Часть II Материя за пределами атомов

Пока жажда познания остается неутолимой благодаря безмерности непознанного, деятельность сама оставляет после себя растущее сокровище знания, которое каждая цивилизация удерживает и накапливает как неотъемлемую часть своего мира[89].

Ханна Арендт. Жизнь ума, 1973

Глава 4 Облачные камеры: космические лучи и ливни новых частиц

На горе Голливуд, за известным знаком, возвышается величественное белокаменное здание, из которого открывается вид на Лос-Анджелес. Это не особняк, а общественный музей: обсерватория Гриффита. Здесь посетители смотрят шоу в планетарии и рассматривают ночное небо в телескопы, исследуя свое место в космосе. Внутри, среди прохладного темного мрамора, находится серия экспонатов, один из которых – расположенный в квадратной коробке из плексигласа – содержит ключ к следующему шагу в нашем путешествии. Он неприметен, несколько затенен кусками метеорита, лунными камнями и огромным изображением ночного неба. Но любопытные посетители вознаграждаются завораживающим зрелищем: на черном фоне время от времени образуются крошечные следы конденсата, их около 20 каждую секунду. Они появляются внезапно, грациозно опускаются на полсекунды, а затем исчезают.

Устройство представляет собой облачную камеру[90], один из первых детекторов частиц, который позволяет людям видеть частицы, пролетающие мимо за стомиллионную долю секунды. Внутри остаются видимые следы, короткие треки, толщиной с карандаш, образованные альфа-частицами (ядрами гелия), и тонкие, легкие, похожие на паутину дорожки – в основном электроны (бета-лучи) или гамма-лучи. Они меньше атомов, объекты, которые мы не можем увидеть, потрогать или иным образом обнаружить нашими органами чувств. Но вот устройство, которое позволяет нам их видеть. Хотя мы не можем воспринимать эти частицы непосредственно – они слишком малы для этого, – благодаря облачным камерам мы можем увидеть эффект, который они оставляют после себя.

Эта версия камеры в обсерватории Гриффита называется диффузионной камерой, она была разработана в 1936 году американским физиком Александром Лангсдорфом – усовершенствованная облачная камера на основе оригинального изобретения начала 1900-х годов. Ее идея проста, но она изменила наше понимание фундаментальных составляющих природы. Вверху герметичной камеры собираются пары спирта, а затем опускаются на холодную металлическую пластину внизу. Падая и охлаждаясь, пар переходит в состояние, называемое перенасыщением, при котором любое малейшее возмущение приведет к образованию капель. Проносясь сквозь пар, заряженные частицы ионизируют его, оставляя достаточно энергии, чтобы образовать крошечную полоску облака, похожую на белый инверсионный след, который оставляет за собой реактивный самолет.

В этой главе мы проследим за историей облачной камеры – от ее скромного начала до расцвета в начале 1930-х годов, когда она способствовала ряду замечательных открытий, включая совершенно неожиданные новые частицы, которые изменили наш взгляд на материю. Новые частицы, которые даже не входят в атомы. Мы увидим, как этот новый детектор вывел экспериментаторов за пределы их подвалов и повел в горы открывать новые перспективы, подгоняя теоретиков и заставляя их мчаться наверстывать упущенное. Мы также увидим, как эти новые знания о материи позволили совершенно иным способом заглянуть внутрь пирамид и вулканов.

Новая эра открытий началась с, казалось бы, простого вопроса – того самого, который часто задают посетители обсерватории Гриффита, если находят время понаблюдать за непрекращающимся потоком треков частиц, проходящих через облачную камеру: откуда берутся все эти частицы?

В начале 1900-х годов ученые задавались почти таким же вопросом, пытаясь выяснить, откуда исходит дополнительное излучение, которое они наблюдают в своих приборах. Исследования радиации проводились в лабораториях Берлина, Вены и Кембриджа с использованием простого и довольно грубого устройства, называемого электроскопом. Одним из свойств, которое было легко предсказать, был так называемый закон обратных квадратов, согласно которому, если экспериментатор находится в два раза дальше от источника излучения, обнаруженный уровень снизится в четыре раза. По крайней мере, так предполагалось, но некоторые проницательные ученые заметили, что их приборы, по-видимому, улавливают некоторое дополнительное излучение. Почему радиации было больше, чем они ожидали? Без ответа на этот вопрос исследователи едва ли могли надеяться понять, что происходит в их экспериментах в лаборатории.

Ответ казался простым: излучение исходит из минералов в Земле. В своей работе по открытию радия и полония, которые использовались в качестве лабораторных источников, Мария Кюри, как известно, провела годы, работая в старом сарае, где измельчала и перерабатывала тонны минерала, называемого смоляной обманкой. Эти два новых элемента были ценным предметом для ученых, изучающих свойства излучения, и они происходили из самой Земли. Таким образом, по логике, именно эти минералы должны были создавать тревожный радиационный фон. Ответ казался ясным, как и способ его проверки. Если радиация исходила от Земли, ее должно быть меньше в атмосфере. Ученые подозревали, что примерно на высоте 300 метров излишняя радиация должна полностью исчезнуть.

Для молодого предприимчивого физика это стало бы прекрасным приключением. Все, что нужно, – это прибор для обнаружения радиации и высота. В начале 1900-х годов был только один способ достичь больших высот, если вы не альпинист: полет на воздушном шаре. По крайней мере, три разных исследователя быстро поднялись в небо в поисках фонового излучения, взяв с собой простые электроскопы[91], но все три эксперимента провалились. Движение шара сотрясало электроскопы, а изменение давления приводило к проникновению воздуха в устройство и проблемам с электрической изоляцией.

Электроскопы были популярны, потому что их мог дешево изготовить практически любой желающий. Все, что для этого требовалось, – это металлический стержень, установленный внутри герметичного контейнера, например банки, так, чтобы он был электрически изолирован. На конце стержня подвешивались два тонких кусочка золотой фольги. Когда заряженный предмет – например стеклянный стержень, натертый мехом, – касался электрода, заряд передавался вниз на золотые листья, которые разводились в стороны под действием сил электрического отталкивания, образуя перевернутую форму буквы V. Если бы устройство было идеально герметичным, листья навсегда остались бы в таком положении. Чтобы измерить излучение, вы просто заряжаете электроскоп, затем подносите к нему радиоактивный образец, который ионизирует часть воздуха внутри и заставляет листья терять свой заряд и медленно опускаться обратно навстречу друг другу. Скорость, с которой падают листья, преобразуется в количество радиации, воздействию которой подверглось устройство. Электроскопы явно предназначались для устойчивого лабораторного стенда, а не для того, чтобы использовать их на воздушном шаре.

После этих провалов и растущего замешательства немецкий священник-иезуит и физик Теодор Вульф понял, что решение заключается в создании более надежного электроскопа. В 1909 году Вульф изменил прибор, использовав вместо золотой фольги две тонкие проволоки с платиновым покрытием. Это оказалось гораздо более надежным решением. Вульф отправился в Париж, чтобы протестировать свой инструмент на двух разных высотах. Сначала он встал у основания Эйфелевой башни и измерил уровень радиации. Затем он поднялся на башню и на высоте 300 метров – как раз там, где, как ожидалось, излучения не будет, – обнаружил, что радиация сохраняется. Другие переняли его метод, но их результаты были столь же ошеломляющими. Итальянский физик Доменико Пачини решил для начала исследовать уровень радиации как можно глубже и взял электроскоп Вульфа под воду, где он ожидал обнаружить больше излучения, ведь его окружат минералы Земли. Он обнаружил обратное. Усовершенствованный электроскоп работал, но результаты оказались не такими, как предполагали ученые. Несколько физиков начали склоняться к мысли, что излучение исходит вовсе не от минералов в Земле.

Среди них был двадцатидевятилетний австрийский физик Виктор Гесс, который понял, что это его шанс. Он нанял пилота воздушного шара, завернулся в шерстяное пальто и поднялся в небо с поля у Вены. Воздушный шар взлетел более чем на 5300 м, что значительно выше базового лагеря Эвереста. К своему воздушному шару Гесс прикрепил два новых электроскопа Вульфа, специально приспособленных для работы с перепадами температуры и давления. Несмотря на разреженный воздух и температуру около –20 градусов по Цельсию, ему удалось получить точные измерения и в конце концов спуститься.

Гесс был не первым, кто поднимался на такие высоты или пытался измерить уровень радиации в атмосфере, но он был первым человеком, который смог получить надежный результат. Вернувшись на землю, Гесс просмотрел то, что записал. По мере того как он поднимался, количество радиации сначала немного уменьшилось, но затем начало расти и расти, пока не стало ясно, что на больших высотах радиации гораздо больше, чем на малых. Излучение не могло исходить с Земли – оно должно было исходить из-за пределов атмосферы. Но откуда? Гесс совершил еще один подъем на воздушном шаре во время солнечного затмения, чтобы исключить Солнце как возможный источник. Он измерял совершенно новый источник радиации. Теперь Гесс, Вульф, Пачини и другие физики поняли, что излучение можно обнаружить не только в минералах или в лаборатории. Излучение шло прямо из космоса.

Обнаруженная Гессом радиация, названная космическими лучами[92], разрешила загадку излишнего излучения, которая мучила физиков более 15 лет, но при этом полностью изменила их представление о том, где можно это излучение найти. Когда я говорю «излучение» в этом контексте, я имею в виду ионизирующее излучение, обладающее достаточной энергией для высвобождения электронов из атомов. Это включает в себя три типа излучения, известных ученым на данный момент: альфа-излучение (ядра гелия), бета-излучение (электроны) и гамма-излучение (высокоэнергетический свет). Где-то в космосе в результате бурных и сильных взаимодействий испускается излучение, достаточно мощное, чтобы преодолеть огромные расстояния, пройти через атмосферу и опуститься на Землю. Но где именно? Как образуется это излучение? Это новый или уже знакомый нам тип радиации? Взаимодействует ли она с атмосферой или проходит прямо сквозь нее? Гесс обнаружил космические лучи, но он мало что мог сказать об их природе. Был необходим инструмент, позволяющий больше узнать о радиации – как от космических лучей, так и в лабораториях на Земле.

Чего Гесс и его коллеги действительно хотели, так это какого-то способа увидеть излучение, что было особенно сложно, потому что оно, по большей части, невидимо. И все же они знали, что физика сделала видимыми другие части природы с помощью хитроумных инструментов. Например, глубины космоса нельзя было увидеть до того, как телескоп позволил собирать слабый свет, расширяя представление о Вселенной и нашем месте в ней. Биологические процессы также были невидимы, пока не появились первые микроскопы, открывшие взору мир микроорганизмов, что привело к невероятным открытиям и пониманию передачи болезней и формирования самой жизни. Теперь, в начале 1900-х годов, физики оказались на аналогичной грани, нуждаясь в прорыве в своей способности визуализировать излучение.

Чарльз Вильсон был застенчивым шотландским физиком, который начал свою научную карьеру примерно в то время, когда было открыто излучение. Его наследие сыграло важную роль в развитии его идей, прежде всего потому, что Шотландия оказалась почти идеальным местом для изучения облаков. В 1894 году, в возрасте 25 лет, Вильсон отправился в Форт-Уильям к самой высокой горе на Британских островах – Бен-Невис.

355 дней в году четко очерченная вершина Бен-Невиса окутана предательским туманом, но Вильсон узрел нечто вроде чуда: беспрецедентный период хорошей погоды. Он успешно поднялся на Бен-Невис и пробыл там две недели, работая волонтером на метеорологической станции. Несмотря на то что он работал в Кавендишской лаборатории в Кембридже, его первой любовью была не физика, а метеорология. С вершины облака были в основном под ним, и с этой выгодной точки он наблюдал за светом, танцующим на облаках, и формированием цветных колец, называемых «глориями», образующихся в тени горы, на которой он стоял. Он был очарован этими эффектами и хотел воспроизвести и изучить их в лаборатории. Поэтому его первой задачей было выяснить, как создать облака.

Вернувшись в Кембридж, Вильсон начал свой эксперимент. Для этого он использовал перевернутый стакан внутри большой стеклянной банки, наполненной водой, и ряд стеклянных трубок и клапанов, соединенных со второй банкой, находящейся в вакууме. Чтобы управлять камерой, Вильсон тянул за проволоку, выталкивая маленькую пробку, которая позволяла воздуху в стакане расширяться, опуская давление и снижая температуру[93]. Любой, кто открывал бутылку с газировкой и видел, как на крышке образуется туман с шипящим звуком, может представить, что наблюдал Вильсон. Поскольку воздух расширяется при падении давления, он становится перенасыщенным. При благоприятных условиях влага в воздухе конденсируется на частицах пыли и образует мелкие капли, создавая облако. Вильсон успешно воспроизвел это в лаборатории и собирался перейти к воссозданию световых эффектов, которые он наблюдал с вершины Бен-Невиса, но обнаружил то, чего не предполагал: даже в обеспыленном воздухе продолжали образовываться облачные капельки.

Как такое возможно? Чтобы образовались облака, необходимо какое-то возмущение, инициирующее образование капель; технически говоря, должны были быть какие-то ядра конденсации. До сих пор это была пыль. Но что было причиной образования капель в воздухе, свободном от пыли? Из своих более ранних экспериментов Вильсон смог определить, что возмущение вызывало что-то небольшое, возможно, размером с молекулу или атом, что натолкнуло его на идею о том, что капли образуются на ионах внутри камеры. Если это действительно так, он мог бы найти способ сделать атомы или молекулы видимыми и подсчитать их.

Вильсона не интересовали наблюдения за радиацией: она была очень новым и не совсем понятным явлением.

Он выдвинул свою гипотезу: ионы в воздухе ответственны за образование облаков. Он перестроил свой эксперимент с помощью более сложной установки, предназначенной для еще более быстрого расширения. Подготовив новый эксперимент, Вильсон схватил примитивную рентгеновскую трубку и направил ее на камеру. Он обнаружил, что при правильных условиях рентгеновские лучи создают большое количество капель, усиливая эффект, который он видел ранее. Наличие электрических зарядов вызвало образование облаков. Его догадка подтвердилась: рентгеновские лучи создавали ионы в воздухе, и эти ионы создавали ядра конденсации.

Вильсон работал над своей гипотезой, пока другие физики поднимали электроскопы на воздушных шарах и пытались разгадать тайну космического излучения. Он не был в неведении относительно достижений в области радиации – в конце концов, он, должно быть, ежедневно видел Эрнеста Резерфорда и Дж. Дж. Томсона. В какой-то момент в 1901 году он настолько заинтересовался новыми веяниями в физике, что тоже решил поискать фоновое излучение с помощью электроскопа, который установил ночью в тоннеле Каледонской железной дороги. Как и другие, он искал излишнюю радиацию от минералов Земли, но не увидел заметной разницы между радиацией в тоннеле и в своей лаборатории[94]. Вильсон снова переключил внимание на свою более многообещающую работу, предоставив другим разбираться с таинственным излучением.

Кажущееся отсутствие интереса Вильсона к радиации и его странный эксперимент по созданию облаков придавали ему некий ореол загадочности в Кавендишской лаборатории. Он проводил дни, занимаясь тщательной и сложной выдувкой стекла, которое очень часто ломалось. Студенты и сотрудники сопереживали ему, поскольку все они когда-то обучались стеклодувному делу в так называемой «детской лаборатории» – специальной лаборатории, где студенты-исследователи изучали замысловатые принципы создания устройств, таких как электрометры, прежде чем приступить к воспроизведению известных экспериментов. Многие из них позже с нежностью вспоминали фоновый звук выдувания стекла Вильсоном, который стал почти саундтреком к их работе в Кавендише.

Научная стеклодувная мастерская сегодня большая редкость, поэтому нам трудно оценить, как много навыков требовало проведение эксперимента, подобного облачной камере, до появления автоматизированного проектирования и фрезерных станков, которые мы используем для проведения современных опытов. Требовались годы, чтобы освоить необходимые методы, но характерные для Вильсона терпение и мягкость позволили ему создать то, что Резерфорд назвал «самым оригинальным и замечательным инструментом в истории науки»[95].

Кустарное изготовление стеклянного компонента требовало нагрева стекла до нужной температуры. В одной руке Вильсон держал паяльную лампу: для создания достаточного количества тепла, чтобы стекло расплавилось именно так, как ему было нужно, он немного открывал газ, заставляя горелку издавать безошибочно узнаваемый свист – звук, который позже многие с ним ассоциировали. Точно в нужный момент он выдувал ртом воздух через трубу, расширяя стеклянный сосуд с нужной силой, обрабатывая расплавленное стекло ножами и другими инструментами[96].

Это был жаркий и физически трудоемкий процесс, но всего за пару минут Вильсон мог искусно придать стеклу форму сферической колбы или спирали. Основными элементами его облачных камер были цилиндры, которые должны были идеально подходить друг другу, что часто требовало часов кропотливой шлифовки стекла после его охлаждения. Безусловно, самым коварным процессом было соединение всех частей вместе, когда каждый компонент мог разрушить всю конструкцию. Чаще всего весь эксперимент заканчивался тем, что стекло разбивалось. Вильсон, в отличие от Резерфорда, избегал ругательств в адрес своего аппарата. Он только тихо приговаривал: «Боже, боже», – и начинал сначала.

Сегодня ранние облачные камеры Вильсона хранятся в музее в Новой Кавендишской лаборатории в Кембридже, и на первый взгляд они выглядят довольно примитивно. Их простота создает впечатление, что это были легкие дни открытий, когда любой мало-мальски приличный физик мог сделать революционное открытие о Вселенной. Но как только мы поймем, какой уровень мастерства и терпения требуется, чтобы создать что-то полезное из стекла в начале 1900-х годов, Вильсон и его коллеги-экспериментаторы начинают казаться совершенно исключительными людьми. С помощью этого нового мощного инструмента были сделаны открытия, которые навсегда изменили наш взгляд на материю.

Когда Вильсон впервые разработал камеру, было далеко не ясно, можно ли использовать это устройство для сколько-нибудь серьезного количественного исследования излучения, даже если оно, по-видимому, реагирует на рентгеновские лучи. Только после того как Резерфорд определил природу альфа– и бета-излучения, Вильсон вернулся к облачной камере в 1910 году, на этот раз с новой энергией и амбициозной целью. Он планировал сделать камеру полезным инструментом для наблюдения заряженных частиц.

В 1911 году, через 15 лет после изобретения облачной камеры, Вильсон стал первым человеком, который увидел и запечатлел движение отдельных альфа– и бета-частиц. Он усовершенствовал устройство таким образом, что теперь заряженные частицы создавали белые следы, которые можно было подсветить и сфотографировать. Он описал эти следы, оставляемые электронами, как «маленькие пучки и нити облаков»[97]. Вильсон показал фотографию следов альфа-частиц австралийско-британскому физику У. Г. Брэггу, который первым предсказал, что альфа-частица должна сначала постепенно замедляться, а затем резко остановиться, взаимодействуя с наибольшей силой в конце своего пути, создавая облачный след, все более заметный и плотный по мере окончания движения частицы. Вильсон и Брэгг обнаружили, что «сходство между фотографией и идеальной картиной Брэгга было поразительным»[98].

Исследователи по всему миру медленно, но неуклонно внедряли в свои лаборатории облачные камеры, внося в них изменения, чтобы они стали еще более полезными. К концу 1920-х годов большинство облачных камер размещались между полюсами большого магнита, заставляющего изгибаться следы от заряженных частиц. Положительная частица изгибалась в одном направлении, отрицательная – в противоположном, и высокоэнергетическая частица изгибалась меньше, чем низкоэнергетическая. С помощью тщательных измерений исследователи смогли определить электрический заряд и энергию частиц. В лаборатории они узнали, как выглядят различные частицы в облачной камере, и смогли определить их свойства.

Идеи о взаимодействии частиц, родившиеся в ходе мучительных долгих экспериментов, теперь можно было увидеть воочию. Настало время применить эту новую технику для понимания природы космических лучей.

В Калифорнийском технологическом институте (Калтех) в Пасадене Роберт Милликен, переехавший туда из Чикаго в 1921 году после своих экспериментов по фотоэлектрическому эффекту (глава 3), призвал своего бывшего аспиранта Карла Андерсона использовать облачную камеру для проведения новых исследований по космическим лучам. В 1929 году советский ученый Дмитрий Скобельцын обнаружил в облачной камере несколько треков, которые вообще почти не изгибались[99], что указывало на то, что они обладали огромной энергией – более 5000 МэВ, что в 1000 раз превышало лабораторные радиоактивные источники. Они были не просто энергичны: они появлялись в неожиданных группах по два, три или более лучей и, казалось, исходили из точки за пределами камеры. Результаты работы Скобельцына показали, что облачная камера поможет узнать что-то новое и захватывающее о космических лучах.

