Без огня не было бы человека. Того человека, который расщепил атом, достиг Луны и вычислил путь Земли среди звезд. Но уже в следующем веке огонь, который согревал человека на протяжении тысячелетий, погаснет. Оценки экспертов различаются лишь сроками: одни называют начало, другие — конец XXI века, но все они согласны в главном: запасам органического топлива на Земле приходит конец. Это — очень всерьез и надолго, хотя сегодня большая часть людей еще не успела привыкнуть к такому повороту истории.
Наша надежда и наше обозримое будущее — это атомная или, точнее, ядерная энергия. Не прошло еще и полувека с тех пор, как человек овладел энергией ядра,— по существу, все мы — современники этого события. При общей краткости человеческой жизни для нас это — редкая и неповторимая удача: со времен приручения древнего огня в истории человека не было события более важного, чем открытие «атомного огня». Поэтому овладение атомной энергией — не просто еще один эпизод в длинной череде научных открытий, это решительный перелом в развитии нашей цивилизации. Его значимость до сих пор не осмыслена не только людьми неискушенными, но даже частью интеллектуальной элиты.
Хотим мы этого или боимся — дальнейшая судьба человечества зависит от расщепленного атома: либо мы его обуздаем, либо он уничтожит нас — третьего выхода не остается. Дилемма эта вполне реальна и слишком важна, чтобы оставить ее решение на усмотрение сугубых специалистов — будь то ученые-атомщики, кадровые военные или профессиональные политики. Поэтому каждый человек должен иметь грамотное и свое представление о сущности физических процессов, от которых отныне зависит его жизнь, — точно так же, как он представляет себе теперь природу огня и молнии.
Как правило, рождение атомной эры связывают с грохотом первого атомного взрыва. Это неправильно: медный гром духового оркестра общепонятен и убедителен, но музыка началась не с него, а с простой мелодии и одной-единственной струны.
Сохранилась удивительная фотография: в комнате с большим окном у стены справа — лабораторный стол с приборами; у стены слева — высокий шкаф с препаратами, из окна в комнату льется свет, а за окном — двор и дорожка в старый парк. Это — лаборатория Вильгельма Конрада Рентгена (1845—1923) в Вюрцбургском университете. В канун рождества 1895 г. (электричества в нынешнем понимании еще нет! Радио и автомобилей — тоже нет!) в этой комнате впервые удалось заглянуть в глубь атома (о ядре еще не знают, электрон откроют через два года, понятие «квант» появится только через пять лет).
Глядя на эту фотографию, трудно поверить, что бесстрастная логика исследований всего через пятьдесят лет неумолимо приведет из этого кабинета на полигон в пустыне Аламогордо и на пепелище Хиросимы и Нагасаки. Не мог знать этого и Нобелевский комитет Шведской академии наук, но все же именно Рентгена он избрал в 1901 г. первым лауреатом Нобелевской премии. Будущее подтвердило правильность его выбора: именно с работы Рентгена началась цепь блистательных открытий, которую Резефорд назвал героическим периодом в истории физики, плоды которого мы сейчас пожинаем.
Ко времени открытия Рентгену было 50 лет, он вел размеренную жизнь немецкого профессора, отличался строгостью суждений и независимостью взглядов. Он был учеником Рудольфа Клаузиуса, а также известного немецкого физика-экспериментатора Августа Адольфа Кундта, школу которого прошли также знаменитые русские физики Петр Николаевич Лебедев и Борис Борисович Голицын. К 1895 г. Рентген был автором 50 научных работ, а его экспериментальный талант был общепризнан в среде профессионалов.
Во времена Рентгена знаменитая трубка Гейслера (трубка Плюккера, Гитторфа, Гольдштейна, трубка Крукса) была известна уже более 40 лет, с ней работали самые выдающиеся физики XIX столетия, и все же природа катодных лучей оставалась невыясненной. Трубку Крукса можно было встретить почти в любой лаборатории, и каждый исследователь менял в ней что-то, чтобы проверить очередную догадку или гипотезу. Только что, весной 1895 г., Жан Перрен собрал катодные лучи в «цилиндр Фарадея» и окончательно установил, что они заряжены отрицательно; в том же году Филипп фон Ленард выпустил их из трубки и определил длину их пробега в атмосфере,— казалось, еще немного — и природа катодных лучей будет разгадана. Их загадку обсуждали повсеместно, и Рентген также не остался к ней равнодушен: он решил повторить некоторые из опытов Ленарда.
Как и сотни исследователей до него, Рентген в своих опытах мог наблюдать красивое желто-зеленое свечение, которое возникало в месте падения катодных лучей на стенку трубки, отклонение этого пятна под действием магнитного поля и т. д. Так продолжалось до того памятного вечера 8 ноября 1895 г., когда Рентген вдруг заметил свечение полоски бумаги, покрытой флуоресцирующей солью бария, которая лежала в стороне от работающей трубки Крукса. Более того, трубка была в это время закрыта непрозрачным картонным футляром.
