1 сентября 1939 года началась вторая мировая война. Но за месяц до этого, 2 августа, Альберт Эйнштейн отправил письмо президенту Соединенных Штатов Рузвельту. Письмо великого ученого, подкрепленное его авторитетом, убедило политическую верхушку Америки, что следует немедленно начать финансирование научных разработок ядерной темы и производство принципиально нового оружия. Всю информацию об этом немедленно засекретили, конгресс ассигновал на разработку атомной бомбы миллиарды долларов. Атомная программа американцев получила кодовое название - проект "Манхэттен".
Но ещё раньше в СССР на эту же тему писались письма Сталину. Сразу после публикации О. Гана и Ф. Штрассмана разработчику теории цепной реакции Николаю Семенову стало ясно, что создание атомной бомбы возможно в ближайшем будущем. Свои записки он передавал через члена ЦК академика Митина, поскольку сам не был членом партии и не мог напрямую обращаться к вождю и его ближним соратникам. Подобные же письма писали в правительство Вернадский и Иоффе. Но Сталин в отличие от Рузвельта оказался не способен понять ученых.
Тем не менее в 1939-1940 годах атомная тема в СССР активно разрабатывалась. Ученики Н. Семенова Юлий Харитон и Яков Зельдович опубликовали три фундаментальных работы, ставших классикой теоретической физики. В них определены условия протекания ядерной цепной реакции, описана роль замедлителя нейтронов и дан достаточно точный расчет критической массы. Харьковскими физиками был запатентован первый в истории проект взрывного атомного устройства. Идея его базировалась на разделении частей критической массы взрывающимися перегородками. Впоследствии, правда, этот принцип был вполне обоснованно раскритикован и отвергнут, но сам факт весьма показателен. Тогда же в журнале "Огонек" была напечатана научно-популярная статья о принципах действия атомной бомбы. На эту тему читались лекции и доклады. Четыре научных института работали по атомной тематике, прошли пять международных ядерных конференций, вошедших в анналы мировой науки. Среди прочих работала и лаборатория И. Курчатова.
Однако Государственная комиссия по военно-промышленным исследованиям отклонила предложения молодых физиков-ядерщиков Института физико-технических исследований в Харькове и немецкого ученого эмигранта Ф. Ланге начать разработку сверхмощного взрывного устройства. Предложение было направлено в отдел изобретений Наркомата обороны, где его сочли преждевременным и "зарубили". В руководящих инстанциях имелось расхожее мнение, что атомная бомба может существовать только в теории. Ученик Н. Семенова академик Владимир Фортов впоследствии писал: "Если бы те деньги, которые мы угрохали перед войной на развитие конницы, были бы вложены в создание ядерного оружия, то СССР получил бы бомбу в 1941 году. Ни о какой войне и речи бы не было".
С началом войны все исследования в ядерной области были немедленно прекращены. Ученых частью призвали в действующую армию, частью переориентировали на другие, как тогда казалось, более насущные темы. Рядовой запаса первой категории призыва Игорь Курчатов на фронт, однако, не попал, а занимался проблемой размагничивания боевых кораблей на Черном море. Проблему эту Курчатов и его соратники решили, опираясь на исследования академика Александрова. По периметру корабля располагались специальные обмотки, по которым пропускался электрический ток, создавая магнитное поле, компенсирующее собственное магнитное поле корпуса судна. И корабли перестали подрываться на немецких морских минах с магнитными взрывателями, реагирующими на железную массу.
В отличие от Советского Союза в Германии к созданию атомной бомбы проявили очень большой интерес. Уже в апреле 1939 года на секретном совещании ведущих физиков-атомщиков было создано "Урановое общество" при управлении армейских вооружений, которое возглавил профессор Э. Шуман. В это общество вошли почти все известные ученые, работавшие по атомной проблематике. Центром исследований стал Берлинский физический институт, ректором которого назначили профессора Вернера Гейзенберга. К научным разработками были подключены физико-химические институты Гамбургского, Лейпцигского, Грейфсвальдского, Гейдельбергского и Ростокского унивеситетов. Весной 1940 года в оккупированной Бельгии гитлеровцы захватили 1200 тонн уранового концентрата, доставленного в свое время из Бельгийского Конго. Это составляло половину всего мирового запаса урана. Другую половину в том же году тайно вывезли из Конго в США. В декабре 1940 года под руководством Гейзенберга была закончена постройка первого опытного реактора, а фирма "Ауэргезельшафт" освоила производство металлического урана. В том же году из Советского Союза был выслан в Германию известный немецкий ученый Ф. Хоутерманс, занимавшийся ядерной физикой в Харькове. На родине он сразу был арестован гестапо как сочувствующий коммунистам, но вскоре освобожден и включился в научную работу. Хоутерманс поручил своему доверенному лицу физику Ф. Райхе, вскоре бежавшему из Германии, проинформировать мировое сообщество о том, что в Германии разрабатывается атомное оружие. После этого сообщения Англия и США резко усилили свою деятельность в этом направлении.
Но секретное "чудо-оружие" гитлеровцам создать не удалось. Еще на начальном этапе исследований германские физики пришли к ошибочному мнению, что графит не годится в качестве замедлителя нейтронов в атомном реакторе. Они сделали ставку на использование тяжелой воды, которая в самой Германии не производилась. Но французы успели вывезти свои запасы из Парижа в Лондон, а единственное в мире норвежское предприятие по производству тяжелой воды взорвали британские диверсанты. Свою роль сыграла и ненормальная конкуренция между разными группами физиков. Имеющегося в Германии урана вполне хватало для запуска реактора, но оказалось невозможно собрать его в одной лаборатории. По этой причине получить цепную реакцию немцам не удалось. Кроме того, некомпетентное руководство Германии не поняло перспектив атомной энергетики. А главное, Германия не могла в разгар войны направить значительную часть ресурсов на исследования и создание атомной промышленности. Финансировались только те разработки вооружений, которые могли дать результат в течение нескольких недель. Разведка союзников была поражена, когда выяснилось, что в течение войны немецкие физики в практическом плане почти не продвинулись вперед.
В марте 1942 года, Берия направил Сталину всю информацию на атомную тему, поступившую из США, Англии, Скандинавии и оккупированного Харькова, где вновь заработал украинский физический институт, одним из руководителей которого оказался... Ф. Хоутерманс. Берия предложил возобновить исследования в области ядерной энергии. Сталин с решением не торопился и пожелал, чтобы несколько авторитетных ученых независимо друг от друга дали заключение по этому вопросу.
В мае 1942 года до Сталина дошло письмо молодого ученого, будущего академика Флёрова, в котором тот сообщал об отсутствии в зарубежной научной прессе с 1940 года материалов по урановым проблемам. По его мнению, это свидетельствовало о начале работ по созданию атомного оружия в Германии, США и других странах. Он предупреждал, что немцы могут первыми создать атомную бомбу.
В октябре того же года приглашенные на Кунцевскую дачу Вернадский и Иоффе объяснили вождю, что такое атомная бомба. Сталин так был заворожен её мощным разрушительным потенциалом, что присвоил плану контрнаступления под Сталинградом кодовое название - операция "Уран". Но только в феврале 1943 года, когда ему сообщили, что британские спецслужбы тайно от союзников совершили диверсию на заводе тяжелой воды в Веморке (Норвегия), он поверил что в других странах атомным оружием занимаются вполне серьезно. До этого Сталин сомневался в реальности его создания.
В конце января 1943 года советской разведкой была получена агентурная информация, что в Чикаго Энрико Ферми осуществил первую цепную ядерную реакцию. В это же время по линии внешней разведки из Англии поступили закрытые научные труды западных ученых по атомной энергии за 1940-42 годы. Они подтвердили, что в создании атомной бомбы достигнут большой прогресс. Имелись даже протоколы заседаний английского военного кабинета, на которых обсуждались перспективы использования атомной энергии для создания сверхмощного оружия.
То, что не могли объяснить "вождю народов" академики, растолковала советская разведка. Недоверие Сталина было преодолено, 11 февраля 1943 года он подписал постановление об организации работ по использованию атомной энергии в военных целях. Возглавил это направление В. Молотов. Берия был назначен его заместителем. Атомная проблема стала приоритетной в деятельности разведки НКВД.
И. Курчатов стал руководить специально созданной Лабораторией измерительных приборов Академии наук, сокращенно - ЛИПАН. Для посвященных она носила более простое название - Лаборатория №2. И. Курчатову тогда едва исполнилось сорок лет. В научном мире принято соблюдать определенную иерархию, и это назначение стало смелым решением. Но в США атомный проект возглавлял 44-летний Оппенгеймер, в подчинении у которого находились Нобелевские лауреаты Н. Бор и Э. Ферми. По прямому указанию Сталина в декабре 1943 года И. Курчатова избрали действительным членом Академии наук, и это в какой-то степени успокоило советских физиков старшего поколения.
Стоит особо отметить, что до 30-х годов ХХ века уран никого не интересовал. Он применялся только как добавка к отдельным сортам стали и в рецептуре желтых эмалей и стекол. Да ещё в виде азотнокислой соли как фотографический химикат. Именно с этой солью, предварительно её прокалив, проводили эксперименты в лаборатории Курчатова ещё перед войной. Тогда и выяснили, что обычный уран-238 цепной реакции не дает. Нужен изотоп уран-235. А его во всех лабораториях мира было в то время всего две тысячных грамма...
На циклотроне, построенном в Лаборатории №2, бомбардируя пучком быстрых нейтронов соли урана, окруженные парафином, сотрудники И. В. Курчатова получили элемент, имеющий массовое число 239 - радиоактивный, испускающий при распаде альфа-частицы. Это был плутоний. И он годился для осуществления любых реакций - и управляемых, и взрывного типа. Получать его можно было из обычного природного урана-238, осуществляя цепную реакцию с замедлителем нейтронов. В качестве замедлителя можно было использовать углерод (графит) или тяжелую воду - дейтерий.
В 1944 году вся разведывательная работа по атомной проблематике была сосредоточена в специальном отделе "С", названном так по первой букве фамилии её руководителя генерала Павла Судоплатова. Одновременно Судоплатов продолжал координировать всю диверсионную работу за линией фронта. Квалифицированные специалисты, среди которых был физик Терлецкий, будущий профессор МГУ, изучали добытую информацию и обобщали её.
Информация, добытая разведчиками, значительно сокращала сроки работ по созданию атомной бомбы. В своем письме заместителю Председателя СНК СССР М. Г. Первухину И. Курчатов писал: "Получение данного материала имеет громадное, неоценимое значение для нашего государства и науки. Теперь мы имеем важные ориентиры для последующего научного исследования, они дают возможность нам миновать многие, весьма трудоемкие фазы разработки урановой проблемы и узнать о новых научных и технических путях её разрешения".
В конце войны разведки союзников активно занялись добычей атомных секретов терпящей поражение Германии. Особенно старались американцы. Они вывозили с оккупированных территорий документацию, оборудование и самих ученых-физиков. Втайне от норвежцев, разыскивающих свое государственное имущество, вывезли две с половиной тонны тяжелой воды. Что не могли унести - взрывали, в том числе во французской и советской зонах.
В мае 1945 года в Германию прибыла группа советских физиков, одетых в офицерскую форму. При поддержке отдела "С" они посетили немецкие исследовательские центры, обнаружив важные документы. Стало понятно, что немцы достигли очень немного. Более важной находкой оказались найденные сто тонн окиси урана. Их вывезли прямо из-под носа у американцев. Еще двенадцать тонн окиси, расфасованной в металлические бочки, с большим трудом удалось изъять у морских пехотинцев. Те никак не хотели отдавать дефицитную "желтую краску". Именно этот трофейный уран позволил почти на год сократить запуск первого промышленного реактора на Урале в 1948 году.
Сотрудники отдела "С" вывезли в Советский Союз вместе с семьями и группу видных немецких ученых. Среди них были Нобелевские лауреаты Г. Герц и Н. Рель, профессора Р. Доппель, М. Вольмер, Г. Позе, П. Тиссен - всего около двухсот специалистов.
Но особую роль играла советская разведывательная сеть в США и Великобритании. Агенты, работавшие на отдел "С" смогли выйти на некоторых ключевых разработчиков "Манхэттенского проекта". Несколько выдающихся ученых, работавших на американцеы, передавали нашей разведке ценнейшую информацию.
Особо следует отметить, что, например, Понтекорво и Ферми сами согласились поделиться информацией с советскими физиками, так как считали, что атомная энергия должна принадлежать всему миру, а не одному государству. Не будем забывать, что в США собрались лучшие ученые мира, эмигрировавшие, главным образом, из Западной Европы. И они ощущали себя гражданами своих стран, собравшимися вместе, чтобы противостоять гитлеровскому фашизму во имя всего мира, а вовсе не для того, чтобы сделать Америку атомной сверхдержавой. Существовала негласная солидарность физиков мира, поэтому добровольно информацию передавали также Оппенгеймер, Сцилард и некоторые другие видные ученые. Передавали не только Советскому Союзу, но и Англии, с которой американцы не торопились делиться атомными секретами. Более того, шведское правительство также получило детальную информацию по атомной бомбе. Шведы отказались от создания атомного оружия из-за колоссальных затрат.
Но, естественно, наша разведка имела и другие источники. Несколько внедренных агентов также поставляли информацию.