Андерсон, сын шведских иммигрантов, еще будучи школьником в Лос-Анджелесе, решил, что хочет стать инженером-электриком, несмотря на то что в его семье ни у кого не было опыта работы в технических областях. Учитель посоветовал ему поступить в Калифорнийский технологический институт, где Андерсон понял, что физика – это гораздо больше, чем просто шкивы и рычаги. Он решил сменить специальность и никогда не оглядывался назад[100]. Он уже использовал облачную камеру при подготовке своей дипломной работы с Милликеном и обнаружил, что использование паров спирта вместо водяного пара делает следы намного ярче и их легче фотографировать. Он начал строить новую облачную камеру.

Андерсон нашел мотор-генератор в отделе аэронавтики и сконструировал весь аппарат вокруг него. Не было денег на сложные инженерные разработки – только-только началась Великая депрессия, – так что его эксперимент выглядел устрашающе, но все же работал. Облачная камера была в сердце устройства, окруженная медными трубами, по которым проводилось электричество для создания большого электромагнита. Трубы были полыми, по ним текла вода, чтобы магнит не расплавился. Вместе с железными полюсами, необходимыми для направления магнитного поля, устройство было размером с небольшой автомобиль и весило около 2 тонн. Сама камера была видна через отверстие в одном конце магнита, через которое она могла фотографировать облачные следы. Чтобы управлять устройством, Андерсону приходилось неоднократно создавать очень быстрое расширение паров спирта, что он и делал с помощью подвижного поршня, в результате чего при каждом срабатывании устройства раздавался громкий хлопок. Остальная часть кампуса Калтеха содрогалась от грохота, доносящегося с крыши здания, где был собран аппарат. К счастью для остальных жильцов, Андерсон проводил эксперимент только в ночное время, потому что для него требовалось 425 кВт электроэнергии – значительная часть энергопотребления всего кампуса.

Просматривая полученные фотографии, Андерсон обнаружил, что примерно на 15 из 1300 фотографий были видны следы, соответствующие положительно заряженным частицам. Но следы были слишком длинными для самой легкой из известных положительно заряженных частиц – протона. Что это за, казалось бы, новая частица?

Частицы на его фотографиях имели одну единицу положительного заряда и массу, подобную массе электрона. Сначала он просто назвал их «легко отклоняемыми положительными частицами», но к моменту написания статьи пришел к удивительно смелому выводу. Андерсон полагал, что обнаружил совершенно новый тип фундаментальной частицы, которую он назвал позитроном[101].

Чего Андерсон не знал, так это того, что за пару лет до этого, в 1928 году, британский физик Поль Дирак предсказал существование позитронов, исходя из одной математической интуиции. В надежде получить представление об атоме для описания объектов, которые движутся очень быстро, Дирак объединил две самые обсуждаемые новые теории в физике: теорию квантовой механики для описания очень малых объектов со специальной теорией относительности Эйнштейна. Полученное им уравнение, известное просто как уравнение Дирака, многие считают самым красивым в физике. Помимо прочего, оно сумело предсказать и открытие Андерсона. Точно так же, как квадратный корень из четырех может иметь решение +2 или –2, уравнение Дирака предполагало, что должны существовать частицы, идентичные электрону, то есть имеющие ту же массу, но с противоположным электрическим зарядом. Дирак не был уверен в физических проявлениях своей теории, но она предсказывала, что у каждого известного типа частиц должна быть ее противоположная версия, которая стала известна как антиматерия (или антивещество)[102].

Так случилось, что Дирак дружил с одним из физиков-экспериментаторов из Кавендишской лаборатории – Патриком Блэкеттом, который затем вместе с физиком итальянского происхождения Джузеппе Оккиалини продолжал совершенствовать технику облачной камеры. Когда Дирак выдвинул свою новую теорию, он поделился ею с Блэкеттом, и вместе они выяснили, что если бы позитрон появился в магнитном поле облачной камеры, то он оставил бы след, который выглядел бы идентично следу электрона, но изгибался в противоположном направлении. Почти за три года до работы Андерсона они просмотрели снимки облачной камеры Блэкетта из экспериментов с радиоактивными источниками. Дирак полагал, что есть множество доказательств существования позитронов, но Блэкетт считал эти доказательства слишком неопределенными, чтобы их публиковать. Он утверждал, что это могут быть электроны, пришедшие извне, которые случайно столкнулись таким образом, что стали похожи на позитроны. У них не было возможности определить разницу между этими своенравными электронами и реальными позитронами, не проводя повторных экспериментов[103].

Блэкетт, возможно, насторожился еще и потому, что идея Дирака была не совсем хорошо воспринята. Некоторые из великих ученых того времени, мягко говоря, не доверяли идее о том, что наша Вселенная состоит из двух типов материи: «обычной» и зеркальной ей, из антивещества. Австрийский физик Вольфганг Паули, один из пионеров квантовой теории, назвал эту идею «бессмыслицей», а Нильс Бор (глава 2) был «крайне скептичен»[104]. Вернер Гейзенберг, немецкий физик-теоретик, создавший большую часть квантовой механики, включая принцип неопределенности, заявил в 1928 году, что «самой печальной главой современной физики была и остается теория Дирака»[105]. Блэкетт вернулся к вычислениям, чтобы определить, действительно ли у них есть доказательства экстраординарной теории Дирака, но пока он размышлял над проблемой, до них дошла новость о том, что Андерсон открыл позитрон.

Андерсон был слишком занят своим экспериментом, чтобы читать статьи Дирака. Возможно, внимание к нему было вполне обоснованным, учитывая, что ему удалось опередить Блэкетта и Оккиалини в открытии позитрона. Однако его результаты горячо обсуждались сообществом физиков, поскольку несколько отдельных фотографий казались скудными доказательствами для столь экстраординарной теории. Кембриджская команда ухватилась за эту мысль и поняла, что у них есть преимущество. Вместо того чтобы собирать тысячи фотографий в надежде, что на нескольких из них может быть что-то интересное, как это сделал Андерсон, Блэкетт и Оккиалини разработали метод, как добиться примерно 80%успеха в захвате интересных частиц, проносящихся через камеру. Для этого они разработали электрический метод «запуска» камеры, поместив счетчик Гейгера над и под устройством так, что если оба счетчика обнаружат частицу примерно в одно и то же время, то камера будет сфотографирована. К 1932 году у них были и метод, и необходимость продолжить работу Андерсона в своих лабораториях.

Блэкетт и Оккиалини быстро подтвердили существование позитронов, и благодаря своим богатым данными наблюдениям они смогли глубже вникнуть в детали. Они наблюдали множество случаев, когда электроны и позитроны обнаруживались на фотографиях вместе. На самом деле, на фотографиях, казалось, было одинаковое количество электронов и позитронов: обычная материя и антивещество создавались в равных количествах. Блэкетт и Оккиалини наблюдали этот процесс в действии, когда высокоэнергетические гамма-лучи (присутствующие в космических лучах) проникали в камеру, одновременно создавая электрон и позитрон в процессе, известном как рождение пар. Это было первое наблюдение превращения фотонов (гамма-лучей) в материю (электроны и позитроны) – процесс, предсказанный сочетанием квантовой механики и теории относительности Эйнштейна. Существование этих взаимодействий выявило второе ослепительное следствие уравнения Дирака, которое в то время только начинало осознаваться теоретиками: антивещество и вещество могут аннигилировать друг с другом при соприкосновении, превращая свою массу в энергию, излучаемую в виде света. Другими словами, масса может быть преобразована в энергию – и наоборот. Они собрали так много фотографий позитронов и рождения пар, что научный мир больше не мог сопротивляться выводам из теории Дирака. Как ни странно, антивещество реально.

Вместо того чтобы переписать историю и приписать себе какое-то озарение, Андерсон прямо заявлял, что «открытие позитрона произошло совершенно случайно»[106]. Это было одно из тех открытий, которые и так уже созрели и вскоре бы произошли в другом месте, если бы он не сделал его первым. Вместе с Виктором Гессом Андерсон получил Нобелевскую премию в 1936 году в возрасте 31 года, став самым молодым ученым, когда-либо получившим Нобелевскую премию по физике. Чарльз Вильсон получил премию в 1927 году за изобретение облачной камеры, а Дирак – в 1933 году[107].

С первой попытки Андерсон добился значительного прогресса в работе с облачной камерой и исследовании космических лучей. Но это было только начало пути. Открытие позитрона намекало на то, что исследование космических лучей приведет к новым знаниям: космические лучи могут быть использованы для обнаружения доселе неизвестных частиц, и природа богаче и изобильнее, чем мы могли подумать.

Позитронный эксперимент показал, что можно обнаружить на уровне земли, но о самих космических лучах все еще мало что было известно. В 1935 году Андерсон отправился в новое приключение с облачной камерой, на этот раз уже со своим студентом-дипломником Сетом Неддермейером. Чтобы изучить космические лучи на большой высоте, Андерсон и Неддермейер решили подняться на гору Пайкс-Пик в Колорадо. Их план предусматривал работу на высоте 4300 метров, где уровень кислорода составляет всего 60 % от уровня моря, что подвергало ученых риску высотной болезни. Климат на Пайкс-Пик тоже негостеприимный: снег падает почти весь год, а когда дует ветер, что случается довольно часто, он может достигать скорости до 160 км/ч. И – в довершение всех бед – у Андерсона и Неддермейера по-прежнему почти не было средств.

Им удалось наскрести денег, чтобы купить бортовой грузовик за 400 долларов, установить на него свое устройство и отправиться через всю страну к Пайкс-Пик. Все шло гладко, пока они не начали подъем. Из-за большого веса и низкого уровня кислорода старый грузовик не смог подняться в гору. Их спасли и отбуксировали. Когда они в конце концов добрались до вершины, то поняли, что им не хватает электричества для питания приборов, поэтому они купили другую машину и использовали ее двигатель в качестве генератора.

Когда все, наконец, было запущено, два физика делали снимки в течение шести долгих недель. Затем они проявляли фотографии, чтобы получить хоть какой-то намек на то, что же они снимали. На холодной и темной горе они изучали изображения в поисках электронов, позитронов, протонов и альфа-частиц. В то же время они продолжали находить следы частиц, которые выглядели очень похожими на электроны, но казались примерно в 400 раз тяжелее и имели как положительные, так и отрицательно заряженные версии. Эти частицы не были протонами – они были слишком легкими, – и они также не были недавно открытыми позитронами. Оставалось сделать только один вывод: они открыли еще один новый тип частиц.

Теперь мы называем эти частицы мюонами. Они обладают точно такими же свойствами, что и электроны (или позитроны в случае антимюонов), но тяжелее по массе. Время их жизни очень мало: мюоны распадаются за 2,2 миллионных доли секунды, превращаясь в электроны[108]. Когда высокоэнергетические космические лучи попадают в атмосферу, их столкновения создают ливни новых частиц, огромное количество которых – это мюоны. Каждую минуту каждого дня около 10 000 мюонов бомбардируют каждый квадратный метр поверхности Земли (каждую минуту несколько из них проходят через вашу голову), и все же мы не можем увидеть, почувствовать или иным образом обнаружить их без специального оборудования. На высоте их даже больше, чем внизу, на уровне моря.

В отличие от электронов, протонов и других частиц, у существования мюонов, казалось, не было очевидной практической причины. Мюоны – фундаментальные частицы, то есть они не состоят из других частиц, но они и не составляют никакую часть обычной материи вокруг нас. Узнав о мюоне, один физик того времени спросил: «Кто это заказывал?»[109]. Причина их существования была и остается полной загадкой. Глубина и сложность субатомного мира только начала представать перед физиками во всей своей красе.

Одна идея о том, что такое мюон, иллюстрирует теоретическое понимание 1935 года. Молодой японский теоретик Хидэки Юкава за год до открытия мюона предположил, что сила, удерживающая ядро вместе, – сильное ядерное взаимодействие, – обусловлена частицей с массой, примерно в 200 раз превышающей массу электрона. Эту предлагаемую частицу он назвал мезоном – от греческого слова, означающего «промежуточный», потому что он предсказал, что мезон должен иметь массу где-то между электроном и протоном[110].

Сначала некоторые физики думали, что мюон и есть мезон Юкавы, но вскоре они поняли, что этого не может быть, поскольку мезон должен сильно взаимодействовать с материей. Мюон, с другой стороны, проходит прямо сквозь листы свинца и других материалов.

Чтобы получить самую выгодную позицию и самые точные данные, иногда приходилось идти на в высшей степени смелые эксперименты, которые раздвигали границы технологий. Эксперимент Андерсона с облачной камерой позже был еще раз воспроизведен на борту военного самолета B-29 с целью изучения космических лучей на большой высоте[111], но технические проблемы были настолько велики, что эксперимент не дал никаких особых результатов. Со временем стало ясно, что частицы, составляющие материю нашего повседневного существования, – лишь часть скрытого мира. За его пределами есть гораздо, гораздо больше всего.

Сначала открытие излучения изменило наш взгляд на материю, указав на ее постоянное изменение, теперь же космические лучи начали разрушать идею о том, что атомы – единственная форма материи. Мюон был только началом.

Подниматься на большую высоту для обнаружения космических лучей до того, как они вступят во взаимодействие с атмосферой Земли, становилось все более важным по мере накопления новых знаний о космических лучах и новых частицах. Как показали эксперименты с B-29, для высокой точности требовался более надежный тип детектора, чем облачная камера. Многие физики усердно работали над созданием нового детектора. В отличие от сложных поршней и камер, используемых в облачных камерах, ядерные эмульсии были пассивными детекторами без движущихся частей. По сути, это был особый тип фотопластинки с кристаллами галогенида серебра, взвешенными в желатине и чувствительными к прохождению заряженных частиц. Ядерные эмульсии показали себя надежнее облачных камер и гораздо менее обременительными в работе: их можно было оставлять без присмотра, пока они накапливали данные, в течение нескольких месяцев, и даже можно было без проблем запускать высоко в атмосферу.

Метод использования этих эмульсий для изучения космических лучей был разработан австрийским физиком Мариеттой Блау во время ее неоплачиваемой работы в престижном Институте радия в Вене. Она получила докторскую степень в Вене в 1919 году, работая под руководством Франца Экснера и Стефана Мейера – оба были сторонниками женщин-ученых[112]. Свою многообещающую карьеру она начала во Франкфуртском университете, где преподавала радиологию студентам-медикам и публиковала исследования по фотоэмульсиям для рентгеновских лучей и видимого света. Когда в 1923 году она вернулась в Вену, чтобы ухаживать за больной матерью, она взяла на себя неоплачиваемую работу в Институте, поскольку не могла найти ничего другого, живя за счет грантов и преподавания в колледже.

Исследования Блау в Вене объединили то, что она узнала во Франкфурте, с ее знаниями о развивающейся области ядерной науки и показали, что фотографические эмульсии могут быть использованы для изучения космических лучей. Блау сотрудничала с производителем эмульсий Ilford над созданием чрезвычайно толстых версий, которые лучше подходили для регистрации частиц. Со своей бывшей студенткой Гертой Вембахер в течение четырех месяцев она проводила эксперимент на исследовательской станции Хафелекар в Австрийских Альпах. Результаты показали замечательное новое открытие «раскалывающихся звезд», оставшихся после того, как космические лучи столкнулись с тяжелыми ядрами внутри эмульсии и заставили их взорваться в звездообразные массивы треков частиц.

К сожалению, работа Блау очень скоро была прервана. Она была еврейкой и накануне аншлюса 1938 года бежала из Австрии и поселилась у новатора химии Эллен Гладиш в Осло, позже переехала в Мексику и затем с помощью Эйнштейна – в Соединенные Штаты. Тем временем ее коллега Вембахер, член нацистской партии, продолжала публиковать их результаты, но не ссылалась на вклад Блау.

В Азии методику Блау переняла другая женщина, Бибха Чоудхури, индийская исследовательница, получившая степень магистра физики в 1934 году. Это все еще было редким достижением для женщины в любой точке мира, в том числе и в Индии. Когда Чоудхури впервые попробовала присоединиться к исследовательской группе Д. М. Бозе, ей сказали, что у него не было проектов, подходящих для женщин. Она упорствовала, и с 1939 по 1942 год Чоудхури и Бозе проводили исследования космических лучей, на несколько месяцев оставляя фотоэмульсии на больших высотах в горах близ Дарджилинга, Сандакфу и прочих мест. Эмульсии надо было тщательно проявлять и обрабатывать, что могло занять месяцы работы с микроскопом. Чоудхури и Бозе обнаружили доказательства существования двух новых субатомных частиц с массами, примерно в 200 и 300 раз превышающими массу электрона. Мы уже знакомы с одной из них – мюоном, но второй – новенький в нашей истории: пион. Существует три типа пионов (положительный, отрицательный и нейтральный), о которых мы поговорим подробнее в следующих главах, когда будем разбираться в новых частицах и силах, с помощью которых они взаимодействуют.

Несмотря на то что Чоудхури первой обнаружила частицу, ее вклад не был признан научным сообществом. В 1947 году британский физик Сесил Пауэлл (совместно с Джузеппе Оккиалини) использовал тот же метод, хотя и с улучшенными эмульсиями, чтобы продемонстрировать существование пиона. В 1950 году Нобелевский комитет присудил Пауэллу премию по физике «за разработку фотографического метода исследования ядерных процессов и открытие мезонов, осуществленное с помощью этого метода»[113], но Чоудхури не получила Нобелевскую номинацию. Причина, по которой ее эксперимент не рассматривался Нобелевским комитетом как открытие пиона, по-видимому, связана с тем, что качество использованных ею эмульсий не могло однозначно подтвердить полученные результаты, что было вызвано проблемами с поставками во время Второй мировой войны[114]. Но достаточно беглого поиска, чтобы найти ссылку Пауэлла на ее исследования в одной из его ключевых работ[115] и признание приоритета ее работы в его книге об элементарных частицах[116].

Блау несколько раз номинировалась на Нобелевскую премию по физике за изобретение метода фотоэмульсии, который научное сообщество, включая Пауэлла, признало необходимым для их прогресса в понимании космических лучей. Ее изобретение, произведенное в больших количествах фирмами Ilford и Kodak, привело к широкому использованию фотографических эмульсий и сыграло важную роль в открытии Пауэллом пиона. Однако предвзятые сообщения о ее вкладе и откровенно негативная оценка одного из членов Нобелевского комитета[117] стали причиной того, что Блау тоже осталась незамеченной.

Ситуации с Блау, Чоудхури и другими не аномальны. На протяжении всей истории было множество случаев непризнания или отрицания вклада женщин в науку, у этого эффекта даже есть свое собственное название: эффект Матильды. Это название было придумано в 1993 году историком Маргарет Росситер[118], оно отсылает к американской суфражистке Матильде Дж. Гейдж, которая в конце XIX века первая описала этот феномен. Росситер надеялась, что, дав эффекту название, она вдохновит историков, социологов и – хотелось бы надеяться – самих ученых рассказывать больше историй о систематически забытых женщинах в науке или работать над тем, чтобы лучше осветить их вклад.

Команды физиков по всему миру продолжали изучать космические лучи с помощью облачных камер и фотоэмульсий в течение следующих двух десятилетий, постепенно выясняя их свойства. Известно, что космические лучи имеют внеземное происхождение, и все же даже сейчас, почти столетие спустя, их образование плохо изучено. Информация от Космического телескопа Ферми предоставляет доказательства того, что они могут образовываться в сверхновых и набирать высокую энергию в гравитационных полях около черных дыр. Как бы они ни образовывались, мы знаем, что в основном они состоят из протонов с очень высокой энергией. Эти протоны проносятся сквозь атмосферу Земли и сталкиваются с атомами в воздухе, создавая лавину других частиц: мюоны и позитроны как раз-таки и есть эти «вторичные» частицы. Почти все протоны и многие вторичные частицы либо взаимодействуют с воздухом, либо распадаются (жизненный цикл мюонов составляет 2,2 микросекунды[119]) до достижения земли, поэтому первые исследователи отмечали меньшее количество космических лучей на уровне земли.

Космические лучи несут в себе огромное количество энергии – настолько большое, что они легко разбивают атомы на части. Если это произойдет в нужном месте, как поняла Мариетта Блау, ученые смогут наблюдать за результирующими фрагментами этих столкновений и узнать о природе атома и других частиц. Теперь мы знаем, что многие космические лучи прошли световые годы через Вселенную, принося с собой информацию о том, что находится в астрономических системах, таких как нейтронные звезды, сверхновые, квазары и черные дыры.

