Давайте ответим на один вопрос: какой ток, переменный или постоянный, нужен больше людям?
— Конечно, переменный, — ответят многие из вас. — Переменным током освещаются дома, улицы, автомагистрали, он приводит в движение моторы всевозможных станков на фабриках и заводах, заставляет работать блюминги и подъемные краны. Даже в наших домах все электроустройства — утюги, пылесосы, холодильники, телевизоры и приемники — включаются в сеть переменного тока.
Выслушаешь такое мнение и невольно придешь к выводу, что на долю постоянного тока почти ничего не остается, что время, когда он был в ходу, прошло, и сейчас на нем работают только машины и аппараты, перешагнувшие к нам из прошлого века.
А это неправильно.
Что бы случилось, если бы однажды постоянный ток «забастовал», перестал работать на людей.
Прямо нужно сказать, картина получилась бы неприглядная.
Вмиг остановился бы весь городской транспорт. Ни трамваи, ни троллейбусы, ни автомобили без постоянного тока двигаться не могут. В трамваях и троллейбусах, а также в электропоездах установлены моторы-силачи, которые работают только на постоянном токе. В автомобилях, как известно, работают бензиновые двигатели, но они становятся беспомощными, если аккумуляторы перестанут питать постоянным током систему зажигания.
«Забастовка» постоянного тока тяжело отразилась бы и на промышленности.
Остановились бы электрокраны и другие подъемные механизмы, погасла бы дуга в электрических печах, выплавляющих алюминий, мощные электролизные установки перестали бы производить металлы — магний, бериллий, медь и др.
В общем, трудно перечесть все неприятности, которые принесло бы людям «исчезновение» постоянного тока.
Даже те электрические устройства, которые получают свой «паек» из сети переменного тока, — например, киноустановки, приемники, телевизоры и др., — тоже отказались бы работать.
В кинопроекционном аппарате, как вы знаете, дуга, освещающая экран, питается постоянным током, в приемниках и телевизорах радиолампы и кинескопы выполняют свои обязанности только в том случае, когда на их электроды подано постоянное напряжение нужной величины.
Откуда же берется это постоянное напряжение в устройствах, которые вы включаете в сеть переменного тока?
От вмонтированных внутрь выпрямителей, преобразующих переменный ток в постоянный.
Современная техника располагает целым набором выпрямителей различных типов — механических, твердых, жидких, электронных и… плазменных. Последние часто называются ионными, или газовыми, выпрямителями.
О них и поговорим сейчас.
Плазменные выпрямители тока по устройству и размерам бывают разные. Есть среди них такие, рост которых превышает метр, а есть совсем малютки, умещающиеся на ладони ребенка. Все зависит от того, где тот или иной выпрямитель применяется.
Для питания постоянным током моторов электропоездов, трамваев, троллейбусов, плазменных установок для получения удобрений из воздуха, в дуговых печах нужны выпрямители мощные, способные «выдать» ток большой силы. С этой работой, как правило, хорошо справляются ртутные дуговые выпрямители.
На рисунке показан разрез ртутного выпрямителя. В стеклянную колбу, из которой выкачан воздух, налита ртуть. Это — катод. Второй электрод — анод — спрятан в стеклянном рукаве — отростке. Сделано это для того, чтобы на него не попадали брызги ртути, когда в колбе возникнет дуга. Рядом с катодом есть еще один электрод. Это зажигающий, или дежурный, электрод.
Когда на главные электроды подано переменное напряжение, разряд в колбе не начинается — нет паров ртути, которые могли бы переносить заряды. Для зажигания дуги нужно наклонить колбу так, чтобы ртуть соединила катод и зажигающий электрод. Во время этого короткого замыкания возникает разряд между катодом и дежурным электродом. От нагрева появляются пары ртути, и разряд перекидывается на анод. Это и нужно для начала работы выпрямителя.
Выпрямитель — это дверь, открывающаяся в одну сторону. К его электродам подводится переменное напряжение, но ток между этими электродами не мечется туда и обратно, а протекает только в одном направлении. Это бывает тогда, когда на аноде оказывается плюс, а на катоде минус, то есть в положительный полупериод переменного тока.
Выпрямленный ртутным выпрямителем ток хоть и течет в одну сторону, но по своей величине постоянно пульсирует, меняется. Чтобы это ликвидировать, «пригладить» ток, сделать его ровным, применяют специальные устройства — фильтры. Простейший фильтр состоит из катушки индуктивности, через которую проходит весь ток, и конденсатора, включенного параллельно выходным зажимам выпрямителя.
«Исправленный» фильтром постоянный ток расходуется затем по назначению.
Возможно, вам придется услышать слово «игнитрон». Что это за прибор?