Описание конструкции первой атомной бомбы стало известно в отделе "С" в январе 1945 года. Резидентура сообщала, что американцам потребуется от года до пяти для создания существенных запасов этого оружия. Но взрыв первых двух бомб следует ожидать через два-три месяца.
В марте 1945 года отдел П. Судоплатова подготовил обобщенный доклад о ходе американских работ по созданию атомной бомбы. В нем рассказывалось о предприятиях, работающих на проект, указывалось, что на разработку и производство атомного оружия затрачено уже 2 миллиарда долларов, что в проекте занято более ста тридцати тысяч человек, о мероприятиях по сохранению секретности. В частности, отмечалось, что в рамках проекта созданы собственная контрразведка, полиция и другие службы, что из библиотек США изъяты все публикации по исследованиям в области атомной энергии.
Через 12 дней после сборки первой атомной бомбы из двух независимых источников было получено описание её устройства. Позднее поступил более детальный доклад на тридцати трех страницах. Подготовленный отделом "С" доклад об устройстве атомной бомбы лег в основу программы работ советских физиков на следующие 3-4 года.
Отдел "С" добыл огромное количество ценнейшей информации. Среди прочего: материал по характеристикам ядерного взрывного устройства, методе активации атомной бомбы, электромагнитному разделению изотопов урана, данные об эксплуатации первых реакторов, спецификации по производству урановой и плутониевой бомбы, данные о конструкции системы фокусирующих взрывных линз и размерах критической массы урана и плутония, о плутонии-240, времени и последовательности операций по производству и сборке бомбы, способе приведения в действие бомбового инициатора; о строительстве заводов по очистке и разделению изотопов, а также дневниковые записи о первом испытательном взрыве американской бомбы в июле 1945 года.
Роль советской разведки в деле решения атомной проблемы огромна, но не решающа. В последние годы на Западе, да и у нас тоже, довольно много публикаций, где утверждается, что вся советская ядерная программа полностью "украдена" у США. Что без добытой разведкой информации СССР никогда не создал бы ядерное оружие. Да, эта информация значительно облегчила работу нашим ученым. Можно было не тратить время и средства на тупиковые исследования, а сосредоточиться на главных. Сведения, добытые разведкой, в любом случае носили самый общий и отрывочный характер. Всю теоретическую и расчетную часть необходимо было выполнить самим. О вспомогательных технологиях нечего и говорить. Только наивные, не обременные элементарными техническими знаниями, люди могут думать, что ядерную бомбу можно сделать по "самоучителю" с готовыми выкладками. В то время бомба была вершиной науки и техники. Это был колоссальный прорыв не только в физике, но и математике, химии, металлургии, электронике, теории автоматизации. Возникли новые научные направления и отрасли промышленности. И это произошло потому, что в СССР имелись выдающиеся ученые мирового уровня - Вернадский, Иоффе, Капица, Курчатов, Семенов, Ландау, Доллежаль, Тамм, Харитон, Зельдович, Арцимович, Кикоин, Сахаров, Фортов, Щелкин, Бочвар и десятки других.
Да, первая советская атомная бомба была скопирована с американской. И. Курчатов пошел на это, поскольку правительство и Сталин требовали скорейшего восстановления силового паритета с США. Но парраллельно велась работа по конструированию собственной бомбы. Она была взорвана в 1951 году.
В 1996 году четверым разведчикам, принимавшим участие в операциях по добыче атомных секретов, были присвоены звания Героев России. Это Барковский, Феклисов, Квасников (посмертно) и Яцков (посмертно).
В 1945 году советская разведка прекратила контакты с ведущими разработчиками Манхэттенского проекта, чтобы их случайно не скомпрометировать. Но это ничуть не помешало нашим ученым продолжать работу. Более того, во многом мы преуспели больше американцев. Например, конструкция советского уран-графитового реактора была принципиально иной и гораздо лучше. Водородную бомбу мы испытали раньше, и она имела вид нормальной бомбы в отличие от американского трехэтажного сооружения.
Героическая и качественная работа разведчиков отдела "С" помогла сберечь время, не позволила американцам уйти в отрыв. В Советском Союзе работы по проблеме №1 начались на четыре года позже. И наша первая атомная бомба тоже была испытана через четыре года после американских взрывов. Начав с нуля, советские ученые, конструктора, инженеры, рабочие - сотни тысяч человек - сотворили чудо. Были построены ядерные реакторы, радиохимические заводы, на которых разделялись изотопы, возникла урановая металлургия, новые научные цеентры, заводы, целые города. Этими титаническими усилиями разоренная войной страна создала ядерный щит, восстановила военный паритет и защитила себя.
Не будем наивны. В 1945 году американцы сбросили две ядерных бомбы на японские города. Никакой военной необходимости в этом не было. Месть за Пёрл-Харбор? Нет, они продемонстрировали всему миру, и впервую очередь своему союзнику по антигитлеровской коалиции СССР, что не только обладают оружием огромной разрушительной силы, но и готовы его применить. Именно сам факт обладания ядерным оружием сделал Советский Союз сверхдержавой и на протяжении более чем полувека удерживает мир от глобальных военных конфликтов. Как ни парадоксально, но именно наличие "оружия третьей мировой" удержало мир от этой самой третьей и последней.
Атомные бомбы, сброшенные американцами на Хиросиму и Нагасаки, произвели на Сталина глубокое впечатление. 17 августа 1945 года он вызвал наркома боеприпасов Бориса Львовича Ванникова и поручил ему ускорить создание советской бомбы. 20 августа решением Политбюро и ГКО (Государственный Комитет Обороны) были реорганизованы работы по проблеме №1 - так теперь называлась советская атомная программа. Создавался Спецкомитет правительства с чрезвычайными полномочиями. Берия назначался Председателем и куратором проблемы, Первухин - заместителем, генерал Махнёв - секретарем. Научным руководителем программы стал И. В. Курчатов. Людские и материальные ресурсы отпускались на это дело почти безграничные. Координатором становления новой отрасли Сталин назначил Б. Ванникова, наделив его огромными полномочиями. В составе Совнаркома было учреждено "атомное" Первое главное управление (ПГУ). Необходимые решения по атомным разработкам готовились членами Специального комитета, а Берия ставил на них факсимиле подписи Сталина.
Б. Л. Ванников в свою очередь пригласил на беседу И. Курчатова. Разговор длился три часа, задачи были поставлены, первоочередные цели определены. 5, 6 и 10 сентября 1945 года в Лаборатории №2 прошли секретные совещания для узкого круга приглашенных. О состоянии научно-исследовательских и практических работ в области использования внутриатомной энергии докладывали И. В. Курчатов, Г. Н. Флёров, А. И. Алиханов, И. К. Кикоин, П. Л. Капица, Л. А. Арцимович, А. Ф. Иоффе, А. П. Александров. Требовалось срочно решить массу технологических проблем. Главная задача - получить необходимое количество обогащенного урана. Но сначала требовалось выбрать наиболее оптимальный метод его получения способ разделения изотопов. Руководителем работ назначили 37-летнего профессора И. Кикоина.
Война уже закончилась, и некоторые крупные предприятия, выпускавшие танки и артиллерийские орудия были подключены к советскому атомному проекту. Среди них ленинградский Кировский завод (бывший "Путиловский") и Горьковский автозавод. Они располагали мощной производственной базой и квалифицированными специалистами.
В конце войны в Советском Союзе были предприняты первые шаги по поиску урановой руды. В феврале 1945 года разведка захватила немецкие документы о месторождении высококачественного урана Бухово в Родопских горах в Болгарии. По соглашению с Георгием Димитровым вскоре было создано советско-болгарское горное общество. Из армии срочно отозвали и направили в Болгарию более трехсот горных инженеров. Работы велись по американским инструкциям и технологиям, добытым советской разведкой. Месторождение охраняли внутренние войска НКВД. Этот объект вскоре привлек внимание американцев. Они планировали диверсии для срыва поставок урана в Советский Союз и даже пытались похитить директора рудника. Но наша контрразведка сработала качественней, американцев задержали.
Из Бухово поступали примерно полторы тонны урановой руды в неделю. Именно болгарская руда была использована при пуске первого советского лабораторного реактора. Но существенной роли этот уран уже не имел. В Советском Союзе в 1946 году были открыты и сразу начали разрабатываться крупные месторождения с высоким содержанием урана. Но рудник в Бухово продолжал функционировать уже как элемент дезинформационной операции. Американские эксперты, уверенные, что иных источников урана Советский Союз не имеет, определяли, исходя из возможностей рудника, что нам понадобятся долгие годы, чтобы накопить урана на бомбу.
МАЯК
Уран-графитовый реактор, как явствует из самого названия, состоит из урана и графита. Но графит требуется сверхчистый, какого в природе не существует. Например, такого химического элемента как бор в нем не должно быть больше миллионной доли процента, а редкоземельных элементов и того меньше. Иначе графит будет не замедлять нейтроны, а поглощать их. И графита этого требовалось для реактора сотни тонн. Советские химики в кратчайшие сроки создали технологию и стали получать графит в промышленных масштабах.
Урана требовалось меньше - около 50 тонн. Но, чтобы их получить, пришлось создать целые отрасли и цепочки предприятий, одновременно изобретать и внедрять технологии. Добытая в рудниках руда проходила через обогатительные фабрики и заводы металлического урана. Требовались большие количества специальных реактивов исключительной чистоты, точнейшая дозировка реагентов и определенная температура. При этом следует иметь в виду, что содержание урана в руде, как правило, ничтожно мало.
Уран стал поступать в Лабораторию №2, хоть и в малых количествах. Начались эксперименты с графитовыми блоками в разных вариантах сборок, измерения нейтронных потоков, расчеты. И тут выяснилось, что не только графит, уран тоже должен быть достаточно чистый. За дело взялись химики во главе с академиков А. П. Виноградовым. Они установили характер вредных примесей - редкие земли. От урановых предприятий потребовали более чистый продукт. И он вскоре был получен.
Для первого лабораторного реактора построили бетонный котлован длиной, шириной и глубиной в 10 метров. В нем разместили кладку в 62 слоя графитовых и урановых блоков и управляющие кадмиевые стержни. В 6 вечера 25 декабря 1946 года первый атомный реактор заработал. Он не имел охлаждения, все контрольно-измерительные приборы и системы управления приходилось изобретать на ходу. Но теперь можно было приступать к строительству большого промышленного реактора. Место под строительство выбрали на Урале, в Челябинской области недалеко от города Кыштыма.
Но прежде, чем началось строительство реактора, должен был появиться Главный конструктор. Им стал Николай Антонович Доллежаль, чья творческая судьба неразрывно оказалась связана с Уралом, здесь состоялась его научная и производственная карьера. Учась в техническом училище (ныне МВТУ), он одновременно работал помощником машиниста паровоза. На последнем курсе работал в лаборатории паровых машин. Получив диплом инженера, поступил в акционерное общество "Тепло и сила". Тогда, в двадцатые годы, разворачивалась эликтрификация страны, и работы хватало. Это был классический инженерный труд - сами проектировали электростанции, сами изготавливали оборудование, сами его монтировали. Здесь он получил опыт конструктора и руководителя производства. Когда началась индустриализация, закладывались крупные предприятия новых отраслей, потребовались машины большого давления для химического производства. Н. А. Доллежаль стал их первым конструктором. В частности, именно он создал компрессоры высокого давления. Его назначают главным инженером строящихся заводов, по очереди в Москве, Ленинграде, Харькове, Киеве. Как только завод запускался в эксплуатацию, Н. А. Доллежаля отправляли монтировать следующий, где дела обстояли неважно. На каждом предприятии он организовывал конструкторское бюро. Так что Николай Антонович Доллежаль по праву считается одним из основоположников химического машиностроения в стране.
В самом начале войны его вызвали в наркомат и направили главным инженером на новое предприятие "Уралхиммаш" в Свердловске. Туда эвакуировали оборудование уже знакомого Н. А. Доллежалю киевского завода "Большевик". Приехав в Свердловск, новый главный инженер обнаружил, что там, где по проекту должны были располагаться цеха, шумит лес. А план на выпуск продукции уже был спущен, и "Уралхиммаш" уже должен был отгружать на фронт тяжелые минометы. Доллежаль тут же отбил в Москву телеграмму наркому: "Прибыл на место, завода не нашел". Скорый ответ гласил: "Нужно, чтобы он был". Станки ставили под открытым небом, копали землянки для жилья. Первый цех разместился в гараже. Вскоре пошла продукция.
А в 1943 году Н. А. Доллежаль получил задание, которое в разгар войны выглядело удивительно - создать крупный научно-исследовательский институт химического машиностроения. Причем под этот проект было обещано предоставить все, что потребуется. Казалось бы - война, все ресурсы отданы фронту, а тут огромные средства вкладываются в институт, который даст результаты только в далеком будущем.
Свердловский НИИХиммаш стал научно-исследовательским учреждением нового типа, где воедино соединились мощные научные силы с современной техгнической базой. После войны, когда создавалась атомная промышленность, этот институт сыграл свою роль. Пусть не решающую, но тоже важную.