Здесь, на Земле, мы совершенно не обращаем внимания на ливень космических лучей, и все же около 100 из них проходят через наши тела каждую секунду. Каждую секунду на Землю обрушивается миллиард миллиардов космических лучей мощностью более миллиарда ватт. Если бы вы каким-то образом смогли использовать эту мощность и сложили ее в кВт (стиральная машина потребляет примерно 1 кВт в час), то это составит 3,6 миллиарда кВт в час, или около 32 000 ТВтч (терраватт-часов) в год, что примерно на 50 % выше потребления электроэнергии всей планетой в 2018 году.

По мере открытия новых частиц и сил одно оставалось верным: ученые, которые их открывают, почти неизменно считают, что они не будут иметь никакого практического применения. Точно так же, как Дж. Дж. Томсон не мог найти применения электрону, ценность космических лучей долго оставалась неясной. Теперь, спустя более века после первого обнаружения космических лучей и почти 80 лет после открытия мюона, достижения в области технологий привели к пониманию того, как космические лучи взаимодействуют с Землей, и к реальному применению как позитронов, так и мюонов.

Космические лучи могут рассказать нам больше об истории жизни на Земле. Воздействие космических лучей на азот в атмосфере создает радиоактивный изотоп углерода, называемый углеродом-14. Он взаимодействует с кислородом с образованием углекислого газа, который растения поглощают в процессе фотосинтеза. Животные и люди затем поглощают эти растения, потребляя в основном обычный углерод-12, но вместе с ним – небольшое количество углерода-14. В 1940-х годах Уиллард Либби понял, что, сравнивая количество углерода-14 с углеродом-12 в образце дерева, кости или другого органического материала, можно рассчитать, как давно умерло животное или растение, поскольку период полураспада углерода-14 составляет 5730 лет. Радиоуглеродное датирование, о котором мы подробнее поговорим в следующей главе, оказало глубокое влияние на археологию, позволив создать глобальную временную шкалу, на которую можно поместить события разных регионов и континентов. В результате теперь у нас есть предыстория не только отдельных регионов, но и всего мира.

Взаимодействие космических лучей может также рассказать нам об истории климата Земли и его изменениях на протяжении геологического времени, в частности, о влиянии Солнца. Солнце не является источником высокоэнергетических космических лучей – мы знаем это уже более столетия, с тех пор как Виктор Гесс запустил свой воздушный шар во время солнечного затмения, – но Солнце действительно влияет на то, сколько космических лучей достигает Земли. Теперь мы знаем, что Солнце постоянно выбрасывает материал, называемый солнечным ветром, создавая гелиосферу – огромный пузырь в космосе, окружающий планеты Солнечной системы. Когда активность Солнца низкая, гелиосфера слабее, и она пропускает в Солнечную систему больше космических лучей, которые сталкиваются с атомами в атмосфере.

Когда протоны космических лучей сталкиваются в атмосфере с кислородом, могут образоваться два изотопа бериллия: бериллий-7 и бериллий-10, которые в конечном итоге оседают на Земле. Период полураспада бериллия-10 составляет 1,4 миллиона лет, и он распадается до бора-10, а бериллий-7 распадается всего за 53 дня до лития-7. Эти изотопы накапливаются в слоях льда в Антарктиде и Гренландии, а бурение льда для извлечения кернов дает удобный способ проследить их историю. Для каждого слоя соотношение двух изотопов помогает определить, как давно они образовались в атмосфере, а количество бериллия-10 говорит нам о том, насколько была активна гелиосфера и, следовательно, Солнце. Используя этот метод, мы можем сказать по космическим лучам, действительно ли солнечная активность связана с изменением климата на Земле.

Частицы, обнаруженные в результате исследований космических лучей, также нашли повседневное применение. Позитроны, которые естественным образом испускаются в некоторых процессах радиоактивного распада, используются для выявления и понимания заболеваний с помощью метода позитронно-эмиссионной томографии (ПЭТ). Аппараты, которые проводят подобное медицинское сканирование, можно найти в большинстве крупных больниц, и мы узнаем чуть больше об их применении в другой главе.

Безусловно, самой неожиданной частицей, нашедшей применение, остается мюон. Мюоны обладают уникальной особенностью, заключающейся в том, что они могут проходить долгий путь сквозь плотные объекты – свинцовая стена или несколько сотен метров скалы для них не помеха. По мере развития технологий физики поняли, что если они смогут правильно настроить детекторы, то смогут использовать мюоны как рентгеновский сканер. Поскольку мюоны могут проходить сквозь массивные объекты, им доступно то, чего не могут сделать рентгеновские лучи.

Мюоны были впервые использованы не в Соединенных Штатах или Европе, где они были обнаружены и изучены, а – что несколько удивительно – в Австралии. В 1950-х годах физик по имени Э. П. Джордж использовал мюоны космических лучей для измерения плотности породы над новым туннелем для огромной гидроэлектростанции Гидрокомплекса Сноуи. С помощью счетчика Гейгера он сначала обнаружил мюоны в тоннеле и на поверхности, а затем, руководствуясь полученными результатами, измерил глубину и плотность грунта между ними. Но счетчик Гейгера, который использовал Джордж, не давал никакой информации о направлении, откуда исходили мюоны, так что сделать какое-либо изображение было невозможно.

К 1960-м годам Луис Альварес (который также был научным директором ЦЕРНа, о нем мы поговорим позже) сотрудничал с археологами, чтобы использовать мюоны для сканирования внутренностей пирамид, что в конечном итоге привело в 2010 году к запуску проекта ScanPyramids Каирского университета и французского Института сохранения культурного наследия и инноваций (HIP). Археологи думали, что узнали все, что нужно было знать о Великой пирамиде Хуфу в Гизе, но в 2017 году команда ScanPyramids разместила мюонные детекторы вокруг пирамиды, а также внутри Камеры царицы, и пришла к удивительному выводу: внутри сооружения есть скрытая комната, отделенная от всех остальных. Это была первая новая комната, обнаруженная с XIX века[120]. Это стало прорывом в понимании внутренней структуры пирамиды и, возможно, шагом к окончательному пониманию ее конструкции.

По сравнению с электронами или рентгеновскими лучами, мюоны не очень сильно взаимодействуют при прохождении сквозь материю, поэтому они менее склонны к рассеянию и в основном проходят сквозь объекты по прямым линиям. Эти свойства дают удивительное преимущество. Размещение детекторов по обе стороны от объекта и корреляция прохождения мюона до и после его вхождения в объект позволяет получать изображения с удивительно хорошим разрешением, даже если их не так много. Все потому, что они движутся по прямым линиям, по сравнению с рентгеновскими лучами, у которых всегда более рассеянные траектории. Первые изображения, сделанные таким образом, были получены в результате разработок в Соединенных Штатах, а новые и улучшенные методы обнаружения дали нам возможность заглядывать внутрь больших твердых объектов с помощью техники, известной как мюонная томография, или мюография, которая работает как 3D-рентгеновский сканер, но в огромных масштабах. В 2000-х годах исследования и работа в этой области резко набрали обороты.

В 2006 году японская команда под руководством профессора Хироюки Танаки из Токийского университета стала первой, кто использовал мюоны для получения изображения внутренней структуры вулкана, горы Асама в Японии. Геологи были особенно активными сторонниками мюографии. Вскоре были составлены карты лавовых каналов и прогнозирования извержений других вулканов, включая Этну и Везувий. Теперь стало возможно делать снимки движения магмы.

По мере развития технологий мюография стала коммерциализироваться, часто с образованием дочерних компаний из лабораторий, где проводятся исследования. Эти компании нашли обширное и увлекательное применение мюонам, создавая 3D-визуализации всего – от целых контейнеровозов до критически важных объектов инфраструктуры, таких как электростанции.

Системы регистрации мюонов также представлены на рынке агентств национальной безопасности и горнодобывающей промышленности, поскольку они способны выявлять плотные залежи полезных ископаемых, пещеры, тоннели и другие структуры в Земле. Мюоны используются в геофизике, картировании подземных вод и поиске полезных ископаемых. В области ядерной безопасности одной из первых команд, сформированных после цунами 2011 года в Японии, стала группа, которая использовала мюографию для анализа состояния активных зон ядерного реактора АЭС «Фукусима-1», что означает меньшее количество неожиданностей при проведении работ по очистке и ликвидации последствий аварии. Никакая другая техника не может создать такого изображения. Другие группы рассматривают возможность использования того же подхода для проверки объектов хранения ядерных отходов.

Мы только начинаем реализовывать все преимущества мюонов, которые каждый день невидимо для нас проходят в атмосферу. В будущем мы можем использовать мюоны для мониторинга всего – от структурной целостности мостов до гула Земли[121].

Сегодня физики уже не используют облачные камеры, но когда-то эти детекторы положили начало замечательному исследованию природы космических лучей и позволили открыть целый ряд новых частиц. Облачная камера начинала свое существования как любопытное устройство, предназначенное для воссоздания эффектов света на облаках, и в конечном итоге стала инструментом, необходимым физикам для знакомства с невидимым миром частиц. Впервые физики могли видеть, как частицы проходят через их детекторы, и делать снимки, на которых были запечатлены появление и исчезание частиц.

До облачной камеры физики думали, что существуют только субатомные частицы – внутри атома. Но теперь они знали, что есть и такие частицы, которые не играют никакой роли в материи вокруг нас. Задача, стоявшая перед учеными, состояла в том, чтобы попытаться выяснить, существует ли в природе еще больше частиц и как все эти части взаимосвязаны.

Самая большая проблема заключалась в том, что физики все еще не могли контролировать то, что наблюдали. Во всех своих экспериментах они полагались на природные источники частиц, от радиоактивных веществ до мюонов космических лучей. Но чтобы глубже проникнуть в суть атома и понять новые частицы, обнаруженные в космических лучах, было необходимо разработать методы манипулирования материей в мельчайших масштабах. Нужно было воссоздать космические лучи в лаборатории.

Глава 5 Первые ускорители частиц: расщепление атома

Чарльз Беннетт купил скрипку за 80 долларов на блошином рынке в Рочестере, штат Нью-Йорк. Когда он заглянул внутрь замысловато вырезанного f-образного отверстия, то увидел характерную желтую надпись: Страдивари. Было множество рассказов о подобных находках на таких рынках: дешевый антиквариат, который, как затем оказывалось, стоит сотни тысяч долларов. Как ни странно, Беннетт и не думал оценивать скрипку профессионально. Мы можем предположить, что все эксперты находились в Европе, и доставка инструмента стоила бы куда больше, чем мог себе позволить бедный аспирант в 1977 году. Вскоре Беннетт понял, что для того, чтобы узнать истинную ценность скрипки, придется ее уничтожить. Беннетт был в тупике: он не хотел так поступать с инструментом. Он вернулся к своей докторской работе по физике.

Чтобы узнать, настоящий ли это Страдивари, ему надо было бы установить возраст инструмента. Беннетт знал о космических лучах и методе углеродного датирования из своего курса физики. Страдивари обычно использовал сочетание ели, ивы и клена. Если предположить, что деревья были срублены незадолго до изготовления инструмента, то с помощью радиоуглеродного анализа можно сравнить количество стабильного углерода-12 с радиоактивным углеродом-14, оставшимся в древесине, и проверить, действительно ли купленная скрипка – шедевр начала XVIII века. Вместе со своим научным руководителем Гарри Гоувом из Рочестерского университета Беннетт подсчитал, что на каждую тысячу миллиардов атомов углерода-12 приходится только один атом углерода-14. Образец, содержащий грамм углерода, будет распадаться и испускать электрон для подсчета примерно раз в 5 секунд. Они думали отколоть крошечные кусочки от скрипки, при этом сохранив инструмент, и попытаться что-то измерить, но скорость подсчета была бы слишком низкой. Чтобы этот метод сработал, им пришлось бы вырезать огромный кусок дерева.

Несколько недель спустя коллеги, которые понятия не имели о загадке скрипки, навестили Гоува с идеей использовать его лабораторию ядерной физики для эксперимента по измерению количества углерода-14 в небольшом образце. Оба его коллеги – Альберт Литерленд и Кен Персер – когда-то работали с Гоувом над экспериментами по ядерной физике, и оба независимо друг от друга пришли к идее использования ускорителя частиц для углеродного датирования. Дискуссия с Гоувом на конференции месяцем ранее подстегнула их визит: у Гоува было экспериментальное оборудование и ноу-хау, чтобы воплотить их идеи в жизнь. Ускоритель частиц Рочестерского университета, затмевающий любое другое оборудование, мог брать небольшие образцы материала и создавать пучки частиц. Гоув никогда раньше не пробовал разделять различные изотопы углерода, но, если предложенный эксперимент сработает, он может пролить свет и на происхождение скрипки, не разрушая ее. Гоув согласился на эксперимент при условии, что Беннетт тоже примет участие.

Чтобы выяснить, действительно ли Беннетт заработает свое состояние, нам нужно понять, как работает использованный учеными ускоритель частиц. До сих пор все эксперименты, которые мы видели, проводились с использованием довольно простого оборудования и радиоактивных веществ, встречающихся в природе. В этой главе мы узнаем, почему для понимания мельчайших составляющих природы вдруг понадобилось оборудование размером со слона. К середине 1970-х годов, когда Беннетт и Гоув столкнулись с загадкой скрипки, эти машины вот уже десятилетия как стали рабочими лошадками физиков-ядерщиков и даже использовались во многих других областях науки и промышленности совершенно непредвиденными способами. Но все это случилось много лет спустя после того, как они были впервые изобретены. Еще в Кавендишской лаборатории в Кембридже в 1920-х годах путь к ускорителям частиц начался с одного из самых волнующих вопросов о природе материи: что же находится внутри атомного ядра?

Резерфорд занял позицию Дж. Дж. Томсона в Кавендише в 1919 году, и с тех пор в его лаборатории царило обычное настроение экспериментирования. Но под ним скрывался поток разочарования. Еще в 1911 году Резерфорд описал существование ядра, а затем посвятил себя пониманию этого нового явления, ожидая добиться быстрых побед. Резерфорд уже привык видеть свое имя в заголовках новостей на регулярной основе, поскольку делал прорыв за прорывом. Но вот прошло почти 10 лет, а он так и не совершил нового большого открытия.

Эксперимент Гейгера и Марсдена, открывший атомное ядро, сделал Резерфорда мировым экспертом в области атомов. К началу 1920-х годов он и химики объединили свои знания и с некоторым трудом различили 90 различных типов атомов, основываясь на их массах. Со временем выяснилось, что атомные массы всех элементов прямо кратны массе самого легкого элемента – водорода. Гелий тяжелее в четыре раза, литий – в шесть раз, углерод – в 12 и кислород – в 16 раз. Это не могло быть совпадением. Более того, вся эта масса исходила не от электронов, крошечных и легких. Ядро – вот ключ к пониманию истинной природы материи. Эта особенность массы атома намекала на то, что само ядро тоже состоит из «строительных блоков».

Единственное, что Резерфорд знал наверняка, – это то, что внутри ядра есть протоны. Во время Первой мировой войны он провел эксперимент, в ходе которого бомбардировал газообразный азот альфа-частицами, в результате образовывались ядра водорода. В 1917 году Резерфорду удалось доказать, что все атомы, по-видимому, содержат ядра водорода – положительно заряженные частицы, которые впоследствии были названы протонами. Проблема заключалась в том, что атомное ядро элементов тяжелее водорода не могло состоять только из протонов. Все положительно заряженные протоны отталкивались бы друг от друга. Так что же удерживает ядро под действием такой «отталкивающей» силы? Резерфорд полагал, что его должна удерживать некая нейтральная частица. В результате атом, подобный гелию, с массой, в четыре раза превышающей массу водорода, но с максимальным электрическим зарядом в два (после потери двух электронов), может содержать не четыре протона, как предполагал Резерфорд, а всего два протона и две неизвестные до сих пор частицы, такие же тяжелые, как протон, но не имеющие электрического заряда. Эти частицы окрестили нейтронами. Резерфорд и его команда годами искали нейтрон, но так ничего и не нашли.

Представьте себе эго Резерфорда: новозеландский фермерский мальчик, он получил Нобелевскую премию в 1908 году, был посвящен в рыцари в 1914 году и теперь стал директором выдающейся физической лаборатории. Почти дело чести – первым найти ответ на самый животрепещущий вопрос физики. К этому моменту космические лучи были открыты, но мюон и позитрон – еще нет. Резерфорд сосредоточился непосредственно на атомном ядре, он чувствовал, что есть только один способ добиться прогресса: нужно разбить ядро на части, чтобы выяснить, что находится внутри. Не просто отколоть протоны, а полностью раскрыть внутренности атома.

Инструменты в распоряжении Резерфорда были те же, что и всегда: источник альфа-частиц, мишень и сцинтилляционный детектор. Частицы испускались из источника радия или полония, запечатанного в металлическую трубку с прорезью на конце, образуя своего рода пушку с «пулями» – альфа-частицами. Хотя такая конструкция обеспечивала контроль над направлением частиц, все же большая их часть врезалась в стенки трубки и терялись, так что работать приходилось лишь с малым количеством.

Трудолюбивые студенты и исследователи Кавендиша тем не менее неустанно продолжали поток экспериментов, надеясь, что ядро выдаст свои секреты. Они осторожно пропускали альфа-частицы через различные газы, помещали их в металлическую фольгу и пластины и бомбардировали ими практически все, что попадало под руку, в надежде увидеть реакцию. Несколько легких элементов дали тот же результат, что и азот, – выброс нескольких протонов. Но более тяжелые элементы не давали вовсе никаких результатов. Не было обнаружено ни одного нейтрона, не было открыто ничего удивительного или впечатляющего. Ядро так и оставалось загадкой.

Экспериментаторы Кавендиша застряли с несколькими жалкими альфа-частицами. Не было никакого способа контролировать параметры эксперимента, поскольку альфа-частицы всегда возникали в результате радиоактивного распада источника с одинаковой энергией, и ученые еще не придумали, как производить что-то, кроме альфа-частиц, которые возникали естественным путем. Проблему усугубляло еще и то, что источники альфа-частиц, такие как радий, были слабыми и становились только слабее по мере распада. Некоторые заготовки распадались всего за полчаса. Они уже не подходили в качестве инструментов для исследования ядра атома.

Единственное, что ученые могли контролировать, – это ошибки в своих экспериментах. Чтобы убедиться, что они по максимуму использовали ненадежные частицы, группа придумала сложный метод проведения достоверных наблюдений. Для такого эксперимента требовалось три исследователя: двое садились в темной комнате, чтобы дать глазам привыкнуть, третий человек подготавливал аппаратуру, затем закрывал ставни и шторы, и, когда все было готово, эксперимент начинался. Эти двое исследователей по очереди смотрели в микроскоп, направленный на мерцающий экран, каждый наблюдал примерно по минуте за раз, отмечая любые вспышки на экране. Примерно через час такой работы их глаза уставали, и их сменяла новая команда. Это была трудная, но необходимая работа, эволюция той же техники, которую использовали Марсден и Гейгер много лет назад.

По прибытии все новые студенты в Кавендише обучались подсчету частиц под руководством дотошного старого коллеги Резерфорда – Джеймса Чедвика. Помимо проведения собственных детальных исследований, к которым мы вернемся позже, Чедвик обучал студентов в «детской лаборатории». Когда они были готовы, их отсылали к Резерфорду, который рекомендовал им направление для исследовательского проекта.

Студенты разрабатывали свои эксперименты с нуля. Заполучить материалы для экспериментов из запасов лаборатории было непросто, а это означало, что они должны были быть находчивыми и решительными. Управляющий мастерской по имени Линкольн тщательно охранял ресурсы лаборатории. Он ни за что бы не дал рулон проволоки – скорее отмерил бы несколько кусков, а гайки и болты выдавал поштучно. Легенда гласит, что одному студенту, которому был нужен кусок стальной трубы, вручили пилу и сказали добывать трубу на велосипедной стоянке во дворе. На самом деле эта скупость была продиктована сверху, самим Резерфордом, который предпочел бы произвести на всех впечатление дешевым, но гениальным экспериментом, чем постоянно оправдывать расходы или выпрашивать деньги.