Рентген не оставил без внимания это случайное наблюдение: он был достаточно зрелым и опытным исследователем, чтобы сразу понять значение своего открытия. Последовало пять недель напряженного труда, в течение которых он велел приносить ему пищу в лабораторию и даже перенес туда свою кровать.
К концу декабря Рентген знал уже все основные свойства открытых им Х-лучей (так он их назвал тогда), включая их значение для медицины. (Позднее, отвечая на вопрос одного из многочисленных репортеров: «Что вы подумали, увидев вспышку флуоресцирующего экрана?» — он в присущей ему грубоватой манере скажет:
«Я исследовал, а не думал».) 22 декабря 1895 г. можно считать началом флюорографии: снимок левой руки госпожи Рентген, полученный в этот день, вошел впоследствии во все книги по рентгеновским лучам. 28 декабря Рентген доложил о результатах своих исследований Физическому обществу и отправил статью с описанием свойств Х-лучей в научный журнал (она была напечатана уже 6 января 1896 г.). Кроме того, по обычаю тех лет, он написал письмо во Французскую академию наук.
Открытие Рентгена вызвало беспрецедентный и повсеместный интерес среди ученых и широкой публики: достаточно сказать, что статью Рентгена в течение нескольких недель издали пять раз отдельной брошюрой и перевели на несколько языков. Только в течение 1896 г. было опубликовано свыше 1000 научных работ и около 50 книг, посвященных изучению свойств Х-лучей, а в медицинской практике Х-лучи стали использовать уже через несколько недель. Сразу же были «открыты» F-лучи, N-лучи, лучи Блондло и т. д.
Газеты немедленно подхватили и разнесли сенсацию, и вскоре некая английская фирма начала рекламировать нижнее белье, защищающее от Х-лучей, в сенат одного из североамериканских штатов внесли законопроект о запрещении использования Х-лучей в театральных биноклях, а самого Рентгена уже в середине января вызвали ко двору кайзера для демонстрации открытых им лучей. Публичные показы нового явления проводились повсеместно, на них ходили, как в театр, при виде человеческих костей на экране в публике случались истерики и обмороки. В мае 1896 г. знаменитый Эдисон построил в Нью-Йорке демонстрационный аппарат, который позволял каждому посетителю увидеть тень от костей своей руки. (Этот опыт окончился трагически: демонстратор Эдисона умер от тяжелых ожогов. Вероятно, и для самого Рентгена работа с Х-лучами не прошла бесследно: четверть века спустя он умрет от рака.)
Вспыхнули и споры о приоритете: на открытие рентгеновских лучей со свойственной ему агрессивностью претендовал Ленард (он умудрился до конца жизни сохранить враждебность к Рентгену), нашли даже фотографию в рентгеновских лучах, полученную в Америке за пять лет до Рентгена, вспомнили и Крукса, который жаловался на потемнение фотопластинок, лежащих вблизи работающей трубки. Но, как всегда в таких спорах, претенденты на открытие забыли, что в свое время они говорили и писали не совсем то и далеко не так, как это стало возможным после открытия Рентгена.
Весть об открытии таинственных Х-лучей, которые беспрепятственно проходят сквозь все предметы и даже позволяют заглянуть внутрь человеческого тела, распространилась чрезвычайно быстро. Уже 20 января 1896 г. Анри Пуанкаре зачитал письмо Рентгена на очередном заседании Французской академии, в тот раз чрезвычайно многолюдном. Член Академии Анри Антуан Беккерель (1852—1908) также присутствовал в зале, сидел в первых рядах и внимательно слушал сообщение. После прочтения письма он спросил Пуанкаре, что тот сам думает о природе Х-лучей. Пуанкаре отвечал, что, вероятнее всего, они возникают в ярком флуоресцирующем пятне, которое образуется в месте падения катодных лучей на стеклянную стенку трубки Крукса.
Люминесценция (и ее частный случай — флуоресценция) встречается в природе повсеместно: это и свечение экрана телевизора, и свет гнилушек, и мерцание светлячков южной ночью, и северное сияние в полярной ночи. Естественно, что научный интерес к ней возник по крайней мере за 300 лет до опытов Рентгена.
Для Анри Беккереля всё связанное с флуоресценцией было родным в самом точном значении этого слова: это явление изучали его отец Александр Эдмон Беккерель (1820—1891) и дед Антуан Сезар Беккерель (1788—1878), и Анри не нарушил традиции, посвятив свою жизнь его исследованию. (Впоследствии он продолжит еще одну семейную традицию: в 1908 г., незадолго до смерти, станет президентом Французской академии.)