А головным проектным центром атомного машиностроения стал Московский НИИХиммаш. Его уже после войны основал все тот же неутомимый Н. А. Доллежаль, перенеся в столицу те принципы создания научного учреждения нового типа, которые отработал в Свердловске. Комплексный институт, где сосуществовали исследовательские отделы, конструкторские бюро и экспериментальное производство, позволял воплощать задуманное задуманное уже на стадии первоначальной идеи. Такой подход многократно сократил время на создание новой техники.
Накануне нового 1946 года Доллежаля привезли к Курчатову. И тут же назначили Главным конструктором промышленного реактора. Причем ещё не был построен даже лабораторный, его пустили только через год. Да и об атомной энергии свежеиспеченный Главный конструктор ничего толком не знал. Зато он имел инженерное чутье, нетривиальный взгляд на проблемы и умел отстаивать свои идеи. Прибавьте к этому колоссальный конструкторский и организационный опыт.
В основе идеи промышленного реактора лежал "горизонтальный" принцип управляющие стержни двигались по горизонтальным каналам. Именно так были устроены американские реакторы. Но Доллежалю эта схема не нравилась. Как инженер-конструктор он видел её "некрасивость", а совершенные конструкции обязательно выглядят красиво. Его торопили, физики над ним посмеивались. А потом Н. А. Доллежаль предложил "вертикальный" принцип. И все оппоненты сразу поняли, что значит красота конструкторского решения. Теперь реактор мог располагаться ниже уровня земли, что облегчало его защиту, а стержни в активную зону легко опускались и поднимались краном.
В июне 1946 года И. В. Курчатов подписал чертежи реактора.
У "Маяка" много названий - "База №10", "Госхимзавод имени Д. И. Менделеева", Челябинск-40, Челябинск-65, город Озерск.
Строительство было масштабным. Одновременно воздвигались "Объект А" промышленный атомный реактор ("Аннушка") для наработки оружейного плутония; рядом с ним "Завод Б", он же завод 25 - радиохимическое производство, где из облученного урана должен был выделяться плутоний; "Завод В" (завод 20) химико-металлургическое производство, конечным продуктом которого являлся металлический плутоний, шедший для начинки ядерных зарядов.
Весной 1948 года истек двухгодичный срок, отпущенный Сталиным на создание советской атомной бомбы. Но к этому времени не то что бомбы, не было расщепляющихся материалов для её производства. Более того, ещё не построили промышленный реактор для получения ядерной начинки. Вождь пришел в ярость. Чем это грозило, понимали все. Не только Берия, но и Ванников свирепо карали за ошибки, простои и задержки. О крутом нраве Ванникова до сих пор ходят легенды. Рассказывают, что однажды инженер-монтажник Абрамзон что-то не так смонтировал. Расправа была короткой и немедленной. Нарком лично отобрал у инженера пропуск на объект и сказал: "Ты теперь не Абрамзон, а Абрам в зоне". И человек тут же был отправлен в лагерь, для удобства расположенный прямо на территории строительства, и пробыл там до 1956 года.
19 марта 1948 года приняли в эксплуатацию первый промышленный реактор для наработки оружейного плутония. Объект "А" получил в народе ласковое имя "Аннушка", ставшее вскоре почти официальным. Физический пуск реактора произошел 7 июня. Этим лично занимался И. В. Курчатов. Когда мощность достигла десяти киловатт, реактор на всякий случай заглушили. Стало понятно, что он способен работать. 10 июня в 8 часов утра началась рабочая эксплуатация. А выход на полную мощность, промышленный пуск, произошел 19 июня в 12. 45. Первые микрограммы плутония к этому времени уже были выработаны в урановых стержнях реактора.
Только отрапортовали Сталину и отпраздновали успех, как на следующий день произошла первая авария и реактор срочно остановили. Произошло разрушение нескольких урановых блоков, они осели и плотно спеклись с графитовыми кирпичами кладки. У металлургов это называется "козел". В придачу повысилась радиоактивность воды в охладительном контуре.
Работники, пытавшиеся извлечь из реактора разрушившиеся, вспухшие блоки, получили огромные дозы радиации, но так и не смогли ничего сделать. Произошло радиоактивное заражение многих помещений. Тем не менее реактор снова был выведен на полную мощность. Так приказал Берия. Следующая подобная авария произошла через месяц. Ее последствия ликвидировали без остановки реактора.
20 января 1949 года "Аннушку" остановили для капитального ремонта. Наработанного в реакторе плутония было уже достаточно для изготовления одной бомбы. Но для того, чтобы продолжить работу и снова загрузить реактор, требовался уран. А его в необходимом количестве не было, кроме того, что находился внутри "Аннушки". И тогда поступил приказ любой ценой извлечь из реактора весь остававшийся в нем уран. Служба главного механика И. А. Садовского разработала специальные "присоски", с помощью которых стали доставать из реактора урановые блоки. Прямо здесь, в реакторном зале, сидел за столом И. В. Курчатов, осматривал облученные урановые блоки и сортировал их. Здесь же рядом их и складывали. Все, кто находился в это время на "Аннушке", получили огромные дозы радиации.
Восстановленный, заново сложенный первый реактор снова начал работать 26 марта 1949 года.
В истории советского атомного проекта решающим днем стало 29 августа 1949 года. Предстояло испытать первый ядерный заряд. От исхода испытаний зависели судьбы тысяч людей. Если бы взрыв не произошел, можно не сомневаться - Берия организовал бы такое показательное "дело физиков", что советская наука никогда бы не оправилась после столь масштабных репрессий. Пересажали бы всех, кто имел отношение к урановому проекту, а так же членов их семей, друзей и знакомых. И после этого просто некому было бы делать бомбу.
Рано утром специальный подъемник поднял бомбу на верхушку решетчатой железной башни. Клеть подъемника прочно закрепили наверху. После этого были ввернуты капсюли-детонаторы, подсоединены электрические кабели. Подготовка заняла примерно полтора часа. Затем рабочие и инженеры покинули башню, доложили И. В. Курчатову о полной готовности.
Руководители наблюдали за ходом испытаний из специального блиндажа. Небо было затянуто облаками. И вдруг - ослепительная вспышка, словно вспыхнуло солнце. А потом все увидели, как в небо вознесся огромный пыле-газовый столб. И там, куда он поднимался, облака раздались в стороны. Образовалось круглое отверстие, оно продолжало стремительно расширяться, а в него лились лучи уже настоящего солнца.
Вначале все оцепенели. Потом кинулись обниматься. Всех счастливей, казалосб, был Берия. Он обнимал и целовал всех, кто находился в бункере. Легенда гласит, что, немного успокоившись, Берия спросил Курчатова: "Надо как-то назвать ядерный заряд. Есть предложения?" На что Курчатов ответил, что название давно есть, его придумал его заместитель Щелкин. Заряд называется РДС-1 и это расшифровывается как "Россия делает сама". Берия обрадовался и заверил, что такое название, конечно, понравится самому Хозяину.
Любой человек, соприкасавшийся с конструированием, знает, что всякое изделие получает шифр или название ещё на стадии техзадания. Поэтому Берия должен был знать, что заряд называется РДС. Так что легенда вряд ли хоть чуть-чуть соответствует действительности. И как бы красиво ни звучало: "Россия делает сама", но употреблять слово "Россия" в ту эпоху было опрометчиво. Оно употреблялось исключительно как обозначение дореволюционной страны, а применительно к современности могло звучать лишь как Советская Россия, а ещё лучше - Советский Союз. Есть другая расшифровка аббревиатуры РДС - "Реактивный двигатель Сталина". Наверное, её тоже придумали в народе, поскольку чертежи всех бомб остаются засекреченными, соответственно, и все кодовые сокращения до сих пор не раскрываются.
Но главными производителями оружейного плутония стали "Иваны" реакторы серии "И", усовершенствованные "Аннушки".
В марте 1950 года на "Маяке" пущен второй реактор.
В апреле 1951 года - третий реактор.
В октябре 1951 года - четвертый.
В декабре 1951 - пятый.
В сентябре 1952 - шестой.
Конструкция советских реакторов радикально отличалась от американских. В американских реакторах применялось горизонтальное расположение активных урановых элементов. Главный конструктор Н. А. Доллежаль предложил каналы для уран-графитовых стержней расположить вертикально. Этот проект он продвигал вместе с А. П. Александровым, их активно поддержал И. В. Курчатов. В результате первый реактор, построенный по "советской" схеме, проработал сорок лет и был остановлен 16 июня 1987 года. А американские реакторы в Хэнфорде вывели из эксплуатации ещё в 60-е годы.
Есть два вида реакторов - уран-графитовые и на тяжелой воде (дейтерии). Тежеловодные очень сложны по конструкции, требуют большого количества специального оборудования. Тяжелая вода стоит очень дорого, а малейшая протечка чревата радиоактивным заражением. И хотя такие реакторы потребляют урана примерно в десять раз меньше, чем уран-графитовые, фактор времени диктовал условия. Первыми пущенными реакторами стали именно уран-графитовые. Пускал их И. В. Курчатов.
Первый тяжеловодный реактор запустил академик А. И. Алиханов. И этот реактор вполне официально назвали "Людмилой". До этого названия возникли совершенно стихийно. Строились три комплекса единого цикла получения плутония: реактор, радиохимический завод и металлургическое производство. Объекты, как положено, закодировали, но весьма незамысловато - "А", "Б", "В". Реактор "А" вскоре стали называть "Аннушкой". Агрегат электромагнитной сепарации "ЛБ" народ расшифровал как "Лаврентий Берия". Впоследствии стало традицией давать имена новым реакторам. Так появились "Руслан" и "Людмила". "Людмила" в документах называлась "Л-2Ф", что означает "легкий реактор на трубах Филда, вторая модификация". Буква Л и стала поводом для нового имени. "Руслан", естественно, гораздо мощней. Сейчас, когда плутониевое производство практически прекращено и графит-урановые реакторы остановлены, "Людмила" главным образом нарабатывает изотопы для народно-хозяйственного использования. Нередко её называют коммерческим реактором. Это один из вариантов конверсии. Изотопы в большом количестве идут на экспорт.
А вот "Руслан" продолжает работать на оборону. Он разрабатывался и конструировался институтом Доллежаля и Курчатовским центром специально для этих целей и полноценной конверсии подвергнут быть не может. Это уникальный агрегат, подобного которому нет больше в мире. О его конструктивных особенностях говорить пока рано, поскольку они до сих пор засекречены, и выдавать эти ноу-хау просто глупо.
УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ
Сам по себе металлический уран не может служить "взрывчаткой" для ядерных боеприпасов. В военном деле он применяется для изготовления сердечников снарядов и крупнокалиберных пуль. Благодаря своей высокой плотности урановый сердечник имеет повышенные бронебойные качества, но серьезной радиационной опасности не представляет. Ведь в природном уране-238 содержится всего 0, 7% радиоактивного изотопа уран-235, а для постройки атомной бомбы необходимо содержание урана-235 в 90%. Вот почему технологии получения расщепляющихся материалов являются главным этапом в создании атомного оружия.
Но каким способом можно выделить более легкие атомы урана-235 из массы урана-238? Ведь разница между ними всего три "атомных единички". Один из способов - электромагнитная сепарация. Он основан на свойстве более легких частиц сильнее отклоняться в магнитном поле. Если ускорить ионы урана и пустить в сильное электромагнитное поле, то они будут двигаться по дуге. При этом более легкие ионы урана-235 отклонятся сильнее и попадут в специально предназначенную для них ловушку.
Другой способ - газовая диффузия. Он основан на свойстве молекул газов с разным удельным весом по-разному диффундировать (проникать) сквозь пористые перегородки (фильтры). Разделение изотопов производится ступенчато. Это значит, что пройдя фильтр, газ попадает на следующую ступень очистки, где снова диффундирует через фильтр. Таким образом он проходит через целый каскад ступеней, и после каждой содержание более легкого изотопа уран-235 в общей массе газа увеличивается. Чем длиннее цепочка ступеней, тем выше концентрация. Этот способ хорош ещё и тем, что процесс может быть прерван на любой ступени, и таким образом можно получить уран необходимой степени очистки (обогащения) - хоть с полуторапроцентным содержанием урана-235, хоть с 90%-ным. Это предельная концентрация, более высокое содержание урана-235 влечет возникновение самопроизвольной цепной реакции.
В сентябре 1945 года на Техническом совете Спецкомитета была утверждена программа работ по строительству одного предприятия по производству высокообогащенного урана и одного по наработке плутония. Тогда же был утвержден на должность руководителя разработок газодиффузионного метода разделения изотопов профессор Исаак Константинович Кикоин. За инженерные проблемы отвечал профессор Ленинградского политехнического института И. Н. Вознесенский, а за расчетно-теоретические работы С. Л. Соболев, заместитель И. В. Курчатова по Лаборатории №2. К тематическим работам были привлечены многие научные учреждения, в том числе Уральский индустриальный институт по теме "Разработка сеток для диффузионного разделения изотопов".
1 декабря 1945 года было подписано постановление правительства о строительстве объекта Д-1. Сроки определили самые жесткие: начало эксплуатации объекта Д-1 - 1948 год, работа по полной схеме - 1949 год.
