2 марта 1978 г. — знаменательная дата в истории программы «Интеркосмос», в истории научно-технической кооперации стран социалистического содружества. В этот день в 18 ч 28 мин по московскому времени с космодрома Байконур стартовала ракета-носитель с космическим кораблем «Союз-28», на борту которого находился экипаж в составе командира корабля летчика-космонавта СССР А. А. Губарева и космонавта-исследователя, гражданина ЧССР В. Ремека.
Ракета-носитель вывела «Союз-28» на орбиту с начальными параметрами: перигей 198 км, апогей 276 км, наклонение 51,6°, период обращения 88,95 мин. На первых трех витках полета «Союза-28» космонавты провели контроль состояния и работоспособности систем и агрегатов корабля, проверили герметичность его отсеков, а затем сняли скафандры. На последующих витках началось формирование монтажной орбиты.
На 4-м и 5-м витках «Союза-28» был проведен первый двухимпульсный маневр для подъема орбиты корабля. Двигаясь по новой орбите, корабль догонял станцию «Салют-6», которая в момент старта «Союза-28» находилась впереди по полету корабля, на расстоянии около 10 тыс. км. При первом импульсе двигательная установка корабля проработала 4 с и увеличила его скорость на 1,3 м/с, при втором импульсе — 55 с и увеличила скорость корабля на 31,6 м/с. В результате двухимпульсного маневра «Союз-28» перешел на орбиту с перигеем 269 км, апогеем 309 км и периодом обращения 90 мин.
На 6 — 12-х витках, в период, когда корабль совершал полет вне зон видимости наземных станций слежения, космонавты спали, при этом контроль за полетом корабля осуществлялся измерительными пунктами, расположенными на морских судах.
3 марта, на 17-м витке полета корабля «Союз-28», формирование его монтажной орбиты было продолжено — был выполнен второй двухимпульсный корректирующий маневр. Он позволил сблизить космический корабль с орбитальным комплексом «Салют-6» — «Союз-27» до такого расстояния, когда дальнейшее сближение могло уже осуществляться автоматически (с помощью аппаратуры автономного наведения). После включения этой аппаратуры, на 18-м витке, произошло сближение «Союза-28» с комплексом, причаливание к нему, и в 20 ч 10 мин по московскому времени корабль «Союз-28» состыковался с научным орбитальным комплексом «Салют-6» — «Союз-27». Причем стыковка была осуществлена к узлу, расположенному на агрегатном отсеке станции.
После проверки герметичности стыковочного узла и выравнивания давления между кораблем и станцией экипаж «Союза-28» открыл переходные люки и в 23 ч 10 мин по московскому времени перешел в помещение станции «Салют-6», где их встретили космонавты Ю. В. Романенко и Г. М. Гречко — «долгожители» космического «дома», работавшие на станции уже с 11 декабря 1977 г. Таким образом, с 3 марта 1978 г. на околоземной орбите на борту научного орбитального комплекса «Салют-6» — «Союз-27» — «Союз-28» приступил к совместной работе международный экипаж в составе космонавтов Ю. В. Романенко, Г. М. Гречко, А. А. Губарева и В. Ремека.
Программа работ международного экипажа предусматривала проведение в течение 7 сут научно-технических исследований и экспериментов, а также осуществление ряда других мероприятий (телевизионные репортажи, кинофотосъемки с целью документирования деятельности международного экипажа на борту «Салюта-6», бортовая пресс-конференция и т. п.). Эти эксперименты были подготовлены чехословацкими специалистами совместно с их советскими коллегами.
Уже на исходе 3 марта космонавты А. А. Губарев и В. Ремек приступили к выполнению первого советско-чехословацкого эксперимента «Хлорелла». Он проводился с целью изучения влияния невесомости на рост одноклеточной водоросли. Хлорелла получила широкую известность как «космическая водоросль». Эти одноклеточные организмы способны поглощать углекислый газ и давать взамен кислород, которым может пользоваться экипаж в длительных космических полетах. Кроме того, хлорелла может использоваться как продукт питания, поскольку она примерно на 60 % состоит из белка. Наконец, эта одноклеточная водоросль является удобным объектом для исследования особенностей биологии растений при воздействии невесомости.