Это ртутный выпрямитель, обычно довольно мощный, в котором зажигание разряда происходит особенно. У игнитрона нет отдельного рукава для поджигающего электрода. Это электрод, изготовленный из карборунда, «плавает» в ртути. Карборунд — плохой проводник тока. Когда выпрямитель подключают к сети и на поджигающий электрод поступит напряжение, между ним и ртутью вспыхивает дуга, которая испарит часть ртути и даст возможность выпрямителю работать нормально.
Таким образом, игнитрон не нужно наклонять в начале работы, как это делают с обычным ртутным выпрямителем.
Ртутные выпрямители и игнитроны, внутри которых неутомимо работает дуга, применяются тогда, когда нужно получить целые реки выпрямленного тока. Этот ток должен быть в состоянии вращать колеса трамваев и электропоездов, плавить глинозем и отбирать у него алюминий, поднимать грузы на многометровую высоту.
В устройствах, в которых нет нужды в таком мощном постоянном токе, применяются другие выпрямители. Среди многочисленного семейства маломощных выпрямителей можно встретить и плазменные. В этих выпрямителях трудится уже не дуга, а более экономный тлеющий разряд или дуга низкого напряжения.
Широкое распространение получили плазменные выпрямители — газотроны.
В стеклянном баллоне газотрона под небольшим давлением находятся пары ртути или инертные газы. Катод у этого прибора особенный: в нем имеется спираль, которая его сильно нагревает. Благодаря такому подогреву из катода вылетает много электронов.
Когда на аноде газотрона оказывается плюс, эти электроны устремляются к аноду, ионизируют газ, и через лампу идет ток. В обратный полупериод, когда анод оказывается заряженным отрицательно по отношению к катоду, тока нет, так как электроны тормозятся электрическим полем.
И здесь, как мы видим, разряд может возникать только в виде отдельных импульсов, при этом ток течет лишь в одну сторону.
Кроме газотронов, есть еще выпрямители переменного тока, в которых тоже «работает» низковольтная дуга. Это тиратроны. От газотронов они отличаются тем, что в них между катодом и анодом помещена металлическая сетка. Заряжая эту сетку отрицательными зарядами разной величины, можно изменять начало возникновения разряда, или, иными словами, раньше или позже открывать «дверь» — лампу для пропускания зарядов. Чем меньший отрезок времени через тиратрон течет ток, тем меньшей величины будет выпрямленное напряжение.
Это обстоятельство позволяет регулировать величину напряжения.
Тиратронные выпрямители широко применяются в радиотехнике, например, в мощных передатчиках.
Вспомнился мне один случай.
Пришел ко мне как-то сосед-фотолюбитель и пожаловался на странное поведение приборчика, который он сконструировал. Этот электронный прибор называется дозатором времени.
Предположим, для получения хорошего снимка требуется, чтобы лампа фотоувеличителя была включена в течение семи секунд. В темноте трудно следить за секундной стрелкой часов. Эту заботу берет на себя дозатор. Фотограф устанавливает переключатель на цифру «7» и включает фотоувеличитель. В дозаторе тотчас начинает заряжаться конденсатор. Как только напряжение на конденсаторе достигнет нужной величины, схема срабатывает и реле мгновенно разрывает электрическую цепь.
Лампа фотоувеличителя гаснет.
Но у моего соседа дозатор времени преподносил сюрпризы. Если им пользовались днем, он работал точно. Вечером же он почему-то «растягивал» секунды, выключал лампу позднее, чем это было нужно. А дело заключалось в том, что на работу дозатора времени влияло поведение напряжения электрической сети. Днем сравнительно мало берется электрического тока из сети, напряжение ее нормальное — 127 вольт. Вечером зажигаются тысячи электроламп, сотни приемников и других устройств. Напряжение электрической сети падает. На глаз это падение почти незаметно. А точные приборы, такие, как дозатор времени, начинают работать более лениво, допускают ошибки.
Поэтому соседу-фотолюбителю я посоветовал поручить заботиться о нормальной работе дозатора плазме.
Он так и сделал. Купил в магазине радиолампу — стабилизатор напряжения, установил ее в своем дозаторе, и все пошло хорошо.
Стабилизатор напряжения, или стабилитрон, — это газоразрядная лампа, внутри которой трудится тлеющий разряд.
Устройство ее несложно. В стеклянном баллончике смонтировано несколько тонких металлических цилиндров разных диаметров, цилиндры вставлены друг в друга. Вместо воздуха в баллон накачан газ неон.
Посмотрим, как стабилитрон поддерживает напряжение на одном уровне.
Это легко понять из рисунка, на котором показан разрез стабилитрона и дана схема его включения.
Как видно из рисунка, стабилизируемое напряжение подается на внутренний и наружный цилиндрики. В лампе возникает тлеющий разряд.
Расстояние между цилиндрами стабилитрона невелико, поэтому положительного столба разряда нет, а существуют только катодные части разряда. В этом отношении стабилитрон похож на плазменные источники света, использующие катодное свечение разряда.