Площадку для уранового завода подобрали быстро. И. К. Кикоину приглянулся небольшой поселок возле станции Верх-Нейвинск на пути из Свердловска в Нижний Тагил. Здесь в 1941-43 годах был построен завод по производству авиационных шасси и небольшой жилой поселок. Имелся Верх-Нейвинский пруд, объемом 35 миллионов кубометров воды, столь необходимой для технологического процесса. Рядом проходили линии ЛЭП и железная дорога. Густые леса и предгорья Уральского хребта скрывали объекты от чужих глаз. Уже в декабре 1945 года СНК СССР принял постановление о передаче завода №261 Наркомата авиационной строительности в ПГУ для строительства газодиффузионного завода. Предприятие получило наименование "завод №813", а в реестре атомных объектов стало называться "завод Д-1". Потом он ещё не раз менял название - Государственный Верх-Нейвинский машиностроительный завод, База №5, предприятие п/я 318, комбинат №813, Средне-Уральский машиностроительный завод. Сейчас это - Уральский электрохимический комбинат, расположенный в городе Новоуральске.
Объект Д-1 планировалось построить к сентябрю 1946 года. При этом проектное задание на рассмотрение Технического совета представлялось только в марте 1946 года. Параллельно проектировалось и изготавливалось заводское оборудование. На Кировском заводе в Ленинграде организовали специальное конструкторское бюро турбокомпрессоров. Здесь же должны были выпускать эти машины. Подобное задание получил также Горьковский машиностроительный завод. Параллельно конструированию должен был производиться выпуск агрегатов. В принципе, сохранялась практика военного времени, когда в самые сжатые сроки разрабатывались и запускались в серийное производство новые модели танков, самолетов и артиллерийских орудий.
Так же "по-военному" строился и газодиффузионный завод. Стройке присвоили категорию "ударная оборонная", руководил ею генерал А. Н. Комаровский. В апреле 1946 года директором строящегося завода назначили А. И. Чурина, до этого работавшего главным инженером Уралэнерго. Через два года его отстранят, потом вернут обратно...
В условиях разрухи и нехватки самого необходимого вся тяжесть легла на женские плечи, поскольку страна за годы военного лихолеться основательно "обезмужичела". В 1946 году строительство имело 3 действующих паровоза, 71 автомобиль, 298 лощадей. Это значит, что господствовал ручной труд. Первые экскаваторы появились в 1947 году, через год прибавились 4 бульдозера. До этого все земляные работы производились лопатами. Первые башенные краны поставили вообще только в 1953 году.
Наибольший вклад в строительство внесли военные строители. Им тоже пришлось нелегко. У военных саперов имелся боевой опыт, но строительно-монтажные работы приходилось осваивать на ходу. Жили по-фронтовому - в землянках, бараках, палатках. Четыре полка и отдельный автотракторный батальон насчитывали до 12 000 человек личного состава.
Как и везде, работали здесь и заключенные. Использовались они в основном на неквалифицированных и тяжелых работах - рубили лес, корчевали, рыли котлованы и т. п. В отдельные годы их количество возрастало до 18 тысяч, но обычно было гораздо меньше, а после амнистии 1953 года оставалось, например, всего 1345 человек. Более пяти тысяч бывших заключенных остались работать на комбинате.
Несмотря на то, что стройка имела особый статус, снабжение оставляло желать лучшего. Положенный "лимит рабочего снабжения повышенной категории" - 1 килограмм хлеба в день на человека не соблюдался. Давали по карточкам ИТР и рабочим по 600 и 500 граммов хлеба. Только осенью 1947 года положение начало выправляться. Условия жизни тоже были суровыми, катастрофически не хватало жилья. Прибавьте к этому очень низкую зарплату, и станет понятно, почему солдаты работали даже в цехах. Например, Совет министров в 1948 году обязал обязал зачислить в штат завода 1000 солдат из военно-строительных батальонов. Все связанные с объектом Д-1 не только давали подписку о неразглашении, им запрещалось переходить на другую работу и покидать предприятие.
Понятно, что меньше чем за год спроектировать и построить завод невозможно. Сроки скорректировали. По-настоящему строительство развернулось только в 1947 году. В начале 1948 года первые литерные эшелоны со специзделиями стали прибывать по специальной железнодорожной ветке на объект Д-1. Начался монтаж. Первая очередь завода была сдана в эксплуатацию в мае 1949 года. За три года практически вручную были построены почти 70 000 квадратных метров производственных площадей, комплексы водо - и электроснабжения. Еще через полтора года были построены завод Д-3 (завод Д-2 возводился в Сибири), химико-металлургический цех, жилые дома, необходимые объекты соцкультбыта и даже музыкально-драматический театр.
Конструкторы и производственники, разрабатывавшие диффузионные машины, столкнулись с массой проблем. В отличие от американской одноступенчатой машины, И. Н. Вознесенский со своим бюро проектировал многоступенчатый агрегат с несколькими десятками компрессоров, крыльчатки которых расположены на одном валу. Газовая ураносодержащая фракция должна была сквозь специальные фильтры из микропористого металла диффундировать из секции в секцию. Агрегаты предполагалось объединить в каскад, а из нескольких каскадов создать завод. Но машина получилась технологически чрезвычайно сложной, её невозможно было запустить в серийное производство. Вскоре выяснилось, что это тупиковый путь - проще и дешевле построить 24 одноступенчатых копрессора, чем один 24-ступенчатый блок. Скоростная гонка, когда нет времени на капитальную проработку, приносила печальные результаты. Идея многоступенчатых газодиффузионных машин была признана порочной и отвергнута. Но время ушло, график проектирования и производства был сорван. Последовали бурные дискуссии в Спецкомитете и непременные оргвыводы. И. Н. Вознесенский скончался, у 59-летнего ученого не выдержало сердце.
Но параллельно с разработкой многоступенчатых машин велось проектирование одноступенчатых с вертикальной компоновкой бака-делителя. На него монтировался высокооборотный центробежный компрессор, приводимый в движение специальными асинхронными двигателями, работающими в агрессивной газовой среде. После проведения открытого конкурса разработок Кировского и Горьковского заводов в конце 1946 года спроектировали новый вариант газодиффузионного завода. Но в ходе испытаний выяснилось, что машины ленинградского производства ненадежны. Было принято решение комплектовать завод Д-1 горьковскими машинами ОК-7 с горизонтальным, а не вертикальным расположением бака-делителя. В соответствии с принятой технологической цепочкой, общее количество агрегатов, объединенных в единый "каскад каскадов", должно было составить 7216 штук. В эксплуатацию их предполагалось вводить отдельными очередями.
"Это сегодня технология получения высокообогащенного урана доведена до совершенства, - вспоминает главный конструктор специального КБ№1 Кировского завода Николай Михайлович Синев. - А тогда... Были моменты, когда у некоторых руководителей и разработчиков зарождались сомнения и неверие в успех. Давил фактор времени. Каким будет диффузионный завод, какая нужна техника? - в начале 46-го ещё никто толком не знал..."
Принципиально новое производство требовало не только новых технологий. Необходимы были сложные системы автоматизации, контрольно-измерительные приборы нового типа, стойкие к агрессивным средам материалы, подшипники, смазки, вакуумные установки и многое другое. Для получения одного килограмма обогащенного урана нужной концентрации требовалось затратить 600 000 Квт-час электроэнергии.
Пуск первой очереди был назначен на 1 сентября 1947 года. Но и эти сроки оказались нереальными. Из-за постоянного запаздывания проектной документации строительство хронически отставало от контрольных сроков. Да и оборудование ещё не было доработано. Пуск первой очереди состоялся только в апреле 1948 года. В ней было 256 разделительных машин типа ОК-7. Первоначально на них обучался обслуживающий персонал, отрабатывалась технология и проверялась работоспособность оборудования. К середине июля того же года было смонтировано уже четыре каскада по 126 ОК-7 в каждом. Машины, соединенные в блоки по 15-16 штук, располагались участками в герметичных металлических отсеках - каньонах.
Вводились в эксплуатацию новые каскады машин ОК-7, ОК-8 и ОК-9. И стремительно нарастали проблемы. Не выдерживали и сотнями "клинили" подшипники электроприводов, текла смазка. Персонал валился с ног, не в силах справиться с таким количеством неполадок. Для замены подшипника приходилось отключать от каскада целый блок машин, откачивать из него газ, перевозить в ремонтный цех. Затем процесс шел в обратном порядке. Теперь из машин выкачивали воздух, проверяли вакуумность и снова заполняли их газом. Люди начали терять веру вообще в возможность вывести завод на проектную мощность, а метод газодиффузионного разделения изотопов казался пригодным только для лабораторных процессов. Да тут ещё особисты и их добровольные помощники принялись искать "вредителей". Пуско-наладочные работы оказались полностью дезорганизованы.
Наконец было принято решение на всех установленных к тому времени пяти с половиной тысячах машин заменить подшипники и откорректировать их посадку. Только после такого титанического труда проблемы с подшипниками прекратились. Но осталась масса других. В том числе: утечки и потери гексафторида урана, нарушения вакуумных объемов, повышенная коррозия и многие другие. Объяснялось это спешкой в проектировании и изготовлении оборудования. По сути в процессе промышленной эксплуатации происходили испытания серийных машин и их "доводка до ума", исследовались свойства конструкционных материалов и химические процессы их взаимодействия с агрессивной газовой средой, выяснялась полная непригодность отдельных узлов и технические недостатки.
На основе полученного опыта в каскадные цепочки ввели промежуточные установки для отбора конечного продукта и очистки газа от примесей продуктов разложения, натекающего воздуха, водяных паров. Кроме того были введены конденсационно-испарительные установки для отделения гексафторида урана от примесей. В качестве хладагента в них использовалась твердая углекислота - сухой лед. Специальным распоряжением Правительства СССР все запасы сухого льда Свердловского хладокомбината предписывалось передавать на технологические цели. Жители Свердловска остались без мороженого. Но сухого льда все равно не хватало, и тогда использовалась чрезвычайно взрывоопасная смесь ацетона и жидкого кислорода, пока такую практику не запретили.
Но коррозионные потери гексафторида урана оставались недопустимо высокими. Агрессивный газ, вступая во взаимодействие с металлом оборудования, разлагался, соединения урана оседали на нутренних поверхностях агрегатов. По этой причине не удавалось получить необходимую 90%-ную концентрацию урана-235. Значительные потери в многоступенчатой системе разделения не позволяли получить концентрацию выше 40-55%.
Начальник технического отдела Н. М. Синёв предложил иную конструкцию газодиффузионной машины для конечного этапа технологической цепочки, на котором высокообогащенный газ несет наибольшие потери. Агрегат должен был иметь уменьшенные размеры и минимальный объем заполнения с предельно малыми поверхностями, контактирующими с гексафторидом урана. Такая машина была сконструирована и изготовлена в Горьком, получив название ОК-6. Этими аппаратами заменили четыре участка машин ОК-7, примыкавших к точке отбора конечного продукта. В мае 1949 года новую технику обкатали. 9 июня 1949 года машины ОК-6 включились в работу. Этот день можно считать датой пуска в рабочую эксплуатацию первого советского диффузионного завода. Но расчетную концентрацию урана-235 получить не удалось.
29 августа 1949 года была испытана первая советская атомная бомба. Увы, но никакого вклада в этот успех завод Д-1 не внес. Взорванный заряд имел начинку из плутония, полученного на заводе №817 в Челябинске-40.
В октябре в Верх-Нейвинск прибыл специальный поезд. Три классных вагона, включая салон-вагон, были поставлены на путях напротив здания заводоуправления. Берия лично приехал разбираться с провалами в работе. С ним прибыли начальник ПГУ Б. Л. Ванников, И. В. Курчатов, М. Г. Первухин и другие руководители атомного проекта. Руководителей и ведущих сотрудников предприятия по одному вызывали в вагон и там выясняли степень вины каждого, а так же причины неудач. Директор завода А. Л. Кизима был снят с работы. Директором снова назначили А. И. Чурина, а главным инженером снова стал М. П. Родионов. Группа ученых из Лаборатории №2 была переведена на комбинат для постоянной работы и передачи опыта. Огромные научные силы, включая ведущих химиков страны, были брошены на решение проблемы коррозии металлов под воздействием гексафторида урана.
Диффузионные машины разбирались по винтику, продукты разложения газа собирались и изучались. На статорах и роторах электродвигателей обнаруживали сотни граммов зеленого порошка - тетрафторида урана, продукта взаимодействия гексафторида с железом. Единственной надежной мерой борьбы с такими потерями являлась полная замена двигателей компрессоров. Но для этого требовалось сконструировать и изготовить другие двигатели, металл которых перестанет взаимодействовать с агрессивным газом. А пока следовало уменьшить потери на пористых фильтрах и других внутренних поверхностях оборудования.
По предложению профессора В. А. Каржавина и немецкого инженера П. Тиссена провели антикоррозионную обработку каскадов горячей фтор-воздушной смесью. На всех поверхностях образовалась тонкая и прочная пленка, препятствующая взаимодействию гексафторида урана с металлами.
Но расчетную 90%-ную концентрацию урана-235 получить так и не удалось. Обогащенный до 37% газ вторично прогонялся через диффузионные машины при усиленной дополнительной подпитке. Благодаря этому, даже при больших потерях на разложение удалось получить конечный продукт 75%-ной концентрации. 11 ноября 1949 года на склад и в лабораторию поступили первые емкости с "продуктом" общей массой чуть более 400 граммов.
