Вот мы и подошли к концу рассказа о подвигах, которые совершила и совершает на благо человека плазма. Перебрав их в памяти, можно уверенно сказать, что сейчас вряд ли найдешь какую-либо отрасль науки и техники, которая не пользовалась бы замечательными свойствами четвертого состояния вещества. Человек покорил плазму, заставил ее работать на себя.
Но люди ненасытны в стремлении овладевать все новыми и новыми тайнами природы. Подтверждением этого является невиданный расцвет науки и техники, свидетелями которого являемся мы.
Раньше человек только мог мечтать о полетах в космос. Сейчас советские космические ракеты и корабли уверенно вступают в космическое пространство и добывают оттуда ценнейшие научные сведения. Немалая заслуга в этом принадлежит и большому отряду ученых и инженеров, покоривших плазму и создавших удивительные плазменные приборы. Роль их труда будет не менее важной и в будущем.
Будущее… Его даже писатели-фантасты представляют неотчетливо. Увереннее они, пожалуй, пишут лишь об одном — о необыкновенном расцвете техники, о всеобъемлющей механизации и автоматизации, об «умных» машинах, которые будут заменять человека в девяноста девяти случаях из ста.
Но и здесь нельзя быть уверенным в том, что техника XXI века станет такой, какой ее рисует фантазия писателя. Наука дарит человечеству порой такие открытия, которые создают для техники новые, никому не ведомые доселе пути.
Примеров этого можно привести немало.
Книжка, которую вы прочли, посвящена плазме. И в этой последней главе, рассказывающей о перспективах ее применения, меньше всего будет фантазии. Здесь мы поговорим о том, над чем ученые работают уже сегодня и что скоро будет осуществлено.
Итак, поговорим о будущем, которое делается сегодня, побываем в лабораториях ученых, посвятивших себя благородной цели — окончательному, полному покорению плазмы.
Многие из вас, наверно, замечали, что когда печь топят не дровами, а углем, то тепла выделяется больше. Но еще сильнее нагреется печь, если в ней сжечь равное по весу количество нефти. Отсюда нетрудно сделать вывод, что уголь более выгодное топливо, чем дрова, а нефть выгоднее угля.
Если перевести эти слова на язык цифр, то получится следующее: один килограмм дров при сгорании выделяет 2,5 киловатт-часа энергии, килограмм угля — 8 киловатт-часов, а нефти еще больше — 11,6.
В последние годы начало применяться еще одно «горючее» — ядерное.
На атомных электростанциях, число которых растет из года в год, тепло добывают не из угля и не из нефти, а из ядерных глубин вещества. Атомные котлы «отапливаются» ураном. Заставляя ядра атомов этого тяжелого элемента распадаться на осколки, получают огромное количество энергии. Один килограмм делящегося урана выделяет 22 миллиона 300 тысяч киловатт-часов!
Выгодное «топливо», не правда ли?
Но ученые, покорив энергию делящихся ядер, и не думали останавливаться на этом. Они стали искать новые кладовые энергии и нашли их.
Все вы знаете о том, что существует водородная бомба. Взрывчатым веществом в этой бомбе является не обычный водород, а «тяжелый». Если ядро атома обычного водорода состоит из одной отрицательно заряженной частицы — протона, то в ядре тяжелого водорода, кроме протона, есть еще один или два нейтрона — незаряженные частицы, которые чуть-чуть тяжелее протонов.
Когда ядра тяжелого водорода удается сблизить друг с другом, то может произойти их соединение, синтез и могут образоваться ядра нового вещества, например, гелия. При этом выделяется огромная энергия, способная совершить колоссальные разрушения.
Сблизить ядра тяжелого водорода — задача нелегкая, потому что нужно преодолеть колоссальные силы отталкивания. Лишь при температуре в миллионы градусов удается добиться этого и дать начало термоядерной реакции.
Вот почему в водородную бомбу в качестве запала помещают обычную атомную, которая, взорвавшись, создает нужную температуру и заставляет соединяться ядра тяжелого водорода.
Взрывы бомб несут разрушения и смерть. Они — орудие войны.
Чтобы термоядерная реакция приносила пользу, нужно замедлить ее, заставить выделять энергию не мгновенно, не толчком, а постепенно.
Из большого бака воду можно вылить двумя способами: опрокинуть бак и всю воду вылить сразу или открыть кран и выливать воду тонкой струей. Прикрывая кран, можно регулировать мощность струи.
