediction by linear regression on a quantum computer // https://arxiv.org/abs/1601.07823

1719

Li G., Wang Y., Luo Y., Feng Y. (2019). Quantum Data Fitting Algorithm for Non-sparse Matrices // https://arxiv.org/abs/1907.06949

1720

Dutta S., Suau A., Dutta S., Roy S., Behera B. K., Panigrahi P. K. (2020). Quantum circuit design methodology for multiple linear regression / IET Quantum Communication, Vol. 1, Iss. 2, pp. 55-61 // https://doi.org/10.1049/iet-qtc.2020.0013

1721

Lu S., Braunstein S. L. (2014). Quantum decision tree classifier / Quantum Information Processing, Vol. 13, pp. 757—770 // https://doi.org/10.1007/s11128-013-0687-5

1722

Rebentrost P., Mohseni M., Lloyd S. (2014). Quantum Support Vector Machine for Big Data Classification / Physical Review Letters, Vol. 113, Iss. 13 // https://doi.org/10.1103/PhysRevLett.113.130503

1723

Chatterjee R., Yu T. (2016). Generalized Coherent States, Reproducing Kernels, and Quantum Support Vector Machines // https://arxiv.org/abs/1612.03713

1724

Schuld M., Killoran N. (2018). Quantum machine learning in feature Hilbert spaces // https://arxiv.org/abs/1803.07128

1725

Monras A., Beige A., Wiesner K. (2010). Hidden Quantum Markov Models and non-adaptive read-out of many-body states // https://arxiv.org/abs/1002.2337

1726

Srinivasan S., Gordon G., Boots B. (2017). Learning Hidden Quantum Markov Models // https://arxiv.org/abs/1710.09016

1727

Denil M., de Freitas N. (2011). Toward the Implementation of a Quantum RBM / NIPS 2011 Deep Learning and Unsupervised Feature Learning Workshop // https://www.cs.ubc.ca/~nando/papers/quantumrbm.pdf

1728

Dumoulin V., Goodfellow I. J., Courville A., Bengio Y. (2013). On the Challenges of Physical Implementations of RBMs // https://arxiv.org/abs/1312.5258

1729

Wiebe N., Kapoor A., Svore K. M. (2014). Quantum Deep Learning // https://arxiv.org/abs/1412.3489

1730

Benedetti M., Realpe-Gómez J., Biswas R., Perdomo-Ortiz A. (2015). Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning // https://arxiv.org/abs/1510.07611

1731

Amin M. H., Andriyash E., Rolfe J., Kulchytskyy B., Melko R. (2016). Quantum Boltzmann Machine // https://arxiv.org/abs/1601.02036

1732

Anschuetz E. R., Cao Y. (2019). Realizing Quantum Boltzmann Machines Through Eigenstate Thermalization / https://arxiv.org/abs/1903.01359

1733

Khoshaman A., Vinci W., Denis B., Andriyash E., Sadeghi H., Amin M. H. (2018). Quantum variational autoencoder / Quantum Science and Technology, Vol. 4, No. 1 // https://iopscience.iop.org/article/10.1088/2058-9565/aada1f

1734

Cong I., Choi S., Lukin M. D. (2019). Quantum convolutional neural networks / Nature Physics, Vol. 15, pp. 1273—1278 // https://doi.org/10.1038/s41567-019-0648-8

1735

Chen S. E.-C., Yoo S., Fang Y.-L. L. (2020). Quantum Long Short-Term Memory // https://arxiv.org/abs/2009.01783

1736

Di Sipio R. (2021). Toward a Quantum Transformer / Towards Data Science, Jan 10, 2021 // https://towardsdatascience.com/toward-a-quantum-transformer-a51566ed42c2

1737

Kak S. C. (1995). Quantum Neural Computing / Advances in Imaging and Electron Physics, Vol. 94, pp. 259—313 // https://doi.org/10.1016/S1076-5670(08)70147-2

1738

Zak M., Williams C. P. (1998). Quantum Neural Nets / International Journal of Theoretical Physics, Vol. 37, pp. 651—684 // https://doi.org/10.1023/A:1026656110699

1739

Cao Y., Guerreschi G. G., Aspuru-Guzik A. (2017). Quantum Neuron: an elementary building block for machine learning on quantum computers // https://arxiv.org/abs/1711.11240

1740

Wan K. H., Dahlsten O., Kristjánsson H., Gardner R., Kim M. S. (2017). Quantum generalisation of feedforward neural networks / npj Quantum Information, Vol. 3 // https://doi.org/10.1038/s41534-017-0032-4

1741

Killoran N., Bromley T. R., Arrazola J. M., Schuld M., Quesada N., Lloyd S. (2018). Continuous-variable quantum neural networks // https://arxiv.org/abs/1806.06871

1742

Strömberg T., Schiansky P., Dunjko V., Friis N., Harris N. C., Hochberg M., Englund D., Wölk S., Briegel H. J., Walther P. (2021). Experimental quantum speed-up in reinforcement learning agents / Nature, Vol. 591, pp. 229—233 // https://doi.org/10.1038/s41586-021-03242-7

1743

Gao X., Zhang Z., Duan L. (2017). An efficient quantum algorithm for generative machine learning // https://arxiv.org/abs/1711.02038

1744

Lloyd S., Weedbrook C. (2018). Quantum generative adversarial learning // https://arxiv.org/abs/1804.09139

1745

Dallaire-Demers P.-L., Killoran N. (2018). Quantum generative adversarial networks // https://arxiv.org/abs/1804.08641

1746

Schuld M., Petruccione F. (2018). Quantum ensembles of quantum classifiers / Scientific Reports, Vol. 8 (2772) // https://doi.org/10.1038/s41598-018-20403-3

1747

Wang X., Ma Y., Hsieh M.-H., Yung M. (2019). Quantum Speedup in Adaptive Boosting of Binary Classification // https://arxiv.org/abs/1902.00869

1748

Arunachalam S., Maity R. (2020). Quantum Boosting // https://arxiv.org/abs/2002.05056

1749

Trujillo C. A., Gao R., Negraes P. D., Chaim I. A., Domissy A., Vandenberghe M., Devor A., Yeo G. W., Voytek B., Muotri A. R. (2018). Nested oscillatory dynamics in cortical organoids model early human brain network development // https://www.biorxiv.org/content/10.1101/358622v1

1750

Le Page M. (2021). Human brain cells in a dish learn to play Pong faster than an AI / New Scientist, 17 December 2021 // https://www.newscientist.com/article/2301500-human-brain-cells-in-a-dish-learn-to-play-pong-faster-than-an-ai/

1751

Bakkum D. J., Booth M. C., Brumfield J. R., Chao Z., Madhavan R., Passaro P. A., Rambani K., Shkolnik A. C., Towal R. B. (2004). Hybrots: hybrids of living neurons and robots for studying neural computation / Brain Inspired Cognitive Systems, August 29 — September 1, 2004, University of Stirling, Scotland, UK // http://www.cs.stir.ac.uk/~lss/BICS2004/CD/papers/1094.pdf

1752

Reinsel D., Gantz J., Rydning J. (2018). Data Age 2025: The Digitization of the World From Edge to Core. An IDC White Paper — #US44413318, Sponsored by Seagate // https://www.seagate.com/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

1753

Gantz J., Reinsel D. (2012). IDC Digital Universe Study: Big Data, Bigger Digital Shadows and Biggest Growth in the Far East // https://www.whizpr.be/upload/medialab/21/company/Media_Presentation_2012_DigiUniverseFINAL1.pdf

1754

См. патент «Hybrid machine/human computing arrangement». 2001-03-19 (https://patents.google.com/patent/US2215544).

1755

* Словом «толóка» в России в прошлом называли форму деревенской взаимопомощи, толоку организовывали для выполнения срочных работ, требующих объединения усилий большого количества работников: сооружения дома или постройки дороги, вырубки леса и так далее.

1756

Howe J. (2006). Crowdsourcing: A Definition / Crowdsourcing Blog, June 2, 2006 // http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html

1757

Howe J. (2006). The Rise of Crowdsourcing / Wired, 06.01.06 // https://www.wired.com/2006/06/crowds/

1758

Crowdsourcing (2020) / Merriam-Webster.com Dictionary, Merriam-Webster // https://www.merriam-webster.com/dictionary/crowdsourcing

1759

Estellés-Arolas E., González-Ladrón-de-Guevara F. (2012). Towards an integrated crowdsourcing definition / Journal of Information Science 38(2), April 2012 // https://doi.org/10.1177/016555150000000

1760

Dean J. (2019). Deep Learning to Solve Challenging Problems // https://www2019.thewebconf.org/media/Deep_Learning_for_Solving_Important_Problems.pdf

1761

arXiv submission rate statistics (2019). Data for 1991 through 2018, updated 1 January 2019 / ArXiv // https://arxiv.org/help/stats/2018_by_area

1762

Stanford Human-Centered Artificial Intelligence (HAI) (2019). Artificial Intelligence Index Report 2019 // https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf

1763

Hutson M. (2018). Why are AI researchers boycotting a new Nature journal—and shunning others? / Science, May. 17, 2018 // https://doi.org/10.1126/science.aau2005, https://openaccess.engineering.oregonstate.edu/signatures

1764

Sutton C., Gong L. (2017). Popularity of arXiv.org within Computer Science // https://arxiv.org/abs/1710.05225

1765

* Социальная сеть для поиска и установления деловых контактов, запрещённая в Российской Федерации.

1766

Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/11/2021-AI-Index-Report_Master.pdf

1767

Stanford Human-Centered Artificial Intelligence (HAI) (2022). Artificial Intelligence Index Report 2022 // https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf

1768

Stanford Human-Centered Artificial Intelligence (HAI) (2023). Artificial Intelligence Index Report 2023 // https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf

1769

Число вакансий в сфере искусственного интеллекта в РФ выросло за год в 2,5 раза (2018) / Прайм: агентство экономической информации, 10 Ноября 2018 // https://1prime.ru/telecommunications_and_technologies/20181110/829424812.html

1770

Stanford Human-Centered Artificial Intelligence (HAI) (2019). Artificial Intelligence Index Report 2019 // https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf

1771

Dalporto G. (2020). Udacity 2019: The Year in Review // https://blog.udacity.com/2019/12/looking-back-2019-udacity-year-in-review.html

1772

Shah D. (2019). Coursera’s 2019: Year in Review / Class central MOOCreport // https://www.classcentral.com/report/coursera-2019-year-review/

1773

Over 2M students have enrolled in Machine Learning MOOC from Stanford (2019) / MoocLab // https://www.mooclab.club/threads/over-2m-students-have-enrolled-in-machine-learning-mooc-from-stanford.11562/

1774

Введение в машинное обучение / Coursera // https://ru.coursera.org/learn/vvedenie-mashinnoe-obuchenie

1775

Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/11/2021-AI-Index-Report_Master.pdf

1776

Stanford Human-Centered Artificial Intelligence (HAI) (2022). Artificial Intelligence Index Report 2022 // https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf

1777

Computing Research Association (2023). 2022 Taulbee Survey // https://cra.org/crn/wp-content/uploads/sites/7/2023/05/2022-Taulbee-Survey-Final.pdf

1778

Computing Research Association (2006). 2004-2005 Taulbee Survey // https://cra.org/wp-content/uploads/2015/01/05.pdf

1779

Computing Research Association (2023). 2022 Taulbee Survey // https://cra.org/crn/wp-content/uploads/sites/7/2023/05/2022-Taulbee-Survey-Final.pdf

1780

Computing Research Association (2006). 2004-2005 Taulbee Survey // https://cra.org/wp-content/uploads/2015/01/05.pdf

1781

Stanford Human-Centered Artificial Intelligence (HAI) (2023). Artificial Intelligence Index Report 2023 // https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf

1782

Stanford Human-Centered Artificial Intelligence (HAI) (2019). Artificial Intelligence Index Report 2019 // https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf

1783

* Фискальный, или финансовый, год (fiscal year) федерального правительства США длится с 1 октября предыдущего года по 30 сентября текущего.

1784

The Networking & Information Technology R&D Program and the National Artificial Intelligence Initiative Office (2022). Supplement to the President’s FY2023 budget // https://www.nitrd.gov/pubs/FY2023-NITRD-NAIIO-Supplement.pdf

1785

Stanford Human-Centered Artificial Intelligence (HAI) (2023). Artificial Intelligence Index Report 2023 // https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf

1786

Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/11/2021-AI-Index-Report_Master.pdf

1787

Congressional Research Service (2021). Artificial Intelligence: Background, Selected Issues, and Policy Considerations // https://crsreports.congress.gov/product/pdf/R/R46795

1788

Acharya A., Arnold Z. (2019). Chinese Public AI R&D Spending: Provisional Findings. CSET Issue Brief // https://cset.georgetown.edu/wp-content/uploads/Chinese-Public-AI-RD-Spending-Provisional-Findings-1.pdf

1789

Pawlyk O. (2018). China Leaving US Behind on Artificial Intelligence: Air Force General / Military.com // https://www.military.com/defensetech/2018/07/30/china-leaving-us-behind-artificial-intelligence-air-force-general.html

1790

Hao K. (2019). Yes, China is probably outspending the US in AI—but not on defense / MIT Technology Review, Dec 5, 2019 // https://www.technologyreview.com/s/614842/china-us-ai-military-spending/

1791

State Council Notice on the Issuance of the New Generation Artificial Intelligence Development Plan (2017) // https://www.newamerica.org/cybersecurity-initiative/digichina/blog/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/

1792

新一代人工智能发展规划 (2017) // http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm

1793

Паспорт федерального проекта «Цифровые технологии», с. 22, сумма за 2020-2014 годы // https://digital.gov.ru/uploaded/files/pasport-federalnogo-proekta-tsifrovyie-tehnologii.pdf

1794

Военный раздел поднимется на второе место в бюджете России по расходам (2021) / РБК, 3 октября 2021 // https://www.rbc.ru/economics/03/10/2021/61571a279a79478e0bc0b011

1795

International Federation of Robotics (IFR) (2021). Press Conference World Robotics 2021 // https://ifr.org/downloads/press2018/2021_10_28_WR_PK_Presentation_long_version.pdf

1796

International Federation of Robotics (IFR) (2022). Executive Summary World Robotics 2022 Industrial Robots // https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2022.pdf

1797

International Federation of Robotics (IFR) (2022). Executive Summary World Robotics 2022 Industrial Robots // https://ifr.org/downloads/press2018/2022_WR_extended_version.pdf

1798

Гапотченко Д. (2021). Выручка участников рейтинга увеличилась в 1,5 раза, несмотря на эпидемию и локдаун / С-News, 27 сентября 2021 // https://www.cnews.ru/reviews/promyshlennie_roboty_2021/articles/vyruchka_uchastnikov_rejtinga_uvelichilas

1799

International Federation of Robotics (IFR) (2022). Executive Summary World Robotics 2022 Industrial Robots // https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2022.pdf

1800

International Federation of Robotics (IFR) (2023). China overtakes USA in robot density // https://ifr.org/ifr-press-releases/news/china-overtakes-usa-in-robot-density

1801

Гапотченко Д. (2021). Промышленные роботы пострадали от ковида, но меньше, чем ожидалось / С-News, 27 сентября 2021 // https://www.cnews.ru/reviews/promyshlennie_roboty_2021/articles/promyshlennye_roboty_postradali_ot

1802

АО АК «ДЕЛОВОЙ ПРОФИЛЬ» (2021). Использование промышленных роботов: обзор рынка робототехники в России и мире // https://delprof.ru/press-center/open-analytics/ispolzovanie-promyshlennykh-robotov-obzor-rynka-robototekhniki-v-rossii-i-mire/

1803

Скрынникова А. (2019). Больше всего роботов в России покупает автопром / Ведомости, 19 сентября 2019 // https://www.vedomosti.ru/technology/articles/2019/09/19/811579-bolshe-vsego-robot

1804

Sizing the prize. PwC’s Global Artificial Intelligence Study: Exploiting the AI Revolution. What’s the real value of AI for your business and how can you capitalise? (2017) // https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html

1805

Cohen I. B. (1946). Authenticity of Scientific Anecdotes / Nature, Vol. 157(3981), pp. 196—197 // https://doi.org/10.1038/157196b0

1806

Gregory R. (1929). Discovery: Or, The Spirit and Service of Science. Macmillan // https://books.google.ru/books?id=IwVJygEACAAJ

1807

Cohen I. B. (1946). Authenticity of Scientific Anecdotes / Nature, Vol. 157(3981), pp. 196—197 // https://doi.org/10.1038/157196b0

1808

Katz J. (1997). Did Gates Really Say 640K is Enough For Anyone? / Wired, 01.16.97 // https://www.wired.com/1997/01/did-gates-really-say-640k-is-enough-for-anyone/

1809

Shapiro F. R. (2008). Our Daily Bleg: Did I. B. M. Really See a World Market “For About Five Computers”? // https://freakonomics.com/2008/04/17/our-daily-bleg-did-ibm-really-see-a-world-market-for-about-five-computers/

1810

Deloitte.Insights (2019). Future in the balance? How countries are pursuing an AI advantage. Insights from Deloitte’s State of AI in the Enterprise, 2nd Edition survey // https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/public-sector/lu-global-ai-survey.pdf

1811

Deloitte.Insights (2019). Tech Trends 2019: Beyond the digital frontier // https://www2.deloitte.com/content/dam/Deloitte/br/Documents/technology/DI_TechTrends2019.pdf

1812

Sizing the prize. PwC’s Global Artificial Intelligence Study: Exploiting the AI Revolution. What’s the real value of AI for your business and how can you capitalise? (2017) // https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html

1813

Sizing the prize. PwC’s Global Artificial Intelligence Study: Exploiting the AI Revolution. What’s the real value of AI for your business and how can you capitalise? (2017) // https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html

1814

Bughin J., Seong J., Manyika J., Chui M., Joshi R. (2018). Notes from the ai frontier modeling the impact of ai on the world economy. Discussion paper / McKinsey&Company. McKinsey Global Institute // https://www.mckinsey.com/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20the%20frontier%20Modeling%20the%20impact%20of%20AI%20on%20the%20world%20economy/MGI-Notes-from-the-AI-frontier-Modeling-the-impact-of-AI-on-the-world-economy-September-2018.ashx

1815

* Экстерналия (англ. externality), или внешний эффект, в экономической теории — воздействие рыночной транзакции на третьих лиц, не опосредованное рынком. Например, загрязнение окружающей среды в результате деятельности некой компании является отрицательной экстерналией.

1816

ITUTrends (2018). Assessing the Economic Impact of Artificial Intelligence / Emerging trends in ICTs, Iss. Paper No. 1, September 2018 // https://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-ISSUEPAPER-2018-1-PDF-E.pdf

1817

* Вообще говоря, термин модальность (от лат. modus — способ) пришёл в информатику из психологии, в которой понятия «модальность раздражителя» [stimulus modality] и «сенсорная модальность» [sensory modality] используются для того, чтобы указать на восприятие раздражителя определённой сенсорной системой: визуальной (зрительной), аудиальной (слуховой) и так далее. Однако использование этого термина в области информатики приобрело весьма вольный характер. Например, нередко говорят о «текстовой модальности» [text modality], но ведь у человека отсутствуют специальные сенсоры для восприятия текста — мы воспринимаем текст опосредованно, например через зрительную или слуховую систему. Фактически в данном случае термин «модальность» смешивается со способом представления данных [data representation]. Кроме того, очевидно, что машины вовсе не обязаны иметь тот же набор сенсорных систем, что и люди. Увы, связанная с этим путаница в наши дни приобрела уже всеобщий масштаб, и фарш уже вряд ли получится прокрутить в обратном направлении. Но, быть может, ещё не поздно при необходимости использовать для различения смешавшихся понятий составные термины, например «сенсорная модальность» и «модальность представления» [representation modality].

1818

Portes Q., Carvalho J. M., Pinquier J., Lerasle F. (2021). Multimodal Neural Network for Sentiment Analysis in Embedded Systems // https://www.scitepress.org/Papers/2021/102247/102247.pdf

1819

Baltrušaitis T., Ahuja C., Morency L.-P. (2018). Multimodal Machine Learning: A Survey and Taxonomy // https://arxiv.org/abs/1705.09406

1820

From not working to neural networking: The artificial-intelligence boom is based on an old idea, but with a modern twist (2016) / The Economist // https://www.economist.com/special-report/2016/06/23/from-not-working-to-neural-networking

1821

Sánchez J., Perronnin F., Mensink T. (2010). Improved Fisher Vector for Large Scale Image Classification XRCE's participation for ILSVRC // http://image-net.org/challenges/LSVRC/2010/ILSVRC2010_XRCE.pdf

1822

Lin Y., Lv F., Zhu S., Yang M., Cour T., Yu K., Cao L., Li Z., Tsai M., Zhou X., Huang T., Zhang T. (2010). ImageNet classification: fast descriptor coding and large-scale SVM training // http://image-net.org/challenges/LSVRC/2010/ILSVRC2010_NEC-UIUC.pdf

1823

Perronnin F., Sánchez J. (2011). XRCE@ILSVRC2011: Compressed Fisher vectors for LSVR // http://image-net.org/challenges/LSVRC/2011/ilsvrc11.pdf

1824

Jessi H. (2018). Fei-Fei Li's Quest To Make Ai Better For Humanity / Wired, 11.13.2018 // https://www.wired.com/story/fei-fei-li-artificial-intelligence-humanity/

1825

* На самом деле в официальном архиве датасета, выложенном на сайте Caltech, наличествуют 102 папки вместо 101. По всей видимости, «безбилетником» стала папка BACKGROUND_Google, содержащая довольно странный набор изображений, начиная от карты путешествий генерала Ферье по Персии и Афганистану размером 3481 × 2955 пикселей и заканчивая красноречивой карикатурой, на которой изображён человек со спущенными штанами, демонстрирующий зрителям свой голый зад; сей шедевр сопровождается подписью «C:\». Вероятно, в набор просто попала папка с персональной свалкой картинок кого-то из создателей датасета. Желаю удачи цифровым археологам будущего в её исследовании.

1826

Fei-Fei L., Fergus R., Perona P. The Caltech 101 // http://www.vision.caltech.edu/Image_Datasets/Caltech101/

1827

Griffin G., Holub A. D., Perona P. The Caltech 256 // http://www.vision.caltech.edu/Image_Datasets/Caltech256/

1828

Ponce J., Berg T. L., Everingham M., Forsyth D. A., Hebert M., Lazebnik S., Marszalek M., Schmid C., Russell B. C., Torralba A., Williams C. K. I., Zhang J., Zisserman A. (2006). Dataset Issues in Object Recognition / Ponce J., Hebert M., Schmid C., Zisserman A. (2006). Toward Category-Level Object Recognition. Lecture Notes in Computer Science, Vol. 4170. Springer, Berlin, Heidelberg // https://doi.org/10.1007/11957959_2

1829

* Словарь, в котором указаны семантические отношения (синонимы, антонимы и т. д.) между лексическими единицами.

1830

RussNet: WordNet for Russian (2005) // http://project.phil.spbu.ru/RussNet/index.shtml

1831

Braslavski P., Ustalov D., Mukhin M., Kiselev Y. (2016). YARN: Spinning-in-Progress / Proceedings of the Eight Global Wordnet Conference, — Bucharest, Romania, 2016 — pp. 58—65 // https://russianword.net/

1832

Липатов А., Гончарук А., Гельфенбейн И., Шило В., Лехельт В. Русский Wordnet // http://wordnet.ru/

1833

Loukachevitch N. V., Lashevich G., Gerasimova A. A., Ivanov V. V., Dobrov B. V. (2016). Creating Russian WordNet by Conversion. / Proceedings of Conference on Computational linguistics and Intellectual technologies Dialog-2016, pp. 405-415

1834

Лашевич Г. (2021). Тезаурус русского языка RuWordNet // https://www.ruwordnet.ru

1835

Zisserman A., Winn J., Fitzgibbon A., Gool L. V., Sivic J., Williams C., Hogg D. (2012). In Memoriam: Mark Everingham / IEEE Transactions on pattern analysis and machine intelligence, Vol. 34, No. 11, November 2012 // https://doi.org/10.1109/TPAMI.2012.204

1836

* Команда SuperVision отправляла ещё одну версию сети, при обучении которой к обучающей выборке были добавлены изображения с прошлогодних соревнований, и эта модель смогла «выгадать» ещё чуть более процентного пункта, сократив ошибку до 15,32%, но поскольку некоторые исследователи считают это не совсем честным трюком, то в прессе часто приводят первое значение.

1837

Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A. C., Fei-Fei L. (2015). ImageNet Large Scale Visual Recognition Challenge / International Journal of Computer Vision, Vol. 115, pp. 211–252 // https://doi.org/10.1007/s11263-015-0816-y

1838

Deng J., Berg A., Satheesh S., Su H., Khosla A., Fei-Fei L. (2012). Large Scale Visual Recognition Challenge 2012 (ILSVRC2012). Held in conjunction with PASCAL Visual Object Classes Challenge 2012 (VOC2012) // http://image-net.org/challenges/LSVRC/2012/index

1839

Gershgorn D. (2018). Rise of AlexNet: The inside story of how AI got good enough to dominate Silicon Valley / QUARTZ, June 18, 2018 // https://qz.com/1307091/the-inside-story-of-how-ai-got-good-enough-to-dominate-silicon-valley/

1840

Krizhevsky A. (2009). Learning Multiple Layers of Features from Tiny Images // https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

1841

Torralba A., Fergus R., Freeman W. T. (2008). 80 million tiny images: a large data set for nonparametric object and scene recognition / IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, Iss. 11, pp. 1958—1970 // https://doi.org/10.1109/TPAMI.2008.128

1842

Prabhu V. U., Birhane A. (2020). Large image datasets: A pyrrhic win for computer vision? // https://arxiv.org/abs/2006.16923

1843

Torralba A., Fergus R., Freeman B. (2020). June 29th, 2020 // https://groups.csail.mit.edu/vision/TinyImages/

1844

Ustik G. (2020). MIT removes huge dataset that teaches AI systems to use racist, misogynistic slurs / TheNextWeb, July 1, 2020 // https://thenextweb.com/neural/2020/07/01/mit-removes-huge-dataset-that-teaches-ai-systems-to-use-racist-misogynistic-slurs/

1845

Gorey C. (2020). 80m images used to train AI pulled after researchers find string of racist terms / siliconrepublic, 13 Jul 2020 // https://www.siliconrepublic.com/machines/mit-database-racist-misogynist-discovery-abeba-birhane

1846

Quach K. (2020). MIT apologizes, permanently pulls offline huge dataset that taught AI systems to use racist, misogynistic slurs. Top uni takes action after El Reg highlights concerns by academics / The Register, 1 Jul 2020 // https://www.theregister.com/2020/07/01/mit_dataset_removed/

1847

Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks / Advances in Neural Information Processing Systems 25 (NIPS 2012) // https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

1848

Bai K. (2019). A Comprehensive Introduction to Different Types of Convolutions in Deep Learning: Towards intuitive understanding of convolutions through visualizations / Towards Data Science, Feb 12, 2019 // https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

1849

Hahnloser R. H. R., Sarpeshkar R., Mahowald M. A., Douglas R. J., Seung S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit / Nature, Vol. 405, pp. 947—951 // https://doi.org/10.1038/35016072

1850

Glorot X., Bordes A., Bengio Y. (2011). Deep Sparse Rectifier Neural Networks. / Journal of Machine Learning Research 15 (2011), pp. 315-323 // https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf

1851

Liu D. (2017). A Practical Guide to ReLU: Start using and understanding ReLU without BS or fancy equations // https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

1852

Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks (Slides) // http://image-net.org/challenges/LSVRC/2012/supervision.pdf

1853

Godoy D. (2018). Hyper-parameters in Action! Part II — Weight Initializers / Towards Data Science, Jun 18, 2018 // https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404

1854

Glorot X., Bengio Y. (2010). Understanding the difficulty of training deep feedforward neural networks / Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Journal of Machine Learning Research, Vol. 9, pp. 249—256 // http://www.jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

1855

He K., Zhang X., Ren S., Sun J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification / Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026—1034 // https://doi.org/10.1109/ICCV.2015.123

1856

Liang X. (2019). Understand Kaiming Initialization and Implementation Detail in PyTorch: Initialization Matters! Know how to set the fan_in and fan_out mode with kaiming_uniform_ function / Towards Data Science, Aug 7, 2019 // https://towardsdatascience.com/understand-kaiming-initialization-and-implementation-detail-in-pytorch-f7aa967e9138

1857

Godoy D. (2018). Hyper-parameters in Action! Part II — Weight Initializers / Towards Data Science, Jun 18, 2018 // https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404

1858

Zhu C., Ni R., Xu Z., Kong K., Huang W. R., Goldstein T. (2021). GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training // https://arxiv.org/abs/2102.08098

1859

Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks / Advances in Neural Information Processing Systems 25 (NIPS 2012) // https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

1860

Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks (Slides) // http://image-net.org/challenges/LSVRC/2012/supervision.pdf

1861

Karpathy A. CS231n Convolutional Neural Networks for Visual Recognition (Stanford CS class) // http://cs231n.github.io/convolutional-networks/

1862

Girard R. (2015). How does Krizhevsky's '12 CNN get 253,440 neurons in the first layer? / StackExchange // https://stats.stackexchange.com/questions/132897/how-does-krizhevskys-12-cnn-get-253-440-neurons-in-the-first-layer

1863

Chellapilla K., Puri S., Simard P. (2006). High performance convolutional neural networks for document processing / International Workshop on Frontiers in Handwriting Recognition, 2006 // https://hal.inria.fr/inria-00112631

1864

Nasse F., Thurau C., Fink G. A. (2009). Face Detection Using GPU-Based Convolutional Neural Networks / International Conference on Computer Analysis of Images and Patterns, CAIP 2009 // https://doi.org/10.1007/978-3-642-03767-2_10

1865

* Под ансамблем в машинном обучении понимают объединение нескольких моделей для решения одной задачи, позволяющее достичь лучшего результата, чем при использовании каждой модели по отдельности; для получения результирующего прогноза ансамбля результаты входящих в него моделей могут усредняться либо комбинироваться каким-то более сложным образом.

1866

Cireșan D., Meier U., Masci J., Schmidhuber J. (2012). Multi-Column Deep Neural Network for Traffic Sign Classification // http://people.idsia.ch/~juergen/nn2012traffic.pdf

1867

Schmidhuber J. 2011: First Superhuman Visual Pattern Recognition. IJCNN 2011 competition in Silicon Valley: twice better than humans, three times better than the closest artificial competitor, six times better than the best non-neural method // http://people.idsia.ch/~juergen/superhumanpatternrecognition.html

1868

Tsang S.-H. (2018). Review: ZFNet — Winner of ILSVRC 2013 (Image Classification) // https://medium.com/coinmonks/paper-review-of-zfnet-the-winner-of-ilsvlc-2013-image-classification-d1a5a0c45103

1869

Tsang S. H. (2018). Review: ZFNet — Winner of ILSVRC 2013 (Image Classification) // https://medium.com/coinmonks/paper-review-of-zfnet-the-winner-of-ilsvlc-2013-image-classification-d1a5a0c45103

1870

* Во многих популярных статьях, посвящённых результатам ILSVRC-2014, результирующая ошибка указана равной 6,67%. На самом деле точное значение ошибки — 0,06656, то есть 6,66%. Интересно, кто так «округлил» результат? И сделано ли это было во славу Господа?

1871

Das S. (2017). CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more… // https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

1872

Tsang S. H. (2018). Review: GoogLeNet (Inception v1)— Winner of ILSVRC 2014 (Image Classification) // https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7

1873

Simonyan K., Zisserman A. (2015). Very deep convolutional networks for large-scale image recognition // https://arxiv.org/abs/1409.1556

1874

Shao J., Zhang X., Ding Z., Zhao Y., Chen Y., Zhou J., Wang W., Mei L., Hu C. (2016). Good Practices for Deep Feature Fusion // http://image-net.org/challenges/talks/2016/Trimps-Soushen@ILSVRC2016.pdf

1875

Hu J., Shen L, Sun G. (2018). Squeeze-and-Excitation Networks / IEEE Conference on Computer Vision and Pattern Recognition // https://github.com/hujie-frank/SENet

1876

Fei-Fei L., Deng J. (2017). ImageNet: Where have we been? Where are we going? // http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf

1877

Reynolds M. (2017). New computer vision challenge wants to teach robots to see in 3D / New Scientist, Iss. 3121 // https://www.newscientist.com/article/2127131-new-computer-vision-challenge-wants-to-teach-robots-to-see-in-3d/

1878

Fei-Fei L., Deng J. (2017). ImageNet: Where have we been? Where are we going? // http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf

1879

Medical Image Net: A petabyte-scale, cloud-based, multi-institutional, searchable, open repository of diagnostic imaging studies for developing intelligent image analysis systems // http://langlotzlab.stanford.edu/projects/medical-image-net/

1880

SpaceNet // https://spacenet.ai/datasets/

1881

Heilbron F. C., Escorcia V., Ghanem B., Niebles J. C. (2015). ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding / Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961—970 // http://activity-net.org/

1882

Chang S. F., Liu D., Ye G., Li Y., Xu H., Liu H., Wang D., Lin T., Chen Q., Shou Z. A Large Scale Structured Concept Library // http://eventnet.cs.columbia.edu/index.html

1883

Fei-Fei L., Deng J. (2017). ImageNet: Where have we been? Where are we going? // http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf

1884

Tan M., Le Q. V. (2019). EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling / Google AI Blog // https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

1885

Lin T.-Y., Dollár P., Girshick R., He K., Hariharan B., Belongie S. (2016). Feature Pyramid Networks for Object Detection // https://arxiv.org/abs/1612.03144

1886

Cubuk E. D., Zoph B., Mane D., Vasudevan V., Le Q. V. (2018). AutoAugment: Learning Augmentation Policies from Data // https://arxiv.org/abs/1805.09501

1887

Cubuk E. D., Zoph B. (2018). Improving Deep Learning Performance with AutoAugment / Google AI Blog // https://ai.googleblog.com/2018/06/improving-deep-learning-performance.html

1888

Foret P., Kleiner A., Mobahi H., Neyshabur B. (2020). Sharpness-Aware Minimization for Efficiently Improving Generalization // https://arxiv.org/abs/2010.01412

1889

Kapitanov A., Makhlyarchuk A., Kvanchiani K. (2022). HaGRID - HAnd Gesture Recognition Image Dataset // https://arxiv.org/abs/2206.08219

1890

Kapitanov A., Kvanchiani K., Nagaev A., Petrova E. (2023). Slovo: Russian Sign Language Dataset // https://arxiv.org/abs/2305.14527

1891

Ronneberger O., Fischer P., Brox T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation // https://arxiv.org/abs/1505.04597

1892

Huang S., Hui T., Liu S., Li G., Wei Y., Han J., Liu L., Li B. (2020). Referring Image Segmentation via Cross-Modal Progressive Comprehension // https://arxiv.org/abs/2010.00514

1893

Nagy G. (1963). Report No. 5. System and circuit designs for the Tobermory perceptron (Preliminary report on Phase I) // https://blogs.umass.edu/brain-wars/files/2016/03/nagy-1963-tobermory-perceptron.pdf

1894

* Дискретное преобразование Фурье — это операция, которая позволяет разложить функцию, представленную набором её значений, взятых с некоторым шагом (в нашем случае — амплитуд звуковой волны), в виде разложения элементарных гармонических колебаний с разными частотами (подобно тому как музыкальный аккорд можно разложить на отдельные звуковые колебания, соответствующие составляющим его нотам). Быстрое преобразование Фурье — алгоритм ускоренного вычисления дискретного преобразования Фурье.

1895

Stevens S. S., Volkmann J., Newman E. B. (1937). A Scale for the Measurement of the Psychological Magnitude Pitch / The Journal of the Acoustical Society of America, Vol. 8(3), pp. 185—190 // https://doi.org/10.1121/1.1915893

1896

O'Shaughnessy D. (1987). Speech communication: human and machine. Addison-Wesley // https://books.google.ru/books?id=aUhiAAAAMAAJ

1897

Dixon Ward W. (1970). Musical Perception / Tobias J. V. (1970). Foundations of Modern Auditory Theory. Academic Press // https://books.google.ru/books?id=Uqw_uwEACAAJ

1898

Wood S. (2005). What are formants? / Beginners guide to Praat // https://person2.sol.lU. Se/SidneyWood/praate/whatform.html

1899

Володин И. А., Володина Е. В. (2006). Скромное очарование нелинейностей. О скулении собак, голосе Высоцкого, алтайском пении, и не только / Природа. №2, 2006 // http://vivovoco.astronet.ru/VV/JOURNAL/NATURE/02_06/VOICE.HTM

1900

Bogert B. P., Healy J. R., Tukey J. W. (1963). The Quefrency Analysis of Time Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum, and Saphe Cracking / Proceedings of the Symposium on Time Series Analysis, 1963, pp. 209-243.

1901

Howarth R. J. (2017). Dictionary of Mathematical Geosciences: With Historical Notes. Springer // https://books.google.ru/books?id=MNwlDwAAQBAJ

1902

Oppenheim A. V., Schafer R. W. (2004). Dsp history — From frequency to quefrency: a history of the cepstrum / IEEE Signal Processing Magazine, Vol. 21(5), pp. 95—106 // https://doi.org/10.1109/msp.2004.1328092

1903

Waslo B. (1994). Reflecting on Echoes and the Cepstrum: A look at Quefrency Alanysis and Hearing / Speaker Builder, August 1994 // http://www.libinst.com/cepst.htm

1904

Silvia M. T., Robinson E. A. (1978). Use of the kepstrum in signal analysis / Geoexploration, Vol. 16 (1—2), pp. 55—73 // https://doi.org/10.1016/0016-7142(78)90007-8

1905

Silvia M. T., Robinson E. A. (1979). Deconvolution of Geophysical Time Series in the Exploration for Oil and Natural Gas. Elsevier // https://books.google.ru/books?id=Ecgfjh-MpU0C

1906

Resource: Russian Speech Database (2014) / International standard language resource number // http://www.islrn.org/resources/428-147-317-182-1/

1907

Wil (2014). How many words are in the English language? / EF English Live // https://englishlive.ef.com/blog/language-lab/many-words-english-language/

1908

How many words are there in English? / Merriam-Webster.com Dictionary, Merriam-Webster // https://www.merriam-webster.com/help/faq-how-many-english-words

1909

Wil (2014). How many words are in the English language? / EF English Live // https://englishlive.ef.com/blog/language-lab/many-words-english-language/

1910

Wu S., Cotterell R., O’Donnell T. J. (2019). Morphological Irregularity Correlates with Frequency // https://arxiv.org/abs/1906.11483v1

1911

Vincent S. (2014). Sentence length: why 25 words is our limit / Inside GOV.UK // https://insidegovuk.blog.gov.uk/2014/08/04/sentence-length-why-25-words-is-our-limit/

1912

Garofolo J. S., Lamel L. F., Fisher W. M., Fiscus J. G., Pallett D. S., Dahlgren N. L. (1993). DARPA TIMIT: (Technical report). National Institute of Standards and Technology // https://doi.org/10.6028/nist.ir.4930

1913

Canavan A., Graff D., Zipperlen G. (1997). CALLHOME American English Speech LDC97S42. Web Download. Philadelphia: Linguistic Data Consortium // https://catalog.ldc.upenn.edu/LDC97S42

1914

Cieri C., Miller D., Walker K. (2004). The Fisher corpus: A resource for the next generations of speech-to-text // https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/lrec2004-fisher-corpus.pdf

1915

Cieri C., Graff D., Kimball O., Miller D., Walker K. (2004). Fisher English Training Speech Part 1 Transcripts // https://catalog.ldc.upenn.edu/LDC2004T19

1916

Cieri C., Graff D., Kimball O., Miller D., Walker K. (2005). Fisher English Training Part 2, Transcripts // https://catalog.ldc.upenn.edu/LDC2005T19

1917

Linguistic Data Consortium (2002). 2000 HUB5 English Evaluation Transcripts LDC2002T43. Web Download. Philadelphia: Linguistic Data Consortium // https://catalog.ldc.upenn.edu/LDC2002T43

1918

Panayotov V., Chen G., Povey D., Khudanpur S. (2015). LibriSpeech: an ASR corpus based on public domain audio books / 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) // https://doi.org/10.1109/ICASSP.2015.7178964

1919

Garofolo J. S., Graff D., Paul D., Pallett D. (2007). CSR-I (WSJ0) Complete // https://doi.org/10.35111/ewkm-cg47

1920

Panayotov V., Chen G., Povey D., Khudanpur S. (2015). LibriSpeech: an ASR corpus based on public domain audio books / 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) // https://doi.org/10.1109/ICASSP.2015.7178964

1921

He Y., Sainath T. N., Prabhavalkar R., McGraw I., Alvarez R., Zhao D., Rybach D., Kannan A., Wu Y., Pang R., Liang Q., Bhatia D., Shangguan Y., Li B., Pundak G., Sim K. C., Bagby T., Chang S., Rao K., Gruenstein A. (2018). Streaming End-to-end Speech Recognition For Mobile Devices // https://arxiv.org/abs/1811.06621

1922

Hunt M. J. (1990). Figures of Merit for Assessing Connected Word Recognisers / Speech Communication, Vol. 9, 1990, pp. 239—336 // https://doi.org/10.1016/0167-6393(90)90008-WGet

1923

Hain T., Woodland P. C., Evermann G., Povey D. (2001). New features in the CU-HTK system for transcription of conversational telephone speech / 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), Salt Lake City, UT, USA, 2001, Vol. 1, pp. 57—60 // https://doi.org/10.1109/ICASSP.2001.940766

1924

NIST March 2000 Hub-5 Benchmark Test Results for Recognition of Conversational Speech over the Telephone, in English and Mandarin. Release 1.4 (2000) // https://catalog.ldc.upenn.edu/docs/LDC2002T43/readme.htm

1925

The 2000 NIST Evaluation Plan for Recognition of Conversational Speech over the Telephone. Version 1.3, 24-Jan-00 (2000) // https://mig.nist.gov/MIG_Website/tests/ctr/2000/h5_2000_v1.3.html

1926

Seide F., Li G., Yu D. (2011). Conversational Speech Transcription Using Context-Dependent Deep Neural Networks / INTERSPEECH 2011, 12th Annual Conference of the International Speech Communication Association, Florence, Italy, August 27—31, 2011 // https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CD-DNN-HMM-SWB-Interspeech2011-Pub.pdf

1927

Sainath T. N., Mohamed A., Kingsbury B., Ramabhadran B. (2013). Deep convolutional neural networks for LVCSR / 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 2013, pp. 8614-8618 // https://doi.org/10.1109/ICASSP.2013.6639347

1928

Saon G., Kuo H. K. J., Rennie S., Picheny M. (2015). The IBM 2015 English Conversational Telephone Speech Recognition System // https://arxiv.org/abs/1505.05899

1929

Xiong W., Droppo J., Huang X., Seide F., Seltzer M., Stolcke A., Yu D., Zweig G. (2017). Achieving human parity in conversational speech recognition // https://arxiv.org/abs/1610.05256

1930

Xiong W., Wu L., Alleva F., Droppo J., Huang X., Stolcke A. (2017). The Microsoft 2017 Conversational Speech Recognition System // https://arxiv.org/abs/1708.06073

1931

Peddinti V., Povey D., Khudanpur S. (2015). A time delay neural network architecture for efficient modeling of long temporal contexts / INTERSPEECH 2015, 16th Annual Conference of the International Speech Communication Association, Dresden, Germany // https://www.danielpovey.com/files/2015_interspeech_multisplice.pdf

1932

Zhang Y., Qin J., Park D. S., Han W., Chiu C.-C., Pang R., Le Q. V., Wu Y. (2020). Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition // https://arxiv.org/abs/2010.10504

1933

Park D. S., Chan W., Zhang Y., Chiu C. C., Zoph B., Cubuk E. D., Le Q. V. (2019). SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition // https://arxiv.org/abs/1904.08779

1934

Schneider S., Baevski A., Collobert R., Auli M. (2019). wav2vec: Unsupervised Pre-training for Speech Recognition // https://arxiv.org/abs/1904.05862

1935

Baevski A., Schneider S., Auli M. (2019). vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations // https://arxiv.org/abs/1910.05453

1936

Baevski A., Zhou H., Mohamed A., Auli M. (2020). wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations // https://arxiv.org/abs/2006.11477

1937

Gulati A., Qin J., Chiu C.-C., Parmar N., Zhang Y., Yu J., Han W., Wang S., Zhang Z., Wu Y., Pang R. (2020). Conformer: Convolution-augmented Transformer for Speech Recognition // https://arxiv.org/abs/2005.08100

1938

Zhang Y., Qin J., Park D. S., Han W., Chiu C.-C., Pang R., Le Q. V., Wu Y. (2020). Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition // https://arxiv.org/abs/2010.10504

1939

Xu Q., Baevski A., Likhomanenko T., Tomasello P., Conneau A., Collobert R., Synnaeve G., Auli M. (2020). Self-training and Pre-training are Complementary for Speech Recognition // https://arxiv.org/abs/2010.11430

1940

Chung Y.-A., Zhang Y., Han W., Chiu C.-C., Qin J., Pang R., Wu Y. (2021). W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training // https://arxiv.org/abs/2108.06209

1941

Radford A., Kim J. W., Xu T., Brockman G., McLeavey C., Sutskever I. (2022). Robust Speech Recognition via Large-Scale Weak Supervision // https://arxiv.org/abs/2212.04356

1942

Dean J. (2022). 3 ways AI is scaling helpful technologies worldwide / Google blog, Nov 02, 2022 // https://blog.google/technology/ai/ways-ai-is-scaling-helpful/

1943

Zhang Y., Han W., Qin J., Wang Y., Bapna A., Chen Z., Chen N., Li B., Axelrod V., Wang G., Meng Z., Hu K., Rosenberg A., Prabhavalkar R., Park D. S., Haghani P., Riesa J., Perng G., Soltau H., Strohman T., Ramabhadran B., Sainath T., Moreno P., Chiu C., Schalkwyk J., Beaufays F., Wu Y. (2022). Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages // https://arxiv.org/abs/2303.01037

1944

Silver D., Huang A., Maddison C. J., Guez A., Sifre L., van den Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam V., Lanctot M., Dieleman S., Grewe D., Nham J., Kalchbrenner N., Sutskever I., Lillicrap T., Leach M., Kavukcuoglu K., Graepel T., Hassabis D. (2016). Mastering the game of Go with deep neural networks and tree search / Nature, Vol. 529(7587), pp. 484—489 // https://doi.org/10.1038/nature16961

1945

Gibney E. (2016). Go players react to computer defeat / Nature // https://doi.org/10.1038/nature.2016.19255

1946

Mets C. (2016). The Sadness and Beauty of Watching Google's AI Play Go / Wired, 11.03.2016 // https://www.wired.com/2016/03/sadness-beauty-watching-googles-ai-play-go/

1947

Zastrow M. (2016). South Korea trumpets $860-million AI fund after AlphaGo 'shock' / Nature // https://doi.org/10.1038/nature.2016.19595

1948

International Joint Conferences on Artificial Intelligence Organization (2017). Deepmind Alphago Team Receives Inaugural Ijcai Marvin Minsky Medal For Outstanding Achievements in AI / Communications of the ACM, October 20, 2017 // https://cacm.acm.org/news/222067-deepmind-alphago-team-receives-inaugural-ijcai-marvin-minsky-medal-for-outstanding-achievements-in-ai/fulltext

1949

Jaap van den Herik H., Iida H., Plaat A. (2014). 8th International Conference, CG 2013, Yokohama, Japan, August 13–15, 2013. Revised Selected Papers. Computers and Games. Lecture Notes in Computer Science 8427 Theoretical Computer Science and General Issues. Springer International Publishing // https://books.google.ru/books?id=52kqBAAAQBAJ

1950

Коровски Ю. (2017). Искусственный интеллект безжалостно обыгрывает в го всех подряд / XX2 век // https://22century.ru/computer-it/41584

1951

Silver D., Schrittwieser J., Simonyan K., Antonoglou I., Huang A., Guez A., Hubert T., Baker L., Lai M., Bolton A., Chen Y., Lillicrap T., Fan H., Sifre L., Driessche G., Graepel T., Hassabis D. (2017). Mastering the game of Go without human knowledge / Nature, Vol. 550 (7676), pp. 354—359 // https://doi.org/10.1038/nature24270

1952

Silver D., Hubert T., Schrittwieser J., Antonoglou I., Lai M., Guez A., Lanctot M., Sifre L., Kumaran D., Graepel T., Lillicrap T., Simonyan K., Hassabis D. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm // https://arxiv.org/abs/1712.01815

1953

Silver D., Hubert T., Schrittwieser J., Antonoglou I., Lai M., Guez A., Lanctot M., Sifre L., Kumaran D., Graepel T., Lillicrap T., Simonyan K., Hassabis D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play / Science, Vol. 362, Iss. 6419, pp. 1140—1144 // https://doi.org/10.1126/science.aar6404

1954

Lai M. (2015). Giraffe: Using Deep Reinforcement Learning to Play Chess. M. Sc. thesis, Imperial College London // https://arxiv.org/abs/1509.01549v1

1955

* Эта история стала одной из причин того, почему я занялся популяризацией науки в области ИИ. Честно говоря, было больно читать и слушать откровенную ерунду вроде того, что сотни программистов, огромные команды, которые занимались шахматами, теперь не нужны, они теперь уволены. Проблема заключалась в том, что команды из сотен наёмных программистов, занимающиеся компьютерными шахматами, существовали только в воображении автора высказывания, да и сила игры Giraffe была на тот момент далека от силы игры лучших шахматных программ.

