Глава 2 РОБОТЫ НА ПОЛЕ БОЯ

Зачем они нужны?

Идея заменить людей на полях сражений роботами витала в воздухе уже давно. На эту тему были написаны десятки научно-фантастических произведений, первые из которых появились в 20-х годах нашего столетия. Пионерами автоматизации военной техники были советские ученые, которые еще в 30-х годах создали дистанционно пилотируемый вариант бомбардировщика ТБ-1, способный совершать полет «по полному циклу» (взлет — полет по маршруту — сброс бомб — возвращение на базу — посадка) с минимальным вмешательством человека. По ряду причин эти работы так и не вышли из стадии экспериментальных. Первая попытка боевого применения безэкипажной машины в качестве носителя оружия, по-видимому, была предпринята в 1945 г. при обороне Берлина, когда немцы оборудовали танкетки В-4 установками для стрельбы реактивными гранатами. Ничего серьезного, однако, до последнего времени создано не было, и люди привыкли считать, что военные роботы-солдаты относятся к области чистого вымысла. И вдруг оказалось, что они могут стать реальностью уже в ближайшем времени.

В конце 1983 г. Управление Пентагона по проведению научно-ислледовательских работ (УППНИР) объявило о принятии десятилетнего плана, который назвали СКИ — стратегическая компьютерная инициатива. Это был план создания искусственного интеллекта и его применения в военных целях, явившийся ответом на японские проекты разработки ЭВМ пятого поколения. Объем финансирования в первые три года составил сумму в 300 млн. долл., в первые пять лет — 600 млн. долл., а затем значительно превысил 1 млрд. долл. В связи с этим УППНИР в 2–3 раза увеличила долю своего бюджета, направляемого на разработки в области компьютерной техники.

Принцип действия дистанционно управляемого робота-минера


Армии нужны машины, которые с помощью дистанционного управления или самостоятельно будут разыскивать противника, обезвреживать мины и неразорвавшиеся бомбы или запускать ракеты в ситуациях, где человек подвергся бы слишком большому риску. Кроме того, армия нуждается в роботах для выполнения утомительных работ в тылу, таких как погрузка боеприпасов, управление автоколонками или заправка танков.

ВВС хотят иметь на вооружении беспилотные самолеты для разведки за линией фронта, создания помех вражеским РЛС или уничтожения отдельных целей. Чтобы управлять пилотируемыми самолетам на современном уровне, необходим компьютерный помощник пилота. В космическом пространстве роботы, вероятно, будут играть ключевую роль в создании и техническом обслуживании систем ПРО. По сути дела, все, что создается в рамках программы СОИ, в такой степени компьютеризовано, что СКИ имеет для нее ключевое значение.

ВМС хотят иметь роботы для выполнения целого ряда опасных и трудоемких задач — от ведения огня до технического обслуживания и ремонта кораблей, их поиска и спасения. Кроме того, для ведения комплексных боевых операций на океанских театрах военных действий нужны компьютерные системы стратегического планирования.

Итак, Пентагон решил разработать военные роботы. Как сказал майор Кеннет Роузе из управления боевой подготовкой американской армии: «Машины не устают. Они не спят, не прячутся под деревьями, когда идет дождь, не болтают с приятелями и не курят тайком». Действительно, стоящий в дозоре робот всегда будет одинаково внимателен. В бою он проявит нечеловеческую храбрость. Оставшись один против превосходящих сил противника, он будет драться до последнего. Если поступит команда предпринять самоубийственную атаку без шансов остаться в живых, он не станет колебаться. Роботы — солдаты, не знающие страха и усталости. Главное предъявляемое к ним требование — иметь достаточно мозгов, чтобы, к примеру, не начать стрелять в своих же.

Еще одно важное соображение: робот должен быть в состоянии распознавать противника, когда он его обнаруживает. «Во Вьетнаме нашим солдатам было трудно отличать южных вьетнамцев от северных, — сказал Роберт Розенфелд, руководитель программ в УППНИР. — Если людям трудно распознавать противника, то легко представить себе, как это трудно будет роботам». Эта проблема, пожалуй, самая трудная.

В конечном счете оценка не только препятствий, но также потенциальных угроз и пеленгация целей при одновременном передвижении с применяемой в боевых условиях скоростью потребует гораздо более мощных компьютеров и программного обеспечения, чем имеющиеся в настоящее время. Поскольку суперкомпьютеры с фантастическим быстродействием по своим массогабаритным характеристикам и потребляемой энергии не подходят пока для использования в военных роботах, армейское командование вынуждено довольствоваться меньшим.

Однако успехи в области создания новых компьютерных технологий превосходят все ожидания. Например, в 1989 г. специалисты фирмы Intel опубликовали прогноз по развитию микропроцессоров к 1996 г. Реально достигнутая в этом году производительность процессоров Intel превысила ожидаемую в полтора раза. Такой прогресс в совокупности с успехами в создании программного обеспечения распознавания образов, речи и т. п. дает все основания полагать, что уже до конца столетия будут созданы военные роботы, по эффективности превосходящие на поле боя человека.

Конечно, следует отметить, что термин «полностью автономный робот» — не более чем условность, поскольку даже наиболее совершенные автономные боевые роботы должны иметь возможность управляться дистанционно, чтобы можно было осуществить, по крайней мере, их включение и выключение (или уничтожение) в аварийных ситуациях, когда их поведение не соответствует поставленной задаче или представляет опасность для взаимодействующих подразделений.

Эта разработанная фирмой «Бофорс» машина для разминирования может управляться как экипажем, так и дистанционно


Промежуточным шагом на пути разработки полностью самостоятельных боевых устройств считается создание полуавтоматических роботов, способных выполнять ограниченные задачи. В этой связи командование сухопутных войск США изучает возможности так называемой системы рассредоточения боевых машин, в которой один аппарат выполняет функции командования и управления. В нем будут находиться несколько человек, и он будет управлять на иоле боя целой группой роботов. Они могут вместе выполнять разведывательные задания или составлять колонну передового охранения, в которой один аппарат будет следовать за другим.

Еще одно препятствие на пути к использованию роботов в бою — это несовершенная связь. Имеющиеся в распоряжении военных радиоканалы достаточны для голосовой связи между людьми, но громадные объемы видео- и цифровых данных, требуемых для передачи команд и получения информации от робота, требуют использования таких частотных диапазонов, в которых в боевых условиях очень легко создавать помеху. По этой причине, например, невозможно передать цифровой или видеосигнал, когда на пути находится возвышение. В программе СКИ с целью решения этой проблемы рассматриваются варианты использования кабелей на волоконной оптике для управления роботами, а также связи на поле боя через самолеты с дистанционным управлением.