Ввиду того что в цепь включено сопротивление, сила тока разряда невелика. При этом свечением покрывается не весь катод, в данном случае наружный цилиндрик, а только часть его.
Если увеличить ток через стабилитрон, то увеличится и площадь свечения катода. Напряжение же между катодом и анодом останется прежним. Таков закон тлеющего разряда. В науке он называется законом постоянства нормального катодного падения потенциала.
Нагрузка — а ею могут быть отдельные радиолампы, обмотки реле и т. д. — подключается к двум внутренним цилиндрикам. На схеме она обозначена буквой «Н». В нагрузку ответвляется часть тока, протекающего через стабилитрон.
Ввиду того что катодное падение напряжения постоянно и не зависит от внешних условий, этот ответвляемый ток по своей величине не меняется. Заряжайте этим током конденсатор дозатора времени, и он не будет реагировать на скачки напряжения, подаваемого на стабилитрон.
В дозаторе времени конденсатор заряжается постоянным током (переменным током конденсатор заряжать нельзя). Поэтому там стабилизируется, держится на одном уровне напряжение, которое дает выпрямитель, смонтированный в этом же приборе.
Но стабилитроны неплохо работают и на переменном токе, несмотря на то что электроды при этом меняются своими ролями.
«Так держать!» — эту команду хорошо знают рулевые кораблей. Она означает, что корабль должен двигаться точно в заданном направлении.
Плазма тоже исправно подчиняется такой команде. Она «гасит» все прыжки напряжения и «выдает» напряжение строго определенной величины, причем выполняет свои обязанности автоматически.
Более полувека назад в физических лабораториях появился интересный прибор. Он без вмешательства человека подсчитывал мельчайшие заряженные частицы, которые испускали уран, радий и другие радиоактивные вещества. Знать количество таких частиц для ученых было очень важно: по нему можно было определить мощность излучения и то, с какой скоростью совершается процесс распада ядер.
С годами прибор усовершенствовался и стал верным помощником не только физиков, но и химиков, металлургов, биологов, врачей.
Несмотря на то что этот прибор по устройству очень прост, он помог подсчитать число космических частиц — таинственных пришельцев из глубин Вселенной.
В стеклянной трубке счетчика, названного по имени изобретателей счетчиком Гейгера — Мюллера, вдоль оси натянута тонкая металлическая нить. Она проходит внутри цилиндрика, сделанного тоже из металла. Трубка наполнена смесью аргона и паров спирта. К металлической нити и цилиндру подключен источник высокого напряжения.
Таким образом, имеются все условия для возникновения электрического разряда между нитью — анодом и цилиндром — катодом. Однако сам по себе разряд в этой трубке не возникает.
Почему?
Малó напряжение источника. И сделано это специально.
Но вот сквозь стекло в трубку влетает какая-либо заряженная частица, например, космическая. Обстановка в разрядном промежутке сразу меняется. Быстролетящая частица, сталкиваясь с молекулами газа, выбивает из них электроны, то есть ионизирует молекулы.
Между электродами трубки существует довольно мощное электрическое поле. Силы этого поля подхватывают рожденные частицей электроны и устремляют их к аноду — нити. Происходит дальнейшая ионизация газа, возникают лавины электронов. Положительно заряженные частицы — ионы — движутся навстречу электронам — к цилиндру-катоду.
Таким образом равнодушный ко всему газ откликнулся электрическим разрядом на ворвавшуюся в него заряженную частицу.
Эти процессы совершаются в разрядной трубке почти мгновенно: лавина электронов достигает нити за одну стомиллиардную долю секунды, а положительные ионы собираются у стенок цилиндра-катода в течение стомиллионной доли секунды. Но этого времени достаточно, чтобы усилительная радиоламповая схема, пристроенная к разрядной камере, сработала и зажгла бы потом неоновую лампочку, сигнализирующую о попадании заряженной частицы в счетчик.
Часто вместо неоновой лампочки ставят цифровой нумератор, который цифрами показывает общее число заряженных частиц, попавших в счетчик.
Счетчик Гейгера — Мюллера производит только подсчет заряженных частиц. Определить же, какие частицы — электроны, протоны или альфа-частицы, — не удается. Объясняется это тем, что между нитью и цилиндром приложено сравнительно высокое напряжение. Любая заряженная частица лишь начинает процесс ионизации. Дальнейшая работа совершается силами электрического поля. Поэтому «разнокалиберные» частицы создают сигналы одинаковой величины.
Но иногда бывает важно не только подсчитать число заряженных частиц, но и заглянуть в их паспорт, узнать, что это за частицы.
С этой задачей хорошо справляются так называемые пропорциональные счетчики заряженных частиц. По устройству они похожи на счетчики Гейгера — Мюллера, только напряжение между электродами в них значительно меньше.
Если в разрядный промежуток ворвется заряженная частица большой мощности, то на выходе счетчика возникнет более заметный электрический сигнал. Более «ленивая» частица произведет меньшую ионизацию газа, и сигнал, вызванный ею, будет меньше.