В Музее естественной истории, профессорами которого последовательно были все Беккерели, хранилась великолепная коллекция флуоресцирующих минералов, собранная на протяжении жизни трех поколений, и уже на следующий день после заседания Академии Анри Беккерель смог приступить к своим исследованиям. (Для этого ему понадобились еще и фотопластинки, приготовление которых в то время требовало немалого искусства. Однако и здесь его выручила семейная традиция: отец много занимался использованием фотографии в астрономических исследованиях, в частности ему принадлежат первые цветные фотографии солнечного спектра.) Ход мыслей Беккереля был прост и логичен: Х-лучи возникают в флуоресцирующем пятне катодной трубки; весьма вероятно, что они каким-то образом связаны с явлением люминесценции; следовательно, надо проверить, не излучаются ли Х-лучи минералами, обладающими свойством флуоресценции.
Идея его эксперимента была также предельно проста: надо взять фотопластинку, завернуть ее в черную бумагу, положить на нее минерал, выставить все это на солнечный свет и через некоторое время проявить фотопластинку. Если Х-лучи действительно возникают в процессе флуоресценции минерала, то они засветят фотопластинку — черная бумага для них не преграда.
Из своей богатой коллекции минералов Беккерель для задуманного опыта выбрал почему-то довольно редкую соль урана (возможно потому, что его отец посвятил много лет изучению именно этой соли, а быть может, просто по той причине, что лет 15 назад он эту соль собственноручно приготовил). А дальше все происходило именно так, как он предполагал и ждал: фотопластинку в черной бумаге с лежащей поверх нее солью урана он выставлял на балкон, держал ее там несколько часов под солнцем и после проявления фотопластинки на ней проступали очертания кристаллов соли урана.
24 февраля Беккерель доложил Французской академии о результатах своих первых опытов, которые как будто подтверждали гипотезу Пуанкаре. Доклад вызвал сочувствие и интерес слушателей, и было решено, что на следующем заседании, 2 марта, Беккерель сообщит о своих новых опытах. Как нарочно, 26 февраля испортилась погода и весь конец недели в Париже было пасмурно. Беккерель досадовал, но делать было нечего, и приготовленные для опытов фотопластинки с лежащими на них кристаллами урановой соли три дня пролежали без движения в ящике письменного стола.
В воскресенье, 1 марта 1896 г., Беккерель пришел в лабораторию. Над Парижем по-прежнему висела густая облачность. Назавтра в Академии ему предстоял доклад, а докладывать было решительно нечего. По этой ли или по какой другой причине он решил проявить хотя бы те фотопластинки, которые лежали у него в ящике стола в ожидании солнца. Трудно сомневаться в том, что Беккерель испытал счастливое волнение первооткрывателя, когда увидел на них отчетливые отпечатки кристаллов урановой соли, значительно более резкие, чем те, которые он получал при многочасовых облучениях кристаллов на солнечном свету.
Каждое большое открытие складывается из важных, часто утомительных мелочей, и лишь после того, как ощупью проделана вся подготовительная работа и планомерно изучены детали, счастливая вспышка случая может на мгновение осветить контуры целого. Но только истинный естествоиспытатель в этот краткий миг успевает правильно разгадать замысел природы. Подробности картины, внезапно открывшейся ему, дорисовать обычно несложно: с этим может справиться любой достаточно грамотный исследователь.
Впоследствии дотошные историки науки доподлинно установят, что еще за тридцать лет до Беккереля два исследователя Н. де Сен-Виктор и Л. Арнодон, наблюдали потемнение фотопластинок под действием солей урана. Однако ни они, ни три других современника Беккереля, которые поторопились сообщить о наблюдении рентгеновских лучей, излучаемых флуоресцирующими минералами, так и не стали первооткрывателями нового явления природы. Мотивы, по которым Беккерель решил проявить необлученные фотопластинки, могут быть различными, незначительными, чисто случайными, они могли прийти на ум любому из исследователей. Но не случайно то, что именно Беккерель сделал правильные выводы из неожиданных и непонятных фактов: он сознательно искал свое открытие и — главное — был к нему готов.
2 марта 1896 г. Беккерель сделал в Академии краткое сообщение о своих опытах. Еще через полгода он имел перед собой первую достаточно полную картину нового явления природы. Беккерель выяснил, что:
аналогичное действие на фотопластинку оказывают лишь те минералы из его коллекции, которые содержат уран;
действие это не зависит от вида минерала, а только от количества урана в нем;
эффект никак не связан с явлением люминесценции: чистый металл уран, не обладающий этим свойством, действует на фотопластинку точно так же (и даже сильнее), как и его флуоресцирующая соль.
23 ноября 1896 г. Беккерель доложил о результатах своих исследований Французской академии наук. Из них следовало, что уран испускает не известные ранее лучи (их быстро окрестили «урановыми» или «беккерелевыми»), которые аналогично Х-лучам Рентгена действуют на фотопластинку и ионизируют воздух. Так было открыто замечательное явление природы, которое Мария Склодовская-Кюри в 1898 г. назовет радиоактивностью.