Несмотря на всю изобретательность, тщательные подходы и настойчивость, они по-прежнему ничего не находили. Одно из решений – достать больше радия. Но драгоценный материал был в дефиците, и бережливый Резерфорд отверг эту идею. Команда знала, что у их конкурентов было преимущество хотя бы потому, что у них было гораздо больше радия для работы. Женщины Соединенных Штатов подарили Марии Кюри целый грамм радия в память о ее поездке. С этим граммом ее дочь-физик Ирен и Фредерик Жолио-Кюри усердно работали в Париже. Многочисленные другие лаборатории в Европе тоже пытались продвинуться вперед, но кембриджская команда продолжала поддерживать свои передовые позиции исключительно благодаря тяжелой работе. Так было до 1924 года, пока их статус ведущей лаборатории в мире не оказался под вопросом.

Исследовательская группа в Вене распространила статью, которая уверяла, что расщепить атомы легко. Они проводили точно такие же эксперименты, что и команда в Кавендише, но получили поразительно иные результаты. Моральный дух в Кембридже резко упал. Под руководством Чедвика все считающие частицы студенты были переобучены и повторно протестированы, а затем их количество удвоили, чтобы попытаться воспроизвести результаты венской команды. Но они просто не могли этого сделать. Между двумя группами возникли уважительные, но все же серьезные разногласия, и в конце концов Чедвик отправился в Вену, чтобы докопаться до сути.

В Вене исследователи нанимали женщин для выполнения подсчетов, но, в отличие от исследователей из Кембриджа, им прямо сообщали о том, что ищут, еще до начала эксперимента. И – подумать только! – занимавшиеся подсчетом женщины это находили. Проведя эти же эксперименты без такого вмешательства, венская группа не смогла повторить свои более ранние результаты, и их данные совпали с результатами исследователей из Кембриджа.

Теперь, когда этот эпизод остался позади, Резерфорду и Чедвику пришлось признать истину, которая постепенно становилась очевидной: их зависимость от слабых альфа-источников сдерживала научный прогресс. Они знали, что впереди еще много открытий. Чтобы их добиться, нужно было радикально изменить эксперименты. Нужен был способ производить протоны, альфа-частицы и другие частицы с различной энергией по желанию. Но такого метода еще не существовало. Им самим надо придумать, как это сделать.


Эрнест Уолтон закончил свое обучение, и теперь пришло время заняться собственным исследовательским проектом. Уолтон – сын священника, двадцатичетырехлетний ирландский физик, который недавно приехал в Кембридж для защиты докторской диссертации, чему способствовала та же стипендиальная программа[122], которая когда-то помогла Резерфорду переехать из Новой Зеландии в Великобританию. Уолтон преуспевал как в математике, так и в физике и получил высшие баллы по обоим предметам в Дублине. Поскольку ему также нравилось создавать что-то новое, экспериментальная физика казалась идеальным вариантом. Набравшись храбрости, он поделился своей идеей с Резерфордом: он хотел попытаться построить машину для ускорения заряженных частиц.

Уолтон и не подозревал, что двумя днями ранее Резерфорд был в Лондоне, выступая с воодушевляющей речью перед Королевским обществом в новой для себя роли президента. Он выступил перед уважаемым собранием и заявил о самой важной и насущной потребности науки в том виде, в каком она существовала в тот год, 1927-й. Резерфорд хотел найти способ создать «большое количество атомов и электронов, индивидуальные уровни энергии которых значительно превосходят уровни энергии альфа– и бета-частиц»[123]. Если бы такое можно было сделать, то ток пучка всего в миллиампер мог бы произвести больше частиц, чем 100 кг радия, – поразительное количество! Что ему было нужно, так это способ извлечения элементарных частиц и запуска их с высокой энергией к атому. И это было как раз то, что только что предложил ему Уолтон: ускоритель частиц. Впечатленный мужеством молодого ирландца, Резерфорд согласился и немедленно проводил его вниз – в лабораторию, где он мог бы проводить свои исследования.

Выделенная Уолтону лаборатория представляла собой подвальное помещение с кирпичными стенами и высоким потолком. В лаборатории было три рабочих места, за двумя уже разместились другие исследователи – Томас Аллибоун и Джон Кокрофт. Аллибоун, или просто Боунс, недавно выступил с аналогичным предложением к Резерфорду и уже пытался использовать высоковольтные катушки Теслы для ускорения электронов. Резерфорд, должно быть, счел, что дружеское соревнование пойдет на пользу молодым исследователям.

Джон Кокрофт, который в свои 30 лет был старше остальных, попал в Кавендишскую лабораторию довольно-таки окольным путем. Кокрофт был известен своей способностью доводить дело до конца, и его коллеги регулярно комментировали то, как легко он справлялся с рабочей нагрузкой, чуть ли не в два с половиной раза превышающей стандартную. Он проводил свои собственные исследования, а также помогал с серьезным экспериментом в соседней лаборатории, в которой Пётр Капица пытался создать чрезвычайно мощные магнитные поля. Разрываясь между различными задачами, Кокрофт мелким неразборчивым почерком строчил напоминания в своей маленькой черной записной книжке. Как говорили его коллеги, все, что он там напишет, «будет незамедлительно рассмотрено»[124]. Он знал о сложной задаче создания высоковольтного устройства для ускорения частиц, но теперь, после выступления Резерфорда, эта идея прочно засела в его голове и в его записной книжке. Он знал, что есть два серьезных препятствия, которые необходимо преодолеть. Одно – теоретическое, а другое – экспериментальное.

Кокрофт был в уникальном положении для решения как теоретической, так и практической стороны проблемы. Первая мировая война прервала его занятия математикой, и после он стал учеником в компании Metropolitan Vickers, или Metrovick, крупной электротехнической фирме в Манчестере, которая занималась промышленным оборудованием, таким как генераторы, турбины, трансформаторы и электроника. Только после этой подработки инженером Кокрофт стал посещать Кембриджский университет, чтобы уже окончательно закрепить свои знания в математике и физике, одновременно став физиком-экспериментатором и вполне респектабельным теоретиком.

Основная теоретическая проблема, с которой они столкнулись, заключалась в том, как направить альфа-частицы или протоны в атомное ядро, когда эти положительно заряженные «снаряды» будут электрически отталкиваться положительно заряженным атомным ядром. Это отталкивание известно как кулоновский барьер. Кокрофт сначала должен был рассчитать энергию, необходимую альфа-частицам, чтобы преодолеть этот барьер и проникнуть в ядро. Из своей теоретической работы он знал, что эта цифра непосредственно соответствует величине напряжения, необходимого для ускорения альфа-частиц с достаточной энергией. Он произвел подсчет, но результат напугал его до полусмерти: потребуется напряжение где-то в диапазоне 10 млн вольт.

Если вы когда-либо стояли рядом с опорой электропередачи напряжением 300 кВ (киловольт), передающей электроэнергию на большие расстояния, и время от времени слышали хлопки и потрескивание, вы понимаете, что работа с таким высоким напряжением довольно опасна. А в 1927 году это было еще страшнее. Сегодня мы относительно знакомы с электричеством, потому что используем его постоянно, но в тот период оно считалось еще довольно новым явлением, и такое высокое напряжение в лабораторных условиях было попросту неслыханным. Опасность того, что устройство, работающее при напряжении в миллионы вольт в лаборатории, может искрить или поразить электрическим током Кокрофта и Уолтона – или, что более вероятно, Резерфорда, который мог войти без предупреждения, – не казалась чем-то смешным. Более того, все части ускорителя должны выдерживать невероятное напряжение без треска, взрывов или искрения.

В то время как Кокрофт обдумывал эту проблему, физики в Соединенных Штатах уже решительно разбирались с проблемой генерации высокого напряжения. Мерл Тьюв пытался использовать катушку Теслы, как и Аллибоун. Роберт Ван де Грааф работал над ленточной системой передачи заряда с большим металлическим куполом. Примерно в то же время были предприняты и другие попытки – высокие импульсные напряжения, разряды конденсаторов и огромные трансформаторы, – и все это во имя придания пучкам частиц энергии. В Европе некоторые немецкие исследователи даже рисковали своей жизнью, пытаясь в горах обуздать молнии.

Тем временем в Кембридже Уолтон и Аллибоун продолжали свои попытки ускорить частицы. Уолтон также попробовал прототипы небольшого кругового и линейного ускорителя, но ни с тем ни с другим успеха не добился. Однако не успели они придумать, что же делать дальше, как в Кембридж прибыл советский физик-теоретик по имени Георгий Гамов и все изменил.

Незадолго до этого Гамов побывал в Германии, в Гёттингене, где изучал новые идеи квантовой механики для своей диссертации.

Пока все занимались изучением расположения электронов в атомах, Гамов решил попытаться применить идеи квантовой механики к атомному ядру. Читая материал по этой теме, он наткнулся на недавнюю статью Резерфорда, описывающую рассеяние альфа-частиц на урановой «мишени»[125]. Резерфорд утверждал, что альфа-частицы рассеиваются согласно его обычным уравнениям, но Гамов в этом сомневался. Он знал, что уран испускает альфа-частицы при радиоактивном распаде с энергией примерно в два раза меньше той, которую Резерфорд использовал для ее бомбардировки.

Хотя Гамов мало что знал о таинственной силе, удерживающей ядро, он понимал, что она должна действовать одинаково независимо от того, входит альфа-частица в ядро или выходит из него. На пути внутрь ядра, как и предполагал Резерфорд, альфа-частица должна преодолеть кулоновский барьер, а затем оказаться запертой в ядре. При радиоактивном распаде альфа-частица должна сначала преодолеть эту удерживающую силу, прежде чем кулоновский барьер ее оттолкнет. Процесс одинаков в обоих случаях, просто обратный. Так как же могло случиться, что альфа-частицы внутри ядра каким-то образом ухитряются просочиться наружу, имея только половину энергии?

Закрыв журнал, Гамов, по его воспоминаниям, «уже знал, что в действительности происходит в таком случае. Это было типичное явление, которое было бы невозможно в классической ньютоновской механике, но фактически ожидалось в новой волновой механике»[126]. В волновой квантовой механике, как мы видели в главе 3, каждая частица имеет волновую природу и может свободно распространяться в пространстве. Это означает, что нет ни одного стопроцентно непроницаемого барьера – волны могут просачиваться в области, в которые, классически говоря, они вообще не должны проникать. По словам Гамова, «если волна проходит, даже и с некоторыми трудом, она всегда протащит с собой частицу»[127]. Теперь мы называем это квантовым туннелированием. Прочитав статью Резерфорда, Гамов быстро сформулировал простую модель для описания такой вероятности в случае урана и обнаружил, что его теория прекрасно объясняет период радиоактивного полураспада элемента. Он также выяснил, как альфа-частицы покидают ядро при радиоактивном распаде. Он понимал, что напал на след.

Затем Гамов отправился в Институт Нильса Бора, где продолжил расчеты, выясняя, может ли эта идея применяться и в обратном направлении, чтобы помочь при бомбардировке элементов снарядами с искусственным ускорением. Нильс Бор советовал ему отправиться в Кембридж, но, зная некоторую нелюбовь Резерфорда к теоретикам, они планировали немного задобрить ученого. Гамов прибыл в начале 1929 года, вооруженный подарком: двумя нарисованными от руки графиками, относящимися к экспериментам Резерфорда по бомбардировке легких ядер альфа-частицами. На первом графике было показано, что с увеличением энергии альфа-частиц увеличится и количество протонов, откалывающихся от легких элементов – обнадеживающая идея для команды, вынужденной подсчитывать вспышки в темноте. Второй график демонстрировал, что при заданном уровне энергии альфа-частиц от более легких ядер откалывается меньше протонов. Обе теории Гамова прекрасно соответствовали экспериментальным данным. Стратегия сработала, и Гамова приняли в Кавендише.

Согласно воспоминаниям Гамова, он прибыл в Кембридж и показал свою работу Резерфорду, а затем его усадили за расчет энергии, необходимой протонам для попадания в ядра легких элементов[128]. Очень просто аргументируя свои выводы, Гамов сказал, что она должна составлять примерно 1/16 от энергии альфа-частиц. «Так просто? – спросил Резерфорд. – А я думал, что вам нужно исписать горы бумаги проклятыми формулами».

До визита Гамова один из его черновиков уже попал к Джону Кокрофту, проводившему аналогичный расчет. В результате расчетов он получил энергии частиц в электрон-вольтах или эВ (1 эВ – это количество энергии, которое получает частица[129], пройдя разность потенциалов в 1 вольт). До сих пор ему требовалось, чтобы протоны достигли 1 миллиона электрон-вольт (МэВ), для чего был необходим ускоритель частиц на миллион вольт. Теперь он пришел к выводу, что существует небольшая вероятность того, что протон с энергией менее 1 МэВ сможет проложить свой путь в ядро. На самом деле, требуемая энергия может составлять всего 300 кэВ (килоэлектронвольт). Кокрофт уже понял значение этой идеи: если протоны могут квантово-механически «туннелировать» через кулоновский барьер, то, возможно, попасть в атомное ядро можно с помощью не такого мощного ускорителя частиц, как они думали. До сих пор неясно, кто первый сообщил Резерфорду о такой возможности, Кокрофт или Гамов, но важно то, что они оба пришли к одному и тому же результату[130], и они оба находились при этом в одной лаборатории.

Резерфорд принял решение. И впервые в его жизни столь значимое решение основывалось исключительно на теоретическом прогнозе, но он знал, что если они не начнут действовать прямо сейчас, то их могут опередить. Он вызвал Кокрофта и прогремел: «Постройте мне ускоритель на миллион электронвольт – мы без проблем расколем ядро лития!»

Теперь, когда Кокрофту требовалась лишь десятая часть напряжения, которое он рассматривал ранее, задумка стала казаться более осуществимой, и он нацелился на 300 тысяч вольт. Это было минимальное напряжение, при котором, согласно его расчетам, может произойти что-то интересное. Но Кокрофт был отчаянно занят организацией экспериментов по созданию мощного магнитного поля в лаборатории по соседству, поэтому и он, и Резерфорд поняли, что ему нужен партнер, который может проводить эксперименты и который интересуется ускорением частиц. Они нашли добровольца в лице Эрнеста Уолтона.

Вместе Кокрофт и Уолтон хотели провести самый большой эксперимент во всем Кавендише. Даже при напряжении в 300 кВ установка была уж очень сложным и дорогим зверем. Ученые признавали, что им придется столкнуться и с другими проблемами, помимо высокого напряжения, чтобы заставить ускоритель частиц работать. Во-первых, им понадобится источник частиц. В случае с электронами все достаточно просто, но создать постоянный поток протонов, альфа-частиц или чего-то еще гораздо сложнее. Затем им нужно послать эти частицы через высокое напряжение, чтобы напитать их энергией. К тому же надо было придумать, как управлять лучом и работой самого устройства с безопасного расстояния, поскольку оно будет испускать излучение. Как только у них появятся высокоэнергетические частицы, их нужно направить в какую-то мишень. И, наконец, когда все это будет сделано, понадобится система детекторов, чтобы видеть, к чему привела реакция.

По крайней мере об одном они не беспокоились: в лаборатории было полно экспертов по подсчету вспышек на экране, и постоянно возникали новые идеи, как обнаружить частицы, в том числе с помощью облачной камеры Вильсона. Но Кокрофт и Уолтон оказались перед трудной задачей, когда дело дошло до создания источника протонов, генерирования высоких напряжений без разрушения устройства и успешного контроля самого эксперимента.

Установка современного оборудования, предназначенного для передачи высокого напряжения, в плохо спроектированной университетской лаборатории пугала многих физиков, но Джон Кокрофт был полон решимости заставить ускоритель работать. Понимая, что они не могут производить все необходимое собственными силами, он обратился к создателям ведущего в мире высоковольтного оборудования – своим бывшим работодателям в Metrovick. Его первой просьбой был источник питания, мотор-генератор, который Кокрофт приобрел за хорошую цену. Затем им понадобился трансформатор, чтобы повысить напряжение до 300 тысяч вольт, но, когда Кокрофт запросил его, возникли трудности. Трансформаторы Metrovick, используемые для высокоэнергетических рентгеновских трубок и электрических испытаний, попросту слишком велики, чтобы пройти через узкий арочный дверной проем Кавендишской лаборатории. Поэтому Кокрофт попросил Metrovick сделать такой трансформатор, который бы смог.

Следующим шагом было преобразование высоковольтного переменного тока от трансформатора в источник постоянного тока. Переменный ток, который обычно поступает от наших розеток, колеблется между положительными и отрицательными значениями примерно 50 раз в секунду, но Кокрофт знал, что это не годится для ускорения частиц, потому что отрицательная часть волны переменного тока будет скорее замедлять, чем ускорять частицы. Ему был нужен постоянный ток для подачи напряжения, которое всегда толкало бы протоны вниз по трубке. А для этого требовалось еще одно устройство — выпрямитель, но не было доступных коммерческих выпрямителей, которые могли бы выдержать 300 тысяч вольт. Кокрофт понимал, что это ограничение надо преодолеть, поскольку в будущем ему понадобится еще более высокое напряжение. Поэтому, пока Metrovick все еще работал над новым трансформатором, Кокрофт и Уолтон приступили к изобретению выпрямителя собственными силами.

Кокрофт по большей части занимался снабжением, пока Уолтон взял на себя основную экспериментальную работу. Одна из проблем, с которой они столкнулись, касалась стеклянных колб, составлющих часть выпрямителя. Уолтон заказывал изготовление колб стеклодуву Феликсу Нидергесассу, а затем подвергал их высокому напряжению с помощью катушки Теслы, что часто приводило к катастрофическим последствиям. Электрические поля концентрируются вокруг любых острых краев, будь то пыль или дефект стекла, а «коронные разряды»[131] вызывают искры у поверхности и пробивают в ней отверстия. Чтобы добиться правильной формы колб, потребовались месяцы проб и ошибок, и в конце концов конструкция стала настолько большой, что уже не умещались в стеклодувной лаборатории Нидергесасса, и колбы пришлось заказывать на специализированном заводе.

Помимо стеклянных колб, требовались специальные провода для анода и катода, источник нагрева для катода, защита от коронного разряда, предотвращающая искрение, и надежные вакуумные насосы. Как и большинство исследователей в Кавендише, они использовали красный сургуч Банка Англии для всех соединений и печатей. Все компоненты должны были быть проверены на способность выдерживать высокое напряжение. Уолтон провозился несколько месяцев. Он должен был работать быстро, но в то же время не мог спешить, поскольку имел дело с опасными высокими напряжениями. Каждый раз, когда где-то требовалась замена, он ломал все восковые печати, заново все чистил, нагревал и снова запечатывал перед повторным тестированием – уходили целые дни на поиск утечек вакуума и их устранение.

Резерфорд иногда заглядывал во время своих обходов, чтобы посмотреть, как идут дела. При виде крупногабаритного оборудования от промышленных поставщиков он в своем типичном стиле жаловался, что все слишком громоздко или слишком дорого, что побудило физиков из Metrovick сказать, что пускай тогда «смотрит на все через другую сторону телескопа, чтобы не казалось таким огромным». К 1930 году компания Metrovick выполнила свое обещание и выпустила новый компактный трансформатор, который мог пройти через дверь Кавендишской лаборатории прямиком в подвал. Но пол лаборатории все равно пришлось укрепить, чтобы удержать такую установку. Компания также поставила новую вакуумную систему, после того как один из их ученых, Билл Берч, изобрел насос на новом типе масла (Apeizon). Кокрофт получил в свои руки несколько прототипов еще до того, как новинка увидела свет.

Несмотря на весь прогресс, ученым еще предстояло создать источник протонов или ускорительную трубку, через которую будут проходить частицы. Для источника протонов они протестировали ряд различных установок и в итоге остановились на сестре электронно-лучевой трубки, называемой анодно-лучевой трубкой. Устройство похоже на электронно-лучевую трубку: длинный стеклянный цилиндр, заполненный газообразным водородом, с большим напряжением, приложенным между анодом (на одном конце) и катодом (теперь в середине трубки). Протоны создаются электрическим полем, разрывающим газообразный водород, и затем подтягиваются к отрицательному катоду, в котором есть отверстие для их прохождения. Наконец, они выходят с другой стороны в направлении, противоположном направлению электронов (катодные лучи), создавая при этом прекрасное флуоресцентное свечение в трубке.

Тонкая трубка была размещена в верхней части установки так, чтобы протоны могли перемещаться вниз к ускоряющей секции, стеклянной вакуумной трубке длиной 1,5 метра. Внутри трубки высокое напряжение подключалось к двум цилиндрическим металлическим электродам с зазором между ними. Эти протоны должны ускориться высоким напряжением, проходя вниз через зазор. Первый в мире ускоритель частиц почти готов.