Ученые, работающие над проблемой управляемой термоядерной реакции, как раз и хотят добиться того, чтобы энергия соединения ядер водорода выделялась медленно, струей.
Добиться этого пока не удалось, но, когда задача будет решена, люди получат целый океан энергии.
Море нельзя вычерпать ведром. Термоядерная энергия — это море, из которого человек будет брать энергии столько, сколько нужно.
На земле неисчислимые запасы водородного горючего. Один килограмм тяжелого водорода, превратившись в гелий, способен выделить 177 миллионов 500 тысяч киловатт-часов энергии! Это в двадцать два миллиона раз больше по сравнению с углем. По этой цифре можно судить, насколько выгодно овладение термоядерной энергией.
Но причем здесь плазма? — могут спросить некоторые читатели.
А притом, что без плазмы эту проблему не решить.
Побывайте на Выставке достижений народного хозяйства СССР. Там в павильоне «Атомная энергия в мирных целях» вы увидите установки, в которых удалось получить температуру в несколько миллионов градусов. Установки эти плазменные, их создано несколько типов.
Посмотрите на рисунок, изображающий схему одного из плазменных нагревателей (стр. 212). Тут конденсатор — кладовая энергии. Когда эта «кладовая» наполнится зарядами, между искрами разрядника проскакивает искра. Ток возникает и в разрядной камере, изображенной прямоугольником. На мгновение там рождается плазма. Мощное магнитное поле сжимает плазму в огненный жгут и отгораживает ее от стенок. Сама плазма тоже начинает «уплотняться», сжиматься еще больше. В плазменном жгуте возникает «всплеск» температуры до трех-четырех миллионов градусов. В более сложных установках получены температуры пять-шесть миллионов градусов.
Расчеты показывают, что для начала термоядерной реакции нужна температура свыше ста миллионов градусов. Но сейчас никто не сомневается, что труднейшая задача современной науки будет решена. И сделают это ученые при помощи плазмы.
Подтверждением этого является, например, новое важное сообщение о достижениях советских физиков. В Институте атомной энергии имени И. В. Курчатова удалось получить плазму с температурой сорок миллионов градусов. Это самое крупное достижение в области высокотемпературной плазмы. Так оценили этот успех ученые многих стран.
Основная трудность, с которой столкнулись физики, пытавшиеся нагревать плазму, была вызвана неустойчивостью плазмы. Плазма, которую отгораживало от стенок разрядной камеры магнитное поле, просачивалась через магнитные силовые линии, не хотела сжиматься, что не давало возможности еще больше повысить ее температуру. Многие известные ученые считали, что неустойчивость плазмы преодолеть невозможно. Однако советские физики, работающие под руководством академика Л. А. Арцимовича, кропотливо изучали все виды неустойчивости плазмы и готовились ее штурмовать. И вот пришел первый крупный успех.
В установке, названной учеными пробкотроном, в разрядной камере был создан такой магнитный «забор», густота линий которого увеличивалась во все стороны от области, занимаемой плазмой. Этот «забор» не давал плазме ускользать, благодаря чему время жизни плазмы удалось увеличить до сотых долей секунды. В масштабах микромира это большое время: каждая частица плазмы успевает пробежать внутри установки путь в несколько километров.
Плазма, полученная в пробкотроне, занимает объем в несколько десятков литров. В каждом кубическом сантиметре такой плазмы содержится примерно десять миллиардов частиц — такая плотность получена тоже впервые. Но советские физики стремятся к новому рубежу. Они работают над установкой, в которой плазма имела бы плотность в десять тысяч раз большую и температуру свыше ста миллионов градусов.
Овладение термоядерной энергией — важнейшая задача советской науки. Она записана в Программе нашей партии, и в этом залог ее осуществимости. Но обуздать термоядерные силы, заставить их служить человеку нелегко, а электричество нужно каждый день, каждую минуту. Нельзя ли заставить плазму уже теперь приносить пользу при получении электричества? Оказывается, можно.
Недавно в печати было опубликовано, что создан принципиально новый плазменный генератор электрического тока. Чтобы понять, как работает эта плазменная динамо-машина, рассмотрим принцип действия обыкновенного электрогенератора.
Между полюсами магнита, в сильном магнитном поле, вращается якорь — система проводников. При пересечении магнитных силовых линий в якоре рождается ток. Чтобы вращать якорь, приходится затрачивать энергию. Она получается за счет сгорания угля или нефти, либо за счет падающей воды, либо от какого-нибудь другого источника, например, атомного реактора.