О жизни Марии Склодовской-Кюри написано много замечательных книг. Еще при жизни ее избрали почетным членом 106 академий и ученых обществ, а недавние опросы показали, что и до сих пор она остается самой почитаемой женщиной мира. Жизнь эта не была богата яркими внешними событиями — она проста и строга, как чистый гармонический тон, и вся она, без остатка, отдана служению науке. Для Марии Кюри наука — не средство и даже не цель, а естественный способ существования. Недаром решение посвятить свою жизнь науке она сравнивала с уходом в монастырь.
Марии Склодовской было 24 года, когда она приехала из Польши в Париж и переступила порог Сорбонны — одно из немногих мест в тогдашнем мире, где женщина могла получить высшее образование. Здесь она встретила Пьера Кюри — человека редкого таланта и благородства, с которым связала свою жизнь и сделала свои главные научные открытия. Она родила и воспитала двух дочерей, одна из которых, Ирэн, впоследствии продолжит и умножит дело жизни своих родителей.
Весной 1896 г. Мария Кюри заканчивала обучение в Сорбонне и тщательно выбирала тему магистерской диссертации. («Выбор темы первого научного исследования — это, как первая любовь,— на всю жизнь»,— говорила она полушутя.) Как раз в это время стали известны первые результаты исследований Беккереля, среди которых ее особенно заинтересовал один: способность «урановых лучей» ионизировать воздух. Интерес этот был не случайным: незадолго до этого ее муж Пьер Кюри вместе со своим братом Жаком изобрели очень удобный и чувствительный электрометр, основанный на явлении пьезоэлектричества (открытого ими же). Работать с электрометром было много проще, чем с фотопластинками, и к тому же он позволял не просто констатировать наличие нового излучения, но и довольно точно измерять его интенсивность. Именно этот количественный подход к явлению радиоактивности позволил Марии Кюри пойти дальше других.
Вначале Мария Кюри хотела найти ответ на простые вопросы: «Только ли уран испускает новые лучи? И если да, то в чем его исключительность?» К тому времени уран был известен уже более ста лет и ничем особым среди других элементов не выделялся: металл как металл, тяжелый, серо-стального цвета, использовали его в то время редко, в основном для окрашивания стекол и керамики в желто-зеленый
цвет. С помощью электрометра Мария Кюри терпеливо проверила на радиоактивность практически все известные в то время элементы (более 80) и вскоре обнаружила, что из них только торий также обладает этим свойством — и даже в большей степени, чем уран (одновременно с нею и независимо этот факт установил также немецкий ученый Эрхард Карл Шмидт (1865—1949)). Это был важный результат, поскольку он сразу же устранял вопрос об исключительности урана: если существует два радиоактивных элемента, то почему их не может быть больше?
После небольшого перерыва в исследованиях (она ждет ребенка), уже через два месяца после рождения Ирэн, в декабре 1897 г., Мария Кюри с новой энергией возвращается к работе. Среди многочисленных химических веществ и минералов ее особое внимание привлекла смоляная обманка из рудника близ Иоахимсталя в Чехии, из которой в то время добывали уран. Радиоактивность смоляной обманки оказалась в четыре раза выше, чем урана, в ней содержавшегося. Это было неожиданно, поскольку химические анализы показали, что торий в смоляной обманке отсутствует. Тогда Мария Кюри предположила (это была смелая, хотя и строго логичная гипотеза), что в смоляной обманке присутствует не известный ранее радиоактивный элемент в количествах, недоступных обычному химическому анализу. Если это действительно так, то его активность должна быть в тысячи раз больше, чем активность урана, который составлял около 30 % от общего веса руды.
16 декабря 1897 г. появляется первая запись Марии Кюри в лабораторном журнале. В марте 1898 г. Пьер Кюри оставил свои работы и присоединился к ней. Уже к 12 мая 1898 г. они были уверены, что открыли новый элемент, который впоследствии получит имя «радий», что означает «луч». В июле они обнаружили в отходах руды еще один радиоактивный элемент, названный ими полонием — в память о родине Марии. Наконец, 26 декабря 1898 г. они доложили о своих результатах Французской академии наук. В то время Мария и Пьер уже могли продемонстрировать слушателям препарат радия, который был в 900 раз активнее, чем равное ему по массе количество урана.
Отныне все мысли Марии Кюри сосредоточились на одном желании: выделить радий в чистом виде. Но как это сделать? Без лаборатории, без помощников, без руды, которая к тому же стоит дорого? Однако ясно осознанное желание, как правило, осуществимо, если оно опирается на сильную волю и готовность к лишениям.