К маю 1930 года они были готовы к проведению испытаний. В течение недели Кокрофт и Уолтон медленно увеличили напряжение с 50 до 100 тысяч В, а затем – до 280 тысяч В, но появились признаки того, что они достигли предела. Однако появившийся пучок протонов не был удовлетворительным: он был полностью расфокусирован и растянут по кругу диаметром около 4 см. С таким широким лучом ничего не получится. Чтобы это исправить, пришлось бы все собирать заново. Но сначала они решили посмотреть, не произойдет ли в таком варианте чего-нибудь интересного с научной точки зрения. Они предположили, что при такой низкой энергии протоны мало что могут сделать с ядром – возможно, возбудить несколько частиц и испустить гамма-лучи. Поэтому Кокрофт и Уолтон соорудили простой электроскоп и поместили образец лития под луч. Ничего. Бериллий? Крошечный эффект. Свинец? Какой-то небольшой эффект, но, скорее всего, просто что-то не так с самим аппаратом. Прежде чем они смогли продвинуться дальше, трансформатор вышел из строя.

Пришло время подвести итоги. Поскольку трансформатор сломался, нужно было решить, стоит ли его ремонтировать, чтобы восстановить машину на 300 кВ. Учитывая отсутствие результатов, исследователи не были уверены, что стоит. Что, если расчеты, которые они сделали, неверны и 300 кВ не хватит для расщепления ядра? Даже небольшое изменение в числах давало совершенно иные результаты. Тем временем Резерфорд – ныне лорд Резерфорд – все больше теряет терпение из-за отсутствия результатов. Нужно было любой ценой удержать его на своей стороне и доказать, что его инвестиции в их большой эксперимент того стоили. Хотя было бы быстрее перестроить машину на 300 кВ, чем строить новую, более крупную версию, Кокрофт и Уолтон должны были признать, что 300 кВ все равно стали бы только первым шагом. В конце концов, все решило то, что их перевели в новую большую комнату, в которую свет проникал через красивые высокие арочные окна вдоль одной стены, в то время как другая была увешана досками. В такой комнате можно легко разместить более крупную машину. Кокрофт и Уолтон решили, что они обязаны в следующий раз получить результаты, поэтому решили отказаться от машины на 300 кВ и сосредоточить свои усилия на создании новой машины на 800 кВ.

В новой установке, созданной Кокрофтом, к первому выпрямительному каскаду были добавлены схемы удвоения напряжения[132]. С их помощью они могут принимать входное напряжение от 200 до 800 кВ. Кокрофт и Уолтон заменили стеклянные трубки в форме колб для выпрямительной и ускорительной секций более надежными стеклянными цилиндрами, после того как наткнулись на эту идею в работе Чарльза Лауритсена, физика из Калифорнийского технологического института в США. Они также заменили воск для герметизации швов на пластилин, который лучше справлялся с этой задачей и который гораздо проще повторно герметизировать, если что-то нужно отрегулировать. Как и прежде, Уолтон неустанно работал над созданием новой машины, каким-то образом занимаясь одновременно еще и своей докторской диссертацией.

В начале 1932 года, почти через четыре года после начала работы Кокрофта и Уолтона, в Кавендише было сделано новое крупное открытие. Однако оно принадлежало не им, а Джеймсу Чедвику. Он тихо проводил свои эксперименты, когда узнал о результатах от Ирен и Фредерика Жолио-Кюри в Париже, продемонстрировавших, как альфа-частицы, испускаемые полонием, бомбардировали бериллий и предположительно стали источником гамма-излучения невообразимо высокой энергии. Чедвик знал, что их эксперименты правильны: Кюри исключительно тщательны в этом вопросе. Но он не согласился с их интерпретацией. Всего за несколько недель он провел новую серию экспериментов, продемонстрировавших, что бомбардируемый бериллий испускает не гамма-лучи, а нейтральную частицу примерно той же массы, что и протон. После поисков, длившихся почти 12 лет, Чедвик наконец открыл нейтрон.

Резерфорд все больше нервничал из-за чрезвычайно дорогого и трудоемкого проекта по ускорению частиц. Легенда гласит, что, когда Резерфорд отправился проведать экспериментаторов, он зашел в их лабораторию, повесил мокрое пальто на высоковольтную клемму и тут же получил удар током. Оправившись от шока, он раскурил свою трубку, выпустив облако пепла и дыма, и велел Кокрофту и Уолтону продолжать.

Утром 14 апреля 1932 года Уолтон остался в лаборатории один, закончив прогревать усовершенствованную машину. Кокрофт убежал что-то проверить в другой лаборатории. По настоянию Резерфорда они установили его любимый детектор, экран из сульфида цинка, вместо электроскопа. Уолтон поместил литиевую мишень на дно ускорительной трубки и стабилизировал машину напряжением около 250 тысяч В. Затем он отрегулировал настройки, чтобы включить протонный луч. Любопытствуя, происходит ли вообще что-нибудь, Уолтон прополз от пульта управления к ускорителю, избегая высоковольтных компонентов, и забрался в обшитый свинцом ящик, который они построили для наблюдений. Он натянул черную ткань, чтобы отгородиться от дневного света, настроил микроскоп и заглянул в него.

Яркие вспышки появлялись по всему экрану. Уолтон недолго пробыл в «детской лаборатории», но сразу догадался, что видит: альфа-частицы. Так много, что не сосчитать. Он выключил луч – частицы ушли. Снова включил – они появились. Уолтон едва мог поверить, что это взаправду. Он позвал Кокрофта, который быстро повторил тесты. Вместе они позвали Резерфорда, усадили его в ящик для наблюдений – высокому Резерфорду пришлось подтянуть колени к ушам – и показали, что они нашли. Конечно же, это были альфа – частицы – и, поскольку Резерфорд их и открыл, он знает наверняка! Позже Чедвик согласился. Они понимали, что произошло, им даже не нужно было что-то обсуждать: протоны попадали в ядро лития с атомным номером 7, и ядро расщеплялось на две альфа-частицы. Они, впервые в истории, искусственно вызвали радиоактивный распад[133]. Более того, они справились с помощью протонов примерно при 250 кэВ, что намного ниже 1 МэВ или 10 МэВ, которые они ожидали. Квантовая теория Гамова была верна.

Они поклялись друг другу хранить тайну до тех пор, пока Кокрофт и Уолтон не проведут необходимые проверки и не напишут короткую статью для отправки в журнал Nature. Пока они этим занимались, в течение недели весной 1932 года только четыре человека в мире знали, что атом можно расщепить. Они продолжали эксперименты в бешеном темпе, помещая стопки тонкой фольги на пути альфа-частиц, чтобы убедиться, что они выходят из ядра с огромной скоростью. Каждая альфа-частица проносилась с энергией 8 МэВ, что на первый взгляд кажется невозможным, учитывая, что протоны проходили всего с несколькими сотнями кэВ, но это измерение укрепило их уверенность в том, что они все правильно понимают. Масса объединенного протона и лития перед реакцией была лишь немного выше, чем масса двух альфа-частиц после реакции. Взяв эту разницу в массе и преобразовав ее в энергию, используя уже известное уравнение Эйнштейна E = mc2, они убедились, что их расчеты почти точно составляли энергию в 8 Мэ В.

Резерфорд пригласил Кокрофта и Уолтона на заседание Королевского общества в четверг, 28 апреля. Толпа собралась, чтобы отпраздновать открытие нейтронов Чедвиком, и Резерфорд упомянул об этом великом достижении в своей вступительной речи. Он остался на трибуне. После драматической паузы он объявил, что двое молодых людей, присутствующих в аудитории, Джон Кокрофт и Эрнест Уолтон, искусственно ускорили частицы и успешно расщепили ядро лития и ряда других легких элементов. Стоило ему только указать на двух молодых людей в зале, как зрители разразились аплодисментами.

Через несколько дней газеты объявили о «величайшем научном открытии»[134]. Новость быстро распространилась по всему миру, а такие газеты, как The New York Times, пестрели заголовками вроде «Атом раскрывает свои секреты». Кокрофт и Уолтон быстро приспособились к новой жизни, позируя перед камерами с Резерфордом или со своим оборудованием, но слегка смущались, когда у дверей лаборатории их поджидал внезапный поток журналистов.

Их конкурентам оставалось только себя ущипнуть. Если бы они знали, что можно расщепить атом лития всего при 125 тысяч В[135], они первыми сделали бы это открытие. Даже Кокрофт и Уолтон могли бы добиться успеха двумя годами ранее, если бы использовали в эксперименте экран из сульфида цинка – чтобы они могли легко видеть каждую вспышку альфа – частицы – вместо электроскопа. С экраном оказалось работать гораздо проще, чем с более абстрактными движениями листьев в электроскопе. Кокрофт и Уолтон не могли поверить, что низкого напряжения их первого ускорителя было бы достаточно. К концу 1932 года другие лаборатории по всему миру спешно работали над преобразованием любых устройств с достаточным напряжением в режим разрушения атомов. Родилась совершенно новая область ядерной физики.

Резерфорд и его команда сделали два новаторских открытия почти одновременно. Существование нейтрона было окончательно подтверждено, но гораздо более захватывающей была возможность искусственного расщепления ядра атома. Резерфорд достиг своей цели – понять, что находится внутри ядра: протоны и нейтроны. Эксперимент также подтвердил важность квантовой механики в ядре и то, что E = mc2 Эйнштейна применимо и при расщеплении атомов. Они снова уверенно лидировали в гонке за понимание ядра атома, и теперь Резерфорд и его команда получили возможность по желанию разбивать ядра на части, чтобы изучать их дальше. Теперь не надо полагаться на космические лучи, ученые сами контролируют свои эксперименты, изменяя тип ускоряемых частиц, их количество и энергию, чтобы изучить воздействие на любой образец, который они хотят подвергнуть бомбардировке. Они могли включать и выключать их, когда им заблагорассудится. Атом теперь в их власти.

С появлением возможности искусственного ускорения частиц спрос со стороны исследователей на ускорители быстро возрос. Компании быстро освоили новую технологию, часто для использования в своих собственных исследовательских лабораториях. В Нидерландах компания Philips производила выпрямители и целые генераторы Кокрофта – Уолтона и даже позже продала один из них в Кавендиш, когда они расширили свою высоковольтную лабораторию в середине 1930-х годов. Их конкуренты в Соединенных Штатах, включая Ван де Граафа, тоже добились коммерческого успеха благодаря своим высоковольтным ускорителям. Вскоре после знаменательного открытия компания Westinghouse начала создавать высоковольтные машины, используя метод Ван де Граафа, и к 1937 году построила ускоритель на 5 МэВ, ставший известным как «Разрушитель атомов» (англ. Westinghouse Atom Smasher). К середине 1950-х годов любой уважающий себя физический факультет или лаборатория должны были иметь ускоритель частиц. Сегодня несколько компаний все еще производят машины такого типа, и вы найдете их продукцию в научно-исследовательских институтах и лабораториях по всему миру.

Если вы когда-нибудь видели одно из этих устройств, вы никогда его не забудете. На севере Англии находится Институт Кокрофта, который сегодня специализируется на проектировании и создании новых ускорителей частиц[136]. В огромном ярко освещенном атриуме института посетители застывают на месте при виде громоздкого металлического устройства.

Четыре темно-коричневых ребристых керамических изолятора тянутся вверх, окруженные металлическими кольцами в форме пончика, а между ними зигзагом проходят красноватые медные трубки. Вся конструкция тянется к потолку, где оканчивается огромным луковицеобразным металлическим терминалом. Именно этот генератор Кокрофта – Уолтона ранее обеспечивал протонами большую ускорительную установку[137] в лаборатории Резерфорда – Эплтона, к югу от Оксфорда. Хотя этот генератор производит отличное первое впечатление, на самом деле он не так уж и стар: он надежно служил с 1984 по 2005 год, когда был окончательно выведен из эксплуатации и заменен более современными технологиями[138].

… Вернемся к скрипке Беннетта. Физик-ядерщик Гарри Гоув использовал ускоритель не Кокрофта – Уолтона, а Ван де Граафа в своей лаборатории в Рочестерском университете, когда Чарльз Беннетт в 1977 году попросил его определить возраст скрипки. Это казалось невозможным, по крайней мере до тех пор, пока не возникла идея использовать ускоритель для обнаружения очень малых следов углерода-14. Для своего первого эксперимента они купили в местном магазине несколько мешков древесного угля для барбекю, чтобы увидеть углерод текущего времени (из недавно срубленных деревьев). Они вставили его в ионный источник, начальную точку ускорителя, который испаряет образцы и высоким напряжением удаляет электроны, создавая пучок заряженных ионов, которые затем ускоряются. Для сравнения, они также нашли образец графита, добытого из нефтяных месторождений, которым миллионы лет и в которых углерода-14 уже совсем ничтожное количество. 18 мая 1977 года они проанализировали два образца и обнаружили, что в древесном угле более чем в 1000 раз больше углерода-14 по сравнению с графитом. Как вспоминает Гоув, «это был один из тех мгновенно узнаваемых триумфов, которые слишком редко случаются в науке»[139].

Вместо того чтобы просто ждать, пока радиоактивный распад углерода-14 произойдет самопроизвольно, Гоув и Беннетт взяли крошечный образец и с помощью ускорителя частиц ускорили все отдельные атомы и изотопы. После достижения высокой скорости частицы изгибались под действием магнита, и, поскольку углерод-14 изгибается немного меньше, чем углерод-12, из-за большей массы, относительные количества можно просто подсчитать с помощью детектора. Ускоритель частиц обеспечивал исключительный контроль и точность, позволяя ученым обойти естественные ограничения радиоуглеродного датирования. Быстро стало ясно, что потенциальные области применения новой методики огромны.

Мейер Рубин, геохимик, возглавлявший отдел углеродного датирования в Геологической службе США, увидел статью и тут же связался с Гоувом и его командой. По словам Рубина, у него были груды небольших геологических образцов, которые слишком малы для традиционного метода углеродного датирования. Несколько недель спустя он прибыл в Рочестер, чтобы вместе с командой Гоува и Беннетта попробовать проанализировать миллиграммовые образцы новым методом.

Рубин был в восторге от возможностей измерения небольших образцов, особенно в геологии, климатологии, океанографии и дендрохронологии (изучение колец деревьев). Вместе команда сделала ряд прорывов, используя новую технику: они проверили свой метод, датируя органические образцы возрастом 48 000 лет, обнаружив, что они согласны с более ранним анализом Рубина, в котором использовались гораздо более крупные образцы. Сотрудничая со многими исследователями, группа Рочестера успешно датировала антарктические метеориты, лед, шерстистого мамонта и даже древние образцы воздуха, содержащие не миллиграммы, а всего лишь микрограммы углерода-14. В 1978 году Рубин принес кусок ткани с египетской мумии, возраст которой оценивался примерно в 2050 лет, и эксперимент подтвердил результат. Затем исследователи получили интересную, но противоречивую просьбу.

Примерно в 1979 году с командой связалось Британское общество по изучению Туринской плащаницы – с идеей датировать артефакт, в котором якобы был похоронен Иисус. Потребовалось 10 лет, чтобы воплотить в жизнь эту идею, которая в итоге привела к знаменитому расследованию 1987 года. Небольшие образцы были отправлены в ряд лабораторий по всему миру, которые специально приспособили или установили ускорители частиц для этой цели, включая Рочестер и центр радиоуглеродного датирования в Оксфорде. Гоув и Рубин с 95 % вероятностью установили, что артефакт был создан в Средние века (1260–1390 гг.н. э.), а не 2000 лет назад. В других лабораториях результаты были те же. Но, несмотря на доказательства, Туринская плащаница по-прежнему почитается.

Новый метод, изобретение которого (частично) приписывают Гоуву[140], называется ускорительной масс-спектрометрией, или УМС. Сегодня лаборатории, использующие специальные ускорители частиц в этих целях, можно найти не только в Соединенных Штатах, но и в Турции, Румынии, Австралии, Японии, России и Китае, и это лишь некоторые из них. Многие страны, где установлены эти ускорители, хотят лучше понять свою богатую географическую и культурную историю, а УМС предоставляет возможность собрать воедино истории редких и ценных предметов, не разрушая их. Как и в случае со скрипкой Беннетта, образцы, необходимые для УМС, по меньшей мере в 1000 раз меньше, чем при традиционном радиоуглеродном датировании. В большинстве случаев другого точного метода установления хронологии не существует. С тех пор технология ускорителей открыла новые возможности для изучения истории, геологии, археологии и многих других областей.

Беннетт, похоже, так и не узнал, была ли его скрипка создана Страдивари или нет. По крайней мере, он никогда не подтверждал достоверность этого маловероятного утверждения, поскольку больше об этом не упоминалось[141]. Но к тому времени, возможно, он совсем забыл о скрипке, захваченный высшим научным азартом изобретения самого точного метода датирования исторических артефактов, о котором мы знаем.

Сегодня большинство людей по-прежнему считают, что ускорители частиц и создаваемые ими лучи используются только физиками и никак не связаны с нашей пищей, водой, предметами домашнего обихода или нашим собственным телом. Тем не менее, начиная с чипов в телефонах и компьютерах и заканчивая шинами на автомобилях и термопленкой на продуктах питания, мы каждый день окружены объектами, которые были усилены или иным образом улучшены с помощью пучков частиц. Часто эти методы облучения или модификации с помощью частиц выбираются потому, что они быстрее, экологичнее и эффективнее, чем альтернатива, например химикаты или ручная обработка. Это немалый рынок: по статистике, только в Соединенных Штатах ежегодно с помощью пучков частиц создается или модифицируется продукция на сумму около 500 млрд долл. Многие из используемых машин представляют собой электростатические ускорители, потомки того, который Кокрофт и Уолтон использовали для расщепления атома в начале 1930-х годов.

Одно из масштабных применений ускорителей – полупроводниковая промышленность. Мощные компьютерные чипы в наших смартфонах и ноутбуках основаны на электронных компонентах, изготовленных из полупроводников, формирующих 1 и 0, на которых основана вся компьютерная логика. Чтобы превратить такой полупроводник, как кремний, в полезное устройство, его необходимо слегка загрязнить, добавив легирующие примеси: крошечные количества других элементов, таких как бор, фосфор или галлий. Именно эти легирующие добавки дают точный контроль над электрическими свойствами полупроводника, но их очень сложно добавить химическим путем. Единственный точный способ сделать это – контролировать отдельные ионы и вводить их с помощью ускорителя частиц. Это процесс, называемый ионной имплантацией. Без ускорителей частиц у нас не было бы современной полупроводниковой электроники, которая сейчас встроена в цифровые фотоаппараты, стиральные машины, телевизоры, автомобили, поезда и даже рисоварки.

С помощью пучков частиц можно модифицировать не только полупроводники – их используют даже ювелиры. У алмазной компании DeBeers есть ускорители, производящие ионные пучки, которые используются для бомбардировки необработанных драгоценных камней. Так можно изменить цвет бриллианта или, например, превратить бирюзу из темно-розовой в прозрачно-голубую.

Между тем всего в 15 метрах под знаменитой стеклянной пирамидой в парижском Лувре находится ускоритель частиц, полностью посвященный искусству. Установка называется AGLAE – ускоритель элементного анализа Лувра, – инсталляция длиной 37 метров, которая используется для бомбардировки артефактов из музея, чтобы выяснить, из каких элементов они сделаны. Под руководством директора лаборатории доктора Клэр Пачеко команда с помощью ускорителя занимается анализом ионных пучков.

Один из регулярно используемых методов – спектроскопия резерфордовского обратного рассеяния. Исследователи подсчитывают ионы, отскакивающие от мишени, в поисках того же результата, который ученые из Кавендиша получили в эксперименте с золотой фольгой, чтобы показать, что у атома есть ядро. Теперь, в контролируемых условиях ускорителя, можно использовать всю мощь этой идеи. Исследуемое произведение искусства помещается на линию пучка частиц, и детектор улавливает ионы, которые рассеиваются в обратном направлении. Для каждого положения детектора различные атомные ядра отражают разное количество ионов, и ускоритель изменяет энергию ионного пучка, чтобы получить характеристическую кривую зависимости энергии от количества ионов. Потом остается только сравнить кривые с кривыми известных материалов, чтобы определить, какие атомы находятся в образце и их относительное количество. Этот метод использовался, например, для подтверждения того, что ножны, принадлежавшие Наполеону, действительно изготовлены из чистого золота. С помощью этого и других методов команда доктора Пачеко может идентифицировать даже малейшие следы элементов периодической таблицы Менделеева, от лития до урана, чтобы раскрыть секреты и происхождение произведений искусства и исторических артефактов без нанесения им какого-либо ущерба. Если вы когда-нибудь задавались вопросом, как историки искусства однозначно определяют подлинность того или иного произведения, то вот один из способов.