Но превращение энергии угля или нефти в энергию тока здесь происходит не сразу, а через несколько ступенек. Уголь, сгорая, заставляет испаряться воду; струя пара, ударяясь в лопасти турбины, приводит во вращение якорь генератора; и только после того, как якорь начнет вращаться, энергия вращения проводников в магнитном поле превращается в ток.
С точки зрения экономичности работы машины такой способ получения электричества невыгоден, потому что много энергии пропадает напрасно. Действительно, пламя горящего угля нагревает не только трубки с водой, но и окружающий воздух, струя пара, проходя через турбину, отдает не всю свою энергию: пар из турбины выходит довольно горячим и с большой скоростью; тратится энергия и на преодоление сил трения во вращающихся и движущихся деталях генератора. Таким образом, потери энергии оказываются неизбежными, а это немедленно сказывается на коэффициенте полезного действия установки. Лучшие современные электростанции с пользой потребляют лишь сорок — сорок пять процентов энергии топлива.
Ученые давно стали задумываться над тем, как суметь непосредственно, без промежуточных ступеней, превращать тепло в электричество. И вот решающее слово предоставили плазме.
Как устроена плазменная динамо-машина, можно понять из рисунка. В атомном реакторе, или топке, которые на рисунке не показаны, создается очень высокая температура. Благодаря этому газ очень сильно нагревается и превращается в плазму. Расширяясь, он с огромной скоростью вырывается через сопло наружу. Струя плазмы попадает в промежуток между двумя полюсами электромагнита, и заряженные частицы — электроны и ионы — немедленно начинают испытывать воздействие магнитных сил. Они тормозятся магнитным полем и изменяют направление своего полета. Электроны выталкиваются наверх, к катоду, а положительно заряженные ионы устремляются вниз, к аноду. Достаточно присоединить к катоду и аноду нагрузку, и в цепи возникнет электрический ток. Он может вращать моторы, нагревать спирали электроприборов и производить другую работу.
В плазменной динамо-машине нет вращающихся деталей. Струя плазмы, получающаяся в результате сгорания топлива, заменила тяжелый громоздкий якорь, а ее тепловая энергия непосредственно превратилась в ток.
Первые модели плазменных генераторов еще далеки от совершенства, однако они почти в полтора раза экономичнее обычных генераторов. Представьте себе, как велика была бы выгода, если бы заменить старые генераторы новыми, плазменными! Но этого пока сделать нельзя, и вот почему.
Главным недостатком плазменных, или, как их называют ученые, магнитогидродинамических генераторов является то, что их катоды и аноды, принимающие заряженные частицы, не выдерживают длительной работы. Струя плазмы слишком горяча, и электроды быстро выходят из строя. Правда, сейчас ученые добились того, что их генератор мощностью восемь киловатт может непрерывно работать в течение часа. Это, кстати, намного больше, чем у аналогичных машин, созданных американскими учеными.
Препятствия, которые мешают внедрению плазменных генераторов сегодня, несомненно будут преодолены. Недалеко то время, когда мощные струи плазмы, вылетающие со сверхзвуковой скоростью из атомных реакторов, будут рождать целые реки электричества и отдавать их на нужды человека.
Мы являемся свидетелями необыкновенного развития ракетной техники. Времена, когда ракетные устройства применялись только для фейерверков и подачи сигналов, прошли. Сейчас с помощью ракет выводят на орбиты искусственные спутники Земли и Солнца и доставляют научную аппаратуру за сотни тысяч километров от Земли.
Ракетные двигатели сократили расстояния и на нашей планете. Знаменитые воздушные лайнеры «ТУ» совершают полеты на огромные расстояния. Преодоление звукового барьера и полеты самолетов со скоростью, превышающей скорость звука, также стали возможными благодаря двигателям-ракетам.
Преимущества, которыми обладают ракетные устройства, заставляют не жалеть сил и средств для совершенствования этого детища двадцатого века. Важная роль в этом принадлежит плазме.
Мы уже знаем, что раскаленные газы, стремительно вылетающие из сопла ракеты, — это плазма. Получается она от сгорания керосина или другого ракетного топлива в двигателе.
Горение — химический процесс, поэтому современные ракеты можно назвать ракетами химического принципа действия. В будущем такие ракеты, особенно для полетов на другие планеты, вряд ли будут применяться. На смену им придут ракеты с атомными двигателями.