Исполнители

Вот как описывается поле боя недалекого будущего в одной из футуристических книг: «… радиосигналы от спутников связи предупредили командира о готовящемся наступлении противника. Сеть сейсмических датчиков, установленных на глубине в несколько метров, подтвердила это. Регистрируя колебания почвы, датчики закодированными сигналами направляют информацию в штабную ЭВМ. Последняя теперь довольно точно знает, где находятся вражеские танки и артиллерия. Датчики быстро отфильтровывают акустические сигналы, полученные от военных объектов разной массы, причем по спектру вибрации они отличают артиллерийские орудия от бронетранспортеров. Установив диспозицию противника, штабной компьютер принимает решение о нанесении флангового контрудара… Впереди наступающих поле заминировано, и имеется лишь узкий коридор. Однако компьютер оказался хитрее: он с точностью до тысячных долей секунды определяет, какая из мин должна взорваться. Но и этого мало: миниатюрные выпрыгивающие мины закрыли путь отступления за спиной противника. Выпрыгнув, эти мины начинают двигаться зигзагообразно, взрываясь только тогда, когда узнают — по массе металла, — что они ударились о танк или артиллерийское орудие. Одновременно рой маленьких самолетов-камикадзе обрушивается на цель. Прежде чем нанести удар, они отправляют в штабную ЭВМ новую порцию информации о положении дел на поле боя… Тем, кому удается выжить в этом аду, придется иметь дело с солдатами-роботами. Каждый из них, «чувствуя», например, приближение танка, начинает расти, как гриб, и открывает «глаза», стараясь его найти. Если цель не появляется в радиусе ста метров, робот направляется ей навстречу и атакует одной из крошечных ракет, которыми вооружен…».

Специалисты видят будущее военной робототехники главным образом в создании боевых машин, способных действовать автономно, а также самостоятельно «думать».

В числе первых проектов в рамках этого направления можно привести программу по созданию армейского автономного транспортного средства (ААТС). Новая боевая машина напоминает модели из фантастических кинофильмов: восемь небольших колес, высокий бронированный корпус без всяких прорезей и иллюминаторов, утопленная в металл скрытая телевизионная камера. Эта настоящая компьютерная лаборатория создана, чтобы испытывать способы автономного компьютерного управления наземными боевыми средствами. Последние модели ААТС используют для ориентации уже несколько телевизионных камер, ультразвуковой локатор и разноволновые лазеры, собираемые от которых данные собираются в некоторую четкую «картину» не только того, что находится по курсу следования, но и вокруг робота. Аппарат еще необходимо научить отличать тени от настоящих препятствий, ведь для телевизионной камеры с компьютерным управлением тень дерева очень похожа на упавшее дерево.

Интересно рассмотреть подходы участвующих в проекте фирм к созданию ААТС и трудности, с которыми они столкнулись. Управление движением восьмиколесного ААТС, о котором шла речь выше, осуществляется с помощью бортовых компьютеров, обрабатывающих сигналы от различных средств визуального восприятия и использующих топографическую карту, а также базу знаний с данными о тактике перемещения и алгоритмами вывода заключений, касающихся текущей обстановки. Компьютеры определяют протяженность тормозного пути, скорость на поворотах и прочие необходимые параметры движения.

Во время первых демонстрационных испытаниях ААТС перемещалось по гладкой дороге со скоростью 3 км/ч с использованием одной телевизионной камеры, благодаря которой с помощью разработанных в Мэрилендском университете методов выделения объемной информации распознавались обочины дороги. Из-за низкого быстродействия используемых тогда компьютеров ААТС было вынуждено делать остановки через каждые 6 м. Чтобы обеспечить непрерывное перемещение со скоростью 20 км/ч, производительность ЭВМ должна быть повышена в 100 раз.

По мнению специалистов, компьютеры играют ключевую роль в этих разработках и главные трудности связаны именно с ЭВМ. Поэтому по заказу УППНИР в университете Карнеги-Меллона принялись за разработку высокопроизводительной ЭВМ ВАРП, предназначаемой, в частности, для ААТС. Предполагается установить новую ЭВМ на специально изготовленном автомобиле для автономного управления им на прилегающих к университету улицах для движения со скоростью до 55 км/ч. Разработчики проявляют осторожность при ответах на вопрос, сможет ли компьютер полностью заменить водителя, например, при расчетах скорости пересечения улицы молодыми и пожилыми пешеходами, но уверены, что он будет лучше справляться с такими задачами, как выбор кратчайшего пути по карте.

Фирме «Дженерал электрик» УППНИР заказало комплект программного обеспечения, которое позволит ААТС распознавать во время движения детали местности, автомобили, боевые машины и т. п. В новом комплекте программ предполагается использовать распознавание образов по геометрическим признакам объекта съемки при его сравнении с эталонными изображениями, хранимыми в памяти компьютера. Поскольку для компьютерного конструирования изображения каждого распознаваемого объекта (танка, орудия и т. п.) требуются большие затраты труда, фирма пошла по пути съемки объектов с фотоснимков, рисунков или макетов в различных видах, например спереди и сбоку, причем снимки оцифровываются, трассируются и преобразуются в векторную форму. Затем с помощью специальных алгоритмов и программных пакетов получаемые изображения преобразуются в объемное контурное представление объекта, которое вводится в память компьютера. При движении ААТС его бортовая телекамера производит съемку попадающегося на пути объекта, изображение которого в процессе обработки представляется в виде линий и точек сходимости в местах резких изменений контрастности. Затем при распознавании эти рисунки сопоставляются с проекциями объектов, введенными в память ЭВМ. Процесс распознавания считается успешно проведенным при достаточно точном совпадении трех-четырех геометрических признаков объекта, и компьютер производит дальнейший, более детальный анализ для повышения точности распознавания.


Армейский джип «Хаммер», оборудованный системой автоматической навигации, может двигаться по выбранному маршруту самостоятельно


Последующие более сложные испытания на пересеченной местности были связаны с введением в ААТС нескольких телевизионных камер для обеспечения стереоскопического восприятия, а также пятидиапазонного лазерного локатора, который дал возможность оценивать характер препятствий на пути движения, для чего измерялись коэффициенты поглощения и отражения лазерного излучения в пяти участках электромагнитного спектра.

УППНИР также выделило средства на разработки Огайского университета по созданию ААТС с шестью опорами вместо колес для перемещения по пересеченной местности. Эта машина имеет высоту 2,1 м, длину 4,2 м и массу примерно 2300 кг. Аналогичные самоходные роботы различного назначения активно разрабатываются сейчас 40 промышленными фирмами.

Наиболее четко концепция безэкипажной боевой машины, главной задачей которой является охрана важных объектов и патрулирование, воплощена в американском боевом роботе «Проулер». Он имеет комбинированное управление, выполнен на шасси шестиколесного вездехода, оборудован лазерным дальномером, приборами ночного видения, доплеровской РЛС, тремя телевизионными камерами, одна из которых может подниматься на высоту до 8,5 м с помощью телескопической мачты, а также прочими датчиками, позволяющими вместе обнаруживать и идентифицировать любых нарушителей охраняемой зоны. Информация обрабатывается с помощью бортовой вычислительной машины, в память которой заложены программы автономного движения робота по замкнутому маршруту. В автономном режиме решение на уничтожение нарушителя принимается с помощью ЭВМ, а в режиме телеуправления — оператором. В последнем случае оператор получает информацию по телеканалу от трех телекамер, а команды управления передаются по радио. Необходимо отметить, что в системе телеуправления робота элементы управления в режиме используются только при диагностировании его систем, для чего у оператора установлен специальный монитор. Вооружение «Проулера» составляет гранатомет и два пулемета.