Те же методы используются для установления точного состава стекла бутылок старинного вина и сравнения их с известными подлинными бутылками. Винное мошенничество – большая проблема в винодельческой промышленности. Так, однажды коллекционер потратил 500 тысяч долл. на четыре бутылки вина, которые, как утверждалось, принадлежали бывшему президенту США Томасу Джефферсону. Путем ионного анализа выяснилось, что бутылки поддельные, и довольно быстро против виноторговца был возбужден судебный процесс.

Схожая идея также начинает применяться в криминалистике. Большинство методов по сбору следов наркотиков, таких как кокаин, или следов выстрелов уничтожают сами образцы. Но ученые, в том числе доктор Мелани Бейли из Университета Суррея, Великобритания, в настоящее время используют анализ ионных пучков для изучения улик, найденных на месте преступления[142]. Не уничтожая улики, доктор Бейли может проверить элементный состав образца и обнаружить крошечные количества наркотиков или следы, которые были упущены другими. Она даже может сравнить свои результаты с материалами, найденными на одежде или теле подозреваемых: например, крошечные образцы почвы, взятые с обуви, могут указать на подозреваемого.

Для физиков 1932 года все эти технологии были далеким будущим. Кокрофт и Уолтон работали с ускорителем в течение нескольких лет, но вскоре инициатива перешла к новым исследователям. Джон Кокрофт взял на себя управление другими подразделениями лаборатории, а позже работал над использованием ядерной энергии в энергоснабжении. Эрнест Уолтон получил академическую должность в своей родной Ирландии – в Тринити-колледже в Дублине. Этот напряженный период в их карьере, который принес им Нобелевскую премию в 1951 году, больше не повторялся.

Их успех, пришедшийся на тот же год, когда был открыт позитрон, осуществил мечту Резерфорда – открытие того, что находится внутри ядра. Все части головоломки теперь сошлись воедино: ядро атома содержит как протоны, так и нейтроны, обычно в примерно равных количествах. Изотопы различаются по массе, потому что у них разное количество нейтронов, в то время как количество протонов остается неизменным. Некоторые конфигурации более стабильны, чем другие, при этом нестабильные радиоактивны. Теперь задача Резерфорда состояла в том, чтобы понять силы, которые каким-то образом удерживают ядро вместе. Как присутствие нейтронов мешает положительным протонам разрушить ядро? Возникла идея новой, ядерной силы, удерживающей их вместе.

В то время как изобретение Кокрофта и Уолтона все еще использовалось как в научных, так и в промышленных целях, стало ясно, что ускорители частиц, использующие огромные напряжения, скоро достигнут своего предела. Требовалась новая технология. Резерфорд и его коллеги и не подозревали, что именно эта технология, уже разработанная в Соединенных Штатах, почти опередила их в достижении всемирно известного результата.

Глава 6 Циклотрон: искусственная радиоактивность

В 1932 году, когда ускоритель частиц впервые успешно расщепил атом, список элементарных частиц быстро вырос. Он включал в себя электрон и его анти-версию – позитрон, а также протоны и нейтроны. Все они считались неделимыми, хотя позже мы увидим, что протоны и нейтроны тоже имеют структуру. Были введены фотоны, частицы света, и всего четыре года спустя были обнаружены положительные и отрицательные мюоны, тяжелые родственники электронов и позитронов. Никто не знал значения этих частиц, которые не были частью атомов, важны ли они и сколько еще частиц, подобных им, пока не открыто. Но физики понимали, что для того, чтобы узнать больше, им придется последовать примеру Кокрофта и Уолтона и разрушить атом.

Были намеки, которые подтолкнули их в этом направлении, один из которых мы уже видели: тот факт, что какая-то неизвестная сила, казалось, удерживает протоны и нейтроны вместе внутри атома и не дает ядру разлететься на части. Другой намек пришел из химии – или, если точнее, из того, чего недоставало в химии. Уран считался самым тяжелым из известных веществ в периодической таблице[143] того времени, но в таблице не хватало четырех элементов с номерами 43, 61, 85 и 87. Расположив элементы по атомному весу и аналогичным химическим свойствам, русский химик Дмитрий Менделеев в XIX веке предсказал, что эти элементы должны существовать наряду с другими, которые впоследствии были обнаружены. Например, в таблице под алюминием был пробел, и Менделеев предсказал элемент, который он назвал «экаалюминием», а также его химические свойства, плотность и температуру плавления. Галлий (31-й элемент) был открыт в 1875 году и почти точно соответствовал предсказаниям химика. Теперь мы можем назвать недостающие элементы теми именами, которые у них есть сейчас – технеций (43), прометий (61), астат (85) и франций (87), – но в начале 1930-х годов они еще не были открыты и поэтому оставались безымянными.

Вы могли бы подумать, что ученые станут искать эти недостающие элементы, но на самом деле они не тратили свою энергию в этом направлении, и на то были веские причины. Открытие радиоактивности научило их тому, что не все элементы периодической таблицы стабильны, как ранее считали химики, поэтому вполне возможно, что недостающие элементы просто исчезают со временем и, следовательно, их не удастся обнаружить. Теперь, с открытием радиоактивности, атом оказался непредсказуемым, запутанным и настолько динамичным, что химики то и дело заходили в тупик.

Более масштабная цель заключалась в понимании природы атомов и структуры ядра, а также сил, которые удерживают все это вместе. А для этого надо изучить и понять особенности как можно большего числа элементов и попытаться создать всеобъемлющую теорию, которая может предсказать свойства элементов и их изотопов, известных и неизвестных, радиоактивных или нет.

Если бы только можно было создать пучки частиц, достаточно мощные, чтобы расщепить атомы каждого элемента, – кто знает, чего могла бы достичь наука… Именно это побудило Кокрофта и Уолтона обуздать огромные напряжения и построить первый в мире ускоритель частиц, но они были не единственными, кто работал над этой проблемой. Через несколько лет их обойдет молодой американец по имени Эрнест Орландо Лоуренс. Изобретенная им машина не только в итоге будет превалировать в области ядерной физики, но и привлечет ученых из разных дисциплин к преодолению границ и открытию неизведанных областей. А еще работа Лоуренса навсегда изменит медицину.

Лоуренс никогда не собирался становиться физиком. Он был полон решимости изучать медицину, когда поступил в Университет Южной Дакоты и выбрал химию в качестве дополнительной специальности. Любовь к физике пробудил в нем наставник, который обратил внимание на Эрнеста Лоуренса из-за его хобби.

Выросшие в Южной Дакоте, Лоуренс и его сосед Мерл Тьюв большую часть своего свободного времени собирали радиооборудование, общались с помощью азбуки Морзе на чердаке семьи Тьюва, изучали и устанавливали реле, передатчики и прочие мелочи. Когда Лоуренс уехал в университет, он оставил свое радиооборудование дома, но вскоре пожалел, что у университета нет собственного радиоприемника. Лоуренс разыскал декана факультета электротехники Льюиса Эйкли и представил ему четкие и внятные аргументы в пользу покупки некоторого радиооборудования вместе со списками запчастей и указанием их цен.

Вечером Эйкли отправился домой и с энтузиазмом рассказал жене об Эрнесте Лоуренсе, его научном любопытстве и явных способностях. Но почему Лоуренс не поступил ни на физический, ни на электротехнический факультет? Почему он изучал медицину и химию? Убежденный, что Лоуренс – гений в физике, Эйкли выделил ему 100 долларов на покупку радиоаппаратуры, предоставил место для ее установки и оставил его за главного. Эйкли, физик по образованию, осторожничал и не подталкивал Лоуренса к смене курса, поскольку считал, что хорошие студенты сами поймут ценность физики. Он робко спросил Лоуренса, считает ли тот физику полезной ввиду его интереса в области беспроводной связи, но Лоуренс так не думал. Он немного изучал ее в средней школе, но сомневался, что у него есть способности чего-то добиться в этом предмете.

Вопреки всему Эйкли даже пригласил Лоуренса на ужин и начал потчевать его рассказами о великих физиках и их приключениях: начиная с Генриха Герца, увидевшего связь между светом и электричеством, и заканчивая Марией Кюри и ее открытием радиоактивных элементов. Самыми захватывающими были рассказы об Эрнесте Резерфорде, доказавшем, что атом вовсе не неделимый. Эйкли рассказал о приключениях, которые ожидали исследователей в этой области. Они изучали внутренний мир материи и раскрывали тайны Вселенной в мельчайших масштабах, от которых зависит все остальное, включая любимую химию Лоуренса, биологию и медицину. Хорошо тренированный ум, настаивал Эйкли, поможет достичь успехов в любой области, и физика отлично подойдет для такой тренировки. Он выдвинул Лоуренсу последнее предложение: если он проведет один летний месяц, изучая с ним физику, и все равно не проявит к ней интереса, Эйкли никогда больше не поднимет этот вопрос. Лоуренс согласился. К началу нового учебного года сделка окупилась.

«Класс, это Эрнест Лоуренс, – объявил однажды Льюис Эйкли на лекции по физике. – Хорошенько на него посмотрите, потому что придет тот день, когда вы все будете гордиться тем, что учились с ним вместе». Студенты уставились на высокого молодого человека с очаровательной улыбкой, аккуратными каштановыми волосами и голубыми глазами. Однажды, когда Лоуренс заснул на лекции, Эйкли сказал остальным ученикам: «Не обращайте внимания. Пускай спит! Даже во сне он лучше знает физику, чем все вы, бодрствующие»[144]. Эйкли не мог знать, что ждет его любимчика впереди, но его слова оказались пророческими.

К 1928 году, в возрасте всего 27 лет, Эрнест Лоуренс был принят на работу доцентом физики в Калифорнийский университет. Наконец-то возглавив собственную исследовательскую программу и имея за спиной свободу и поддержку, он нуждался только в одном – хорошей теме для исследования.

На этой ступени истории у нас есть преимущество перед Лоуренсом, поскольку мы уже знаем, как обстояли дела в 1928 году и что должно было произойти всего через несколько лет. Мы знаем, что теория Гамова подстегнула Кокрофта и Уолтона разработать первый ускоритель в Кембридже. Мы знаем, что для расщепления ядра лития достаточно энергии всего в несколько сотен кэВ. Но Лоуренс, как и Кокрофт с Уолтоном, ничего из этого не знал. Он знал, что физики открыли электроны и рентгеновские излучение и что у атома есть ядро, и был осведомлен о противоречащих интуиции реалиях квантовой механики и корпускулярно-волновом дуализме. Он знал, что космические лучи непрерывно бомбардируют нас и что облачная камера Вильсона помогла их увидеть, хотя в то время Лоуренс не особенно интересовался детекторами.

Пока многие ученые занимались космическими лучами, Лоуренса, казалось, волновала только возможность контролировать высокоэнергетические частицы в лаборатории. Он не был удовлетворен предпринимаемыми попытками. Его старый школьный друг Мерл Тьюв пытался приручить напряжение в 1 МВ, но Лоуренс хотел знать, куда пойдут исследования после достижения 1 МВ. У него была целая карьера впереди, он не хотел вступать на путь, который закончится всего через несколько лет. Лоуренсу казалось, что в идее использования высоких напряжений для ускорения частиц кроется фундаментальный недостаток. Даже если бы они могли создать полезное напряжение в миллион вольт, они все равно не смогли бы получить частицы с энергией выше 5 МэВ, испускаемые из природных источников (таких как радий), поскольку высокое напряжение преобразуется непосредственно в энергию частиц. Миллион вольт может дать миллион эВ (1 МэВ), но никак не 5 Мэ В. Если тайны атома и должны когда-то раскрыться в лаборатории, то кто-то должен придумать практический метод достижения высоких энергий, десятков или сотен МэВ, без соответствующих высоких напряжений.

В 1929 году Лоуренс поздно вечером читал журналы в библиотеке Калифорнийского университета. По наитию он взял журнал по электротехнике, написанный на немецком языке, и пролистал его, пока не наткнулся на несколько диаграмм и уравнений в статье норвежца по имени Рольф Видероэ. Лоуренс не говорил по-немецки, но идея была достаточно ясна и так.

Сам Лоуренс позже писал, что эта идея настолько проста, что даже дети могли понять ее интуитивно. Когда вы сидите на качелях, есть два способа повыше раскачаться. Вы можете взмыть в воздух одним мощным толчком, либо сделать серию небольших толчков в нужное время, наращивая амплитуду колебаний с помощью принципа резонанса. В уже существующих идеях для ускорителей использовался первый подход, но Лоуренс понял, что предпочтительнее второй способ. Вместо того чтобы единоразово использовать очень высокое напряжение для ускорения частиц, диаграммы Видероэ предполагали подачу осциллирующего напряжения на ряд металлических трубок, выстроенных друг за другом, но с промежутками между ними. Напряжение на трубках будет колебаться от положительного к отрицательному и обратно несколько миллионов раз в секунду при достаточно скромном напряжении. Частицы проходят через середину металлических трубок, как через водопроводную трубу, и только в промежутках между трубками частица сталкивается с напряжением[145]. Если правильно все рассчитать, частицы будут получать небольшой толчок в каждом промежутке, точно так же, как при каждом небольшом толчке на качелях. Для нескольких трубок, питаемых от одного и того же осциллирующего источника, потребуется лишь небольшое напряжение, но общая энергия, получаемая с помощью этих трубок, может быть очень высокой.

Идея Видероэ была хорошей – за исключением одного фундаментального недостатка: чтобы достичь высоких энергий, линия трубок должна быть невероятно длинной. Но что, если вместо длинного ряда трубок запустить частицы по кругу и повторно использовать один и тот же ускоряющий промежуток? Лоуренс мог бы использовать концепцию резонансного ускорения для создания, как он это называл, протонной карусели.

Спеша проверить, сработает ли его идея, Лоуренс схватил бумажную салфетку и начал записывать уравнения. Он знал, что сможет изогнуть направление движения частиц, используя магнитное поле и давно известный факт, что сила магнита может толкать частицы под прямым углом к направлению их движения. С каждым оборотом частицы набирали бы немного энергии, вращаясь по спирали во все более крупных кругах, поскольку они двигаются быстрее. Работая над уравнениями, Лоуренс понял, что бóльшая скорость частиц на каждом бóльшем круге будет точно компенсировать более длинный путь, по которому они должны пройти, поэтому время, необходимое для возвращения к промежутку между трубками, будет оставаться одинаковым на каждом повороте. А значит, он может использовать напряжение, которое колебалось бы с постоянной частотой, что было бы легко спроектировать. Это было слишком хорошо, чтобы быть правдой.

Он помчался в факультетский клуб и попросил первого попавшегося математика, Дональда Шейна, быстро проверить его расчеты. Шейн подтвердил, что математика верна, затем посмотрел на Лоуренса и спросил: «Но что вы собираетесь с этим делать?»[146]. «Бомбардировать и расщеплять атомы!» – ответил Лоуренс.

Это была такая простая и элегантная идея, что Лоуренс удивился, почему она никому не приходила в голову. Несмотря на нетерпение, он не сразу начал осуществлять свой замысел, так как уже спланировал путешествие по стране. Он поехал в Вашингтон на собрание Физического общества, затем в Бостон, чтобы повидаться со своим братом Джоном, и в компанию General Electric в Скенектади, штат Нью-Йорк, где обещал провести два месяца. По пути он выступал с докладами и обедал со многими ведущими физиками, включая Роберта Милликена. Куда бы он ни пошел, он рассказывал о своей идее любому, кто только слушал.

Многие находили причины, по которой его идея не сработает. Говорили, например, что в таком устройстве невозможно сфокусировать частицы, поэтому они не смогут атаковать что-то такое маленькое, как атомное ядро. Также говорили, что частицы не станут следовать спиралевидной траектории или будут отлетать вертикально, врезаться в камеру и теряться. Возникали вопросы и касательно того, как Лоуренс будет извлекать частицы из машины, хотя на этот счет у него уже были некоторые идеи. Даже его старый друг Мерл Тьюв выразил сомнения, в то время как Лоуренс, в свою очередь, скептически отнесся к попыткам Тьюва ускорить частицы при помощи катушки Теслы. Но к тому времени, когда Лоуренс вернулся в Калифорнию, он был готов испытать свою идею.

Первый аспирант Лоуренса в Калифорнийском университете, Нильс Эдлефсен, был на шесть лет старше Лоуренса и только что закончил свою диссертацию. Шел 1930 год, и Эдлефсен еще не решил, какой работой займется после получения ученой степени, так что у него оказалось немного свободного времени. Эдлефсен хотел сосредоточиться на теоретической работе и подготовке к экзаменам, но у Лоуренса были другие соображения. Он настаивал на том, что его радикально новая идея ускорителя частиц гораздо интереснее изучения теории и он не видит никаких причин, по которым она не сработает. Эдлефсен тоже не видел в ней ничего плохого и, проучившись еще две недели, в конце концов сдался и согласился попробовать. «Хорошо! – сказал Лоуренс. – Приступим к работе. Вы сразу же придумаете то, что нам нужно»[147].

Весной 1930 года Эдлефсен приступил к работе со стеклянной колбой размером с флакон духов, которую он выравнивал и покрывал серебром. Он осторожно соскреб узкую полоску серебра посередине, оставив две отдельные серебряные области для электродов. Конструкция колбы позволяла откачать из нее воздух и имела отверстия для введения ионообразующей нити, протонообразующего водорода и электрического датчика для определения результатов. Затем все отверстия были запечатаны воском. Лоуренс тем временем провел несколько переговоров, чтобы получить разрешение на использование самого большого магнита на кафедре. Идея состояла в том, что колба будет обмотана проволокой, доведена до состояния вакуума и помещена между полюсами магнита, что заставит частицы вращаться по спирали, по мере того как они будут набирать энергию. Наконец они были готовы подвергнуть свою установку испытанию.

Они ее включили. Стекло треснуло. Стеклянная камера явно не подходила. Ничуть не смутившись, Лоуренс и Эдлефсен пришли к новой идее. Они взяли маленькую круглую медную коробочку, которую Эдлефсен разрезал пополам, чтобы сформировать электроды. Затем их прикрепили к листовому стеклу с помощью воска так, что две половины коробки были разделены небольшим расстоянием, а их отверстия располагались параллельно друг другу. Если вы представите, что берете большое печенье, завернутое в медную фольгу, затем разламываете его посередине и вынимаете печенье, то два оставшихся медных фрагмента дадут вам представление о том, как выглядели половинки этой коробки. К ним был подключен радиочастотный генератор для получения переменного напряжения. Установка выглядела немного беспорядочно. После всех разговоров Лоуренса о его идее другие сотрудники лаборатории не сдерживались и поддразнивали Эдлефсена и Лоуренса по поводу их якобы мощной машины для ускорения частиц.

Удалось ли Эдлефсену успешно ускорить протоны в устройстве, неясно. Он действительно запустил несколько протонов циркулировать по кругу, но, прежде чем смог получить какие-либо определенные результаты, он должен был приступить к работе, которую нашел в другом месте. Но для Лоуренса проект был достаточно многообещающим, так что он немедленно нанял нового студента для работы над резонансным ускорителем.

Этот студент, Милтон Стэнли Ливингстон, был серьезным на вид сыном священника, который в университете переключился с химии на физику. Единственный сын в семье, он вырос на ферме в Калифорнии среди инструментов и машин, которые научили его практическим навыкам проектирования и построения сложных систем. Теперь эти навыки подверглись испытанию, поскольку он работал над устройством, которое должно было стать известным как «циклотрон».

Ливингстон собрал крошечное устройство, которое могло уместиться на ладони и было похоже на вариант Эдлефсена, хотя и более аккуратный. Всего 11 см в диаметре, оно было сделано из латуни и запечатано воском, а на само изготовление ушло около 25 долларов. Ливингстон быстро добился прогресса, и во время рождественских каникул 1930 года он и Лоуренс использовали эту 11-сантиметровую модель и колебательное напряжение в 1800 В, ускорив протоны до 80 000 эВ, – концепция сработала. Циклотрон мог ускорять частицы до энергий, во много раз превышающих использованное напряжение, точно так, как и задумывал Лоуренс в тот день в библиотеке.

Лоуренс и Ливингстон корректировали устройство, улучшая его методом проб и ошибок. Они изменили форму электродов и размер зазора между ними, а также слегка отрегулировали магнит с целью фокусировки, значительно увеличив ток пучка. Несколько недель спустя они построили циклотрон диаметром всего 30 см, для которого был изготовлен магнит еще большего размера. Настроив его, Ливингстон обнаружил, что они смогли разогнать протоны до скорости чуть менее миллиона эВ, приложив всего 3000 В. Лоуренс буквально прыгал по лаборатории: наконец-то его изобретение может разбивать атомы!