При содействии геофизика Эдуарда Зюсса, тогдашнего президента Австрийской академии наук, австрийское правительство согласилось подарить супругам Кюри тонну урановой смоляной обманки. Удалось найти подходящий сарай, куда свалили эту руду, а также другие десять тонн, которые оплатил миллионер барон Эгмон Ротшильд. Для Марии Кюри начались годы напряженной, однообразной и утомительной работы: изо дня в день, в течение многих лет растворять, выпаривать и снова растворять. Ей пришлось почти вручную переработать 11 т руды и провести только одних кристаллизаций несколько тысяч. Впоследствии Мария Кюри вспоминала: «...открытие радия было сделано в жалких условиях: сарай, в котором произошло это событие, уже овеян легендой. Но эта романтическая подробность не была преимуществом: она поглотила наши силы и замедлила осуществление открытия...»
Это была черная и тяжелая работа, в жару и холод, в старом сарае, без всяких мер предосторожности: счетчик радиоактивного излучения и сейчас продолжает угрожающе щелкать, когда к нему подносят страничку из лабораторного журнала Марии и Пьера Кюри тех лет. «Мы сознавали, что наше здоровье не на высоте, что мы подвергаем его тяжелым испытаниям. Как это случается со всеми, кто знает цену совместной жизни, нас иногда охватывал страх перед непоправимым. Тогда какое-то чувство, быть может просто храбрость, приводило Пьера неизменно к одному и тому же выводу: пусть мы будем казаться бездушными существами, нам все равно надо работать»,— писала Мария Кюри много лет спустя.
Оба они безвременно ушли из жизни: Пьер в 1906 г. был сбит на улице Парижа ломовым извозчиком, Мария умерла в 1934 г. от последствий радиоактивного облучения.
К 1902 г. Мария Кюри выделила из тонны руды несколько десятых долей грамма концентрированного препарата радия, еще три года спустя она имела 0,4 г чистого хлорида радия и лишь в 1910 г., через 12 лет после начала работы, исполнилась ее мечта: она увидела, наконец, серебристо-белую капельку чистого металла радия массой 0,0085 г. Но эта капелька излучала в 3 млн. раз активнее, чем такая же капелька урана.
Научный подвиг Пьера и Марии Кюри был признан во всем мире еще при их жизни: в 1903 г. они совместно с Анри Беккерелем удостоены Нобелевской премии по физике. В 1911 г., уже после смерти Пьера Кюри, Шведская академия наук присуждает Марии Кюри вторую Нобелевскую премию (по химии) — этой чести за всю историю Нобелевских премий удостоены только три исследователя.
Приведенный ниже рисунок появился впервые в 1903 г. в докторской диссертации Марии Кюри. Теперь он вошел во все учебники мира и каждый школьник бойко объяснит, что радиоактивные вещества испускают три типа лучей, которые (с легкой руки Резерфорда) получили название α-, β- и γ-лучей.
Испускание β-лучей еще в 1898 г. обнаружил Беккерель, позже было показано, что их свойства совпадают со свойствами катодных лучей, то есть они представляют собой поток быстрых электронов (электрон — очень кстати — был открыт в предыдущем году). Два года спустя французский ученый Поль Вийяр (1860—1934) установил, что одним из компонентов «урановых лучей» являются γ-лучи, свойства которых оказались подобными Х-лучам Рентгена. В январе 1899 г. Резерфорд обнаружил третий компонент — α-лучи неизвестной дотоле природы. В наше время даже школьники знают, что α-лучи — это «просто» ядра гелия, но, чтобы доказать этот факт, в то время даже таким людям, как Резерфорд, Содди и Рамзай, потребовалось не менее пяти лет работы.
В чем состояла сложность задачи? Прежде всего, такого понятия, как «ядро атома», тогда еще не изобрели: оно появится только через 11 лет. И хотя электрон уже два года как был известен, само существование атомов не было в то время строго доказано: опыты Перрена будут поставлены лишь 9 лет спустя. Отголосок трудностей тех дней мы чувствуем даже сейчас, при попытке последовательно изложить историю открытий радиоактивности. В самом деле, как мы хорошо теперь знаем, все эти явления относятся к области ядерной физики, а нам приходится анализировать их, тщательно избегая употребления слова «ядро».
В год открытия радия Эрнест Резерфорд был докторантом знаменитого Дж. Дж. Томсона в лаборатории Кавендиша. Узнав об открытиях Беккереля и Кюри, он оставляет свои исследования ионизации газов и уже осенью 1898 г. завершает большую работу по изучению радиоактивности урана. Вскоре он переехал в Канаду, возглавил в Монреале кафедру физики университета Мак-Гилла и с присущими ему энергией и размахом занялся всесторонним изучением нового явления. В отличие от Марии Кюри, которая сосредоточилась на химическом выделении радия в чистом виде, Резерфорда больше всего интересовала физическая природа радиоактивности.