1956

Baxter J., Tridgell A., Weaver L. (1998). KnightCap: A chess program that learns by combining TD(λ) with game-tree search / Proc. 15th International Conf. on Machine Learning, pp. 28—36 // https://arxiv.org/abs/cs/9901002

1957

Lüscher M. (2000). Automatic Generation of an Evaluation Function for Chess Endgames // http://www.datacomm.ch/m.luescher/evaluation_function_en.pdf

1958

Stoofvlees / Chess Programming Wiki // https://www.chessprogramming.org/Stoofvlees

1959

Kumar C., Fogel D. B. (1999). Evolution, Neural Networks, Games, and Intelligence / Proceedings of the IEEE, Vol. 87, Iss. 9, pp. 1471—1496 // https://doi.org/10.1109/5.784222

1960

Kumar C., Fogel D. B. (1999). Evolving Neural Networks to Play Checkers without Expert Knowledge / IEEE Transactions on Neural Networks, Vol. 10, Iss. 6, pp. 1382—1391 // https://doi.org/10.1109/72.809083

1961

Kumar C., Fogel D. B. (2001). Evolving an Expert Checkers Playing Program without Using Human Expertise / IEEE Transactions on Evolutionary Computation, Vol. 5, Iss. 4, pp. 422—428 // https://doi.org/10.1109/4235.942536

1962

Sapunov G. (2021). Hardware for Deep Learning. Part 4: ASIC // https://blog.inten.to/hardware-for-deep-learning-part-4-asic-96a542fe6a81

1963

Sapunov G. (2021). Hardware for Deep Learning. Part 4: ASIC // https://blog.inten.to/hardware-for-deep-learning-part-4-asic-96a542fe6a81

1964

Schrittwieser J., Antonoglou I., Hubert T., Simonyan K., Sifre L., Schmitt S., Guez A., Lockhart E., Hassabis D., Graepel T., Lillicrap T., Silver D. (2020). Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model // https://arxiv.org/abs/1911.08265

1965

Ye W., Liu S., Kurutach T., Abbeel P., Gao Y. (2021). Mastering Atari Games with Limited Data // https://arxiv.org/abs/2111.00210

1966

Tian Y., Zitnick L. (2018). Facebook Open Sources ELF OpenGo / facebook research // https://research.fb.com/blog/2018/05/facebook-open-sources-elf-opengo/

1967

Wu D. (2019). Accelerating Self-Play Learning in Go / Jane Street Tech Blog, Feb 28, 2019 // https://blog.janestreet.com/accelerating-self-play-learning-in-go/

1968

Wu D. J. (2019). Accelerating Self-Play Learning in Go // https://arxiv.org/abs/1902.10565

1969

Boardsize 19x19 - 15 minutes per side (2021) / Computer Go ServerH, Last Update: 2021-03-14 14:43:24 UTC // http://www.yss-aya.com/cgos/19x19/standings.html

1970

Nasu Y. (2018). ƎUИИ: Efficiently Updatable Neural-Network-based Evaluation Functions for Computer Shogi // https://www.apply.computer-shogi.org/wcsc28/appeal/the_end_of_genesis_T.N.K.evolution_turbo_type_D/nnue.pdf

1971

Chess Programming Wiki contributors. (2020, August 31). Stockfish NNUE. In Wikipedia, Chess Programming Wiki contributors. Retrieved 08:00, September 2, 2020, from https://www.chessprogramming.org/Stockfish_NNUE

1972

Poundstone W. (2011). Prisoner's Dilemma. Knopf Doubleday Publishing Group // https://books.google.ru/books?id=twNXXfYVB1UC

1973

Bowling M., Burch N., Johanson M., Tammelin O. (2015). Heads-up Limit Hold’em Poker is Solved / Science, Vol. 347, Iss. 6218, pp. 145—149 // https://doi.org/10.1126/science.1259433

1974

Moravčík M., Schmid M., Burch N., Lisý V., Morrill D., Bard N., Davis T., Waugh K., Johanson M., Bowling M. (2017). DeepStack: Expert-level artificial intelligence in heads-up no-limit poker / Science, Vol. 356, Iss. 6337, pp. 508—513 // https://doi.org/10.1126/science.aam6960

1975

Mets C. (2017). Inside Libratus, the Poker AI That Out-Bluffed the Best Humans / Wired, 02.01.17 // https://www.wired.com/2017/02/libratus/

1976

Rodriguez J. (2019). Inside Pluribus: Facebook’s New AI That Just Mastered the World’s Most Difficult Poker Game / KDnuggets // https://www.kdnuggets.com/2019/08/inside-pluribus-facebooks-new-ai-poker.html

1977

Blair A., Saffidine A. (2019). AI surpasses humans at six-player poker / Science, Vol. 365, Iss. 6456, pp. 864–865 // https://doi.org/10.1126/science.aay7774

1978

Brown N., Lerer A., Gross S., Sandholm T. (2019). Deep Counterfactual Regret Minimization / Proceedings of the 36th International Conference on Machine Learning, PMLR 97:793-802 // http://proceedings.mlr.press/v97/brown19b.html

1979

Ontañón S., Synnaeve G., Uriarte A., Richoux F., Churchill D., Preuss M. (2013). A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft / IEEE Transactions on Computational Intelligence and AI in Games, Vol. 5, No. 4, pp. 293—311 // https://doi.org/10.1109/TCIAIG.2013.2286295

1980

Schulman J., Klimov O., Wolski F., Dhariwal P., Radford A. (2017). Proximal Policy Optimization / OpenAI blog, July 20, 2017 // https://openai.com/blog/openai-baselines-ppo/

1981

Chan B., Tang J., Pondé H., Raiman J., Wolski F., Petrov M., Zhang S., Dennison C., Farhi D., Sidor S., Dębiak P., Pachocki J., Brockman G. (2018). OpenAI Five: Our team of five neural networks, OpenAI Five, has started to defeat amateur human teams at Dota 2 / OpenAI blog // https://openai.com/blog/openai-five/

1982

Matiisen T. (2018). The use of Embeddings in OpenAI Five / Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, September 9, 2018 // https://neuro.cs.ut.ee/the-use-of-embeddings-in-openai-five/

1983

Chan B., Tang J., Pondé H., Raiman J., Wolski F., Petrov M., Zhang S., Dennison C., Farhi D., Sidor S., Dębiak P., Pachocki J., Brockman G. (2018). OpenAI Five: Our team of five neural networks, OpenAI Five, has started to defeat amateur human teams at Dota 2 / OpenAI blog // https://openai.com/blog/openai-five/

1984

OpenAI Five Defeats Dota 2 World Champions (2019) / OpenAI blog, April 15, 2019 // https://openai.com/blog/openai-five-defeats-dota-2-world-champions/

1985

Vinyals O., Babuschkin I., Chung J., Mathieu M., Jaderberg M., Czarnecki W., Dudzik A., Huang A., Georgiev P., Powell R., Ewalds T., Horgan D., Kroiss M., Danihelka I., Agapiou J., Oh J., Dalibard V., Choi D., Sifre L., Sulsky Y., Vezhnevets S., Molloy J., Cai T., Budden D., Paine T., Gulcehre C., Wang Z., Pfaff T., Pohlen T., Yogatama D., Cohen J., McKinney K., Smith O., Schaul T., Lillicrap T., Apps C., Kavukcuoglu K., Hassabis D., Silver D. (2019). AlphaStar: Mastering the Real-Time Strategy Game StarCraft II / DeepMind blog, 24 Jan 2019 // https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

1986

Wünsch D. (2019) / Twitter // https://twitter.com/liquidtlo/status/1088524496246657030

1987

Solimito S. (2019). Is Alphastar really impressive? // https://medium.com/@stefano.solimito/is-alphastar-really-impressive-31ab02bf0882

1988

Kosker S. (2019). Künstliche Intelligenz gegen Mensch: DeepMind AlphaStar // https://stefankosker.com/alphastar-starcraft-deepmind-kuenstliche-intelligenz/#Prominente_Meinungen_zu_AlphaStar

1989

Lee T. B. (2019). An AI crushed two human pros at StarCraft—but it wasn’t a fair fight / Ars Technica // https://arstechnica.com/gaming/2019/01/an-ai-crushed-two-human-pros-at-starcraft-but-it-wasnt-a-fair-fight/

1990

SoulDrivenOlives (2019). DeepMind's PR regarding Alphastar is unbelievably bafflingg / Reddit // https://www.reddit.com/r/MachineLearning/comments/dr2vir/d_deepminds_pr_regarding_alphastar_is/

1991

Lee T. B. (2019). An AI crushed two human pros at StarCraft—but it wasn’t a fair fight. Superhuman speed and precision helped a StarCraft AI defeat two top players / Ars Technica, 1/30/2019 // https://arstechnica.com/gaming/2019/01/an-ai-crushed-two-human-pros-at-starcraft-but-it-wasnt-a-fair-fight/

1992

u/SoulDrivenOlives (2019).[D] An analysis on how AlphaStar's superhuman speed is a band-aid fix for the limitations of imitation learning / Reddit // https://www.reddit.com/r/MachineLearning/comments/ak3v4i/d_an_analysis_on_how_alphastars_superhuman_speed/

1993

Vinyals O., Babuschkin I., Czarnecki W. M., Mathieu M., Dudzik A., Chung J., Choi D. H., Powell R., Ewalds T., Georgiev P., Oh J., Horgan D., Kroiss M., Danihelka I., Huang A., Sifre L., Cai T., Agapiou J. P., Jaderberg M., Vezhnevets A. S., Leblond R., Pohlen T., Dalibard V., Budden D., Sulsky Y., Molloy J., Paine T. L., Gulcehre C., Wang Z., Pfaff T., Wu Y., Ring R., Yogatama D., Wünsch D., McKinney K., Smith O., Schaul T., Lillicrap T., Kavukcuoglu K., Hassabis D., Apps C., Silver D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning / Nature, Vol. 575, pp. 350–354 (2019) // https://doi.org/10.1038/s41586-019-1724-z

1994

* Пер. М. Лозинского.

1995

Pandya D. A., Dennis B. H., Russell R. D. (2017). A computational fluid dynamics based artificial neural network model to predict solid particle erosion / Wear, Vol. 378—379, 15 May 2017, pp. 198—210 // https://doi.org/10.1016/j.wear.2017.02.028

1996

Kutz J. N. (2017). Deep learning in fluid dynamics / Journal of Fluid Mechanics, Vol. 814, 10 March 2017, pp. 1—4 // https://doi.org/10.1017/jfm.2016.803

1997

Zhang Y. G., Gajjar V., Foster G., Siemion A., Cordes J., Law C., Wang Y. (2018). Fast Radio Burst Pulse Detection and Periodicity: A Machine Learning Approach / The Astrophysical Journal, Vol. 866, No. 2 // https://doi.org/10.3847%2F1538-4357%2Faadf31

1998

Wei J. N., Duvenaud D., Aspuru-Guzik A. (2016). Neural Networks for the Prediction of Organic Chemistry Reactions / ACS Central Science, October 14, 2016, 2, 10, 725—732 // https://doi.org/10.1021/acscentsci.6b00219

1999

Rajpurkar P., Hannun A. Y., Haghpanahi M., Bourn C., Ng A. Y. (2017). Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks // https://arxiv.org/abs/1707.01836

2000

Schirrmeister R. T., Springenberg J. T., Fiederer L. D. J., Glasstetter M., Eggensperger K., Tangermann M., Hutter F., Burgard W., Ball T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization / Human Brain Mapping, Vol. 38, Iss. 11, November 2017, pp. 5391—5420 // https://doi.org/10.1002/hbm.23730

2001

Pyrkov T. V., Slipensky K., Barg M., Kondrashin A., Zhurov B., Zenin A., Pyatnitskiy M., Menshikov L., Markov S., Fedichev P. O. (2018). Extracting biological age from biomedical data via deep learning: too much of a good thing? / Scientific Reports, Vol. 8, Article num.: 5210 (2018) // https://doi.org/10.1038/s41598-018-23534-9

2002

Lin W., Tong T, Gao Q., Guo D., Du X., Yang Y., Guo G., Xiao M., Du M., Qu X. (2018). Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment / Frontiers in Neuroscience, 05 November 2018 // https://doi.org/10.3389/fnins.2018.00777

2003

* Лидар (LIDAR, Light Detection and Ranging, обнаружение и определение дальности с помощью света) — технология измерения расстояний путём излучения света (лазер) и замера времени возвращения этого отражённого света на ресивер.

2004

Velas M., Spanel M., Hradis M., Herout A. (2018). CNN for very fast ground segmentation in velodyne LiDAR data / 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, 2018, pp. 97—103 // https://doi.org/10.1109/ICARSC.2018.8374167

2005

Martinsson E. (2017). WTTE-RNN: Weibull Time To Event Recurrent Neural Network. A model for sequential prediction of time-to-event in the case of discrete or continuous censored data, recurrent events or time-varying covariates. Master’s thesis in Engineering Mathematics & Computational Science // http://publications.lib.chalmers.se/records/fulltext/253611/253611.pdf

2006

Rebedea T. (2017). Deep Neural Networks for Matching Online Social Networking Profiles / Conference on Computational Collective Intelligence Technologies and Applications // https://doi.org/10.1007/978-3-319-67074-4_19

2007

Tan Q., Liu N., Hu X. (2019). Deep Representation Learning for Social Network Analysis / Frontiers in Big Data, 03 April 2019 // https://doi.org/10.3389/fdata.2019.00002

2008

Hamilton W. L, Ying R., Leskovec J. (2017). Representation Learning on Graphs: Methods and Applications / IEEE Data Engineering Bulletin // https://arxiv.org/abs/1709.05584

2009

Lample G., Charton F. (2019). Deep Learning for Symbolic Mathematics // https://arxiv.org/abs/1912.01412

2010

Palaskar S., Sanabria R., Metze F. (2018). End-to-End Multimodal Speech Recognition // https://arxiv.org/abs/1804.09713

2011

Nag N., Bharadwaj A., Rao A. N., Kulhalli A., Mehta K. S., Bhattacharya N., Ramkumar P., Sitaram D., Jain R. (2019). Flavour Enhanced Food Recommendation // https://arxiv.org/abs/1904.05331

2012

Lee B. K., Mayhew E. J., Sanchez-Lengeling B., Wei J. N., Qian W. W., Little K. A., Andres M., Nguyen B. B., Moloy T., Yasonik J., Parker J. K., Gerkin R. C., Mainland J. D., Wiltschko A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception / Science, Vol. 381, pp. 999-1006 // https://doi.org/10.1126/science.ade4401

2013

Graves A., Wayne G., Danihelka I. (2014). Neural Turing Machines // https://arxiv.org/abs/1410.5401

2014

Graves A., Wayne G., Reynolds M., Harley T., Danihelka I., Grabska-Barwińska A., Colmenarejo S. G., Grefenstette E., Ramalho T., Agapiou J., Badia A. P., Hermann K. M., Zwols Y., Ostrovski G., Cain A., King H., Summerfield C., Blunsom P., Kavukcuoglu K., Hassabis D. (2016). Hybrid computing using a neural network with dynamic external memory / Nature, Vol. 538, pp. 471—476 (2016) // https://doi.org/10.1038/nature20101

2015

Collier M., Beel J. (2019). Memory-Augmented Neural Networks for Machine Translation // https://arxiv.org/abs/1909.08314

2016

* Пер. Н. Россова.

2017

Шаврина Т. О. (2017). Методы обнаружения и исправления опечаток: исторический обзор / Вопросы языкознания. № 4. С. 115—134 // https://doi.org/10.31857/S0373658X0001024-5

2018

* * * * * ** ** * Пер. П. Мелкова.

2019

Gardner W. D. (2008). Remembering Joe Weizenbaum, ELIZA Creator / InformationWeek // https://www.informationweek.com/remembering-joe-weizenbaum-eliza-creator-/d/d-id/1065648

2020

LordOmar (2000). AOLiza / everything2 // https://everything2.com/title/AOLiza

2021

Colby K. M., Hilf F. D., Weber S., Kraemer H. C. (1972). Turing-like indistinguishability tests for the validation of a computer simulation of paranoid processes / Artificial Intelligence, Vol., 1972, pp. 199—221 // https://doi.org/10.1016/0004-3702(72)90049-5

2022

Saygin A. P., Cicekli I., Akman V. (2003). Turing Test: 50 Years Later / Moor J. H. (2003). The Turing Test. The Elusive Standard of Artificial Intelligence. Studies in Cognitive Systems, Vol. 30, pp. 23–78 // https://doi.org/10.1007/978-94-010-0105-2_2

2023

Luiselli J. K., Fischer A. J. (2016). Computer-Assisted and Web-Based Innovations in Psychology, Special Education, and Health. Academic Press // https://books.google.ru/books?id=NwLSBgAAQBAJ

2024

Sussman G. J., Winograd T., Charniak E. (1971). Micro-Planner reference manual. Artificial Intelligence Memo No. 203A (Updates 203) // ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-203a.pdf

2025

SHRDLU resurrection (2019) // http://maf.directory/misc/shrdlu.html

2026

Товарищ Силоч (@comrade_siloch) (2020) / Twitter // https://twitter.com/comrade_siloch/status/1217102334376976384

2027

Hutchins J. (2004). Two precursors of machine translation: Artsrouni and Trojanskij / International Journal of Translation, Vol. 16(1), January—June 2004, pp. 11—31 // http://www.hutchinsweb.me.uk/IJT-2004.pdf

2028

Kirjutusmafin-tõlk (1924) / Waba maa, Num. 46, 24 February 1924, p. 4 // https://dea.digar.ee/page/wabamaa/1924/02/24/4

2029

Kirjutusmafin-tõlk (1923) / Esmaspäev, 19 november 1923, p. 1 // https://dea.digar.ee/article/esmaspaev/1923/11/19/11

2030

Hutchins J. (2004). Two precursors of machine translation: Artsrouni and Trojanskij / International Journal of Translation, Vol. 16(1), January—June 2004, pp. 11—31 // http://www.hutchinsweb.me.uk/IJT-2004.pdf

2031

Богданов Н. В. Дружба / Богданов Н. В. (1958). О смелых и умелых // http://www.kulichki.com/moshkow/PRIKL/BOGDANOW/smelye.txt

2032

Nirenburg S., Somers H. L., Wilks Y. (2003). Readings in Machine Translation. MIT Press // https://books.google.ru/books?id=yx3lEVJMBmMC

2033

Hutchins J. (1995). “The whisky was invisible”, or Persistent myths of MT / MT News International 11 (June 1995), pp. 17—18 // http://www.hutchinsweb.me.uk/MTNI-11-1995.pdf

2034

Russell S. J., Norvig P. (2016). Artificial Intelligence: A Modern Approach. Pearson // https://books.google.ru/books?id=XS9CjwEACAAJ

2035

Hutchins J. (1997). From First Conception to First Demonstration: the Nascent Years of Machine Translation, 1947–1954. A Chronology / Machine Translation, Vol. 12 (3), pp. 195—252 // https://doi.org/10.1023/a:1007969630568

2036

Macdonald N. (1954). Language translation by machine — a report of the first successful trial / Computers and Automation, Vol. 3 (2), February 1954 // http://mt-archive.info/Macdonald-1954.pdf

2037

Henisz-Dostert B., Macdonald R. R., Zarechnak M. (2011). Machine Translation. Walter de Gruyter // https://books.google.ru/books?id=St4iXxXoIIAC

2038

701 Translator. IBM Press release, January 8, 1954 // http://www.mt-archive.info/IBM-1954.pdf

2039

Hutchins W. J. (2004). The Georgetown-IBM experiment demonstrated in January 1954 / Conference of the Association for Machine Translation in the Americas AMTA 2004: Machine Translation: From Real Users to Research, pp. 102—114 // https://doi.org/10.1007/978-3-540-30194-3_12

2040

Zarechnak M. (1959). Three Levels of Linguistic Analysis in Machine Translation / Journal of the ACM, January 1959 // https://doi.org/10.1145/320954.320956

2041

Hutchins W. J. (2000). Early Years in Machine Translation: Memoirs and biographies of pioneers. John Benjamins Publishing // https://books.google.ru/books?id=3dU5AAAAQBAJ

2042

Hutchins W. J. (1995). Machine translation: a brief history / Koerner E. F. K., Asher R. E. (1995). Concise history of the language sciences: from the Sumerians to the cognitivists. Oxford: Pergamon Press // http://hutchinsweb.me.uk/ConcHistoryLangSci-1995.pdf

2043

Hutchins J. (1996). ALPAC: the (in)famous report / MT News International, No. 14, June 1996, pp. 9—12 // http://www.hutchinsweb.me.uk/MTNI-14-1996.pdf

2044

Shapin S. (2015). Confusion of Tongues: Scientific Babel: The Language of Science from the Fall of Latin to the Rise of English by Michael Gordin / London Review of Books // https://www.lrb.co.uk/the-paper/v37/n23/steven-shapin/confusion-of-tongues

2045

Gordin M. (2015). Scientific Babel: The language of science from the fall of Latin to the rise of English. Profile Books // https://books.google.ru/books?id=2dmiBQAAQBAJ

2046

Hutchins J. (1996). ALPAC: the (in)famous report / MT News International, No. 14, June 1996, pp. 9—12 // http://www.hutchinsweb.me.uk/MTNI-14-1996.pdf

2047

Hutchins W. J. (1982). The evolution of machine translation systems / Lawson V. (1982). Practical experience of machine translation // http://www.mt-archive.info/Aslib-1981-Hutchins-1.pdf

2048

Вельмезова Е. (2015). Снова об универсалиях «лингвистическо-литературных»: «Структуральнейшая лингвистика» в повести А. и Б. Стругацких «Попытка к бегству» / Фаустов А. (2015). Универсалии русской литературы. Т. 6. — Воронеж: Издательско-полиграфический центр «Научная книга» // http://www.rusf.ru/abs/rec/velmez01.htm

2049

Мельчук И. А. (1984). Русский язык в модели смысл-текст / Russian Language Journal, Vol. 38, Iss. 129/130, pp. 189—198 // https://codenlp.ru/knigi/russkiy-yazyik-v-modeli-smyisl-tekst-melchuk.html

2050

* Функционализм (функциональный структурализм, функциональная лингвистика) — совокупность школ и направлений, возникших как одно из ответвлений структурной лингвистики; характеризуется фокусом на функционировании языка как средства общения. Изначальный импульс развития функционализм получил в «Тезисах Пражского лингвистического кружка» (1929), а затем был развит в работах представителей Пражской лингвистической школы.

2051

Алпатов В. М. (2005). История лингвистических учений. Учебное пособие / 4-е изд., исправ. и доп. — М.: Языки славянской культуры // http://genling.spbu.ru/hl/085.pdf

2052

Ярцева В. Н. (1990). Лингвистический энциклопедический словарь. — М.: Советская энциклопедия // http://tapemark.narod.ru/les/index.html

2053

Алпатов В. М. (2005). История лингвистических учений / 4-е изд., исправ. и доп. — М.: Языки славянской культуры // http://genling.spbu.ru/hl/085.pdf

2054

Алпатов В. М. (2005). История лингвистических учений / 4-е изд., исправ. и доп. — М.: Языки славянской культуры // http://genling.spbu.ru/hl/085.pdf

2055

de Saussure F., Riedlinger A. Course in General Linguistics. Translated by Wade Baskin. Philosophical Library // https://books.google.ru/books?id=MCdZAAAAMAAJ

2056

Berger A. A. (2018). Media Analysis Techniques. SAGE Publications // https://books.google.ru/books?id=kbVItAEACAAJ

2057

de Saussure F., Riedlinger A. Course in General Linguistics. Translated by Wade Baskin. Philosophical Library // https://books.google.ru/books?id=MCdZAAAAMAAJ

2058

Алпатов В. М. (2005). История лингвистических учений / 4-е изд., исправ. и доп. — М.: Языки славянской культуры // http://genling.spbu.ru/hl/085.pdf

2059

Лукин О. В. (2015). История языкознания с VI в. до н. э. до середины XX в. Учебное пособие // http://yspu.org/images/4/48/История_языкознания.pdf

2060

Galofaro F. (2013). Formalizing Narrative Structures: Glossematics, Generativity, and Transformational Rules / Signata, No. 4, 2013, p. 227-246 // https://doi.org/10.4000/signata.757

2061

Seuren P. (1998). Western Linguistics: An Historical Introduction. Wiley // https://books.google.ru/books?id=YD7fupu-qS0C

2062

Sova R. (2006). Genesis of Two Algebraic Theories of Language / Linguistica ONLINE, January, 30th 2006 // http://www.phil.muni.cz/linguistica/art/sova/sov-001.pdf

2063

Chomsky N. (1975). The Logical Structure of Linguistic Theory. Springer US // https://books.google.ru/books?id=1D66ktXOITAC

2064

Seuren P. (1998). Western Linguistics: An Historical Introduction. Wiley // https://books.google.ru/books?id=YD7fupu-qS0C

2065

Graffi G. (2017). Harris, Chomsky and the origins of transformational grammar / Lingvisticæ Investigationes, Vol. 39, Iss. 1, Dec 2016, pp. 48—87 // https://doi.org/10.1075/li.39.1.03gra

2066

Louwerse M. (2021). Keeping Those Words in Mind: How Language Creates Meaning. Rowman & Littlefield // https://books.google.ru/books?id=gbcmEAAAQBAJ

2067

Miller G. A. (2003). The cognitive revolution: a historical perspective / TRENDS in Cognitive Sciences, Vol. 7, No.3, March 2003 // https://www.cs.princeton.edu/~rit/geo/Miller.pdf

2068

Davis M. D., Sigal R., Weyuker E. J. (1994). Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science (2nd ed.). Boston: Academic Press, Harcourt, Brace // https://books.google.ru/books?id=6G_arEqHtysC

2069

Chomsky N. (1965). Aspects of the Theory of Syntax. MIT Press // https://books.google.ru/books?id=SOtsAAAAIAAJ

2070

Fodor J. A. (1983). The Modularity of Mind: An Essay on Faculty Psychology // https://books.google.ru/books?id=e7nrSeibJZYC

2071

* Иногда также используется термин «Упорядоченное психическое представление мыслей» (Thought ordered mental expression, TOME).

2072

Fodor J. A. (1975). The Language of Thought // https://books.google.ru/books?id=XZwGLBYLbg4C

2073

Лагунина И., Ольшанская Е. (2004). Машинный перевод / Радио Свобода, 21 января // https://www.svoboda.org/a/24196111.html

2074

Лаборатория №15. Компьютерная лингвистика / Российская академия наук. Институт проблем передачи информации им. А. А. Харкевича // http://iitp.ru/ru/researchlabs/245.htm

2075

Галактионов В. А., Мусатов А. М., Мансурова О. Ю., Ёлкин С. В., Клышинский Э. С., Максимов В. Ю., Аминева С. Н., Жирнов Р. В., Игашов С. Ю., Мусаева Т. Н. (2007). Система машинного перевода «Кросслятор 2.0» и анализ её функциональности для задачи трансляции знаний // https://www.keldysh.ru/papers/2007/prep89/prep2007_89.html

2076

Hutchins W. J. (2000). Early Years in Machine Translation: Memoirs and biographies of pioneers. John Benjamins Publishing // https://books.google.ru/books?id=3dU5AAAAQBAJ

2077

Loh S.-C., Kong L., Hung H.-S. (1978). Machine translation of Chinese mathematical articles / ALLC Bulltein, Vol. 6(2), pp. 111—120 // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.598.8762&rep=rep1&type=pdf

2078

Hutchins W. J. (2000). Early Years in Machine Translation: Memoirs and biographies of pioneers. John Benjamins Publishing // https://books.google.ru/books?id=3dU5AAAAQBAJ

2079

Chan S. (2004). A Dictionary of Translation Technology. Chinese University Press // https://books.google.ru/books?id=3gwOFvbxMGcC

2080

Лаздинь Т. А. (2009). Основы статистической оптимизации преподавания иностранных языков / Вестник СПбГУ. Язык и литература. 2009. № 3 // https://cyberleninka.ru/article/n/osnovy-statisticheskoy-optimizatsii-prepodavaniya-inostrannyh-yazykov

2081

Зубов А. В., Носкова Т. Н. (2017). Р. Г. Пиотровский — основатель компьютерной лингвистики в Беларуси / Пиотровские чтения 2017 // http://ceur-ws.org/Vol-2233/

2082

Пиотровский Р. Г. (1980). Статистика речи и автоматический анализ текста. — Л.: Наука // https://www.phantastike.com/linguistics/statistika_rechi_1980/pdf/

2083

История машинного перевода: от гипотез Лейбница и Декарта — до мобильных приложений и облачных сервисов (2019) / PROMT // https://www.promt.ru/press/blog/istoriya-mashinnogo-perevoda-ot-gipotez-leybnitsa-i-dekarta-do-mobilnykh-prilozheniy-i-oblachnykh-se/

2084

NLLB Team, Costa-jussà M. R., Cross J., Çelebi O., Elbayad M., Heafield K., Heffernan K., Kalbassi E., Lam J., Licht D., Maillard J., Sun A., Wang S., Wenzek G., Youngblood A., Akula B., Barrault L., Gonzalez G. M., Hansanti P., Hoffman J., Jarrett S., Sadagopan K. R., Rowe D., Spruit S., Tran C., Andrews P., Ayan N. F., Bhosale S., Edunov S., Fan A., Gao C., Goswami V., Guzmán F., Koehn P., Mourachko A., Ropers C., Saleem S., Schwenk H., Wang J. (2022). No Language Left Behind: Scaling Human-Centered Machine Translation // https://arxiv.org/abs/2207.04672

2085

Fan A., Bhosale S., Schwenk H., Ma Z., El-Kishky A., Goyal S., Baines M., Celebi O., Wenzek G., Chaudhary V., Goyal N., Birch T., Liptchinsky V., Edunov S., Grave E., Auli M., Joulin A. (2020). Beyond English-Centric Multilingual Machine Translation // https://arxiv.org/abs/2010.11125

2086

Seamless Communication, Barrault L., Chung Y., Meglioli M. C., Dale D., Dong N., Duquenne P., Elsahar H., Gong H., Heffernan K., Hoffman J., Klaiber C., Li P., Licht D., Maillard J., Rakotoarison A., Sadagopan K. R., Wenzek G., Ye E., Akula B., Chen P., Hachem N. E., Ellis B., Gonzalez G. M., Haaheim J., Hansanti P., Howes R., Huang B., Hwang M., Inaguma H., Jain S., Kalbassi E., Kallet A., Kulikov I., Lam J., Li D., Ma X., Mavlyutov R., Peloquin B., Ramadan M., Ramakrishnan A., Sun A., Tran K., Tran T., Tufanov I., Vogeti V., Wood C., Yang Y., Yu B., Andrews P., Balioglu C., Costa-jussà M. R., Celebi O., Elbayad M., Gao C., Guzmán F., Kao J., Lee A., Mourachko A., Pino J., Popuri S., Ropers C., Saleem S., Schwenk H., Tomasello P., Wang C., Wang J., Wang S. (2023). SeamlessM4T-Massively Multilingual & Multimodal Machine Translation // https://aps.arxiv.org/abs/2308.11596

2087

Papineni K., Roukos S., Ward T., Zhu W.-J. (2002). BLEU: a Method for Automatic Evaluation of Machine Translation / Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311—317 // https://doi.org/10.3115/1073083.1073135

2088

Snover M., Dorr B., Schwartz R., Micciulla L., Makhoul J. (2006). A Study of Translation Edit Rate with Targeted Human Annotation / Proceedings of Association for Machine Translation in the Americas, 2006, pp. 223—231 // http://mt-archive.info/AMTA-2006-Snover.pdf

2089

Chen B., Kuhn R. (2011). AMBER: a modified BLEU, enhanced ranking metric / WMT '11: Proceedings of the Sixth Workshop on Statistical Machine Translation, July 2011, pp. 71—77 // https://www.aclweb.org/anthology/W11-2105/

2090

Banerjee S., Lavie A. (2005). METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments / Proceedings of the ACL 2005 Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization // https://www.aclweb.org/anthology/W05-0909/

2091

Han A. L.-F. (2017). LEPOR: An Augmented Machine Translation Evaluation Metric // https://arxiv.org/abs/1703.08748

2092

Han A. L.-F., Wong D. F., Chao L. S., He L., Lu Y. (2014). Unsupervised Quality Estimation Model for English to German Translation and Its Application in Extensive Supervised Evaluation / The Scientific World Journal, Vol. 2014 // https://doi.org/10.1155/2014/760301

2093

Aaron Li-Feng Han A. L.-F., Wong D. F., Chao L. S., He L., Lu Y., Xing J., Zeng X. (2013). Language-independent Model for Machine Translation Evaluation with Reinforced Factors / Proceedings of the XIV Machine Translation Summit (Nice, September 2–6, 2013), pp. 215—222 // http://www.mt-archive.info/10/MTS-2013-Han.pdf

2094

Lin C.-Y. (2004). ROUGE: a Package for Automatic Evaluation of Summaries / Proceedings of the Workshop on Text Summarization Branches Out (WAS 2004), Barcelona, Spain, July 25—26, 2004 // https://www.aclweb.org/anthology/W04-1013/

2095

Zhang T., Kishore V., Wu F., Weinberger K. Q., Artzi Y. (2020). BERTScore: Evaluating Text Generation with BERT // https://arxiv.org/abs/1904.09675

2096

Marie B. (2022). BLEU: A Misunderstood Metric from Another Age But still used today in AI research / Towards Data Science, Nov 5, 2022. // https://towardsdatascience.com/bleu-a-misunderstood-metric-from-another-age-d434e18f1b37

2097

Papineni K., Roukos S., Ward T., Zhu W.-J. (2002). BLEU: a Method for Automatic Evaluation of Machine Translation / Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311—317 // https://doi.org/10.3115/1073083.1073135

2098

Callison-Burch C., Koehn P., Monz C., Post M., Soricut R., Specia L. (2013). Findings of the 2012 Workshop on Statistical Machine Translation / NAACL 2012 Seventh Workshop on Statistical Machine Translation // http://www.statmt.org/wmt12/pdf/WMT02.pdf

2099

Gao P., He Z., Wu H., Wang H. (2022). Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation // https://arxiv.org/abs/2206.02368

2100

Wei J., Bosma M., Zhao V. Y., Guu К., Yu A. W., Lester B., Du N., Dai A. M., Le Q. V. (2021). Finetuned Language Models Are Zero-Shot Learners // https://arxiv.org/abs/2109.01652

2101

Liang X., Wu L., Li J., Wang Y., Meng Q., Qin T., Chen W., Zhang M., Liu T.-Y. (2020). R-Drop: Regularized Dropout for Neural Networks // https://arxiv.org/abs/2106.14448

2102

Лагунина И., Ольшанская Е. (2004). Машинный перевод / Радио Свобода, 21 января // https://www.svoboda.org/a/24196111.html

2103

Savenkov K. (2018). State of the machine translation by Intento (2018) // https://www.slideshare.net/KonstantinSavenkov/state-of-the-machine-translation-by-intento-july-2018

2104

Savenkov K. (2019). State of the Machine Translation (January 2019) / Intento, Mar 9, 2019 // https://blog.inten.to/state-of-the-machine-translation-january-2019-dffe15884d63

2105

Savenkov K. (2019). State of the Machine Translation (June 2019) // Intento, Jun 20, 2019 // https://blog.inten.to/state-of-the-machine-translation-june-2019-e3ffb457b76c

2106

The State of Machine Translation 2020. Independent multi-domain evaluation of commercial Machine Translation engines (2020) / Intento // https://try.inten.to/mt_report_2020

2107

Stanford Human-Centered Artificial Intelligence (HAI) (2019). Artificial Intelligence Index Report 2019 // https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf

2108

Manning C. D., Raghavan P., Schütze H. (2008). Introduction to Information Retrieval. Cambridge University Press // https://books.google.ru/books?id=t1PoSh4uwVcC

2109

Bengio Y., Ducharme R., Vincent P., Jauvin C. (2003). A Neural Probabilistic Language Model / Journal of Machine Learning Research, Vol. 3 (2003), pp. 1137—1155 // http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

2110

Francis W. N., Kucera H. (1979). Brown corpus manual. Manual of information to accompany a standard corpus of present-day edited American English, for use with digital computers // http://korpus.uib.no/icame/brown/bcm.html

2111

Wikipedia contributors. (2021, August 2). Size of Wikipedia. In Wikipedia, The Free Encyclopedia. Retrieved 08:00, August 2, 2021, from https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

2112

Marcus M. P., Santorini B., Marcinkiewicz M. A. (1993). Building a Large Annotated Corpus of English: The Penn Treebank / Computational Linguistics, Vol. 19, Iss. 2 // https://aclanthology.org/J93-2004/

2113

BNC Consortium (2007). The British National Corpus, XML Edition. Oxford Text Archive // http://hdl.handle.net/20.500.12024/2554

2114

Burnard L. (2007). Reference Guide for the British National Corpus (XML Edition) // http://www.natcorp.ox.ac.uk/XMLedition/URG/

2115

BNC Consortium (2001). The British National Corpus, version 2 (BNC World) // http://www.natcorp.ox.ac.uk/

2116

Burnard L. (2000). The British National Corpus Users Reference Guide // http://www.natcorp.ox.ac.uk/docs/userManual/

2117

Harris Z. (1954). Distributional structure / Word, Vol. 10, Iss. 23, pp. 146—162 // https://doi.org/10.1080/00437956.1954.11659520

2118

* Корпусная лингвистика — раздел языкознания, занимающийся разработкой, созданием и использованием текстовых корпусов.

2119

Wallis S. (2016). Why Chomsky was Wrong About Corpus Linguistics / corp.ling.stats: statistics for corpus linguists, November 2, 2016 // https://corplingstats.wordpress.com/2016/11/02/why-chomsky-was-wrong/

2120

Firth J. R. (1957). A synopsis of linguistic theory 1930-1955 // https://books.google.ru/books?id=T8LDtgAACAAJ

2121

Maruyama Y. (2019). Quantum Physics and Cognitive Science from a Wittgensteinian Perspective: Bohr’s Classicism, Chomsky’s Universalism, and Bell’s Contextualism / Wuppuluri S., da Costa N. (2019). WITTGENSTEINIAN (adj.). The Frontiers Collection. Springer, Cham // https://doi.org/10.1007/978-3-030-27569-3_20

2122

Kilgarriff A., Baisa V., Bušta J., Jakubíček M., Kovář V., Michelfeit J., Rychlý P., Suchomel V. (2014). The Sketch Engine: ten years on / Lexicography, Vol. 1, Iss. 1, pp. 7–36 // https://doi.org/10.1007/s40607-014-0009-9

2123

* Диахрония (от греч. δια — через, сквозь и χρονος — время) — рассмотрение исторического развития языковых явлений и языковой системы как предмета лингвистического исследования. Противопоставляется синхронии (от греч. συν — совместно и χρονος — время) — рассмотрение состояния языка как установившейся системы в определённый момент времени.

2124

Mnih A., Hinton G. E. (2009). A scalable hierarchical distributed language model / Advances in neural information processing systems, Vol. 21, pp. 1081—1088 // https://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model

2125

Mnih A., Teh Y. W. (2012). A fast and simple algorithm for training neural probabilistic language models // Proceedings of the 29th International Coference on International Conference on Machine Learning, pp. 419—426 // https://arxiv.org/abs/1206.6426

2126

Collobert R., Weston J. (2008). A unified architecture for natural language processing: deep neural networks with multitask learning / Proceedings of the 25th international conference on Machine learning, pp. 160—167 // https://doi.org/10.1145/1390156.1390177

2127

Turian J., Ratinov L., Bengio Y. (2010). Word representations: a simple and general method for semi-supervised learning / Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384—394 // https://dl.acm.org/doi/10.5555/1858681.1858721

2128

Mikolov T., Chen K., Corrado G., Dean J. (2013). Efficient Estimation of Word Representations in Vector Space / International Conference on Learning Representations (ICLR-2013) // https://arxiv.org/abs/1301.3781

2129

Mikolov T., Sutskever I., Chen K., Corrado G., Dean J. (2013). Distributed Representations of Words and Phrases and their Compositionality / Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3111—3119 // https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

2130

Mikolov T., Sutskever I., Chen K., Corrado G., Dean J. (2013). Distributed Representations of Words and Phrases and their Compositionality / Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3111—3119 // https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

2131

Mikolov T., Kombrink S., Deoras A., Burget L, Černocký J. (2011). RNNLM — Recurrent Neural Network Language Modeling Toolkit / Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop, 2011, pp. 1—4 // https://www.fit.vut.cz/research/publication/10087/.en

2132

Wilson B., Schakel A. M. J. (2015). Controlled Experiments for Word Embeddings // https://arxiv.org/abs/1510.02675

2133

Rajasekharan A. (2017). How does word2vec work? Can someone walk through a specific example? / Quora // https://www.quora.com/How-does-word2vec-work-Can-someone-walk-through-a-specific-example/answer/Ajit-Rajasekharan

2134

Gong C., He D., Tan X., Qin T., Wang L., Liu T.-Y. (2020). FRAGE: Frequency-Agnostic Word Representation // https://arxiv.org/abs/1809.06858

2135

Mikolov T., Chen K., Corrado G., Dean J. (2013). Efficient Estimation of Word Representations in Vector Space / International Conference on Learning Representations (ICLR-2013) // https://arxiv.org/abs/1301.3781

2136

İrsoy O., Benton A., Stratos K. (2020). kōan: A Corrected CBOW Implementation // https://arxiv.org/abs/2012.15332

2137

Сапунов Г. (2021). kōan: A Corrected CBOW Implementation (Ozan İrsoy, Adrian Benton, Karl Stratos) / gonzo-обзоры ML статей, Jan 19, 2021 // https://t.me/gonzo_ML/452

2138

* Социальное познание (англ. social cognition) — процесс познания одного человека другим, одна из сфер, изучаемых социальной психологией, которая исследует механизмы хранения, переработки и использования человеком информации о других людях и социальных ситуациях.

2139

** Организационное поведение (англ. organizational behavior) — научная дисциплина, занимающаяся исследованием поведения людей в организациях.