Расшифровывая записанные на фотопленку сигналы, ученые легко определяют, какие частицы побывали в счетчике.
«Чудо» XX века — искусственные спутники Земли и космические ракеты не отправляются в космос без таких приборов. Добросовестная плазма, возникающая в этих приборах-счетчиках, неутомимо подсчитывает число космических частиц там, где пролетает спутник, и позволяет определить интенсивность космического излучения. Ценность этой работы определяется тем, что ученым не нужно учитывать ослабляющее действие атмосферы, ведь счетчики находятся за пределами ее!
Замечательный прибор можно встретить и в глухой тайге или в горах у геологов. Если на пути геологов попадутся урановые или другие радиоактивные руды, то счетчик немедленно «сообщит» об этом. Установив чувствительный счетчик на самолет, можно за короткое время обследовать большой район, точно установить, есть или нет в этом районе радиоактивные руды.
Хорошими помощниками стали счетчики заряженных частиц для биологов.
Ученые, изучающие, например, вопрос, как растения усваивают различные удобрения, вносят в землю вместе с обычным фосфором и радиоактивный и определяют количество этого элемента, взятого растением из почвы.
Для этого достаточно поднести растение к счетчику и подсчитать число заряженных частиц, которое пошлет в прибор это растение.
Один ученый применил радиоактивные удобрения для почвы, на которой рос табак. Когда человек выкурил папиросу из этого табака, то обнаружилось, что никотин тоже оказался радиоактивным и очень скоро проник во все части тела и органы человека. По телу его разнесла кровь.
Это еще раз доказало, что яд, заключенный в табаке, воздействует на организм в целом, он не щадит ни один орган человека.
О том, что ядра атомов имеют сложное устройство, наука узнала давно.
В самом конце XIX века французский ученый А. Беккерель проделал такой опыт: на фотопластинку, завернутую в темную бумагу, он положил кусок урановой руды. Через несколько дней ученый фотопластинку проявил. Каково же было его удивление, когда он обнаружил, что фотопластинка оказалась засвеченной!
Проделав десятки подобных опытов, Беккерель пришел к правильному выводу, что уран излучает особые лучи, способные проходить через различные преграды.
Позднее такие вещества были названы радиоактивными.
Вскоре два других ученых — Мария и Пьер Кюри — нашли новые радиоактивные элементы — полоний и радий. Их они отыскали в урановой руде.
Тайна невидимого и очень сильного излучения веществ приковала внимание многих ученых. Началось упорное его изучение.
Когда на пути лучей создали магнитное поле, то под действием его сил излучение разделилось на три «хвоста». «Равнодушными» к магнитным силам оказались гамма-лучи. Они прошли прямо, не отклонившись. Позднее выяснилось, что это электромагнитные волны, длина которых намного меньше длин радио- и рентгеновских волн. Вправо ушли бета-лучи. Это поток электронов, «выстреленных» почти со скоростью света. Наконец, влево отклонились частицы, названные альфа-лучами. Это тяжелые, положительно заряженные частицы. Их масса равна массе атомов гелия.
В атомной физике энергию частиц выражают в особых единицах — электрон-вольтах. Это вполне конкретная мера энергии. Она равна работе, которую совершает электрон при движении в электрическом поле. Если электрон переместится из одной точки поля в другую и разность потенциалов между точками равна одному вольту, то этот электрон обладает энергией в один электрон-вольт.
Альфа-лучи — частицы с большим запасом энергии. Эти невидимые снаряды, выбрасываемые радиоактивным веществом, имеют энергию до девяти миллионов электрон-вольт.
Обнаружив существование таких мощных снарядов, ученые решили попробовать обстреливать ими ядра атомов. Ведь только разрушив ядро, можно узнать, из чего оно состоит. Об этом расскажут получившиеся «осколки» ядра.
В 1919 году пришел первый успех. Английский физик Резерфорд сумел попасть альфа-частицами в ядра атомов и наблюдать первую искусственную ядерную реакцию. Резерфорд бомбардировал атомы азота и других элементов. Опыты этого ученого показали, что заряженные частицы могут быть прекрасным инструментом для «вскрытия» ядер.
Потом ученые отыскали еще один вид снарядов, способных разрушить атомное ядро. Это были космические лучи.
Посланцы космоса помогли ученым создать новые ценные методы изучения ядер веществ. Однако и они вскоре не стали удовлетворять покорителей микромира. Дело в том, что космические частицы сильно ослабляются тысячекилометровой толщей воздушной оболочки Земли, которую пробивают далеко не все частицы. Поэтому космическая частица нужной энергии — не частый гость в лаборатории ученого.
А нельзя ли получить заряженные частицы-снаряды собственного производства? — думали ученые. Ведь ядру все равно, какая частица в него ударится — естественная или искусственная, — лишь бы она была достаточно быстрой и увесистой.