В чем суть явления радиоактивности? Каков ее внутренний механизм? И в чем ее истинная причина? Вот что хотел понять Резерфорд прежде всего.
Для начала он решил изучить свойства α-частиц.
Через три года напряженной работы («Шесть дней в неделю сижу в лаборатории допоздна»,— писал он невесте в Новую Зеландию) Резерфорд был уже почти уверен, что α-частицы — это не что иное, как дважды ионизованные атомы гелия. Он опирался при этом на простой и общеизвестный факт: во всех соединениях урана и тория был обнаружен гелий, причем в больших количествах. Например, из 1 г тория можно прокаливанием выделить около 10 см3 гелия, что примерно в 100 раз превышает объем взятого тория. Гелий, который нашли на Земле за семь лет до этого (кстати, именно в минералах тория), к 1902 г. был уже хорошо изучен, и о нем было известно, что он относится к группе благородных газов и ни в какие химические реакции не вступает. Поэтому объяснить химическими причинами присутствие такого количества гелия в тории не представлялось возможным.
Итак, гелий образуется из радиоактивных элементов. Но что при этом происходит с самими элементами?
Вскоре после приезда в Канаду Резерфорд смог объяснить одно наблюдение своего препаратора: оказалось, что соединения тория выделяют какой-то неизвестный радиоактивный газ, который он назвал «эманацией» (дословно — «то, что выделяется»).
Годом позже Пьер и Мария Кюри наблюдали такую же эманацию радия. Дополнительные опыты показали, что это очень тяжелый газ и что он довольно быстро теряет свою радиоактивность: каждые четыре дня она уменьшается вдвое.
Это была новая загадка: к тому времени радиоактивность уже привыкли считать неизменной характеристикой элемента, примерно такой же, как его атомная масса. Что же происходит с радием? И откуда берутся теперь уже два газа — гелий и эманация радия?
Осенью 1900 г. к Резерфорду присоединился молодой и талантливый химик Фредерик Содди (1877—1956). Вскоре они доказали, что эманация радия — это инертный газ, химические свойства которого подобны свойствам всех благородных газов: гелия, неона, аргона, криптона и ксенона. (Совместно с Уильямом Рэлеем их открыл Уильям Рамзай и в 1901 г. догадался, что в таблице Д. И. Менделеева они образуют особую 8-ю группу с нулевой валентностью.)
Через два года вдохновенной работы (оба они были так молоды тогда: одному 29 лет, другому — всего 23!) Резерфорд и Содди пришли к поразительному заключению: радиоактивность есть не что иное, как распад атома на заряженную частицу (именно ее мы воспринимаем как радиоактивное излучение) и атом другого элемента, по своим химическим свойствам отличный от исходного. Образовавшийся при распаде атом также может оказаться радиоактивным и испытать дальнейший распад.
Это утверждение, известное теперь как гипотеза радиоактивного распада, в то время казалось неожиданным и очень смелым. Посудите сами: только в конце века начали соглашаться (да и то не все!) с тем, что атомы существуют. Но при этом никто не допускал даже мысли о том, что они могут быть изменены, а тем более распадаться самопроизвольно. Это убеждение продолжало многовековую традицию атомистов — от Демокрита до Ньютона и Максвелла, поэтому допущение о распаде атомов означало крутую ломку основных представлений о структуре материи. Кроме того, все это очень смахивало на утверждение алхимиков о возможности превращения элементов, а говорить такое в цивилизованный век было уж и вовсе неприлично. Можно понять поэтому опасения физиков Монреаля в том, что опубликование новых идей о превращении элементов нанесет ущерб научному престижу молодого университета.
Тем не менее дело было сделано, а слово — сказано.
Гипотеза радиоактивного распада, как и всякая плодотворная гипотеза, имела следствия и допускала их опытную проверку. Первую из них осуществил Содди совместно с Уильямом Рамзаем уже летом 1903 г., вскоре после возвращения из Монреаля в Лондон. Идея их опыта была предельно проста: они собирали эманацию радия, которая выделялась из имеющихся у них 50 мг бромида радия, в тонкую стеклянную трубку и, пропуская через нее электрический разряд, наблюдали характерный, ни на что другое не похожий спектр нового элемента. С течением времени, однако, этот спектр слабел, а на его месте все более отчетливо проступал спектр гелия: эманация радия распадалась на гелий и радий А. Участники и очевидцы этого эксперимента даже много лет спустя не могли скрыть волнения, рассказывая о нем,— настолько он поразил их воображение: видеть воочию, как один элемент превращается в другой,— это для физика и химика равносильно тому, как если бы зоолог наяву увидел превращение кошки в собаку. Немного позднее «эманация радия» получит от Резерфорда свое настоящее имя — радон (символ Rn), а Рамзай проявит чудеса экспериментального искусства и, имея всего 0,1 мм3 радона, измерит его атомную массу: она окажется равной 222. Атомная масса радия (226) была измерена Марией Кюри в 1902 г., а атомная масса гелия (4) была определена в работах Рамзая за три года до этого. Теперь гипотезу радиоактивного распада радия по схеме
Ra→Rn + Не
можно было проверить не только качественно, по наблюдению спектров, но и количественно. Действительно, атомная масса радия 226 = 222 +4 оказалась в точности равной сумме атомных масс радона и гелия. После такого доказательства гипотезу радиоактивного распада можно смело переводить в ранг научной истины.