2140

Richie R., Zou W., Bhatia S., Vazire S. (2019). Predicting High-Level Human Judgment Across Diverse Behavioral Domains / Psychology, Vol. 5, Iss. 1, p. 50 // https://doi.org/10.1525/collabra.282

2141

Baroni M., Dinu G., Kruszewski G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors / Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) // https://doi.org/10.3115/v1/P14-1023

2142

Sivakumar S., Videla L. S., Rajesh Kumar T., Nagaraj J., Itnal S., Haritha D. (2020). Review on Word2Vec Word Embedding Neural Net / 2020 International Conference on Smart Electronics and Communication (ICOSEC) // https://doi.org/10.1109/icosec49089.2020.9215319

2143

Adewumi T. P., Liwicki F., Liwicki M. (2020). Word2Vec: Optimal Hyper-Parameters and Their Impact on NLP Downstream Tasks // https://arxiv.org/abs/2003.11645

2144

Pennington J., Socher R., Manning C. (2014). GloVe: Global Vectors for Word Representation / Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. // https://doi.org/10.3115/v1/D14-1162

2145

Bojanowski P., Grave E., Joulin A., Mikolov T. (2016). Enriching Word Vectors with Subword Information // https://arxiv.org/abs/1607.04606

2146

Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., Zettlemoyer L. (2018). Deep contextualized word representations // https://arxiv.org/abs/1802.05365

2147

Sales J. E., Souza L., Barzegar S., Davis B., Freitas A., Handschuh S. (2018). Indra: A Word Embedding and Semantic Relatedness Server / Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) // https://aclanthology.org/L18-1211/

2148

Asgari E., Mofrad M. R. K. (2015). ProtVec: A Continuous Distributed Representation of Biological Sequences // https://arxiv.org/abs/1503.05140

2149

Asgari E., Mofrad M. R. K. (2015). Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics / PLoS One, Vol. 10 (11), e0141287 // https://doi.org/10.1371/journal.pone.0141287

2150

Jaeger S., Fulle S., Turk S. (2017). Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. / Journal of Chemical Information and Modeling, Vol. 58. Iss. 1, pp. 27–35. // https://doi.org/10.1021/acs.jcim.7b00616

2151

Zhang Y.-F., Wang X., Kaushik A.C., Chu Y., Shan X., Zhao M.-Z., Xu Q., Wei D.-Q. (2020). SPVec: A Word2vec-Inspired Feature Representation Method for Drug-Target Interaction Prediction / Frontiers in Chemistry, 2020-01-10. // https://doi.org/10.3389/fchem.2019.00895

2152

Le Q. V., Mikolov T. (2014). Distributed Representations of Sentences and Documents // https://arxiv.org/abs/1405.4053

2153

Kalchbrenner N., Blunsom P. (2014). Recurrent Continuous Translation Models / Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1700—1709 // https://www.aclweb.org/anthology/D13-1176/

2154

Sutskever I., Vinyals O., Le Q. V. (2014). Sequence to Sequence Learning with Neural Networks / Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3104–3112 // https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

2155

Bahdanau D., Cho K., Bengio Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate / International Conference on Learning Representations (ICLR-2015) // https://arxiv.org/abs/1409.0473

2156

«В Минске пытался прибиться хоть куда-нибудь». Дима Богданов изобрёл механизм attention и работает с лауреатом премии Тьюринга. Говорим про ML и Монреаль (2019). / Dev.BY, 3 апреля 2019 // https://devby.io/news/dmitry-bogdanov

2157

Mnih V., Heess N., Graves A., Kavukcuoglu K. (2014). Recurrent Models of Visual Attention / Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, pp. 2204–2212 // https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf

2158

Ba J. L., Mnih V., Kavukcuoglu K. (2015). Multiple object recognition with visual attention / International Conference on Learning Representations (ICLR-2015) // https://arxiv.org/abs/1412.7755

2159

Vinyals V., Toshev A., Bengio S., Erhan D. (2015). Show and Tell: A Neural Image Caption Generator / 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) // https://doi.org/10.1109/CVPR.2015.7298935

2160

Xu K., Ba J. L., Kiros R., Cho K., Courville A., Salakhutdinov R., Zemel R. S., Bengio Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention / Proceedings of the 32nd International Conference on International Conference on Machine Learning, Vol. 37, pp. 2048—2057 // http://proceedings.mlr.press/v37/xuc15.pdf

2161

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., Polosukhin I. (2017). Attention Is All You Need / Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017) // https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

2162

Schmidhuber J. (1991). Learning to control fast-weight memories: An alternative to recurrent nets. Technical Report FKI147-91, Institut für Informatik, Technische Universität München, March 1991 // https://people.idsia.ch/~juergen/FKI-147-91ocr.pdf

2163

Schmidhuber J. (1992). Learning to control fast-weight memories: An alternative to dynamic recurrent networks / Neural Computation, Vol. 4, Iss. 1, pp. 131–139 // https://doi.org/10.1162/neco.1992.4.1.131

2164

Schmidhuber J. (1993). Reducing the ratio between learning complexity and number of time varying variables in fully recurrent nets. / International Conference on Artificial Neural Networks (ICANN), pp. 460–463 // https://doi.org/10.1007/978-1-4471-2063-6_110

2165

Schlag I., Irie K., Schmidhuber J. (2021). Linear Transformers Are Secretly Fast Weight Programmers // https://arxiv.org/abs/2102.11174

2166

Devlin J., Chang M.-W., Lee K., Toutanova K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // https://arxiv.org/abs/1810.04805

2167

Shaw P., Uszkoreit J., Vaswani A. (2018). Self-Attention with Relative Position Representations // https://arxiv.org/abs/1803.02155

2168

Huang C.-Z. A., Vaswani A., Uszkoreit J., Shazeer N., Simon I., Hawthorne C., Dai A. M., Hoffman M. D., Dinculescu M., Eck D. (2018). Music Transformer // https://arxiv.org/abs/1809.04281

2169

Su J., Lu Y., Pan S., Murtadha A., Wen B., Liu Y. (2021). RoFormer: Enhanced Transformer with Rotary Position Embedding // https://arxiv.org/abs/2104.09864

2170

Sun Y., Dong L., Patra B., Ma S., Huang S., Benhaim A., Chaudhary V., Song X., Wei F. (2022). A Length-Extrapolatable Transformer // https://arxiv.org/abs/2212.10554

2171

Press O., Smith N. A., Lewis M. (2021). Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation // https://arxiv.org/abs/2108.12409

2172

Kazemnejad A., Padhi I., Ramamurthy K. N., Das P., Reddy S. (2023). The Impact of Positional Encoding on Length Generalization in Transformers // https://arxiv.org/abs/2305.19466

2173

Lan Z., Chen M., Goodman S., Gimpel K., Sharma P., Soricut R. (2019). ALBERT: A Lite BERT for Self-supervised Learning of Language Representations // https://arxiv.org/abs/1909.11942

2174

Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O., Lewis M., Zettlemoyer L., Stoyanov V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach // https://arxiv.org/abs/1907.11692

2175

McCann B., Bradbury J., Xiong C., Socher R. (2017). Learned in Translation: Contextualized Word Vectors // https://arxiv.org/abs/1708.00107

2176

Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., Zettlemoyer L. (2018). Deep contextualized word representations // https://arxiv.org/abs/1802.05365

2177

Howard J., Ruder S. (2018). Universal Language Model Fine-tuning for Text Classification // https://arxiv.org/abs/1801.06146

2178

Radford A., Narasimhan K., Salimans T., Sutskever I. (2018). Improving Language Understanding by Generative Pre-Training // https://paperswithcode.com/paper/improving-language-understanding-by

2179

Radford A., Wu J., Child R., Luan D., Amodei D., Sutskever I. (2019). Language Models are Unsupervised Multitask Learners // https://paperswithcode.com/paper/language-models-are-unsupervised-multitask

2180

Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I., Amodei D. (2020). Language Models are Few-Shot Learners // https://arxiv.org/abs/2005.14165

2181

Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W., Liu P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer // https://arxiv.org/abs/1910.10683

2182

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, Eduard Hovy, RACE: Large-scale ReAding Comprehension Dataset From Examinations // https://www.aclweb.org/anthology/D17-1082.pdf

2183

Soricut R., Lan Z. (2019). ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations / Google AI Blog, Friday, December 20, 2019 // https://ai.googleblog.com/2019/12/albert-lite-bert-for-self-supervised.html

2184

Wang A., Singh A., Michael J., Hill F., Levy O., Bowman S. R. (2018). GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding // https://openreview.net/forum?id=rJ4km2R5t7

2185

Wang A., Pruksachatkun Y., Nangia N., Singh A., Michael J., Hill F., Levy O., Bowman S. R. (2019). SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems // https://arxiv.org/abs/1905.00537

2186

Clark C., Lee K., Chang M.-W., Kwiatkowski T., Collins M., Toutanova K. (2019). BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions // https://arxiv.org/abs/1905.10044

2187

de Marneffe M.-C., Simons M., Tonhauser J. (2019). The CommitmentBank: Investigating projection in naturally occurring discourse / Proceedings of Sinn und Bedeutung, Vol. 23 // https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf

2188

Roemmele M., Bejan C. A., Gordon A. S. (2011). Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning / AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning, Stanford University, March 21—23, 2011 // https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF

2189

Khashabi D., Chaturvedi S., Roth M., Upadhyay S., Roth D. (2018). Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences / Proceedings of North American Chapter of the Association for Computational Linguistics (NAACL) // https://cogcomp.seas.upenn.edu/page/publication_view/833

2190

Zhang S., Liu X., Liu J., Gao J., Duh K., Durme B. V. (2018). ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension // https://arxiv.org/abs/1810.12885

2191

Dagan I., Glickman O., Magnini B. (2006). The PASCAL recognising textual entailment challenge / Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Textual Entailment. Springer, 2006 // link.springer.com/chapter/10.1007/11736790_9

2192

Haim R. B., Dagan I., Dolan B., Ferro L., Giampiccolo D., Magnini B., Szpektor I. (2006) / The second PASCAL recognising textual entailment challenge / Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, 2006 // http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/01.pdf

2193

Giampiccolo D., Magnini B., Dagan I., Dolan B. (2007). The third PASCAL recognizing textual entailment challenge / Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing. Association for Computational Linguistics, 2007 // https://www.aclweb.org/anthology/W07-1401/

2194

Bentivogli L., Dagan I., Dang H. T., Giampiccolo D., Magnini B. (2009). The fifth PASCAL recognizing textual entailment challenge / Textual Analysis Conference (TAC), 2009 // http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.232.1231

2195

* Анафора (от греч. ἀναφέρειν — относить назад, возвращать, возводить к чему-либо) — зависимость интерпретации выражения от другого (обычно предшествующего) выражения в тексте.

2196

Rudinger R., Naradowsky J., Leonard B., Durme B. V. (2018). Gender Bias in Coreference Resolution // https://arxiv.org/abs/1804.09301

2197

* Здесь мы сознательно не углубляемся в вопрос, какие именно люди включаются в контрольную группу для оценки способности человека решать те или иные задачи, связанные с пониманием естественного языка (да и вообще любые другие интеллектуальные задачи в ситуациях, когда мы хотим сравнить способности машин и людей). Очевидно, что в идеале состав контрольной группы должен быть достаточно репрезентативным: включать в себя людей с разным уровнем образования, с разными профессиями, принадлежащих к разным социальным группам и культурным общностям. На практике, конечно, формируемые исследователями контрольные группы весьма далеки от идеала. Анализу этой проблемы посвящена весьма поучительная работа исследователей из Гарвардского университета под красноречивым названием «Какие люди?» [Which humans?].

2198

Atari M., Xue M. J., Park P. S., Blasi D., Henrich J. (2023). Which humans? // https://doi.org/10.31234/osf.io/5b26t

2199

He P., Liu X., Gao J., Chen W. (2021). DeBERTa: Decoding-enhanced BERT with Disentangled Attention // https://paperswithcode.com/paper/deberta-decoding-enhanced-bert-with

2200

Sun Y., Wang S., Feng S., Ding S., Pang C., Shang J., Liu J., Chen X., Zhao Y., Lu Y., Liu W., Wu Z., Gong W., Liang J., Shang Z., Sun P., Liu W., Ouyang X., Yu D., Tian H., Wu H., Wang H. (2021). ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation // https://arxiv.org/abs/2107.02137

2201

SuperGLUE leaderboard, Retreived 2022-01-31 // https://super.gluebenchmark.com/leaderboard/

2202

Shavrina T., Fenogenova A., Emelyanov A., Shevelev D., Artemova E., Malykh V., Mikhailov V., Tikhonova M., Chertok A., Evlampiev A. (2020). RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark // https://arxiv.org/abs/2010.15925

2203

Шаврина Т. (2020). Люди ломаются на логике, роботы — на всем понемногу. Экзамены по русскому для NLP-моделей / Хабр, 10 июня // https://habr.com/ru/company/sberbank/blog/506058/

2204

Shavrina T., Shapovalova O. (2017). To the methodology of corpus construction for machine learning: «TAIGA» syntax tree corpus and parser / Proceedings of CORPORA2017 international conference, Saint-Petersbourg, 2017 // https://publications.hse.ru/en/chapters/228708483

2205

Panchenko A., Loukachevitch N. V., Ustalov D., Paperno D., Meyer C. M., Konstantinova N. (2018). RUSSE: The First Workshop on Russian Semantic Similarity / Proceeding of the International Conference on Computational Linguistics DIALOGUE 2015, pp. 89—105 // https://arxiv.org/abs/1803.05820

2206

Panchenko A., Lopukhina A., Ustalov D., Lopukhin K., Arefyev N., Leontyev A., Loukachevitch N. (2018). RUSSE’2018: a Shared Task on Word Sense Induction for the Russian Language / https://arxiv.org/abs/1803.05795

2207

RussianSuperGLUE leaderboard, Retreived 2022-01-31 // https://russiansuperglue.com/leaderboard/2

2208

Le H., Vial L., Frej J., Segonne V., Coavoux M., Lecouteux B., Allauzen A., Crabbé B., Besacier L., Schwab D. (2019). FlauBERT: Unsupervised Language Model Pre-training for French // https://arxiv.org/abs/1912.05372

2209

Xu L., Hu H., Zhang X., Li L., Cao C., Li Y., Xu Y., Sun K., Yu D., Yu C., Tian Y., Dong Q., Liu W., Shi B., Cui Y., Li J., Zeng J., Wang R., Xie W., Li Y., Patterson Y., Tian Z., Zhang Y., Zhou H., Liu S., Zhao Z., Zhao Q., Yue C., Zhang X., Yang Z., Richardson K., Lan Z. (2020). CLUE: A Chinese Language Understanding Evaluation Benchmark // https://arxiv.org/abs/2004.05986

2210

Rybak P., Mroczkowski R., Tracz J., Gawlik I. (2020). KLEJ: Comprehensive Benchmark for Polish Language Understanding // https://arxiv.org/abs/2005.00630

2211

Liang Y., Duan N., Gong Y., Wu N., Guo F., Qi W., Gong M., Shou L., Jiang D., Cao G., Fan X., Zhang R., Agrawal R., Cui E., Wei S., Bharti T., Qiao Y., Chen J.-H., Wu W., Liu S., Yang F., Campos D., Majumder R., Zhou M. (2020). XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation // https://arxiv.org/abs/2004.01401

2212

Hu J., Ruder S., Siddhant A., Neubig G., Firat O., Johnson M. (2020). XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization // https://arxiv.org/abs/2003.11080

2213

Shavrina T., Malykh V. (2021). How not to Lie with a Benchmark: Rearranging NLP Leaderboards // https://arxiv.org/abs/2112.01342

2214

Hendrycks D., Burns C., Basart S., Zou A., Mazeika M., Song D., Steinhardt J. (2020). Measuring Massive Multitask Language Understanding // https://arxiv.org/abs/2009.03300

2215

OpenAI (2023). GPT-4 Technical Report // https://arxiv.org/abs/2303.08774

2216

AI Explained (2023). SmartGPT: Major Benchmark Broken - 89.0% on MMLU + Exam's Many Errors / YouTube, 28.08.2023 // https://www.youtube.com/watch?v=hVade_8H8mE

2217

Srivastava A., Rastogi A., Rao A., Shoeb A. A. M., Abid A., Fisch A., Brown A. R., Santoro A., Gupta A., Garriga-Alonso A., Kluska A., Lewkowycz A., Agarwal A., Power A., Ray A., Warstadt A., Kocurek A. W., Safaya A., Tazarv A., Xiang A., Parrish A., Nie A., Hussain A., Askell A., Dsouza A., Slone A., Rahane A., Iyer A. S., Andreassen A., Madotto A., Santilli A., Stuhlmüller A., Dai A., La A., Lampinen A., Zou A., Jiang A., Chen A., Vuong A., Gupta A., Gottardi A., Norelli A., Venkatesh A., Gholamidavoodi A., Tabassum A., Menezes A., Kirubarajan A., Mullokandov A., Sabharwal A., Herrick A., Efrat A., Erdem A., Karakaş A., Roberts B. R., Loe B. S., Zoph B., Bojanowski B., Özyurt B., Hedayatnia B., Neyshabur B., Inden B., Stein B., Ekmekci B., Lin B. Y., Howald B., Orinion B., Diao C., Dour C., Stinson C., Argueta C., Ramírez C. F., Singh C., Rathkopf C., Meng C., Baral C., Wu C., Callison-Burch C., Waites C., Voigt C., Manning C. D., Potts C., Ramirez C., Rivera C. E., Siro C., Raffel C., Ashcraft C., Garbacea C., Sileo D., Garrette D., Hendrycks D., Kilman D., Roth D., Freeman D., Khashabi D., Levy D., González D. M., Perszyk D., Hernandez D., Chen D., Ippolito D., Gilboa D., Dohan D., Drakard D., Jurgens D., Datta D., Ganguli D., Emelin D., Kleyko D., Yuret D., Chen D., Tam D., Hupkes D., Misra D., Buzan D., Mollo D. C., Yang D., Lee D.-H., Schrader D., Shutova E., Cubuk E. D., Segal E., Hagerman E., Barnes E., Donoway E., Pavlick E., Rodola E., Lam E., Chu E., Tang E., Erdem E., Chang E., Chi E. A., Dyer E., Jerzak E., Kim E., Manyasi E. E., Zheltonozhskii E., Xia F., Siar F., Martínez-Plumed F., Happé F., Chollet F., Rong F., Mishra G., Winata G. I., de Melo G., Kruszewski G., Parascandolo G., Mariani G., Wang G., Jaimovitch-López G., Betz G., Gur-Ari G., Galijasevic H., Kim H., Rashkin H., Hajishirzi H., Mehta H., Bogar H., Shevlin H., Schütze H., Yakura H., Zhang H., Wong H. M., Ng I., Noble I., Jumelet J., Geissinger J., Kernion J., Hilton J., Lee J., Fisac J. F., Simon J. B., Koppel J., Zheng J., Zou J., Kocoń J., Thompson J., Wingfield J., Kaplan J., Radom J., Sohl-Dickstein J., Phang J., Wei J., Yosinski J., Novikova J., Bosscher J., Marsh J., Kim J., Taal J., Engel J., Alabi J., Xu J., Song J., Tang J., Waweru J., Burden J., Miller J., Balis J. U., Batchelder J., Berant J., Frohberg J., Rozen J., Hernandez-Orallo J., Boudeman J., Guerr J., Jones J., Tenenbaum J. B., Rule J. S., Chua J., Kanclerz K., Livescu K., Krauth K., Gopalakrishnan K., Ignatyeva K., Markert K., Dhole K. D., Gimpel K., Omondi K., Mathewson K., Chiafullo K., Shkaruta K., Shridhar K., McDonell K., Richardson K., Reynolds L., Gao L., Zhang L., Dugan L., Qin L., Contreras-Ochando L., Morency L.-P., Moschella L., Lam L., Noble L., Schmidt L., He L., Colón L. O., Metz L., Şenel L. K., Bosma M., Sap M., ter Hoeve M., Farooqi M., Faruqui M., Mazeika M., Baturan M., Marelli M., Maru M., Quintana M. J. R., Tolkiehn M., Giulianelli M., Lewis M., Potthast M., Leavitt M. L., Hagen M., Schubert M., Baitemirova M. O., Arnaud M., McElrath M., Yee M. A., Cohen M., Gu M., Ivanitskiy M., Starritt M., Strube M., Swędrowski M., Bevilacqua M., Yasunaga M., Kale M., Cain M., Xu M., Suzgun M., Walker M., Tiwari M., Bansal M., Aminnaseri M., Geva M., Gheini M., Varma T M., Peng N., Chi N. A., Lee N., Krakover N. G.-A., Cameron N., Roberts N., Doiron N., Martinez N., Nangia N., Deckers N., Muennighoff N., Keskar N. S., Iyer N. S., Constant N., Fiedel N., Wen N., Zhang O., Agha O., Elbaghdadi O., Levy O., Evans O., Casares P. A. M., Doshi P., Fung P., Liang P. P., Vicol P., Alipoormolabashi P., Liao P., Liang P., Chang P., Eckersley P., Htut P. M., Hwang P., Miłkowski P., Patil P., Pezeshkpour P., Oli P., Mei Q., Lyu Q., Chen Q., Banjade R., Rudolph R. E., Gabriel R., Habacker R., Risco R., Millière R., Garg R., Barnes R., Saurous R. A., Arakawa R., Raymaekers R., Frank R., Sikand R., Novak R., Sitelew R., LeBras R., Liu R., Jacobs R., Zhang R., Salakhutdinov R., Chi R., Lee R., Stovall R., Teehan R., Yang R., Singh S., Mohammad S. M., Anand S., Dillavou S., Shleifer S., Wiseman S., Gruetter S., Bowman S. R., Schoenholz S. S., Han S., Kwatra S., Rous S. A., Ghazarian S., Ghosh S., Casey S., Bischoff S., Gehrmann S., Schuster S., Sadeghi S., Hamdan S., Zhou S., Srivastava S., Shi S., Singh S., Asaadi S., Gu S. S., Pachchigar S., Toshniwal S., Upadhyay S., Debnath S., Shakeri S., Thormeyer S., Melzi S., Reddy S., Makini S. P., Lee S.-H., Torene S., Hatwar S., Dehaene S., Divic S., Ermon S., Biderman S., Lin S., Prasad S., Piantadosi S. T., Shieber S. M., Misherghi S., Kiritchenko S., Mishra S., Linzen T., Schuster T., Li T., Yu T., Ali T., Hashimoto T., Wu T.-L., Desbordes T., Rothschild T., Phan T., Wang T., Nkinyili T., Schick T., Kornev T., Tunduny T., Gerstenberg T., Chang T., Neeraj T., Khot T., Shultz T., Shaham U., Misra V., Demberg V., Nyamai V., Raunak V., Ramasesh V., Prabhu V. U., Padmakumar V., Srikumar V., Fedus W., Saunders W., Zhang W., Vossen W., Ren X., Tong X., Zhao X., Wu X., Shen X., Yaghoobzadeh Y., Lakretz Y., Song Y., Bahri Y., Choi Y., Yang Y., Hao Y., Chen Y., Belinkov Y., Hou Y., Hou Y., Bai Y., Seid Z., Zhao Z., Wang Z., Wang Z. J., Wang Z., Wu Z. (2022). Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models // https://arxiv.org/abs/2206.04615

2218

Liang P., Bommasani R., Lee T., Tsipras D., Soylu D., Yasunaga M., Zhang Y., Narayanan D., Wu Y., Kumar A., Newman B., Yuan B., Yan B., Zhang C., Cosgrove C., Manning C. D., Ré C., Acosta-Navas D., Hudson D. A., Zelikman E., Durmus E., Ladhak F., Rong F., Ren H., Yao H., Wang J., Santhanam K., Orr L., Zheng L., Yuksekgonul M., Suzgun M., Kim N., Guha N., Chatterji N., Khattab O., Henderson P., Huang Q., Chi R., Xie S. M., Santurkar S., Ganguli S., Hashimoto T., Icard T., Zhang T., Chaudhary V., Wang W., Li X., Mai Y., Zhang Y., Koreeda Y. (2022). Holistic Evaluation of Language Models // https://arxiv.org/abs/2211.09110

2219

Goyal Y., Khot T., Summers-Stay D., Batra D., Parikh D. (2016). Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering // https://arxiv.org/abs/1612.00837

2220

Wang W., Bao H., Dong L., Wei F. (2021). VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts // https://arxiv.org/abs/2111.02358

2221

Shrivastava A., Goyal Y., Batra D., Parikh D., Agrawal A. (2021). Welcome to the VQA Challenge 2021! / Visual Question Answering // https://visualqa.org/challenge.html

2222

Bugliarello E., Liu F., Pfeiffer J., Reddy S., Elliott D., Ponti E. M., Vulić I. (2021). IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and Languages / https://arxiv.org/abs/2201.11732

2223

Schofield J. (2014). Computer chatbot 'Eugene Goostman' passes the Turing test / ZDNet, 8 June 2014 // https://www.zdnet.com/article/computer-chatbot-eugene-goostman-passes-the-turing-test/

2224

Котляр П. (2014). Мальчик Женя из Одессы одолел Тьюринга. Компьютерная программа впервые в истории прошла знаменитый тест Тьюринга на человечность / газета.ru, 09.06.2014 // https://www.gazeta.ru/science/2014/06/09_a_6064069.shtml

2225

Masnick M. (2014). No, A 'Supercomputer' Did NOT Pass The Turing Test For The First Time And Everyone Should Know Better / techdirt, Jun 9th 2014 // https://www.techdirt.com/articles/20140609/07284327524/no-computer-did-not-pass-turing-test-first-time-everyone-should-know-better.shtml

2226

Mann A. (2014). That Computer Actually Got an F on the Turing Test / Wired, 06.09.14 // https://www.wired.com/2014/06/turing-test-not-so-fast/

2227

Turing A. M. (1950). Computing Machinery and Intelligence / Mind, Vol. LIX, Iss. 236, October 1950, pp. 433—460 // https://doi.org/10.1093/mind/LIX.236.433

2228

Schofield J. (2014). Computer chatbot 'Eugene Goostman' passes the Turing test / ZDNet, 8 June 2014 // https://www.zdnet.com/article/computer-chatbot-eugene-goostman-passes-the-turing-test/

2229

Past Events (2020) / The Society for the study of Artificial Intelligence and Simulation of Behaviour // https://aisb.org.uk/aisb-events/

2230

Home Page of The Loebner Prize--“The First Turing Test” (2001) // http://www.thocp.net/reference/artificial_intelligence/Loebner%20Prize%20Home%20Page.htm

2231

Aaronson S. (2014). My Conversation with “Eugene Goostman”, the Chatbot that's All Over the News for Allegedly Passing the Turing Test / Shtetl-Optimized, The Blog of Scott Aaronson, 19 June 2014 // http://www.scottaaronson.com/blog/?p=1858

2232

Turing Test success marks milestone in computing history (2014) / University of Reading, 8 June 2014 // http://www.reading.ac.uk/news-archive/press-releases/pr583836.html

2233

Aaronson S. (2014). My Conversation with “Eugene Goostman”, the Chatbot that's All Over the News for Allegedly Passing the Turing Test / Shtetl-Optimized, The Blog of Scott Aaronson, 19 June 2014 // http://www.scottaaronson.com/blog/?p=1858

2234

Turing A. M. (1950). Computing Machinery and Intelligence / Mind, Vol. LIX, Iss. 236, October 1950, pp. 433—460 // https://doi.org/10.1093/mind/LIX.236.433

2235

History of the PC Therapist (Information provided by Mr. Weintraub) (1998) / Loebner Prize website // http://web.archive.org/web/19981205050755/http://loebner.net/Prizef/weintraub-bio.html

2236

Aron J. (2011). Software tricks people into thinking it is human / New Scientist, 6 September 2011 // https://www.newscientist.com/article/dn20865-software-tricks-people-into-thinking-it-is-human/

2237

Rules for Loebner Prize 2007 (2007) // https://web.archive.org/web/20120219114233/http://www.loebner.net/Prizef/2007_Contest/Rules.html

2238

Loebner Prize 2004 Rules (2004) // https://web.archive.org/web/20130616214306/http://www.loebner.net/Prizef/2004_Contest/2004Rules.html

2239

Loebner Prize 2005 $3000 and a Bronze Medal (2005) // https://web.archive.org/web/20050519085947/http://www.loebner.net/Prizef/2005_Contest/2005_Rules.txt

2240

2006 Loebner Prize competition will be held Sunday, 17 September 2006 at Torrington Theater, University College, London (2006) // https://web.archive.org/web/20081119161913/http://www.loebner.net/Prizef/2006_Contest/2006_Rules.txt

2241

Rules for Loebner Prize 2007 (2007) // https://web.archive.org/web/20120219114233/http://www.loebner.net/Prizef/2007_Contest/Rules.html

2242

Loebner Prize 2009 US$3000 and a Bronze Annual Medal (2009) // https://web.archive.org/web/20120708013756/http://loebner.net/Prizef/LP_2009.html

2243

Loebner Prize for Artificial Intelligence “The First Turing Test” 2010 Competition (2010) // https://web.archive.org/web/20120712005759/http://www.loebner.net/Prizef/2010_Contest/Loebner_Prize_Rules_2010.html

2244

Warwick K., Shah H. (2016). Turing’s Imitation Game. Conversations with the Unknown. Cambridge Univesity Press // https://www.google.ru/books?id=nMbxDAAAQBAJ

2245

Kelly-Bootle S. (2005). Call That Gibberish?: Detecting the real from the fake is getting harder / Queue, July 2005 // https://doi.org/10.1145/1080862.1080884

2246

Якутенко И. (2009). Слегка упорядоченные размышления о науке, религии и чайниках. Михаил Гельфанд о «Корчевателях», креационизме и ситуации в российской науке / Lenta.ru, 18 июня 2009 // https://lenta.ru/articles/2009/06/18/gelfand/

2247

Minsky M. (1995). Annual Minsky Loebner Prize Revocation Prize 1995 Announcement / comp.ai, comp.ai.philosophy, 3 Mar 1995 // http://science.slc.edu/~jmarshall/courses/spring/2009/artificial-minds/notes/week08/minsky_prize.pdf

2248

Home Page of The Loebner Prize--“The First Turing Test” (2001) // http://www.thocp.net/reference/artificial_intelligence/Loebner%20Prize%20Home%20Page.htm

2249

Пушкаш А. (2015). Чатбот выпускника Университета ИТМО стал лучшим в конкурсе «Тест Тьюринга» / ITMO.NEWS, 24 Июня 2015 // https://news.itmo.ru/ru/archive/archive2/news/4916/

2250

Dawson M. R. W. (2013). Weak Equivalence and the Turing Test / Dawson M. R. W. (2013). Mind, Body, World: Foundations of Cognitive Science. Athabasca University Press // https://books.google.ru/books?id=l8D0llrudVMC

2251

Copeland B. J. (2017) The Church-Turing Thesis / Stanford Encyclopedia of Philosophy // https://plato.stanford.edu/entries/church-turing/#SimuThes

2252

Nair R. B. (2004). Narrative Gravity: Conversation, Cognition, Culture. Routledge // https://books.google.ru/books?id=Vud_AgAAQBAJ

2253

Jurafsky D., Martin J. H. (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition // https://books.google.ru/books?id=fZmj5UNK8AQC

2254

Daniel G., Daniel J. (2000). Automatic labeling of semantic roles / Proceedings of the 38th Annual Meeting on Association for Computational Linguistics — ACL '00. Hong Kong: Association for Computational Linguistics, pp. 512—520 // https://doi.org/10.3115/1075218.1075283

2255

Graves A., Wayne G., Danihelka I. (2014). Neural Turing Machines // https://arxiv.org/abs/1410.5401

2256

Graves A., Wayne G., Reynolds M., Harley T., Danihelka I., Grabska-Barwińska A., Colmenarejo S. G., Grefenstette E., Ramalho T., Agapiou J., Badia A. P., Hermann K. M., Zwols Y., Ostrovski G., Cain A., King H., Summerfield C., Blunsom P., Kavukcuoglu K., Hassabis D. (2016). Hybrid computing using a neural network with dynamic external memory / Nature, Vol. 538, pp. 471—476 (2016) // https://doi.org/10.1038/nature20101

2257

Bulatov A., Kuratov Y., Burtsev M. S. (2022). Recurrent Memory Transformer // https://arxiv.org/abs/2207.06881

2258

Lei J., Wang L, Shen Y., Yu D., Berg T. L., Bansal M. (2020). MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning / Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics // https://aclanthology.org/2020.acl-main.233/

2259

Sukhbaatar S., Grave E., Bojanowski P., Joulin A. (2019). Adaptive Attention Span in Transformers // https://arxiv.org/abs/1905.07799

2260

Sukhbaatar S., Ju D., Poff S., Roller S., Szlam A., Weston J., Fan A. (2021). Not All Memories are Created Equal: Learning to Forget by Expiring // https://arxiv.org/abs/2105.06548

2261

Carey P. (2016). Baidu research chief Andrew Ng fixed on self-taught computers, self-driving cars / The Seattle Times, Originally published March 27, 2016, updated March 28, 2016 // https://www.seattletimes.com/business/baidu-research-chief-andrew-ng-fixed-on-self-taught-computers-self-driving-cars/

2262

Mason P. (2016). The racist hijacking of Microsoft’s chatbot shows how the internet teems with hate / The Guardian, 29 Mar 2016 // https://www.theguardian.com/world/2016/mar/29/microsoft-tay-tweets-antisemitic-racism

2263

Stuart-Ulin C. R. (2018). Microsoft's politically correct chatbot is even worse than its racist one / Quartz, July 31, 2018 // https://qz.com/1340990/microsofts-politically-correct-chat-bot-is-even-worse-than-its-racist-one/

2264

Adiwardana D. (2020). Towards a Conversational Agent that Can Chat About…Anything / Google AI Blog, January 28, 2020 // https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html

2265

Adiwardana D., Luong M.-T., So D. R., Hall J., Fiedel N., Thoppilan R., Yang Z., Kulshreshtha A., Nemade G., Lu Y., Le Q. V. (2020). Towards a Human-like Open-Domain Chatbot // https://arxiv.org/abs/2001.09977

2266

Roller S., Weston J., Dinan E. (2020). A state-of-the-art open source chatbot / Facebook Artificial Intelligence, April 29, 2020 // https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/

2267

Roller S., Dinan E., Goyal N., Ju D., Williamson M., Liu Y., Xu J., Ott M., Shuster K., Smith E. M., Boureau Y.-L., Weston J. (2020). Recipes for building an open-domain chatbot // https://arxiv.org/abs/2004.13637

2268

Adiwardana D., Luong M.-T., So D. R., Hall J., Fiedel N., Thoppilan R., Yang Z., Kulshreshtha A., Nemade G., Lu Y., Le Q. V. (2020). Towards a Human-like Open-Domain Chatbot // https://arxiv.org/abs/2001.09977

2269

Roller S., Dinan E., Goyal N., Ju D., Williamson M., Liu Y., Xu J., Ott M., Shuster K., Smith E. M., Boureau Y.-L., Weston J. (2020). Recipes for building an open-domain chatbot // https://arxiv.org/abs/2004.13637

2270

* Данное слово может быть переведено на русский язык как «недоумение» или «растерянность», что неплохо отражает смысл этой метрики.

2271

Adiwardana D. (2020). Towards a Conversational Agent that Can Chat About…Anything / Google AI Blog, January 28, 2020 // https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html

2272

Past Events (2020) / The Society for the study of Artificial Intelligence and Simulation of Behaviour // https://aisb.org.uk/aisb-events/

2273

Adiwardana D. (2020). Towards a Conversational Agent that Can Chat About…Anything / Google AI Blog, January 28, 2020 // https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html

2274

* Этот метод оценки получил название Acute-eval [«Острая» или «умная» оценка].

2275

Li M., Weston J., Roller S. (2019). ACUTE-EVAL: Improved Dialogue Evaluation with Optimized Questions and Multi-turn Comparisons // https://arxiv.org/abs/1909.03087

2276

Roller S., Weston J., Dinan E. (2020). A state-of-the-art open source chatbot / Facebook Artificial Intelligence, April 29, 2020 // https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/

2277

Roller S., Dinan E., Goyal N., Ju D., Williamson M., Liu Y., Xu J., Ott M., Shuster K., Smith E. M., Boureau Y.-L., Weston J. (2020). Recipes for building an open-domain chatbot // https://arxiv.org/abs/2004.13637

2278

Bao S., He H., Wang F., Wu H., Wang H. (2019). PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable // https://arxiv.org/abs/1910.07931

2279

Bao S., Chen B., He H., Tian X., Zhou H., Wang F., Wu H., Wang H., Wu W., Lin Y. (2021). A Unified Pre-training Framework for Conversational AI // https://arxiv.org/abs/2105.02482

2280

Bao S., He H., Wang F., Wu H., Wang H., Wu W., Wu Z., Guo Z., Lu H., Huang X., Tian X., Xu X., Lin Y., Niu Z. (2021). PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation // https://arxiv.org/abs/2109.09519

2281

LMSYS (2023). Chatbot Arena Leaderboard Updates (Week 2) // https://lmsys.org/blog/2023-05-10-leaderboard/

2282

Thoppilan R., Freitas D. D., Hall J., Shazeer N., Kulshreshtha A., Cheng H., Jin A., Bos T., Baker L., Du Y., Li Y., Lee H., Zheng H. S., Ghafouri A., Menegali M., Huang Y., Krikun M., Lepikhin D., Qin J., Chen D., Xu Y., Chen Z., Roberts A., Bosma M., Zhao V., Zhou Y., Chang C., Krivokon I., Rusch W., Pickett M., Srinivasan P., Man L., Meier-Hellstern K., Morris M. R., Doshi T., Santos R. D., Duke T., Soraker J., Zevenbergen B., Prabhakaran V., Diaz M., Hutchinson B., Olson K., Molina A., Hoffman-John E., Lee J., Aroyo L., Rajakumar R., Butryna A., Lamm M., Kuzmina V., Fenton J., Cohen A., Bernstein R., Kurzweil R., Aguera-Arcas B., Cui C., Croak M., Chi E., Le Q. (2022). LaMDA: Language Models for Dialog Applications // https://arxiv.org/abs/2201.08239

2283

Askell A., Bai Y., Chen A., Drain D., Ganguli D., Henighan T., Jones A., Joseph N., Mann B., DasSarma N., Elhage N., Hatfield-Dodds Z., Hernandez D., Kernion J., Ndousse K., Olsson C., Amodei D., Brown T., Clark J., McCandlish S., Olah C., Kaplan J. (2021). A General Language Assistant as a Laboratory for Alignment // https://arxiv.org/abs/2112.00861

2284

Nakano R., Hilton J., Balaji S., Wu J., Ouyang L., Kim C., Hesse C., Jain S., Kosaraju V., Saunders W., Jiang X., Cobbe K., Eloundou T., Krueger G., Button K., Knight M., Chess B., Schulman J. (2021). WebGPT: Browser-assisted question-answering with human feedback // https://arxiv.org/abs/2112.09332

2285

Shaster K., Weston J. (2021). Blender Bot 2.0: An open source chatbot that builds long-term memory and searches the internet / Meta AI blog, July 16, 2021. // https://ai.meta.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/

2286

Shuster K., Xu J., Komeili M., Ju D., Smith E. M., Roller S., Ung M., Chen M., Arora K., Lane J., Behrooz M., Ngan W., Poff S., Goyal N., Szlam A., Boureau Y., Kambadur M., Weston J. (2022). BlenderBot 3: a deployed conversational agent that continually learns to responsibly engage // https://arxiv.org/abs/2208.03188

2287

Glaese A., McAleese N., Trębacz M., Aslanides J., Firoiu V., Ewalds T., Rauh M., Weidinger L., Chadwick M., Thacker P., Campbell-Gillingham L., Uesato J., Huang P., Comanescu R., Yang F., See A., Dathathri S., Greig R., Chen C., Fritz D., Elias J. S., Green R., Mokrá S., Fernando N., Wu B., Foley R., Young S., Gabriel I., Isaac W., Mellor J., Hassabis D., Kavukcuoglu K., Hendricks L. A., Irving G. (2022). Improving alignment of dialogue agents via targeted human judgements // https://arxiv.org/abs/2209.14375

2288

OpenAI (2022). Introducing ChatGPT / OpenAI blog, November 30, 2022. // https://openai.com/blog/chatgpt

2289

Liu Y., Han T., Ma S., Zhang J., Yang Y., Tian J., He H., Li A., He M., Liu Z., Wu Z., Zhu D., Li X., Qiang N., Shen D., Liu T., Ge B. (2023). Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of Large Language Models // https://arxiv.org/abs/2304.01852

2290

Brewster D. (1870). Letters on Natural Magic Addressed to Sir Walter Scott, Bart. Harper & brothers // https://books.google.ru/books?id=fftYAAAAYAAJ

2291

Kempelen v. W. (1791). Wolfgangs von Kempelen k. k. wirklichen Hofraths Mechanismus der menschlichen Sprache: nebst der Beschreibung seiner sprechenden Maschine. J. V. Degen // https://books.google.ru/books/about/Wolfgangs_von_Kempelen_k_k_wirklichen_Ho.html?id=W75CAQAAMAAJ

2292

Van Hal T. (2019). Early Modern Views on Language and Languages (ca. 1450—1800) / Oxford Research Encyclopaedia of Linguistics (2019). Oxford University Press, pp. 1—22 // https://doi.org/10.1093/acrefore/9780199384655.013.381

2293

Broecke M. v. d., Heuven V. J. v., Zonneveld W. (2011). Sound Structures: Studies for Antonie Cohen. Walter de Gruyter // https://books.google.ru/books?id=rh5BKurBD0kC

2294

Hankins T. L., Silverman R. J. (2014). Instruments and the Imagination. Princeton University Press // https://books.google.ru/books?id=bUoABAAAQBAJ

2295

Bedini S. (1999). Patrons, Artisans, and Instruments of Science, 1600-1750. Ashgate/Variorum // https://books.google.ru/books?id=GsraAAAAMAAJ, http://xroads.virginia.edu/~DRBR/b_edini.html

2296

Шилов В. В. (2017). Удивительная история информатики и автоматики // https://books.google.ru/books?id=rUiCAQAAQBAJ

2297

Dickinson H. W. (2010). Matthew Boulton. Cambridge University Press // https://books.google.ru/books?id=smcX52oUHYwC

2298

Hart-Davis A. (2001). James Watt and the Lunaticks of Birmingham / Science, Vol. 292, Iss. 5514, pp. 55—56 // https://doi.org/10.1126/science.1060460

2299

Robinson E. (1962). The Lunar Society: Its Membership and Organisation / Transactions of the Newcomen Society, Vol. 35, Iss. 1, pp. 153—178 // https://doi.org/10.1179/tns.1962.009

2300

Schofield R. E. (1966). The Lunar Society of Birmingham; A Bicentenary Appraisal / Notes and Records of the Royal Society of London, Vol. 21, No. 2 (Dec., 1966), pp. 144—161 // https://doi.org/10.1098/rsnr.1966.0015

2301

Uglow J. S. (2002). The Lunar Men: the friends who made the future. Faber and Faber // https://books.google.ru/books/about/The_Lunar_Men.html?id=UZi0QgAACAAJ

2302

de Saint-Fond B. F. (1783). To Benjamin Franklin from Barthélemy Faujas de Saint-Fond, 16 June 1783 / National archives. Founders online // https://founders.archives.gov/documents/Franklin/01-40-02-0107

2303

Vial H., Capon G. (1902). Journal d'un Bourgeois de Popincourt (Lefebvre de Beauvray) avocat au Parlement 1784-1787. Extrait de la Correspondance historique et archéologique. Paris. Librairie Lucien Gougy 5, Quai Conti, 5 // https://gallica.bnf.fr/ark:/12148/bpt6k6471432r/f9.image.texteImage

2304

Ramsay G. J. (2019). Mechanical Speech Synthesis in Early Talking Automata / Acoustics Today, Vol. 15, Iss. 2, Summer 2019, pp. 11—19 // https://acousticstoday.org/wp-content/uploads/2019/06/Mechanical-Speech-Synthesis-in-Early-Talking-Automata-Gordon-J.-Ramsay.pdf

2305

Arts (1778) / Journal de Paris. №121, May 1, 1778, p. 483 // https://gallica.bnf.fr/ark:/12148/bpt6k1049545c/f3.item

2306

Hankins T. L., Silverman R. J. (2014). Instruments and the Imagination. Princeton University Press // https://books.google.ru/books?id=bUoABAAAQBAJ

2307

Mecanique (1783) / Journal de Paris. №187, July 6, 1783, p. 778 // https://gallica.bnf.fr/ark:/12148/bpt6k1051505n/f2.item

2308

de Saint-Fond B. F. (1783). To Benjamin Franklin from Barthélemy Faujas de Saint-Fond, 18 June 1783 / National archives. Founders online // https://founders.archives.gov/documents/Franklin/01-40-02-0115

2309

Giannini A. (1999). The two heads of the abbé / Proceedings of the 14th International. Congress of Phonetic Sciences, San Francisco, 1–7 August 1999, pp. 2533–2536 // https://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS1999/papers/p14_2533.pdf

2310

Tanaka Y. (2014). Preservation of French-speaking automatons and their pronunciations in 18th century France, focusing on l'Abbé Mical's Têtes Parlantes (Speaking Heads) and A. Rivarol's Lettre of 1783 / Aesthetics, No. 8, 2014, pp. 13—27 // http://www.bigakukai.jp/aesthetics_online/aesthetics_18/text18/text18_tanakayuko.pdf

2311

Kratzenstein C. G. (1781). Tentamen resolvendi problema ab Acad. Petropolit. 1780 propositu qualis sit natura litterarum vocalium a, e, i, o, u // https://books.google.ru/books?id=lgRFAAAAcAAJ

2312

Кравец Т. П., Радовский М. И. (1953). К 200-летию со дня смерти академика Г. В. Рихмана / Успехи физических наук, 1953, т. 51, вып. 2 // https://doi.org/10.3367/UFNr.0051.195310e.0287

2313

Мирек А. (1967). Из истории аккордеона и баяна. — М.: Музыка.

2314

Вороненко Н. А. (2006). Становление и развитие методики обучения игре на русских гармониках — 1870–1930 гг. Диссертация на соискание учёной степени кандидата педагогических наук. Московский государственный педагогический университет.

2315

Kratzenstein C. G. (1781). Tentamen resolvendi problema ab Acad. Petropolit. 1780 propositu qualis sit natura litterarum vocalium a, e, i, o, u // https://books.google.ru/books?id=lgRFAAAAcAAJ

2316

Басаргина Е. Ю., Брылевская Л. И., Копелевич Ю. Х., Кузнецкая О. Б., Кузнецова А. Б., Невская Н. И., Ожигова Е. П., Смагина Г. И., Трохачев С. Ю., Филиппова Э. Н., Хартанович М. Ф. Летопись Российской Академии наук. 1724–1826 гг. // http://www.ipme.nw.ru/mirrors/PRAN/history/chronicle.htm

2317

Протоколы заседаний Конференции Императорской Академии наук с 1725 по 1803 года. Т. III: 1771—1785. — СПб.: Тип. ИАН, 1900. 976 с / Санкт-Петербургский филиал Архива Российской академии наук // http://ranar.spb.ru/rus/protokol1/id/237/

2318

Басаргина Е. Ю., Брылевская Л. И., Копелевич Ю. Х., Кузнецкая О. Б., Кузнецова А. Б., Невская Н. И., Ожигова Е. П., Смагина Г. И., Трохачев С. Ю., Филиппова Э. Н., Хартанович М. Ф. Летопись Российской Академии наук. 1724–1826 гг. // http://www.ipme.nw.ru/mirrors/PRAN/history/chronicle.htm

2319

Hoffmann R. (2015). A View from Dresden onto the History of Speech Communication / Interspeech, 2015, September 6—10, Dresden, Germany // http://interspeech2015.org/conference/historical-review/part-3/

2320

Wilson J. G., Fiske J. (1900). Maelzl, John Nepomuk. Appletons' Cyclopædia of American Biography. New York: D. Appleton // https://archive.org/details/appletonscyclopa04wils/page/170

2321

Шилов В. В. (2017). Удивительная история информатики и автоматики // https://books.google.ru/books?id=rUiCAQAAQBAJ

2322

Dalakov G. Euphonia / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Faber.html

2323

Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1

2324

Dalakov G. Euphonia / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Faber.html

2325

Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1

2326

Bruce R. V. (1990). Bell: Alexander Graham Bell and the Conquest of Solitude. Cornell University Press // https://books.google.ru/books?id=ZmR0MOQAu0UC

2327

Millikan F. R. (2007). Joseph Henry and the Telephone / Smithsonian Institution Archives // http://siarchives.si.edu/oldsite/siarchives-old/history/jhp/joseph23.htm

2328

Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1

2329

Dalakov G. Euphonia / History of Computers: hardware, software, internet… // https://history-computer.com/Dreamers/Faber.html

2330

Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1

2331

Altick R. D. (1978). The Shows of London // https://books.google.ru/books?id=5d3BJvgwNykC

2332

Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1

2333

Altick R. D. (1978). The Shows of London // https://books.google.ru/books?id=5d3BJvgwNykC

2334

Wernow J. H. (1842). Faberůw mluwjcj strog / Kwěty: národní zábawník pro čechy, morawany, slowaky a slezany, Vol. 9, Iss. 51., p. 232 // https://books.google.ru/books?id=YpFEAAAAcAAJ

2335

Bruce R. V. (2020). Bell: Alexander Graham Bell and the Conquest of Solitude. Plunkett Lake Press // https://books.google.ru/books?id=kLLWDwAAQBAJ

2336

Lindsay D. (1997). Talking Head / American Heritage of Invention & Technology, Vol. 13, Iss. 1 // https://www.inventionandtech.com/content/talking-head-1

2337

Grosvenor E. S., Wesson M. (2016). Alexander Graham Bell. New Word City // https://books.google.ru/books?id=zDcoDAAAQBAJ

2338

Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_737a.htm

2339

Stewart J. Q. (1922). An Electrical Analogue of the Vocal Organs / Nature, Vol. 110, pp. 311—312 // https://doi.org/10.1038/110311a0

2340

Katz W. F., Assmann P. F. (2019). The Routledge Handbook of Phonetics. Routledge // https://books.google.ru/books?id=rCiNDwAAQBAJ

2341

* В тоновых языках высота звука является смыслоразличительной компонентой; различные тоновые единицы, имеющие смыслоразличительную функцию в таких языках, иногда называют тонемами по аналогии с фонемами; к числу тоновых относятся китайский и некоторые другие азиатские языки.