Еще один военный робот, носящий наименование «Одекс», может погружать и разгружать артиллерийские снаряды и другие боеприпасы, переносить грузы массой более тонны, обходить рубежи охранения. Как указывается в аналитическом докладе корпорации «Рэнд», по предварительным расчетам, стоимость каждого такого робота оценивается в 250 тыс. долл. (для сравнения — основной танк сухопутных войск США «Абрамс» Ml обходится Пентагону в 2,8 млн. долл.).

«Одекс» — экспериментальная шагающая платформа


«Одекс» представляет собой шагающую платформу, имеющую шесть опор, причем каждая приводится в движение тремя электродвигателями, а управление осуществляется с помощью шести микропроцессоров (по одному на каждую опору) и координирующего их центрального процессора. Прямо в процессе движения ширина робота может изменяться от 540 до 690 мм, а высота — от 910 до 1980 мм. Дистанционное управление производится по радиоканалу. Имеются также сообщения, что на базе этой платформы создан вариант робота, действующего как на земле, так и в воздухе. В первом случае робот передвигается с помощью все тех же опор, а во втором движение обеспечивают специальные лопасти, как у вертолета.

Для американских военно-морских сил уже созданы роботы НТ-3 для тяжелых грузов и РОБАРТ-1, фиксирующий пожары, отравляющие вещества и технику противника, проникающую через линию фронта, и имеющий словарь из 400 слов. РОБАРТ-1, кроме того, способен сам добираться до заправочной станции для перезарядки батарей. Широко рекламированная экспедиция к месту гибели знаменитого «Титаника», которая была проведена в 1986 г., имела скрытую основную цель — испытание нового военного подводного робота «Джейсон-младший».

В 80-х годах появились специальные безэкипажные боевые машины, выполняющие только разведывательные задачи. К ним относятся разведывательные боевые роботы ТМАР (США), «Команда Скаут» (США), ARVTB (США), ALV (США), ROVA (Великобритания) и другие. Четырехколесная малогабаритная безэкипажная телеуправляемая машина ТМАР, имеющая массу 270 кг, способна вести разведку в любое время суток с помощью телекамеры, приборов ночного видения и акустических датчиков. Она оснащена также лазерным целеуказателем.

«Команда Скаут» является колесной машиной с теплотелевизионными камерами, различными датчиками и манипуляторами управления движением. В ней осуществлено комбинированное управление: в режиме телеуправления команды поступают из управляющей машины, размещенной на тягаче-прицепе, в автономном режиме — от трех бортовых вычислительных машин с использованием цифровой карты местности.

На базе гусеничного БТР М113А2 создана безэкипажная боевая разведывательная машина ARVTB, которая для выполнения своих функций имеет навигационную систему и средства технического наблюдения. Как и «Команда Скаут», она имеет два режима работы — телеуправления с передачей команд по радио и автономный.

Во всех указанных выше разведывательных роботах используются технические средства управления двух типов. В режиме дистанционного управления применяется супервизорное телеуправление (по обобщенным командам оператора, в том числе речевым), а в автономном режиме — адаптивное управление с ограниченной способностью роботов приспосабливаться к изменениям внешней среды.

Разведывательная машина ALV более совершенна, чем другие разработки. На первых этапах она также имела системы программного управления с элементами адаптации, но в дальнейшем в системы управления вносилось все больше элементов искусственного интеллекта, что повышало автономность при решении боевых задач. В первую очередь «интеллектуализация» затронула навигационную систему. Еще в 1985 г. навигационная система позволила машине ALV самостоятельно пройти расстояние, равное 1 км. Правда, тогда движение осуществлялось по принципу автоматического удержания аппарата на середине дороги с использованием информации от телевизионной камеры обзора местности.

Для получения навигационной информации в машине ALV установлены цветная телевизионная камера, акустические датчики, производящие эхолокацию находящихся вблизи объектов, а также лазерный сканирующий локатор с точным измерением дальности до препятствий и отображением их пространственного положения. Американские специалисты рассчитывают добиться, чтобы машина ALV смогла самостоятельно выбирать рациональный маршрут движения по пересеченной местности, обходить препятствия, а при необходимости изменять направление и скорость движения. Она должна стать базой для создания полностью автономной безэкипажной боевой машины, способной производить не только разведку, но и другие действия, в том числе по поражению боевой техники противника из различного оружия.

К современным боевым роботам — носителям оружия относятся две американские разработки: «Роботик рейнджер» и «Демон».

«Роботик рейнджер» является четырехколесной машиной с электротрансмиссией, на которой могут размещаться две пусковые установки ПТУР или пулемет. Масса ее составляет 158 кг. Телеуправление осуществляется по волоконно-оптическому кабелю, что обеспечивает высокую помехозащищенность и дает возможность одновременно управлять большим числом роботов на одном и том же участке местности. Длина стекловолоконного кабеля позволяет оператору манипулировать роботом на расстоянии до 10 км.

В стадии проектирования находится еще один «Рейнджер», который способен «видеть» и запоминать собственную траекторию и движется по незнакомой пересеченной местности, обходя препятствия. Испытываемый образец оснащен целым набором датчиков, включая телекамеры, лазерный локатор, передающий на ЭВМ объемное изображение местности, и приемник инфракрасного излучения, позволяющий двигаться ночью. Поскольку для анализа изображений, получаемых с датчиков, требуются огромные вычисления, робот, подобно прочим, способен передвигаться лишь с малой скоростью. Правда, как только появятся компьютеры с достаточным быстродействием, его скорость надеются повысить до 65 км/ч. При дальнейшем усовершенствовании робот сможет постоянно наблюдать за позицией противника или вступать в бой как танк-автомат, вооруженный точнейшими орудиями с лазерной наводкой.

Малогабаритный носитель оружия «Демон» с массой около 2,7 т, созданный в США еще в конце 70-х — начале 80-х годов, относится к комбинированным безэкипажным колесным боевым машинам. Он оснащен ПТУР (восемь-десять единиц) с тепловыми головками самонаведения, радиолокационной станцией обнаружения целей, системой опознавания «свой-чужой», а также бортовой вычислительной машиной для решения навигационных задач и управления боевыми средствами. При выдвижении на огневые рубежи и на больших дальностях до цели «Демон» работает в режиме дистанционного управления, а при приближении к целям на расстояние, меньшее 1 км, переходит на автоматический режим. После этого обнаружение и поражение цели производятся без участия оператора. Концепция режима телеуправления машин «Демон» скопирована с упоминавшихся выше немецких танкеток В-4 конца второй мировой войны: управление одной-двумя машинами «Демон» осуществляет экипаж специально оборудованного танка. Проведенное американскими специалистами математическое моделирование боевых действий показало, что совместные действия танков с машинами «Демон» повышают показатели огневой мощи и живучести танковых подразделений, особенно в оборонительном бою.