Полученное вещество не являлось чистым ураном. Это тоже был промежуточный продукт. После его гидролиза и выпаривания досуха получался фтористый уранил - соединение уран-фтор. В срочном порядке была создана ещё одна технология - по переработке фтористого уранила в закись-окись урана. В таком виде поступал на завод №817 ("Маяк") "кремнил" - этим словом во всех документах шифровался засекреченнный уран,
К концу 1950 года в результате замены двигателей на диффузионных машинах и внедрения пассивирования внутренних поверхностей удалось значительно снизить коррозионные потери. Завод стал стабильно выдавать ежесуточно 178 граммов урана 75%-ного обогащения. Под вооруженной охраной продукт отправлялся на завод №418 (Свердловск-45), где дообогащался до 90% кондиции на электромагнитном сепараторе.
18 октября 1951 года была успешно испытана атомная бомба РДС-3 с составным плутониево-урановым зарядом.
Работа над совершенствованием технологии и оборудования продолжалась. был построен второй газодиффузионный завод Д-3 (Д-2 воздвигли в другом регионе), впоследствии переименованный в цех №24. Коррозионные потери удалось сократить до такой степени, что с ноября 1953 года комбинат в непрерывном режиме стал выпускать 90% продукт. В это же время была освоена технология переработки гексафторида урана в закись-окись урана.
В декабре 1955 года первый газодиффузионный завод Д-1 был остановлен, начался его демонтаж. Разделение изотопов велось на новых, более мощных, заводах, с высоким КПД и меньшей себестоимостью. Ввод этих очистительных комплексов производился с 1950 по 1957 год. Завод Д-3 комплектовался машинами, сконструированными и изготовленными на Ленинградском Кировском заводе, моделей Т-45, Т-46, Т-47 и Т-49. Эти газодиффузионные машины комплектовались не одним, а двумя усовершенствованными компрессорами каждая. А главное, на них впервые были опробованы трубчатые фильтры вместо плоскостных. Изменилась и сама технология производства фильтров, благодаря чему значительно увеличилась площадь фильтрационного разделения изотопов, повысилась прочность и технологичность монтажа, во много раз уменьшились потери. Стало возможным повысить рабочее давление гексафторида урана, увеличив выход конечного продукта. Благодаря всем этим новшествам, обкатанным на комбинате, появилась возможность быстрой модернизации газодиффузионных машин. Так, например, разделительные способности машины Т-47 были почти в два раза выше, чем у Т-46.
Первую технологическую очередь завода Д-3 начали запускать в ноябре 1950 года. Причем оборудование не простаивало в ожидании, когда полностью завершится монтаж. От завода Д-1 были протянуты межкаскадные коммуникации, благодаря которым секции новых машин сразу включались в единую технологическую цепочку. В декабре 1951 года новый завод был полностью введен в действие. Образовалась единая линия очистки из девяти с половиной тысяч машин: на Д-1 - 7284, на Д-3 - 2242 более современных и производительных. Объединные в 61 каскад, они позволили увеличить выход конечного продукта в 6 раз!
Конец 1940-х годов ознаменовался развязыванием холодной войны, которая тут же едва не превратилась в "горячую". США, недовольные исходом гражданской войны в Китае, готовы были применить атомное оружие, чтобы не допустить победы коммунистов. Но возникший в Европе "Берлинский кризис" заставил их воздержаться от бомбардировок - бомбы могли понадобиться на другом потенциальном театре военных действий. А бомб было не так много. Попытка Соединенных Штатов стать главным распорядителем на планете натолкнулась на ядерный потенциал Советского Союза. Развернулась ожесточенная гонка вооружений, где преимущество получал тот, у кого больше атомных зарядов и средств их доставки.
В 1950 году принято решение о строительстве завода Д-4. Уже в октябре 1953 года он был пущен в эксплуатацию. Это был отдельный диффузионный каскад, выдававший уран-235 90%-ного обогащения. На заключительной фазе отбора конечного продукта здесь были установлены новые диффузионные однокомпрессорные машины ОК-19 и Т-44. О мощности Д-4 говорит такой факт, он потреблял электричества почти в полтора раза больше, чем все остальные производства и службы комбината вместе взятые.
В июне 1954 года был введен в эксплуатацию завод среднего обогащения СУ-3, затем объединенный с заводом Д-4 в единый цех №45.
А вершиной промышленной технологии газодиффузионного разделения изотопов урана стал завод Д-5. Он был укомплектован принципиально новыми машинами, в которых двигатель компрессора вынесен за пределы рабочей зоны агрегата. Специальное уплотнение на вращающемся валу не только обеспечивало вакуум внутри агрегата, но позволяло вдвое увеличить рабочее давление. Разработанные непосредственно на комбинате разделительные фильтры, число которых в каждой машине тоже было увеличено, значительно повысили производительность разделения. Для сравнения можно отметить, что производительность новых машин Т-51 была в 75 раз выше, чем у машин ОК-9, установленных на заводе Д-1. При этом они в 3, 5 раза меньше потребляли электричества. Вот почему в день пуска завода Д-5 было остановлено оборудование на Д-1 и начался его демонтаж. Несмотря на это, выпуск обогащенного урана в 1957 году увеличился по сравнению с 1950 годом в 100 раз!
Однако энергозатраты оставались огромными. Специально для электропитания завода Д-5 была постоена Верхне-Тагильская ГРЭС мощностью 600 Мвт. А в общей сложности комбинат потреблял 3% всей производенной в 1958 году в Советском Союзе электроэнергии.
Возможности дальнейшего совершенствования газодиффузионной техники были исчерпаны. Модернизация и улучшение могли достигаться только за счет отдельных узлов и деталей. Наибольший эффект давало улучшение разделительных свойств фильтра. На комбинате имелась научно-лабораторная база, где разрабатывались фильтры и мощности по их производству.
Дважды газодиффузионное оборудование подвергалось модернизации - в конце 50-х и 60-х годов. В результате общая производительность увеличилась в 2 раза, а энергозатраты сократились почти на 40%. По мере старения газодиффузионные машины выводились из работы. В 1966-67 годах были демонтированы заводы Д-3, Д-4 и СУ-3. На их площадях разместился Уральский автомоторный завод. А в 1972 году настал черед и Д-5. Газодиффузионный способ разделения изотопов урана был полностью заменен другим центрифужным.
Основоположником центрифужного метода разделения изотопов в советском Союзе можно считать немецкого эмигранта физика Ф. Ланге. В Харьковском физико-техническом институте он начал эксперименты по разделению газовых смесей на центрифуге ещё в 1935 году. Теоретические основы разделения газов с разным молекулярным весом в центробежном поле разработал в 1937 году Ю. Б. Харитон. Первая центрифуга была изготовлена на Уфимском авиазаводе в 1942 году. На следующий год Ф. Ланге привез её в Свердловск, где в лаборатории И. К. Кикоина продолжил свои эксперименты. Но существенных результатов достигнуть не удалось, и было принято решение о разработке газодиффузионного метода как наиболее перспективного. Тем не менее, в 1945 году при ПГУ была организована Лаборатория №4, руководителем которой назначили Ф. Ланге. Но в дальнейшем работы посчитали бесперспективными и лабораторию ликвидировали. Ф. Ланге в 1959 году выехал в ГДР, где возглавил Институт молекулярной физики. Другие немецкие ученые и инженеры: М. Штеенбек, Г. Циппе и Р. Шеффель занимались разработкой разделительной центрифуги в Сухумском физико-техническом институте. Их конструкция оказалась непригодна для промышленного использования, зато в ней содержалось важное решение - "стакан" центрифуги, он же ротор электродвигателя, опирался тонкой стальной иглой на победитовый подпятник-демпфер, а верхний конец ротора располагался в полости цилиндрического постоянного магнита. Эта оригинальная техническая идея избавляла центрифугу от подшипников, передающих валов и многих других дополнительных систем, что значительно удешевляло процесс разделения изотопов. Единственной проблемой была передача газа из одной центрифуги в другую, чтобы можно было объединять их в каскады.
Эту проблему решил И. К. Кикоин, предложивший опустить во вращающийся "стакан" центрифуги трубки, выходившие на разные уровни. В средине центрифуги из трубки поступал гексафторид урана, в нижней части через другую трубку откачивалась тяжелая фракция урана-238, а вверху отбиралась более легкая с повышенным содержанием урана-235.
Технологией центрифужного разделения изотопов и конструированием центрифуг занимались многие научные и проектные центры, в том числе ЛИПАН, ОКБ Кировского завода, ОКБ ГАЗ. В 1954 году на Уральском электрохимическом комбинате была организована исследовательско-экспериментальная лаборатория по данной тематике. В ней исследовались газодинамические процессы, разрабатывались методики исследования центрифуг, проектировались и изготавливались необходимые испытательные приборы.
Когда был остановлен и демонтирован первый газодиффузионный завод Д-1, на освободившихся площадях решено было построить опытный центрифужный завод (ОЦЗ). Так же, как в прежнее время диффузионный Д-1, опытный завод должен был послужить полигоном для новых разделительных технологий и оборудования. На опытном заводе установили 2432 центрифуги в блоках по 80 соединенных ступеней, Каждый блок снабжался собственной системой аварийной защиты. Пуск ОЦЗ осуществили в начале ноября 1957 года, а на расчетный режим он вышел 15 января 1958 года. Это было первое в мире предприятие, где в массовом порядке эксплуатировались газовые центрифуги.
Руководители атомной промышленности настороженно относились к неопробованной методике, и новое производство в случае удачи могло побудить их к переводу разделительных производств на принципиально новые технологические схемы, более экономичные и производительные.
В процессе опытной эксплуатации выяснилось, что потребление электроэнергии на единицу продукции у центрифуги в 17 раз меньше, чем у газодиффузионной машины последнего поколения. Этот и ряд других факторов были приняты во внимание на Научно-техническом совете Министерства среднего машиностроения под председательством И. В. Курчатова 5 мая 1958 года. Тогда было принято решение о переходе на центрифужный метод разделения изотопов урана.
Внедрение новой техники принесло и новые проблемы. Произошли целые серии разрушений центрифуг. Так неожиданно проявилась ползучесть материала ротора, когда металл при постоянных центробежных нагрузках начинает деформироваться, а затем разрушаться. Заводские ученые провели огромное количество экспериментов, исследований и испытаний, разработали теоретические основы для расчетов новых моделей центрифуг. На комбинате было создано специальное устройство - корректор, предохраняющее центрифугу от разрушения в случае потери устойчивости ротора. Эта система победила в конкурсе подобных конструкций и была внедрена на центрифужные машины четвертого поколения. В это же время была опробована схема многоярусного расположения центрифуг. Это позволяло на одних и тех же площадях размещать в два-три раза больше центрифуг.
В процессе эксплуатации опытного завода по заранее разработанным программам на действующем оборудовании искусственно моделировались аварийные происшествия, различные нарушения режима работы и нештатные ситуации. Это позволило выявить скрытые изъяны новой техники, усовершенствовать её, разработать эксплуатационные методики, подготовить инструкции на все случаи, обучить персонал. Началось постепенное внедрение газовых центрифуг в действующие схемы очистки. На газодиффузионном производстве на заключительных участках технологической цепочки взамен устаревших диффузионных машин стали монтировать блоки центрифуг. Здесь производился отбор конечного продукта с высокой концентрацией урана-235.
Параллельно с работой опытного завода началось строительство большого промышленного центрифужного завода по разделению изотопов урана ГТЗ-1. В действие он вводился тремя очередями в течение 1962-1964 годов. Включение его в технологическую цепочку увеличило разделительную мощность комбината почти на 40%. Устаревшее газодиффузионное оборудование начали демонтировать. Вместо старых цехов появился новый завод ГТЗ-2. Появились центрифуги четвертого и пятого поколений. Технико-экономические показатели возрастали, а расход электроэнергии на единицу продукции к середине 70-х годов снизился в 5 раз.
Центрифужный цех поражает своими размерами. Перемещаться пешком невозможно, такие здесь расстояния. Надо ездить на электрокаре. В четыре яруса установлены блоки "стаканов" центрифуг. На ГТЗ-1 их установлено 700 000 штук. Внутри каждой вращается ротор со скоростью более тысячи оборотов в секунду. Естественно, чтобы управлять таким количеством количеством механизмов и держать их под контролем, задействована автоматическая система управления и система аварийной защиты.
31 июля 1997 года был включен в эксплуатацию первый блок центрифуг седьмого поколения. Это событие особенно знаменательно тем, что сложнейшие машины были разработаны на самом комбинате. Здесь же были сконструированы и изготовлены все вспомогательные системы. Эти аппараты имеют вдвое большую разделительную способность при тех же производственных затратах, чем машины предыдущего поколения. Но не это самое удивительное. Поразительно, что в период повсеместного упадка комбинат не только сберег творческие коллективы, сохранил производственную базу, но и продолжает развиваться вопреки всем кризисам.
Обеспечено это в первую очередь конверсионными возможностями предприятия. Ведь атомная бомба не являлась целью физических исследований ученых. Ядерное оружие возникло в результате второй мировой войны как ответ на гитлеровскую угрозу всему миру. Потом оно сделалось фактором взаимного военного сдерживания двух политических систем. Но ядерные реакторы кроме наработки оружейного плутония способны давать энергию народному хозяйству. Бурное развитие атомной энергетики повысило спрос на топливо низкообогащенный уран для реакторов АЭС. В 1971 году Всесоюзная экспортно-импортная контора "Техснаб" заключила контракт с Комиссариатом по атомной энергии Франции на предоставление услуг по обогащению урана. Начало поставок было намечено на май 1973 года. Это означало разрушение монополии США на международном рынке расщепляющихся материалов.