Лоуренс снова отправился в путешествие, и, пока он рассказывал о достоинствах своего нового изобретения, которое почти – но не совсем – достигло волшебной отметки в миллион вольт, Ливингстон продолжал работать. 3 августа 1931 года Лоуренс получил телеграмму, в которой сообщалось, что рекорд наконец достигнут: «Доктор Ливингстон попросил меня сообщить вам, что ему удалось получить протоны с напряжением в 1 миллион 100 тысяч вольт. Он также сказал мне добавить “Ого!”».

Лоуренс был у своей девушки Молли Блюмер, когда пришли новости. Он зачитал телеграмму ее семье. Пока все поздравляли его, он вывел Молли на улицу и сделал ей предложение. Она согласилась – при условии, что сначала закончит учебу в Гарварде. Затем Лоуренс поспешил обратно в лабораторию и провел последующие дни с Ливингстоном, демонстрируя изобретение всем желающим коллегам и друзьям. Относительно крошечная и недорогая машина смогла превзойти результаты, которые Кокрофт и Уолтон достигли с помощью генератора размером с комнату.

Если бы в тот момент они действительно сошлись на том, что достигли желаемого – разрушать атомы, – тогда история ядерной физики выглядела бы несколько иначе. Но команда Лоуренса из десятка физиков и инженеров была полна решимости достичь более высоких энергий. Воодушевленные заразительным энтузиазмом Лоуренса, они построили циклотроны большего размера, сначала 69 см циклотрон, для которого Федеральная телеграфная компания пожертвовала большой магнит, а затем его 94 см версию. Вскоре энергия протонов достигла 2 млн эВ.

Почему они не использовали циклотроны в научных целях? Почему они так увлеклись созданием все больших и больших устройств? Преуспев в создании циклотрона, они фактически изобрели совершенно новую область физики, в которой работаю и я, – физику ускорителей. Они поняли, что управление пучками заряженных частиц и манипулирование ими само по себе является увлекательной областью исследований и что прогресс в этой области обеспечит будущий прогресс в физике, как и предсказывал Лоуренс. Успешно ускоряя пучки с помощью циклотрона, команда Лоуренса уже опровергла заявления многочисленных недоброжелателей, которые говорили, что это невозможно. Теперь им предстояло поработать над тем, чтобы точно понять, как работают ускорители и как их улучшить, что требовало детального знания физики и поведения заряженных частиц. Они вышли так далеко за пределы технологии, что приобрели совершенно новые знания в физике и технике: знания о том, как пучки субатомных частиц создаются и взаимодействуют с электрическими и магнитными полями, как создавать электромагниты с точными свойствами и как фокусировать, транспортировать и измерять пучки субатомных частиц, невидимых глазу.

Энтузиазм Лоуренса и Ливингстона привел к тому, что команда пропустила ряд важных открытий. В 1932 году, как раз когда циклотрон побеждал в гонке высоких энергий, они были – с научной точки зрения – оставлены далеко позади теми, кто проводил более простые эксперименты. Чедвик открыл нейтрон и измерил его массу, которая оказалась очень похожей на массу протона. В Колумбийском университете Гарольд Юри открыл новый изотоп водорода с одним зарядом, но вдвое большей массой, называемый дейтерием. В том же году Андерсон с помощью облачной камеры открыл позитрон. А в апреле пришли важные вести: Кокрофту и Уолтону впервые удалось успешно расщепить атом. Команда Лоуренса быстро настроила циклотрон с литиевой мишенью, чтобы воспроизвести те же результаты. Всего за пару недель они легко увеличили энергию протонов до 1,5 МэВ, что почти в два раза превышает энергию, которой добились в Кавендише. В соответствии с теорией квантового туннелирования Гамова они обнаружили, что более высокие энергии еще больше увеличивают скорость реакции. Пускай они не были первыми, но, по крайней мере, они были правы, полагая, что высокие энергии позволят более эффективно разбивать атомы. Теперь, имея на руках самую высокую энергию, они были на взводе и мчались наперегонки. Циклотронщики, как их стали называть, решили провести эксперимент, который никому другому не удался бы. Они заставили химический факультет университета произвести немного дейтерия, или «тяжелого водорода». Они поместили его в свой ионный источник, чтобы отделить электрон и произвести дейтроны (ядра дейтерия) в качестве снарядов в циклотроне. С одним протоном и одним нейтроном, как предположила команда, более тяжелые дейтроны будут проникать в ядро мощнее, чем протоны. К 1933 году они добились совершенно ошеломительных результатов: все элементы, бомбардированные дейтронами, казалось, запускали реакции, скорости которых намного превышали те, которых можно было бы достичь с помощью протонов. В результате этих реакций всегда образуются нейтроны и протоны с удивительным количеством энергии. Единственным выводом, по словам Лоуренса, было то, что дейтрон распадался. Если это правда, то, как он подсчитал, нейтрон должен быть намного легче, чем измерил Чедвик.

Прежде чем Лоуренс успел это выяснить, ему пришло приглашение на Сольвеевский конгресс 1933 года в Брюсселе – встречу величайших представителей ядерной физики. Сначала Лоуренс не собирался ехать из-за своей большой преподавательской нагрузки, но приглашение было такой большой честью для его лаборатории и университета, что Лоуренсу позволили пропустить занятия и даже отправили его на корабле первым классом. В процессе подготовки Лоуренс собрал воедино все результаты экспериментов с дейтронами, какие только смог.

В Брюсселе Лоуренс оказался среди самых известных физиков, от Альберта Эйнштейна до Марии и Ирен Кюри и, конечно же, лорда Резерфорда. Когда подошла его очередь выступать, Лоуренс рассказал о больших перспективах циклотрона и представил свои результаты экспериментов с дейтроном. Однако он не произвел того впечатления, на которое рассчитывал: многие были настроены скептически или, в лучшем случае, думали, что он, должно быть, совершил ошибку. Резерфорд, самопровозглашенный дедушка ядерной физики, согласился с ними. Несмотря на это, ему понравился юноша-первопроходец. Он толкнул локтем Чедвика, который, должно быть, не был слишком впечатлен молодым американцем, и сказал: «Он прямо как я, когда я был в его возрасте!»

Вскоре команда Кавендиша, использовавшая ускоритель Кокрофта и Уолтона, показала, что дейтроны образуют слой тяжелого водорода на поверхности мишени. Реакции, которые наблюдала команда Лоуренса, заключались в столкновении дейтронов с другими дейтронами, а не в распаде других элементов. Это объясняет, почему результаты выглядели одинаково для каждой мишени, и в правильной реакции масса нейтрона ровно такая, какой ее описывал Чедвик. Раскритикованный Лоуренс написал всем заинтересованным лицам письма с извинениями за ошибку. Обращаясь к своей команде, он настаивал на том, что «наука может развиваться и через ошибки», но теперь он усвоил урок. В будущем им придется быть гораздо более осторожными.

Одна из причин, по которой Лоуренс и Ливингстон продолжали отставать, – отсутствие у них устройства для обнаружения и подсчета частиц. Вот уж чего определенно было в достатке в Кавендишской лаборатории! Команда Лоуренса пыталась разработать счетчик Гейгера, но отказалась после двух попыток, поскольку счетчики постоянно реагировали на высокий фоновый уровень радиации. У них не было и облачных камер, поэтому их измерения были довольно посредственными, хотя циклотрон мог производить гораздо более высокие энергии, чем другие машины.

После Сольвеевского конгресса и фиаско с дейтроном Лоуренс и Ливингстон вернулись к работе, как и все их конкуренты в лабораториях по всему миру. В 1934 году Лоуренс вбежал в лабораторию, размахивая экземпляром французского журнала. Отдышавшись, он сообщил своей команде новость: Ирен и Фредерик Жолио-Кюри в Париже индуцировали радиоактивность, бомбардируя естественными альфа-частицами мишени из легких элементов. Им даже не потребовался ускоритель.

Понимая, что перед ними все элементы искусственно созданной версии того же эксперимента, они, как писал Ливингстон «… сменили мишень на углеродную, отрегулировали схемы счетчика, а затем на протяжении 5 минут бомбардировали мишень. <…> Счетчик был включен, “щелк-щелк-щелк-щелк”. Мы наблюдали наведенную радиоактивность спустя менее получаса с тех пор, как узнали о результатах Жолио-Кюри»[148].

Команда Лоуренса была настолько сосредоточена на разработке циклотронов, что они упустили возможность первыми обнаружить искусственную радиоактивность. Но они были такие не одни, так как Кавендиш и любая другая лаборатория с ускорителем тоже остались в стороне. Команда Лоуренса подключила свой счетчик Гейгера к тому же переключателю, что и ускоритель, и как только он выключался, выключался и счетчик. Если бы они оставили его включенным, то с первых же экспериментов поняли бы, что циклотрон производит радиоактивные элементы. По крайней мере, теперь они могли понять причину, почему у них не получалось создать надежный счетчик Гейгера: вся лаборатория была радиоактивна[149].

Благодаря экспериментам Жолио-Кюри Лоуренс понял, что можно получить десятки новых радиоактивных элементов. Используя циклотрон, они могут бомбардировать различные элементы протонами или дейтронами, изменять число нейтронов и протонов и производить радиоактивные изотопы. Теперь они могут выйти за рамки естественных радиоактивных элементов. Они могут воссоздать реакции в звездах, которые в первую очередь привели к образованию этих элементов. Возможно, они могли бы даже создать такие элементы и радиоактивные изотопы, которые больше не встречаются на Земле или распались до очень малых количеств.

Менее целеустремленная команда с менее вдохновляющим лидером была бы обескуражена тем, что их циклотрон уступил первое место Кокрофту и Уолтону в гонке за расщепление атома и – всего за несколько недель – в открытии искусственной радиоактивности. Всего год спустя Ирен и Фредерик Жолио-Кюри были удостоены Нобелевской премии по химии. Но если Лоуренс и завидовал успеху других, он этого не показывал. «Открытий хватит на всех», – говорил он своим ученикам[150]. Кроме того, он не стал бы меняться местами с Кокрофтом и Уолтоном или с Жолио-Кюри, потому что теперь у него есть машина, которая обгонит их всех.

В течение одного или двух дней после открытия Жолио-Кюри в 1934 году Лоуренс открыл радионатрий[151], бомбардируя дейтронами мишень из хлорида натрия (поваренной соли). Циклотрон мог производить миллионы атомов радионатрия в секунду, которые затем распадались с периодом полураспада в 15,5 часа, испуская электроны и гамма-лучи. Он снова обнаружил, что чем выше энергия пучка циклотрона, тем выше выход радионатрия. Вслед за ним был открыт радиофосфор. Мы можем только представить, какое волнение Лоуренс, должно быть, испытывал, зная, что перед ним открывался целый мир радиоэлементов. Могут быть обнаружены десятки, если не сотни, новых радиоактивных веществ. В разгар этого волнения ему пришло в голову, что, возможно, эти новые радиоактивные элементы могут оказаться полезными для общества.

Лоуренс написал своему младшему брату Джону, врачу-гематологу. Летом 1935 года Джон Лоуренс приехал в Радиационную лабораторию на каникулы из Йеля, воодушевленный тем, что могут сделать новые радиоизотопы в области медицины.

Уже было известно, что рентгеновские лучи способны убивать человеческие клетки – потенциальное будущее лечение рака. Но никто еще не пробовал использовать радиоизотопы. Поскольку новые изотопы обладали теми же химическими свойствами, что и их нерадиоактивные аналоги, Джон понял, что системы организма могут отнестись к радиоактивным элементам так же, как и к обычным. Соль, изготовленная из радиоактивного натрия, будет усвиваться так же, как, например, обычная соль. Затем он мог бы использовать радиоактивные свойства для взаимодействия с телом или, возможно, даже для визуализации внутренних процессов организма, не делая при этом ни одного разреза на коже.

Джон начал с радиоактивного фосфора-32, производимого циклотроном, исследуя метаболизм животных. Фосфор – второй по распространенности элемент в организме после кальция, он составляет 1 % массы тела и, помимо всего прочего, участвует в формировании костей и зубов. Джон подготовил группу мышей с лейкемией и ввел им радиоактивный фосфор, а затем отправился к местной реке ловить рыбу. Две недели спустя он вернулся и обнаружил, что группа мышей, которым он сделал инъекцию, была жива и, по-видимому, здорова, в то время как все мыши «контрольной» группы, которым не делали инъекцию, были мертвы. В течение нескольких месяцев Джон Лоуренс испытывал радиоактивный фосфор на пациентах-людях и пришел к впечатляющим результатам: фосфор способствовал ремиссии их болезни.

Чуть позже Джон и Эрнест решили проверить, что случится с крысой, если подвергнуть ее внешнему облучению. Они поместили крысу в циклотрон в лучевой камере, между верхним и нижним полюсами магнита рядом с бериллиевой мишенью, и включили луч, обеспечив очень низкую дозу радиации. Примерно через минуту Джон попросил выключить циклотрон, чтобы проверить, как дела у крысы. Она была мертва. Это привело в ужас всю команду, которая испугалась, что биологические последствия радиации намного хуже, чем они думали. Они взялись за дополнительное экранирование циклотрона. Позже Джон понял, что крыса умерла не от радиации, а от недостатка кислорода: она была помещена в вакуумный сосуд, а весь воздух выкачали. Несмотря на это, внезапно возник большой интерес к воздействию радиации на людей, как положительному, так и отрицательному[152]. Эксперименты были настолько многообещающими, что на следующий год Джон отправился в Калифорнийский университет, основал собственную лабораторию и собрал команду. Два брата проработали вместе много лет.

Если бы вы в те дни прошли через Радиационную лабораторию, то отметили бы, насколько она многолюдна. В одном помещении были и клетки с мышами, и «мокрые» лаборатории для химического разделения, и электрические приборы для физиков, не говоря уже о циклотроне и его экранировании. Вас окружали бы не только физики, но и эксперты из прочих областей, включая инженеров, химиков и биомедиков. Лоуренс не всегда мог позволить себе платить им – многие присоединялись к работе исключительно из энтузиазма. Возможность использовать свое открытие в медицине очень помогла ему с финансами, что было особенно важно во времена Великой депрессии. Радионатрий удалось получить с помощью 69-сантиметрового циклотрона, производящего дейтроны с энергией 6 МэВ при относительно скромном токе, но в 1937 году циклотрон был модернизирован и превращен в 94-сантиметрову машину с удвоенным током и энергией пучка в 8 Мэ В. Благодаря этому у исследователей было достаточно радионатрия и радиофосфора для работы, а у физиков – достаточно энергичный луч, чтобы лучше узнать ядерную физику.

Обычно циклотрон обстреливал цель, которая затем передавалась кому-нибудь с химического факультета, проводившему химическое разделение. Обычно это требовало растворения мишени и последующей перегонки для разделения химических веществ с помощью разницы в температурах их кипения. Иногда для разделения растворенных элементов требовались другие методы – например, добавление дополнительных химических веществ, чтобы элемент преобразовался в твердое вещество, или отделение элементов с помощью хроматографии. Как только все было сделано, физик снова брался за дело, используя электроскоп или другой инструмент для измерения активности и периодов полураспада продукта. Используя этот метод, химик Гленн Сиборг в 1937 г. обнаружил новый радиоактивный изотоп железа, железо-59, который сразу же нашел применение в изучении заболеваний крови.

Джон и Эрнест увидели наибольший потенциал в непосредственном применении радиации для лечения рака. Их эксперименты с использованием нейтронов показались перспективными. Они также изучали высокоэнергетические рентгеновские лучи, полученные с помощью линейного ускорителя, построенного коллегой Лоуренса Дэвидом Слоаном. В 1937 году Джон и Эрнест получили известие о том, что у их матери рак матки и ей осталось всего несколько месяцев. Клиника, в которой она находилась, – клиника Мейо – не хотела лечить ее облучением, но братья попросили одного из врачей, работавших с Джоном, попробовать применить рентгеновские лучи. Позже Джон Лоуренс сказал в одном интервью: «Короче говоря, огромная опухоль просто начала испаряться». На момент обнаружения болезни их матери было около 67 лет, она прожила до 83. Мы вернемся к лучевой терапии гораздо подробнее в главе 10.

В 1938 году Сиборг открыл кобальт-60 – интенсивный источник гамма-излучения с периодом полураспада 5,3 года, который позже нашел широкое применение, на пике своего использования обеспечивая 4 миллиона терапевтических облучений в год только в Соединенных Штатах. Он по-прежнему широко используется в медицине и промышленности в качестве хорошо регулируемого источника излучения[153]. В том же году в беседе с врачом Сиборг узнал об исследованиях метаболизма в щитовидной железе с использованием йода-128, период полураспада которого составлял 25 минут и был настолько коротким, что препятствовал исследованиям. Доктор сказал, что он бы предпочел такой изотоп, у которого период полураспада составляет хотя бы неделю. Сиборг и его коллеги быстро нашли йод131, период полураспада которого, как и желал врач, составлял около восьми дней. Циклотрон дал такую богатую почву для открытий, что казалось, будто ученые могут изобретать новые изотопы по первому требованию. Йод-131 в настоящее время используется миллионы раз в год для диагностики и лечения заболеваний щитовидной железы, диагностики заболеваний почек и печени, а также для функционального тестирования органов. Мать Сиборга лечили йодом-131, в результате чего ее жизнь была продлена на годы.

По мере роста все новых применений радиоактивных элементов в медицине физики продолжали расширять границы, ища новые изотопы и собирая воедино все то, что они узнали о структуре ядра и о том, как его использовать. Теперь они могли не только создавать радиоактивные изотопы известных элементов, но и находить те вещества, которые никогда раньше не встречались в природе, чтобы заполнить пробелы в периодической таблице. Первым совершенно новым элементом, обнаруженным в 1937 году, был технеций (атомный номер 43). Он был синтезирован Эмилио Сегре в Италии, после того как он посетил Радиационную лабораторию и убедил Лоуренса отправить ему по почте тонкую молибденовую фольгу – часть циклотрона, – чтобы посмотреть, сможет ли он определить, какой тип радиоактивных элементов там присутствует. После серии химических разделений и очисток Сегре и его коллега Карло Перрье нашли доказательства наличия двух изотопов технеция: технеция-95m (с периодом полураспада 61 день) и технеция-97m (период полураспада – 91 день).

Все изотопы технеция радиоактивны, и так как преобладающий в природе изотоп технеций-99 имеет период полураспада 211 тысяч лет, его очень трудно найти, поскольку практически весь он распался за время существования Земли[154]. Но с циклотроном стало возможно это исправить. В 1938 году Сегре переехал в Соединенные Штаты, где сотрудничал с Гленном Сиборгом, используя циклотрон, чтобы подтвердить существование другого изотопа нового элемента, технеция-99m. Период полураспада этого изотопа – около шести часов, а сам изотоп представляет собой стадию распада ядра технеция, во время которой испускаются гамма-лучи.

Технеций-99m оказался невероятно важным изотопом для медицинской диагностики, и впервые его использовали для медицинского сканирования печени в 1963 году. К концу 1990-х годов он использовался в более чем 10 миллионах диагностических процедур в год только в Соединенных Штатах, визуализируя функции щитовидной железы, головного мозга, печени, селезенки и костного мозга, а также других частей организма. Спрос возрос, и этот изотоп до сих пор широко используется медиками по всему миру в качестве радиоактивного индикатора. Сиборг и Сегре явно не подозревали о его потенциальном применении в медицине, когда занимались его изучением.

Остальные три недостающих элемента периодической таблицы Менделеева были найдены в течение следующих нескольких лет. Все четыре оказались радиоактивными, что объясняло, почему они оставались незамеченными: их очень мало в природе. Период полураспада самого долгоживущего изотопа – франция-233 – составляет всего 22 минуты (открыт в 1939 году Маргаритой Перей в Париже), период полураспада астата-210 – 8,1 часа (открыт в 1940 году Корсоном, Маккензи и Сегре в Калифорнии), а период полураспада прометия-145 – 17,7 года (открыт в 1945 году Маринским, Гленденином и Кориеллом в Теннесси). Когда периодическая таблица была заполнена, циклотрон позволил физикам из Беркли выйти за ее пределы. На протяжении многих лет Сиборг и другие физики, движимые вопросом о том, сколько нейтронов и протонов может удерживаться вместе в ядре и при каких обстоятельствах они стабильны или нестабильны, создавали все более тяжелые элементы. Сиборг был удостоен Нобелевской премии по химии в 1951 году за открытие трансурановых элементов – плутония, америция, кюрия, берклия и калифорния. Сиборг и его коллеги из Беркли позже синтезировали эйнштейний, фермий, менделевий, нобелий и, конечно же, сиборгий, названный в честь Гленна Сиборга.