И вот здесь пришлось вспомнить о плазме.
Оказалось, что без нее нельзя построить почти ни один ускоритель элементарных частиц — так назвали ученые мощные катапульты, стреляющие по ядрам.
Чтобы эти «катапульты» работали, ускоряли тяжелые заряженные частицы, нужно эти частицы иметь. А берутся они из плазмы.
Вам, наверно, приходилось слышать такие названия — «линейный ускоритель», «циклотрон», «синхротрон», «фазотрон» и, наконец, «синхрофазотрон»?
Все это названия установок, служащих для разгона положительно заряженных частиц — ионов, родившихся в плазме.
На стр. 152 показан разрез «ионной фабрики» циклотрона. Предположим, данный ускоритель ведет обстрел ядрами обыкновенного водорода — протонами. В этом случае в ионном источнике находится газообразный водород при небольшом давлении. Разрядная камера имеет форму усеченного конуса и является анодом. Вторым электродом-катодом служит массивная вольфрамовая спираль. Когда между спиралью и конусом создается высокое напряжение, в камере возникает плазма. Электроны устремляются к катоду-спирали, а положительно заряженные ионы — ядра водорода — к аноду-конусу. Конец конуса обрезан, и через образовавшееся отверстие ионы попадают в разгонную камеру ускорителя. Там на заряженную частицу воздействуют мощным электрическим и магнитным полем и разгоняют ее до нужной скорости.
В циклотроне ионы движутся по окружности и с каждым кругом увеличивают скорость. Разгоняясь, они оказываются все дальше и дальше от центра камеры. Когда заряженные частицы приобретут энергию в несколько миллионов электрон-вольт, они выпускаются наружу и устремляются подобно камню из пращи в мишень.
Самые мощные заряженные частицы — протоны — получаются в синхрофазотроне. Недалеко от Москвы, в Дубне, построен синхрофазотрон, в котором протоны приобретают энергию в десять миллиардов электрон-вольт. Перед такими «снарядами» не в состоянии устоять ни одна «ядерная крепость».
Но было бы неправильно думать, что плазма работает в ускорителях только как «поставщик» заряженных частиц, хотя и эта роль очень важна и ответственна.
Синхрофазотрон в Дубне «выстреливает» протонами по пять залпов в каждую минуту. При этом каждый «залп» состоит более чем из миллиарда «снарядов».
Чтобы осуществить это, потребовалось построить гигантский электромагнит весом тридцать шесть тысяч тонн! Этот электромагнит расходует ни много ни мало, сто сорок тысяч киловатт электроэнергии! Не всякий город потребляет столько электричества.
Синхрофазотрону нужны целые реки тока, причем тока не переменного, а постоянного. Поэтому пришлось построить специальный длинный зал и установить в нем мощные ртутные выпрямители.
Как видите, и здесь не смогли обойтись без плазмы. Немало плазменных устройств работает в системе управления и автоматики, которой оснащен синхрофазотрон, а также в сложной исследовательской аппаратуре, с помощью которой ученые изучают всевозможные ядерные реакции.
В счетчике элементарных частиц «впряжен» в работу коронный разряд. Этот разряд на неуловимо малую долю секунды возникает вокруг тонкой нити — анода.
Почему именно вокруг тонкого проводника — нити — возникает коронный разряд, а на другом электроде — цилиндре — разряда нет?
Ответить на этот вопрос нетрудно.
Коронный разряд возникает тогда, когда коронирующий электрод либо заострен, либо имеет радиус кривизны значительно меньший, чем расстояние между электродами. В счетчике Гейгера — Мюллера это условие выполнено: диаметр нити-электрода измеряется миллиметрами, а расстояние от нити до внутренней стенки цилиндра — сантиметрами. Электрическое поле вокруг тонкой проволочки-электрода сильно искажено. Именно здесь, в этом переплетении электрических силовых линий, и происходит возбуждение молекул газа, именно здесь возникают ионы.
За пределами светящегося венчика — короны ионизации газа нет, там движутся только ионы, которые образовались в пламени короны. Они-то и создают в разрядном промежутке ток, регистрируемый чувствительным радиоустройством.
Таким образом, разница между коронным разрядом и, например, тлеющим налицо: в коронном разряде ток создают только тяжелые, положительные частицы — ионы, в тлеющем имеется два встречных потока заряженных частиц — ионов и электронов.
Особенности коронного разряда хорошо удалось использовать в технике. На коронный разряд возложили, например, обязанности… трубочиста.
Многие из читателей знают, какие неудобства приносят жителям дымящиеся трубы фабрик и заводов. Сажа, частички золы и топлива загрязняют воздух, вредят здоровью людей.
Государство не жалеет средств, чтобы сделать воздух городов и рабочих поселков чистым, здоровым. Устанавливаются дорогостоящие аппараты, которые не должны выпускать из фабричных труб сажу, копоть, золу. Типов таких установок сконструировано немало, среди них имеются и коронные «трубочисты».