Дальнейшее развитие концепция комплексного использования дистанционно управляемых и имеющих экипаж боевых машин получила в работах по программе RCV («Роботизированная боевая машина»). Она предусматривает разработку системы, состоящей из машины управления и четырех роботизированных боевых машин, которые выполняют различные задачи, в том числе по уничтожению объектов с помощью ПТУР.

Одновременно с легкими подвижными роботами-носителями оружия за рубежом создаются более мощные боевые средства, в частности роботизированный танк. В США эти работы ведутся с 1984 г., причем вся аппаратура получения и обработки информации изготавливается в блочном варианте, что позволяет обычный танк превратить в танк-робот.

В отечественной прессе сообщалось, что аналогичные работы проводятся и в России. В частности, уже созданы системы, которые при их установке на танк Т-72 позволяют ему действовать в полностью автономном режиме. Сейчас проводятся испытания этого оборудования.

Опытная американская разработка танка-робота


Активные работы по созданию безэкипажных боевых машин в последние десятилетия привели западных специалистов к выводу о необходимости стандартизации и унификации их узлов и систем. Особенно это относится к шасси и системам управления движением. Испытываемые варианты безэкипажных боевых машин уже не имеют четко выраженного целевого назначения, а используются в качестве многоцелевых платформ, на которые может устанавливаться разведывательная аппаратура, различное оружие и оборудование. К ним относятся уже упоминавшиеся машины «Роботик рейнджер», AIV и RCV, а также машина RRV-1A и робот «Одекс».

Так заменят ли роботы солдат на поле боя? Займут ли машины, обладающие искусственным разумом, место людей? Предстоит преодолеть огромные технические препятствия, прежде чем компьютеры смогут выполнять задачи, выполняемые человеком без всякого труда. Так, например, чтобы наделить машину самым обычным «здравым смыслом», потребуется на несколько порядков увеличить емкость ее памяти, ускорить работу даже самых современных компьютеров и разработать гениальное (другого слова не придумаешь) программное обеспечение. Для военного использования компьютеры должны стать гораздо меньшего размера и быть в состоянии выдержать боевые условия. Но хотя современный уровень развития средств искусственного интеллекта не позволяет пока создать полностью автономный робот, специалисты оптимистично оценивают перспективы будущей роботизации поля боя.

Стратеги

Постоянно возрастающая сложность систем вооружения и неуклонное увеличение объема довольно сложной командно-распорядительной информации, поступающей в армейские штабы, порождают многочисленные проблемы в военном деле. Например, персонал типового современного командного пункта перерабатывает в течение суток даже в обычной, а не экстремальной обстановке тысячи сообщений. Невзирая на столь большие порции ежесуточной информации и жесткие временные ограничения, боевая задача всегда должна быть выполнена точно в срок. Поэтому командиры обязаны принимать решения очень быстро и постоянно поддерживать на должном уровне боеготовность частей, несмотря на ограниченность (а часто и неукомплектованность) личного состава и имеющегося у него профессионального опыта. Как считают зарубежные специалисты, помочь в решении этих проблем могут компьютеризованные системы управления, которые в ряде военных областей уже доказали свою полезность. Исходя из этих соображений министерство армии США наметило долгосрочную программу исследований и разработок, а также подготовку кадров в области систем «искусственного интеллекта», реализуемую совместно с двумя большими университетами страны: Техасским и Пенсильванским. Оно же создало в Пентагоне специальный Центр по системам «искусственного интеллекта», который специализируется на создании информационно-управляющих систем для задач материально-технического снабжения армейских формирований. В число решаемых здесь проблем входит рациональное распределение важнейших видов принципиально нового радиооборудования, устойчивого к радиопомехам и различного рода физическим воздействиям, с которыми обязательно придется столкнуться в реальной боевой обстановке. Новые радиосистемы подключаются в единую сеть, имеющую сотовую структуру и создающую взаимно перекрывающееся радиополе. Оно позволяет с большой точностью «привязываться» к топографическим ориентирам и ведет к увеличению надежности управления огнем.

Одни из видов систем «искусственного интеллекта» являются так называемые экспертные системы (ЭС). Экспертная система представляет собой компьютерную систему, использующую заранее введенные в нее знания и технику рассуждения высококвалифицированного специалиста (эксперта) для решения поставленной задачи. В научно-исследовательской лаборатории министерства обороны США создана консультативная экспертная система для целеуказания и распределения боевых средств. Она реализована в виде действующего опытного образца и носит название BATTLE.

Как решает задачу распределения огневых средств по целям обычный компьютер? Обычно подобная задача решается методом полного перебора вариантов в так называемом дереве поиска. Задача любой боевой системы заключается в том, чтобы нанести максимальный ущерб всем заданным объектам противника. В процессе распределения боевых средств по целям величина ущерба, наносимого некоторой цели, определяется произведением ее индекса стратегической важности на ожидаемую долю целей, поражаемую при данном распределении. Когда величина ущерба достигает максимума, соответствующее распределение считается оптимальным. Пока для достижения оптимума в реальных условиях при использовании метода полного перебора требуется слишком много времени. Например, в ранних исследованиях для поиска оптимального распределения при 8 боевых средствах и 17 целях на обычной ЭВМ было затрачено 11 мин 43 с. В экспертной же системе BATTLE для этого потребовалось всего лишь 6,75 с. Сократить время решения задачи удалось за счет использования эвристического алгоритма поиска, при котором с самого начала исключается анализ имеющих низкую вероятность вариантов распределения боевых средств по целям. Система BATTLE позволяет учитывать 55 различных важных в практике реального боя факторов. В ней схема распределения боевых средств по целям имеет ярко выраженную сетевую структуру. Эта сеть представляет собой обобщение сетей логического вывода системы PROSPECTOR — одной из первых экспертных систем, которая разрабатывалась для оказания помощи при разведке полезных ископаемых (в частности, при поиске нефтяных месторождений).

Как считают американские специалисты, реализация конкретной экспертной системы — это пока скорее искусство, чем совокупность разработанных методов, и здесь нельзя предположить каких-то надежных универсальных решений. В данном случае оказался полезным подход, принятый в гражданской системе PROSPECTOR для поиска полезных ископаемых. Однако потребовались специфические дополнения и альтернативные решения (типа стратегии «оценочных функций») для ведения рационального диалога и определения неперспективных ветвей «дерева поиска». На описанном примере видно, что задача распределения боевых средств по целям — это, та же задача распределения ресурсов, и она может найти полезное применение в военном деле. Другими словами, аппаратурные средства системы BATTLE можно применять и в других «предметных областях», например, в авиации и на флоте.

Командование военно-морских сил заказало разработку компьютерного «стратега», который на основе анализа данных, поступающих с радиолокаторов и искусственных спутников Земли, будет помогать командирам организовывать сложный морской бой с участием авианосной боевой группы и входящими в нее десятками надводных кораблей и подводных лодок. Эта система управления боем должна быть способна учитывать непроверенные данные, предсказывать вероятные события, а также разрабатывать стратегию действий и сценарии на основании опыта, объясняя предпосылки принятия логических решений.