На Уральском электрохимическом комбинате потребовалось создать ещё одно принципиально новое производство. Дело в том, что французам требовался жидкий гексафторид урана, а не газообразный. Жидкий продукт удобней транспортировать на большие расстояния в компактных контейнерах, он удобней для отбора аттестационных проб. Но опыта работы в промышленных масштабах с жидкой фракцией гексафторида урана у нас в стране не имелось. Зато имелся другой опыт - опыт скоростного строительства, разработки и освоения новых технологий.
Непосредственно на комбинате были разработаны методики спектральных и химико-спектральных анализов чистоты гексафторида урана, соответствующие международным стандартам. Здесь же сконструировали и изготовили приборы, способные работать в агрессивной жидкой и газообразной среде. Рабочие емкости с французским гексафторидом помещались в специальные термокамеры, где разогревались до рабочей температуры, а уже оттуда поступали на разделительные машины. Испытания подтвердили правильность конструкторских решений.
На освобожденном от устаревшего оборудования участке цеха №54 разместили новое производство, получившее наименование "Челнок". Такое название объясняется тем, что поначалу планировалась "челночная" технология: французский заказчик поставляет контейнеры с сырьевым гексафторидом урана и пустые емкости для готового продукта, а потом ему возвращают емкости с обогащенным ураном и сырьевые контейнеры с отходами очистки.
Контракт на экспортные поставки был выполнен в срок, а французы высоко оценили качество полученной продукции, заявив, что наш продукт лучше американского, английского и французского. После этого были заключены контракты со многими государствами, развивающими у себя атомную энергетику, в том числе, с Великобританией, Германией, Швецией, Италией, Испанией и другими. За более чем двадцать лет поставок низкообогащенного урана на комбинат не поступило ни одной рекламации от заказчиков.
"Челнок" по-прежнему остается одним из передовых производств отрасли и конкурентноспособен на мировом рынке. И хотя в последние годы спрос на урановое топливо в связи со свертыванием многими странами атомных энергетических программ сократился, комбинат уверенно остается "на плаву". К двадцатипятилетию "Челнока" в мае 1998 года была проведена его реконструкция. Производилась она в течение трех лет без остановки производства. Так что Уральский электрохимический комбинат по-прежнему остается одним из передовых предприятий мира.
В 1989 году Уральский электрохимический комбинат прекратил наработку высокообогащенного урана для снаряжения ядерного оружия. Договоры о сокращении стратегических вооружений положили конец безумной ядерной гонке. Но за полвека были созданы огромные запасы расщепляющихся материалов оружейной кондиции. В США на газодиффузионных заводах в Ок-Ридже (Теннесси) и Портсмуте (Огайо) было наработано в общей сложности 994 тонны высокообогащенного урана. В России подобных заводов больше - в Новоуральске, Ангарске, Томск-7 и Красноярск-56. Соответственно и запасы урана весомей - около 1200 тонн.
В соответствии с соглашением между США и Россией количество ядерных боеголовок с каждой стороны не должно превышать пяти тысяч. Все, что сверх этого количества, подлежит демонтажу. Ядерные боеприпасы разбираются на тех же самых предприятиях, на которых когда-то изготавливались. Естественно, извлекаются сотни тонн высокообогащенного урана и десятки тонн плутония. Их можно или заложить на хранение, что вызывает понятное подозрение противоположной стороны - а не вернутся ли ядерные материалы обратно в боеголовки, или использовать в экономических интересах страны. Для России гораздо выгоднее реализовать это стратегическое сырье, чтобы получить валюту и компенсировать хотя бы часть средств, израсходованных в прежние времена на получение ядерного оружия. США тоже заинтересованы в ликвидации опасного сырья, чтобы оно не расползалось по свету и не сохранялось в качестве потенциальной угрозы их безопасности. Позиции обеих стран таким образом совпадали в главном - высокообогащенный уран и плутоний следует разбавить до безопасной концентрации и использовать в качестве топлива для атомных электростанций.
Американский ядерщик Томас Неф выступил с идеей использования оружейного урана для целей атомной энергетики, которая получила афористичное название "Превращение мегатонн в мегаватты". Т. Неф выступил сторонником покупки российского высокообогащенного урана для его разобогащения на американских предприятиях. Две крупных американских компании вступили в соглашение между собой для образования с российскими представителями совместного предприятия по переработке нашего урана и дальнейшей продажи его департаменту энергетики США. Совершенно очевидно, что в основе конверсионной инициативы Т. Нефа лежал злоровый экономический расчет, и американцы старались извлечь из проекта максимальную выгоду. Россия обеспечила бы работой чужие предприятия, получив весьма скромные деньги. Да и передавать оружейный уран в руки недавнего противника не стоило.
29 августа 1992 года было подписано принципиальное соглашение между США и Россией о переработке 500 тонн оружейного высокообогащенного урана. Тут и выяснилось, что американцы не готовы к развертыванию полномасштабных работ по разобогащению. Только в 1997 году они оказались способны перерабатывать своей уран.
В то же время на Уральском электрохимическом комбинате располагалась принятая в эксплуатацию и законсервированная после прекращения наработки оружейного урана специальная линия для окисления путем сжигания металлических слитков высокообогащенного урана для перевода их в порошок закиси-окиси. Раньше таким образом перерабатывались бракованные слитки. Производительность линии составляла 20 тонн в год. Здесь же на комбинате можно было провести весь последующий цикл разбавления высокобогащенного урана до необходимых кондиций, очистки его от примесей и расфасовки в транспортные емкости. После разработки технологии по переводу высокообогащенного урна в низкообогащенный, УЭХК в 1996 году запатентовал её в США и России, закрепив свой приоритет в этой области.
В настоящее время в процессе разобогащения урана принимают участие Сибирский химкомбинат (Томск-7), Электрохимзавод в Зеленогорске (Красноярск-45), ПО "Маяк".
В 1995 году из 6 тонн оружейного урана путем разбавления на Уральском электрохимическом комбинате было получено 186 тонн низкообогащенного урана, в соответствии с договором поставленного затем в США. Всего в течение 20 лет американцы должны получить из России низкообогащенного урана на сумму примерно 12 миллиардов долларов.
ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР
Город Снежинск, раньше он назывался Челябинск-70. Здесь расположен Федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики. Возник он как дублер "Приволжской конторы" - ядерного центра Арзамас-16. После Великой Отечественной войны каждому стратегическому предприятию старались создать такого дублера, чтобы в случае уничтожения основного производства выпуск продукции не сократился. Решение о создании второго ядерного центра принял Никита Хрущев, узнав, что у американцев их целых два - Лос-Аламос и Ливермор, да ещё лаборатория Санди. Арзамас оказался в радиусе действия натовских средств доставки ядерного оружия, поэтому существовал риск в случае возникновения "европейского театра военных действий" остаться без производства ядерного оружия.
Расширение ядерных исследований и производств неразрывно связано с историей создания водородного оружия. США к середине 1949 года имели в своих арсеналах 300 атомных бомб. По расчетам их стратегов, этого хватало, чтобы уничтожить примерно 30-40% оборонного и промышленного потенциала СССР, в том числе около 100 городов. После Хиросимы и Нагасаки никаких сомнений в том, что президент Трумэн способен начать атомную войну, не было. Но этот удар не мог принести победу, оставшегося потенциала русским хватило бы для решительной контратаки, недавняя победа над Германией это доказывала, а в американских арсеналах атомных бомб уже не осталось бы. Поэтому решено было довести количество ядерных боеприпасов до 1000 штук к 1953 году.
И тут в пробах атмосферного воздуха самолеты-лаборатории обнаружили следы деления плутония. Стало понятно, что у русских тоже появилась бомба и атомной монополии США пришел конец. Можно было заключить мирный договор и прекратить гонку вооружений. Но американцы предпочли считать, что появилась дополнительная угроза их безопасности. 31 января 1950 года Трумэн объявил, что Америка будет разрабатывать все виды атомного оружия, включая водородную бомбу. Вызов был брошен.
Советские физики об этом направлении американских ядерных разработок узнали ещё в 1946 году. В основе идеи водородной бомбы лежало предположение о самопроизвольной цепной термоядерной реакции в жидком дейтерии, сжатом с усилием в несколько сот тысяч атмосфер. Расчеты математиков под руководством Я. Зельдовича показали, что давление нужно как минимум на два порядка большее. Уменьшить его можно было смешав дейтерий с ещё более тяжелым изотопом водорода - тритием. Но производство трития стоило колоссальных затрат. Тем не менее, "отец" американской аводородной бомбы Эдвард Теллер пошел именно этим путем. Для получения трития были построены новые ядерные реакторы.
В СССР молодые ученые Андрей Сахаров и Виталий Гинзбург, ученики академика Тамма, выдвинули альтернативную идею - соединить в одном устройстве плутониевый заряд и дейтерий. Атомный взрыв плутония и одновременная термоядерная реакция дейтерия, совместившись, давали искомый водородный взрыв. Но его мощность имела пределы, нарастить её свыше определенного лимита оказалось невозможно. Теоретически водородная бомба должна быть мощней атомной в тысячу раз. Модель Сахарова-Гинзбурга давала увеличение в 20-40 раз. Зато она получалась достаточно компактной. Развивая свою идею, молодые ученые пришли к идее послойного заряда из плутония и дейтерия. Эта конструкция получила в научном обиходе название "слоеный пирог". При этом Гинзбург предложил вместо дейтерия использовать в тысячу раз более дешевый изотоп литий-6.
В ноябре 1952 года на одном из тихоокеанских атоллов было взорвано термоядерное устройство Теллера - трехэтажный монстр весом 60 тонн. Измерения показали, что энергия взрыва в 1000 раз превысила мощность бомбы, сброшенной на Хиросиму и достигла 10 мегатонн. Наши специалисты сразу строили бомбы, годные к боевому применению. Сходную с американской они испытали в 1955 году, но она помещалась в корпусе бомбы и была сброшена с самолета. Вот тогда и стало окончательно ясно, что взрыв одной единственной бомбы способен смести огромный промышленный район. И лучше в таком случае иметь другой про запас.
Резервный атомный центр решено было развернуть на Урале. Во-первых, самая середина России, далеко от границ, а, во-вторых, рядом находятся крупнейшие предприятия атомной промышленности. Значит, есть научная и производственная база, квалифицированные специалисты, специализированные строительные управления и инфраструктура. Но ученые-физики и конструктора понимали, что гораздо важней может оказаться фактор конкуренции. Соревнование двух научных центров могло ускорить создание новых образцов ядерного оружия, породить новые идеи.
Место для нового центра подобрал его первый директор Дмитрий Ефимович Васильев. Начинался НИИ-1011 с так называемой "21-й площадки" в 15 километрах от Челябинска-70. Здесь, в месте выхода радоновых источников, раньше располагался небольшой санаторий местного значения. После войны его помещения отдали под биостанцию. Когда знаменитого генетика Тимофеева-Ресовского вытащили из ГУЛАГа, поскольку он оказался единственным радиобиологом на территории Советского Союза, он был привезен сюда, и возглавил исследования. Выезжать куда-либо ему строго запретили, и "Зубр" безвылазно провел здесь не один год, поливая, как он выражался, грядки стронцием. Исследовал влияние радиации на живые организмы. Знающие люди утверждают, что журналы наблюдений, записи, черновики и прочая документация этой биостанции до сих пор лежит в единственном сохранившемся с тех времен сарае. Остальные корпуса давно снесены, а на их месте выстроены современные здания.
Сначала народу было немного. Собрали математиков, физиков-теоретиков и экспериментаторов. Занимались расчетами. А воплощать свои расчеты ездили в Арзамас-16. Там находился "филиал" НИИ-1011 - конструктора и газодинамики. Там же уральские разработки превращались в "изделия".
Научным руководителем и главным конструктором был назначен Кирилл Иванович Щелкин. Имя этого выдающегося ученого и организатора долго скрывалось под покровом секретности и в результате чуть не было забыто. А ведь это один из трех "китов", на которых держалась программа создания атомного оружия в Советском Союзе. Игоря Курчатова и Юлия Харитона знают сейчас очень широко, а вот их друга, единомышленника и соратника Кирилла Щелкина почти никто. А ведь их всех троих за одни и те же достижения одними и теми же указами награждали Золотыми Звездами Героев Социалистического Труда - после взрыва первого советского атомного устройства в 1949, после первой авиабомбы, принятой на вооружение в 1951, и, наконец, когда через два года после этого испытали водородную бомбу.