К фабричной или заводской трубе приставлен длинный железный короб — разрядная камера. Вдоль оси короба натянуто несколько тонких проволочек. Короб подключен к плюсу, а проволочки — к минусу источника высокого напряжения. Когда этот источник включен, возникает коронный разряд на проволочках, хотя они, в отличие от счетчика Гейгера — Мюллера, соединены не с плюсом, а с минусом.
Такое изменение подключения электродов сделано не случайно.
Когда по трубе пойдет горячий воздух из топки с миллионами частичек сажи, золы, несгоревшего топлива, то между проволочками и стенками короба могут проскакивать искры. Ведь напряжение между ними равно десяткам тысяч вольт! Если проволочка соединена с отрицательным полюсом, а короб с положительным, искры не возникают. Коронный же разряд зажигается и делает нужную работу.
Вы знаете, что в коронном разряде, в плазме, окружающей коронирующий электрод, возникает много ионов. В счетчике Гейгера — Мюллера это были положительно заряженные ионы, здесь же, в электрофильтре, рождаются отрицательные ионы. Около каждой проволоки-электрода ежесекундно возникают целые полчища электронов. Эти электроны «прилипают» к нейтральным молекулам воздуха и превращают их в отрицательные ионы.
Силы электрического поля неудержимо влекут их к противоположному полюсу.
Ионы движутся к стенкам короба, чтобы отдать там свой заряд.
Но в пространстве между металлической проволокой и стенками короба густой толпой мчатся частицы сажи, золы, несгоревшего топлива. Они хотят вырваться из трубы наружу. Однако это им не удается. Отрицательные ионы «садятся» на эти пылинки и берут их «в плен».
Хотя ионы — карлики в сравнении с «огромными» частицами сажи или золы, но они оказываются прекрасными буксирами. Невидимые малютки-ионы дружно «везут» к стенкам железного короба все, что выбрасывает топка фабрики. Стенки камеры электрофильтра покрываются слоем сажи и золы. Чтобы сбросить эту добычу ионов в бункер, по коробу периодически постукивает молоточек, приводимый в движение крохотным электромотором.
Оборудованная таким электрофильтром труба не дымит и не загрязняет воздух.
На химических заводах электрофильтры помогают улавливать из воздуха крупинки ценных металлов и другие химические продукты и снова пускать их в производство. Раньше эти продукты просто улетали в трубу. На некоторых цементных заводах электрофильтры не дают улететь в трубу цементной пыли.
На этом же принципе работает еще одно интересное устройство — электросепаратор.
Многие из вас, наверно, видели молочный сепаратор — небольшую машину, которая отделяет сливки от обрата. Без нее не обходится ни один маслозавод.
В молочном сепараторе электромотором или вручную массу молока заставляют вращаться. Центробежные силы отбрасывают обрат к стенкам, а сливки, как более легкая часть молока, собираются в середине, ближе к центру сепаратора. По трубочке они вытекают наружу, обрат же выливается через другую трубочку.
Часто бывает нужно рассортировать по сортам и твердые измельченные материалы. Например, в металлургическом производстве. Сильные машины истирают в порошок какую-либо руду. Есть в этой пыли и частицы самых различных размеров и веса. Их нужно разделить — крупные пылинки поместить в один бункер, средние в другой, а самые мелкие — в третий. Делается это для того, чтобы потом легче было выделить полезные вещества.
Способов сортировки придумано немало. У нас в стране этой цели заставили служить и коронный разряд, с которым вы уже знакомы.
На рисунке показан разрез электросепаратора.
Коронирующие провода расположены один над другим в горизонтальной плоскости. Рядом с ними вращается большой металлический барабан. Измельченную породу загружают в бункер, и она попадает между проводами и барабаном. Ионы-буксиры подхватывают частицы этой пыли и влекут их к барабану.
Наиболее крупные пылинки, соприкоснувшись с барабаном, быстро отдают ему свой заряд и тотчас отскакивают и попадают в приемный бункер. Более мелкие частицы держатся на вращающемся барабане дольше и затем попадают в соседний бункер. Самые мелкие пылинки так плотно пристают к гладкой поверхности барабана, что готовы вращаться с ним сколько угодно. Но их насильно разлучают с барабаном. Это делает специальная щетка, расположенная над третьим бункером.
Как видите, плазма помогла просто и надежно рассортировать крупинки вещества по их размерам. Для более точного разделения сыпучих материалов на практике часто применяется несколько ступеней такой сортировки.
Приходилось вам заглядывать внутрь современного большого радиоприемника?
Если приходилось, то вы, наверно, обратили внимание на то, что внутри него установлен не один динамический громкоговоритель, а два, три или даже четыре. Причем некоторые большие, мощные, а другие совсем маленькие.
Для чего устанавливаются в ящик приемника несколько «разнокалиберных» громкоговорителей?