«Стратег», который будет реализован в нескольких вариантах экспертных систем, сперва поступит в распоряжение командующего Тихоокеанским флотом и его штаба. Эта система позволит составлять донесения о состоянии флота и планировать его деятельность. Они будут использоваться в составе автоматизированной системы управления для командного пункта флота, в котором в нормальном режиме работы действует личный состав из 20–40 офицеров, а в экстремальных ситуациях объем поступающих данных возрастает в десятки раз и требует их круглосуточной обработки.

Разрабатываемая экспертная система ФРЕШ позволит оценивать в реальном масштабе времени готовность боевых групп и групп надводных кораблей, основываясь на базовом массиве памяти и данных, поступающих от различных подразделений флота. Система будет также выдавать рекомендации по комплектованию сил и средств для решения конкретных задач и давать оценку последствий изменений в поставленных кораблям задачах в процессе боевых действий, причем время такой оценки благодаря экспертной системе сократится с 10 до 0,5 ч. Взаимодействие пользователей с этой и другими экспертными системами будет осуществляться через автоматизированную систему управления с помощью обычного языка со словарем примерно из 20 тыс. слов, включающего идиомы, военно-морскую терминологию, собственные имена и географические названия.

Несмотря на очевидные достоинства разработанных экспертных систем, в последнее время наметился некоторый спад в этой области, связанный со всеобщим переходом на объектно-ориентированное программирование и пересмотром взглядов на возможность вписывания знаний эксперта в рамки какой-либо системы правил. Тем не менее, все наработки в данной области, безусловно, используются и будут использоваться в программном обеспечении автоматизации принятия решений, в том числе и в вооруженных силах.

Беспилотные летательные аппараты

Этот вид военной техники в последнее время получает все большее развитие. История применения беспилотных летательных аппаратов (БПЛА) насчитывает уже несколько десятков лет. Сперва они играли роль ложных мишеней для обмана противовоздушной обороны противника, а также выполняли разведывательные функции. Большие количества таких аппаратов были использованы военно-воздушными силами США во время войны во Вьетнаме. В 1960-х гг. американскими военно-морскими силами разрабатывалась программа DASH, целью которой было создание беспилотного вертолета для борьбы с подводными лодками. Несмотря на то, что этот проект вскоре свернули, Япония закупила у США почти все произведенные аппараты и применяет их до сих пор. В 1980-х гг. Израилем был разработан дистанционно управляемый летательный аппарат (ДПЛА) «Мастиф», целью которого была воздушная разведка и целеуказание. Большое количество такой техники США закупили для. нужд флота и широко использовали с борта линкоров «Миссури» и «Висконсин» во время войны в Персидском заливе. Также в начале операций военно-воздушных сил в Ираке последние использовали 38 беспилотных летательных аппаратов BQM-74C «Чукар», которые провоцировали иракцев включать свои радары, так что они могли быть засечены и уничтожены специализированными самолетами подавления.

Разработан был также малоразмерный беспилотный летательный аппарат «Пейв Тайгер» одноразового использования, предназначенный для поиска и уничтожения радиоэлектронных средств, главным образом радиолокационных станций, входящих в состав ракетных и артиллерийских комплексов противника. Этот аппарат в иностранной печати иногда называют противорадиолокационным. Он выполнен по схеме «утка» с низкорасположенным стреловидным крылом, концевые части консолей которого отогнуты вверх и играют роль килей, и с передними горизонтальными поверхностями управления.

Планер изготовлен из композитных материалов, что в дополнение к небольшим массе и размерам аппарата (длина 2,13 м, размах крыла 2,59 м, максимальный диаметр фюзеляжа 0,61 м, стартовая масса 115 кг) обеспечивает его малую эффективную площадь отражения. Его силовая установка состоит из двух-цилиндрового двухтактного поршневого двигателя с воздушным охлаждением мощностью 28 л. с, снабженного четырехлопастным толкающим винтом. В западной печати отмечается, что при расходе топлива, равном 3,9 л/ч, его бортового запаса может хватить почти на 10 ч полета (при условии установки на аппарат максимальной по массе полезной нагрузки). Сообщается также, что работа двигателя в воздухе имеет повышенную шумность, что, однако, не считается его недостатком, поскольку это вызывает так называемый беспокоящий эффект, отвлекая внимание расчетов зенитных средств противника и заставляя их вести по нему стрельбу из пушек или производить пуски ракет.

Этот аппарат оснащен простейшим навигационным оборудованием, имеющим невысокую стоимость, но и малую точность, что также не считается недостатком, поскольку наведение на радиоизлучающие цели производится с помощью бортовой пассивной головки самонаведения, а задачей навигационной системы является лишь вывод аппарата в район расположения цели в соответствии с заложенной в него перед вылетом программой полета. Поскольку аппарат является полностью автономной системой и не связан линией передач данных с землей, а его наведение осуществляется пассивной головкой самонаведения, считается, что, находясь в воздухе, он обладает практически абсолютной помехоустойчивостью.

Стоимость одного серийного аппарата составит около 50 тыс. долл. По заявлению фирмы «Боинг», ее производственные мощности позволяют выпускать до 6 тыс. беспилотных аппаратов в год.

К числу тактических БПЛА малой дальности, которыми оснащены вооруженные силы США, относятся «Пионер» и «Хантер». «Пионер», разработанный при участии израильской фирмы IAI, состоит на вооружении с 1986 г. Аппарат выполнен по нормальной аэродинамической схеме с верхнерасположенным крылом и двумя хвостовыми балками с килями, соединенными горизонтальным оперением. В качестве силовой установки используется поршневой двигатель мощностью 26 л. с, оснащенный толкающим воздушным винтом.

В состав разведывательного оборудования входят телевизионная или ИК-камера, лазерный дальномер-целеуказатель, аппаратура радиоэлектронного противодействия или ретрансляции связи. Взлет аппарата может выполняться с земли посредством трехколесного шасси и стартового ускорителя либо при помощи катапульты, посадка — по-самолетному (на корабли с использованием сети-барьера), управление полетом — по программе или по командам оператора.

Запуск беспилотного аппарата «Пионер» с борта линкора во время войны с Ираком


БПЛА «Пионер» широко применялся в войне против Ирака, где было развернуто шесть беспилотных разведывательных систем (три — в экспедиционных силах морской пехоты США и по одной — на линкорах «Миссури», «Висконсин» и в армейском корпусе сухопутных войск). Всего БПЛА выполнили около 300 полетов обшей продолжительностью более 1000 ч. В интересах ВМС они использовались для поиска морских мин, береговых пусковых установок ПКР и позиций зенитных ракет, а также для корректировки огня крупнокалиберной корабельной артиллерии.