В эксперименте «Хлорелла» культура водорослей применялась исключительно как модель быстрорастущего организма. В оптимальных условиях роста количество клеток удваивается через каждые 4 ч. Таким образом, в течение одной недели космического полета образуется несколько поколений водорослей. Основное значение эксперимента заключалось в том, что специалисты смогли получить данные об организмах, несколько поколений которых последовательно развивалось в условиях невесомости. При этом следует подчеркнуть, что пока самые длительные космические полеты человека представляют собой лишь незначительную часть средней продолжительности жизни одного поколения людей.
Космонавты А. А. Губарев и В. Ремек доставили на борт «Салюта-6» четыре контейнера с популяциями водорослей (в запаянных ампулах) и органической питательной средой. В первых трех контейнерах помещалось по две ампулы с одним и тем же видом водорослей. Причем водоросли были доставлены на орбиту в нерастущем, покоящемся состоянии и только на станции космонавты осуществили подачу к ним подготовленной питательной среды.
Эксперимент «Хлорелла» начался с того, что в каждом из трех контейнеров было раздавлено по одной ампуле, тем самым культура водорослей была введена в питательную среду, в которой она в дальнейшем размножалась в отсутствие света. Другие ампулы в контейнерах остались для контроля в нераздавленном состоянии: находившиеся в них в неактивном состоянии водоросли были возвращены на Землю. Контрольные варианты водорослей были одновременно засеяны в наземной лаборатории, по возможности в идентичных условиях, за исключением, естественно, фактора невесомости.
Сразу после завершения полета в каждом из контейнеров часть суспензии водорослей была законсервирована специальным фиксатором для дальнейшего подробного анализа состояния культуры (в конце сравнительного эксперимента), а часть транспортировалась в наземные лаборатории в живом состоянии для изучения разного рода воздействий факторов космического полета на культуры водорослей. Это позволило в отличие от ранее проводившихся в космосе экспериментов с хлореллой непосредственно сравнить результаты воздействия невесомости как на активно растущие, так и на покоящиеся клетки водорослей. В значительной степени такое сравнение стало возможным благодаря тому, что космонавты принимали активное участие в проведении эксперимента во время полета.
В четвертом контейнере находились три ампулы с разными видами водорослей, которые использовались и в первых трех контейнерах. На «Салюте-6» все три ампулы были раздавлены одновременно, и в питательной среде оказалась культура, состоящая из трех различных видов водорослей. При этом предполагалось изучить проявление конкуренции различных форм в процессе их роста и возможное в конечном итоге преобладание одних форм над другими.
Завершения эксперимента «Хлорелла» ожидали с особым интересом, учитывая, что эвкариотическая клетка данной водоросли обладает структурой и физиологией, очень близкой клеткам высших растений и всех животных, в то время как прокариотическая отличается от клеток других организмов. Результаты этого эксперимента освещались в научной печати, о них докладывалось на международных конференциях. В частности, они показали, что состояние невесомости никак не влияет на скорость роста популяции водорослей. Принципиальных различий между свойствами популяций, выращенных из этих клеток и из тех, которые сохранялись во время полета в состоянии покоя на Земле, также не было обнаружено.
На следующий день после выполнения эксперимента «Хлорелла» космонавты приступили к выполнению других советско-чехословацких экспериментов, в частности технологических экспериментов «Морава», открывших серию исследований в области космического материаловедения, которые были продолжены в ходе полетов последующими международными экипажами. О перспективности этого направления космических исследований, сулящего в будущем буквально революционные преобразования в технологии изготовления традиционных и новых материалов, писалось достаточно много. Отметим только, что цель космической технологии — использование факторов космического полета для получения полезных и подавления вредных влияний на процесс изготовления веществ и создание новых, технически перспективных материалов.
Начало космической технологии было положено экспериментами, проведенными на борту советского космического корабля «Союз-6» в 1969 г. и американской орбитальной станцией «Скайлэб» в 1973–1974 гг., а также в ходе совместного экспериментального полета космических кораблей «Союз-19» (СССР) и «Аполлон» (США) в 1975 г. В дальнейшем эти эксперименты неоднократно проводились на борту советских научных орбитальных станций «Салют». Задача серии технологических экспериментов под общим названием «Морава» состояла в исследовании новых материалов, полученных в состоянии почти полной невесомости (микрогравитации), в выяснении связи между этими условиями и условиями кристаллизации, в выявлении воздействия микрогравитации на структуру и другие физические характеристики конденсированных систем.