Ответ напрашивается сам: чтобы обеспечить более высокое качество звучания.
Громкоговоритель — это такое устройство, которое преобразует электрические колебания в колебания воздуха, в звук. С этой задачей разные громкоговорители справляются по-разному.
Большой громкоговоритель более добросовестно воспроизводит низкие, басовые звуки. Высокие звуки он воспроизводит очень плохо. Поэтому приходится помещать в ящик маленькие громкоговорители. Радиолюбители называют их «пищалками». Они не могут издавать басовых звуков, зато хорошо воспроизводят высокие.
И все же, несмотря на такое усложнение и удорожание схемы, радиоспециалисты считают, что звучание приемников, магнитофонов и других звуковоспроизводящих устройств нуждается в улучшении. Поиски ведутся в различных направлениях.
Интересны опыты, в результате которых ученым удалось заставить звучать… плазму.
Начались эти опыты давно.
В грозный 1941 год в Ленинграде советский инженер Г. И. Бабат получил «облачко» плазмы, как бы повисшее в воздухе. Плазма жила благодаря энергии переменного электромагнитного поля частотой в многие миллионы колебаний в секунду. Однажды инженер Бабат на этот высокочастотный ток, питающий плазму, наложил электрические колебания, которые заставляли звучать репродуктор, установленный тут же в лаборатории.
Случилось чудо: светящийся кусочек плазмы запел. Он пел песню, передававшуюся по радио, которая призывала советский народ разгромить врага.
Так плазма впервые выступила в новой, необычайной для нее роли. Она не хуже, чем твердый и плотный диффузор громкоговорителя, заставила колебаться воздух.
Как это плазме удалось, понять нетрудно. Плазма чутко реагирует даже на самые незначительные изменения тока, который ее создает. Если количество, объем плазмы будут непрерывно меняться, то окружающий воздух станет получать толчки; их мы ощущаем как звук.
Диффузор громкоговорителя тоже дрожит под действием электрических токов, которые возникают в его звуковой катушке. Но чувствительность диффузора к различным частотам неодинакова; он хорошо воспроизводит средние звуковые частоты, а такие звуки, как, например, писк комара или высокие ноты, издаваемые скрипкой, он повторяет неохотно, чуть слышно.
Плазма таким недостатком не обладает. Она одинаково хорошо воспроизводит электрические колебания любой частоты.
Первые плазменные громкоговорители уже созданы. Один из них показан на рисунке (стр. 158). В нем у острия электрода горит коронный разряд. Расположенное тут же металлическое кольцо играет роль звуковой катушки. Если на него подать электрические колебания звуковой частоты, то плазма в такт им начнет звучать.
Можно не сомневаться, что «поющее пламя» со временем займет свое место среди приборов и аппаратов, украшающих быт человека.
Если вы захотите узнать, что такое ионное травление и для этого заглянете в Большую советскую энциклопедию, то вас постигнет неудача — в энциклопедии вы не найдете объяснения. Причина простая: и термин «ионное травление», и прибор, который может делать этот пока непонятный вам вид травления, появились совсем недавно. Потому они и не попали еще в энциклопедию.
В продолжение ста тридцати лет люди имели дело с обычным химическим травлением. История химического травления как метода для определения структуры металлов началась с работ замечательного русского ученого-металловеда Павла Петровича Аносова. Он брал полированную пластинку металла и опускал ее в раствор соляной или серной кислоты. Кислота разъедала металл в одних местах больше, в других меньше. Гладкая поверхность превращалась в затейливый узор.
Рассматривая этот узор в микроскоп, металлург расшифровывал свойства металла или сплава, не прибегая к другим испытаниям.
Травление металлов и изучение узоров под микроскопом стало уже давно важнейшей частью металлургического производства.
Но в последние годы на пути этого хорошо освоенного метода появились трудности.
Химики, например, все чаще стали заказывать металлургам такие сплавы, которые были бы совершенно «равнодушны» к кислотам. Металлурги выполняли заказ, создавали десятки опытных сплавов. Как их испытать? Как определить, какой лучше? Подвергнуть травлению кислотой? Но ведь это кислотоупорные сплавы, на них любая кислота почти не действует.
Машиностроители потребовали себе сплавы с алюминием, а также особо прочные сплавы. Ряду отраслей производств понадобились сплавы, выдерживающие высокую температуру. Все они, несмотря на всяческие ухищрения, оказались очень неподатливыми для исследования при помощи химического травления. Простой и удобный метод оказывался здесь бесполезным.
Тогда металлурги обратились за помощью к ученым-физикам. Те обстоятельно изучили поставленную задачу и пришли к выводу, что выйти из положения можно, если прибегнуть к помощи… плазмы. Исследования возглавил профессор Московского университета имени М. В. Ломоносова Григорий Вениаминович Спивак. Под его руководством была создана первая установка для ионного травления, названная сокращенно «УИТ».