Кирилл Иванович Щелкин родился в Грузии, в Тбилиси. Перед войной закончил пединститут в Симферополе. Но стать учителем ему не привелось. Пришлось заниматься оборонными исследованиями в Институте химической физики Академии Наук СССР, директором которого был Н. Н. Семенов. Тот самый, что первым описал цепную химическую реакцию. У него Щелкин занимался физикой горения и взрыва. Молодой ученый, занимаясь классической теорией детонации, пришел к выводу, что многие её положения ошибочны и требуют пересмотра. Эти смелые утверждения пришлось подтверждать не только расчетами и формулами, но и многочисленными экспериментами. Вскоре К. И. Щелкин стал признанным авторитетом в области физики взрыва и науки о взрывчатых веществах. Именно поэтому он был назначен заместителем главного конструктора и научного руководителя "Приволжской конторы" (КБ-11) Юлия Харитона. На этой должности он занимался экспериментальной отработкой взрывных систем и устройств автоматики ядерного оружия. К. И. Щелкин своими руками вставил первый детонатор в атомную бомбу 29 августа 1949 года и последним покинул испытательную площадку перед взрывом. Исследуя процессы детонации взрывчатых веществ, он открыл своеобразные явления, которые получили название "детонации Щелкина".
Получив назначение в Челябинск-70, став главным конструктором резервного исследовательско-конструкторского центра с "резервным" номером НИИ-1011, К. Н. Щелкин постарался превратить его в институт широкого профиля, не замыкаться на военной тематике. Пять первых, самых трудных лет становления, он руководил центром, собирал людей и задавал направление работы. Он покинул должность из-за болезни. А вместе с ней покинул и любимое дело. Уехав в Москву, оказался не у дел. Поразительно, как Советское государство разбрасывалось людьми. Выдающегося ученого, трижды Героя, попросту списали, отрешив от большой науки, опутав при этом секретностью, связав ею по рукам и ногам. Он продолжал заниматься физикой на "домашнем" уровне, написал книгу "Физика микромира", но настоящей большой работы ему не хватало. Потом не выдержало сердце... А научные идеи К. И. Щелкина до сих пор продолжают развивать его ученики и последователи.
Творческий настрой в Уральском ядерном центре, заданный Кириллом Щелкиным, поддержал и развил Евгений Иванович Забабахин. На Урал он попал в сентябре 1941 года, поступив в Военно-инженерную академию имени Н. Жуковского, которая разворачивалась тогда на новом месте - в Свердловске. Перед этим командир инженерного взвода Забабахин строил укрепления на Смоленском направлении, а до армии успел закончить техникум и поработать на шарико-подшипниковом заводе.
Конечно, он рвался на фронт, но командование, направляя его на учебу, наверное, понимало, что из молодого офицера должен получиться классный специалист. И Евгений Забабахин не просто старательно учился, а с головой погружался в науку. В 1944 году он с отличием закончил факультет авиационного вооружения. Занимаясь поражающим действием авиабомб, написал диссертацию о сходящихся детонационных волнах. Диссертация капитана Забабахина попала на отзыв в Институт химической физики, где вызвала большой интерес у Якова Зельдовича. Но ещё больше - у работников режимного отдела. "Где вы храните свои рукописи?" - спросили они. "Дома, в комоде," ответил Евгений Иванович, приведя режимников в транс. После соответствующих нахлобучек и объяснений молодого кандидата физико-математических наук откомандировали вместе с рукописями в Арзамас, где имелась надежная охрана. Скоро Е. Забабахин стал "главным газодинамиком объекта". Его роль в решении "проблемы №1" очень велика.
Он прибыл на "объект" в Арзамасе-16 в 1948 году и почти сразу включился в процесс конструирования первой бомбы. Сталин требовал как можно скорей испытать собственное ядерное оружие, поэтому Курчатов распорядился делать копию американской бомбы, опираясь на документы, добытые советской разведкой. Естественно, документы были достаточно общего характера, и всю конструкцию все равно приходилось обсчитывать и прорабатывать заново. И уже в процессе проектирования стали видны недостатки американской конструкции. Но сроки были жесткие, оставили как есть. Но параллельно вырабатывались новые принципы конструкции ядерных зарядов.
Следующая бомба РДС-2 имела уже советскую конструкцию. В ней было использовано предложение Я. Б. Зельдовича, Е. И. Забабахина и В. А. Цукермана по созданию внешнего нейтронного инициатора. Таким образом резко повышались коэффициент полезного действия заряда и мощность взрыва. Бомбу испытали на Семипалатинском полигоне 24 сентября 1951 года. Действительно, КПД поднялся почти в два раза, дав мощность в 38 килотонн. Серия из пяти таких бомб, в три тонны весом каждая, была изготовлена и положена на хранение в арсенал. Советская стратегическая авиация получила на вооружение супероружие.
Атмосфера в Уральском центре сложилась особая. Дело в том, что подавляющее большинство в институте составляла молодежь. Не зря его называли "комсомольским". И это легко объяснимо. Молодых специалистов привлекала не только научная перспектива, но и квартиры. В Арзамасе-16, где народа хватало, молодым в лучшем случае давали комнату. О возможностях карьерного роста нечего и говорить. Здесь не довлел авторитет "стариков", имелась возможность немедленной реализации самых смелых идей. Е. И. Забабахин умело поддерживал творческую атмосферу.
Молодежный коллектив работал очень эффективно. За три первых года работы в НИИ-1011 разработали и испытали 14 зарядов, на основе которых были сконструированы серийные боеголовки к ракете Р-13 и ядерные авиабомбы 245Н и 246Н. Это очень высокие показатели для вновь образовавшегося научного центра.
В 1958 году Н. Хрущев в одностороннем порядке объявил мораторий на ядерные испытания. Это был смелый шал, но, возможно, не вполне продуманный. Запад оставался в состоянии холодной войны. США, Франция и Великобритания продолжали создавать и испытывать новые боевые заряды. Испытание - один из важнейших этапов создания ядерного оружия. Без этого невозможно оценить параметры взрыва и даже просто работоспособность "изделия". Кстати, случалось, что взрыв не получался. Заряд сгорал в замедленной цепной реакции, срабатывал частично или его показатели не совпадали с расчетными.
Америка имела значительное преимущество в количестве ядерных боеприпасов и намеревалась это преимущество наращивать. Советский Союз, находившийся в кольце американских баз, был гораздо слабее и более уязвим. В конечном счете, Н. Хрущев понял, что Америка не намерена прекращать наращивание ядерных сил, и отменил мораторий на испытания. Вслед за этим псоледовал демонстративный взрыв советской супербомбы в 200 мегатонн. Хрущев стучал каблуком по трибуне ООН и кричал: "Если вздумаете на нас напасть, мы вас закопаем!" Первую часть этой фразы на Западе, а с некоторых пор и у нас, цитировать не принято. Противостояние двух мировых систем вошло в самую свою острую фазу и в результате Карибского кризиса едва не переросло в обмен ядерными ударами. Президент Кеннеди знал о своем преимуществе в бомбах и боеголовках, но не рискнул развязать третью мировую войну. Хрущев тоже отступил, убрав советские ракеты с Кубы. Мир опять уцелел не только благодаря здравомыслию политиков, но и благодаря страху перед ответным ударом. А перед советскими атомщиками была поставлена задача достичь ядерного паритета с Соединенными Штатами.
С 1 сентября 1961 года СССР возобновил ядерные испытания. На Новой Земле и под Семипалатинском последовали серии взрывов на земле и в атмосфере. Все, что приготовили ядерщики, срочно испытывалось, чтобы наверстать отставание от Запада, допущенное за три года моратория.
К этому времени в Челябинске-70 уже не только занимались теорией и проектированием, но и непосредственно созданием "изделий". Первое "изделие", не только спроектированное, но и построенное на Урале, было испытано в октябре 1961 года. Оно стало прототипом для авиабомб, довольно долго находившихся на вооружении советской авиации. Всего до конца 1961 года на Семипалатинском полигоне было испытано 9 ядерных зарядов и устройств, разработанных в Уральском центре. На Новоземельский ядерный полигон был совершен пуск баллистической ракеты Р-13 с термоядерным зарядом, разработанным в НИИ-1011 и принятом на вооружение РВСН. Испытание прошло успешно. Там же испытывались новые термоядерные заряды в авиабомбах типа 245. Всего на Новой земле испытали 5 уральских "изделий". Тогда же была отработана сверхмощная авиабомба типа 202 в 100 мегатонн тротилового эквивалента, созданная по предложению академика А. Д. Сахарова.
Но из этих 14 испытаний в 6 случаях был получен отрицательный результат. Все это были новые разработки, и заряды взорвались в нерасчетном режиме. Во время взрывов физические процессы протекали совсем не так, как рассчитывали физики-теоретики. Это стало серьезной неудачей всего института. Если бы не бесполезный хрущевский мораторий, то при плановых испытаниях вовремя проявились бы ошибочные направления. А так оказалось, что время и средства, потраченные на развитие новых идей, суливших заметное увеличение энергии взрыва, пропали зря. Конкуренты из Арзамаса-16 ликовали: "Все заледенело и не забабахнуло". Смеялись над Забабахиным и Леденёвым, назначенным директором центра после смерти Васильева.
Горечь столь масштабного поражения слегка подсластили удачные испытания боеголовки для баллистической ракеты УР-200, сделанной в конструкторском бюро академика В. Н. Челомея. Термоядерный заряд в ней не отличался оригинальностью, зато новой была его компоновка, позволившая втиснуть в ограниченное пространство боеголовки мощный заряд. Это позволяло создать разделяющуюся головную часть с тремя зарядами. Но работы по этой ракете не были доведены до конца, и идея разделяющихся боеголовок была отложена почти на десять лет.
В 1962 году испытания продолжались не менее интенсивно. В августе и сентябре было взорвано 30 ядерных зарядов и устройств, спроектированных и изготовленных в Уральском центре. 15 испытали на Новой Земле, столько же на Семипалатинском полигоне. Последнее испытание этого года произвели 24 декабря. Этот термоядерный взрыв стал последним в Советском Союзе, произведенным в воздушной среде. Больше мы не отравляли нашу землю радиоактивными осадками.
Термоядерный заряд, разработанный в НИИ-1011 имел общую массу 10 тонн и размещался в корпусе авиабомбы 202Н. 24 декабря, в день зимнего солнцестояния, когда в Заполярье стояла сплошная ночь, бомбу сбросили с самолета на мыс Бурливый архипелага Новая Земля. Наземной аппаратуры на этом участке не было, и все параметры снимались самолетами-лабораториями. Согласно замерам энерговыделение термоядерного взрыва точно соответствовало расчетам уральских ученых.
Об этом событии написал в своих воспоминаниях академик А. Д. Сахаров. Дело в том, что он активно выступал против испытания этой бомбы, сделанной на Урале. Почти такой же заряд был спроектирован и построен в Арзамасе-16 под его руководством, и конфликт здесь объяснялся не только элементарной научной ревностью или конкуренцией двух "контор". Идея подобного заряда была впервые предложена в Челябинске-70 группой физиков в составе Е. Н. Аврорина, А. А. Бунатяна, Б. М. Мурашкина, М. П. Шумаева, Л. П. Феоктистова, а уже потом сотрудником А. Д. Сахарова Б. Н. Козловым в КБ-11. Но задание на разработку получили оба института и "изделия" получились сходными. Но одно существенное различие имелось. Уральский заряд был на 8% тяжелее за счет усиления прочностных характеристик конструкции. Госкомиссия приняла решение об испытаниях обоих зарядов. А. Д. Сахаров решительно выступал против, доказывая, что уральское "изделие" испытывать не стоит. Сначала он пытался добиться от руководства НИИ-1011 отказа от испытаний, но ничего не добился. Потом с этой же просьбой обратился к министру Е. П. Славскому. Но испытания никто не отменил. Энерговыделение "арзамасского" заряда опрелили в 20 мегатонн, "уральского" - 19 мегатонн. Пятипроцентная разница, в принципе, могла возникнуть из-за элементарной погрешности апаратуры, достигавшей в то время 10%. Да и самолеты-лаборатории весьма отличаются от стационарных измерительных комплексов, которые можно размещать непосредственно в точке подрыва. Ссылаясь на эту разницу в одну мегатонну, А. Д. Сахаров в своих выступлениях на научно-техническом совете и заключительном совещании у Н. С. Хрущева продолжал доказывать, что он был прав и испытания "уральского" заряда были ни к чему. Во многом благодаря своему авторитету он продавил принятие на вооружение "арзамасского" заряда. А спустя десяток лет, когда остро встал вопрос о боеголовках для баллистических ракет подводного базирования, выяснилось, что этому заряду как раз не хватает механической прочности. При подводном старте и затем при тормозящем вхождении в плотные слои атмосферы его сохранность и боеспособность не гарантируются.
В 1960 году основатель Челябинска-70 Кирилл Иванович Щёлкин по состоянию здоровья покинул свое детище. Он совмещал две должности Научного руководителя и Главного конструктора. Научным руководителем после его ухода стал Евгений Иванович Забабахин, а на должность Главного конструктора по рекомендации Щелкина он пригласил Бориса Васильевича Литвинова. Б. В. Литвинову в то время было всего 32 года и он к тому же не состоял в КПСС. Лет пятнадцать спустя с такой анкетой его бы и близко не подпустили к столь высокой должности, а тогда ещё было можно.