Специалисты Института физики твердого тела АН ЧССР и ряда советских научных организаций совместно разработали методику проведения экспериментов. Причем чехословацкие коллеги выбрали и подготовили для них материалы, кварцевые ампулы и металлические капсулы. Перед доставкой капсул с ампулами на борт «Союза-28» аналогичные им опытные экземпляры были подвергнуты всесторонним испытаниям на Земле: тряске на вибростенде, ударным нагрузкам до 100 g, нагреву, имитирующему ход эксперимента. И лишь успешно сдав эти «экзамены», комплексный эксперимент «Морава» получил путевку в космос.
Первый эксперимент в данной серии — изучение процесса затвердевания расплава двух веществ, представляющего собой эвтектику[3]. При этом один из компонентов содержался в расплаве в избытке. В этом случае процесс затвердевания проходил в два этапа: кристаллизация из расплава основного компонента и последующее отвердевание остаточной эвтектики.
В качестве основного компонента был выбран анизотропный кристалл хлористого свинца, поскольку на нем проще проследить влияния температурного перепада и гравитационного поля. Вторым изучаемым веществом стал кристалл бромида ртути, обладающий чрезвычайно высокими значениями параметра связи в кристаллической решетке. Изучение этих двух веществ составляло содержание первого этапа технологического эксперимента «Морава».
Второй этап эксперимента состоял в изучении анизотропного оксихлорида висмута, приготовленного методом выращивания из жидкой фазы в условиях невесомости, а третий этап — в исследовании затвердевания и образования стекловидной системы, представленной полупроводниковым стеклом с тетраэдрической структурой решетки (в состав которой входят атомы германия, сурьмы и серы). Цель последнего исследования заключалась не только в определении условий образования стекла в состоянии невесомости, но также в изучении процессов зародышеобразования и разделения фаз, протекающих в стеклянной матрице, и определении влияния этих процессов на основные физические характеристики получаемых материалов.
Эксперимент проходил следующим образом. Чехословацкий космонавт В. Ремек поместил контейнер с исследуемыми веществами в электронагревательную установку «Сплав», доставленную на орбитальную станцию «Салют-6» с помощью грузового транспортного корабля «Прогресс-1». Установка «Сплав» была размещена вблизи корпуса орбитальной станции, неподалеку от центра тяжести всего научного комплекса. В ходе эксперимента весь орбитальный комплекс ориентировался так, чтобы его продольная ось была направлена к центру Земли.
Для повышения «чистоты» эксперимента в наиболее ответственные периоды кристаллизации на орбитальном комплексе выключались все системы и агрегаты, вызывающие колебания станции, сводились к минимуму даже перемещения космонавтов. Поэтому в эти решающие для эксперимента периоды времени сила тяжести по всем трем направлениям была несущественной и составляла не более 10–6 — 10–7g.
В контейнере, представляющем собой герметический стальной цилиндр длиной 172 мм и диаметром 17 мм, находились в кварцевых ампулах (в условиях вакуума) образцы исследуемых материалов. После помещения контейнера в цилиндрическую полую печь начиналось нагревание образцов с таким расчетом, чтобы температура в контейнере росла до тех пор, пока не достигала величины выше точки плавления исследуемых материалов (в первой серии это были системы «хлористый свинец — хлористая медь» и «хлористый свинец — хлористое серебро»).
Максимальный нагрев в экспериментах «Морава» достигал 500 °C. После достижения максимальной температуры началось ее регулируемое снижение. Причем максимальная температура достигалась примерно через 24 ч после начала эксперимента, а затем в режиме охлаждения возникал процесс затвердевания. Охлаждение длилось около 20 ч со скоростью примерно 11 °C в 1 ч. Таким образом, весь рабочий цикл составлял около двух суток.
Одновременно в ЦПК им. Ю. А. Гагарина специалисты СССР и ЧССР провели наземную часть эксперимента. Она по своей сути обратна космической: если в космосе нужно было свести к минимуму силу земного тяготения, то здесь с помощью центрифуги исследовались рост и направленное затвердевание кристаллических материалов при различных перегрузках. Располагая контейнер с исходным веществом то по вектору углового ускорения, то перпендикулярно ему, специалисты сравнивали структуру и свойства материалов, полученных при различных взаиморасположениях направления перегрузки с осью кристаллизации.