Профессор Спивак решил использовать одну особенность тлеющего разряда, которая на первых порах доставляла физикам немало неприятностей.
Вы уже знаете, что тлеющий разряд — один из наиболее замысловатых. В трубке отчетливо различаются несколько разнородных участков — светлых и темных. Потоки заряженных частиц — электронов и ионов — «преодолевают» эти участки по-разному. Так, в темном катодном пространстве, где очень велики электрические силы, они особенно сильно ощущают постороннее воздействие. Легкие электроны, движущиеся к аноду, покидают темное катодное пространство быстрей, чем тяжелые и массивные положительные ионы, движущиеся навстречу. Поэтому в этом месте разрядной трубки скапливается излишек положительных ионов, названный учеными положительным пространственным зарядом.
«Толпа» положительных зарядов вблизи катода вначале доставляла много хлопот. Обрушиваясь на катод, они с силой бомбили его поверхность. Катод не только нагревался, но и «терял в весе». От катода отлетали мельчайшие частицы, подобно тому, как летят брызги, если бросать в воду камни. «Брызги» вещества, из которого сделан катод, разлетаясь по трубке, покрывали все вокруг тонким слоем металла и, кроме того, жадно поглощали газ, которым была наполнена трубка.
Таким образом катодное распыление не только разрушало катод, но и лишало трубку газа-наполнителя без которого не может существовать разряд.
Но так же, как сумели заставить служить искру-разрушительницу, так же удалось получать пользу и от катодного распыления.
На первых порах катодное распыление применили как средство для очистки поверхностей электродов от посторонних веществ, пылинок и т. д. Разрядную трубку помещали внутрь катушки индуктивности, питаемой током высокой частоты. В трубке вспыхивал разряд, и все металлические детали попадали под обстрел тяжелых ионов. Ионы мигом снимали с металла тончайший слой и тем самым очищали его поверхность.
Если вблизи катода поместить пластинку слюды или стекла и зажечь в трубке тлеющий разряд, то очень скоро пластинка окажется покрытой тонким слоем металла, из которого сделан катод. Эту пленку отделяют и рассматривают в электронном микроскопе. Это помогает проникнуть в тайны строения веществ.
Удалось использовать и поглощение газа распыленными частицами.
Известно, что из радиоламп воздух выкачивается. Но как бы тщательно ни делали эту работу, ничтожное количество газа всегда остается в баллоне. Это сильно сказывается на работе радиолампы.
Распыляя внутри радиолампы разные вещества, жадно впитывающие в себя газ, добиваются того, что внутри баллона получается настоящее безвоздушное пространство.
Профессор Спивак и его сотрудники все это имели в виду, когда приступили к созданию первой УИТ. Много времени потратил небольшой коллектив, пока не была создана установка для ионного травления.
В УИТ для получения «узора» на поверхности металла используется ионная артиллерия. Травление производится под небольшим стеклянным колпаком, из которого выкачан воздух и вместо него впущен неон или аргон. Тщательно отшлифованная пластина исследуемого металла помещается на дне этой куполообразной камеры.
Она служит катодом.
Чтобы ионная бомбардировка проходила быстрее, образец нагревается специальной спиралью до нескольких сот градусов.
Когда образец прогреется, включают высокое напряжение. Между анодом и катодом вспыхивает бледноватое пламя тлеющего разряда. Положительные ионы начинают свою работу.
Ионная артиллерия в УИТ — «оружие» необычайно разрушительной силы. Ни один материал, ни одно вещество не может устоять под его ударами.
Разрушение поверхности образца сильнее идет в более «слабых» точках. В результате появляется затейливый рисунок, который позволяет судить о свойствах и строении полученного сплава.
Только ли сплава? Нельзя ли с помощью этого прибора заглянуть в микроструктуру других веществ?
Оказывается, можно. УИТ так же успешно определяет строение полупроводниковых материалов, керамики, стекла. Раньше это было невозможно. Металломикроскоп, в который обычно рассматривается узор, оставшийся на образце после ионной бомбардировки, дает увеличение в полторы-две тысячи раз. Иногда этого увеличения оказывается мало.
В этом случае вблизи образца, перенесшего бомбардировку ионов, распыляют кварц. Когда пленка мельчайших частиц кварца покроет все микроскопические углубления и возвышенности «протравленной» поверхности, образец вынимают из-под колпака и отделяют от него кварцевую пленку. Этот «отпечаток» рассматривают затем в электронном микроскопе при огромном увеличении в сотню тысяч раз.
Ионное травление имеет и еще одно преимущество. Раньше нельзя было следить, как изменяется строение, а значит, и свойства металла или сплава при их нагревании. УИТ позволяет заполнить и этот пробел. Проводя травление при различном нагреве образца, можно полнее узнать его «биографию».
Так плазма тлеющего разряда позволила ученым сделать новый замечательный шаг в исследовании структуры веществ, не поддающихся химическому травлению.