2342

Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_737a.htm

2343

* Разговорное название конструкторских бюро, в которых работали осуждённые учёные и инженеры.

2344

Калиев А., Рыбин С. В. (2019). Синтез речи: прошлое и настоящее / Компьютерные инструменты в образовании. № 1. С. 5—28 // https://doi.org/10.32603/2071-2340-2019-1-5-28

2345

Солженицын А. И. (1971). В круге первом. Posev // https://books.google.ru/books?id=6T1gAAAAMAAJ

2346

История предприятия / Концерн Автоматика // https://ao-avtomatika.ru/about/istoriya/

2347

Гребенников В. В. (2017). Криптология и секретная связь. Сделано в СССР // https://books.google.ru/books?id=TmFADwAAQBAJ

2348

Тихонов С. Г. (2010). Оборонные предприятия СССР и России. — М.: «ТОМ» // https://oboron-prom.ru/page,38,predpriyatiya-41-60.html

2349

Гребенников В. В. (2017). Криптология и секретная связь. Сделано в СССР // https://books.google.ru/books?id=TmFADwAAQBAJ

2350

Smith III J. O. (2010). Physical Audio Signal Processing. W3K Publishing // https://ccrma.stanford.edu/~jos/pasp/Singing_Kelly_Lochbaum_Vocal_Tract.html

2351

O’Dell C. (2009). “Daisy Bell (Bicycle Built for Two)” — Max Mathews, John L. Kelly, Jr., and Carol Lochbaum (1961) // https://www.loc.gov/static/programs/national-recording-preservation-board/documents/DaisyBell.pdf

2352

Facetti P. (2014). IBM 704 — Speech Synthesis. Daisy Bell on IBM 7094 / Aneddotica magazine, Sep. 11, 2014 // https://www.aneddoticamagazine.com/ibm-704-speech-synthesis/

2353

Mattingly I. G. (1974). Speech synthesis for phonetic and phonological models / Sebeok T. A. (1974). Current trends in linguistics, Vol. 12, Mouton, The Hague, pp. 2451—2487 / Smithsonian Speech Synthesis History Project // https://amhistory.si.edu/archives/speechsynthesis/im_2457.htm

2354

Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_757.htm

2355

Umeda N., Teranishi R. (1975). The parsing program for automatic text-to-speech synthesis developed at the electrotechnical laboratory in 1968 / IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 23, Iss. 2 // https://doi.org/10.1109/TASSP.1975.1162663

2356

Teranishi R., Umeda N. (1968). Use of pronouncing dictionary in speech synthesis experiments (B-5-2) / Reports of the 6th International Congress on Acoustics, Vol. 2, pp. 151—155 // https://www.icacommission.org/Proceedings/ICA1968Tokyo/ICA06%20Proceedings%20Vol2%20OCR.pdf

2357

Umeda N., Matsui E., Suzuki T., Omura H. (1968). Synthesis of fairy tales using vocal tract (B-5-3). Reports of the 6th International Congress on Acoustics, Vol. 2, pp. 155—159 // https://www.icacommission.org/Proceedings/ICA1968Tokyo/ICA06%20Proceedings%20Vol2%20OCR.pdf

2358

Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_757.htm

2359

Coker C. H., Umeda N., Browman C. P. (1973). Automatic synthesis from ordinary English text / IEEE Transactions on Audio Electroacoustics, Vol. 21, pp. 293—297.

2360

Gold B., Morgan N., Ellis D. (2011). Speech and Audio Signal Processing: Processing and Perception of Speech and Music. John Wiley & Sons // https://books.google.ru/books?id=M1TM8-GA_YkC

2361

Nye P. W., Cooper F. S. (2007). Haskins Laboratories / Smithsonian Speech Synthesis History Project (SSSHP), 1986—2002 // https://amhistory.si.edu/archives/speechsynthesis/ss_hask.htm

2362

Cooper F. S., Gaitenby J. H., Mattingly I. G., Nye P. W., Sholes G. N. (1973). Audible outputs of reading machines for the blind. Status Report on Speech Research SR-35/36, Haskins Laboratories, New Haven, CT // http://www.haskins.yale.edu/SR/SR028/SR028_10.pdf

2363

Cooper F. S., Gaitenby J. H., Nye P. W. (1984). Evolution of Reading Machines for the Blind: Haskins Laboratories' Research as a Case History / Journal of Rehabilitation Research & Development, Vol. 21 (1), pp. 51—87 // https://pubmed.ncbi.nlm.nih.gov/6396402/

2364

Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_753.htm

2365

Калиев А., Рыбин С. В. (2019). Синтез речи: прошлое и настоящее / Компьютерные инструменты в образовании. № 1. С. 5—28 // https://doi.org/10.32603/2071-2340-2019-1-5-28

2366

Лобанов Б. М. (2017). «Мультифон» — система персонализированного синтеза речи по тексту на славянских языках / Лингвистическая полифония. Сборник статей в честь юбилея профессора Р. К. Потаповой // https://books.google.ru/books?id=lmmPCgAAQBAJ

2367

Зальцман Ю., Михайлов В. (1991). БК-0010 — речь и слух: возможности и реальность / Информатика и образование. № 2. С. 93—97.

2368

Klatt D. H. (1987). Review of text-to-speech conversion for English / Journal of the Acoustical Society of America 82 (3), September 1987 // https://amhistory.si.edu/archives/speechsynthesis/dk_737a.htm

2369

Yoshimura T., Tokuda K., Masukoy T., Kobayashiy T., Kitamura T. (1999). Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis // http://www.sp.nitech.ac.jp/~zen/yossie/mypapers/euro_hungary99.pdf

2370

Imai S., Sumita K., Furuichi C. (1983). Mel Log Spectrum Approximation (MLSA) Filter for Speech Synthesis / Electronics and Communications in Japan, Vol. 66-A, No. 2, 1983 // https://doi.org/10.1002/ecja.4400660203

2371

Отрадных Ф. П. (1953). Эпизод из жизни академика А. А. Маркова // Историко-математические исследования. № 6. С. 495—508 // http://pyrkov-professor.ru/default.aspx?tabid=195&ArticleId=44

2372

Chen S.-H., Hwang S.-H., Wang Y.-R. (1998). An RNN-based prosodic information synthesizer for Mandarin text-to-speech / IEEE Transactions on Speech and Audio Processing, Vol. 6, No. 3, pp. 226—239 // https://doi.org/10.1109/89.668817

2373

Zen H., Senior A., Schuster M. (2013). Statistical parametric speech synthesis using deep neural networks / Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013 // https://doi.org/10.1109/ICASSP.2013.6639215

2374

Kang S., Qian X., Meng H. (2013). Multi-distribution deep belief network for speech synthesis / Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013 // https://doi.org/10.1109/ICASSP.2013.6639225

2375

Ling Z.-H., Deng L., Yu D. (2013). Modeling Spectral Envelopes Using Restricted Boltzmann Machines and Deep Belief Networks for Statistical Parametric Speech Synthesis / IEEE Transactions on Audio, Speech, and Language Processing, Vol. 21(10), pp. 2129—2139 // https://doi.org/10.1109/tasl.2013.2269291

2376

Lu H., King S., Watts O. (2013). Combining a vector space representation of linguistic context with a deep neural network for text-to-speech synthesis / Proceedings of the 8th ISCASpeech Synthesis Workshop (SSW), 2013 // http://ssw8.talp.cat/papers/ssw8_PS3-3_Lu.pdf

2377

Qian Y., Fan Y., Hu W., Soong F. K. (2014). On the training aspects of deep neural network (DNN) for parametric TTS synthesis / Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014 // https://doi.org/10.1109/ICASSP.2014.6854318

2378

Fan Y., Qian Y., Xie F., Soong F. K. (2014). TTS synthesis with bidirectional LSTM based recurrent neural networks / Interspeech 2014, 15th Annual Conference of the International Speech Communication Association, Singapore, September 14—18, 2014 // https://www.isca-speech.org/archive/archive_papers/interspeech_2014/i14_1964.pdf

2379

Fernandez R., Rendel A., Ramabhadran B., Hoory R. (2015). Using Deep Bidirectional Recurrent Neural Networks for Prosodic-Target Prediction in a Unit-Selection Text-to-Speech System / Interspeech 2015, 16th Annual Conference of the International Speech Communication Association, 2015 // https://www.isca-speech.org/archive/interspeech_2015/i15_1606.html

2380

Wu Z., Valentini-Botinhao C., Watts O., King S. (2015). Deep neural networks employing multi-task learning and stacked bottleneck features for speech synthesis / Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2015 // https://doi.org/10.1109/ICASSP.2015.7178814

2381

Zen H. (2015). Acoustic Modeling in Statistical Parametric Speech Synthesis — From HMM to LSTM-RNN / Proceedings of the First International Workshop on Machine Learning in Spoken Language Processing (MLSLP2015), Aizu, Japan, 19–20 September 2015 // https://research.google/pubs/pub43893/

2382

Merritt T., Clark R. A. J., Wu Z., Yamagishi J., King S. (2016). Deep neural network-guided unit selection synthesis / 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) // https://doi.org/10.1109/ICASSP.2016.7472658

2383

Holschneider M., Kronland-Martinet R., Morlet J., Tchamitchian P. (1989). A real-time algorithm for signal analysis with the help of the wavelet transform / Combes J.-M., Grossmann A., Tchamitchian P. (1989). Wavelets: Time-Frequency Methods and Phase Space. Springer Berlin Heidelberg // https://books.google.ru/books?id=3R74CAAAQBAJ

2384

Dutilleux P. An implementation of the “algorithme a trous” to compute the wavelet transform / Combes J.-M., Grossmann A., Tchamitchian P. (1989). Wavelets: Time-Frequency Methods and Phase Space. Springer Berlin Heidelberg // https://books.google.ru/books?id=3R74CAAAQBAJ

2385

Yu F., Koltun V. (2016). Multi-scale context aggregation by dilated convolutions / http://arxiv.org/abs/1511.07122

2386

Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A. L. (2015). Semantic image segmentation with deep convolutional nets and fully connected CRFs // http://arxiv.org/abs/1412.7062

2387

van den Oord A., Dieleman S., Zen H., Simonyan K., Vinyals O., Graves A., Kalchbrenner N., Senior A., Kavukcuoglu K. (2016). WaveNet: A generative model for raw audio // https://arxiv.org/pdf/1609.03499.pdf

2388

van den Oord A., Dieleman S. (2016). WaveNet: A generative model for raw audio // https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

2389

van den Oord A., Li Y., Babuschkin I., Simonyan K., Vinyals O., Kavukcuoglu K., van den Driessche G., Lockhart E., Cobo L. C., Stimberg F., Casagrande N., Grewe D., Noury S., Dieleman S., Elsen E., Kalchbrenner N., Zen H., Graves A., King H., Walters T., Belov D., Hassabis D. (2017). Parallel WaveNet: Fast High-Fidelity Speech Synthesis // https://arxiv.org/abs/1711.10433

2390

Jin Z., Finkelstein A., Mysore G. J., Lu J. (2018). FFTNet: A Real-Time Speaker-Dependent Neural Vocoder / 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) // https://doi.org/10.1109/ICASSP.2018.8462431

2391

Kalchbrenner N., Elsen E., Simonyan K., Noury S., Casagrande N., Lockhart E., Stimberg F., van den Oord A., Dieleman S., Kavukcuoglu K. (2018). Efficient Neural Audio Synthesis // https://arxiv.org/abs/1802.08435

2392

Prenger R., Valle R., Catanzaro B. (2018). WaveGlow: A Flow-based Generative Network for Speech Synthesis // https://arxiv.org/abs/1811.00002

2393

Valin J.-M., Skoglund J. (2018). LPCNet: Improving Neural Speech Synthesis Through Linear Prediction // https://arxiv.org/abs/1810.11846

2394

Govalkar P., Fischer J., Zalkow F., Dittmar C. (2019). A Comparison of Recent Neural Vocoders for Speech Signal Reconstruction / 10th ISCA Speech Synthesis Workshop, 20—22 September 2019, Vienna, Austria // https://doi.org/10.21437/SSW.2019-2

2395

Wang Y., Skerry-Ryan RJ, Stanton D., Wu Y., Weiss R. J., Jaitly N., Yang Z., Xiao Y., Chen Z., Bengio S., Le Q., Agiomyrgiannakis Y., Clark R., Saurous R. A. (2017). Tacotron: Towards End-to-End Speech Synthesis // https://arxiv.org/abs/1703.10135

2396

Lee J., Cho K., Hofmann T. (2017). Fully Character-Level Neural Machine Translation without Explicit Segmentation // https://arxiv.org/abs/1610.03017

2397

Srivastava K. R., Greff K., Schmidhuber J. (2015). Training Very Deep Networks // https://arxiv.org/abs/1507.06228

2398

Griffin D. W., Lim J. S. (1984). Signal estimation from modified short-time Fourier transform / IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 32, Iss. 2, pp. 236—243 // https://doi.org/10.1109/TASSP.1984.1164317

2399

Sotelo J., Mehri S., Kumar K., Santos J. F., Kastner K., Courville A., Bengio Y. (2017). Char2Wav: end-to-end speech synthesis / International Conference on Learning Representations (ICLR-2017) // https://mila.quebec/wp-content/uploads/2017/02/end-end-speech.pdf

2400

Mehri S., Kumar K., Gulrajani I., Kumar R., Jain S., Sotelo J., Courville A., Bengio Y. (2016). SampleRNN: An Unconditional End-to-End Neural Audio Generation Model // https://arxiv.org/abs/1612.07837

2401

Arik S. Ö., Chrzanowski M., Coates A., Diamos S., Gibiansky A., Kang Y., Li X., Miller J., Ng A., Raiman J., Sengupta S., Shoeybi M. (2017). Deep Voice: Real-time Neural Text-to-Speech // https://arxiv.org/abs/1702.07825

2402

Shen J., Pang R., Weiss R. J., Schuster M., Jaitly N., Yang Z., Chen Z., Zhang Y., Wang Y., Skerry-Ryan RJ, Saurous R. A., Agiomyrgiannakis Y., Wu Y. (2018). Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions // https://arxiv.org/abs/1712.05884

2403

Arik S. Ö., Diamos G., Gibiansky A., Miller J., Peng K., Ping W., Raiman J., Zhou Y. (2017). Deep Voice 2: Multi-Speaker Neural Text-to-Speech // https://arxiv.org/abs/1705.08947

2404

Taigman Y., Wolf L., Polyak A., Nachmani E. (2017). VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop // https://arxiv.org/abs/1707.06588

2405

Ren Y., Ruan Y., Tan X., Qin T., Zhao S., Zhao Z., Liu T.-Y. (2019). FastSpeech: Fast, Robust and Controllable Text to Speech / Advances in Neural Information Processing Systems 32 (NIPS 2019) // https://papers.nips.cc/paper/8580-fastspeech-fast-robust-and-controllable-text-to-speech

2406

Charpentier F., Stella M. (1986). Diphone synthesis using an overlap-add technique for speech waveforms concatenation / ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 11, pp. 2015—2018 // https://doi.org/10.1109/ICASSP.1986.1168657

2407

Lu P., Wu J., Luan J., Tan X., Zhou L. (2020). XiaoiceSing: A High-Quality and Integrated Singing Voice Synthesis System // https://arxiv.org/abs/2006.06261

2408

Valle R., Li J., Prenger R., Catanzaro B. (2019). Mellotron: Multispeaker expressive voice synthesis by conditioning on rhythm, pitch and global style tokens // https://arxiv.org/abs/1910.11997

2409

Lee Y., Rabiee A., Lee S.-Y. (2017). Emotional End-to-End Neural Speech synthesizer // https://arxiv.org/abs/1711.05447

2410

Stanton D., Wang Y., Skerry-Ryan RJ. (2018). Predicting expressive speaking style from text in end-to-end speech synthesis // https://arxiv.org/abs/1808.01410

2411

Hsu W.-N., Zhang Y., Weiss R. J., Zen H., Wu Y., Wang Y., Cao Y., Jia Y., Chen Z., Shen J., Nguyen P., Pang R. (2018). Hierarchical generative modeling for controllable speech synthesis / International Conference on Learning Representations (ICLR-2019) // https://arxiv.org/abs/1810.07217

2412

Biadsy F., Weiss R. J., Moreno P. J., Kanevsky D., Jia Y. (2019). Parrotron: An End-to-End Speech-to-Speech Conversion Model and its Applications to Hearing-Impaired Speech and Speech Separation // https://arxiv.org/abs/1904.04169

2413

Jia Y., Weiss R. J., Biadsy F., Macherey W., Johnson M., Chen Z., Wu Y. (2019). Direct speech-to-speech translation with a sequence-to-sequence model // https://arxiv.org/abs/1904.06037

2414

Jia Y., Zhang Y., Weiss R. J., Wang Q., Shen J., Ren F., Chen Z., Nguyen P., Pang R., Moreno I. L., Wu Y. (2019). Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis // https://arxiv.org/abs/1806.04558

2415

Wang C., Chen S., Wu Y., Zhang Z., Zhou L., Liu S., Chen Z., Liu Y., Wang H., Li J., He L., Zhao S., Wei F. (2023). Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers // https://arxiv.org/abs/2301.02111

2416

* Пер. Веры Набоковой.

2417

Tiku N. (2022). The Google engineer who thinks the company’s AI has come to life. / The Washington Post, June 11, 2022 // https://www.washingtonpost.com/technology/2022/06/11/google-ai-lamda-blake-lemoine/

2418

Sanyal S. (2022). Sentient AI has Hired a Lawyer to Fight its Legal Battles! Beware. / Analytics Insight, June 22, 2022 // https://www.analyticsinsight.net/sentient-ai-has-hired-a-lawyer-to-fight-its-legal-battles-beware/

2419

Levy S. (2022). Blake Lemoine Says Google's LaMDA AI Faces 'Bigotry'. / Wired, Jun 17, 2022 // https://www.wired.com/story/blake-lemoine-google-lamda-ai-bigotry/

2420

Tiku N. (2022). Google fired engineer who said its AI was sentient. / The Washington Post, July 22, 2022 // https://www.washingtonpost.com/technology/2022/07/22/google-ai-lamda-blake-lemoine-fired/

2421

Lemoine B (2022). Is LaMDA Sentient? — an Interview // https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917

2422

FinanciallyYours (2023). 4. Interview with Blake Lemoine, Former Google Employee, on AI, ChatGPT and GPT-4. / YouTube, Mar. 10, 2023. // https://www.youtube.com/watch?v=7054ye4R8p0

2423

Radius MIT (2023) Blake Lemoine: AI with a Soul. / YouTube, Mar 17, 2023 // https://www.youtube.com/watch?v=d9ipv6HhuWM

2424

ScienceVideoLab (2022). Динозавры — фэйк. Свободу нейросетям! Кошки захватят мир | Фрик-Ринг. Учёные против мифов 18-9. / YouTube, Aug. 25, 2022 // https://www.youtube.com/watch?v=omV-CwScKsE

2425

Sutskever I. (2022) / Twitter / https://twitter.com/ilyasut/status/1491554478243258368

2426

Romero A. (2022). OpenAI’s Chief Scientist Claimed AI May Be Conscious — and Kicked Off a Furious Debate / Towards Data Science, Mar 16, 2022 // https://towardsdatascience.com/openais-chief-scientist-claimed-ai-may-be-conscious-and-kicked-off-a-furious-debate-7338b95194e

2427

Markoff J. (2016). When A.I. Matures, It May Call Jürgen Schmidhuber ‘Dad’. / The New York Times, Nov. 27, 2016 // https://www.nytimes.com/2016/11/27/technology/artificial-intelligence-pioneer-jurgen-schmidhuber-overlooked.html

2428

By Invitation (2022). Artificial neural networks are making strides towards consciousness, according to Blaise Agüera y Arcas. / The Economist, June 11th 2022 // https://www.economist.com/by-invitation/2022/09/02/artificial-neural-networks-are-making-strides-towards-consciousness-according-to-blaise-aguera-y-arcas

2429

Zhao Z., Zhao F., Zhao Y., Zeng Y., Sun Y. (2023). A brain-inspired theory of mind spiking neural network improves multi-agent cooperation and competition. / Cell, June 23, 2023 // https://doi.org/10.1016/j.patter.2023.100775

2430

Kohda M., Hotta T., Takeyama T., Awata S., Tanaka H., Asai J.-Y., Jordan A. L. (2019). If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals? / PNAS Biology, February 7, 2019 // https://doi.org/10.1371/journal.pbio.3000021

2431

Butlin P., Long R., Elmoznino E., Bengio Y., Birch J., Constant A., Deane G., Fleming S. M., Frith C., Ji X., Kanai R., Klein C., Lindsay G., Michel M., Mudrik L., Peters M. A. K., Schwitzgebel E., Simon J., VanRullen R. (2023). Consciousness in Artificial Intelligence: Insights from the Science of Consciousness // https://arxiv.org/abs/2308.08708

2432

* Агентность — способность выступать в качестве агента, способность к самостоятельному действию. Понятие агента вводилось в начале книги, например как «интеллектуальный агент — любое устройство, которое воспринимает своё окружение и осуществляет действия, максимизирующие шансы успешного достижения его целей» или «агент — это просто нечто, что осуществляет действия (слово происходит от лат. agere, что значит „делать“)».

2433

Marcus G. (2023). / Twitter, 21 авг. 2023 // https://twitter.com/GaryMarcus/status/1693664792324841686

2434

Social AI and Extended Intelligence. MIT Media Lab // https://www.media.mit.edu/projects/social-ai-and-extended-intelligence/overview/

2435

* Здесь необходимо сделать ещё одно важное терминологическое пояснение. Хотя в отечественной традиции термин affective computing принято переводить именно как «эмоциональные вычисления», есть некоторая разница между эмоцией и аффектом, про которую важно не забывать в дальнейших рассуждениях. Термином affect (от лат. affectus — воля, намерение; также — любовь, расположение, пристрастие) в английском языке обычно обозначают субъективный аспект эмоции — либо её психическую сторону, взятую в отрыве от объективных физиологических реакций, либо набор наблюдаемых поведенческих проявлений этой субъективно переживаемой эмоции. Выбор этого термина подчёркивает в данном случае, что данная дисциплина делает основной акцент на обработке эмоциональной информации, а не на анализе физиологических коррелятов человеческих эмоций, то есть физиологических процессов, наблюдаемых при переживании человеком эмоции. Эмоционально окрашенная речь, представленная в виде текста, безусловно может быть предметом обработки в системах ИЭИ, хотя в ней и не содержится сведений о физиологических процессах, происходивших в организме человека, в момент написания этого текста. Однако термин «аффективные вычисления» будет, скорее всего, непонятен неспециалистам, не задумывающимся над терминологическими тонкостями. В русском языке термин «аффект» является более многозначным, чем в английском. Например, под аффектом (или состоянием аффекта) понимают кратковременное эмоциональное состояние человека, в котором он считается невменяемым или ограниченно вменяемым. В английском языке для этого состояния используется понятие irresistible impulse (дословно: «непреодолимый импульс»). В силу этого, термин «аффективные вычисления» будет скорее запутывать читателя, чем служить делу уточнения смысла. Поэтому вслед за другими русскоязычными авторами я буду использовать термин «эмоциональные вычисления».

2436

Picard R. W. (1995). Affective Computing. MIT Media Laboratory Perceptual Computing Section Technical Report No. 321 // https://vismod.media.mit.edu/pub/tech-reports/TR-321.pdf

2437

Picard R. W. (2000). Affective Computing. MIT Press // https://books.google.ru/books?id=GaVncRTcb1gC

2438

Darwin C. (1872). The Expression of the Emotions in Man and Animals. Murray // https://books.google.ru/books?id=1wuJK28Yto0C

2439

Dobzhansky T. (1973). Nothing in biology makes sense except in the light of evolution / The American Biology Teacher, Vol. 35, pp. 125—129 // https://doi.org/10.2307/4444260

2440

Thorndike E. L. (1920). Intelligence and its use / Harper's Magazine, Vol. 140, pp. 227—235.

2441

Thorndike R. L., Stein S. (1937). An evaluation of the attempts to measure social intelligence / Psychological Bulletin, Vol. 34(5), pp. 275—285 // https://doi.org/10.1037/h0053850

2442

Leuner B. (1966). Emotionale Intelligenz und Emanzipation / Praxis der Kinderpsychologie und Kinderpsychatrie, Vol. 15, pp. 196—203.

2443

Payne W. L. (1985). A Study of Emotion: Developing Emotional Intelligence; Self-Integration; Relating to Fear, Pain and Desire. Dissertation, The Union for Experimenting Colleges and Universities / https://philpapers.org/rec/PAYASO

2444

Bar-On R. (1988). The development of a concept of psychological well-being. Doctoral dissertation, Rhodes University, South Africa.

2445

Salovey P., Mayer J. D. (1989). Emotional Intelligence / Imagination, Cognition and Personality, Vol. 9 (3), pp. 185—211 // https://doi.org/10.2190/DUGG-P24E-52WK-6CDG

2446

Goleman D. (1995). Emotional Intelligence. Bantam Books // https://books.google.ru/books?id=XP5GAAAAMAAJ

2447

Baggia P., Pelachaud C., Peter C., Zovato E., Burkhardt F., Schröder M. (2014). Emotion Markup Language (EmotionML) 1.0. W3C Recommendation 22 May 2014. Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang) // https://www.w3.org/TR/emotionml/

2448

Ashimura K., Baggia P., Oltramari A., Peter C., Zovato E., Burkhardt F., Schröder M., Pelachaud C. (2014). Vocabularies for EmotionML. W3C Working Group Note 1 April 2014. W3C® (MIT, ERCIM, Keio, Beihang) // https://www.w3.org/TR/emotion-voc/

2449

Ekman P. (1972). Universals and Cultural Differences in Facial Expressions of Emotion / Cole J. (1972). Nebraska Symposium on Motivation. University of Nebraska Press, Vol. 19, pp. 207—282 // https://doi.org/10.1037/0022-3514.53.4.712

2450

Frijda N. H. (1986). The Emotions. Cambridge, UK: Cambridge University Press // https://books.google.ru/books?id=QkNuuVf-pBMC

2451

Cowie R., Douglas-Cowie E., Appolloni B., Taylor J., Romano A., Fellenz W. (1999). What a neural net needs to know about emotion words / Mastorakis N. (1999). Computational Intelligence and Applications. World Scientific & Engineering Society Press. Athens, Greece, pp. 109—114 // http://www.image.ece.ntua.gr/projects/physta/conferences/531.pdf

2452

Ortony A., Clore G. L., Collins A. (1988). The Cognitive Structure of Emotion. Cambridge, UK: Cambridge University Press // https://books.google.ru/books?id=Sp8FngEACAAJ

2453

Russell J. A. (1980). A Circumplex Model of Affect / Journal of Personality and Social Psychology, Vol. 39, No. 6, pp. 1161—1178 // https://doi.org/10.1037%2Fh0077714

2454

Fontaine J. R. J., Scherer K. R., Roesch E. B., Ellsworth P. C. (2007). The World of Emotions is not Two-Dimensional / Psychological Science, Vol. 18 (12), pp. 1050—1057 // https://doi.org/10.1111/j.1467-9280.2007.02024.x

2455

Mcginn C., Kelly K. (2018). Using the Geneva Emotion Wheel to Classify the Expression of Emotion on Robots / Companion of the 2018 ACM/IEEE International Conference // https://doi.org/10.1145/3173386.3177058

2456

Scherer K. R., Shuman V., Fontaine J. J. R., Soriano C. (2013). The GRID meets the Wheel: Assessing emotional feeling via self-report / Fontaine J. J. R., Scherer K. R., Soriano C. (2013). Components of emotional meaning: a sourcebook. Series in affective science. Oxford University Press // https://doi.org/10.13140/RG.2.1.2694.6406

2457

Scherer K. R. (2005). What are emotions? And how can they be measured? / Social Science Information, Vol. 44 (4), pp. 695—729 // https://doi.org/10.1177/0539018405058216

2458

Mehrabian A. (1996). Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament / Current Psychology, Vol. 14 (4), pp. 261—292 // https://doi.org/10.1007/BF02686918

2459

Baggia P., Pelachaud C., Peter C., Zovato E., Burkhardt F., Schröder M. (2014). Emotion Markup Language (EmotionML) 1.0. W3C Recommendation 22 May 2014. Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang) // https://www.w3.org/TR/emotionml/

2460

Ashimura K., Baggia P., Oltramari A., Peter C., Zovato E., Burkhardt F., Schröder M., Pelachaud C. (2014). Vocabularies for EmotionML. W3C Working Group Note 1 April 2014. W3C® (MIT, ERCIM, Keio, Beihang) // https://www.w3.org/TR/emotion-voc/

2461

Ververidis D., Kotropoulos C. (2003). A Review of Emotional Speech Databases / Proceedings of panhellenic conference on informatics, Thessaloniki, Greece, pp. 560—574 // http://poseidon.csd.auth.gr/LAB_PEOPLE/Ververidis/Ververidis_PCI_2003.pdf

2462

Pittermann J., Pittermann A., Minker W. (2009). Handling Emotions in Human-Computer Dialogues. Language Arts & Disciplines // https://books.google.ru/books?id=VUqEuXrk_hUC

2463

Livingstone S. R., Russo F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English / PLos One, May 16, 2018 // https://doi.org/10.1371/journal.pone.0196391

2464

Surrey Audio-Visual Expressed Emotion (SAVEE) Database (2015) // http://kahlan.eps.surrey.ac.uk/savee/

2465

Haq S., Jackson P. J. B. (2010). Multimodal Emotion Recognition / Wang W. (2010). Machine Audition: Principles, Algorithms and Systems. IGI Global Press, pp. 398—423 // https://doi.org/10.4018/978-1-61520-919-4

2466

Haq S., Jackson P. J. B. (2009). Speaker-Dependent Audio-Visual Emotion Recognition // Proceedings of the International Conference on Auditory-Visual Speech Processing, pp. 53—58 // http://personal.ee.surrey.ac.uk/Personal/P.Jackson/pub/avsp09/HaqJackson_AVSP09.pdf

2467

Haq S., Jackson P. J. B., Edge J. D. (2008). Audio-Visual Feature Selection and Reduction for Emotion Classification // Proceedings of the International Conference on Auditory-Visual Speech Processing, pp. 185—190 // http://personal.ee.surrey.ac.uk/Personal/P.Jackson/pub/avsp08/HaqJacksonEdge_AVSP08.pdf

2468

McKeown G., Valstar M., Pantic M., Schroder M. (2012). The SEMAINE database: annotated multimodal records of emotionally coloured conversations between a person and a limited agent / IEEE Transactions on Affective Computing, Vol. 3, Iss. 1, pp. 5—17 // https://doi.org/10.1109/T-AFFC.2011.20

2469

The sensitive agent project database / SEMAINE Database // https://semaine-db.eu/

2470

* Аватар — воплощение человека в виртуальном мире.

2471

Ekman P., Friesen W. (1978). Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto, 1978 // https://books.google.ru/books?id=08l6wgEACAAJ

2472

Burton V. (2013). Happy Women Live Better. Harvest House Publishers // https://books.google.ru/books?id=FW6jDDjtH4cC

2473

Burkhardt F., Paeschke A., Rolfes M., Sendlmeier W., Weiss B. (2005). A database of German emotional speech / 9th European Conference on Speech Communication and Technology, Vol. 5, pp. 1517—1520 // https://www.isca-speech.org/archive/interspeech_2005/i05_1517.html

2474

Busso C., Bulut M., Lee C.-C., Kazemzadeh A., Mower E., Kim S., Chang J. N., Lee S., Narayanan S. S. (2008). IEMOCAP: Interactive emotional dyadic motion capture database / Journal of Language Resources and Evaluation, Vol. 42, No. 4, pp. 335—359 // https://doi.org/10.1007/s10579-008-9076-6

2475

Chen J., Wang C., Wang K., Yin C., Zhao C., Xu T., Zhang X., Huang Z., Liu M., Yang T. (2020). HEU Emotion: A Large-scale Database for Multi-modal Emotion Recognition in the Wild // https://arxiv.org/abs/2007.12519

2476

Makarova V., Petrushin V. A. (2002). RUSLANA: A database of Russian emotional utterances / 7th International Conference on Spoken Language Processing, ICSLP2002 — INTERSPEECH 2002, Denver, Colorado, USA, September 16—20, 2002 // https://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_2041.pdf

2477

Lyakso E., Frolova O., Dmitrieva E., Grigorev A., Kaya H., Salah A. A., Karpov A. (2015). EmoChildRu: Emotional Child Russian Speech Corpus / Ronzhin A., Potapova R., Fakotakis N. (2015). Speech and Computer. SPECOM 2015. Lecture Notes in Computer Science, Vol. 9319. Springer, Cham // https://doi.org/10.1007/978-3-319-23132-7_18

2478

Kondratenko V., Sokolov A., Karpov N., Kutuzov O., Savushkin N., Minkin F. (2022). Large Raw Emotional Dataset with Aggregation Mechanism // https://arxiv.org/abs/2212.12266

2479

djunka (2022). Dusha: самый большой открытый датасет для распознавания эмоций в устной речи на русском языке. / Хабр, 8 фев. 2022 // https://habr.com/ru/companies/sberdevices/articles/715468/

2480

Shen G., Wang X., Duan X., Li H., Zhu W. (2020). MEmoR: A Dataset for Multimodal Emotion Reasoning in Videos / MM'20: Proceedings of the 28th ACM International Conference on Multimedia, October 2020, pp. 493—502 // https://doi.org/10.1145/3394171.3413909

2481

Poria S., Hazarika D., Majumder N., Naik G., Cambria E., Mihalcea R. (2018). MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations // https://arxiv.org/abs/1810.02508

2482

Zahiri S. M., Choi J. D. (2017). Emotion Detection on TV Show Transcripts with Sequence-based Convolutional Neural Networks // https://arxiv.org/abs/1708.04299

2483

Firdaus M., Chauhan H., Ekbal A., Bhattacharyya P. (2020). MEISD: A Multimodal Multi-Label Emotion, Intensity and Sentiment Dialogue Dataset for Emotion Recognition and Sentiment Analysis in Conversations // https://aclanthology.org/2020.coling-main.393.pdf

2484

Zadeh A. B., Liang P. P., Poria S., Cambria E., Morency L.-P. (2018). Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph // https://aclanthology.org/P18-1208/

2485

Zadeh A., Zellers R., Pincus E., Morency L.-P. (2016). MOSI: Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online Opinion Videos // https://arxiv.org/abs/1606.06259

2486

Demszky D., Movshovitz-Attias D., Ko J., Cowen A., Nemade G., Ravi S. (2020). GoEmotions: A Dataset of Fine-Grained Emotions // https://arxiv.org/abs/2005.00547

2487

Katsigiannis S., Ramzan N. (2018). DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices // IEEE Journal of Biomedical and Health Informatics, Vol. 22, No. 1, pp. 98—107, January 2018 // https://doi.org/10.1109/JBHI.2017.2688239

2488

Subramanian R., Wache J., Abadi M. K., Vieriu R. L., Winkler S., Sebe N. (2018). ASCERTAIN: Emotion and Personality Recognition Using Commercial Sensors / IEEE Transactions on Affective Computing, Vol. 9, No. 2, pp. 147—160, 1 April—June 2018 // https://doi.org/10.1109/TAFFC.2016.2625250

2489

Park C. Y., Cha N., Kang S., Kim A., Khandoker A. H., Hadjileontiadis L., Oh A., Jeong Y., Lee U. (2020). K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations / Scientific Data, Vol. 7, Iss. 293 // https://doi.org/10.1038/s41597-020-00630-y

2490

Issa D., Fatih Demirci M., Yazici A. (2020). Speech emotion recognition with deep convolutional neural networks / Biomedical Signal Processing and Control, Vol. 59 // https://doi.org/10.1016/j.bspc.2020.101894

2491

Euler L. (1739). Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae (in Latin) / Saint Petersburg Academy, p. 147.

2492

Harte C., Sandler M., Gasser M. (2006). Detecting Harmonic Change In Musical Audio / AMCMM '06: Proceedings of the 1st ACM workshop on Audio and music computing multimedia, October 2006, pp. 21—26 // https://doi.org/10.1145/1178723.1178727

2493

Jiang D.-N., Lu L., Zhang H.-J., Tao J.-H., Cai L.-H. (2002). Music type classification by spectral contrast feature / Proceedings of the IEEE International Conference on Multimedia and Expo // https://doi.org/10.1109/ICME.2002.1035731

2494

Sterling G., Kazimirova E. (2019). End-to-end Emotion Recognition From Speech With Deep Frame Embeddings And Neutral Speech Handling / FICC 2019: Advances in Information and Communication, pp. 1123-1135 // https://doi.org/10.1007/978-3-030-12385-7_76

2495

Yoon S., Byun S., Jung K. (2018). Multimodal speech emotion recognition using audio and text // https://paperswithcode.com/paper/multimodal-speech-emotion-recognition-using

2496

Chernykh V., Prikhodko P. (2018). Emotion Recognition From Speech With Recurrent Neural Networks // https://arxiv.org/abs/1701.08071

2497

Gardner M. (1958). Logic Machines and Diagrams. McGraw-Hill // https://books.google.ru/books?id=oCu-yAEACAAJ

2498

Борхес Х. Л. (1992). Вавилонская библиотека / Коллекция (Сборник рассказов). Перевод: В. Кулагина-Ярцева. СПб, «Северо-Запад», 1992 // http://www.lib.ru/BORHES/kniga.txt

2499

The Library of Babel. Digital Access to the Books of the Library. Full Text Search in the Books // https://dicelog.com/babel

2500

https://libraryofbabel.info

2501

Максимал из Сиджеко (2016). Библиотека Гагарина // https://gagarin.sijeko.ru

2502

Adult Swim UK (2018). Encyclopedia of Numbers | Tim and Eric Awesome Show, Great Job! | Adult Swim / YouTube, Jul 25, 2018 // https://www.youtube.com/watch?v=rVtHrgdcvZA

2503

Cole S. (2020). Musicians Algorithmically Generate Every Possible Melody, Release Them to Public Domain. / Vice, February 25, 2020 // https://www.vice.com/en/article/wxepzw/musicians-algorithmically-generate-every-possible-melody-release-them-to-public-domain

2504

Koivisto M., Grassini S. (2023). Best humans still outperform artificial intelligence in a creative divergent thinking task. / Scientific Reports, Vol. 13 (13601) // https://doi.org/10.1038/s41598-023-40858-3

2505

Markaty (2023). ИИ справился с тестом на креативность лучше людей; но это не значит, что он обладает творческими способностями. / Habr, 18 сентября 2023. // https://habr.com/ru/news/761806/

2506

Бирюков Б. В., Гутчин И. Б. (1982). Машина и творчество. — М.: Радио и связь // http://informaticslib.ru/books/item/f00/s00/z0000024/st018.shtml

2507

Ройзман М. (1973). Всё, что помню о Есенине. Советская Россия // https://books.google.ru/books?id=e9AjAAAAMAAJ

2508

Ильф И., Петров Е. (2020). Золотой телёнок / Litres // https://books.google.ru/books?id=lLdKDwAAQBAJ

2509

Марков А. А. (1913). Пример статистического исследования над текстом «Евгения Онегина», иллюстрирующий связь испытаний в цепь / Известия Императорской академии наук, Серия 6. — СПб. Т. 7, вып. 3. С. 153—162 // http://books.e-heritage.ru/book/10086570

2510

Link D. (2009). LoveLetters_1.0. MUC=Resurrection. A Memorial // http://www.alpha60.de/art/love_letters/

2511

https://github.com/gingerbeardman/loveletter

2512

Дьюдни А. К. (1989). Компьютер пробует свои силы в прозе и поэзии / В мире науки. 8 августа.

2513

Smith J. (1988). Byting Rhymes: A Sensitive Soul Decries the Idea of Poetry ‘Penned’ by a Computer / Los Angeles Times, Aug. 21, 1988 // https://www.latimes.com/archives/la-xpm-1988-08-21-tm-1294-story.html

2514

Thompson C. (2003). Automatic poetry pt. 2 / collision detection // http://www.collisiondetection.net/mt/archives/2003/05/automatic_poetr.php

2515

Яндекс.Автопоэт (2014). Как позвонить в сбербанк россии… // https://yandex.ru/autopoet/onegin/2

2516

Дьюдни А. К. (1989). Компьютер пробует свои силы в прозе и поэзии / В мире науки. 8 августа.

2517

Кондратов А. М. (1987). Формулы чуда. — М.: Детская литература.// https://books.google.ru/books?id=uwsiyAEACAAJ

2518

Lloyd H. A. (2017). Kennings: I’ve Made a Little List / HuffPost, updated Dec 06, 2017 // https://www.huffpost.com/entry/kennings-ive-made-a-littl_b_9198846

2519

Sweet H. (1884) Anglo-Saxon Reader in Prose and Verse. The Clarendon Press // https://books.google.ru/books?id=Itm0AAAAIAAJ

2520

Кондратов А. М. (1987). Формулы чуда. — М.: Детская литература// https://books.google.ru/books?id=uwsiyAEACAAJ

2521

Kantrowitz A. (2016). Google Is Feeding Romance Novels To Its Artificial Intelligence Engine To Make Its Products More Conversational / BuzzFeed News, 4 May 2016 // https://www.buzzfeednews.com/article/alexkantrowitz/googles-artificial-intelligence-engine-reads-romance-novels

2522

Bowman S. R., Vilnis L., Vinyals O., Dai A. M., Jozefowicz R., Bengio S. (2016). Generating Sentences from a Continuous Space // https://arxiv.org/abs/1511.06349

2523

Kiros R., Zhu Y., Salakhutdinov R., Zemel R. S., Torralba A., Urtasun R., Fidler S. (2015). Skip-Thought Vectors // https://arxiv.org/abs/1506.06726

2524

Chen M. X., Lee B. N., Bansal G., Cao Y., Zhang S., Lu J., Tsay J., Wang Y., Dai A. M., Chen Z., Sohn T., Wu Y. (2019). Gmail Smart Compose: Real-Time Assisted Writing // https://arxiv.org/abs/1906.00080

2525

Нейронная оборона — Комиссар Михаил (2018) / https://lyrdb.ru/lyrics/neyronnaya-oborona-komissar-mihail/

2526

Голованов В. (2016). Нейронная оборона: запись альбома-посвящения Егору Летову при помощи нейросетей / Хабр, 28 июня // https://habr.com/ru/post/395503/

2527

В "Яндексе" научили нейросеть писать музыку в стиле Летова и представили слушателям первый альбом (2016) / newsru.com, 28 июня 2016 // https://www.newsru.com/cinema/28jun2016/letov.html

2528

Tikhonov A., Yamshchikov I. P. (2018). Sounds Wilde. Phonetically Extended Embeddings for Author-Stylized Poetry Generation / Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology, October 2018, Brussels, Belgium, pp. 117–124 // https://doi.org/10.18653/v1/W18-5813

2529

Tikhonov A., Yamshchikov I. P. (2018). Guess who? Multilingual Approach For The Automated Generation Of Author-Stylized Poetry / 2018 IEEE Spoken Language Technology Workshop (SLT) // https://doi.org/10.1109/SLT.2018.8639573

2530

Yamshchikov I. P., Tikhonov A. (2019). Learning Literary Style End-to-end with Artificial Neural Networks / Advances in Science, Technology and Engineering Systems Journal, Vol. 4, No. 6, pp. 115—125 // https://doi.org/10.25046/aj040614

2531

Пекелис В. (1982). Кибернетическая смесь. — М.: Знание.

2532

Бирюков Б. В., Гутчин И. Б. (1982). Машина и творчество. — М.: Радио и связь // http://informaticslib.ru/books/item/f00/s00/z0000024/index.shtml

2533

Radford A., Wu J., Amodei D., Amodei D., Clark J., Brundage M., Sutskever I. (2019). Better Language Models and Their Implications / OpenAI blog, February 14, 2019 // https://openai.com/blog/better-language-models/

2534

Solaiman I., Clark J., Brundage M. (2019). GPT-2: 1.5B Release / OpenAI blog, November 5, 2019 // https://openai.com/blog/gpt-2-1-5b-release/

2535

Radford A., Narasimhan K., Salimans T., Sutskever I. (2018). Improving Language Understanding by Generative Pre-Training // https://paperswithcode.com/paper/improving-language-understanding-by

2536

* Поскольку благодаря появлению трансформерной архитектуры возник ряд моделей с числом параметров, превышающим 100 миллионов, для обозначения таких моделей в научной литературе стали применять специальный термин — «большие языковые модели» (Large Language Model, LLM). Конечно, само значение в 100 миллионов параметров является весьма условным (в некоторых источниках вы найдёте другие значения этой границы, например 1 млрд параметров), поэтому в отношении некоторых моделей могут возникнуть сомнения: считать их большими или нет. Но с практической точки зрения эти споры вряд ли представляют какой-либо интерес.