Наземный эксперимент на центрифуге был осуществлен на установке «Кристалл», работающей по методу направленной кристаллизации. Однако в отличие от установки «Сплав» процесс здесь происходит в условиях фиксированного теплового поля, а изменение зон нагрева достигается перемещением ампулы с материалом, которое осуществляется механически в соответствии с требуемой программой. Сопоставление результатов всего комплекса экспериментов «Морава» помогло определить зависимость свойств материалов от гравитационных условий их получения и выработать рекомендации по созданию перспективных технологических соединений.
Микроскопическое исследование структуры материалов, полученных одновременно в условиях космического полета и на Земле (при прочих идентичных условиях), показывает, что кристаллы, выращенные в космосе, меньше, чем аналогичные кристаллы, полученные на Земле. Причина заключается в том, что в космосе миграция ионов в расплаве происходит лишь путем диффузии: именно такое влияние оказывает невесомость на процесс зародышеобразования и роста кристаллов из жидкой фазы. Влияние же невесомости на эвтектические растворы противоположно: кристаллы обеих фаз эвтектики больше, чем полученные на Земле.
Процесс затвердевания кристаллов в космосе подвержен влиянию микрогравитации. И хотя она была мала в данном эксперименте, но все же на внешней поверхности образца можно заметить следы воздействия радиальной составляющей микрогравитации, зарегистрированной в ходе эксперимента. Оказывается, что поле тяготения порядка 10–6g достаточно, чтобы повлиять на конфигурацию атомов в исследованной расплавленной системе, а также на процесс затвердевания.
Следующий эксперимент относился к медико-биологическим. С целью изучения кислородного режима в тканях человека, находящегося в условиях невесомости, был проведен советско-чехословацкий эксперимент «Кислород». Он выполнялся с помощью прибора «Оксиметр», разработанного специалистами ЧССР.
У человека и животных для сохранения и поддержания достаточного количества энергии непрерывно должны протекать процессы окисления, требующие постоянного притока кислорода. Длинный и сложный путь поступления кислорода в ткани организма определяется согласованной функцией легочного дыхания и кровообращения. И если динамика поступления кислорода в легкие и его перенос кровью изучены достаточно хорошо, то наука мало что знает о том, где и как происходит «стыковка» кислорода с тканями живого организма и как используется кислород тканевыми ферментами. Важнейшим показателем взаимодействия этих двух процессов является так называемый уровень напряжения в тканях организма.
В условиях невесомости наступает перераспределение крови из нижних участков тела в верхние, возникает переполнение кровью сосудов головы и верхней части тела. Это может сказаться на кислородном снабжении различных участков тела и изменении кислородного насыщения крови, а следовательно, и тканей организма. С помощью прибора «Оксиметр» с набором специальных датчиков, позволяющего вести исследования кислородного режима ткани, в эксперименте «Кислород» выяснялось, как изменяется уровень напряжения кислорода в тканях во время космического полета и изменяется ли в процессе полета доставка кислорода в ткани космонавта. Кроме того, изучался характер потребления кислорода тканями в полете.
Полученные в ходе эксперимента «Кислород» данные позволяют оценить интенсивность окислительных процессов в тканях космонавта в условиях невесомости, т. е. тех процессов, которые являются показателем интенсивности энергетического обмена в организме, что имеет существенное значение для оценки эффективности профилактических мероприятий, проводимых на борту пилотируемых аппаратов.
Следующий эксперимент из серии медико-биологических, «Опрос», был подготовлен специалистами СССР, ЧССР и ПНР. В ходе полета международного экипажа эксперимент проводился дважды: космонавты ответили на вопросы специального медико-психологического опросника о состоянии здоровья и воздействии внешней среды на психическую деятельность, о выполнении поставленных задач. Материалы данного эксперимента позволяют оценить изменения в субъективной сфере человека, адаптирующегося к необычным факторам окружающей среды, и будут использоваться при дальнейшем совершенствовании условий проживания и деятельности человека в замкнутом объеме.