Довольно скоро установили, что все радиоактивные элементы распадаются с определенной скоростью, которая является такой же неотъемлемой характеристикой радиоэлемента, как и его атомная масса. По предложению Резерфорда, с 1900 г. эту скорость принято характеризовать периодом полураспада элемента T1/2, то есть временем, за которое распадается половина исходного количества радиоактивного элемента. Например, период полураспада радона — 3,82 дня, радия — 1600 лет, урана — 4,5 млрд. лет.
Наконец с точки зрения гипотезы радиоактивного распада становилось понятным, почему радий всегда встречается вместе с ураном: по-видимому, он является продуктом его распада. Далее, если радий получается как продукт распада урана, радий порождает радон, последний распадается еще дальше, то должны существовать целые радиоактивные семейства, у которых есть первый элемент (радиоактивный) и последний (стабильный). Все последующее десятилетие было посвящено поискам этих радиоактивных семейств, распутыванию последовательности распадов в них, измерению скоростей распада и т. д. К 1913 г. эта работа была в основном закончена.
Итоговая статья Резерфорда и Содди имела название «Причина и природа радиоактивности». После нее можно было сказать, что теперь природа радиоактивности надежно установлена. Однако причина, по которой атомы радиоактивных веществ самопроизвольно взрываются, эта причина станет понятной только четверть века спустя, после создания квантовой механики. И только через десять лет станет ясной природа Х-лучей, с открытия которых начались исследования радиоактивности.
Вскоре после начала своих исследований Пьер и Мария Кюри заметили, что склянки с концентратами радия светятся в темноте мягким голубоватым светом (этому свечению радий обязан своим названием). «Вот свет будущего!» — говорил Пьер Кюри своим друзьям, не подозревая, насколько он прав. Уже тогда понимали, что наблюдаемое свечение объясняется флуоресценцией, которую вызывает излучение радия в веществе стекла. Но в отличие от обычной флуоресценции, которая быстро затухает после облучения вещества, свечение препаратов радия без видимого ослабления длилось годами. Кроме того, соединения радия были всегда немного теплее, чем окружающие предметы. Все это означало, что радий непрерывно излучает энергию.
В начале 1903 г. Пьер Кюри и Альбер Лаборд измерили количество выделяемой теплоты: оказалось, что 1 г радия за 1 ч выделяет примерно 100 кал (по позднейшим измерениям— 135 кал), то есть теплоту, достаточную для того, чтобы вскипятить 1 г воды или расплавить 1 г льда. Резерфорд, измеряя ионизацию газов под действием радиоактивности, пришел к тому же заключению: радий непрерывно излучает энергию. Эта энергия очень велика: легко подсчитать, что за год 1 г радия выделяет свыше 1 млн. кал, то есть энергию, которая освобождается при сгорании 170 г угля, а при полном распаде 1 г радия выделится огромная энергия около 4 млрд. кал, то есть теплота сгорания 0,5 т угля.
Откуда радий черпает такую большую энергию? На этот вопрос ученые тщетно пытались ответить в течение четверти века. Мнения исследователей разделились: Уильям Крукс, Пьер и Мария Кюри и ряд других ученых склонялись к мысли, что атомы радия работают как трансформаторы энергии, то есть они вначале поглощают энергию волн неизвестной природы, которые пронизывают все сущее наподобие эфира, а затем переизлучают эту накопленную энергию. Другие уподобляли выбрасывание α-частиц процессу испарения молекул. Но в этом случае они должны были бы иметь различные энергии, а Уильям Брэгг в 1904 г. определенно доказал, что это не так: все α-частицы, испускаемые радием, имели одну и ту же, строго определенную энергию. Резерфорд решительно настаивал на внутриатомном происхождении энергии радия и, как показало будущее, был совершенно прав.
Споры о происхождении внутриатомной энергии носили острый, эмоциональный характер и переходили иногда принятые границы корректности в научных дискуссиях. По-видимому, это характерная особенность таких дискуссий — начиная с проблемы «вечного двигателя». Быть может, присущий им эмоциональный накал объясняется важностью проблемы: на добывание энергии человечество всегда тратило около трети своих усилий.