Части сухопутных войск и морской пехоты применяли БПЛА для целеуказания ударным самолетам и вертолетам в масштабе времени, близком к реальному, и для обеспечения продолжительного наблюдения за передвижениями войск противоборствующей стороны. Малая заметность аппарата в акустическом, оптическом и радиолокационном диапазонах обеспечивала высокую живучесть БПЛА над территорией противника. За время боевых действий огнем зенитной артиллерии были сбиты всего два аппарата.

БПЛА «Хантер» BQM-155A совместной американо-израильской разработки имеет такую же, как «Пионер», аэродинамическую компоновку и предназначается для ведения воздушной разведки, целеуказания, решения задач РЭБ, ретрансляции связи на поле боя. Им планируется заменить БПЛА «Пионер». Его силовая установка состоит из двух поршневых двух-цилиндровых четырехтактных двигателей мощностью по 68 л.с. с тянущим и толкающим воздушными винтами. БПЛА оснащен инерциальной навигационной системой, корректируемой по данным космической радионавигационной системы НАВСТАР, и аппаратурой передачи данных и приема команд, антенна которой располагается над фюзеляжем и имеет грибообразную форму. Бортовое разведывательное оборудование в зависимости от поставленной задачи может включать одну-две ТВ камеры, инфракрасную станцию переднего обзора, лазерный дальномер-целеуказатель, средства РЭБ и ретрансляции связи. Разведывательное оборудование имеет модульную конструкцию, что обеспечивает быструю его замену. ИК станция, телевизионная камера и лазерный целеуказатель размещаются на специальной гиростабилизированной платформе.

БПЛА «Хантер» готовится к взлету


Взлет и посадка летательного аппарата выполняются по-самолетному. Возможно также использование катапульты и парашютной системы. Управление полетом осуществляется автоматически по программе либо по командам оператора наземной станции, обеспечивающей управление несколькими аппаратами одновременно.

В состав разведывательной системы входят восемь БПЛА, наземные станции управления полетом, приема и обработки разведданных, комплект модульного разведывательного оборудования, станция подготовки БПЛА к вылету, поисково-спасательное и вспомогательное наземное оборудование.

В Советском Союзе к разработке беспилотных летательных аппаратов-разведчиков приступили в конце 50-х гг. В начале 60-х гг. на вооружение поступило первое поколение таких устройств — БПЛА Ла-17Р и Ту-123 «Ястреб».

Для предполетной подготовки и запуска Ла-17Р использовали стартовую установку СУТР-1, созданную на базе лафета зенитного орудия С-60. Управление самолетом в полете осуществлял автопилот по заранее введенной в него программе и по радиокомандам с наземной станции. Каких-либо средств приземления аппарат не имел и повторное его применение не предусматривалось. Последние экземпляры самолета были сняты с вооружения в начале 80-х гг.

Задание на разработку комплекса дальней беспилотной разведки Ту-123 «Ястреб» ОКБ Туполева получило в 1959 г. Основу этого комплекса составил самолет с высокой сверхзвуковой скоростью и дальностью полета около 4000 км, оснащенный высокоэффективным фото- и радиотехническим разведывательным оборудованием. К примеру, фотоаппаратура позволяла опознавать шпалы железнодорожного полотна на снимках, сделанных с высоты 20 км при скорости полета 2700 км/ч. В 1964 г. «Ястреб» успешно прошел испытания в НИИ ВВС. Комплекс производился серийно в Воронеже и находился в эксплуатации до 1979 г.

Из находящихся в настоящее время в эксплуатации БПЛА следует выделить разведывательные комплексы Ту-143 «Рейс» и Ту-141 «Стриж».

Комплекс Ту-143 (ВР-3) был принят на вооружение ВВС в 1982 г. и производился серийно до 1989 г. Всего было произведено около 1000 самолетов этого типа. Длина аппарата составляет 8,06 м, размах крыла — 2,24 м, стартовая масса — 1230 кг, посадочная — 1012 кг. Скорость полета — до 925 км/ч, дальность полета — 150 км.

Для перевозки и старта «Рейса» используется самоходная пусковая установка СПУ-143. Полет и посадка аппарата производятся по заранее введенной в блок управления программе. После посадки разведчик может быть подготовлен для повторного вылета.

БПЛА «Стриж» (Ту-141)


В 1994 г. в производство запущен усовершенствованный вариант разведчика — Ту-243 «Рейс-Д». Новый самолет имеет лучшие летно-технические характеристики и более совершенное спецоборудование. Благодаря этому эффективность комплекса повышена более чем в 2,5 раза.

Многоразовый комплекс беспилотной воздушной разведки оперативного назначения ВР-2 (Ту-141) «Стриж:» закончил программу испытаний в 1977 г. Его серийное производство велось в Воронеже. По аэродинамической схеме этот аппарат подобен «Рейсу», но имеет большие габариты, стартовую массу, запас топлива, дальность и продолжительность полета. Основной метод ведения разведки — аэрофотосъемка.

В настоящее время АНПК имени Туполева ведет разработку третьего поколения БПЛА разведывательного назначения. На выставке МАКС-95 был представлен экспериментальный аппарат Ту-300. В его носовой части размещено радио- и оптоэлектронное оборудование. Крыло самолета выполнено складным, что облегчает транспортировку аппарата. Для старта служат два твердотопливных ускорителя.

ОКБ им. Яковлева выполняет проектирование двух ДПЛА — «Альбатрос» и «Малиновка». Вертикально взлетающий «Альбатрос» предназначен для корабельного и наземного базирования. Он имеет два поворотных в вертикальной плоскости трехлопастных винта большого диаметра. Блок оптоэлектронных разведывательных датчиков размещен на поворотной шарообразной турели в носовой части фюзеляжа. Состав бортового оборудования обеспечивает возможность воздушного наблюдения и разведки в любое время суток.

Миниатюрный ДПЛА «Малиновка», предназначенный для длительного воздушного наблюдения и разведки, стартует из транспортно-пускового контейнера, что в большой степени облегчает его боевое применение. Приземление производится с помощью парашютной системы. Силовая установка этого аппарата, расположенная в хвостовой части сплющенного, «камбалообразного» фюзеляжа, снабжена двухлопастным воздушным винтом. Блок разведывательных датчиков установлен в поворотной турели полусферической формы, расположенной под фюзеляжем.

ОКБ им. Камова ведет разработку перспективного дистанционно управляемого вертолета Ка-137, входящего в состав многоцелевого беспилотного разведывательного комплекса МБВК-137. Комплекс включает передвижной пункт управления, позволяющий одновременно управлять полетом двух ДПЛА, и транспортно-эксплуатационную машину, на которой размещено два контейнера с вертолетами, кран для погрузки и выгрузки летательных аппаратов, а также сменные комплексы целевого бортового оборудования.

Вертолет Ка-137 выполнен по соосной схеме с двухлопастными винтами. Использование такой схеме в сочетании со сферообразным фюзеляжем позволило создать достаточно компактный летательный аппарат с высокими летно-техническими характеристиками.