Сейчас ученые уже намечают контуры этих замечательных ракет.
«Душой», «сердцем» ракеты является атомный реактор. В нем непрерывно идет процесс деления ядер урана и выделение большого количества тепла.
В носовой части ракеты расположены баки с веществом — жидкостью, — называемым рабочим телом. По трубам эта жидкость поступает в реактор и благодаря огромной температуре в нем превращается в плазму.
Газ-плазма ищет выхода. Путь для него открыт только к хвосту ракеты, где расположено сопло. Чем быстрее плазма будет вырываться из сопла, тем большую скорость разовьет ракета.
Плазма — это частицы, несущие электрический заряд. Значит, на них можно влиять электрическим полем.
В задней части ракеты перед соплом установлено несколько полых цилиндров. Посмотрите, как соединены они с генератором электрического тока, имеющимся в ракете. Первый и третий цилиндры соединены с одним полюсом генератора, второй и четвертый — со вторым. Благодаря этому ионы плазмы, оказавшись внутри первого цилиндра, подхватываются электрическими силами и увлекаются дальше — в сторону второго цилиндра. Разогнавшись, они достигают третьего цилиндра, откуда с еще большей скоростью мчатся к последнему, четвертому, цилиндру и выбрасываются наружу.
Тяговое усилие такой ракеты получается очень большим, и благодаря этому ракета может развивать скорости, недоступные обычным химическим ракетам.
Преимущества ядерной ракеты очевидны.
Ракету не нужно загружать ни химическим топливом, ни окислителем. Атомный реактор может долго работать при небольших количествах урана. Его «калорийность» вам известна, она огромна. Сравнительно громоздким будет запас рабочего тела — материала для плазмы. Но и его можно сделать более компактным, если использовать вещества с большим удельным весом. Рабочее тело не подвергается никаким химическим превращениям, не сгорает, но оно, превратившись в ионизированный газ, выбрасывается из ракеты, создавая тягу. Поэтому запасы рабочего тела в значительной степени могут определять дальность космического полета.
Интересен проект еще одной ракеты с ядерно-электрическим двигателем.
В этой ракете, как и в предыдущей, тоже есть атомный реактор, но его энергия расходуется на то, чтобы заставлять работать мощный электрический генератор. Эта ракетная электростанция — копия современных атомных электростанций, только она безусловно меньше.
В реактор подается вода, которая мгновенно превращается в пар высокого давления. Вырываясь наружу, пар ударяется в лопасти паровой турбины и заставляет ее вращаться. На общем валу с турбиной сидит ротор генератора. Он тоже приходит в движение, и генератор начинает отдавать ток.
«Львиная доля» этого тока расходуется для создания мощной электрической дуги.
Помните о струях плазмы, применяемых сейчас для испытания самолетов в аэродинамических трубах?
В этой ракете тоже создается струя плазмы.
Насос подает рабочее тело в пространство между двумя электродами — анодом и катодом. Анод соединен с положительным зажимом генератора, катод — с отрицательным. Катод расположен в хвостовой части ракеты, он сделан в виде кольца.
Когда между электродами вспыхивает дуга, положительно заряженные ионы устремляются к катоду и с силой выбрасываются из ракеты. Реактивная сила, возникающая при этом, сообщает ракете тягу, которая получается в десять — пятнадцать раз большей, чем у обычных химических ракет.
В ракете осуществлено непрерывное протекание двух процессов — разогрев рабочего тела, превращение его в плазму, и ускорение ионов в электрическом поле. Благодаря этому и могут быть получены высокие тяговые показатели ракетного двигателя.
Ученые работают сейчас и над другими проектами космических ракет. Какой из них будет раньше осуществлен, сказать трудно.
Одно не вызывает сомнения: в этой ракете решающее слово будет принадлежать плазме. Именно она поднимет космический корабль над землей и увлечет его в безбрежные просторы космоса.
Вы, наверно, с недоверием прочитали заглавие этого последнего рассказа о будущем плазмы?
Искусственное солнце… Да разве можно мечтать о том, чтобы на нашей планете, которая в тысячи раз меньше Солнца, создать нечто подобное огромному светилу? Можно!
Солнце — колоссальное скопление плазмы. Внутри него непрерывно бушуют ядерные реакции, рождающие огромные потоки энергии. Часть этой энергии получает наша Земля. Каждому квадратному метру ее поверхности, освещенной Солнцем, достается по крайней мере по два киловатта энергии. Если сложить все эти киловатты, получится внушительная цифра.