В ядерные проблемы Б. В. Литвинов окунулся ещё студентом, когда приехал в Арзамасс-16 делать диплом. Диплом стал его первой научной работой. Спустя двадцать лет эта дипломная работа была опубликована в американском ядерном центре в Лос-Аламосе, как весьма актуальная. Это лишний раз подтверждает его рано проявившиеся способности, умение видеть далеко вперед и ставить перед собой сложнейшие задачи. Начав с экспериментальной работы над своим дипломным проектом, Б. В. Литвинов нащупал новый путь построения ядерного заряда. С самого начала молодому ученому, фактически ещё студенту, был предоставлен специальный каземат для взрывных работ, оборудованный сложнейшей лабораторной аппаратурой, а в помощь приданы два юных ассистента. По мере расширения экспериментов группа постепенно разрасталась. Б. В. Литвинову удалось заинтересовать своей идеей теоретиков, расчетчиков, конструкторов. Он делал доклады о ходе своих работ на научно-техническом совете, и постепенно эта работа перешла из экспериментальной в практическую плоскость. В результате получилось "изделие", которое успешно прошло испытания.
Понятно, почему Е. И. Забабахин пригласил молодого перспективного ученого. Также понятно, почему того не стали удерживать в "Приволжской конторе", ведь он мог вытеснить кое-кого из "стариков". Но сам Б. В. Литвинов не считал себя готовым к столь высокой должности. Он в это время занимал должность всего лишь заместителя начальника сектора, до Главного целая лестница из высоких служебных ступеней. Но после отмены одностороннего моратория и принятия решения о возобновлении ядерных испытаний летом 1961 года Б. В. Литвинова вызвали в ЦК КПСС и объявили о новом назначении. На фрондерское заявление ученого, что в партию он вступать не собирается, отреагировали спокойно. "Оттепель" ещё не закончилась, и талантливым ученым дозволялось многое. Впрочем, даже Берия в свое время смотрел сквозь пальцы на подобные выходки физиков.
Но приглашение на должность Главного конструктора столь молодого ученого имело и другую подоплеку. К началу 60-х стало ясно, что главным средством доставки ядерного оружия становятся ракеты. Самолеты с атомными бомбами стали слишком уязвимы для средств ПВО. А разработкой боевых ракет занимались коллективы, костяк которых составляли молодые конструктора. И для взаимодействия с ними требовались столь же молодые ядерщики, которые не будут давить авторитетом и связями в верхах.
В те годы обозначилось одно из основных направлений работы ВНИИТФ миниатюризация ядерных устройств. Если раньше развитие ядерного оружия шло по пути увеличения мощности, глобализации, то теперь встал вопрос о создании зарядов малой мощности для решения тактических задач. Это была серьезная задача, так как малые размеры критической массы заряда и всего изделия в целом резко снижали степень надежности конструкции. В связи с этим предстояло решить большое количество сложных инженерных и технологических задач.
Еще одним важным направлением деятельности ВНИИТФ стали ракетные стратегические комплексы для Военно-Морского Флота, крылатые ракеты, авиабомбы, артиллерийские снаряды. Под руководством Е. Забабахина коллектив центра с этими задачами справился. В 60-е годы на вооружение стали поступать малогабаритные атомные авиабомбы, которые могли доставляться к месту применения уже не стратегическими тяжелыми бомбардировщиками, а сверхзвуковыми штурмовиками и истребителями фронтовой авиации. Были созданы глубинные ядерные бомбы, способные поражать подводные лодки, находящиеся не только на значительной глубине, но и подо льдом.
Немного позже здесь были созданы самый малоразмерный ядерный заряд для артиллерийского снаряда калибром 152 миллиметра, самый легкий боевой блок для разделяющихся головных частей ракет стратегического назначения, самый экономный по расходу делящихся материалов ядерный заряд.
Центр занимается проектированием и обычных вооружений. В его активе более 20 разработок боевых частей для зенитных управляемых ракет класса "земля-воздух", ракет "воздух-земля" и противоракет.
Особая глава в истории Уральского центра - разработка специализированных ядерных зарядов с регулируемой мощностью, малыми габаритами и малым количеством остаточного трития. Это промышленные термоядерные устройства повышенной "чистоты", использовавшиеся при гашении пожаров на аварийных нефтяных и газовых скважинах, для создания подземных резервуаров и коллекторов, для геологической сейсморазведки.
Термоядерный заряд для мирного, промышленного, использования создать сложней, чем для военных целей. Главное условие - минимальное количество осколков деления и остаточного трития. И такой заряд создан в ВНИИТФ. Он создан теоретиком Аврориным, а Главным конструктором, естественно, стал Литвинов. Заряд достаточно чистый в плане радиоактивного заражения местности, хотя его ещё можно совершенствовать. Впрочем, смысла нет, так как использование ядерных взрывов в мирных целях по предложению6 американцев тоже запрещено. Они существенно отставали от наших ученых в этих разработках, потому и возражали против подобной практики.
Впервые в народно-хозяйственных целях ядерные заряды взорвали под землей с целью погасить аварийные нефте-газовые фонтаны. Иногда мощные фонтаны горят годами, миллионы тонн ценнейшего природного сырья превращаются в сажу, которая загрязняет огромные площади. Такие сильные пожары может погасить только ещё большая сила. Взрывы для гашения горящих фонтанов используются давно, но обычно это взрывы наземные, когда на огонь выбрасывается большая масса земли. Подземный ядерный взрыв позволяет передавить скважину на глубине и прекратить выброс газа.
Первопроходцами здесь стали специалисты Арзамаса-17, погасившие фонтан на месторождении Артабулак штатным боевым зарядом. Уральским ученым из ВНИИТФ досталась аварийная скважина на другом среднеазиатском месторождении - Памук. Особенность её состояла в том, что газ не только вырывался фонтаном, но растекался подземными горизонтами и вы ходил наружу в самых разных местах. Посовещавшись, уральцы решили создать специальный заряд, чтобы в дальнейшем это "изделие", став серийным, могло использоваться для решения различных промышленных задач. Такой заряд вскоре был создан и испытан на полигоне. После этого его доставили на место и опустили в специально пробуренную скважину. Взрыв мощностью 30 килотонн перекрыл выход газа. Толчок ощущался в Бухаре и Карши как небольшое землетрясение.
Были проведены эксперименты на отработанных нефтяных месторождениях. С помощью глубинного взрыва пытались повысить их нефтеотдачу. Результаты обнадеживали, но эксперименты пришлось прервать. В 1976 году был заключен договор, разрешавший только камуфлетные взрывы, то есть производимые на большой глубине под землей, что полностью исключало выход радации. А вот взрывы у поверхности запрещались полностью, хотя в Челябинске-70 уже были созданы заряды, имевшие минимальную остаточную радиоактивность. По сути это были "чистые" бомбы.
Всего в Советском Союзе было произведено 128 взрывов в промышленных целях. Это не только тушение аварийных скважин, но и геофизические - для проведение сейсморазведки, создание подземных резервуаров для газового конденсата, для интенсификации нефтедобычи с глубинных горизонтов. В засушливой зоне Казахстана было создано искусственное озеро, глубина которого достигала ста метров. Имелись обширные планы - отвалка плотин, вскрышные работы на месторождениях в малонаселенных районах, но всем этим планам не суждено сбыться.
Сокращение, а по сути прекращение, оборонных программ и проблемы с финансированием поставили институт в сложные условия. Договора об ограничении и всеобщем запрещении испытаний ядерного оружия ограничили и сузили исследовательские возможности. Сейчас перед учеными и инженерами стоят конверсионные задачи. Как раз для контроля соблюдения договоров здесь были созданы аппаратурные комплексы геофизических исследований и гидродинамических измерений. С их помощью можно отслеживать даже слабые ядерные подземные взрывы.
УРАЛЬСКИЙ СТАРТ
"Зато мы делаем ракеты!" - пелось в веселой песенке застойного времени. Песенка была фрондерская, в некотором роде даже диссидентская, и слова эти звучали с ехидцей. Мол, ракеты делаем, а пылесос приличный слабо. Прошло время, фиги в карманах потеряли свою социально-политическую актуальность, и строчка эта, оторвавшись от контекста приобрела совсем иное звучание. Ну и что, что Малайзия и Сингапур с Тайванем могут весь мир пылесосами и магнитолами завалить? Зато мы делаем ракеты!
Ракетная тема для Запада довольно болезненна. Потому что баллистическая ракета - это средство доставки ялерного оружия. Или, в зенитном варианте, средство поражения чужих средств доставки - самолетов, ракет, кораблей, подводных лодок. Да, мы делали ракеты, запускали в космос корабли, и весь мир мог увидеть и оценить наш оборонный потенциал.
Но путь к космическим высотам оказался тернист. Более того, мы рисковали навсегда отстать от Америки в этом вопросе. А начиналось все замечательно. Именно в России, в Калуге жил учитель Константин Циолковский, на чьих идеях стоит современная космонавтика, каким бы чудаком его ни пытались представить недалекие "публицисты". А ещё имелась целая плеяда талантливых энтузиастов реактивного движения. В 1930-е годы были разработаны несколько образцов ракет с жидкостными реактивными двигателями. Но, естественно, под утопическую на тот момент идею покорения космоса никто денег не дал, зато на научные изыскания в военных целях ассигнования отпускались. Поэтому наш рассказ надо начинать с создателей легендарной "катюши".
Было их шестеро. Николай Иванович Тихомиров (1860-1930) - организовал Газодинамическую лабораторию (ГДЛ) и решил проблему устойчивого горения бездымного пороха в ракетной камере.
Борис Сергеевич Петропавловский (1898-1933) - возглавил газодинамическую лабораторию после смерти Тихомирова, продолжил опытно-конструкторские работы до стадии официальных испытаний.
Иван Терентьевич Клейменов (1899-1938) - начальник ГДЛ с 1932 года, первый начальник Реактивного научно-исследовательского института (РНИИ). Способный организатор, при котором были определены пути развития реактивной артиллерии.
Георгий Эрихович Лангемак (1898-1938) - заместитель начальника и главный инженер РНИИ. Внес самый большой вклад в создание "катюши". Его теоретические исследования и практические разработки позволили довести характеристики реактивного снаряда до уровня, позволившего принять его на вооружение.
Владимир Андреевич Артемьев (1885-1962) - ближайший помощник Н. И. Тихомирова, талантливый изобретатель и конструктор. Его исследования горения пороховых зарядов сыграли существенную роль в разработке реактивных снарядов.
Юрий Александрович Победоносцев (1907-1973) - начиная с 1934 года работал над созданием реактивной артиллерии, провел важнейшие исследования по внешней и внутренней баллистике реактивных снарядов.
К 1937 году были практически отработаны реактивные снаряды РС-82 (калибр 82 мм) и РС-132 (калибр 132 мм). Успешно велись проектно-конструкторские работы по темам: ракетный истребитель-перехватчик, крылатая ракета весом 150 кг с дальностью полета 50 км, управляемая (!) крылатая ракета класса "воздух - воздух". Можно предполагать, что за четыре года, остававшиеся до начала войны, в РНИИ было бы создано принципиально новое эффективное оружие. Ведь конструировали это люди, которые потом в считаные годы вывели Россию в космос.
Но в 1938 году начались аресты среди руководства и ведущих сотрудников. Делалось это по доносам очень посредственного, а, может, и попросту бездарного инженера Костикова. Были расстреляны Лангемак и Клейменов, посажены будущие академики В. П. Глушко, С. П. Королев и др. Костиков стал начальником института. Он запатентовал установку залпового огня, к созданию которой не имел ни малейшего отношения, и начал "руководить". Когда началась война, стало понятно, что Реактивный институт с 1938 года не создал ничего, истратив при этом огромные средства. Было принято решение о снятии Костикова, но тут под Оршей батарея реактивных минометов капитана Флерова дала первый боевой залп по фашистам. Впервые с начала войны гитлеровцы бежали с поля боя, бросая горящую технику. Костикову присвоили звание Героя Социалистического труда за оружие, авторство которого он присвоил. Но в 1944 году его все-таки сняли с должности "за развал работы, граничащий с преступлением". Но ворованная слава опять спасла его. Отсидев два месяца, Костиков вышел на волю и мирно скончался в 1950 году в звании генерал-майора, будучи членом-корреспондентом и Героем. И по сию пору иногда всплывает на страницах книг и газет как изобретатель "катюши".
А тем временем в Германии шло бурное развитие ракетных технологий. По Версальскому договору Германия не могла иметь артиллерию, но в нем ничего не было сказано о ракетах. А ракета с жидкостным реактивным двигателем, по крайней мере, теоретически могла заменить дальнобойную ствольную артиллерию. В 1929 году в Германии была создана военная лаборатория по разработке ракетной техники. В начале 1930-х году туда пришел первый штатский специалист - 20-летний студент Вернер фон Браун, затем талантливый механик Генрих Грюнов. В 1934 году первые ракеты поднялись на высоту 2000 метров. На перспективные разработки были ассигнованы солидные средства, построен мощный исследовательско-испытательный центр "Пенемюнде". В начале мировой войны уже проводились опытные пуски тяжелых ракет, а потом начались и широкомасштабные боевые пуски. Тысячами запускались крылатые ракеты "Фау-1" и баллистические "Фау-2", причем не только со стартовых площадок, и но и с железнодорожных платформ ("Фау-2"), и с самолетов-носителей ("Фау-1"). Испытывалась также твердотопливная ракета "Рейнботе" длиной более 11 метров. Примерно 20 таких ракет было выпущено в ноябре 1944 года по Антверпену. Прошла испытания и была готова к серийному производству зенитная ракета "Вассерфаль", другую подобную ракету "Тайфун" не успели завершить. Были и другие проекты.