Ка-137 оснащен цифровой системой автоматического управления, выполненной с использованием элементов искусственного интеллекта. Бортовая навигационная система с блоком спутниковой навигации обеспечивает автоматический полет по сложному профилю.

Целевая нагрузка нормальной массой 50 кг вы-полена в виде быстросменных модулей с телевизионной, тепловизионной, радиолокационной и другой аппаратурой. Модули могут устанавливаться на ДПЛА непосредственно перед вылетом, исходя из характера решаемых задач. С нормальной целевой нагрузкой в 50 кг вертолет способен патрулировать в течение четырех часов на удалении до 50 км от передвижного пункта управления.

Обучение управлению такими устройствами намного проще, чем подготовка летчиков-истребителей. Считается, что для подготовки оператора дистанционного центра управления достаточно четыре раза осуществить практическое управление полетом беспилотного аппарата с общим налетом 8 ч, в то время как летчику самолета на отработку техники пилотирования требуется совершить 60 полетов с общим налетом не менее 120 ч.

Разработка инфракрасной аппаратуры, аппаратуры, работающей в условиях слабой освещенности, и компактной радиолокационной станции с высокой разрешающей способностью обеспечит беспилотным летательным аппаратам обзор в любых метеоусловиях.

Таким образом, основные достоинства беспилотных летательных аппаратов заключаются в том, что они имеют сравнительно невысокую стоимость, значительно меньшие расходы на эксплуатацию и техническое обслуживание, чем у пилотируемых самолетов, и могут выполнять боевые задачи в гораздо более тяжелых условиях по сравнению с пилотируемыми самолетами, имеют высокую живучесть. Они могут действовать в зонах, не доступных для других летательных аппаратов.

В связи с этим на беспилотные летательные аппараты возлагаются большие надежды и в большой войне. В частности, в иностранной печати утверждается, что буквально через несколько минут после получения сигнала о начале военных действий они могут быть запущены в воздух и включиться в борьбу с противником на суше, на море и даже в воздухе. Они могут ставить мины непосредственно перед кораблями, выходящими из баз, наносить удары по радиолокационным станциям системы ПВО, сбрасывать противорадиолокационные отражатели и создавать активные помехи радиолокационным станциям обнаружения и наведения зенитных ракет, обеспечивая относительно безопасные действия пилотируемых ударных самолетов. Они могут наносить удары по аэродромам и хорошо защищенным целям. Благодаря быстрым и решительным действиям беспилотных аппаратов можно сорвать наступление противника в течение первого часа ведения боевых действий и вывести из строя средства его противовоздушной обороны.

Использование их в большом количестве может значительно повысить эффективность действий пилотируемых самолетов, особенно при хорошо отработанных совместных действиях пилотируемых и беспилотных летательных аппаратов.

В настоящее время беспилотный летательный аппарат имеет некоторые преимущества перед крылатой ракетой: он может вести поиск и опознавать цель перед применением бортового оружия. Беспилотный летательный аппарат, вооруженный противокорабельной торпедой или ракетой с самонаведением на конечном участке ее полета, может стать сильной противокорабельной ударной системой дальнего действия. Более того, беспилотные летательные аппараты могли бы сбрасывать гидроакустические буи и передавать информацию о подводной угрозе на корабль управления. Они представляют собой идеальное средство для загоризонтного целеуказания ракетному оружию и наведения противокорабельных ракет на цель на конечных участках их полета на предельную дальность. С кораблей беспилотные летательные аппараты могут применяться для нанесения ударов по наземным целям, ведения борьбы с танками, выдачи целеуказания, в том числе для управляемых артиллерийских снарядов, и, конечно, для ведения радиоэлектронной борьбы в качестве ложных целей при поддержке флотом действий сухопутных войск.

В начале 90-х годов в министерстве обороны США шла горячая полемика о возможности применения автоматических и дистанционно управляемых летающих устройств в качестве замены боевой авиации, управляемой человеком. Сторонники такого варианта развития делают упор на меньшую стоимость летающих роботов, а также на большую экономию средств, необходимых для обучения высококвалифицированных пилотов (а это миллионы долларов на каждого), что дает возможность их производства в больших количествах. Сторонники же продолжения развития пилотируемых боевых самолетов и вертолетов приводят множество аргументов против.

Во-первых, без участия человека теряется способность быстрой реакции на нештатные ситуации, которых в реальном бою может быть множество. Во-вторых, хотя беспилотные и дистанционно управляемые аппараты дешевле, в бою ожидаются их гораздо большие по сравнению с обычной авиацией потери. В-третьих, дистанционно управляемые устройства нуждаются в постоянной связи с Землей, что делает их весьма уязвимыми, в то время как беспилотные аппараты должны быть сперва запрограммированы, что полностью лишает их гибкости в изменяющейся обстановке боя.

Опыт, полученный Израилем во время применения таких устройств в долине Бекаа в 1982 г., показал, что летающие роботы способны занять достойное место среди обычной авиации. Одна из привлекательных сторон дистанционно управляемых устройств для командиров заключается в том, что они могут сами координировать их действия. В то же время военно-воздушные силы сопротивляются внедрению этой новой техники примерно таким же образом, как в 20-е—30-е годы кавалерия сопротивлялась внедрению механизированных войск.

В настоящее время министерство обороны США имеет крупную и многостороннюю программу разработки беспилотных (ранее они назывались дистанционно управляемыми) летательных аппаратов. Совместно с Израилем ведется работа по созданию широкого спектра таких аппаратов, которые условно разделены на 3 группы:

В настоящее время в США активно ведутся исследования и опытные разработки, направленные на создание на базе современных технологий беспилотных летательных аппаратов с большой продолжительностью полета. Их намечается использовать для решения задач воздушной разведки и обеспечения противоракетной обороны на ТВД. Разработка аппаратов этого типа началась во второй половине 60-х годов. В последующие годы было построено и испытано несколько экспериментальных образцов (XQM-93A «Компас Дуэлл», YQM-98A «Компас Коуп», GNAT-750, «Кондор» и другие). Два аппарата GNAT-750, разработанные фирмой «Дженерал атомикс», в начале 90-х годов были приобретены ЦРУ и после модернизации, включающей установку на них телевизионных и ИК-камер, другого бортового оборудования, использовались в 1994 г. в Албании, а также зимой 1994/1995 г. в Боснии. Эти аппараты получили наименование «Тайер-1». С их помощью добывалась информация о местонахождении подразделений бронетанковой техники, позиций артиллерии и ЗРК конфликтующих сторон, о прохождении конвоев ООН.

За разработку аппаратов второй группы до сих пор борются несколько фирм. Министерство обороны США в последнее время также проявляет большой интерес к аппаратам этого типа. В соответствии с принятым планом развития беспилотных разведывательных средств предусматривается создание разведывательных БПЛА большой продолжительности полета в рамках двух основных проектов: МАЕ (Medium Altitude Endurance — БПЛА для барражирования на средних высотах) и НАЕ (High Altitude Endurance — на больших высотах).