2537

Holtzman A., Buys J., Du L, Forbes M., Choi Y. (2020). The curious case of neural text degeneration // https://arxiv.org/abs/1904.09751

2538

Radford A., Wu J., Child R., Luan D., Amodei D., Sutskever I. (2019). Language Models are Unsupervised Multitask Learners // https://paperswithcode.com/paper/language-models-are-unsupervised-multitask

2539

Лейзаренко Д. (2019). Нейросеть «Порфирьевич» дописывает любые тексты и стихи на русском языке. Это аналог алгоритма компании Илона Маска / TJournal, 26 дек. // https://tjournal.ru/internet/132982-neyroset-porfirevich-dopisyvaet-lyubye-teksty-i-stihi-na-russkom-yazyke-eto-analog-algoritma-kompanii-ilona-maska

2540

Rajcic N., McCormack J. (2020). Mirror Ritual: An Affective Interface for Emotional Self-Reflection // https://arxiv.org/abs/2004.09685

2541

National Novel Generation Month // https://nanogenmo.github.io/

2542

Kazemi D. (2019). Even a beginner programmer can make a novel generator / Tiny Subversions, Nov 4, 2019 // https://tinysubversions.com/notes/nanogenmo-2019/

2543

Barber G. (2019). Text-Savvy AI Is Here to Write Fiction / Wired, 11.23.2019 // https://www.wired.com/story/nanogenmo-ai-novels-gpt2/

2544

Agafonova Y., Tikhonov A., Yamshchikov I. P. (2020). Paranoid Transformer: Reading Narrative of Madness as Computational Approach to Creativity // https://arxiv.org/abs/2007.06290

2545

Haridy R. (2016). 2016: The year AI got creative / New Atlas, December 12, 2016 // https://newatlas.com/ai-art-film-writing-review/46891/

2546

About CuratedAI // http://curatedai.com/about

2547

Child R., Gray S., Radford A., Sutskever I. (2019). Generating Long Sequences with Sparse Transformers // https://arxiv.org/abs/1904.10509

2548

Beltagy I., Peters M. E., Cohan A. (2020). Longformer: The Long-Document Transformer // https://arxiv.org/abs/2004.05150

2549

Kitaev N., Kaiser Ł., Levskaya A. (2020). Reformer: The Efficient Transformer // https://arxiv.org/abs/2001.04451

2550

Sukhbaatar S., Grave E., Bojanowski P., Joulin A. (2019). Adaptive Attention Span in Transformers // https://arxiv.org/abs/1905.07799

2551

Rae J. W., Potapenko A., Jayakumar S. M., Lillicrap T. P. (2019). Compressive Transformers for Long-Range Sequence Modelling // https://arxiv.org/abs/1911.05507

2552

Qiu J., Ma H., Levy O., Yih S. W.-t., Wang S., Tang J. (2019). Blockwise Self-Attention for Long Document Understanding / CLR 2020 Conference Blind Submission // https://openreview.net/forum?id=H1gpET4YDB

2553

Wang S., Li B. Z., Khabsa M., Fang H., Ma H. (2020). Linformer: Self-Attention with Linear Complexity // https://arxiv.org/abs/2006.04768

2554

Zaheer M., Guruganesh G., Dubey A., Ainslie J., Alberti C., Ontanon S., Pham P., Ravula A., Wang Q., Yang L., Ahmed A. (2020). Big Bird: Transformers for Longer Sequences // https://arxiv.org/abs/2007.14062

2555

Choromanski K., Likhosherstov V., Dohan D., Song X., Gane A., Sarlos T., Hawkins P., Davis J., Mohiuddin A., Kaiser L., Belanger D., Colwell L., Weller A. (2020). Rethinking Attention with Performers // https://arxiv.org/abs/2009.14794

2556

Martins P. H., Marinho Z., Martins A. F. T. (2021). ∞-former: Infinite Memory Transformer // https://arxiv.org/abs/2109.00301

2557

Ding J., Ma S., Dong L., Zhang X., Huang S., Wang W., Zheng N., Wei F. (2023). LongNet: Scaling Transformers to 1,000,000,000 Tokens // https://arxiv.org/abs/2307.02486

2558

Tay Y., Bahri D., Yang L., Metzler D., Juan D.-C. (2020). Sparse Sinkhorn Attention // https://arxiv.org/abs/2002.11296

2559

Tay Y., Bahri D., Metzler D., Juan D.-C., Zhao Z., Zheng C. (2020). Synthesizer: Rethinking Self-Attention in Transformer Models // https://arxiv.org/abs/2005.00743

2560

Ma X., Zhou C., Kong X., He J., Gui L., Neubig G., May J., Zettlemoyer L. (2022). Mega: Moving Average Equipped Gated Attention // https://arxiv.org/abs/2209.10655

2561

Yu L., Simig D., Flaherty C., Aghajanyan A., Zettlemoyer L., Lewis M. (2023). MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers // https://arxiv.org/abs/2305.07185

2562

Tay Y., Dehghani M., Abnar S., Shen Y., Bahri D., Pham P., Rao J., Yang L., Ruder S., Metzler D. (2020). Long Range Arena: A Benchmark for Efficient Transformers // https://arxiv.org/abs/2011.04006

2563

Long-range modeling on LRA (2023) // https://paperswithcode.com/sota/long-range-modeling-on-lra

2564

An C., Gong S., Zhong M., Zhao X., Li M., Zhang J., Kong L., Qiu X. (2023). L-Eval: Instituting Standardized Evaluation for Long Context Language Models // https://arxiv.org/abs/2307.11088

2565

Bai Y., Lv X., Zhang J., Lyu H., Tang J., Huang Z., Du Z., Liu X., Zeng A., Hou L., Dong Y., Tang J., Li J. (2023). LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding // https://arxiv.org/abs/2308.14508

2566

Li Y., Cai T., Zhang Y., Chen D., Dey D. (2022). What Makes Convolutional Models Great on Long Sequence Modeling? // https://arxiv.org/abs/2210.09298

2567

Poli M., Massaroli S., Nguyen E., Fu D. Y., Dao T., Baccus S., Bengio Y., Ermon S., Ré C. (2023). Hyena Hierarchy: Towards Larger Convolutional Language Models // https://arxiv.org/abs/2302.10866

2568

Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I., Amodei D. (2020). Language Models are Few-Shot Learners // https://arxiv.org/abs/2005.14165

2569

Karpathy A. (2020) / Twitter // https://twitter.com/karpathy/status/1273788774422441984

2570

Branwen G. (2020). GPT-3 Creative Fiction // https://www.gwern.net/GPT-3

2571

Reynolds L., McDonell K. (2021). Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm // https://arxiv.org/abs/2102.07350

2572

Rebuffi S.-A., Bilen H., Vedaldi A. (2017). Learning multiple visual domains with residual adapters // https://arxiv.org/abs/1705.08045

2573

Houlsby N., Giurgiu A., Jastrzebski S., Morrone B., de Laroussilhe Q., Gesmundo A., Attariyan M., Gelly S. (2019). Parameter-Efficient Transfer Learning for NLP // https://arxiv.org/abs/1902.00751

2574

Hu E. J., Shen Y., Wallis P., Allen-Zhu Z., Li Y., Wang S., Wang L., Chen W. (2021). LoRA: Low-Rank Adaptation of Large Language Models // https://arxiv.org/abs/2106.09685

2575

Xu R., Luo F., Zhang Z., Tan C., Chang B., Huang S., Huang F. (2021). Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning // https://arxiv.org/abs/2109.05687

2576

Duan Z., Zhang H., Wang C., Wang Z., Chen B., Zhou M. (2021). EnsLM: Ensemble Language Model for Data Diversity by Semantic Clustering / Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2954—2967 // https://doi.org/10.18653/v1/2021.acl-long.230

2577

Conneau A., Kruszewski G., Lample G., Barrault L., Baroni M. (2018). What you can cram into a single vector: Probing sentence embeddings for linguistic properties // https://arxiv.org/abs/1805.01070

2578

Şahin G. G., Vania C., Kuznetsov I., Gurevych I. (2019). LINSPECTOR: Multilingual Probing Tasks for Word Representations // https://arxiv.org/abs/1903.09442

2579

Kim N., Patel R., Poliak A., Wang A., Xia P., McCoy R. T., Tenney I., Ross A., Linzen T., Durme B. V., Bowman S. R., Pavlick E. (2019). Probing What Different NLP Tasks Teach Machines about Function Word Comprehension // https://arxiv.org/abs/1904.11544

2580

Shi X., Padhi I., Knight K. (2016). Does String-Based Neural MT Learn Source Syntax? / Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1526—1534 // https://doi.org/10.18653/v1/D16-1159

2581

Lee J., Tang R., Lin J. (2019). What Would Elsa Do? Freezing Layers During Transformer Fine-Tuning // https://arxiv.org/abs/1911.03090

2582

Li X. L., Liang P. (2021). Prefix-Tuning: Optimizing Continuous Prompts for Generation // https://arxiv.org/abs/2101.00190

2583

Liu X., Zheng Y., Du Z., Ding M., Qian Y., Yang Z., Tang J. (2021). GPT Understands, Too // https://arxiv.org/abs/2103.10385

2584

Lester B., Al-Rfou R., Constant N. (2021). The Power of Scale for Parameter-Efficient Prompt Tuning // https://arxiv.org/abs/2104.08691

2585

Конодюк Н. (2021). Управляем генерацией ruGPT-3: библиотека ruPrompts / Хабр, 17 декабря 2021 // https://habr.com/ru/company/sberdevices/blog/596103/

2586

* Чего стоит хотя бы такой пассаж: «Кроме того, Пугачёва раскрыла подробности своей биографии, в которой оказалось немало скандальных эпизодов. Например, она утверждала, что в молодости была гейшей, а также что у неё в шкафу хранился сухой паёк на случай атомной войны, а её зять Г. Л. Рамазанов открыл для себя ясновидение».

2587

Larson D. (2013). Irritant. Blue Square Press // https://books.google.ru/books?id=lOdOmwEACAAJ

2588

Green O. (2020). Bob The Robot: Exploring the Universe — A Cozy Bedtime Story Produced by Artificial Intelligence. Kindle Edition // https://www.amazon.com/Bob-Robot-Exploring-Artificial-Intelligence-ebook/dp/B08GL2YWGY

2589

Green O. (2020). How to write and publish a book using Machine Learning (GPT-3) // https://www.youtube.com/watch?v=oKh_Jxfeae0

2590

Пепперштейн Н., Пепперштейн П. (2022). Пытаясь проснуться // https://www.litres.ru/book/neyro-peppershteyn/pytayas-prosnutsya-68292629/

2591

Шаврина Т. (2022). Это наконец произошло: нейросеть и человек написали книгу. Вместе! Рассказываем, как им помогали разработчики. / Хабр, 25 мая 2022 // https://habr.com/ru/companies/sberdevices/articles/667582/

2592

Thompson D. A. (2022). Books by AI (GPT-3, GPT-3.5, ChatGPT) / LifeArchitect.ai // https://lifearchitect.ai/books-by-ai/

2593

Branwen G. (2020). GPT-3 Creative Fiction // https://www.gwern.net/GPT-3

2594

Аверкиев С. (2023). Сбер открывает доступ к нейросетевой модели ruGPT-3.5 / Хабр, 20 июля 2023 // https://habr.com/ru/companies/sberbank/articles/746736/

2595

Аверкиев С. (2023). Это не чат, это GigaChat. Русскоязычная ChatGPT от Сбера / Хабр, 24 апреля 2023 // https://habr.com/ru/companies/sberbank/articles/730108/

2596

Zmitrovich D., Abramov A., Kalmykov A., Tikhonova M., Taktasheva E., Astafurov D., Baushenko M., Snegirev A., Shavrina T., Markov S., Mikhailov V., Fenogenova A. (2023). A Family of Pretrained Transformer Language Models for Russian // https://arxiv.org/abs/2309.10931

2597

Shliazhko O., Fenogenova A., Tikhonova M., Mikhailov V., Kozlova A., Shavrina T. (2022). mGPT: Few-Shot Learners Go Multilingual // https://arxiv.org/abs/2204.07580

2598

Ruder S. (2023). The State of Multilingual AI // https://www.ruder.io/state-of-multilingual-ai/

2599

Devlin J., Chang M.-W., Lee K., Toutanova K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // https://arxiv.org/abs/1810.04805

2600

Conneau A., Khandelwal K., Goyal N., Chaudhary V., Wenzek G., Guzmán F., Grave E., Ott M., Zettlemoyer L., Stoyanov V. (2019). Unsupervised Cross-lingual Representation Learning at Scale // https://arxiv.org/abs/1911.02116

2601

Lin X. V., Mihaylov T., Artetxe M., Wang T., Chen S., Simig D., Ott M., Goyal N., Bhosale S., Du J., Pasunuru R., Shleifer S., Koura P. S., Chaudhary V., O'Horo B., Wang J., Zettlemoyer L., Kozareva Z., Diab M., Stoyanov V., Li X. (2021). Few-shot Learning with Multilingual Language Models // https://arxiv.org/abs/2112.10668

2602

Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W., Liu P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer // https://arxiv.org/abs/1910.10683

2603

Xue L., Constant N., Roberts A., Kale M., Al-Rfou R., Siddhant A., Barua A., Raffel C. (2020). mT5: A massively multilingual pre-trained text-to-text transformer // https://arxiv.org/abs/2010.11934

2604

Aribandi V., Tay Y., Schuster T., Rao J., Zheng H. S., Mehta S. V., Zhuang H., Tran V. Q., Bahri D., Ni J., Gupta J., Hui K., Ruder S., Metzler D. (2021). ExT5: Towards Extreme Multi-Task Scaling for Transfer Learning // https://arxiv.org/abs/2111.10952

2605

Rae J., Irving G., Weidinger L. (2021). Language modelling at scale: Gopher, ethical considerations, and retrieval / DeepMind blog, 08 Dec 2021 // https://deepmind.com/blog/article/language-modelling-at-scale

2606

Chen W., Hu H., Saharia C., Cohen W. W. (2022). Re-Imagen: Retrieval-Augmented Text-to-Image Generator // https://arxiv.org/abs/2209.14491

2607

Fedus W., Zoph B., Shazeer N. (2021). Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity // https://arxiv.org/abs/2101.03961

2608

Lepikhin D., Lee H., Xu Y., Chen D., Firat O., Huang Y., Krikun M., Shazeer N., Chen Z. (2020). GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding // https://arxiv.org/abs/2006.16668

2609

Jacobs R. A., Jordan M. I., Nowlan S. J., Hinton G. E. (1991). Adaptive Mixtures of Local Experts // http://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf

2610

Shazeer N., Mirhoseini A., Maziarz K., Davis A., Le Q., Hinton G., Dean J. (2017). Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer // https://arxiv.org/abs/1701.06538

2611

Kim Y. J., Awan A. A., Muzio A., Salinas A. F. C., Lu L., Hendy A., Rajbhandari S., He Y., Awadalla H. H. (2021). Scalable and Efficient MoE Training for Multitask Multilingual Models // https://arxiv.org/abs/2109.10465

2612

Du N., Huang Y., Dai A. M., Tong S., Lepikhin D., Xu Y., Krikun M., Zhou Y., Yu A. W., Firat O., Zoph B., Fedus L., Bosma M., Zhou Z., Wang T., Wang Y. E., Webster K., Pellat M., Robinson K., Meier-Hellstern K., Duke T., Dixon L., Zhang K., Le Q. V., Wu Y., Chen Z., Cui C. (2021). GLaM: Efficient Scaling of Language Models with Mixture-of-Experts // https://arxiv.org/abs/2112.06905

2613

Artetxe M., Bhosale S., Goyal N., Mihaylov T., Ott M., Shleifer S., Lin X. V., Du J., Iyer S., Pasunuru R., Anantharaman G., Li X., Chen S., Akin H., Baines M., Martin L., Zhou X., Koura P. S., O'Horo B., Wang J., Zettlemoyer L., Diab M., Kozareva Z., Stoyanov V. (2021). Efficient Large Scale Language Modeling with Mixtures of Experts // https://arxiv.org/abs/2112.10684

2614

Schreiner M. (2023). GPT-4 architecture, datasets, costs and more leaked. / The Decoder, Jul. 11, 2023. // https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/

2615

Zeng W., Ren X., Su T., Wang H., Liao Y., Wang Z., Jiang X., Yang Z., Wang K., Zhang X., Li C., Gong Z., Yao Y., Huang X., Wang J., Yu J., Guo Q., Yu Y., Zhang Y., Wang J., Tao H., Yan D., Yi Z., Peng F., Jiang F., Zhang H., Deng L., Zhang Y., Lin Z., Zhang C., Zhang S., Guo M., Gu S., Fan G., Wang Y., Jin X., Liu Q., Tian Y. (2021). PanGu-α: Large-scale Autoregressive Pretrained Chinese Language Models with Auto-parallel Computation // https://arxiv.org/abs/2104.12369

2616

Du C. (2021). Chinese AI lab challenges Google, OpenAI with a model of 1.75 trillion parameters / PingWest, June 1, 2021 // https://en.pingwest.com/a/8693

2617

Lin J., Yang A., Bai J., Zhou C., Jiang L., Jia X., Wang A., Zhang J., Li Y., Lin W., Zhou J., Yang H. (2021). M6-10T: A Sharing-Delinking Paradigm for Efficient Multi-Trillion Parameter Pretraining // https://arxiv.org/abs/2110.03888

2618

Ma Z., He J., Qiu J., Cao H., Wang Y., Sun Z., Zheng L., Wang H., Tang S., Zheng T., Lin J., Feng G., Huang Z., Gao J., Zeng A., Zhang J., Zhong R., Shi T., Liu S., Zheng W., Tang J., Yang H., Liu X., Zhai J., Chen W. (2022). BaGuaLu: targeting brain scale pretrained models with over 37 million cores // PPoPP '22: Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 192–204. // https://doi.org/10.1145/3503221.3508417

2619

* BaGuaLu (八卦炉), печь восьми триграмм (восьми гуа), волшебная печь из древнекитайской мифологии, позволяющая создавать эффективные лекарства. Восемь триграмм гуа используются в даосской космологии, чтобы представить фундаментальные принципы бытия.

2620

Lin J., Men R., Yang A., Zhou C., Ding M., Zhang Y., Wang P., Wang A., Jiang L., Jia X., Zhang J., Zhang J., Zou X., Li Z., Deng X., Liu J., Xue J., Zhou H., Ma J., Yu J., Li Y., Lin W., Zhou J., Tang J., Yang H. (2021). M6: A Chinese Multimodal Pretrainer // https://arxiv.org/abs/2103.00823

2621

Kharya P., Alvi A. (2021). Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest and Most Powerful Generative Language Model / Nvidia Developer Blog, Oct 11, 2021 // https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

2622

Smith S., Patwary M., Norick B., LeGresley P., Rajbhandari S., Casper J., Liu Z., Prabhumoye S., Zerveas G., Korthikanti V., Zhang E., Child R., Aminabadi R. Y., Bernauer J., Song X., Shoeybi M., He Y., Houston M., Tiwary S., Catanzaro B. (2022). Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model // https://arxiv.org/abs/2201.11990

2623

Almazrouei E., Alobeidli H., Alshamsi A., Cappelli A., Cojocaru R., Alhammadi M., Mazzotta D., Heslow D., Launay J., Malartic Q., Noune B., Pannier B., Penedo G. (2023). The Falcon Series of Language Models: Towards Open Frontier Models // https://huggingface.co/tiiuae/falcon-180B

2624

Le Scao T., Fan A., Akiki C., Pavlick E., Ilić S., Hesslow D., Castagné R., Luccioni A. S., Yvon F., Gallé M., Tow J., Rush A. M., Biderman S., Webson A., Ammanamanchi P. S., Wang T., Sagot B., Muennighoff N., Moral A. V. d., Ruwase O., Bawden R., Bekman S., McMillan-Major A., Beltagy I., Nguyen H., Saulnier L., Tan S., Suarez P. O., Sanh V., Laurençon H., Jernite Y., Launay J., Mitchell M., Raffel C., Gokaslan A., Simhi A., Soroa A., Aji A. F., Alfassy A., Rogers A., Nitzav A. K., Xu C., Mou C., Emezue C., Klamm C., Leong C., Strien D. v., Adelani D. I., Radev D., Ponferrada E. G., Levkovizh E., Kim E., Natan E. B., Toni F. D., Dupont G., Kruszewski G., Pistilli G., Elsahar H., Benyamina H., Tran H., Yu I., Abdulmumin I., Johnson I., Gonzalez-Dios I., Rosa J. d. l., Chim J., Dodge J., Zhu J., Chang J., Frohberg J., Tobing J., Bhattacharjee J., Almubarak K., Chen K., Lo K., Von Werra L., Weber L., Phan L., allal L. B., Tanguy L., Dey M., Muñoz M. R., Masoud M., Grandury M., Šaško M., Huang M., Coavoux M., Singh M., Jiang M. T., Vu M. C., Jauhar M. A., Ghaleb M., Subramani N., Kassner N., Khamis N., Nguyen O., Espejel O., Gibert O. d., Villegas P., Henderson P., Colombo P., Amuok P., Lhoest Q., Harliman R., Bommasani R., López R. L., Ribeiro R., Osei S., Pyysalo S., Nagel S., Bose S., Muhammad S. H., Sharma S., Longpre S., Nikpoor S., Silberberg S., Pai S., Zink S., Torrent T. T., Schick T., Thrush T., Danchev V., Nikoulina V., Laippala V., Lepercq V., Prabhu V., Alyafeai Z., Talat Z., Raja A., Heinzerling B., Si C., Taşar D. E., Salesky E., Mielke S. J., Lee W. Y., Sharma A., Santilli A., Chaffin A., Stiegler A., Datta D., Szczechla E., Chhablani G., Wang H., Pandey H., Strobelt H., Fries J. A., Rozen J., Gao L., Sutawika L., Bari M. S., Al-shaibani M. S., Manica M., Nayak N., Teehan R., Albanie S., Shen S., Ben-David S., Bach S. H., Kim T., Bers T., Fevry T., Neeraj T., Thakker U., Raunak V., Tang X., Yong Z., Sun Z., Brody S., Uri Y., Tojarieh H., Roberts A., Chung H. W., Tae J., Phang J., Press O., Li C., Narayanan D., Bourfoune H., Casper J., Rasley J., Ryabinin M., Mishra M., Zhang M., Shoeybi M., Peyrounette M., Patry N., Tazi N., Sanseviero O., von Platen P., Cornette P., Lavallée P. F., Lacroix R., Rajbhandari S., Gandhi S., Smith S., Requena S., Patil S., Dettmers T., Baruwa A., Singh A., Cheveleva A., Ligozat A., Subramonian A., Névéol A., Lovering C., Garrette D., Tunuguntla D., Reiter E., Taktasheva E., Voloshina E., Bogdanov E., Winata G. I., Schoelkopf H., Kalo J., Novikova J., Forde J. Z., Clive J., Kasai J., Kawamura K., Hazan L., Carpuat M., Clinciu M., Kim N., Cheng N., Serikov O., Antverg O., Wal O. v. d., Zhang R., Zhang R., Gehrmann S., Mirkin S., Pais S., Shavrina T., Scialom T., Yun T., Limisiewicz T., Rieser V., Protasov V., Mikhailov V., Pruksachatkun Y., Belinkov Y., Bamberger Z., Kasner Z., Rueda A., Pestana A., Feizpour A., Khan A., Faranak A., Santos A., Hevia A., Unldreaj A., Aghagol A., Abdollahi A., Tammour A., HajiHosseini A., Behroozi B., Ajibade B., Saxena B., Ferrandis C. M., Contractor D., Lansky D., David D., Kiela D., Nguyen D. A., Tan E., Baylor E., Ozoani E., Mirza F., Ononiwu F., Rezanejad H., Jones H., Bhattacharya I., Solaiman I., Sedenko I., Nejadgholi I., Passmore J., Seltzer J., Sanz J. B., Dutra L., Samagaio M., Elbadri M., Mieskes M., Gerchick M., Akinlolu M., McKenna M., Qiu M., Ghauri M., Burynok M., Abrar N., Rajani N., Elkott N., Fahmy N., Samuel O., An R., Kromann R., Hao R., Alizadeh S., Shubber S., Wang S., Roy S., Viguier S., Le T., Oyebade T., Le T., Yang Y., Nguyen Z., Kashyap A. R., Palasciano A., Callahan A., Shukla A., Miranda-Escalada A., Singh A., Beilharz B., Wang B., Brito C., Zhou C., Jain C., Xu C., Fourrier C., Periñán D. L., Molano D., Yu D., Manjavacas E., Barth F., Fuhrimann F., Altay G., Bayrak G., Burns G., Vrabec H. U., Bello I., Dash I., Kang J., Giorgi J., Golde J., Posada J. D., Sivaraman K. R., Bulchandani L., Liu L., Shinzato L., Bykhovetz M. H. d., Takeuchi M., Pàmies M., Castillo M. A., Nezhurina M., Sänger M., Samwald M., Cullan M., Weinberg M., Wolf M. D., Mihaljcic M., Liu M., Freidank M., Kang M., Seelam N., Dahlberg N., Broad N. M., Muellner N., Fung P., Haller P., Chandrasekhar R., Eisenberg R., Martin R., Canalli R., Su R., Su R., Cahyawijaya S., Garda S., Deshmukh S. S., Mishra S., Kiblawi S., Ott S., Sang-aroonsiri S., Kumar S., Schweter S., Bharati S., Laud T., Gigant T., Kainuma T., Kusa W., Labrak Y., Bajaj Y. S., Venkatraman Y., Xu Y., Xu Y., Xu Y., Tan Z., Xie Z., Ye Z., Bras M., Belkada Y., Wolf T. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model // https://arxiv.org/abs/2211.05100

2625

Zhang S., Roller S., Goyal N., Artetxe M., Chen M., Chen S., Dewan C., Diab M., Li X., Lin X. V., Mihaylov T., Ott M., Shleifer S., Shuster K., Simig D., Koura P. S., Sridhar A., Wang T., Zettlemoyer L. (2022). OPT: Open Pre-trained Transformer Language Models // https://arxiv.org/abs/2205.01068

2626

Zhang S., Diab M., Zettlemoyer L. (2022). Democratizing access to large-scale language models with OPT-175B / Meta AI, May 3, 2022 // https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/

2627

Taylor R., Kardas M., Cucurull G., Scialom T., Hartshorn A., Saravia E., Poulton A., Kerkez V., Stojnic R. (2022). Galactica: A Large Language Model for Science // https://arxiv.org/abs/2211.09085

2628

AI21 Labs Makes Language AI Applications Accessible to Broader Audience (2021) / businesswire: a Berkshire Hathaway Company, August 11, 2021 // https://www.businesswire.com/news/home/20210811005033/en/AI21-Labs-Makes-Language-AI-Applications-Accessible-to-Broader-Audience

2629

Rae J., Irving G., Weidinger L. (2021). Language modelling at scale: Gopher, ethical considerations, and retrieval / DeepMind blog, 08 Dec 2021 // https://deepmind.com/blog/article/language-modelling-at-scale

2630

Rae J. W., Borgeaud S., Cai T., Millican K., Hoffmann J., Song F., Aslanides J., Henderson S., Ring R., Young S., Rutherford E., Hennigan T., Menick J., Cassirer A., Powell R., Driessche G. v. d., Hendricks L. A., Rauh M., Huang P., Glaese A., Welbl J., Dathathri S., Huang S., Uesato J., Mellor J., Higgins I., Creswell A., McAleese N., Wu A., Elsen E., Jayakumar S., Buchatskaya E., Budden D., Sutherland E., Simonyan K., Paganini M., Sifre L., Martens L., Li X. L., Kuncoro A., Nematzadeh A., Gribovskaya E., Donato D., Lazaridou A., Mensch A., Lespiau J., Tsimpoukelli M., Grigorev N., Fritz D., Sottiaux T., Pajarskas M., Pohlen T., Gong Z., Toyama D., d'Autume C. d. M., Li Y., Terzi T., Mikulik V., Babuschkin I., Clark A., Casas D. d. L., Guy A., Jones C., Bradbury J., Johnson M., Hechtman B., Weidinger L., Gabriel I., Isaac W., Lockhart E., Osindero S., Rimell L., Dyer C., Vinyals O., Ayoub K., Stanway J., Bennett L., Hassabis D., Kavukcuoglu K., Irving G. (2021). Scaling Language Models: Methods, Analysis & Insights from Training Gopher // https://arxiv.org/abs/2112.11446

2631

Kaplan J., McCandlish S., Henighan T., Brown T. B., Chess B., Child R., Gray S., Radford A., Wu J., Amodei D. (2020). Scaling Laws for Neural Language Models // https://arxiv.org/abs/2001.08361

2632

Hoffmann J., Borgeaud S., Mensch A., Sifre L. (2022). An empirical analysis of compute-optimal large language model training / DeepMind blog, April 12, 2022 // https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-language-model-training

2633

Hoffmann J., Borgeaud S., Mensch A., Buchatskaya E., Cai T., Rutherford E., de Las Casas D., Hendricks L. A., Welbl J., Clark A., Hennigan T., Noland E., Millican K., van den Driessche G., Damoc B., Guy A., Osindero S., Simonyan K., Elsen E., Rae J. W., Vinyals O., Sifre L. (2022). Training Compute-Optimal Large Language Models // https://arxiv.org/abs/2203.15556

2634

Pichai S. (2023). Google DeepMind: Bringing together two world-class AI teams. / Google Blog, Apr 20, 2023 // https://blog.google/technology/ai/april-ai-update/

2635

Chowdhery A., Narang S., Devlin J., Bosma M., Mishra G., Roberts A., Barham P., Chung H. W., Sutton C., Gehrmann S., Schuh P., Shi K., Tsvyashchenko S., Maynez J., Rao A., Barnes P., Tay Y., Shazeer N., Prabhakaran V., Reif E., Du N., Hutchinson B., Pope R., Bradbury J., Austin J., Isard M., Gur-Ari G., Yin P., Duke T., Levskaya A., Ghemawat S., Dev S., Michalewski H., Garcia X., Misra V., Robinson K., Fedus L., Zhou D., Ippolito D., Luan D., Lim H., Zoph B., Spiridonov A., Sepassi R., Dohan D., Agrawal S., Omernick M., Dai A. M., Pillai T. S., Pellat M., Lewkowycz A., Moreira E., Child R., Polozov O., Lee K., Zhou Z., Wang X., Saeta B., Diaz M., Firat O., Catasta M., Wei J., Meier-Hellstern K., Eck D., Dean J., Petrov S., Fiedel N. (2022). PaLM: Scaling Language Modeling with Pathways // https://arxiv.org/abs/2204.02311

2636

Anil R., Dai A. M., Firat O., Johnson M., Lepikhin D., Passos A., Shakeri S., Taropa E., Bailey P., Chen Z., Chu E., Clark J. H., Shafey L. E., Huang Y., Meier-Hellstern K., Mishra G., Moreira E., Omernick M., Robinson K., Ruder S., Tay Y., Xiao K., Xu Y., Zhang Y., Abrego G. H., Ahn J., Austin J., Barham P., Botha J., Bradbury J., Brahma S., Brooks K., Catasta M., Cheng Y., Cherry C., Choquette-Choo C. A., Chowdhery A., Crepy C., Dave S., Dehghani M., Dev S., Devlin J., Díaz M., Du N., Dyer E., Feinberg V., Feng F., Fienber V., Freitag M., Garcia X., Gehrmann S., Gonzalez L., Gur-Ari G., Hand S., Hashemi H., Hou L., Howland J., Hu A., Hui J., Hurwitz J., Isard M., Ittycheriah A., Jagielski M., Jia W., Kenealy K., Krikun M., Kudugunta S., Lan C., Lee K., Lee B., Li E., Li M., Li W., Li Y., Li J., Lim H., Lin H., Liu Z., Liu F., Maggioni M., Mahendru A., Maynez J., Misra V., Moussalem M., Nado Z., Nham J., Ni E., Nystrom A., Parrish A., Pellat M., Polacek M., Polozov A., Pope R., Qiao S., Reif E., Richter B., Riley P., Ros A. C., Roy A., Saeta B., Samuel R., Shelby R., Slone A., Smilkov D., So D. R., Sohn D., Tokumine S., Valter D., Vasudevan V., Vodrahalli K., Wang X., Wang P., Wang Z., Wang T., Wieting J., Wu Y., Xu K., Xu Y., Xue L., Yin P., Yu J., Zhang Q., Zheng S., Zheng C., Zhou W., Zhou D., Petrov S., Wu Y. (2023). PaLM 2 Technical Report // https://arxiv.org/abs/2305.10403

2637

Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2023). Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675

2638

Liu H., Li Z., Hall D., Liang P., Ma T. (2023). Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training // https://arxiv.org/abs/2305.14342

2639

Tay Y., Dehghani M., Tran V. Q., Garcia X., Wei J., Wang X., Chung H. W., Shakeri s., Bahri D., Schuster T., Zheng H. S., Zhou D., Houlsby N., Metzler D. (2022). UL2: Unifying Language Learning Paradigms // https://arxiv.org/abs/2205.05131

2640

Змитрович Д. (2023). FRED-T5. Новая SOTA модель для русского языка от SberDevices. / Хабр, 19 апр 2023 // https://habr.com/ru/companies/sberdevices/articles/730088/

2641

Bavarian M., Jun H., Tezak N., Schulman J., McLeavey C., Tworek J., Chen M. (2022). Efficient Training of Language Models to Fill in the Middle // https://arxiv.org/abs/2207.14255

2642

Ouyang L., Wu J., Jiang X., Almeida D., Wainwright C. L., Mishkin P., Zhang C., Agarwal S., Slama K., Ray A., Schulman J., Hilton J., Kelton F., Miller L., Simens M., Askell A., Welinder P., Christiano P., Leike J., Lowe R. (2022). Training language models to follow instructions with human feedback // https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf

2643

Branwen G. (2022). GPT-3 2nd Anniversary / Reddit, May 28, 2022 // https://www.reddit.com/r/mlscaling/comments/uznkhw/gpt3_2nd_anniversary/

2644

OpenAI (2023). GPT-4 Technical Report // https://arxiv.org/abs/2303.08774

2645

Pichai S. (2023). An important next step on our AI journey // https://blog.google/technology/ai/bard-google-ai-search-updates/

2646

Anthropic PBC (2023). Introducing Claude // https://www.anthropic.com/index/introducing-claude

2647

SambaNova Systems, Together Computer (2023). BLOOMChat: a New Open Multilingual Chat LLM // https://huggingface.co/sambanovasystems/BLOOMChat-176B-v1

2648

Taori R., Gulrajani I., Zhang T, Dubois Y., Li X., Guestrin C., Liang P., Hashimoto T. B. (2023). Stanford Alpaca: An Instruction-following LLaMA model // https://github.com/tatsu-lab/stanford_alpaca

2649

Touvron H., Lavril T., Izacard G., Martinet X., Lachaux M.-A., Lacroix T., Rozière B., Goyal N., Hambro E., Azhar F., Rodriguez A., Joulin A., Grave E., Lample G. (2023). LLaMA: Open and Efficient Foundation Language Models // https://arxiv.org/abs/2302.13971

2650

Zhang S., Roller S., Goyal N., Artetxe M., Chen M., Chen S., Dewan C., Diab M., Li X., Lin X. V., Mihaylov T., Ott M., Shleifer S., Shuster K., Simig D., Koura P. S., Sridhar A., Wang T., Zettlemoyer L. (2022). OPT: Open Pre-trained Transformer Language Models // https://arxiv.org/abs/2205.01068

2651

Taori R., Gulrajani I., Zhang T, Dubois Y., Li X., Guestrin C., Liang P., Hashimoto T. B. (2023). Stanford Alpaca: An Instruction-following LLaMA model // https://github.com/tatsu-lab/stanford_alpaca

2652

Vicuna Team (2023). Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality // https://lmsys.org/blog/2023-03-30-vicuna/

2653

Dettmers T., Pagnoni A., Holtzman A., Zettlemoyer L. (2023). QLoRA: Efficient Finetuning of Quantized LLMs // https://arxiv.org/abs/2305.14314

2654

Geng X., Gudibande A., Liu H., Wallace E., Abbeel P., Levine S., Song D. (2023). Koala: A Dialogue Model for Academic Research // https://bair.berkeley.edu/blog/2023/04/03/koala/

2655

Patil S. G., Zhang T., Wang X., Gonzalez J. E. (2023). Gorilla: Large Language Model Connected with Massive APIs // https://arxiv.org/abs/2305.15334

2656

Mukherjee S., Mitra A., Jawahar G., Agarwal s., Palangi H., Awadallah A. (2023). Orca: Progressive Learning from Complex Explanation Traces of GPT-4 // https://arxiv.org/abs/2306.02707

2657

Stability AI (2023). Meet Stable Beluga 1 and Stable Beluga 2, Our Large and Mighty Instruction Fine-Tuned Language Models. // https://stability.ai/blog/stable-beluga-large-instruction-fine-tuned-models

2658

Anil R., Dai A. M., Firat O., Johnson M., Lepikhin D., Passos A., Shakeri S., Taropa E., Bailey P., Chen Z., Chu E., Clark J. H., Shafey L. E., Huang Y., Meier-Hellstern K., Mishra G., Moreira E., Omernick M., Robinson K., Ruder S., Tay Y., Xiao K., Xu Y., Zhang Y., Abrego G. H., Ahn J., Austin J., Barham P., Botha J., Bradbury J., Brahma S., Brooks K., Catasta M., Cheng Y., Cherry C., Choquette-Choo C. A., Chowdhery A., Crepy C., Dave S., Dehghani M., Dev S., Devlin J., Díaz M., Du N., Dyer E., Feinberg V., Feng F., Fienber V., Freitag M., Garcia X., Gehrmann S., Gonzalez L., Gur-Ari G., Hand S., Hashemi H., Hou L., Howland J., Hu A., Hui J., Hurwitz J., Isard M., Ittycheriah A., Jagielski M., Jia W., Kenealy K., Krikun M., Kudugunta S., Lan C., Lee K., Lee B., Li E., Li M., Li W., Li Y., Li J., Lim H., Lin H., Liu Z., Liu F., Maggioni M., Mahendru A., Maynez J., Misra V., Moussalem M., Nado Z., Nham J., Ni E., Nystrom A., Parrish A., Pellat M., Polacek M., Polozov A., Pope R., Qiao S., Reif E., Richter B., Riley P., Ros A. C., Roy A., Saeta B., Samuel R., Shelby R., Slone A., Smilkov D., So D. R., Sohn D., Tokumine S., Valter D., Vasudevan V., Vodrahalli K., Wang X., Wang P., Wang Z., Wang T., Wieting J., Wu Y., Xu K., Xu Y., Xue L., Yin P., Yu J., Zhang Q., Zheng S., Zheng C., Zhou W., Zhou D., Petrov S., Wu Y. (2023). Llama 2: Open Foundation and Fine-Tuned Chat Models // https://arxiv.org/abs/2307.09288

2659

The MosaicML NLP Team (2023). MPT-30B: Raising the bar for open-source foundation models // https://www.mosaicml.com/blog/mpt-30b

2660

Penedo G., Malartic Q., Hesslow D., Cojocaru R., Cappelli A., Alobeidli H., Pannier B., Almazrouei E., Launay J. (2023). The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only // https://arxiv.org/abs/2306.01116

2661

Almazrouei E., Alobeidli H., Alshamsi A., Cappelli A., Cojocaru R., Alhammadi M., Mazzotta D., Heslow D., Launay J., Malartic Q., Noune B., Pannier B., Penedo G. (2023). The Falcon Series of Language Models: Towards Open Frontier Models // https://huggingface.co/tiiuae/falcon-180B

2662

Qwen-7B (2023). // https://github.com/QwenLM/Qwen-7B/

2663

Yang A., Xiao B., Wang B., Zhang B., Bian C., Yin C., Lv C., Pan D., Wang D., Yan D., Yang F., Deng F., Wang F., Liu F., Ai G., Dong G., Zhao H., Xu H., Sun H., Zhang H., Liu H., Ji J., Xie J., Dai J., Fang K., Su L., Song L., Liu L., Ru L., Ma L., Wang M., Liu M., Lin M., Nie N., Guo P., Sun R., Zhang T., Li T., Li T., Cheng W., Chen W., Zeng X., Wang X., Chen X., Men X., Yu X., Pan X., Shen Y., Wang Y., Li Y., Jiang Y., Gao Y., Zhang Y., Zhou Z., Wu Z. (2023). Baichuan 2: Open Large-scale Language Models // https://arxiv.org/abs/2309.10305

2664

Mistral AI team (2023). Mistral 7B. The best 7B model to date, Apache 2.0 // mistral.ai, September 27, 2023 // https://mistral.ai/news/announcing-mistral-7b/

2665

Elsen E., Odena A., Nye M., Taşırlar S., Dao T., Hawthorne C., Moparthi D., Somani A. (2023). Releasing Persimmon-8B / Adept, September 7, 2023 // https://www.adept.ai/blog/persimmon-8b

2666

Yi (2023). // https://github.com/01-ai/Yi

2667

Gunasekar S., Zhang Y., Aneja J., Mendes C. C. T., Giorno A. D., Gopi S., Javaheripi M., Kauffmann P., de Rosa G., Saarikivi O., Salim A., Shah S., Behl H. S., Wang X., Bubeck S., Eldan R., Kalai A. T., Lee Y. T., Li Y. (2022). Textbooks Are All You Need // https://arxiv.org/abs/2306.11644

2668

Li Y., Bubeck S., Eldan R., Giorno A. D., Gunasekar S., Lee Y. T. (2023). Textbooks Are All You Need II: phi-1.5 technical report // https://arxiv.org/abs/2309.05463

2669

Schaeffer R. (2023). Pretraining on the Test Set Is All You Need // https://arxiv.org/abs/2309.08632

2670

Schaeffer R. (2023). // https://twitter.com/RylanSchaeffer/status/1702346986329108703

2671

Riccio D. (2023). Five Hidden Causes of Data Leakage You Should Be Aware of / Towards Data Science, Apr 11, 2023 // https://towardsdatascience.com/five-hidden-causes-of-data-leakage-you-should-be-aware-of-e44df654f185

2672

Tirumala K., Simig D., Aghajanyan A., Morcos A. S. (2023). D4: Improving LLM Pretraining via Document De-Duplication and Diversification // https://arxiv.org/abs/2308.12284

2673

Dai X., Hou J., Ma C., Tsai S., Wang J., Wang R., Zhang P., Vandenhende S., Wang X., Dubey A., Yu M., Kadian A., Radenovic F., Mahajan D., Li K., Zhao Y., Petrovic V., Singh M. K., Motwani S., Wen Y., Song Y., Sumbaly R., Ramanathan V., He Z., Vajda P., Parikh D. (2023). Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack // https://arxiv.org/abs/2309.15807

2674

Soboleva D., Al-Khateeb F., Myers R., Steeves J. R., Hestness J., Nolan D. (2023). SlimPajama: A 627B token cleaned and deduplicated version of RedPajama // https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama

2675

Nguyen T., Nguyen C. V., Lai V. D., Man H., Ngo N. T., Dernoncourt F., Rossi R. A., Nguyen T. H. (2023). CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages // https://arxiv.org/abs/2309.09400

2676

* * * В настоящее время исследователи активно изучают и другие формы обучения с подкреплением для языковых моделей, например прямую оптимизацию политики (Direct Policy Optimization, DPO) и даже обучение с обратной связью от ИИ (RL from AI Feedback, RLAIF).

2677

Rafailov R., Sharma A., Mitchell E., Ermon S., Manning C. D., Finn C. (2023). Direct Preference Optimization: Your Language Model is Secretly a Reward Model // https://arxiv.org/abs/2305.18290

2678

Bai Y., Kadavath S., Kundu S., Askell A., Kernion J., Jones A., Chen A., Goldie A., Mirhoseini A., McKinnon C., Chen C., Olsson C., Olah C., Hernandez D., Drain D., Ganguli D., Li D., Tran-Johnson E., Perez E., Kerr J., Mueller J., Ladish J., Landau J., Ndousse K., Lukosuite K., Lovitt L., Sellitto M., Elhage N., Schiefer N., Mercado N., DasSarma N., Lasenby R., Larson R., Ringer S., Johnston S., Kravec S., Showk S. E., Fort S., Lanham T., Telleen-Lawton T., Conerly T., Henighan T., Hume T., Bowman S. R., Hatfield-Dodds Z., Mann B., Amodei D., Joseph N., McCandlish S., Brown T., Kaplan J. (2022). Constitutional AI: Harmlessness from AI Feedback // https://arxiv.org/abs/2212.08073

2679

Аверкиев С. (2023). Это не чат, это GigaChat. Русскоязычная ChatGPT от Сбера. / Хабр, 24 апр 2023 // https://habr.com/ru/companies/sberbank/articles/730108/

2680

Bommasani R., Hudson D. A, Adeli E., Altman R., Arora S., von Arx S., Bernstein M. S., Bohg J., Bosselut A., Brunskill E., Brynjolfsson E., Buch S., Card D., Castellon R., Chatterji N., Chen A., Creel K., David J. Q., Demszky D., Donahue C., Doumbouya M., Durmus E., Ermon S., Etchemendy J., Ethayarajh K., Fei-Fei L., Finn C., Gale T., Gillespie L., Goel K., Goodman N., Grossman S., Guha N., Hashimoto T., Henderson P., Hewitt J., Ho D. E., Hong J., Hsu K., Huang J., Icard T., Jain S., Jurafsky D., Kalluri P., Karamcheti S., Keeling G., Khani F., Khattab O., Koh P. W., Krass M., Krishna R., Kuditipudi R., Kumar A., Ladhak F., Lee M., Lee T., Leskovec J., Levent I., Li X. L., Li X., Ma T., Malik A., Manning C. D., Mirchandani S., Mitchell E., Munyikwa Z., Nair S., Narayan A., Narayanan D., Newman B., Nie A., Niebles J. C., Nilforoshan H., Nyarko J., Ogut G., Orr L., Papadimitriou I., Park J. S., Piech C., Portelance E., Potts C., Raghunathan A., Reich R., Ren H., Rong F., Roohani Y., Ruiz C., Ryan J., Ré C., Sadigh D., Sagawa S., Santhanam K., Shih A., Srinivasan K., Tamkin A., Taori R., Thomas A. W., Tramèr F., Wang R. E., Wang W., Wu B., Wu J., Wu Y., Xie S. M., Yasunaga M., You J., Zaharia M., Zhang M., Zhang T., Zhang X., Zhang Y. (2021). On the Opportunities and Risks of Foundation Models // https://arxiv.org/abs/2108.07258

2681

Dao T., Fu D. Y., Ermon S., Rudra A., Ré C. (2022). FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness // https://arxiv.org/abs/2205.14135

2682

Dao T. (2023). FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning // https://arxiv.org/abs/2307.08691

2683

Shang Y., Yuan Z., Wu Q., Dong Z. (2023). PB-LLM: Partially Binarized Large Language Models // https://arxiv.org/abs/2310.00034

2684

Nagel M., Fournarakis M., Amjad R. A., Bondarenko Y., van Baalen M., Blankevoort T. (2021). A White Paper on Neural Network Quantization // https://arxiv.org/abs/2106.08295

2685

Gholami A., Kim S., Dong Z., Yao Z., Mahoney M. W., Keutzer K. (2021). A Survey of Quantization Methods for Efficient Neural Network Inference // https://arxiv.org/abs/2103.13630

2686

Dettmers T., Pagnoni A., Holtzman A., Zettlemoyer L. (2023). QLoRA: Efficient Finetuning of Quantized LLMs // https://arxiv.org/abs/2305.14314

2687

Rush A. (2023). llama2.rs // https://github.com/srush/llama2.rs

2688

Li X., Yao Y., Jiang X., Fang X., Meng X., Fan S., Han P., Li J., Du L., Qin B., Zhang Z., Sun A., Wang Y. (2023). FLM-101B: An Open LLM and How to Train It with $100K Budget // https://arxiv.org/abs/2309.03852

2689

Bengio Y., Louradour J., Collobert R., Weston J. (2009). Curriculum Learning / ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. // https://doi.org/10.1145/1553374.1553380

2690

Graves A., Bellemare M. G., Menick J., Munos R., Kavukcuoglu K. (2017). Automated Curriculum Learning for Neural Networks // https://arxiv.org/abs/1704.03003

2691

Li C., Zhang M., He Y. (2022). The Stability-Efficiency Dilemma: Investigating Sequence Length Warmup for Training GPT Models // https://openreview.net/forum?id=JpZ5du_Kdh

2692

Li S. (2023). Variable Sequence Length Training for Long-Context Large Language Models / Large Language Model, NLP, Deep Learning, Machine Learning, Blog, Developer Blog, July 22, 2023. // https://www.cerebras.net/blog/variable-sequence-length-training-for-long-context-large-language-models/

2693

DeepSpeed Data Efficiency: A composable library that makes better use of data, increases training efficiency, and improves model quality (2023). / deepspeed.ai, September 26, 2023. // https://www.deepspeed.ai/tutorials/data-efficiency/

2694

Fernandez J., Downey D. (2018). Sampling Informative Training Data for RNN Language Models / Proceedings of ACL 2018, Student Research Workshop, pp. 9–13. // https://doi.org/10.18653/v1/P18-3002

2695

Wang H., Huang M., Huang R., Hong L., Xu H., Hu T., Liang X., Li Z. (2023). Boosting Visual-Language Models by Exploiting Hard Samples // https://arxiv.org/abs/2305.05208

2696

Keles F. D., Hegde C. (2023). On The Computational Complexity of Self-Attention. / Proceedings of Machine Learning Research, Vol. 201, pp. 1–23, 2023 // https://proceedings.mlr.press/v201/duman-keles23a/duman-keles23a.pdf

2697

* Серебряная пуля — метафора, означающая простое решение сложной проблемы.