Цель медико-биологического эксперимента «Теплообмен-2» — изучить охлаждающие свойства среды, в которой обитают экипажи космических кораблей и орбитальных станций. Проблема эта возникает в связи с тем, что в условиях невесомости процесс охлаждения тел претерпевает значительные изменения, вызванные «выпадением» из процесса теплообмена важнейшего компонента — теплоотдачи за счет естественной конвекции. Поэтому отсутствие естественной конвекции в условиях невесомости компенсируется созданием принудительных потоков воздуха с помощью вентиляторов. Однако такой метод не может считаться идеальным, поскольку теплоотдача при естественной конвекции является процессом саморегулируемым.
В условиях космического полета в обитаемых отсеках космических аппаратов, где состав и давление воздуха могут отличаться от земных параметров, а также в условиях интенсивной искусственной конвекции необходимо учитывать значительное количество различных характеристик среды, иными словами, в комплексе оценивать охлаждающие свойства воздушной среды. Чехословацкие специалисты для такой комплексной оценки предложили специальный прибор — электрический динамический кататермометр. Первые исследования в этом направлении были начаты с помощью биологического спутника «Космос-936», имевшего на своем борту автоматический кататермометр, также изготовленный в ЧССР. Результаты этого эксперимента подтвердили целесообразность расширенных исследований с участием космонавтов.
Основным элементом кататермометра является датчик, температура которого с помощью протекающего через него электрического тока доводится строго до 37 °C. При этом чем выше охлаждающие свойства среды, тем большая мощность электрического тока требуется для сохранения заданной температуры прибора. Замеряя потребляемую датчиком мощность, можно получить комплексный показатель охлаждающих свойств среды, учитывающий все ее основные характеристики. Прибор позволяет также производить объективную оценку теплового состояния космонавта прямым измерением температуры его кожи в шести точках тела.
В процессе эксперимента изучалась степень корреляции между показаниями обычного термометра и кататермометра, а также между объективным и субъективным тепловыми состояниями космонавта. При положительных результатах эксперимента, т. е. если подтвердилось бы предположение о лучшей степени корреляции тепловых ощущений и состояния космонавта с показаниями кататермометра, этот прибор можно было бы рекомендовать для использования в системе терморегулирования пилотируемых космических аппаратов вместо традиционных термометров.
Результаты эксперимента «Теплообмен-2» показали, что существует хорошее согласие между средними значениями температуры кожи, полученными различными приборами, которые в контрольных экспериментах на Земле и на 5-й день полета в невесомости были заключены в пределах 33–34 °C, а это свидетельствует о нормальном тепловом режиме. Однако достижение таких показателей по оптимальному тепловому режиму в условиях космического полета требует большего охлаждающего воздействия окружающей среды, чем на Земле. Можно констатировать, что данная аппаратура и разработанная методика в ходе полета оправдали себя и целесообразно продолжить эксперимент «Теплообмен-2» во время полета следующих международных экипажей.
Бóльшую часть четвертого дня полета А. А. Губарев и В. Ремек отвели эксперименту «Экстинкция», в ходе которого они наблюдали за изменением яркости звезд при их заходе за ночной горизонт Земли. Такие наблюдения проводились ранее и советскими и американскими космонавтами, которые обратили внимание на тот факт, что яркость звезд уже на расстоянии приблизительно 100 км от горизонта Земли постепенно слабеет… При этом звезды меняют свой цвет или мерцают, после чего они на мгновение вновь вспыхивают, чтобы, наконец, исчезнуть в плотных слоях атмосферы.
Это явление до сих пор подробно не изучено, ему не найдено удовлетворительного объяснения, а различные гипотезы требуют экспериментального подтверждения. В частности, одна из гипотез связывает данное явление с поступлением в верхнюю атмосферу Земли межпланетного вещества (мельчайших пылевых частиц — микрометеоритов) из окружающего Землю пространства. Это вещество оказывает влияние на оптические свойства атмосферы, и теория указывает, что на высотах около 100 км образуется (главным образом в результате прохождения метеорных роев) слой с повышенной концентрацией таких частиц космического происхождения. С целью подтверждения наличия на высотах 80 — 100 км пылевого слоя, образованного микрометеоритами, и проводился эксперимент «Экстинкция».