По проекту МАЕ разрабатывается летательный аппарат (получил обозначение «Тайер-2» или «Преда-тор»), высота патрулирования которого около 7,5 км в течение не менее 24 ч. Для ускорения работ в основу его конструкции положен БПЛА GNAT-750. Он выполнен по нормальной аэродинамической схеме и оснащен хвостовым оперением, имеющим форму перевернутой буквы V. В качестве силовой установки на БПЛА «Тайер-2» использован поршневой двигатель Rotax-912 мощностью 80–85 л. с. с толкающим воздушным винтом.

БПЛА «Предатор»» в полете; три шасси убраны


В состав бортового оборудования аппарата входит инерциальная навигационная система с коррекцией по данным космической радионавигационной системы НАВСТАР и малогабаритная ЭВМ. Разведывательное оборудование включает ТВ и ИК камеры с разрешающей способностью около 16 см, размещаемые на гиростабилизированной платформе, лазерный целеуказатель, а также РЛС с синтезированной апертурой (разрешающая способность не более 30 см). Передача данных осуществляется в масштабе времени, близком к реальному, с помощью аппаратуры спутниковой системы связи. Взлет и посадка аппарата выполняются по-самолетному с использованием колесного шасси, управление полетом автоматическое в соответствии с программой или по командам оператора.

Фирма «Дженерал атомикс», занимающаяся разработкой аппарата, заключила с министерством обороны США контракт (32 млн. долларов) на строительство и производство в течение трех лет десяти БПЛА и трех наземных станций управления. Часть этих БПЛА с июля 1995 года используется для ведения воздушной разведки в Боснии.

По проекту НАЕ ведется также разработка БПЛА «Тайер-2+», предназначенного для ведения воздушной разведки с высоты около 20 км. Согласно требованиям он должен обеспечивать решение задач видовой разведки района боевых действий, оценку результатов нанесения ударов, осуществлять радиоэлектронное противодействие средствам ПВО, а также радиолокационное обнаружение и идентификацию целей. В качестве разведывательного оборудования предполагается использовать РЛС с синтезированной апертурой, телевизионную и ИК камеры. По оценкам американских специалистов, данный аппарат за 1 ч полета обеспечит наблюдение за территорией площадью около 9000 км2.

Взлет и посадка аппарата будут осуществляться по-самолетному с помощью трехстоечного колесного шасси. Управление полетом автоматическое в соответствии с программой.

Разработку БПЛА ведет фирма «Теле-дайн», получившая по результатам конкурса в мае 1995. контракт на сумму 164 млн. долларов. По оценкам экспертов, стоимость одного БПЛА составит около 10 млн. долларов. Первый испытательный полет БПЛА намечается осуществить в декабре 1997 г.

По ранее разрабатываемой программе к третьей группе должен был относиться большой и дорогой летательный аппарат, в котором была бы использована технология «стелс». Работа над ним была прекращена еще на теоретической стадии, а все наработки планируется использовать в последующих, менее амбициозных проектах.

БПЛА «Даркстар»


С июня 1994 г. компании «Локхид» и «Боинг» приступили к созданию малозаметного БПЛА большой продолжительности полета группы «Тайер-3-» под названием «Даркстар», предназначенного для сбора данных об особо важных и сильно защищенных объектах. Предполагаемая стоимость одного устройства будет составлять 10 млн. долл. Несомое на его борту оборудование включает мультичастотный радар и электрооптические сенсоры, а также средства связи, в том числе через спутник. Первый полет опытного образца, во время которого он в течение 20 минут находился в воздухе и совершал маневры в полностью автономном режиме, состоялся 29 марта 1996 г. Во время второго полета 22 апреля 1996 г. «Даркстар» потерпел аварию во время взлета, что задержало всю программу на несколько месяцев.

Характеристики данного аппарата таковы:

— двигатель — турбореактивный, FJ44 мощностью 862 кгс;

— масса — не более 3900 кг;

— длина — 4,57 м, размах крыльев — 21 м, высота — 1,5 м;

— скорость — дозвуковая;

— потолок — 13700 м (возможно выше);

— дальность полета — 3700 км или более. Разрабатывается также устройство под рабочим наименованием «РАПТОР», которое должно летать на большой высоте в течение длительного периода времени. Его функцией является уничтожение тактических ракет на стадии ускорения, а в качестве носителей предусматриваются беспилотные летательные аппараты второй или третьей группы. Демонстрацию опытного образца такого перехватчика планировалось провести в 1995–1996 гг.

Национальное управление по аэронавтике и исследованию космического пространства (НАСА) и американская самолетостроительная фирма «Макдоннелл Дуглас» 19 марта 1996 г. впервые продемонстрировали в г. Сент-Луис беспилотный летательный аппарат совместной разработки, имеющий нетрадиционную аэродинамическую схему. Он представляет собой модель нового экспериментального истребителя Х-36, уменьшенную до 28 % размера реального образца. Особенностями конструкции этого БПЛА являются отсутствие вертикального киля и горизонтального хвостового оперения, использование системы отклонения вектора тяги и широкое применение технологии «стелс». По заявлению разработчиков, кроме значительного снижения заметности самолета в радиолокационном диапазоне, это обеспечивает уменьшение лобового сопротивления и массы конструкции при сохранении приемлемых маневренных характеристик за счет применения отклонения вектора тяги и раскрывающихся двухсекционных элеронов, подобных тем, что имеются на бомбардировщике В-2А.

«Игл Ай» во время взлета


Еще одно устройство, создаваемое компанией «Белл Хеликоптер Текстрон» и носящее название «Игл Ай», использует разработанную для морской авиации технологию изменяемого положения винтов. При этом во время взлета двигатели расположены вертикально, как у вертолета, а после поворачиваются в горизонтальное положение, превращая данный летательный аппарат в самолет и существенно увеличивая скорость полета. Особенностью его является полностью убираемое шасси. Первый полет «Игл Ай» состоялся в июле 1993 г.

Ниже приведены его технические данные:

— масса — около 1 т;

— длина — 5 м, размах крыльев — 4 м, высота при вертикальном положении двигателей — 1,6 м;

— диаметр винтов — 2,5 м;

— скорость максимальная — 370 км/ч, крейсерская — 185 км/ч;

— потолок — 6000 м и выше;

— длительность полета — 8 часов с полезной нагрузкой 45 кг датчиков.

Беспилотные боевые летательные аппараты будут разрабатываться с использованием технологии «стелс», иметь высокоэффективное оборудование и выдерживать значительные перегрузки. Их задачи не должны ограничиваться только разведкой. Предполагается, что такие летательные аппараты смогут вытеснить некоторые виды обычных боевых самолетов. Беспилотный ударный самолет сможет выдерживать, как минимум, в 2 раза большие перегрузки, чем обычный. При этом его скорость будет достигать более 10 000 км/ч. Обладая высокой маневренностью, эти самолеты смогут легко уклоняться от атакующих ракет. Они станут более незаметными для радиолокационных станций за счет изменения конфигурации фюзеляжа, которая на нынешних летательных аппаратах диктуется присутствием летчика в кабине.

Загрузка...