Дифракция и интерференция рентгеновских лучей были открыты в 1912 г. в Мюнхене — и это не случайно. В то время там директором Института физики был Рентген, кафедрой теоретической физики заведовал Зоммерфельд, а Лауэ работал у него приват-доцентом. Все они интересовались рентгеновскими лучами и верили в их волновую природу, правда, по-разному. Сам Рентген полагал, что он открыл продольные колебания эфира, подобные звуковым. Зоммерфельд считал, что Х-лучи возбуждаются при резком торможении электронов, и на основе этой модели даже оценил их длину волны.
В феврале 1912 г. ассистент Зоммерфельда Петер Пауль Эвальд (1888—1985), решая задачу о рассеянии световых волн на пространственной решетке, обратился за помощью к Лауэ. Ответа Лауэ не знал, но при обсуждении задачи ему пришла в голову мысль пропустить через кристалл рентгеновские лучи — мысль сама по себе не новая, поскольку многие, включая самого Рентгена, уже неоднократно этот опыт ставили. Но Лауэ не просто предлагал, он предсказывал. Ход его рассуждений был прост и логичен: «Если рентгеновские лучи — это очень короткие волны, а кристаллы — действительно упорядоченные решетки атомов, расстояния между которыми сравнимы с длиной волны рентгеновских лучей, то при пропускании их через кристалл должна происходить их дифракция и интерференция». Однако оба эти предположения отнюдь не были в то время очевидными и казались многим (включая Планка и Зоммерфельда) «остроумной, но все-таки фантастичной комбинацией идей».
Молодые физики, узнавшие о предложении Лауэ в кафе, где они собирались по средам, были настроены менее консервативно. Один из них, ассистент Зоммерфельда Вальтер Фридрих (1883—1968), сразу же решил проверить гипотезу Лауэ. Зоммерфельд вначале не одобрил его энтузиазма (он поручил ему другую работу), но Фридрих продолжал заниматься этим вечерами, а вскоре, в апреле 1912 г., ему на помощь пришел докторант Рентгена Пауль Книппинг (1883—1935). Совместными усилиями они уже 21 апреля обнаружили явление, которое предсказывал Лауэ и которое почти два десятилетия ускользало от внимания исследователей. Через две недели после получения первых фотографий Лауэ завершил теоретическую картину обнаруженного явления и 8 июня 1912 г. доложил о результатах работы Немецкому физическому обществу. В этот день он продемонстрировал те самые знаменитые лауэграммы кристаллов медного купороса, которые до сих пор неизменно воспроизводятся во всех учебниках атомной физики.
Реакция научного сообщества была мгновенной и бурной. Эйнштейн писал:
«Это самое удивительное из всего, что я когда-либо видел», Уильям и Лоуренс Брэгги немедленно создали свой кристалл-дифракционный спектрометр для определения длин волн Х-лучей (его тут же использовал Генри Мозли в своей знаменитой работе), а Шведская академия наук уже через полтора года присудила Лауэ Нобелевскую премию — случай в ее практике чрезвычайно редкий.
Эта реакция современников сейчас может показаться нам неоправданно восторженной (вспомним: Планк получил Нобелевскую премию в 1918 г., а Эйнштейн — лишь в 1921 г.), но это объясняется, по-видимому, тем, что открытие Лауэ слишком быстро перешло в разряд «очевидных». Даже самому Лауэ его идея впоследствии казалась «настолько само собой разумеющейся», что он «никогда не мог понять удивления, которое она вызвала в мире специалистов». Не следует, однако, забывать, что эта «очевидность» того же сорта, что и «яйцо Колумба» или астрономические открытия Галилея: сотни людей до него держали в руках подзорную трубу, но никому из них не пришло в голову направить ее на небо. Точно так же в Мюнхенском университете, который в течение многих лет был центром кристаллографических исследований, во многих лабораториях можно было постоянно видеть каркасные модели кристаллов, но именно над привычным задуматься труднее всего — для этого необходим элемент гениальности.
Были и другие причины, обусловившие чрезвычайную популярность открытия Лауэ. Прежде всего, оно появилось необычайно вовремя, чтобы окончательно закрепить победу сторонников идеи реальности атомов: как раз в это время Жан Перрен завершал опыты с эмульсиями, Резерфорд предложил планетарную модель атома, а Чарльз Вильсон
построил свою знаменитую камеру, позволявшую увидеть движение атомов. Именно после этой серии открытий Вильгельм Оствальд напишет в 1913 г.: «Атомы стали видимыми!»
И последнее: Лауэ объяснил, наконец, природу открытых Рентгеном Х-лучей и уже одним этим обеспечил себе достойное место в истории физики. (Макс Планк в 1939 г. на юбилее Лауэ говорил, что 1879 г. для науки — особый: в этот год родились Эйнштейн, Ган, Лауэ и на несколько месяцев раньше их — любознательная девочка Лизе Мейтнер...)