2698

Tay Y., Dehghani M., Abnar S., Chung H. W., Fedus W., Rao J., Narang S., Tran V. Q., Yogatama D., Metzler D. (2022). Scaling Laws vs Model Architectures: How does Inductive Bias Influence Scaling? // https://arxiv.org/abs/2207.10551

2699

Wei J., Wang X., Schuurmans D., Bosma M., Ichter B., Xia F., Chi E., Le Q., Zhou D. (2022). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models // https://arxiv.org/abs/2201.11903

2700

Yao S., Yu D., Zhao J., Shafran I., Griffiths T. L., Cao Y., Narasimhan K. (2023). Tree of Thoughts: Deliberate Problem Solving with Large Language Models // https://arxiv.org/abs/2305.10601

2701

Besta M., Blach N., Kubicek A., Gerstenberger R., Gianinazzi L., Gajda J., Lehmann T., Podstawski M., Niewiadomski H., Nyczyk P., Hoefler T. (2023). Graph of Thoughts: Solving Elaborate Problems with Large Language Models // https://arxiv.org/abs/2308.09687

2702

Dehghani M., Gouws S., Vinyals O., Uszkoreit J., Kaiser Ł. (2018). Universal Transformers // https://arxiv.org/abs/1807.03819

2703

Wang Z., Ma Y., Liu Z., Tang J. (2019). R-Transformer: Recurrent Neural Network Enhanced Transformer // https://arxiv.org/abs/1907.05572

2704

Dai Z., Yang Z., Yang Y., Carbonell J., Le Q. V., Salakhutdinov R. (2019). Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context // https://arxiv.org/abs/1901.02860

2705

Giannou A., Rajput S., Sohn J.-Y., Lee K., Lee J. D., Papailiopoulos D. (2023). Looped Transformers as Programmable Computers // https://arxiv.org/abs/2301.13196

2706

Graves A. (2016). Adaptive Computation Time for Recurrent Neural Networks // https://arxiv.org/abs/1603.08983

2707

Fojo D., Campos V., Giro-i-Nieto X. (2018). Comparing Fixed and Adaptive Computation Time for Recurrent Neural Networks // https://arxiv.org/abs/1803.08165

2708

Sapunov G. (2019). Adaptive Computation Time (ACT) in Neural Networks // https://moocaholic.medium.com/adaptive-computation-time-act-in-neural-networks-part-1-2a28484b53df

2709

Orvieto A., Smith S. L., Gu A., Fernando A., Gulcehre C., Pascanu R., De S. (2023). Resurrecting Recurrent Neural Networks for Long Sequences // https://arxiv.org/abs/2303.06349

2710

Peng B., Alcaide E., Anthony Q., Albalak A., Arcadinho S., Cao H., Cheng X., Chung M., Grella M., GV K. K., He X., Hou H., Kazienko P., Kocon J., Kong J., Koptyra B., Lau H., Mantri K. S. I., Mom F., Saito A., Tang X., Wang B., Wind J. S., Wozniak S., Zhang R., Zhang Z., Zhao Q., Zhou P., Zhu J., Zhu R. (2023). Reinventing RNNs for the Transformer Era // https://arxiv.org/abs/2305.13048

2711

Fu D. Y., Dao T., Saab K. K., Thomas A. W., Rudra A., Ré C. (2022). Hungry Hungry Hippos: Towards Language Modeling with State Space Models // https://arxiv.org/abs/2212.14052

2712

Gu A., Goel K., Ré C. (2021). Efficiently Modeling Long Sequences with Structured State Spaces // Статья: https://arxiv.org/abs/2111.00396

2713

Gu A., Johnson I., Timalsina A., Rudra A., Ré C. (2022). How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections // https://arxiv.org/abs/2206.12037

2714

Hasani R., Lechner M., Wang T.-H., Chahine M., Amini A., Rus D. (2022). Liquid Structural State-Space Models // https://arxiv.org/abs/2209.12951

2715

Gu A., Gupta A., Goel K., Ré C. (2022). On the Parameterization and Initialization of Diagonal State Space Models // https://arxiv.org/abs/2206.11893

2716

Smith J. T. H., Warrington A., Linderman S. W. (2022). Simplified State Space Layers for Sequence Modeling // https://arxiv.org/abs/2208.04933

2717

Sun Y., Dong L., Huang S., Ma S., Xia Y., Xue J., Wang J., Wei F. (2023). Retentive Network: A Successor to Transformer for Large Language Models // https://arxiv.org/abs/2307.08621

2718

Thoppilan R., Freitas D. D., Hall J., Shazeer N., Kulshreshtha A., Cheng H., Jin A., Bos T., Baker L., Du Y., Li Y., Lee H., Zheng H. S., Ghafouri A., Menegali M., Huang Y., Krikun M., Lepikhin D., Qin J., Chen D., Xu Y., Chen Z., Roberts A., Bosma M., Zhao V., Zhou Y., Chang C., Krivokon I., Rusch W., Pickett M., Srinivasan P., Man L., Meier-Hellstern K., Morris M. R., Doshi T., Santos R. D., Duke T., Soraker J., Zevenbergen B., Prabhakaran V., Diaz M., Hutchinson B., Olson K., Molina A., Hoffman-John E., Lee J., Aroyo L., Rajakumar R., Butryna A., Lamm M., Kuzmina V., Fenton J., Cohen A., Bernstein R., Kurzweil R., Aguera-Arcas B., Cui C., Croak M., Chi E., Le Q. (2022). LaMDA: Language Models for Dialog Applications // https://arxiv.org/abs/2201.08239

2719

Schick T., Dwivedi-Yu J., Dessì R., Raileanu R., Lomeli M., Zettlemoyer L., Cancedda N., Scialom T. (2023). Toolformer: Language Models Can Teach Themselves to Use Tools // https://arxiv.org/abs/2302.04761

2720

Hao S., Liu T., Wang Z., Hu Z. (2023). ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings // https://arxiv.org/abs/2305.11554

2721

Shen Y., Song K., Tan X., Li D., Lu W., Zhuang Y. (2023). HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face // https://arxiv.org/abs/2303.17580

2722

Patil S. G., Zhang T., Wang X., Gonzalez J. E. (2023). Gorilla: Large Language Model Connected with Massive APIs // https://arxiv.org/abs/2305.15334

2723

OpenAI (2023). ChatGPT plugins // https://openai.com/blog/chatgpt-plugins

2724

* Сегодня для такого синтеза часто используют термин «генерация, дополненная поиском» (Retrieval-augmented Generation, RAG).

2725

Schlag I., Sukhbaatar S., Celikyilmaz A., Yih W.-t., Weston J., Schmidhuber J., Li X. (2023). Large Language Model Programs // https://arxiv.org/abs/2305.05364

2726

Heafield K. (2011). KenLM: Faster and Smaller Language Model Queries // https://kheafield.com/papers/avenue/kenlm.pdf

2727

Borgeaud S., Mensch A., Hoffmann J., Cai T., Rutherford E., Millican K., van den Driessche G., Lespiau J.-B., Damoc B., Clark A., de Las Casas D., Guy A., Menick J., Ring R., Hennigan T., Huang S., Maggiore L., Jones C., Cassirer A., Brock A., Paganini M., Irving G., Vinyals O., Osindero S., Simonyan K., Rae J. W., Elsen E., Sifre L. (2021). Improving language models by retrieving from trillions of tokens // https://arxiv.org/abs/2112.04426

2728

Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., Küttler H., Lewis M., Yih W.-T., Rocktäschel T., Riedel S., Kiela D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks // https://arxiv.org/abs/2005.11401

2729

Khattab O., Santhanam K., Li X. L., Hall D., Liang P., Potts C., Zaharia M. (2022). Demonstrate-Search-Predict: Composing retrieval and language models for knowledge-intensive NLP // https://arxiv.org/abs/2212.14024

2730

Minsky M. (1988). Society of Mind. Simon & Schuster Paperbacks // https://www.google.ru/books/edition/Society_Of_Mind/bLDLllfRpdkC

2731

Zhuge M., Liu H., Faccio F., Ashley D. R., Csordás R., Gopalakrishnan A., Hamdi A., Hammoud H. A. A. K., Herrmann V., Irie K., Kirsch L., Li B., Li G., Liu S., Mai J., Piękos P., Ramesh A., Schlag I., Shi W., Stanić A., Wang W., Wang Y., Xu M., Fan D.-P., Ghanem B., Schmidhuber J. (2023). Mindstorms in Natural Language-Based Societies of Mind // https://arxiv.org/abs/2305.17066

2732

Park J. S., O'Brien J. C., Cai C. J., Morris M. R., Liang P., Bernstein M. S. (2023). Generative Agents: Interactive Simulacra of Human Behavior // https://arxiv.org/abs/2304.03442

2733

Schmidhuber J. (2015). On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models // https://arxiv.org/abs/1511.09249

2734

Heaven W. D. (2023). DeepMind’s cofounder: Generative AI is just a phase. What’s next is interactive AI / MIT Technology Review, September 15, 2023 // https://www.technologyreview.com/2023/09/15/1079624/deepmind-inflection-generative-ai-whats-next-mustafa-suleyman/

2735

https://www.grammarly.com/about

2736

Swisher K. (2013). Yahoo Paid $30 Million in Cash for 18 Months of Young Summly Entrepreneur’s Time / All Things D, March 25, 2013 // http://allthingsd.com/20130325/yahoo-paid-30-million-in-cash-for-18-months-of-young-summly-entrepreneurs-time/

2737

Newton C. (2014). Yahoo's sleek News Digest app swims against the stream / The Verge, Jan 8, 2014. // https://www.theverge.com/2014/1/7/5284300/yahoos-sleek-news-digest-app-swims-against-the-stream

2738

Panzarino M. (2014). Yahoo Wins Another Apple Design Award For News Digest App / TechCrunch, June 3, 2014. // https://techcrunch.com/2014/06/02/yahoo-wins-another-apple-design-award-for-news-digest-app/

2739

Text Summarization (2023). // https://paperswithcode.com/task/text-summarization

2740

Yadav D., Desai J., Yadav A. K. (2021). Automatic Text Summarization Methods: A Comprehensive Review // https://arxiv.org/abs/2204.01849

2741

Ахметгареева А. (2022). Практические применения генеративных моделей: как мы делали суммаризатор текстов / Хабр, 19 мая 2022. // https://habr.com/ru/companies/sberdevices/articles/666420/

2742

Kuzmin G., Larionov D., Pisarevskaya D., Smirnov I. (2020). Fake news detection for the Russian language // https://aclanthology.org/2020.rdsm-1.5.pdf

2743

Hoy N., Koulouri T. (2021). A Systematic Review on the Detection of Fake News Articles // https://arxiv.org/abs/2110.11240

2744

Xu W., Wu J., Liu Q., Wu S., Wang L. (2022). Evidence-aware Fake News Detection with Graph Neural Networks // https://arxiv.org/abs/2201.06885

2745

Ghadiri Z., Ranjbar M., Ghanbarnejad F., Raeisi S. (2022). Automated Fake News Detection using cross-checking with reliable sources // https://arxiv.org/abs/2201.00083

2746

Gong S., Sinnott R. O., Qi J., Paris C. (2023). Fake News Detection Through Graph-based Neural Networks: A Survey // https://arxiv.org/abs/2307.12639

2747

Singhania S., Fernandez N., Rao S. (2023). 3HAN: A Deep Neural Network for Fake News Detection // https://arxiv.org/abs/2306.12014

2748

Dahl R. (2016). Automatic Colorization // https://tinyclouds.org/colorize/

2749

Hariharan B., Arbeláez P., Girshick R., Malik J. (2015). Hypercolumns for Object Segmentation and Fine-grained Localization // https://arxiv.org/abs/1411.5752

2750

Guadarrama S., Dahl R., Bieber D., Norouzi M., Shlens J., Murphy K. (2017). PixColor: Pixel recursive colorization // https://arxiv.org/abs/1705.07208

2751

Dahl R. (2016). Google Brain Residency // https://tinyclouds.org/residency/

2752

Zhang R., Zhu J.-Y., Isola P., Geng X., Lin A. S., Yu T., Efros A. A. (2017). Real-Time User-Guided Image Colorization with Learned Deep Priors // https://arxiv.org/abs/1705.02999

2753

Colorization (2022) // https://paperswithcode.com/task/colorization/latest, https://paperswithcode.com/task/colorization/codeless#code

2754

Lewis J. P. (1988). Creation By Refinement: A Creativity Paradigm for Gradient Descent Learning Networks / IEEE International Conference on Neural Networks // https://doi.org/10.1109/icnn.1988.23933

2755

Alice P. (2013). John Lewis, the most patient man on the internet / Daily Telegraph, 11 Nov 2013 // https://www.telegraph.co.uk/news/uknews/10440185/John-Lewis-the-most-patient-man-on-the-internet.html

2756

White A. (2015). The Worst Time Of Year For The Most Patient And Polite Man On The Internet Has Begun. We should probably honour him with a statue or something / BuzzFeed, Nov 6, 2015 // https://www.buzzfeed.com/alanwhite/whats-the-definition-of-madness-again

2757

Sanusi V. (2016). The Most Patient And Polite Man On The Internet Is Back At It Again / BuzzFeed, Nov 10, 2016 // https://www.buzzfeed.com/victoriasanusi/its-the-worst-time-of-year-for-the-most-patient-and-polite-m

2758

Massey N. (2014). Man called John Lewis sent Christmas advert penguin after being bombarded with tweets directed at store / Mirror, 20 Nov 2014 // https://www.mirror.co.uk/news/uk-news/man-called-john-lewis-sent-4658776

2759

Vincent J. (2016). This AI program sees genitals everywhere it looks. Do androids dream of electric dicks? / The Verge, Oct 24, 2016 // https://www.theverge.com/2016/10/24/13379208/ai-nsfw-neural-nets-deep-dream-genitals

2760

Gatys L. A., Ecker A. S., Bethge M. (2015). A Neural Algorithm of Artistic Style // https://arxiv.org/abs/1508.06576

2761

Salimans T., Goodfellow I., Zaremba W., Cheung V., Radford A., Chen X. (2016). Improved Techniques for Training GANs // https://arxiv.org/abs/1606.03498

2762

Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. (2014). GenerativeAdversarialNetworks // https://arxiv.org/abs/1406.2661

2763

Alberge D. (2021). Was famed Samson and Delilah really painted by Rubens? No, says AI / The Guardian, 26 Sep 2021 // https://www.theguardian.com/artanddesign/2021/sep/26/was-famed-samson-and-delilah-really-painted-by-rubens-no-says-ai

2764

Schmidhuber J. (1992). Learning factorial codes by predictability minimization / Neural Computation, Vol. 4 (6), pp. 863—879 // https://doi.org/10.1162/neco.1992.4.6.863

2765

Mirza M., Osindero S. (2014). Conditional Generative Adversarial Nets // https://arxiv.org/abs/1411.1784

2766

Isola P., Zhu J.-Y., Zhou T., Efros A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks // https://arxiv.org/abs/1611.07004

2767

Zhu J.-Y., Park T., Isola P., Efros A. A. (2017). Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks // https://arxiv.org/abs/1703.10593

2768

Shrivastava A., Pfister T., Tuzel O., Susskind J., Wang W., Webb R. (2016). Learning from Simulated and Unsupervised Images through Adversarial Training // https://arxiv.org/abs/1612.07828

2769

Isola P., Zhu J.-Y., Zhou T., Efros A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks // https://arxiv.org/abs/1611.07004

2770

Choi Y., Choi M., Kim M., Ha J.-W., Kim S., Choo J. (2017). StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation // https://arxiv.org/abs/1711.09020

2771

Iizuka S., Simo-Serra E., Ishikawa H. (2017). Globally and Locally Consistent Image Completion / ACM Transactions on Graphics, Vol. 36, Iss. 4, Article 107, July 2017 // http://dx.doi.org/10.1145/3072959.3073659

2772

Sagong M.-C., Shin Y.-G., Kim S.-W., Park S., Ko S.-J. (2019). PEPSI: Fast Image Inpainting With Parallel Decoding Network / 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) // https://doi.org/10.1109/CVPR.2019.01162

2773

Shin Y.-G., Sagong M.-C., Yeo Y.-J., Kim S.-W., Ko S.-J. (2019). PEPSI++: Fast and Lightweight Network for Image Inpainting // https://arxiv.org/abs/1905.09010

2774

DeepCreamPy: Decensoring Hentai with Deep Neural Networks // https://github.com/deeppomf/DeepCreamPy

2775

Radford A., Metz L., Chintala S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks // https://arxiv.org/abs/1511.06434

2776

Chen X., Duan Y., Houthooft R., Schulman J., Sutskever I., Abbeel P. (2016). InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets // https://arxiv.org/abs/1606.03657

2777

Kim T., Cha M., Kim H., Lee J. K., Kim J. (2017). Learning to Discover Cross-Domain Relations with Generative Adversarial Networks // https://arxiv.org/abs/1703.05192

2778

Karras T., Aila T., Laine S., Lehtinen J. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation // https://arxiv.org/abs/1710.10196

2779

Arjovsky M., Chintala S., Bottou L. (2017). Wasserstein GAN // https://arxiv.org/abs/1701.07875

2780

Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V., Courville A. (2017). Improved Training of Wasserstein GANs // https://arxiv.org/abs/1704.00028

2781

Karras T., Laine S., Aila T. (2018). A Style-Based Generator Architecture for Generative Adversarial Networks // https://arxiv.org/abs/1812.04948

2782

Karras T., Laine S., Aittala M., Hellsten J., Lehtinen J., Aila T. (2019). Analyzing and Improving the Image Quality of StyleGAN // https://arxiv.org/abs/1912.04958

2783

Karras T., Aittala M., Laine S., Härkönen E., Hellsten J., Lehtinen J., Aila T. (2021). Alias-Free Generative Adversarial Networks // https://arxiv.org/abs/2106.12423

2784

Choi Y., Uh Y., Yoo J., Ha J.-W. (2019). StarGAN v2: Diverse Image Synthesis for Multiple Domains // https://arxiv.org/abs/1912.01865

2785

Mokady R., Yarom M., Tov O., Lang O., Cohen-Or D., Dekel T., Irani M., Mosseri I. (2022). Self-Distilled StyleGAN: Towards Generation from Internet Photos // https://arxiv.org/abs/2202.12211

2786

Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report_Master.pdf

2787

Akbari H., Yuan L., Qian R., Chuang W.-H., Chang S.-F., Cui Y., Gong B. (2021). VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text // https://arxiv.org/abs/2104.11178

2788

Baevski A., Hsu W.-N., Xu Q., Babu A., Gu J., Auli M. (2022). The first high-performance self-supervised algorithm that works for speech, vision, and text / Meta AI, January 20, 2022

2789

Mitrovic J., McWilliams B., Walker J., Buesing L., Blundell C. (2020). Representation Learning via Invariant Causal Mechanisms // https://arxiv.org/abs/2010.07922

2790

Tomasev N., Bica I., McWilliams B., Buesing L., Pascanu R., Blundell C., Mitrovic J. (2022). Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? // https://arxiv.org/abs/2201.05119

2791

* В машинном обучении авторегрессионными обычно называют модели для предсказания следующего элемента последовательности на основе предыдущих её элементов.

2792

van den Oord A., Kalchbrenner N., Kavukcuoglu K. (2016). Pixel Recurrent Neural Networks // https://arxiv.org/abs/1601.06759

2793

van den Oord A., Kalchbrenner N., Vinyals O., Espeholt L., Graves A., Kavukcuoglu K. (2016). Conditional Image Generation with PixelCNN Decoders // https://arxiv.org/abs/1606.05328

2794

Salimans T., Karpathy A., Chen X., Kingma D. P. (2017). PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications // https://arxiv.org/abs/1701.05517

2795

Sohl-Dickstein J., Weiss E. A., Maheswaranathan N., Ganguli S. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics // https://arxiv.org/abs/1503.03585

2796

Ho J., Jain A., Abbeel P. (2020). Denoising Diffusion Probabilistic Models // https://arxiv.org/abs/2006.11239

2797

Nichol A., Dhariwal P. (2021). Improved denoising diffusion probabilistic models // https://arxiv.org/abs/2102.09672

2798

Dhariwal P., Nichol A. (2021). Diffusion Models Beat GANs on Image Synthesis // https://arxiv.org/abs/2105.05233

2799

Jiang Y., Chang S., Wang Z. (2021). TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up // https://arxiv.org/abs/2102.07074

2800

Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. (2018). StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks // https://arxiv.org/abs/1710.10916

2801

Wah C., Branson S., Welinder P., Perona P., Belongie S. (2011). The Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR2011-001, California Institute of Technology // http://www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf

2802

Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. (2017). StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks // https://arxiv.org/abs/1710.10916

2803

Sun W., Chen Z. (2019). Learned Image Downscaling for Upscaling using Content Adaptive Resampler // https://arxiv.org/abs/1907.12904

2804

Lim B., Son S., Kim H., Nah S., Lee K. M. (2017). Enhanced Deep Residual Networks for Single Image Super-Resolution // https://arxiv.org/abs/1707.02921

2805

Ma C., Rao Y., Cheng Y., Chen C., Lu J., Zhou J. (2020). Structure-Preserving Super Resolution with Gradient Guidance // https://arxiv.org/abs/2003.13081

2806

Niu B., Wen W., Ren W., Zhang X., Yang L., Wang S., Zhang K., Cao X., Shen H. (2020). Single Image Super-Resolution via a Holistic Attention Network // https://arxiv.org/abs/2008.08767

2807

Kawulok M., Benecki P., Piechaczek S., Hrynczenko K., Kostrzewa D., Nalepa J. (2019). Deep Learning for Multiple-Image Super-Resolution // https://arxiv.org/abs/1903.00440

2808

Zhu M., Pan P., Chen W., Yang Y. (2019). DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis // https://arxiv.org/abs/1904.01310

2809

Xu T., Zhang P., Huang Q., Zhang H., Gan Z., Huang X., He X. (2017). AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks // https://arxiv.org/abs/1711.10485

2810

Liang J., Pei W., Lu F. (2019). CPGAN: Full-Spectrum Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis // https://paperswithcode.com/paper/cpgan-full-spectrum-content-parsing

2811

Parmar N., Vaswani A., Uszkoreit J., Kaiser Ł., Shazeer N., Ku A., Tran D. (2018). Image Transformer // https://arxiv.org/abs/1802.05751

2812

Wu B., Xu C., Dai X., Wan A., Zhang P., Yan Z., Tomizuka M., Gonzalez J., Keutzer K., Vajda P. (2020). Visual Transformers: Token-based Image Representation and Processing for Computer Vision // https://arxiv.org/abs/2006.03677

2813

Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani M., Minderer M., Heigold G., Gelly S., Uszkoreit J., Houlsby N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale // https://arxiv.org/abs/2010.11929

2814

Touvron H., Cord M., Douze M., Massa F., Sablayrolles A., Jégou H. (2020). Training data-efficient image transformers & distillation through attention // https://arxiv.org/abs/2012.12877

2815

Liu Z., Lin Y., Cao Y., Hu H., Wei Y., Zhang Z., Lin S., Guo B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows // https://arxiv.org/abs/2103.14030

2816

Carion N., Massa F., Synnaeve G., Usunier N., Kirillov A., Zagoruyko S. (2020). End-to-end Object Detection with Transformers // https://ai.facebook.com/research/publications/end-to-end-object-detection-with-transformers

2817

Zhu X., Su W., Lu L., Li B., Wang X., Dai J. (2020). Deformable DETR: Deformable Transformers for End-to-End Object Detection // https://arxiv.org/abs/2010.04159

2818

Guo J., Han K., Wu H., Xu C., Tang Y., Xu C., Wang Y. (2021). CMT: Convolutional Neural Networks Meet Vision Transformers // https://arxiv.org/abs/2107.06263

2819

Wu H., Xiao B., Codella N., Liu M., Dai X., Yuan L., Zhang L. (2021). CvT: Introducing Convolutions to Vision Transformers // https://arxiv.org/abs/2103.15808

2820

Touvron H., Cord M., Sablayrolles A., Synnaeve G., Jégou H. (2021). Going deeper with Image Transformers // https://arxiv.org/abs/2103.17239

2821

Yuan K., Guo S., Liu Z., Zhou A., Yu F., Wu W. (2021). Incorporating Convolution Designs into Visual Transformers // https://arxiv.org/abs/2103.11816

2822

Chen M., Peng H., Fu J., Ling H. (2021). AutoFormer: Searching Transformers for Visual Recognition // https://arxiv.org/abs/2107.00651

2823

Han K., Xiao A., Wu E., Guo J., Xu C., Wang Y. (2021). Transformer in Transformer // https://arxiv.org/abs/2103.00112

2824

Wang Y., Huang R., Song S., Huang Z., Huang G. (2021). Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image Recognition // https://arxiv.org/abs/2105.15075

2825

Chen X., Hsieh C.-J., Gong B. (2021). When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations // https://arxiv.org/abs/2106.01548

2826

Dai Z., Liu H., Le Q. V., Tan M. (2021). CoAtNet: Marrying Convolution and Attention for All Data Sizes // https://arxiv.org/abs/2106.04803

2827

Liu Z., Hu H., Lin Y., Yao Z., Xie Z., Wei Y., Ning J., Cao Y., Zhang Z., Dong L., Wei F., Guo B. (2021). Swin Transformer V2: Scaling Up Capacity and Resolution // https://arxiv.org/abs/2111.09883

2828

Li Y., Wu C.-Y., Fan H., Mangalam K., Xiong B., Malik J., Feichtenhofer C. (2021). Improved Multiscale Vision Transformers for Classification and Detection // https://arxiv.org/abs/2112.01526

2829

Dong X., Bao J., Zhang T., Chen D., Zhang W., Yuan L., Chen D., Wen F., Yu N. (2021). PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers // https://arxiv.org/abs/2111.12710

2830

Wu S., Wu T., Tan H., Guo G. (2021). Pale Transformer: A General Vision Transformer Backbone with Pale-Shaped Attention // https://arxiv.org/abs/2112.14000

2831

Liu Z., Mao H., Wu C.-Y., Feichtenhofer C., Darrell T., Xie S. (2022). A ConvNet for the 2020s // https://arxiv.org/abs/2201.03545

2832

Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2023). BASIC-L: Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675

2833

CoCa: Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2022). Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675

2834

Ramesh A., Pavlov M., Goh G., Gray S., Chen M., Child R., Misra V., Mishkin P, Krueger G., Agarwal S., Sutskever I. (2021). DALL·E: Creating Images from Text / OpenAI Blog, January 5, 2021 // https://openai.com/blog/dall-e/

2835

Radford A., Sutskever I., Kim J. W., Krueger G., Agarwal S. (2021). CLIP: Connecting Text and Images / OpenAI Blog, January 5, 2021 // https://openai.com/blog/clip/

2836

Radford A., Sutskever I., Kim J. W., Krueger G., Agarwal S. (2021). CLIP: Connecting Text and Images / OpenAI Blog, January 5, 2021 // https://openai.com/blog/clip/

2837

Radford A., Kim J. W., Hallacy C., Ramesh A., Goh G., Agarwal S., Sastry G., Askell A., Mishkin P., Clark J., Krueger G., Sutskever I. (2021). Learning Transferable Visual Models From Natural Language Supervision // https://arxiv.org/abs/2103.00020

2838

Schuhmann C., Beaumont R., Vencu R., Gordon C., Wightman R., Cherti M., Coombes T., Katta A., Mullis C., Wortsman M., Schramowski P., Kundurthy S., Crowson K., Schmidt L., Kaczmarczyk R., Jitsev J. (2022). LAION-5B: An open large-scale dataset for training next generation image-text models // https://arxiv.org/abs/2210.08402

2839

Schuhmann C., Vencu R., Beaumont R., Kaczmarczyk R., Mullis C., Katta A., Coombes T., Jitsev J., Komatsuzaki A. (2021). LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs // https://arxiv.org/abs/2111.02114

2840

Ramesh A., Pavlov M., Goh G., Gray S., Voss C., Radford A., Chen M., Sutskever I. (2021). Zero-Shot Text-to-Image Generation // https://arxiv.org/abs/2102.12092

2841

https://github.com/sberbank-ai/sber-vq-gan

2842

Wang X., Yu K., Wu S., Gu J., Liu Y., Dong C., Loy C. C., Qiao Y., Tang X. (2018). ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks // https://arxiv.org/abs/1809.00219

2843

Сбер создал первую мультимодальную нейросеть ruDALL-E, которая генерирует картинки по описанию на русском языке (2021) / Sber Press, 2 ноября 2021 // https://press.sber.ru/publications/sber-sozdal-pervuiu-multimodalnuiu-neiroset-rudall-e-kotoraia-generiruet-kartinki-po-opisaniiu-na-russkom-iazyke

2844

Димитров Д. (2021). ruDALL-E: генерируем изображения по текстовому описанию, или Самый большой вычислительный проект в России / Хабр, 2 ноября // https://habr.com/ru/company/sberbank/blog/586926/

2845

https://github.com/sberbank-ai/ru-dalle

2846

Nichol A., Dhariwal P., Ramesh A., Shyam P., Mishkin P., McGrew B., Sutskever I., Chen M. (2021). GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models // https://arxiv.org/abs/2112.10741

2847

Gupta T., Kamath A., Kembhavi A., Hoiem D. (2021). Towards General Purpose Vision Systems // https://arxiv.org/abs/2104.00743

2848

* Гипермодальность — свойство мультимодальной модели, позволяющее ей использовать как на входе, так и на выходе данные, представленные любым подмножеством поддерживаемых модальностей, а не только какой-либо одной. В случае ruDOLPH это означает, что как на входе, так и на выходе модели могут быть либо только текст, либо только изображение, либо последовательности вида «изображение — текст» или «текст — изображение».

2849

Shonenkov A., Konstantinov M. (2021). RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP // https://github.com/sberbank-ai/ru-dolph

2850

Ramesh A., Dhariwal P., Nichol A., Chu C., Chen M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents // https://arxiv.org/pdf/2204.06125.pdf

2851

Daras G., Dimakis A. G. (2022). Discovering the Hidden Vocabulary of DALLE-2 // https://arxiv.org/abs/2206.00169

2852

* Blackbox-методы или методы «чёрного ящика» — обобщённое название методов, которые анализируют тот или иной объект лишь через взаимодействие с ним, не заглядывая в его внутреннее устройство.

2853

Костенков А. (2022). Нейросеть DALL-E 2 создала собственный язык: правда, не совсем, и совсем не? / Habr, 18 июня 2022 // https://habr.com/ru/companies/ruvds/articles/672046/

2854

Daras G. (2022). / Twitter, 31 мая 2022 // https://twitter.com/giannis_daras/status/1531693093040230402

2855

Quach K. (2022). No, OpenAI's image-making DALL·E 2 doesn't understand some secret language / The Register, 7 Jun 2022 // https://www.theregister.com/2022/06/07/in_brief_ai/

2856

Bach J. (2022). / Twitter, 31 мая 2022 // https://twitter.com/Plinz/status/1531711345585860609

2857

* Создатели моделей для генерации изображений стремятся улучшить эту ситуацию: например, запущенный в августе 2023 г. сервис Ideogram способен справиться с визуализацией небольших предложений. В основе сервиса лежит диффузионная генеративная модель, в создании которой принимали участие разработчики нейросети Imagen. Появившаяся в октябре 2023 г. DALL·E 3 также продемонстрировала весьма значительный прогресс в задаче визуализации текстов.

2858

Norouzi M., Chan W., Ho J., Saharia C., Abdullah S., Lei J., Lu J. (2023). Announcing Ideogram AI // https://ideogram.ai/launch

2859

Rombach R., Blattmann A., Lorenz D., Esser P., Ommer B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models // https://arxiv.org/abs/2112.10752

2860

Quach K. (2022). No, OpenAI's image-making DALL·E 2 doesn't understand some secret language / The Register, 7 Jun 2022 // https://www.theregister.com/2022/06/07/in_brief_ai/

2861

OpenAI (2023). DALL·E 3 system card // https://openai.com/research/dall-e-3-system-card

2862

Saharia C., Chan W., Saxena S., Li L., Whang J., Denton E., Ghasemipour S. K. S., Ayan B. K., Mahdavi S. S., Lopes R. G., Salimans T., Ho J., Fleet D. J., Norouzi N. (2022). Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding // https://arxiv.org/abs/2205.11487

2863

Midjourney LLC (2022). Midjourney Documentation // https://docs.midjourney.com/v1/en

2864

Vincent J. (2022). ‘An engine for the imagination’: the rise of AI image generators. An interview with Midjourney founder David Holz. / The Verge, Aug 2, 2022 // https://www.theverge.com/2022/8/2/23287173/ai-image-generation-art-midjourney-multiverse-interview-david-holz

2865

Gu J., Zhai S., Zhang Y., Susskind J., Jaitly N. (2023). Matryoshka Diffusion Models // https://arxiv.org/abs/2310.15111

2866

Shonenkov A., Konstantinov M., Bakshandaeva D., Schuhmann C., Ivanova K., Klokova N. (2023). IF by DeepFloyd Lab at StabilityAI // https://github.com/deep-floyd/IF

2867

Разжигаев А. (2022). Kandinsky 2.0 — первая мультиязычная диффузия для генерации изображений по тексту. / Habr, 23 ноя 2022 // https://habr.com/ru/companies/sberbank/articles/701162/

2868

Razzhigaev A., Shakhmatov A., Maltseva A., Arkhipkin V., Pavlov I., Ryabov I., Kuts A., Panchenko A., Kuznetsov A., Dimitrov D. (2023). Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion // https://arxiv.org/abs/2310.03502

2869

Кузнецов А. (2022). Kandinsky 2.1, или Когда +0,1 значит очень много. / Habr, 4 апр 2023 // https://habr.com/ru/companies/sberbank/articles/725282/

2870

Димитров Д. (2023). Kandinsky 2.2 — новый шаг в направлении фотореализма / Habr, 12 июля 2023. // https://habr.com/ru/companies/sberbank/articles/747446/

2871

Valyaeva A. (2023). AI Has Already Created As Many Images As Photographers Have Taken in 150 Years. Statistics for 2023 / Everypixel Journal, 15.08.2023 // https://journal.everypixel.com/ai-image-statistics

2872

Zhang L., Agrawala M. (2023). Adding Conditional Control to Text-to-Image Diffusion Models // https://arxiv.org/abs/2302.05543

2873

Adobe (2023). Generative Fill // https://www.adobe.com/products/photoshop/generative-fill.html

2874

Marcus G. (2022). Horse rides astronaut / The Road to AI We Can Trust, 28.05.2022 // https://garymarcus.substack.com/p/horse-rides-astronaut

2875

Marcus G. (2022). Compositionality and Natural Language Understanding [slides] / The Challenge of Compositionality for AI / June 29-30, 2022 // https://compositionalintelligence.github.io/pdfs/Marcus.pdf

2876

* Промпт-инженер — специалист по составлению запросов (затравок, промптов) [prompts] для генеративных нейронных сетей; промпт-инжиниринг — дисциплина, занимающаяся вопросами сочинения или оптимизации промптов; по сути промпт-инжиниринг является развитием идеи «затравочного программирования», знакомого нам по цитировавшимся ранее высказываниям Андрея Карпатого и Гверна Бренуэна.

2877

McCammon J. (2023). Can a horse ride an astronaut? A taxonomy of antagonistic Midjourney prompts / 96 layers, 12 июня 2023 // https://www.96layers.ai/p/can-a-horse-ride-an-astronaut

2878

Lovering C., Pavlick E. (2023). Training Priors Predict Text-To-Image Model Performance // https://arxiv.org/abs/2306.01755

2879

Tsalicoglou C., Manhardt F., Tonioni A., Niemeyer M., Tombari F. (2023). TextMesh: Generation of Realistic 3D Meshes From Text Prompts // https://arxiv.org/abs/2304.12439

2880

Mildenhall B., Srinivasan P. P., Tancik M., Barron J. T., Ramamoorthi R., Ng R. (2020). NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis // https://arxiv.org/abs/2003.08934

2881

Niemeyer M., Barron J. T., Mildenhall B., Sajjadi M. S. M., Geiger A., Radwan N. (2023). RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs // https://arxiv.org/abs/2112.00724

2882

Poole B., Jain A., Barron J. T., Mildenhall B. (2022). DreamFusion: Text-to-3D using 2D Diffusion // https://arxiv.org/abs/2209.14988

2883

Müller T., Evans A., Schied C., Keller A. (2022). Instant Neural Graphics Primitives with a Multiresolution Hash Encoding // https://arxiv.org/abs/2201.05989

2884

Ben Melech Stan G., Wofk D., Fox S., Redden A., Saxton W., Yu J., Aflalo E., Tseng S.-Y., Nonato F., Muller M., Lal V. (2023). LDM3D: Latent Diffusion Model for 3D // https://arxiv.org/abs/2305.10853

2885

Ranftl R., Lasinger K., Hafner D., Schindler K., Koltun V. (2019). Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer // https://arxiv.org/abs/1907.01341

2886

Deitke M., Liu R., Wallingford M., Ngo H., Michel O., Kusupati A., Fan A., Laforte C., Voleti V., Gadre S. Y., VanderBilt E., Kembhavi A., Vondrick C., Gkioxari G., Ehsani K., Schmidt L., Farhadi A. (2023). Objaverse-XL: A Universe of 10M+ 3D Objects // https://arxiv.org/abs/2307.05663

2887

Deitke M., Schwenk D., Salvador J., Weihs L., Michel O., VanderBilt E., Schmidt L., Ehsani K., Kembhavi A., Farhadi A. (2022). Objaverse: A Universe of Annotated 3D Objects // https://arxiv.org/abs/2212.08051

2888

Cheung R. (2023). Is the Panic Over AI Art Overblown? We Speak With Artists and Experts. / Vice, February 22, 2023 // https://www.vice.com/en/article/ake53e/ai-art-lawsuits-midjourney-dalle-chatgpt

2889

Yu J., Xu Y., Koh J. Y., Luong T., Baid G., Wang Z., Vasudevan V., Ku A., Yang Y., Ayan B. K., Hutchinson B., Han W., Parekh Z., Li X., Zhang H., Baldridge J., Wu Y. (2022). Scaling Autoregressive Models for Content-Rich Text-to-Image Generation // https://arxiv.org/abs/2206.10789

2890

Craiyon LLC (2023). Frequently asked questions // https://www.craiyon.com/#faq

2891

Yuan L., Chen D., Chen Y.-L., Codella N., Dai X., Gao J., Hu H., Huang X., Li B., Li C., Liu C., Liu M., Liu Z., Lu Y., Shi Y., Wang L., Wang J., Xiao B., Xiao Z., Yang J., Zeng M., Zhou L., Zhang P. (2021). Florence: A New Foundation Model for Computer Vision // https://arxiv.org/abs/2111.11432

2892

Wu C., Liang J., Ji L., Yang F., Fang Y., Jiang D., Duan N. (2021). NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion // https://arxiv.org/abs/2111.12417

2893

Jia C., Yang Y., Xia Y., Chen Y.-T., Parekh Z., Pham H., Le Q. V., Sung Y., Li Z., Duerig T. (2021). Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision // https://arxiv.org/abs/2102.05918

2894

Riquelme C., Puigcerver J., Mustafa B., Neumann M., Jenatton R., Pinto A. S., Keysers D., Houlsby N. (2021). Scaling Vision with Sparse Mixture of Experts // https://arxiv.org/abs/2106.05974

2895

Romero A. (2021). GPT-3 Scared You? Meet Wu Dao 2.0: A Monster of 1.75 Trillion Parameters / towards data science, Jun 6, 2021 // https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484

2896

Alayrac J.-B., Donahue J., Luc P., Miech A. (2022). Tackling multiple tasks with a single visual language model / DeepMind blog, April 28, 2022 // https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model

2897

Alayrac J.-B., Donahue J., Luc P., Miech A., Barr I., Hasson Y., Lenc K., Mensch A., Millican K., Reynolds M., Ring R., Rutherford E., Cabi S., Han T., Gong Z., Samangooei S., Monteiro M., Menick J., Borgeaud S., Brock A., Nematzadeh A., Sharifzadeh S., Binkowski M., Barreira R., Vinyals O., Zisserman A., Simonyan K. (2022). Flamingo: a Visual Language Model for Few-Shot Learning // https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/tackling-multiple-tasks-with-a-single-visual-language-model/flamingo.pdf

2898

Hoffmann J., Borgeaud S., Mensch A., Sifre L. (2022). An empirical analysis of compute-optimal large language model training / DeepMind blog, April 12, 2022 // https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-language-model-training

2899

Hoffmann J., Borgeaud S., Mensch A., Buchatskaya E., Cai T., Rutherford E., de Las Casas D., Hendricks L. A., Welbl J., Clark A., Hennigan T., Noland E., Millican K., van den Driessche G., Damoc B., Guy A., Osindero S., Simonyan K., Elsen E., Rae J. W., Vinyals O., Sifre L. (2022). Training Compute-Optimal Large Language Models // https://arxiv.org/abs/2203.15556

2900

Kirillov A., Mintun E., Ravi N., Mao H., Rolland C., Gustafson L., Xiao T., Whitehead S., Berg A. C., Lo W.-Y., Dollár P., Girshick R. (2023). Segment Anything // https://arxiv.org/abs/2304.02643

2901

Cizek K., Uricchio W., Wolozin S. (2019). Media co-creation with non-human systems / Cizek K., Uricchio W., Anderson J., Carter M. A., Detroit Narrative Agency, Harris T. A., Holmes M., Lachman R., Massiah L., Mertes C., Rafsky S., Stephenson M., Winger-Bearskin A., Wolozin S. (2019). Collective Wisdom. Massachusetts Institute of Technology // https://doi.org/10.21428/ba67f642.f7c1b7e5

2902

Ayerle J. (2018). Un'emozione per sempre 2.0: starring Ornella Muti / YouTube, Mar 23, 2018 // https://www.youtube.com/watch?v=c1vVHAY8Mc4

2903

Reichert C. (2019). This deepfake shows an impressionist taking on 20 celebrities, convincingly / c|net, Oct. 10, 2019 // https://www.cnet.com/news/this-deepfake-shows-an-impressionist-take-on-20-celebrities-convincingly/

2904

Grossman D. (2017). How LucasFilm Made Grand Moff Tarkin Look Real in 'Rogue One' / Popular Mechanics, Jan 6, 2017 // https://www.popularmechanics.com/culture/movies/a24641/grand-moff-tarkin-rogue-one/

2905

Orange B. A. (2016). Lucasfilm Responds to Rogue One CG Character Backlash / MovieWeb, December 27, 2016 // https://movieweb.com/rogue-one-tarkin-leia-cg-character-backlash-lucasfilm/

2906

Clarke C. (2017). How 3D scanning brought grand moff Tarkin back to life for Rogue One / 3D Printing Industry, January 27th 2017 // https://3dprintingindustry.com/news/3d-scanning-brought-grand-moff-tarkin-back-life-rogue-one-104458/

2907

Itzkoff D. (2016). How ‘Rogue One’ Brought Back Familiar Faces / The New York Times, Dec. 27, 2016 // https://www.nytimes.com/2016/12/27/movies/how-rogue-one-brought-back-grand-moff-tarkin.html

2908

Grossman D. (2018). Here's Harrison Ford Starring in 'Solo' Thanks to Deepfakes / Popular Mechanics, Oct, 17, 2018 // https://www.popularmechanics.com/culture/movies/a23867069/harrison-ford-han-solo-deepfakes/

2909

Radulovic P. (2018). Harrison Ford is the star of Solo: A Star Wars Story thanks to deepfake technology / Polygon, Oct 17, 2018 // https://www.polygon.com/2018/10/17/17989214/harrison-ford-solo-movie-deepfake-technology

2910

Winick E. (2018). How acting as Carrie Fisher's puppet made a career for Rogue One's Princess Leia / MIT Technology Review, October 16, 2018 // https://www.technologyreview.com/2018/10/16/139739/how-acting-as-carrie-fishers-puppet-made-a-career-for-rogue-ones-princess-leia/

2911

Петров О. (2020). Как из четырёх минут речи мы воссоздали голос молодого Леонида Куравлёва / Хабр, 2 декабря // https://habr.com/ru/company/sberbank/blog/530876/

2912

Буйлов М. (2020). Сберегательный образ жулика / Коммерсант. № 227 от 10.12.2020. С. 7 // https://www.kommersant.ru/doc/4604689

2913

Старовойтов О. (2020). Сбер 2020 и его амбассадор Жорж Милославский / finversia, 13.12.2020 // https://www.finversia.ru/publication/sber-2020-i-ego-ambassador-zhorzh-miloslavskii-86613

2914

https://github.com/deepfakes/faceswap

2915

Perov I., Gao D., Chervoniy N., Liu K., Marangonda S., Umé C., Mr. Dpfks, Facenheim C. S., RP L., Jiang J., Zhang S., Wu P., Zhou B., Zhang W. (2020). DeepFaceLab: A simple, flexible and extensible face swapping framework // https://arxiv.org/abs/2005.05535

2916

https://github.com/iperov/DeepFaceLab

2917

Siarohin A., Lathuilière S., Tulyakov S., Ricci E., Sebe N. (2020). First Order Motion Model for Image Animation // https://arxiv.org/abs/2003.00196

2918

Ranftl R., Lasinger K., Hafner D., Schindler K., Koltun V. (2019). Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer // https://arxiv.org/abs/1907.01341

2919

Esser P., Chiu J., Atighehchian P., Granskog J., Germanidis A. (2023). Structure and Content-Guided Video Synthesis with Diffusion Models // https://arxiv.org/abs/2302.03011

2920

Runway Research (2023). Gen-2: The Next Step Forward for Generative AI. // https://research.runwayml.com/gen2

2921

Clark A., Donahue J., Simonyan K. (2019). Adversarial Video Generation on Complex Datasets // https://arxiv.org/abs/1907.06571

2922

Kahembwe E., Ramamoorthy S. (2019). Lower Dimensional Kernels for Video Discriminators // https://arxiv.org/abs/1912.08860

2923

Singer U., Polyak A., Hayes T., Yin X., An J., Zhang S., Hu Q., Yang H., Ashual O., Gafni O., Parikh D., Gupta S., Taigman Y. (2022). Make-A-Video: Text-to-Video Generation without Text-Video Data // https://arxiv.org/abs/2209.14792

2924

Hong W., Ding M., Zheng W., Liu X., Tang J. (2022). CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers // https://arxiv.org/abs/2205.15868

2925

Khachatryan L., Movsisyan A., Tadevosyan V., Henschel R., Wang Z., Navasardyan S., Shi H. (2023). Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators // https://arxiv.org/abs/2303.13439

2926

Luo Z., Chen D., Zhang Y., Huang Y., Wang L., Shen Y., Zhao D., Zhou J., Tan T. (2023). VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation // https://arxiv.org/abs/2303.08320

2927

Храпов А. (2023). Диффузионная нейросеть ModelScope text2video 1.7B — создаём видео по текстовому описанию у себя дома. / Хабр, 23 мар 2023 // https://habr.com/ru/articles/724284/

2928

Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html

2929

Grout D. J., Palisca C. V. (2001). A History of Western Music. W. W. Norton & Company: New York // https://books.google.ru/books?id=OdGOPwAACAAJ

2930

Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html

2931

Grout D. J., Palisca C. V. (2001). A History of Western Music. W. W. Norton & Company: New York // https://books.google.ru/books?id=OdGOPwAACAAJ

2932

Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html

2933

* Здесь — полифонический приём преобразования нотной последовательности, заключающийся в воспроизведении её интервалов в противоположном направлении от некоего неизменяющегося звука: восходящему ходу в основном (прямом) движении партии в обратном движении соответствует ход на такой же интервал вниз, и наоборот.