В течение пребывания А. А. Губарева и В. Ремека на борту научного орбитального комплекса был успешно проведен первый этап эксперимента «Экстинкция». Полученный визуально-наблюдательный материал послужит основой для разработки и изготовления фотоэлектронного фотометра, предназначенного для прецизионных измерений параметров этого явления в космических условиях.
Программа работ международного экипажа на борту научного орбитального комплекса была очень напряженной. Помимо упомянутых исследований и экспериментов международный экипаж осуществлял кино- и фотосъемки, проводил наблюдения отдельных районов Земли, в том числе ледников и снежного покрова по программе изучения окружающей среды в научных и народнохозяйственных целях. Космонавты сделали несколько телевизионных репортажей с борта станции, в которых поделились своими впечатлениями о пребывании в космосе, рассказами о проводимых научных исследованиях, познакомили телезрителей с предметами символического характера, взятыми ими на борт станции. Проводилась и бортовая телевизионная пресс-конференция, в ходе которой космонавты ответили на вопросы журналистов социалистических стран, аккредитованных в центре управления полетом.
Впервые в мире на борту станции «Салют-6» было открыто «космическое» международное отделение связи: двумя специальными штемпелями — советским и чехословацким — были погашены взятые на борт конверты, предназначенные для экспонирования в музеях СССР и ЧССР. Четыре космонавта подписали на борту свидетельство Федерации авиационного спорта СССР о полете международного экипажа.
10 марта 1978 г. после успешного завершения программы работ на борту научного орбитального комплекса «Салют-6» — «Союз-27» — «Союз-28» космонавты А. А. Губарев и В. Ремек благополучно возвратились на Землю: спускаемый аппарат корабля «Союз-28» совершил мягкую посадку в 16 ч 44 мин по московскому времени в заданном районе территории Советского Союза, в 310 км западнее Целинограда. Общее время полета космонавтов А. А. Губарева и В. Ремека составило 7 сут 22 ч 16 мин.
Вспоминая свой космический полет в составе международного экипажа, В. Ремек писал в одной из своих статей: «Я не видел никаких летающих тарелок или загадочных объектов, но я видел нашу родную планету. Могу подтвердить то, что о ней говорят все, видевшие ее с космических высот: она прекрасна. Тем более потому, что из космоса нельзя видеть ни огненных пожаров-войн, ни границ, разделяющих народы и государства. И хотя мы всю нашу планету облетали за девяносто минут, она, бесспорно, достаточно велика, чтобы человечество могло жить на ней в мире и дружбе, но в то же время слишком мала, чтобы ее жители не ощущали угрозы, исходящей от накопленных вооружений».
Полет международного экипажа в составе советского и чехословацкого космонавтов и их работа в космосе получили высокую оценку партийных и государственных руководителей СССР и ЧССР, общественности социалистических стран. За успешное осуществление космического полета на научном орбитальном комплексе «Салют-6» — «Союз» и проявленные при этом мужество и героизм Президиум Верховного Совета СССР наградил Героя Советского Союза летчика-космонавта СССР А. А. Губарева орденом Ленина и второй медалью «Золотая Звезда», а также присвоил гражданину ЧССР космонавту-исследователю В. Ремеку звание Героя Советского Союза с вручением ордена Ленина и медали «Золотая Звезда».
Президент ЧССР товарищ Густав Гусак по предложению Президиума ЦК КПЧ и правительства ЧССР присвоил товарищу В. Ремеку почетное звание «Летчик-космонавт ЧССР». Кроме того, ему, как и летчикам-космонавтам СССР А. А. Губареву, Ю. В. Романенко и Г. М. Гречко, были присвоены почетные звания «Герой ЧССР».
Выступая на торжественном собрании в Праге 31 мая 1978 г., Генеральный секретарь ЦК КПСС, Председатель Президиума Верховного Совета СССР Л. И. Брежнев подчеркнул многогранность и знаменательность этого события: «Можно сказать, что все грани нашего сотрудничества — и производственная, и научно-техническая, и политическая — отразились в недавнем космическом полете первого интернационального социалистического экипажа, в котором принял участие первый летчик-космонавт в истории Чехословакии товарищ Владимир Ремек… На очереди — запуски новых международных экипажей социалистических стран. Словом, можно сказать, что наше содружество, прочно утвердившись на Земле, начинает успешно осваивать космическое пространство»[4].