И все же ученые решили состязаться с Солнцем. В своих лабораториях они создали такие излучатели тепла и света, которые оказались и ярче и «теплее» Солнца.
Но одно дело — получить солнечное вещество в лаборатории и осветить им небольшую площадку, и другое дело — создать «копию» Солнца и осветить им Землю от горизонта до горизонта.
Расчеты ученых показывают, что можно создать такой плазменный «фонарь», который превратил бы ночь в день и сделал бы ненужным теперешнее искусственное освещение наших городов и сел.
…Представим нашу Москву лет через тридцать — сорок. Столица празднует годовщину Великой Октябрьской социалистической революции. Наступил вечер 7 ноября. Но всюду светло как днем. Солнце зашло за горизонт, и его заменил большой огненный шар, повисший над городом на тридцатикилометровой высоте.
Вы, наверно, пробовали при помощи лупы собирать солнечные лучи в одну точку и прожигать ими лист бумаги?
Нечто подобное произойдет, когда люди захотят сделать искусственное солнце.
На окраинах города будут установлены мощные высокочастотные станции. Питаясь электроэнергией, они будут, подобно прожекторам, посылать в небо потоки электромагнитных волн. На высоте в двадцать — тридцать километров над центром города эти потоки скрестятся. Энергия их столь велика, что в месте пересечения лучей воздух раскалится, он станет плазмой. Молекулы азота и кислорода начнут излучать свет.
Вы уже знаете, что плазма, возникшая в воздухе, рождает новые вещества. В недрах искусственного солнца будут возникать окислы азота. Дождь и ветер заставит их падать на землю. Таким образом земля получит, кроме света, и удобрения.
Вы, очевидно, думаете, что все это — дело далекого будущего. Представьте себе, это не совсем так.
Уже давно проведены успешные опыты по созданию «сгустков» плазмы, не «привязанных» к электродам, расположенных в отдалении от рождающей ее установки. Первому удалось это сделать советскому специалисту по токам высокой частоты Г. И. Бабату.
Сейчас накоплен большой опыт по передаче энергии на расстояние с помощью коротких электромагнитных волн.
Все это дает право говорить, что искусственное солнце — не фантазия.
Одной из причин того, что создание плазмы-светила отодвигают в будущее, является то, что для «работы» такого светила нужны миллионы киловатт мощности. Сейчас мы не можем так щедро расходовать электричество, тратить большие мощности для освещения, подобного искусственному солнцу, но, когда люди овладеют термоядерной энергией, побольше построят электростанций, плазменное искусственное солнце появится. Ученые и инженеры обязательно зажгут его!
Заканчивая последнюю страницу этой книги, я хочу рассказать о случайной встрече с одним ученым-физиком. Этот физик, с которым мне приходилось заниматься изучением высокочастотных разрядов, знал, что я пишу книгу о плазме. Встретившись со мной, он рассказал о своей научной работе, поинтересовался, как идут мои дела, и, прощаясь, вдруг спросил:
— Как вы назвали свою книгу?
— «Покоренная плазма», — ответил я.
— Но ведь она еще не покорена! — с жаром воскликнул мой собеседник. — Те применения плазмы, которые сегодня использует человек и которые, очевидно, позволили выбрать именно такое название книги, — только начало! Понимаете, начало покорения плазмы. Главное впереди!
И мой знакомый стал перечислять проблемы физики плазмы и ее применений, которые еще не решены, над разрешением которых бьются сейчас ученые многих стран.
Что ж! Мой собеседник был по-своему прав. Наука только теперь приступила к генеральному штурму четвертого состояния вещества. Плазма — эта, по словам академика Арцимовича, «самая капризная субстанция» — таит в себе поистине сказочные возможности. Извлечь их, покорить новые свойства плазмы — задача труднейшая, решать ее будут и те, кто сейчас еще учится в школе, а потом, определив свое призвание, вольется в отряд разведчиков нового, встанет в ряды покорителей плазмы.
Скажу заранее: нелегко попасть в отряд покорителей плазмы. Одного желания мало, нужны прочные знания, настойчивость, упорство, подлинная любовь к науке. Но настоящих энтузиастов это смущать не должно: цель — строить будущее — прекрасна. А ведь именно об этом идет речь, потому что сейчас никто не сомневается в справедливости высказывания крупнейшего советского физика академика А. Ф. Иоффе: «Техника будущего — это физика в различных ее применениях».
Подумайте об этом, ребята.