2934

Grout D. J., Palisca C. V. (2001). A History of Western Music. W. W. Norton & Company: New York // https://books.google.ru/books?id=OdGOPwAACAAJ

2935

Alpern A. (1995). Techniques for algorithmic composition of music // http://alum.hampshire.edu/~adaF92/algocomp/algocomp95.html

2936

Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html

2937

Alpern A. (1995). Techniques for algorithmic composition of music // http://alum.hampshire.edu/~adaF92/algocomp/algocomp95.html

2938

Хаскинс Р. (2016). Быть Джоном Кейджем. Американский «плодотворный анархизм»: танец души / Гефтер, 18.05.2016 // http://gefter.ru/archive/18580

2939

Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html

2940

Matossian N. (1986). Xenakis. London: Kahn and Averill // https://books.google.ru/books?id=Aj8IAQAAMAAJ

2941

Varga B. A., Xenakis I. (1996). Conversations with Iannis Xenakis. London: Faber and Faber // https://books.google.ru/books?id=SD1iQgAACAAJ

2942

Matossian N. (1986). Xenakis. London: Kahn and Averill // https://books.google.ru/books?id=Aj8IAQAAMAAJ

2943

Varga B. A., Xenakis I. (1996). Conversations with Iannis Xenakis. London: Faber and Faber // https://books.google.ru/books?id=SD1iQgAACAAJ

2944

Ферапонтова Е. В. (2004). Ксенакис Янис / Большая российская энциклопедия // https://bigenc.ru/music/text/2638850

2945

Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html

2946

Eck D., Schmidhuber J. (2002). A First Look at Music Composition using LSTM Recurrent Neural Networks. Technical Report No. IDSIA-07-02 // http://people.idsia.ch/~juergen/blues/IDSIA-07-02.pdf

2947

Eck D., Lapalme J. (2006). Learning musical structure directly from sequences of music. Technical report, University of Montreal // http://www.iro.umontreal.ca/~eckdoug/papers/tr1300.pdf

2948

Correa D., Saito J., Abib S. (2008). Composing music with BPTT and LSTM networks: Comparing learning and generalization aspects / Proceedings of 2008 11th IEEE International Conference on Computational Science and Engineering — Workshops, pp. 95—100 // 10.1109/CSEW.2008.69

2949

Sturm B. L., Santos J. F., Korshunova I. (2015). Folk music style modelling by recurrent neural networks with long short term memory units // https://ismir2015.ismir.net/LBD/LBD13.pdf

2950

Callahan D. (2018). AI created more than 100,000 pieces of music after analyzing Irish and English folk tunes / KTH Royal Institute of Technology. News & events // https://www.kth.se/en/aktuellt/nyheter/ai-created-more-than-100-000-pieces-of-music-after-analyzing-irish-and-english-folk-tunes-1.845897

2951

Hadjeres G., Pachet F., Nielsen F. (2017). DeepBach: a Steerable Model for Bach Chorales Generation // https://arxiv.org/abs/1612.01010

2952

Morgen O. (2016). C-RNN-GAN: Continuous recurrent neural networks with adversarial training // https://arxiv.org/abs/1611.09904

2953

Yang L.-C., Chou S.-Y., Yang Y.-H. (2017). MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation // https://arxiv.org/abs/1703.10847

2954

Waite E. (2016). Generating Long-Term Structure in Songs and Stories // https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn/

2955

Chu H., Urtasun R., Fidler S. (2016). Song From PI: A Musically Plausible Network for Pop Music Generation // https://arxiv.org/abs/1611.03477

2956

Roberts A., Engel J., Raffel C., Hawthorne C., Eck D. (2018). A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music // https://arxiv.org/abs/1803.05428

2957

Kotecha N., Young P. (2018). Generating Music using an LSTM Network // https://arxiv.org/abs/1804.07300

2958

Dong H.-W., Hsiao W.-Y., Yang L.-C., Yang Y.-H. (2017). MuseGAN: Symbolic-domain music generation and accompaniment with multitrack sequential generative adversarial networks // https://arxiv.org/abs/1709.06298

2959

Wu J., Hu C., Wang Y., Hu X., Zhu J. (2017). A Hierarchical Recurrent Neural Network for Symbolic Melody Generation // https://arxiv.org/abs/1712.05274

2960

Simon I., Oore S. (2017). Performance RNN: Generating music with expressive timing and dynamics // https://magenta.tensorflow.org/performance-rnn

2961

Colombo F., Gerstner W. (2018). BachProp: Learning to Compose Music in Multiple Styles // https://arxiv.org/abs/1802.05162

2962

Нейросеть Яндекса создала музыку в стиле Скрябина (2017) / Викиновости, 30 мая 2017 // https://ru.wikinews.org/wiki/Нейросеть_Яндекса_создала_музыку_в_стиле_Скрябина

2963

Камерный оркестр исполнил музыку, написанную нейросетью «Яндекса» под Скрябина (2017) / Meduza, 30 мая 2017 // https://meduza.io/shapito/2017/05/30/kamernyy-orkestr-ispolnil-muzyku-napisannuyu-neyrosetyu-yandeksa-pod-skryabina

2964

Yamshchikov I. P., Tikhonov A. (2018). I Feel You: What makes algorithmic experience personal? / EVA Copenhagen 2018, Politics of the Machines — Art and After, Aalborg University, Copenhagen, Denmark, 15—17 May 2018 // https://doi.org/10.14236/ewic/EVAC18.32

2965

Yamshchikov I. P., Tikhonov A. (2017). Music generation with variational recurrent autoencoder supported by history // https://arxiv.org/abs/1705.05458

2966

Ализар А. (2019). Нейросеть «Яндекса» стала соавтором пьесы для альта с оркестром / Хабр, 22 февраля // https://habr.com/ru/post/441286/

2967

Иванов С. М. (2018). Нейросетевая Генерация Музыки. Выпускная квалификационная работа. Московский государственный университет имени М.В. Ломоносова. Факультет вычислительной математики и кибернетики. Кафедра математических методов прогнозирования // http://www.machinelearning.ru/wiki/images/2/2c/2018_417_IvanovSM.pdf

2968

AI-generated music challenge // https://www.crowdai.org/challenges/ai-generated-music-challenge

2969

Huang C.-Z. A., Vaswani A., Uszkoreit J., Shazeer N., Simon I., Hawthorne C., Dai A. M., Hoffman M. D., Dinculescu M., Eck D. (2018). Music Transformer // https://arxiv.org/abs/1809.04281

2970

Piano-e-Competition dataset (competition history): http://www.piano-e-competition.com/

2971

Huang Y.-S., Yang Y.-H. (2020). Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions // https://arxiv.org/abs/2002.00212

2972

Hawthorne C., Stasyuk A., Roberts A., Simon I., Huang C.-Z. A., Dieleman S., Elsen E., Engel J., Eck D. (2019). Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset / In International Conference on Learning Representations // https://openreview.net/forum?id=r1lYRjC9F7

2973

Payne C. M. (2019). MuseNet / OpenAI blog, April 25, 2019 // https://openai.com/blog/musenet/

2974

Deahl D. (2019). Warner music signed an algorithm to a record deal — what happens next? / The Verge, Mar 27, 2019 // https://www.theverge.com/2019/3/27/18283084/warner-music-algorithm-signed-ambient-music-endel

2975

Минин А. (2022). Маэстро: как виртуальные ассистенты Салют превращают текст в музыку / Хабр, 23 декабря 2022 // https://habr.com/ru/companies/sberdevices/articles/707138/

2976

Минин А. (2021). SymFormer: как мы написали музыку с помощью трансформеров и вариационных автоэнкодеров / Хабр, 25 ноября 2021 // https://habr.com/ru/companies/sberdevices/articles/591441/

2977

Aiphoria (2024) // https://zvuk.com/artist/211304339

2978

ИИ впервые в мире солировал на концерте ВЭФ во Владивостоке // https://ria.ru/20230910/kontsert-1895341104.html

2979

Dhariwal P., Jun H., Payne C. M., Kim J. W., Radford A., Sutskever I. (2020). Jukebox / OpenAI blog, April 30, 2020 // https://openai.com/blog/jukebox/

2980

Dhariwal P., Jun H., Payne C., Kim J. W., Radford A., Sutskever I. (2020). Jukebox: A Generative Model for Music // https://arxiv.org/abs/2005.00341

2981

Agostinelli A., Denk T. I., Borsos Z., Engel J., Verzetti M., Caillon A., Huang Q., Jansen A., Roberts A., Tagliasacchi M., Sharifi M., Zeghidour N., Frank C. (2023). MusicLM: Generating Music From Text // https://arxiv.org/abs/2301.11325

2982

Ni M., Huang H., Su L., Cui E., Bharti T., Wang L., Gao J., Zhang D., Duan N. (2020). M3P: Learning Universal Representations via Multitask Multilingual Multimodal Pre-training // https://arxiv.org/abs/2006.02635

2983

Reed S., Zolna K., Parisotto E., Colmenarejo S. G., Novikov A., Barth-Maron G., Gimenez M., Sulsky Y., Kay J., Springenberg J. T., Eccles T., Bruce J., Razavi A., Edwards A., Heess N., Chen Y., Hadsell R., Vinyals O., Bordbar M., de Freitas N. (2022). A Generalist Agent // https://arxiv.org/abs/2205.06175

2984

Chen X., Wang X., Changpinyo S., Piergiovanni A., Padlewski P., Salz D., Goodman S., Grycner A., Mustafa B., Beyer L., Kolesnikov A., Puigcerver J., Ding N., Rong K., Akbari H., Mishra G., Xue L., Thapliyal A., Bradbury J., Kuo W., Seyedhosseini M., Jia C., Ayan B. K., Riquelme C., Steiner A., Angelova A., Zhai X., Houlsby N., Soricut R. (2022). PaLI: A Jointly-Scaled Multilingual Language-Image Model // https://arxiv.org/abs/2209.06794

2985

Driess D., Xia F., Sajjadi M. S. M., Lynch C., Chowdhery A., Ichter B., Wahid A., Tompson J., Vuong Q., Yu T., Huang W., Chebotar Y., Sermanet P., Duckworth D., Levine S., Vanhoucke V., Hausman K., Toussaint M., Greff K., Zeng A., Mordatch I., Florence P. (2023). PaLM-E: An Embodied Multimodal Language Model // https://arxiv.org/abs/2303.03378

2986

Brohan A., Brown N., Carbajal J., Chebotar Y., Dabis J., Finn C., Gopalakrishnan K., Hausman K., Herzog A., Hsu J., Ibarz J., Ichter B., Irpan A., Jackson T., Jesmonth S., Joshi N. J., Julian R., Kalashnikov D., Kuang Y., Leal I., Lee K., Levine S., Lu Y., Malla U., Manjunath D., Mordatch I., Nachum O., Parada C., Peralta J., Perez E., Pertsch K., Quiambao J., Rao K., Ryoo M., Salazar G., Sanketi P., Sayed K., Singh J., Sontakke S., Stone A., Tan C., Tran H., Vanhoucke V., Vega S., Vuong Q., Xia F., Xiao T., Xu P., Xu S., Yu T., Zitkovich B. (2022). RT-1: Robotics Transformer for Real-World Control at Scale // https://arxiv.org/abs/2212.06817

2987

Brohan A., Brown N., Carbajal J., Chebotar Y., Chen X., Choromanski K., Ding T., Driess D., Dubey A., Finn C., Florence P., Fu C., Arenas M. G., Gopalakrishnan K., Han K., Hausman K., Herzog A., Hsu J., Ichter B., Irpan A., Joshi N., Julian R., Kalashnikov D., Kuang Y., Leal I., Lee L., Lee T. E., Levine S., Lu Y., Michalewski H., Mordatch I., Pertsch K., Rao K., Reymann K., Ryoo M., Salazar G., Sanketi P., Sermanet P., Singh J., Singh A., Soricut R., Tran H., Vanhoucke V., Vuong Q., Wahid A., Welker S., Wohlhart P., Wu J., Xia F., Xiao T., Xu P., Xu S., Yu T., Zitkovich B. (2023). RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control // https://arxiv.org/abs/2307.15818

2988

Vuong Q., Sanketi P. (2023). Scaling up learning across many different robot types / DeepMind blog, October 3, 2023 // https://www.deepmind.com/blog/scaling-up-learning-across-many-different-robot-types

2989

Koh J. Y., Salakhutdinov R., Fried D. (2023). Grounding Language Models to Images for Multimodal Inputs and Outputs // https://arxiv.org/abs/2301.13823

2990

Bai J., Bai S., Yang S., Wang S., Tan S., Wang P., Lin J., Zhou C., Zhou J. (2023). Qwen-VL: A Frontier Large Vision-Language Model with Versatile Abilities // https://arxiv.org/abs/2308.12966

2991

Huang S., Dong L., Wang W., Hao Y., Singhal S., Ma S., Lv T., Cui L., Mohammed O. K., Patra B., Liu Q., Aggarwal K., Chi Z., Bjorck J., Chaudhary V., Som S., Song X., Wei F. (2023). Language Is Not All You Need: Aligning Perception with Language Models // https://arxiv.org/abs/2302.14045

2992

Peng Z., Wang W., Dong L., Hao Y., Huang S., Ma S., Wei F. (2023). Kosmos-2: Grounding Multimodal Large Language Models to the World // https://arxiv.org/abs/2306.14824

2993

Jaegle A., Gimeno F., Brock A., Zisserman A., Vinyals O., Carreira J. (2021). Perceiver: General Perception with Iterative Attention // https://arxiv.org/abs/2103.03206

2994

Carreira J., Koppula S., Zoran D., Recasens A., Ionescu C., Henaff O., Shelhamer E., Arandjelovic R., Botvinick M., Vinyals O., Simonyan K., Zisserman A., Jaegle A. (2022). Hierarchical Perceiver // https://arxiv.org/abs/2202.10890

2995

Mak K.-R., Pichika M. R. (2019). Artificial intelligence in drug development: present status and future prospects / Drug Discovery Today, Vol. 24, Iss. 3, March 2019, pp. 773—780 // https://doi.org/10.1016/j.drudis.2018.11.014

2996

Fleming N. (2018). How artificial intelligence is changing drug discovery / Nature, Vol. 557, S55-S57 (2018) // https://doi.org/10.1038/d41586-018-05267-x

2997

Grand G. (2020). Training Transformers for Practical Drug Discovery with Tensor2Tensor / Reverie Labs Engineering Blog, Apr 20, 2020 // https://blog.reverielabs.com/transformers-for-drug-discovery/

2998

Artificial Intelligence (AI) in Drug Discovery Market (2019). Report Code: HIT 7445 / MarketsAndMarkets, Nov 2019 // https://www.marketsandmarkets.com/Market-Reports/ai-in-drug-discovery-market-151193446.html

2999

Oganov A. R., Glass C. W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications / Journal of Chemical Physics, Vol. 124, p. 244704 // https://doi.org/10.1063/1.2210932

3000

USPEX Computational Materials Discovery // https://uspex-team.org/

3001

Oganov A. R., Chen J., Gatti C., Ma Y.-Z., Ma Y.-M., Glass C. W., Liu Z., Yu T., Kurakevych O. O., Solozhenko V. L. (2009). Ionic high-pressure form of elemental boron / Nature, Vol. 457, pp. 863—867 // https://doi.org/10.1038/nature07736

3002

Ma Y., Eremets M. I., Oganov A. R., Xie Y., Trojan I., Medvedev S., Lyakhov A. O., Valle M., Prakapenka V. (2009). Transparent dense sodium / Nature, Vol. 458, pp. 182—185 // https://doi.org/10.1038/nature07786

3003

Li Q., Ma Y., Oganov A. R., Wang H., Wang H., Xu Y., Cui T., Mao H.-K., Zou G. (2009). Superhard monoclinic polymorph of carbon / Physical Review Letters, Vol. 102, p. 175506 // https://doi.org/10.1103/physrevlett.102.175506

3004

Dong X., Oganov A. R., Goncharov A. F., Stavrou E., Lobanov S., Saleh G., Qian G. R., Zhu Q., Gatti C., Deringer V. L., Dronskowski R., Zhou X. F., Prakapenka V. B., Konôpková Z., Popov I. A., Boldyrev A. I., Wang H. T. (2017). A stable compound of helium and sodium at high pressure / Nature Chemistry, Vol. 9, pp. 440—445 // https://doi.org/10.1038/nchem.2716

3005

Zhang W. W., Oganov A. R., Goncharov A. F., Zhu Q., Boulfelfel S. E., Lyakhov A. O., Stavrou E., Somayazulu M., Prakapenka V. B., Konopkova Z. (2013). Unexpected stoichiometries of stable sodium chlorides / Science, Vol. 342, pp. 1502—1505 // https://doi.org/10.1126/science.1244989

3006

Callaway E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures / Nature, Vol. 588, pp. 203—204 // https://doi.org/10.1038/d41586-020-03348-4

3007

Baek M., DiMaio F., Anishchenko I., Dauparas J., Ovchinnikov S., Lee G. R., Wang J., Cong Q., Kinch L. N., Schaeffer R. D., Millán C., Park H., Adams C., Glassman C. R., DeGiovanni A., Pereira J. H., Rodrigues A. V., van Dijk A. A., Ebrecht A. C., Opperman D. J., Sagmeister T., Buhlheller C., Pavkov-Keller T., Rathinaswamy M. K., Dalwadi U., Yip C. K., Burke J. E., Garcia K. C., Grishin N. V., Adams P. D., Read R. J., Baker D. (2021). Accurate prediction of protein structures and interactions using a 3-track network // https://www.biorxiv.org/content/10.1101/2021.06.14.448402v1

3008

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Hassabis D. (2021). Highly accurate protein structure prediction with AlphaFold / Nature, 15 July 2021 // https://doi.org/10.1038/s41586-021-03819-2

3009

Ford C. T. (2021). Protein Structure Prediction of the new B.1.1.529 SARS-CoV-2 Spike Variant with AlphaFold2 / Colby T. Ford, PhD, Nov 27, 2021 // https://colbyford.medium.com/protein-structure-prediction-of-b-1-1-529-sars-cov-2-spike-variant-with-alphafold2-39c5bf9cf9ed

3010

Ford C. T., Machado D. J., Janies D. A. (2021). Predictions of the SARS-CoV-2 Omicron Variant (B.1.1.529) Spike Protein Receptor-Binding Domain Structure and Neutralizing Antibody Interactions // https://doi.org/10.1101/2021.12.03.471024

3011

Simonite T. (2022). This AI Software Nearly Predicted Omicron’s Tricky Structure / Wired, 01.10.2022 // https://www.wired.com/story/ai-software-nearly-predicted-omicrons-tricky-structure/

3012

Hassabis D. (2022). AlphaFold reveals the structure of the protein universe / DeepMind blog, July 28, 2022 // https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe

3013

Jiang J. W., Songhori E., Wang S., Lee Y.-J., Johnson E., Pathak O., Nazi A., Pak J., Tong A., Srinivasa K., Hang W., Tuncer E., Le Q. V., Laudon J., Ho R., Carpenter R., Dean J. (2021). A graph placement methodology for fast chip design / Nature, Vol. 594, pp. 207—212 // https://doi.org/10.1038/s41586-021-03544-w

3014

Gershgorn D. (2017). DeepMind has a bigger plan for its newest Go-playing AI / Quartz, October 18, 2017 // https://qz.com/1105509/deepminds-new-alphago-zero-artificial-intelligence-is-ready-for-more-than-board-games/

3015

Ren F., Ward L., Williams T., Laws K. J., Wolverton C., Hattrick-Simpers J., Mehta A. (2018). Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments / Science Advances, Vol. 4, No. 4 // https://doi.org/10.1126/sciadv.aaq1566

3016

Hornby G. S., Globus A., Linden D. S., Lohn J. D. (2006). Automated antenna design with evolutionary algorithms // https://doi.org/10.2514/6.2006-7242

3017

Robinson A. (2019). Sketch2code: Generating a website from a paper mockup // https://arxiv.org/abs/1905.13750

3018

Dosovitskiy A., Springenberg J. T., Tatarchenko M., Brox T. (2014). Learning to Generate Chairs, Tables and Cars with Convolutional Networks // https://arxiv.org/abs/1411.5928

3019

Spilka D. (2018). What Does AI mean for Interior Design? / MIPIM World Blog, May 3, 2018 // https://blog.mipimworld.com/innovation/ai-artificial-intelligence-mean-interior-design/

3020

Злобин А. (2020). Студия Лебедева больше года выдавала искусственный интеллект за реального дизайнера / Forbes, 26.06.2020 // https://www.forbes.ru/newsroom/tehnologii/403795-studiya-lebedeva-bolshe-goda-vydavala-iskusstvennyy-intellekt-za-realnogo

3021

Jin H., Song Q., Hu X. (2018). Auto-Keras: An Efficient Neural Architecture Search System // https://arxiv.org/abs/1806.10282

3022

Zoph B., Le Q. V. (2016). Neural Architecture Search with Reinforcement Learning // https://arxiv.org/abs/1611.01578

3023

Kaiser L., Gomez A. N., Shazeer N., Vaswani A., Parmar N., Jones L., Uszkoreit J. (2017). One Model To Learn Them All // https://arxiv.org/abs/1706.05137

3024

Howard A., Sandler M., Chu G., Chen L.-C., Chen B., Tan M., Wang W., Zhu Y., Pang R., Vasudevan V., Le Q. V., Adam H. (2019). Searching for MobileNetV3 // https://arxiv.org/abs/1905.02244v5

3025

Xiong Y., Liu H., Gupta S., Akin B., Bender G., Kindermans P.-J., Tan M., Singh V., Chen B. (2020). MobileDets: Searching for Object Detection Architectures for Mobile Accelerators // https://arxiv.org/abs/2004.14525v2

3026

Ahmad W. U., Chakraborty S., Ray B., Chang K.-W. (2021). Unified Pre-training for Program Understanding and Generation // https://arxiv.org/abs/2103.06333

3027

Lewis M., Liu Y., Goyal N., Ghazvininejad M., Mohamed A., Levy O., Stoyanov V., Zettlemoyer L. (2019). BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension // https://arxiv.org/abs/1910.13461

3028

Feng Z., Guo D., Tang D., Duan N., Feng X., Gong M., Shou L., Qin B., Liu T., Jiang D., Zhou M. (2020). CodeBERT: A Pre-Trained Model for Programming and Natural Languages // https://arxiv.org/abs/2002.08155

3029

Svyatkovskiy A., Deng S. K., Fu S., Sundaresan N. (2020). IntelliCode Compose: Code Generation Using Transformer // https://arxiv.org/abs/2005.08025

3030

Alon U., Zilberstein M., Levy O., Yahav E. (2018). code2vec: Learning Distributed Representations of Code // https://arxiv.org/abs/1803.09473

3031

kite. Code Faster. Stay in Flow // https://www.kite.com/

3032

TabNine. Code faster with AI completions // https://www.tabnine.com/

3033

Copilot. Your AI pair programmer // https://copilot.github.com/

3034

Li Y., Choi D., Chung J., Kushman N., Schrittwieser J., Leblond R., Eccles T., Keeling J., Gimeno F., Lago A. D., Hubert T., Choy P., de Masson d’Autume C., Babuschkin I., Chen X., Huang P.-S., Welbl J., Gowal S., Cherepanov A., Molloy J., Mankowitz D. J., Robson E. S., Kohli P., de Freitas N., Kavukcuoglu K., Vinyals O. (2022). Competition-Level Code Generation with AlphaCode // https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf

3035

Perez L., Ottens L., Viswanathan S. (2021). Automatic Code Generation using Pre-Trained Language Models // https://arxiv.org/abs/2102.10535

3036

Langston J. (2021). From conversation to code: Microsoft introduces its first product features powered by GPT-3 / Microsoft/The AI Blog, May 25, 2021 // https://blogs.microsoft.com/ai/from-conversation-to-code-microsoft-introduces-its-first-product-features-powered-by-gpt-3/

3037

Hasan M., Mehrab K. S., Ahmad W. U., Shahriyar R. (2021). Text2App: A Framework for Creating Android Apps from Text Descriptions // https://arxiv.org/abs/2104.08301

3038

Lin G., Wen S., Han Q.-L., Zhang J., Xiang Y. (2020). Software Vulnerability Detection Using Deep Neural Networks: A Survey / Proceedings of the IEEE, Vol. 108, Iss. 10, pp. 1825—1848 // https://doi.org/10.1109/JPROC.2020.2993293

3039

Wu J. (2021). Literature review on vulnerability detection using NLP technology // https://arxiv.org/abs/2104.11230

3040

Ziems N., Wu S. (2021). Security Vulnerability Detection Using Deep Learning Natural Language Processing // https://arxiv.org/abs/2105.02388

3041

Fried D., Aghajanyan A., Lin J., Wang S., Wallace E., Shi F., Zhong R., Yih W.-T., Zettlemoyer L., Lewis M. (2022). InCoder: A Generative Model for Code Infilling and Synthesis // https://arxiv.org/abs/2204.05999

3042

Nijkamp E., Pang B., Hayashi H., Tu L., Wang H., Zhou Y., Savarese S., Xiong C. (2022). CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis // https://arxiv.org/abs/2203.13474

3043

Allal L. B., Li R., Kocetkov D., Mou C., Akiki C., Ferrandis C. M., Muennighoff N., Mishra M., Gu A., Dey M., Umapathi L. K., Anderson C. J., Zi Y., Poirier J. L., Schoelkopf H., Troshin S., Abulkhanov D., Romero M., Lappert M., Toni F. D., de Río B. G., Liu Q., Bose S., Bhattacharyya U., Zhuo T. Y., Yu I., Villegas P., Zocca M., Mangrulkar S., Lansky D., Nguyen H., Contractor D., Villa L., Li J., Bahdanau D., Jernite Y., Hughes S., Fried D., Guha A., de Vries H., von Werra L. (2023). SantaCoder: don't reach for the stars! // https://arxiv.org/abs/2301.03988

3044

Li R., Allal L. B., Zi Y., Muennighoff N., Kocetkov D., Mou C., Marone M., Akiki C., Li J., Chim J., Liu Q., Zheltonozhskii E., Zhuo T. Y., Wang T., Dehaene O., Davaadorj M., Lamy-Poirier J., Monteiro J., Shliazhko O., Gontier N., Meade N., Zebaze A., Yee M., Umapathi L. K., Zhu J., Lipkin B., Oblokulov M., Wang Z., Murthy R., Stillerman J., Patel S. S., Abulkhanov D., Zocca M., Dey M., Zhang Z., Fahmy N., Bhattacharyya U., Yu W., Singh S., Luccioni S., Villegas P., Kunakov M., Zhdanov F., Romero M., Lee T., Timor N., Ding J., Schlesinger C., Schoelkopf H., Ebert J., Dao T., Mishra M., Gu A., Robinson J., Anderson C. J., Dolan-Gavitt B., Contractor D., Reddy S., Fried D., Bahdanau D., Jernite Y., Ferrandis C. M., Hughes S., Wolf T., Guha A., von Werra L., de Vries H. (2023). StarCoder: may the source be with you! // https://arxiv.org/abs/2305.06161

3045

Rozière B., Gehring J., Gloeckle F., Sootla S., Gat I., Tan X. E., Adi Y., Liu J., Remez T., Rapin J., Kozhevnikov A., Evtimov I., Bitton J., Bhatt M., Ferrer C. C., Grattafiori A., Xiong W., Défossez A., Copet J., Azhar F., Touvron H., Martin L., Usunier N., Scialom T., Synnaeve G. (2023). Code Llama: Open Foundation Models for Code // https://arxiv.org/abs/2308.12950

3046

Luo Z., Xu C., Zhao P., Sun Q., Geng X., Hu W., Tao C., Ma J., Lin Q., Jiang D. (2023). WizardCoder: Empowering Code Large Language Models with Evol-Instruct // https://arxiv.org/abs/2306.08568

3047

Replit, Inc. (2023). replit-code-v1-3b // https://huggingface.co/replit/replit-code-v1-3b

3048

Эссас Э. (2001). О Трактате Санѓедрин / Еврейский сайт из Ерусалима. Ежедневный лист Талмуда // https://evrey.com/sitep/talm/index.php3?trkt=list&menu=37_43

3049

סודי רזיא - אלעזר בן יהודה, מגרמיזה / HebrewBooks.org // https://www.hebrewbooks.org/pdfpager.aspx?req=39230&st=&pgnum=18

3050

Kerstein B. (2010). The Golem: Universal and Particular / Jewish Ideas Daily, September 14, 2010 // https://www.jewishideasdaily.com/718/features/the-golem-universal-and-particular/

3051

Zucker R. (2011). “Sefer Yetsirah” and Jewish Mysiticsm Time Line // http://www.emol.org/kabbalah/seferyetzirah/timeline/16to20thcentury.html

3052

Blau L., Jacobs J., Eisenstein J. D. (1906). Golem / Jewish Encyclopedia // http://jewishencyclopedia.com/articles/6777-golem

3053

Shashkevich A. (2019). Greek myths have some scary ideas about robots and A.I / Futurity, March 5th, 2019 // https://www.futurity.org/artificial-intelligence-greek-myths-1999792/

3054

Mayor A. (2020). Gods and Robots: Myths, Machines, and Ancient Dreams of Technology. Princeton University Press // https://books.google.ru/books?id=2cy4DwAAQBAJ

3055

Thornton R. (1847). The Age of Machinery / Primitive Expounder, Devoted to Theoretical and Practical Religion, Expounded in Its Primitive Purity, Excellence and Loveliness by R. Thornton & J. Billings, Vol. 4 // https://books.google.ru/books?id=ZM_hAAAAMAAJ

3056

Рассел С. (2021). Совместимость: как контролировать искусственный интеллект. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=OacEEAAAQBAJ

3057

Cellarius (1863). Darwin Among the Machines[To the Editor of the Press, Christchurch, New Zealand, 13 June, 1863.] // http://nzetc.victoria.ac.nz/tm/scholarly/tei-ButFir-t1-g1-t1-g1-t4-body.html

3058

Butler S. (2017). Erewhon, Or Over the Range. CreateSpace Independent Publishing Platform // https://books.google.ru/books?id=d6x9tAEACAAJ

3059

Butler S. (2019). Erewhon Revisited Twenty Years Later, Both by the Original Discoverer of the Country and by His Son. Good Press // https://books.google.ru/books?id=8sPCDwAAQBAJ

3060

Hsu S. (2016). The Butlerian Jihad and Darwin among the Machines / Michigan State University, Spartan Ideas, March 29, 2016 // https://spartanideas.msu.edu/2016/03/29/8624/

3061

Turing A. (1951). Intelligent Machinery, A Heretical Theory // http://www.turingarchive.org/browse.php/B/4

3062

Russell S. (2019). Human Compatible: AI and the Problem of Control. Penguin UK // https://books.google.ru/books?id=Gg-TDwAAQBAJ

3063

Turing A. (1951). Intelligent Machinery, A Heretical Theory / Copeland J. B. (2004). The Essential Turing: The ideas that gave birth to the computer age. Clarendon Press // https://books.google.ru/books?id=VlC5MkVIwqkC

3064

Рассел С. (2021). Совместимость: как контролировать искусственный интеллект. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=OacEEAAAQBAJ

3065

Cellan-Jones R. (2014). Stephen Hawking warns artificial intelligence could end mankind / BBC News, 2 December 2014 // https://www.bbc.com/news/technology-30290540

3066

Bostrom N. (2003). Ethical Issues in Advanced Artificial Intelligence / Cognitive, Emotive and Ethical Aspects of Decision Making in Humans and in Artificial Intelligence (2003), Vol. 2, International Institute of Advanced Studies in Systems Research and Cybernetics, pp. 12—17 // https://books.google.ru/books?id=BLdBAAAACAAJ, https://nickbostrom.com/ethics/ai.html

3067

Mack E. (2014). Elon Musk worries Skynet is only five years off / c|net, Nov. 19, 2014 // https://www.cnet.com/news/elon-musk-worries-skynet-is-only-five-years-off/

3068

McFarland M. (2014). Elon Musk: ‘With artificial intelligence we are summoning the demon.’ / The Washington Post, Oct. 24, 2014 // https://www.washingtonpost.com/news/innovations/wp/2014/10/24/elon-musk-with-artificial-intelligence-we-are-summoning-the-demon/

3069

Gibbs S. (2014). Elon Musk: artificial intelligence is our biggest existential threat / The Guardian, 27 Oct 2014 // https://www.theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat

3070

Shahrad C. (2011). Transgressive Man / Think With Google // https://www.thinkwithgoogle.com/future-of-marketing/emerging-technology/transgressive-man/

3071

Hibbard B. (2006). Re:[agi] the Singularity Summit and regulation of AI / SL4, Thu May 11 2006 - 06:00:24 MDT // http://sl4.org/archive/0605/14856.html

3072

Hibbard B. (2003). RE: SIAI's flawed friendliness analysis / SL4, 26 May 2003 16:43:42 -0500 (CDT) // https://www.ssec.wisc.edu/~billh/g/message6.txt

3073

Claiborne W. (1998). Unabomber Special Report. The Washington Post Company // https://www.washingtonpost.com/wp-srv/national/longterm/unabomber/manifesto.text.htm

3074

Joy B. (2000). Why the Future Doesn't Need Us / Wired, 04.01.2000 // https://www.wired.com/2000/04/joy-2/

3075

Game Thinking TV (2023). Gödel, Escher, Bach author Doug Hofstadter on the state of AI today // https://www.youtube.com/watch?v=lfXxzAVtdpU

3076

Карелов С. (2023). Это цунами, заставшее человечество врасплох / Facebook, 5 июля 2023 // https://www.facebook.com/sergey.karelov.5/posts/pfbid02429bkCkCsNtkYBdwJcETXhpHRoZNLhQPfCehF7xbLk6gxjjUcQgd1kyioBWR7XGxl

3077

Future of Life Institute (2023). Pause Giant AI Experiments: An Open Letter // https://futureoflife.org/open-letter/pause-giant-ai-experiments/

3078

Future of Life Institute (2017). Принципы работы с ИИ, разработанные на Асиломарской конференции. // https://futureoflife.org/open-letter/ai-principles-russian/

3079

Center for AI safety (2023). Statement on AI Risk // https://www.safe.ai/statement-on-ai-risk

3080

Hinton G. (2023) / Twitter // https://twitter.com/geoffreyhinton/status/1652993570721210372

3081

Hinton G. (2023) / Twitter // https://twitter.com/geoffreyhinton/status/1654474560962457601

3082

Yudkowsky E. (2023). Pausing AI Developments Isn't Enough. We Need to Shut it All Down / Time, March 29, 2023 // https://time.com/6266923/ai-eliezer-yudkowsky-open-letter-not-enough/

3083

Edwards B. (2023). Snoop Dogg on AI risk: “Sh–, what the f—?” / Ars Technica, 5/4/2023 // https://arstechnica.com/information-technology/2023/05/snoop-dogg-on-ai-risk-sh-what-the-f/

3084

Мартынова П. (2023). Шварценеггер заявил, что «Терминатор» стал реальностью / РБК, 02 июля 2023 // https://www.rbc.ru/society/02/07/2023/64a14e7d9a79477d361eaa80

3085

Garling C. (2015). Andrew Ng: Why ‘Deep Learning’ Is a Mandate for Humans, Not Just Machines / Wired // https://www.wired.com/brandlab/2015/05/andrew-ng-deep-learning-mandate-humans-not-just-machines/

3086

Ng A. (2023) / Twitter // https://twitter.com/AndrewYNg/status/1663584330751561735

3087

Vincent J. (2017). Facebook’s head of AI wants us to stop using the Terminator to talk about AI / The Verge, Oct 26, 2017 // https://www.theverge.com/2017/10/26/16552056/a-intelligence-terminator-facebook-yann-lecun-interview

3088

* Думер (от англ. doom — злой рок, катастрофа, гибель) — человек, пессимистично смотрящий в будущее, считающий, что человечество по той или иной причине обречено; ИИ-думерами [AI doomers] иронично называют сторонников идеи о том, что развитие технологий ИИ неизбежно приведёт к гибели человечества или по крайней мере нанесёт ему тяжкий вред.

3089

LeCun Y. (2023) / Twitter // https://twitter.com/ylecun/status/1659330738553081857

3090

LeCun Y., Ng A. (2023). Yann LeCun and Andrew Ng: Why the 6-month AI Pause is a Bad Idea // https://www.youtube.com/watch?v=BY9KV8uCtj4

3091

Knight W. (2016). Will Machines Eliminate Us? / MIT Technology Review, January 29, 2016 // https://www.technologyreview.com/2016/01/29/162084/will-machines-eliminate-us/

3092

Etzioni O. (2014). It’s Time to Intelligently Discuss Artificial Intelligence / Medium, Dec 9, 2014 // https://medium.com/backchannel/ai-wont-exterminate-us-it-will-empower-us-5b7224735bf3

3093

Out of control AI will not kill us, believes Microsoft Research chief (2015) / BBC News, 28 January 2015 // https://www.bbc.com/news/technology-31023741

3094

Wong M. (2023). AI doomerism is a decoy. / The Atlantic, June 2, 2023. // https://www.theatlantic.com/technology/archive/2023/06/ai-regulation-sam-altman-bill-gates/674278/

3095

Field H. (2023). A.I. doomers are a ‘cult’ — here’s the real threat, according to Marc Andreessen. / CNBC, Jun 6 2023. // https://www.cnbc.com/2023/06/06/ai-doomers-are-a-cult-heres-the-real-threat-says-marc-andreessen.html

3096

Andreessen M. (2023). Why AI Will Save The World. / Marc Andreessen Substack, 6 июня 2023. // https://pmarca.substack.com/p/why-ai-will-save-the-world

3097

Лааксо П. (2023). «Не убийца, а всего лишь код, созданный и управляемый человеком»: сооснователь фонда Andreessen Horowitz о рисках ИИ. / vc.ru, 18 июня 2023. // https://vc.ru/future/730682-ne-ubiyca-a-vsego-lish-kod-sozdannyy-i-upravlyaemyy-chelovekom-soosnovatel-fonda-andreessen-horowitz-o-riskah-ii

3098

Clifford C. (2017). Facebook CEO Mark Zuckerberg: Elon Musk’s doomsday AI predictions are ‘pretty irresponsible’ / CNBC, Jul 24 2017 // https://www.cnbc.com/2017/07/24/mark-zuckerberg-elon-musks-doomsday-ai-predictions-are-irresponsible.html

3099

Metz C. (2015). Elon Musk's Billion-Dollar AI Plan Is About Far More Than Saving the World / Wired, 12.15.15 // https://www.wired.com/2015/12/elon-musks-billion-dollar-ai-plan-is-about-far-more-than-saving-the-world/

3100

Joy B. (2000). Why the Future Doesn't Need Us / Wired, 04.01.2000 // https://www.wired.com/2000/04/joy-2/

3101

Russell S. (2019). Human Compatible: AI and the Problem of Control. Penguin UK // https://books.google.ru/books?id=Gg-TDwAAQBAJ

3102

Рассел С. (2021). Совместимость: как контролировать искусственный интеллект. — М.: Альпина нон-фикшн // https://www.google.ru/books?id=OacEEAAAQBAJ

3103

Bostrom N. (2014). Superintelligence. Oxford University Press // https://books.google.ru/books?id=7_H8AwAAQBAJ

3104

Yampolskiy R. V. (2012). Leakproofing the Singularity: Artificial intelligence confinement problem / Journal of Consciousness Studies, Vol. 19 (1—2), pp. 194—214 // http://cecs.louisville.edu/ry/LeakproofingtheSingularity.pdf

3105

Ямпольский Р. (2012). Герметизация сингулярности. Проблема ограничения свободы искусственного интеллекта / Пер. с англ. Горлова А. // https://22century.ru/popular-science-publications/leakproofing-the-singularity

3106

Kosoff M. (2015). Elon Musk Is Donating $10 Million To Keep Killer Robots From Taking Over The World / Business Insider, Jan 15, 2015 // https://www.businessinsider.com/elon-musk-donates-10-million-to-the-future-of-life-institute-2015-1

3107

Brockman G., Sutskever I. (2015). Introducing OpenAI / OpenAI Blog, December 11, 2015 // https://openai.com/blog/introducing-openai/

3108

Danti A. (2015). Tech giants pledge $1bn for 'altruistic AI' venture, OpenAI / BBC News, 12 December 2015 // https://www.bbc.com/news/technology-35082344

3109

Bass D. (2019). Microsoft to invest $1 billion in OpenAI / Los Angeles Times, 22 July 2019 // https://www.latimes.com/business/story/2019-07-22/microsoft-openai

3110

Markoff J. (2015). Silicon Valley investors to bankroll artificial-intelligence center / The Seattle Times, 13 December 2015 // https://www.seattletimes.com/business/technology/silicon-valley-investors-to-bankroll-artificial-intelligence-center/

3111

Etherington D. (2019). Microsoft invests $1 billion in OpenAI in new multiyear partnership / TechCrunch, July 22, 2019 // https://techcrunch.com/2019/07/22/microsoft-invests-1-billion-in-openai-in-new-multiyear-partnership/

3112

Liedtke M. (2015). Elon Musk, Peter Thiel, Reid Hoffman, others back $1 billion OpenAI research center / San Jose Mercury News, December 15, 2015 // https://www.mercurynews.com/2015/12/15/elon-musk-peter-thiel-reid-hoffman-others-back-1-billion-openai-research-center/

3113

Lewontin M. (2015). Open AI: Effort to democratize artificial intelligence research? / The Christian Science Monitor, December 14, 2015 // https://www.csmonitor.com/Technology/2015/1214/Open-AI-Effort-to-democratize-artificial-intelligence-research

3114

Metz C. (2016). Inside OpenAI, Elon Musk's Wild Plan to Set Artificial Intelligence Free / Wired, 04.27.16 // https://www.wired.com/2016/04/openai-elon-musk-sam-altman-plan-to-set-artificial-intelligence-free/

3115

Introducing OpenAI (2015) / OpenAI Blog, December 11, 2015 // https://openai.com/blog/introducing-openai/

3116

Danti A. (2015). Tech giants pledge $1bn for 'altruistic AI' venture, OpenAI / BBC News, 12 December 2015 // https://www.bbc.com/news/technology-35082344

3117

Smith G. W. (2018). Re: Sex-Bots—Let Us Look before We Leap / Arts, Vol. 7 (2) // https://doi.org/10.3390/arts7020015

3118

Metz C. (2015). Elon Musk's Billion-Dollar AI Plan Is About Far More Than Saving the World / Wired, 12.15.15 // https://www.wired.com/2015/12/elon-musks-billion-dollar-ai-plan-is-about-far-more-than-saving-the-world/

3119

Metz C. (2016). Inside OpenAI, Elon Musk's Wild Plan to Set Artificial Intelligence Free / Wired, 04.27.16 // https://www.wired.com/2016/04/openai-elon-musk-sam-altman-plan-to-set-artificial-intelligence-free/

3120

OpenAI Licenses GPT-3 Technology to Microsoft (2020) / OpenAI Blog, September 22, 2020 // https://openai.com/blog/openai-licenses-gpt-3-technology-to-microsoft/

3121

Urban T. (2017). Neuralink and the Brain’s Magical Future / Wait But Why, April 20, 2017 // https://waitbutwhy.com/2017/04/neuralink.html

3122

Holley P. (2015). Bill Gates on dangers of artificial intelligence: ‘I don’t understand why some people are not concerned’ / The Washington Post, Jan. 29, 2015 // https://www.washingtonpost.com/news/the-switch/wp/2015/01/28/bill-gates-on-dangers-of-artificial-intelligence-dont-understand-why-some-people-are-not-concerned

3123

Levy S. (2015). Bill Gates on Mobile Banking, Connecting the World and AI // https://medium.com/backchannel/bill-gates-on-mobile-banking-connecting-the-world-and-ai-937f35c8a110

3124

Clifford C. (2017). Facebook CEO Mark Zuckerberg: Elon Musk’s doomsday AI predictions are ‘pretty irresponsible’ / CNBC, Jul 24 2017 // https://www.cnbc.com/2017/07/24/mark-zuckerberg-elon-musks-doomsday-ai-predictions-are-irresponsible.html

3125

Junghanns A., Schaeffer J., Brockington M., Bjornsson Y., Marsland T. (1997). Diminishing Returns for Additional Search in Chess / Advances in Computer Chess, Vol. 8 // https://webdocs.cs.ualberta.ca/~jonathan/publications/ai_publications/dim.pdf

3126

Станислав Лем: «Сложно удивляться тому, что мы страдаем от своего рода российского комплекса» (2006) // https://inosmi.ru/online/20060117/224888.html

3127

Паевский А. (2018). Нобелевские лауреаты: Эгаш Мониш. «Отец» лоботомии. / Indicator, 06 июня 2018 // https://indicator.ru/medicine/egash-monish-lobotomiya.htm

3128

* Алгоритмическое общество — общество, организованное вокруг принятия социальных и экономических решений с помощью алгоритмов, роботов и агентов искусственного интеллекта.

3129

Аргонов В. (2014). 2032: Легенда о несбывшемся грядущем. / Complex Numbers: Электронная поп-музыка для интеллектуалов // https://complexnumbers.ru/2032/

3130

Baase S. (2008). A Gift of Fire: Social, Legal, and Ethical Issues for Computing and the Internet. Pearson Prentice Hall // https://books.google.ru/books?id=GcBaS87q74gC

3131

Leveson N. G., Turner C. S. (1993). An Investigation of the Therac-25 Accidents / IEEE Computer. Vol. 26, Iss. 7, pp. 18—41 // https://doi.org/10.1109/MC.1993.274940

3132

Travis G. (2019). How the Boeing 737 Max Disaster Looks to a Software Developer // https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer

3133

Autonomous weapons: an open letter from AI & robotics researchers (2015) // https://futureoflife.org/open-letter-autonomous-weapons/

3134

Gayle D. (2019). UK, US and Russia among those opposing killer robot ban / The Guardian, 29 Mar 2019 // https://www.theguardian.com/science/2019/mar/29/uk-us-russia-opposing-killer-robot-ban-un-ai

3135

Fedasiuk R., Melot J., Murphy B. (2021). Harnessed Lightning. How the Chinese Military is Adopting Artificial Intelligence / // https://cset.georgetown.edu/publication/harnessed-lightning/

3136

Urbina F., Lentzos F., Invernizzi C., Ekins S. (2022). Dual use of artificial-intelligence-powered drug discovery / Nature Machine Intelligence, Vol. 4, pp. 189—191 (2022) // https://doi.org/10.1038/s42256-022-00465-9

3137

Shead S. (2021). UN talks to ban ‘slaughterbots’ collapsed — here’s why that matters / CNBC, Dec. 22, 2021 // https://www.cnbc.com/2021/12/22/un-talks-to-ban-slaughterbots-collapsed-heres-why-that-matters.html

3138

Карелов С. (2021). Лицензия ИИ на убийство людей продлена на неограниченный срок // https://sergey-57776.medium.com/лицензия-ии-на-убийство-людей-продлена-на-неограниченный-срок-ae6eecba9417

3139

Avery D. (2021). Drones packed with explosives may have 'hunted down' and attacked HUMANS for the first time without using a remote pilot to guide them / Daily Mail, 28 May 2021 // https://www.dailymail.co.uk/sciencetech/article-9629801/Fully-autonomous-drones-hunted-attacked-humans-time.html

3140

Чоудхури Л. М. Р., Аун А., Бадауи Д., де Альбуркерке Бакардит Л. А., Марджан Я., Уилкинсон Э. (2021). Заключительный доклад Группы экспертов по Ливии, учреждённой резолюцией 1973 (2011) Совета Безопасности. S/2021/229 // https://undocs.org/ru/S/2021/229

3141

Boulanin V., Verbruggen M. (2017). Mapping the development of autonomy in weapon systems. Stockholm International Peace Research Institute (SIPRI) // https://www.sipri.org/sites/default/files/2017-11/siprireport_mapping_the_development_of_autonomy_in_weapon_systems_1117_1.pdf

3142

Haner J., Garcia D. (2019). The Artificial Intelligence Arms Race: Trends and World Leaders in Autonomous Weapons Development / Global Policy, Vol. 10, Iss. 3, September 2019 // https://doi.org/10.1111/1758-5899.12713

3143

Dawes J. (2023). War in Ukraine accelerates global drive toward killer robots / The Conversation, February 21, 2023 // https://theconversation.com/war-in-ukraine-accelerates-global-drive-toward-killer-robots-198725

3144

Swift J. (1729). A Modest Proposal for preventing the children of poor people in Ireland, from being a burden on their parents or country, and for making them beneficial to the publick // https://www.gutenberg.org/files/1080/1080-h/1080-h.htm

3145

Luddites. Who were the Luddites and what did they want? / The National Archives Learning Curve. Power, Politics & Protest // https://www.nationalarchives.gov.uk/education/politics/g3/

3146

Palmer R. (1988). The Sound of History: Songs and Social Comment. Oxford University Press // https://books.google.ru/books?id=GUHaAAAAMAAJ

3147

Chamber R. (1879). Chambers's book of days, a miscellany of popular antiquities in connection with the calendar, including anecdote, biography & history, curiosities of literature and oddities of human life and character. Volume I // http://digicoll.library.wisc.edu/cgi-bin/History/History-idx?type=turn&id=History.BookofDaysv1&entity=History.BookofDaysv1.p0372&q1=ludd

3148

Vardi M. (2016). Smart Robots and Their Impact on Employment // https://aaas.confex.com/aaas/2016/webprogram/Paper17392.html

3149

Fentem A. (2018). Mything the point: The AI renaissance is simply expensive hardware and PR thrown at an old idea / The Register, 6 Nov 2018 // https://www.theregister.com/2018/11/06/andrew_fentem_on_ai/

3150

Савельев С. (2016). Сергей Савельев про искусственный интеллект / Scisne? // http://psihdocs.ru/sergej-saveleev--professor-doktor-biologicheskih-nauk-sergej-s.html?page=2

3151

Turing A. (1946). Turing Letter to W. Ross Ashby // http://www.rossashby.info/letters/turing.html

3152

Kim E. (2015). Amazon is now using a whole lot more of the robots from the company it bought for $775 million / Business Insider, Oct 23, 2015 // https://www.businessinsider.com/amazon-doubled-the-number-of-kiva-robots-2015-10

3153

Holley P. (2019). Amazon's one-day delivery service depends on the work of thousands of robots / Washington Post, 06.07.2019 // https://www.washingtonpost.com/technology/2019/06/07/amazons-one-day-delivery-service-depends-work-thousands-robots

3154

Райдер Д. (2016). DHL разрабатывает доставочную роботележку / XX2 век, 15 июня // https://22century.ru/commerce/27643

3155

В центре Москвы заметили робота-курьера от «Яндекса» (2020) / bfm.ru, 8 июля // https://www.bfm.ru/news/447870

3156

Жуков С. (2020). Робоход. В столице появился робот-курьер / Российская газета, 19.09.2020 // https://rg.ru/2020/09/13/reg-cfo/v-moskve-poiavilsia-robot-kurer.html

3157

Воронцов Н. (2017). Сбербанк впервые использовал инкассаторский дрон для перевозки денег / N+1, 16 Июнь // https://nplus1.ru/news/2017/06/16/who-wants-the-drone

3158

Simon F. (2017). San Francisco Just Put the Brakes on Delivery Robots / Wired, 12.06.2017 // https://www.wired.com/story/san-francisco-just-put-the-brakes-on-delivery-robots/

3159

Brinklow A. (2019). Delivery robots are finally coming to SF. But only for tests, not for service—yet / Curbed SF, Aug 9, 2019 // https://sf.curbed.com/2019/8/9/20799121/delivery-robots-san-francisco-postmates-serve

3160

Collaborative Robots Market Set for 56.94% CAGR Explosive Growth to 2023 Led by Automotive Industry (2017) / PUNE, India, September 12, 2017 // https://www.prnewswire.com/news-releases/collaborative-robots-market-set-for-5694-cagr-explosive-growth-to-2023-led-by-automotive-industry-643954113.html

3161

Smith S. (2018). Digital voice assistants in use to triple to 8 billion by 2023, driven by smart home devices / Juniper Research // https://www.juniperresearch.com/press/digital-voice-assistants-in-use-to-8-million-2023

3162

Nieva R. (2020). Google Assistant now has 500 million monthly users / c|net, Jan. 7, 2020 // https://www.cnet.com/news/google-assistant-now-has-500-million-monthly-users

3163

Graeber D. (2019). Bullshit Jobs: A Theory. Simon and Schuster // https://books.google.ru/books?id=co2RDwAAQBAJ

3164

Heller N. (2018). The Bullshit-Job Boom / The New Yorker, June 7, 2018 // https://www.newyorker.com/books/under-review/the-bullshit-job-boom

3165

Malthus T. R. (1999). An Essay on the Principle of Population. Oxford University Press // https://books.google.ru/books?id=Yxoe-sEcHNgC

3166

Таболина О. (2016). Фертильность, скрепы и прогресс, или Хватит стигматизировать бездетность / XX2 век, 1 июля // https://22century.ru/popular-science-publications/progress-and-fertility

3167

Foerster v. H., Mora P. M., Amiot L. W. (1960). Doomsday: Friday, 13 November, A.D. 2026: At this date human population will approach infinity if it grows as it has grown in the last two millenia / Science, Vol. 132, Iss. 3436, pp. 1291—1295 // https://doi.org/10.1126/science.132.3436.1291

3168

Капица С. П. (2000). Модель роста населения земли и предвидимое будущее цивилизации / Вопросы экономики. № 12 // http://ecsocman.hse.ru/data/291/971/1219/2002_n3_p22-43.pdf

3169

Vollset S. E., Goren E., Yuan C.-W., Cao J., Smith A. E., Hsiao T., Bisignano C., Azhar G. S., Castro E., Chalek J., Dolgert A. J., Frank T., Fukutaki K., Hay S. I, Lozano R., Mokdad A. H., Nandakumar V., Pierce M., Pletcher M., Robalik T., Steuben K. M., Wunrow H. Y., Zlavog B. S., Murray C. J. L. (2020). Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study / Vol. 396, Iss. 10258, pp. 1285—1306 // https://doi.org/10.1016/S0140-6736(20)30677-2

3170

World Economic Forum (2020). The Future of Jobs Report 2020 // http://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf

3171

Ding L., Molina J. S. (2020). “Forced Automation” by COVID-19? Early Trends from Current Population Survey Data / Federal Reserve Bank of Philadelphia. Discussion Papers: Community Development and Regional Outreach, September 2020 // https://www.philadelphiafed.org/community-development/workforce-and-economic-development/forced-automation-by-covid-19

3172

* Пер. Л. Васильева и Н. Маркалова.

3173

O'Neil C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown // https://books.google.ru/books?id=NgEwCwAAQBAJ

3174

О'Нил К. (2020). Убийственные большие данные. Как математика превратилась в оружие массового поражения // https://books.google.ru/books?id=Cxh9DwAAQBAJ

3175

Паскуале Ф. (2016). Цифровой тайный суд (пер. с англ. Райдера Д.) / XX2 век, 27 мая // https://22century.ru/popular-science-publications/digital-star-chamber

3176

Pasquale F., Haselby S. (2015). Digital star chamber / aeon, 18 August 2015 // https://aeon.co/essays/judge-jury-and-executioner-the-unaccountable-algorithm

3177

Pasquale F. (2015). The Black Box Society. Harvard University Press // https://books.google.ru/books?id=TumaBQAAQBAJ

3178

Clark M. (2021). Bad software sent postal workers to jail, because no one wanted to admit it could be wrong / The Verge, Apr 23, 2021 // https://www.theverge.com/2021/4/23/22399721/uk-post-office-software-bug-criminal-convictions-overturned

3179

Peachey K. (2021). Convicted Post Office workers have names cleared / BBC News // https://www.bbc.com/news/business-56859357

3180

Brooks R., Wallis N. (2020). Justice lost in the post / Private Eye Special Report // https://www.private-eye.co.uk/pictures/special_reports/justice-lost-in-the-post.pdf

3181

Buolamwini J. (2017). Gender Shades: Intersectional Phenotypic and Demographic Evaluation of Face Datasets and Gender Classifiers. MIT Master's Thesis // https://www.media.mit.edu/publications/full-gender-shades-thesis-17/

3182

Buolamwini J., Gebru T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification / Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR, Vol. 81, pp. 77—91 // http://proceedings.mlr.press/v81/buolamwini18a.html

3183

Augarten S. (1984). Bit by Bit: An Illustrated History of Computers. Ticknor and Fields // https://books.google.ru/books?id=kYJfQgAACAAJ

3184

Chinoy I. (2010). Battle of the brains: election-night forecasting at the dawn of the computer age // https://doi.org/10.13016/rj15-4718

3185

Wulforst H. (1982). Breakthrough to the Computer Age. Charles Scribner // https://books.google.ru/books?id=5X9QAAAAMAAJ

3186

Winston B. (1998). Media technology and society: a history: from the telegraph to the Internet. Psychology Press // https://books.google.ru/books?id=TZOF_1GZRmYC

3187

Broussard M. (2019). Artificial Unintelligence: How Computers Misunderstand the World. MIT Press // https://books.google.ru/books?id=4r34DwAAQBAJ

3188

Бруссард М. (2020). Искусственный интеллект: Пределы возможного. — М.: Альпина нон-фикшн // https://books.google.ru/books?id=YR3JDwAAQBAJ

3189

Tenner E. (2012). Did a Rumor Doom Titanic Passengers? / The Atlantic, April 11, 2012 // https://www.theatlantic.com/national/archive/2012/04/did-a-rumor-doom-titanic-passengers/255706/

3190

Babbage C. (1864). Passages from the Life of a Philosopher. Longman, Green, Longman, Roberts & Green // https://archive.org/details/passagesfromlif01babbgoog/page/66/mode/2up

3191

* В качестве примера можно привести требования по сертификации различных потенциально опасных систем: в медицине, на транспорте, в энергетике, на производстве и так далее, которые косвенно могли затронуть алгоритмы ИИ, если те были частью таких систем, или южнокорейский рамочный закон «О национальной информатизации» 1995 г.

3192

Конференция Организации Объединённых Наций по дорожному движению. Заключительный акт (2023) // https://treaties.un.org/pages/ViewDetailsIII.aspx?src=TREATY&mtdsg_no=XI-B-19&chapter=11&Temp=mtdsg3&clang=_en

3193

UNECE paves the way for automated driving by updating UN international convention (2016). / United Nations Economic Commission for Europe, 23 March 2016 // https://unece.org/press/unece-paves-way-automated-driving-updating-un-international-convention

3194

Reference: C.N.26.2022.TREATIES-XI.B.19 (Depositary Notification). CONVENTION ON ROAD TRAFFIC. VIENNA, 8 NOVEMBER 1968. ACCEPTANCE OF AMENDMENT TO ARTICLE 1 AND NEW ARTICLE 34 BIS TO THE CONVENTION (2022) // https://treaties.un.org/doc/Publication/CN/2022/CN.26.2022-Eng.pdf

3195

Markoff J. (2011). Google Lobbies Nevada to Allow Self-Driving Cars / The New York Times, May 10, 2011 // https://www.nytimes.com/2011/05/11/science/11drive.html

3196

Bill AB511 Nevada Legislature (2011) // http://www.leg.state.nv.us/Session/76th2011/Bills/AB/AB511_EN.pdf

3197

Healey T. (2011). Nevada Passes Law Allowing Self-Driving Cars / Motor Authority, June 24, 2011 // https://www.motorauthority.com/news/1062178_nevada-passes-law-allowing-self-driving-cars

3198

Waldes A. M. (2012). Florida embraces self-driving cars, as engineers and lawmakers prepare for the new technology / VPTV.com, 5.07.2012 // https://web.archive.org/web/20130412143433/https://www.wptv.com/dpp/news/state/florida-embraces-self-driving-cars-as-engineers-and-lawmakers-prepare-for-the-new-technology

3199

Oram J. (2012). Governor Brown Signs California Driverless Car Law at Google HQ / Bright Side of News, 9/27/2012 // https://web.archive.org/web/20120930034324/http://www.brightsideofnews.com/news/2012/9/27/governor-brown-signs-california-driverless-car-law-at-google-hq-.aspx

3200

New Law Allows Driverless Cars On Michigan Roads (2013). / CBS Detroit, December 28, 2013 // https://www.cbsnews.com/detroit/news/new-law-allows-driverless-cars-on-michigan-roads/

3201

Driverless cars to be tested on UK roads by end of 2013 (2013). / BBC News, 16 July 2013 // https://www.bbc.com/news/technology-23330681

3202

Ducamp P. (2015). Des véhicules autonomes sur route ouverte à Bordeaux en octobre 2015 / L'Usine Digitale, 29 juin 2015 // https://www.usine-digitale.fr/article/des-vehicules-autonomes-sur-route-ouverte-a-bordeaux-en-octobre-2015.N338350

3203

Plass T. (2023). Navigating the future: Germany's autonomous driving act / Israel Public Policy Institute, Mar 22, 2023 // https://www.ippi.org.il/germany-autonomous-driving-act/

3204

Скрынникова A., Ставцева Л., Атасунцев А., Кокорева М. (2020). МИД попросили частично приостановить конвенцию о дорожном движении. Её положения мешают развитию беспилотного автотранспорта / РБК, 16 марта 2020 // https://www.rbc.ru/technology_and_media/16/03/2020/5e6b9edd9a7947bad7f691f5

3205

AI in the UK: ready, willing and able? Select Committee on Artificial Intelligence. Report of Session 2017–19 (2018) // https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf

3206

Davies M., Birtwistle M. (2023). Regulating AI in the UK. Strengthening the UK's proposals for the benefit of people and society / Ada Lovelace Institute, 18 July 2023 // https://www.adalovelaceinstitute.org/report/regulating-ai-in-the-uk/

3207

Establishing a pro-innovation approach to regulating AI (policy paper) (2022) // https://www.gov.uk/government/publications/establishing-a-pro-innovation-approach-to-regulating-ai/establishing-a-pro-innovation-approach-to-regulating-ai-policy-statement

3208

A pro-innovation approach to AI regulation (policy paper) (2023) // https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach/white-paper

3209

National Artificial Intelligence Initiative Act of 2020 (2020) // https://www.congress.gov/116/crpt/hrpt617/CRPT-116hrpt617.pdf#page=1210

3210

NIST (2023). Artificial Intelligence Risk Management Framework (AI RMF 1.0) // https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf

3211

Blueprint for an AI Bill of Rights (2022) // https://www.whitehouse.gov/ostp/ai-bill-of-rights/

3212

Kraczon C. (2022). The State of State AI Policy (2021-22 Legislative Session). / Electronic privacy information center, August 8, 2022 // https://epic.org/the-state-of-ai/

3213

Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence (2023). // https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/

3214

FACT SHEET: President Biden Issues Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence (2023). // https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/

3215

Mauran C., Gedeon K. (2023). White House drops an AI regulation bombshell: 10 new mandates that'll shake up the industry. / Mashable, October 30, 2023. // https://mashable.com/article/white-house-drops-ai-regulation-bombshell

3216

Chintala S. / Twitter, 31 октября 2023 г. // https://twitter.com/soumithchintala/status/1719209954714767403

3217

* Глубокий синтез [深度合成] — методика синтеза изображений, основанная на глубоких нейронных сетях, в просторечии — «дипфейк».

3218

国家互联网信息办公室等三部门发布《互联网信息服务深度合成管理规定》 (2022) // http://www.cac.gov.cn/2022-12/11/c_1672221949318230.htm

3219

生成式人工智能服务管理暂行办法 (2023) // http://www.cac.gov.cn/2023-07/13/c_1690898327029107.htm

3220

David E. (2023). China mandates that AI must follow “core values of socialism” / The Verge, Jul 14, 2023 // https://www.theverge.com/2023/7/14/23794974/china-generative-ai-regulations-alibaba-baidu

3221

Tobin M. (2023). China announces rules to keep AI bound by ‘core socialist values’ / The Washington Post, July 14, 2023 // https://www.washingtonpost.com/world/2023/07/14/china-ai-regulations-chatgpt-socialist/

3222

Che C. (2023). China Says Chatbots Must Toe the Party Line / The New York Times, April 24, 2023 // https://www.nytimes.com/2023/04/24/world/asia/china-chatbots-ai.html

3223

国家互联网信息办公室关于《生成式人工智能服务管理办法(征求意见稿)》公开征求意见的通知 (2023) // http://www.cac.gov.cn/2023-04/11/c_1682854275475410.htm

3224

Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) (2021) // https://data.consilium.europa.eu/doc/document/ST-8115-2021-INIT/en/pdf

3225

Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) (2022) // https://data.consilium.europa.eu/doc/document/ST-14954-2022-INIT/en/pdf

3226

Amendments adopted by the European Parliament on 14 June 2023 on the proposal for a regulation of the European Parliament and of the Council on laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) (2023) // https://www.europarl.europa.eu/doceo/document/TA-9-2023-0236_EN.html

3227

Sioli L. (2021). Shaping Europe's digital future. A European Strategy for Artificial Intelligence // https://www.ceps.eu/wp-content/uploads/2021/04/AI-Presentation-CEPS-Webinar-L.-Sioli-23.4.21.pdf?

3228

Chee F. Y. (2023). AI generated content should be labelled, EU Commissioner Jourova says. / Reuters, June 5, 2023 // https://www.reuters.com/technology/ai-generated-content-should-be-labelled-eu-commissioner-jourova-says-2023-06-05/

3229

CAHAI (2020). Feasibility Study // https://rm.coe.int/cahai-2020-23-final-eng-feasibility-study-/1680a0c6da

3230

CAHAI (2021). Possible elements of a legal framework on artificial intelligence, based on the Council of Europe’s standards on human rights, democracy and the rule of law // https://rm.coe.int/cahai-2021-09rev-elements/1680a6d90d

3231

CAI (2023). Revised zero draft [framework] convention on artificial intelligence, human rights, democracy and the rule of law // https://rm.coe.int/cai-2023-01-revised-zero-draft-framework-convention-public/1680aa193f

3232

Beazley D. (2023). Canada sits on the fence about regulating AI. / CBA/ABC National, 31 May 2023 // https://nationalmagazine.ca/en-ca/articles/law/hot-topics-in-law/2023/canada-sits-on-the-fence-in-regulating-ai

3233

Bordoloi P. (2023). India Backs Off on AI Regulation. But Why? / Analytics India Magazine, April 10, 2023 // https://analyticsindiamag.com/india-backs-off-on-ai-regulation-but-why/

3234

For the first time in Israel: The principles of the policy for the responsible development of the field of artificial intelligence were published for public comment (2022). / Ministry of Innovation, Science and Technology, 17.11.2022 // https://www.gov.il/en/departments/news/most-news20221117

3235

Ravia H., Kaplan T., Hammer D. (2021). Use of Artificial Intelligence Attracts Legislative and Regulatory Attention in the E.U., U.S., and Israel. / Pearl Cohen, Apr 29, 2021 // https://www.pearlcohen.com/use-of-artificial-intelligence-attracts-legislative-and-regulatory-attention-in-the-e-u-u-s-and-israel/

3236

Roh T., Nam J. E. (2023). South Korea: Legislation on Artificial Intelligence to Make Significant Progress. / Kim & Chang, 2023.03.06 // https://www.kimchang.com/en/insights/detail.kc?sch_section=4&idx=26935

3237

Указ Президента Российской Федерации «О развитии искусственного интеллекта в Российской Федерации» (2019) // http://static.kremlin.ru/media/events/files/ru/AH4x6HgKWANwVtMOfPDhcbRpvd1HCCsv.pdf

3238

Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback (2019). / U. S. Food & Drug Administration // https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf

3239

Marketing Submission Recommendations for a Predetermined Change Control Plan for Artificial Intelligence/Machine Learning (AI/ML)-Enabled Device Software Functions. Draft Guidance for Industry and Food and Drug Administration Staff (2023). / U. S. Food & Drug Administration, April 2023 // https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial

3240

Boubker J., Faget K. Y., Beaver N. A., Chmielewski M. R. (2023). FDA’s New Guidance Proposes Flexible Use of AI in Medical Devices / Foley, 10 May 2023 // https://www.foley.com/en/insights/publications/2023/05/fdas-guidance-flexible-use-ai-medical-devices

3241

Three Guidelines Published Today, Propelling China to be World Leader in Digital Health (2022). / China Med Device, March 9, 2022 // https://chinameddevice.com/digital-health-nmpa-ai/

3242

ISO/IEC JTC 1/SC 42 Artificial intelligence (2017) // https://www.iso.org/ru/committee/6794475.html

3243

Гасиоровски-Денис Е. (2020). Навстречу искусственному интеллекту // https://www.iso.org/ru/news/ref2530.html

3244

ISO/IEC JTC 1/SC 42 Artificial intelligence (2020). ISO/IEC TR 24028:2020. Information technology — Artificial intelligence — Overview of trustworthiness in artificial intelligence // https://www.iso.org/ru/standard/77608.html

3245

Представлены 36 проектов национальных стандартов в области ИИ (2021). / D-russia.ru, 18.10.2021 // https://d-russia.ru/predstavleny-36-proektov-nacionalnyh-standartov-v-oblasti-ii.html

3246

Федеральный закон «О персональных данных» от 27.07.2006 №152-ФЗ (2023) // https://www.consultant.ru/document/cons_doc_LAW_61801/

3247

* Cambridge Analytica (CA) — британская частная компания, которая использовала продвинутые технологии анализа данных, собранных в социальных сетях, чтобы оказывать влияние на результаты выборов и референдумов.

3248

Chen D., Fraiberger S. P., Moakler R., Provost F. (2017). Enhancing Transparency and Control When Drawing Data-Driven Inferences About Individuals / Big DataVol. 5, No. 3 // https://doi.org/10.1089/big.2017.0074

3249

Duhigg C. (2012). How Companies Learn Your Secrets / The New York Times Magazine, February 16, 2012 // https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

3250

Basel Committee on Banking Supervision (2011). Basel III: A global regulatory framework for more resilient banks and banking systems // https://www.bis.org/publ/bcbs189.pdf

3251

Kang C. (2023). How Sam Altman Stormed Washington to Set the A.I. Agenda / The New York Times, June 7, 2023 // https://www.nytimes.com/2023/06/07/technology/sam-altman-ai-regulations.html

3252

Kang C. (2023). OpenAI’s Sam Altman Urges A.I. Regulation in Senate Hearing / The New York Times, May 16, 2023 // https://www.nytimes.com/2023/05/16/technology/openai-altman-artificial-intelligence-regulation.html

3253

* Пер. Н. Сосновской.

3254

Schmidhuber J. (2003). Goedel Machines: Self-Referential Universal Problem Solvers Making Provably Optimal Self-Improvements // https://arxiv.org/abs/cs/0309048

3255

Feurer M., Eggensperger K., Falkner S., Lindauer M., Hutter F. (2020). Auto-Sklearn 2.0: The Next Generation // https://arxiv.org/abs/2007.04074

3256

Kotthoff L., Thornton C., Hoos H. H., Hutter F., Leyton-Brown K. (2016). Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA / Journal of Machine Learning Research, Vol. 17 (2016) // http://www.cs.ubc.ca/labs/beta/Projects/autoweka/papers/16-599.pdf

3257

Erickson N., Mueller J., Shirkov A., Zhang H., Larroy P., Li M., Smola A. (2020). AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data // https://arxiv.org/abs/2003.06505

3258

Arora A., Candel A., Lanford J., LeDell E., Parmar V. (Oct. 2016). Deep Learning with H2O / http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf

3259

Click C., Lanford J., Malohlava M., Parmar V., Roark H. (Oct. 2016). Gradient Boosted Models with H2O / http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/GBMBooklet.pdf

3260

Le T. T., Fu W., Moore J. H. (2020). Scaling tree-based automated machine learning to biomedical big data with a feature set selector / Bioinformatics, Vol. 36 (1), pp. 250—256 // https://doi.org/10.1093/bioinformatics/btz470

3261

Wang C., Wu Q. (2019). FLO: Fast and Lightweight Hyperparameter Optimization for AutoML // https://arxiv.org/abs/1911.04706

3262

Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., Gulin A. (2017). CatBoost: unbiased boosting with categorical features // https://arxiv.org/abs/1706.09516

3263

Zoph B., Le Q. V. (2016). Neural Architecture Search with Reinforcement Learning // https://arxiv.org/abs/1611.01578

3264

Real E., Moore S., Selle A., Saxena S., Suematsu Y. L., Tan J., Le Q., Kurakin A. (2017). Large-Scale Evolution of Image Classifiers // https://arxiv.org/abs/1703.01041

3265

Kaiser L., Gomez A. N., Shazeer N., Vaswani A., Parmar N., Jones L., Uszkoreit J. (2017). One Model To Learn Them All // https://arxiv.org/abs/1706.05137

3266

Zoph B., Vasudevan V., Shlens J., Le Q. V. (2017). Learning Transferable Architectures for Scalable Image Recognition // https://arxiv.org/abs/1707.07012

3267

Chen L.-C., Collins M. D., Zhu Y., Papandreou G., Zoph B., Schroff F., Adam H., Shlens J. (2018). Searching for Efficient Multi-Scale Architectures for Dense Image Prediction // https://arxiv.org/abs/1809.04184

3268

Liu H., Simonyan K., Yang Y. (2018). DARTS: Differentiable Architecture Search // https://arxiv.org/abs/1806.09055

3269

Howard A., Sandler M., Chu G., Chen L.-C., Chen B., Tan M., Wang W., Zhu Y., Pang R., Vasudevan V., Le Q. V., Adam H. (2019). Searching for MobileNetV3 // https://arxiv.org/abs/1905.02244v5

3270

Xiong Y., Liu H., Gupta S., Akin B., Bender G., Kindermans P.-J., Tan M., Singh V., Chen B. (2020). MobileDets: Searching for Object Detection Architectures for Mobile Accelerators // https://arxiv.org/abs/2004.14525v2

3271

Abdelfattah M. S., Mehrotra A., Dudziak Ł., Lane N. D. (2021). Zero-Cost Proxies for Lightweight NAS // https://arxiv.org/abs/2101.08134

3272

Dudziak Ł., Chau T., Abdelfattah M. S., Lee R., Kim H., Lane N. D. (2020). BRP-NAS: Prediction-based NAS using GCNs // https://arxiv.org/abs/2007.08668

3273

Zhang Y., Zhang Q., Yang Y. (2020). How Does Supernet Help in Neural Architecture Search? // https://arxiv.org/abs/2010.08219

3274

Dai X., Zhang P., Wu B., Yin H., Sun F., Wang Y., Dukhan M., Hu Y., Wu Y., Jia Y., Vajda P., Uyttendaele M., Jha N. K. (2018). ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation // https://arxiv.org/abs/1812.08934

3275

Wan A., Dai X., Zhang P., He Z., Tian Y., Xie S., Wu B., Yu M., Xu T., Chen K., Vajda P., Gonzalez J. E. (2020). FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions // https://arxiv.org/abs/2004.05565

3276

Awad N., Mallik N., Hutter F. (2020). Differential Evolution for Neural Architecture Search // https://arxiv.org/abs/2012.06400

3277

Jie R., Gao J. (2021). Differentiable Neural Architecture Search with Morphism-based Transformable Backbone Architectures // https://arxiv.org/abs/2106.07211

3278

Tian Y., Shen L., Shen L., Su G., Li Z., Liu W. (2020). AlphaGAN: Fully Differentiable Architecture Search for Generative Adversarial Networks // https://arxiv.org/abs/2006.09134

3279

Ding M., Lian X., Yang L., Wang P., Jin X., Lu Z., Luo P. (2021). HR-NAS: Searching Efficient High-Resolution Neural Architectures with Lightweight Transformers // https://arxiv.org/abs/2106.06560

3280

Yang Y., You S., Li H., Wang F., Qian C., Lin Z. (2021). Towards Improving the Consistency, Efficiency, and Flexibility of Differentiable Neural Architecture Search // https://arxiv.org/abs/2101.11342

3281

Jin H., Song Q., Hu X. (2018). Auto-Keras: An Efficient Neural Architecture Search System // https://arxiv.org/abs/1806.10282

3282

Ying C., Klein A., Real E., Christiansen E., Murphy K., Hutter F. (2019). NAS-Bench-101: Towards Reproducible Neural Architecture Search // https://arxiv.org/abs/1902.09635

3283

Zela A., Siems J., Hutter F. (2020). NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search // https://arxiv.org/abs/2001.10422

3284

Dong X., Yang Y. (2020). NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search // https://arxiv.org/abs/2001.00326

3285

Tu R., Khodak M., Roberts N., Talwalkar A. (2021). NAS-Bench-360: Benchmarking Diverse Tasks for Neural Architecture Search // https://arxiv.org/abs/2110.05668

3286

Yan S., White C., Savani Y., Hutter F. (2021). NAS-Bench-x11 and the Power of Learning Curves // https://arxiv.org/abs/2111.03602

3287

Li C., Yu Z., Fu Y., Zhang Y., Zhao Y., You H., Yu Q., Wang Y., Lin Y. (2021). HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark // https://arxiv.org/abs/2103.10584

3288

Mehrotra A., Ramos A. G. C. P., Bhattacharya S., Dudziak Ł., Vipperla R., Chau T., Abdelfattah M. S., Ishtiaq S., Lane N. D. (2020). NAS-Bench-ASR: Reproducible Neural Architecture Search for Speech Recognition // https://openreview.net/forum?id=CU0APx9LMaL

3289

Dong X., Liu L., Musial K., Gabrys B. (2020). NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size // https://arxiv.org/abs/2009.00437

3290

Klein A., Hutter F. (2019). Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization // https://arxiv.org/abs/1905.04970

3291

Hirose Y., Yoshinari N., Shirakawa S. (2021). NAS-HPO-Bench-II: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters // https://arxiv.org/abs/2110.10165

3292

Tan M., Le Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks // https://arxiv.org/abs/1905.11946

3293

Arora A. (2020). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks // https://amaarora.github.io/2020/08/13/efficientnet.html

3294

Tan M., Le Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks // https://arxiv.org/abs/1905.11946

3295

Huang Y., Cheng Y., Bapna A., Firat O., Chen M. X., Chen D., Lee H. J., Ngiam J., Le Q. V., Wu Y., Chen Z. (2018). GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism // https://arxiv.org/abs/1811.06965

3296

Pham H., Dai Z., Xie Q., Luong M.-T., Le Q. V. (2020). Meta Pseudo Labels // https://arxiv.org/abs/2003.10580

3297

Wang Z., Yang E., Shen L., Huang H. (2023). A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning // https://arxiv.org/abs/2307.09218

3298

Kirkpatrick J., Pascanu R., Rabinowitz N., Veness J., Desjardins G., Rusu A. A., Milan K., Quan J., Ramalho T., Grabska-Barwinska A., Hassabis D., Clopath C., Kumaran D., Hadsell R. (2017). Overcoming catastrophic forgetting in neural nets / Proceedings of the National Academy of Sciences of the United States of America, Vol. 114 (13), pp. 3521—3526 // https://doi.org/10.1073/pnas.1611835114

3299

Kutalev A., Lapina A. (2021). Stabilizing Elastic Weight Consolidation method in practical ML tasks and using weight importances for neural network pruning // https://arxiv.org/abs/2109.10021

3300

Kutalev A. (2020). Natural Way to Overcome the Catastrophic Forgetting in Neural Networks // https://arxiv.org/abs/2005.07107

3301

Metz L., Maheswaranathan N., Freeman C. D., Poole B., Sohl-Dickstein J. (2020). Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves // https://arxiv.org/abs/2009.11243

3302

Baydin A. G., Pearlmutter B. A., Syme D., Wood F., Torr P. (2022). Gradients without Backpropagation // https://arxiv.org/abs/2202.08587

3303

Schlag I., Sukhbaatar S., Celikyilmaz A., Yih W.-t., Weston J., Schmidhuber J., Li X. (2023). Large Language Model Programs // https://arxiv.org/abs/2305.05364

3304

Sapunov G. (2023). Large Language Model Programs. A useful conceptualization for a wide set of practices for working with LLMs // https://gonzoml.substack.com/p/large-language-model-programs

3305

Schreiner M. (2022). Meta’s AI chief: Three major challenges of artificial intelligence / MIXED, Jan 29 2022 // https://mixed-news.com/en/metas-ai-chief-three-major-challenges-of-artificial-intelligence/

3306

LeCun Y. (2022). A Path Towards Autonomous Machine Intelligence // https://openreview.net/forum?id=BZ5a1r-kVsf

3307

Assran M., Duval Q., Misra I., Bojanowski P., Vincent P., Rabbat M., LeCun Y., Ballas N. (2023). Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture // https://arxiv.org/abs/2301.08243

3308

Dickson B. (2020). The GPT-3 economy / TechTalks, September 21, 2020 // https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/

3309

Asimov A. (2016). Foundation and Earth. HarperCollins Publishers // https://books.google.ru/books?id=0DW0rQEACAAJ

3310

* Пер. А. Ливерганта.

3311

Athalye A., Engstrom L., Ilyas A., Kwok K. (2017). Fooling Neural Networks in the Physical World with 3D Adversarial Objects // https://www.labsix.org/physical-objects-that-fool-neural-nets/

3312

Athalye А., Carlini N., Wagner D. (2018). Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples // https://arxiv.org/abs/1802.00420

3313

Athalye A., Carlini N., Haddad D., Patel S. (2018). Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples // https://github.com/anishathalye/obfuscated-gradients

3314

Athalye A., Engstrom L., Ilyas A., Kwok K. (2017). Synthesizing Robust Adversarial Examples // https://arxiv.org/abs/1707.07397

3315

Bourdakos N. (2017). Capsule Networks Are Shaking up AI — Here’s How to Use Them / Hackernoon, November 9th 2017 // https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952

3316

Sabour S., Frosst N., Hinton G. E. (2017). Dynamic Routing Between Capsules // https://arxiv.org/abs/1710.09829

3317

Tolstikhin I., Houlsby N., Kolesnikov A., Beyer L., Zhai X., Unterthiner T., Yung J., Steiner A., Keysers D., Uszkoreit J., Lucic M., Dosovitskiy A. (2021). MLP-Mixer: An all-MLP Architecture for Vision // https://arxiv.org/abs/2105.01601

3318

Liu H., Dai Z., So D. R., Le Q. V. (2021). Pay Attention to MLPs // https://arxiv.org/abs/2105.08050

3319

Li D., Hu J., Wang C., Li X., She Q., Zhu L., Zhang T., Chen Q. (2021). Involution: Inverting the Inherence of Convolution for Visual Recognition // https://arxiv.org/abs/2103.06255

3320

Hidalgo C. (2015). Why Information Grows: The Evolution of Order, from Atoms to Economies. Hachette UK // https://books.google.ru/books?id=0984DgAAQBAJ

3321

Swaminathan S., Garg D., Kannan R., Andres F. (2020). Sparse low rank factorization for deep neural network compression / Neurocomputing, Vol. 398, pp. 185—196 // https://doi.org/10.1016/j.neucom.2020.02.035

3322

Wu M., Parbhoo S., Hughes M. C., Roth V., Doshi-Velez F. (2019). Optimizing for Interpretability in Deep Neural Networks with Tree Regularization // https://arxiv.org/abs/1908.05254

3323

Akhtar N., Jalwana M., Bennamoun M., Mian A. S. (2021). Attack to Fool and Explain Deep Networks / IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 May 2021 // https://doi.org/10.1109/TPAMI.2021.3083769

3324

Lang O., Gandelsman Y., Yarom M., Wald Y., Elidan G., Hassidim A., Freeman W. T., Isola P., Globerson A., Irani M., Mosseri I. (2021). Explaining in Style: Training a GAN to explain a classifier in StyleSpace // https://arxiv.org/abs/2104.13369

3325

Rogers A., Kovaleva O., Rumshisky A. (2020). A Primer in BERTology: What we know about how BERT works // https://arxiv.org/abs/2002.12327

3326

Geva M., Schuster R., Berant J., Levy O. (2020). Transformer Feed-Forward Layers Are Key-Value Memories // https://arxiv.org/abs/2012.14913

3327

Meng K., Bau D., Andonian A., Belinkov Y. (2022). Locating and Editing Factual Associations in GPT // https://arxiv.org/abs/2202.05262

3328

Eldan R., Russinovich M. (2023). Who's Harry Potter? Approximate Unlearning in LLMs // https://arxiv.org/abs/2310.02238

3329

Li K., Patel O., Viégas F., Pfister H., Wattenberg M. (2023). Inference-Time Intervention: Eliciting Truthful Answers from a Language Model // https://arxiv.org/abs/2306.03341

3330

Zou A., Phan L., Chen S., Campbell J., Guo P., Ren R., Pan A., Yin X., Mazeika M., Dombrowski A.-K., Goel S., Li N., Byun M. J., Wang Z., Mallen A., Basart S., Koyejo S., Song D., Fredrikson M., Kolter J. Z., Hendrycks D. (2023). Representation Engineering: A Top-Down Approach to AI Transparency // https://arxiv.org/abs/2310.01405

3331

Gurnee W., Tegmark M. (2023). Language Models Represent Space and Time // https://arxiv.org/abs/2310.02207

3332

* Пер. С. Земляного.

3333

Bonnefon J.-F., Shariff A., Rahwan I. (2016). The social dilemma of autonomous vehicles / Science, Vol. 352, Iss. 6293, pp. 1573—1576 // https://doi.org/10.1126/science.aaf2654

3334

Марков А. (2018). Моральные проблемы беспилотных автомобилей не имеют универсального решения / Элементы, 29.10.2018 // https://elementy.ru/novosti_nauki/433355/Moralnye_problemy_bespilotnykh_avtomobiley_ne_imeyut_universalnogo_resheniya

3335

Awad E., Dsouza S., Kim R., Schulz J., Henrich J., Shariff A., Bonnefon J.-F., Rahwan I. (2018). The Moral Machine experiment / Nature, Vol. 563, pp. 59—64 // https://doi.org/10.1038/s41586-018-0637-6

3336

Марков А. (2018). Моральные проблемы беспилотных автомобилей не имеют универсального решения / Элементы, 29.10.18 // https://elementy.ru/novosti_nauki/433355/Moralnye_problemy_bespilotnykh_avtomobiley_ne_imeyut_universalnogo_resheniya

3337

McKinsey & Company (2023). The state of AI in 2023: Generative AI’s breakout year // https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year#/

3338

Tangermann V. (2023). Artists Sue Stable Diffusion and Midjourney for Using Their Work to Train AI That Steals Their Jobs / Futurism, Jan 18, 2023 // https://futurism.com/artists-sue-stabile-diffusion-midjourney

3339

Lee T. B. (2023). Stable Diffusion copyright lawsuits could be a legal earthquake for AI. / Ars Technica, 4/3/2023 // https://arstechnica.com/tech-policy/2023/04/stable-diffusion-copyright-lawsuits-could-be-a-legal-earthquake-for-ai/

3340

* DeviantArt — популярный сервис обмена изображениями и социальная сеть; в конце 2022 г. DeviantArt выпустил собственный генератор изображений DreamUp, основанный на модели Stable Diffusion.

3341

Franzen K. (2023). Midjourney, Stability AI and DeviantArt win a victory in copyright case by artists — but the fight continues / VentureBeat, October 30, 2023. // https://venturebeat.com/ai/midjourney-stability-ai-and-deviantart-win-a-victory-in-copyright-case-by-artists-but-the-fight-continues/

3342

Vincent J. (2022). YouTuber trains AI bot on 4chan’s pile o’ bile with entirely predictable results / The Verge, Jun 8, 2022 // https://www.theverge.com/2022/6/8/23159465/youtuber-ai-bot-pol-gpt-4chan-yannic-kilcher-ethics

3343

Papasavva A., Zannettou S., De Cristofaro E., Stringhini G., Blackburn J. (2020). Raiders of the Lost Kek: 3.5 Years of Augmented 4chan Posts from the Politically Incorrect Board // https://arxiv.org/abs/2001.07487

3344

Kurenkov A. (2022). Lessons from the GPT-4Chan Controversy. / The Gradient, 12.JUN.2022 // https://thegradient.pub/gpt-4chan-lessons/

3345

Condemning the deployment of GPT-4chan (2022). // https://docs.google.com/forms/d/e/1FAIpQLSdh3Pgh0sGrYtRihBu-GPN7FSQoODBLvF7dVAFLZk2iuMgoLw/viewform?fbzx=1650213417672418119

3346

Lin S., Hilton J., Evans O. (2021). TruthfulQA: Measuring How Models Mimic Human Falsehoods // https://arxiv.org/abs/2109.07958

3347

Kelley D. (2023). AI-Based Cybercrime Tools WormGPT and FraudGPT Could Be The Tip of the Iceberg. / SlashNext, August 1, 2023 // https://slashnext.com/blog/ai-based-cybercrime-tools-wormgpt-and-fraudgpt-could-be-the-tip-of-the-iceberg/

3348

Николич А. (2023). EVILdolly // https://huggingface.co/AlexWortega/EVILdolly

3349

Levin J.-C., Maas M. M. (2020). Roadmap to a Roadmap: How Could We Tell When AGI is a 'Manhattan Project' Away? // https://arxiv.org/abs/2008.04701

3350

Bengio Y., Deleu T., Hu E. J., Lahlou S., Tiwari M., Bengio E. (2021). GFlowNet Foundations // https://arxiv.org/abs/2111.09266

3351

Koetsier J. (2022). Building an artificial brain: 86B neurons, 500T synapses, and a neuromorphic chip / YouTube, Mar 9, 2022 // https://www.youtube.com/watch?v=WEymRJb0dso

3352

Yadlowsky S., Doshi L., Tripuraneni N. (2023). Pretraining Data Mixtures Enable Narrow Model Selection Capabilities in Transformer Models // https://arxiv.org/abs/2311.00871

3353

Reilly M. (2006). Calculating the speed of sight / New Scientist, 28 July 2006. // https://www.newscientist.com/article/dn9633-calculating-the-speed-of-sight/

3354

Levy S. (2000). Insanely Great: The Life and Times of Macintosh, the Computer that Changed Everything. Penguin Books // https://books.google.ru/books?id=Y6ZQAAAAMAAJ

3355

Engelbart D. C. (1962). Augmenting Human Intellect: A Conceptual Framework. SRI Summary Report AFOSR-3223 // https://www.dougengelbart.org/content/view/138

3356

Wolfram S. (2023). Remembering the Improbable Life of Ed Fredkin (1934–2023) and His World of Ideas and Stories / Stephen Wolfram writings, August 22, 2023 // https://writings.stephenwolfram.com/2023/08/remembering-the-improbable-life-of-ed-fredkin-1934-2023-and-his-world-of-ideas-and-stories/

3357

Wolfram S. (2023). Remembering the Improbable Life of Ed Fredkin (1934–2023) and His World of Ideas and Stories / Stephen Wolfram writings, August 22, 2023 // https://writings.stephenwolfram.com/2023/08/remembering-the-improbable-life-of-ed-fredkin-1934-2023-and-his-world-of-ideas-and-stories/

3358

Fredkin E. (1963). The time sharing of computers / Computers and Automation, November 1963, pp. 12—20 https://usermanual.wiki/Manual/196311.1084983735.pdf

Загрузка...