Благодаря циклотрону и другим ускорителям периодическая таблица значительно расширилась с тех пор, когда уран (атомный номер 92) считался самым тяжелым известным элементом. Сегодня самый тяжелый элемент, полученный в лаборатории, – это унуноктий (118), также известный как оганесон, названный в честь его первооткрывателя Юрия Оганесяна. Он был синтезирован в 2016 году в Дубне, Россия, и до сих пор было изготовлено только четыре его атома, поэтому его химические и физические свойства все еще изучаются. Чтобы понимать, как образовывались тяжелые элементы в ранней Вселенной, крайне важны исследования образования сверхтяжелых элементов, которые до сих пор продолжаются во многих лабораториях по всему миру.

Периодическая таблица показывает элементы, расположенные по атомному номеру или числу протонов, но из-за расширения числа радиоизотопов с помощью циклотрона появилась вторая версия, «таблица нуклидов», также известная как диаграмма Сегре: количество нейтронов нанесено на горизонтальную ось, а число протонов – на вертикальную. Стабильные элементы периодической таблицы лежат на диагональной линии, но вокруг них нарисована широкая полоса экзотических и нестабильных ядерных конфигураций, известных как нуклиды, расположенных и окрашенных в зависимости от типа излучения, которое они испускают при распаде.

Циклотроны становились все более и более мощными, и в 1939 году в Беркли была профинансирована и открыта новая лаборатория. В лаборатории Крокера был установлен аппарат длиной около 130 сантиметров, а команда Лоуренса насчитывала 60 человек для сборки и эксплуатации циклотронов, которые иногда потребляли так много энергии, что отключали электроэнергию в ближайшем городе. Среди всей этой лихорадочной работы Лоуренс нашел время посетить Стокгольм, чтобы получить Нобелевскую премию по физике 1939 года.

Открытия не прекращались, в частности, был открыт углерод-14 – изотоп, который стал ключевым в радиоуглеродном датировании. Несмотря на рост напряженности во всем мире в 1939 и 1940 годах, Лоуренс спроектировал и построил еще более крупную машину, предназначенную для того, чтобы впервые преодолеть энергетический барьер в 100 Мэ В. Для достижения такой высокой энергии требовался гораздо больший магнит, чтобы ограничивать луч. Чтобы удвоить энергию, надо было увеличить вес магнита в восемь раз, для чего потребовалось бы столько же железа, сколько для военного корабля. Огромная машина длиной почти 4,5 метра, вершина достижений в области создания циклотронов, была построена в новом здании выше по склону от первоначальной Радиационной лаборатории. Когда началась Вторая мировая война, она все еще строилась[155].

Многие физики, включая Лоуренса, были задействованы в войне: искали способы высвобождать энергию из ядер в качестве оружия, и огромный новый циклотрон был реквизирован для военных целей. Тем временем Джон Лоуренс разработал методы визуализации, которые предполагали использование радиоактивных газов для изучения внутреннего функционирования человеческого организма. Работая вместе с Корнелиусом Тобиасом, одним из учеников Эрнеста Лоуренса, он использовал радиоактивные изотопы газов азота, аргона, криптона и ксенона (полученные с помощью полутораметрового циклотрона), чтобы выяснить природу «кессонки», или декомпрессионной болезни. Это было в те дни, когда летчики еще не использовали противоперегрузочные костюмы. Сегодня радиоактивный газ криптон по-прежнему используется в больницах для визуализации дыхания пациентов.

Вероятнее всего, сегодня вы найдете циклотрон не в большой лаборатории, а в подвале больницы. В настоящее время создано и широко используется в медицине более 50 типов радиоизотопов, и почти во всех крупных больницах есть отделение нуклеологии – ядерной медицины. Эти радиоизотопы могут лечить болезни и помогают поставить диагноз, когда наши гормоны, кровоток или другие функции органов не работают должным образом. Если вам когда-нибудь понадобится снимок вашей щитовидной железы, кости, сердца или печени, скорее всего, вы воспользуетесь техникой, разработанной братьями Лоуренс и их командой. Во всем мире ежегодно проводится от 15 до 20 миллионов таких сканирований – примерно одно на сто человек в развитых странах.

Без сотрудничества Джона и Эрнеста Лоуренсов, без стремления разбивать атомы все более и более мощными ускорителями и без междисциплинарного сотрудничества ничего этого не было бы. Сиборг позже говорил, что, когда он работал над поиском радиоизотопов, у него не было ни малейшего представления о полезном клиническом применении его открытий. Лоуренс, конечно, не думал, что создаст машину, которая изменит медицину. Джон и Эрнест, когда были молоды, и не предполагали, что будут работать вместе. Тем не менее Лоуренса и его лабораторию стали считать пионерами междисциплинарного сотрудничества и основоположниками эры Большой науки.

Вдохновение, которое подтолкнуло Лоуренса к созданию циклического ускорителя, проложило путь к более высоким энергиям, чем когда-либо видела наука. На протяжении десятилетий циклотрон двигал ядерную физику вперед. Даже Чедвик построил один такой циклотрон в Ливерпульском университете, заручившись помощью Лоуренса и сказав ему, что это один из самых красивых когда-либо изобретенных инструментов. Тем не менее, несмотря на все открытия и достижения в медицине, энергия циклотронных лучей все еще была намного меньше энергии частиц, исходящих от космических лучей, и в конце концов даже эти прекрасные машины начали достигать своего предела.

Огромное количество железа, необходимое для изготовления магнитов, затрудняло создание более крупных машин. Даже при достаточном количестве железа законы физики в конечном итоге сорвут планы создания все больших и больших циклотронов. Специальная теория относительности Эйнштейна утверждала, что по мере приближения частиц к скорости света они будут продолжать набирать энергию, но больше не будут набирать скорость. Это означает, что с увеличением энергии частицы в циклотроне будут рассинхронизироваться с ускоряющимися толчками и достигнут своего верхнего предела, возможно, в несколько сотен Мэ В. Пришло время что-то менять.

Глава 7 Синхротронное излучение: неожиданный свет

В 1933 году радиоинженер из компании Bell Labs Карл Янский сканировал небо на «коротких волнах» или радиочастотах с помощью антенны. Он пытался выяснить наличие каких-либо источников шума, которые могли бы помешать телекоммуникационной компании AT&T передавать телефонные сигналы через Атлантику. Вместо этого он обнаружил таинственное шипение, которое он поэтически окрестил «звездным шумом», – космические радиоволны, наиболее сильные в направлении края нашей галактики. Тысячелетиями люди смотрели в ночное небо, не зная, что видят всего лишь часть происходящего снаружи, не дальше видимого спектра. Открытие Янского показало, что большая часть света, исходящего из Вселенной, находится не в видимом спектре, а в радиоспектре.

Так совпало, что это открытие случилось тогда же, когда физики-ядерщики изучали природу в ее мельчайших масштабах. Две области – астрономия и ядерная физика – поначалу казались не связанными, пока случайное открытие с использованием ускорителей частиц не привело к объединению знаний двух областей. Результатом стало не просто более глубокое понимание астрофизики, но и создание мощных инструментов, сейчас использующихся практически во всех областях науки, открытия которых повлияли на всю нашу жизнь.

Поначалу астрономическое сообщество проигнорировало открытие Янским космических радиоволн. Но вскоре эту тему подхватил другой радиоинженер, Гроут Ребер. Ребер профинансировал и построил первый радиотелескоп в Иллинойсе в 1937 году и обнаружил яркие источники радиоволн в созвездиях Лебедя и Кассиопеи. Со временем астрономы обратили на это внимание, и этот новый инструмент привел к заметному сдвигу в нашем взгляде на космос. К 1950–1960-м годам радиоастрономия дала нам совершенно иной взгляд на Вселенную, открыв то, о чем мы раньше не знали. Небесные объекты излучали радиоволны, включая нашу галактику Млечный Путь. Астроном Джесси Гринштейн позже говорил в интервью The New York Times, что заря радиоастрономии «привела к появлению информации, которая перевернула идею рационально развивающейся Вселенной… и заменила ее релятивистским космосом сверхвысоких энергий, полным страшных, жестоких, неконтролируемых сил, таких как черные дыры и квазары. Это была революция»[156].

Радиоастрономия привела ко многим открытиям. Например, в 1945 году геолог и физик Фрэнсис Элизабет Александер установила, что радиосигналы исходят от Солнца. В 1967 году Джоселин Белл Бернелл обнаружила объекты, излучающие интенсивные регулярные импульсы радиоволн, напоминающие внеземной маяк, за что они получили прозвище «маленькие зеленые человечки». Пульсары, как мы называем их сегодня, – это чрезвычайно компактные вращающиеся звезды, испускающие излучение со своих полюсов, из которых астрономы многое узнали о процессах в конце жизни звезды. Открытие пульсаров было настолько важным, что за него удостоили Нобелевской премией, но не Белл Бернелл – очевидно, из-за ее статуса аспирантки в то время: вместо нее награду получил ее научный руководитель Энтони Хьюиш[157].

Сегодня многое из того, что мы знаем о космологии, черных дырах, сверхновых и других впечатляющих объектах во Вселенной, – результат десятилетий работы в области радиоастрономии, но еще в 1940-х годах ученые искали ответ на важный вопрос: как эти объекты, от пульсаров до Млечного Пути, излучают радиоволны? Ответ был найден здесь, на Земле, физиками, строящими ускорители, чтобы проникнуть в атом.

В начале 1940-х годов на сцену вышел новый тип ускорителя частиц, который стал известен как бетатрон[158]. Часть «трон» означает «инструмент», а «бета» – излучение, которое состоит из высокоэнергетических электронов, именно то, чего так хотели ученые от новой машины.

Почему бы просто не использовать циклотрон? Оказывается, он отлично подходит для протонов и дейтронов, но плохо ускоряет электроны. Циклотрон, как мы видели в предыдущей главе, представляет собой машину, которая использует магнитное поле для изгиба заряженных частиц по кругу и колеблющееся электрическое поле, которое придает частицам большую скорость. Будучи самыми легкими представителями мира частиц, электроны очень легко достигают скорости, близкой к скорости света, и, согласно теории относительности, хотя частицы могут получать больше энергии на этих скоростях, они уже не становятся быстрее. Это означает, что колеблющееся электрическое поле теряет синхронность с электронами и начинает их замедлять. Физики, стремящиеся заполучить высокоэнергетические электроны для генерации рентгеновских лучей или проведения экспериментов по рассеянию, оказались в тупике. Но бетатрон доказал, что на циклотроне свет клином не сошелся, как любил говорить Лоуренс.

Бетатроны работают по несколько иному принципу. Они используют принцип магнитной индукции, то есть идею о том, что изменяющееся магнитное поле индуцирует ток в замкнутом проводящем контуре, точно так же, как индукционная плита генерирует ток, чтобы нагреть сковороду. Пучок электронов, движущийся по кругу, может действовать так, будто он находится в проволоке или сковороде. Таким образом, помещение электронов в изменяющееся магнитное поле может придать пучку энергию, одновременно удерживая и фокусируя его, но при этом не надо беспокоиться о синхронизации колебаний напряжения. Эта идея фактически схожа с мыслью, которую молодой Эрнест Уолтон предложил Резерфорду в конце 1920-х годов. Попытки Уолтона разработать такой аппарат тогда не увенчались успехом, что стало одной из причин, по которой он в конечном итоге создал ускоритель с Джоном Кокрофтом[159]. Хотя его первые эксперименты потерпели неудачу, Уолтон внес ключевой вклад в теорию такой машины, и в том числе выяснил, как заставить частицы оставаться на желаемой орбите. На самом деле добиться этого куда сложнее, чем вы думаете.

В циклическом ускорителе цель состоит в том, чтобы частицы идеально вращались по кольцеобразной траектории, проходящей внутри круглой трубки, известной как «пончик»[160]. При работе с реальным пучком частиц мы должны думать о них не по отдельности, а как о совокупности независимых частиц, каждая из которых никогда не находится идеально посередине трубки. Вместо этого каждая частица следует по своей собственной траектории, которая не совсем соответствует идеальной орбите. Уолтон справедливо опасался, что по мере ускорения частиц их нужно будет постоянно отталкивать обратно к центру трубки, чтобы они не отлетали и не терялись. Он произвел подробный расчет того, как это сделать, придав магнитному полю такую форму, чтобы оно уменьшалось с увеличением радиуса и искривлялось у внешнего края кольца. Такая установка, как он выяснил, фокусирует частицы и гарантирует, что они всегда возвращаются на идеальную орбиту[161].

К 1940 году первый работающий бетатрон был, наконец, создан Дональдом Керстом в Соединенных Штатах. Новая машина быстро стала многообещающей технологией для ускорения электронов примерно до 99,99 % скорости света. Теперь, когда электроны можно было ускорять, им быстро нашлось применение не только в науке, но и в реальном мире. В частности, появился рынок ускорителей частиц в медицине и промышленности. В 1944 году физик Херб Поллок возглавил команду исследовательской лаборатории General Electric (далее GE) в Скенектади, штат Нью-Йорк, для создания бетатрона, рассчитанного на энергию в 100 Мэ В. Ребристый железный фасад 130-тонной машины возвышался над головами физиков и был больше похож на линкор, чем на медицинское устройство, поперек него шла надпись General Electric. Зазор примерно на высоте головы создавал пространство для кольцеобразного вакуумного сосуда. Работая, машина издавала оглушительный жужжащий шум, поскольку мощные электрические токи циркулировали в катушках электромагнита, ускоряя пучки от нуля до 100 МэВ 60 раз в секунду.

Физик и инженер Уильям Кулидж, по совместительству директор исследовательской лаборатории GE, намеревался использовать бетатрон для создания высокоэнергетических рентгеновских лучей путем воздействия электронов с энергией 100 МэВ на мишень, что позволило бы ему получить рентгеновскую супертрубку, лучи которой могли бы проходить сквозь тело или промышленные объекты для получения изображений там, где рентгеновские лучи с более низкой энергией останавливались. Он надеялся, что бетатрон станет коммерческим устройством, после чего команда будет создавать все большие и большие машины по мере роста рынка. Но лучше всего было то, что ученые не видели предела энергии электронов, которой они могли достичь с помощью такого устройства.

Как только они привыкли управлять машиной, Джон Блюитт, физик из другой группы GE, узнал о теории, которая, казалось, представляла проблему. Советские ученые Дмитрий Иваненко и Исаак Померанчук указали в письме в журнал Physical Review, что существует проблема с ускорением электронов в циклической машине. Если вы примените принцип сохранения импульса к заряженной частице, движущейся по кругу, то обнаружите, что изгибание ее траектории должно вызывать излучение[162]. Блюитт повторил расчеты и понял, что русские правы.

Для бетатрона с энергией 100 МэВ эффект окажется небольшим. Потеря энергии составила бы всего 10 эВ за оборот, так что конечная энергия их машины составила бы 99, а не 100 Мэ В. Невелика потеря. Но расчеты предсказывали, что при каждом удвоении энергии электрона потери увеличатся в 16 раз. Если бы ученые хотели создать бетатроны большего размера, то по мере того, как частицы достигали бы более высоких энергий, испускалось бы огромное количество излучения. По словам Иваненко и Померанчука, будет потеряно так много энергии, что механизм ускорения просто перестанет справляться. Верхним пределом, по их словам, станет энергия частиц около 500 Мэ В. Если это так, то идея бетатрона вскоре устареет.

Некоторые ученые из команды GE скептически относились к идее существования такого эффекта. В конце концов, электроны все время движутся по проводам и не испускают излучения. Блюитт настоял на проведении теста в GE, чтобы проверить, верны ли прогнозы. В их распоряжении был бетатрон мощностью 100 МэВ, и Блюитт подсчитал, что орбита должна немного сместиться из-за радиационного эффекта.

Когда они включили аппарат и провели измерения, орбита действительно казалась немного отклоненной. Но, опять же, это сложная машина, и сдвиг орбиты мог произойти по целому ряду причин. Бесспорным доказательством может служить только само излучение. Они разместили вокруг машины оборудование для отслеживания радиации в радиочастотном спектре, но так ничего и не нашли.

Этот вопрос все еще оставался нерешенным в конце 1945 года, когда Эрнест Лоуренс нанес один из своих регулярных визитов в Скенектади и переключил внимание здешних исследователей на новую цель. На семинаре он представил идею, над которой работала его команда в Беркли. Вместо движущихся по спирали частиц в циклотроне Лоуренс предложил машину с пучком, ограниченным одной орбитой, где ускорение обеспечивалось бы радиочастотными электрическими полями, а магнитное поле возрастало бы во времени. Эту идею одновременно выдвинули сразу два ученых – коллега Лоуренса из Беркли Эд Макмиллан и Владимир Векслер в России. Они развили идею, которую несколькими годами ранее представил австралиец Марк Олифант[163], один из учеников Резерфорда. Эта новая концепция избавила бы от необходимости в гигантских магнитах для циклотронов и бетатронов, но в качестве компромисса выступал несколько более сложный принцип работы: поскольку скорость частиц меняется от орбиты к орбите, ускоряющая частота должна изменяться во времени, чтобы не отставать. Все должно быть идеально синхронизировано, а потому это устройство получило имя «синхротрон».

Физики GE внимательно слушали. У них уже был бетатрон, но они беспокоились, что технология достигнет верхнего предела энергии из-за потерь на излучение. Идея синхротрона казалась интересной, но как она решит проблему? Как синхротрон продолжит ускорять электроны до более высоких энергий, когда начнется излучение?

Макмиллан и Векслер решили эту проблему с помощью принципа фазовой стабильности, который основывался на синхронизации используемых радиочастотных полей для ускорения луча орбита за орбитой. Проще всего представить кучу заряженных частиц в циклическом ускорителе как группу серферов, дрейфующих на волне (напряжения). Если серферу нужно ускориться, он может подняться ближе к вершине волны, где ее изгиб круче; если ему нужно замедлиться, он может спуститься к нижней части волны. При правильной синхронизации по отношению к волне напряжения, создаваемой радиочастотными полями, передние (более быстрые) частицы встречают более низкое напряжение, чем задние (более медленные), и остаются сгруппированными.

Это позволит не только сгруппировать и ускорить пучки частиц, но и, как утверждал Макмиллан, преодолеть любые потери энергии на излучение. Похоже на серфинг при встречном ветре: всем серферам нужно немного приблизиться к вершине волны, чтобы продолжать движение, но они могут это сделать при условии, что волна достаточно высока[164]. Синхротрон сможет превысить энергетический предел в 500 МэВ, предсказанный Иваненко и Померанчуком.

Лоуренсу идея казалась абсолютно привлекательной, поскольку синхротрон может достигать почти неограниченной энергии, в отличие от изобретенного им циклотрона. Он был полон решимости построить синхротрон, чтобы достичь высоких энергий и наконец оставить все то железо, которое нужно для циклотронов. Однако, в типичном для Лоуренса стиле, он еще не построил новый ускоритель: он просто всем о нем рассказывал, пока они с Макмилланом разрабатывали план. Для физиков GE его семинар прояснил сразу две вещи: во-первых, актуальность бетатрона может оказаться еще короче, чем они себе представляли – синхротрон очень быстро выйдет на первый план в ускорении электронов; во-вторых, они могли бы построить небольшой синхротрон до того, как Лоуренс построит свой, чтобы первыми в мире доказать его значимость.

Физики из GE сразу же получили разрешение на создание синхротрона с энергией 70 МэВ и приступили к его проектированию. Сам магнит весил 8 тонн и имел 6-сантиметровый зазор посередине для круглого «пончика» диаметром 70 см, через который проходил луч[165]. Они разработали хитроумный силовой контур, который передавал энергию по кругу для увеличения и уменьшения магнитного поля в установленное время, что позволяло управлять частицами. Между тем Блюитт, который ушел из GE, оставил им некоторые расчеты, полученные от уважаемого теоретика Джулиана Швингера, где было несколько дополнительных сведений об излучении, предсказанном Иваненко и Померанчуком.

Позже Швингер разделит Нобелевскую премию с Ричардом Фейнманом и Синъитиро Томонагой за развитие квантовой электродинамики (КЭД) в конце 1940-х годов. Расчеты Швингера гласили, что излучение, испускаемое по круговой траектории, не будет выделяться во всех направлениях: оно будет образовывать плотный луч, направленный вперед вдоль траектории частицы. Он предсказал, что частота излучения будет смещаться выше по мере увеличения энергии электронов. Наконец, он отметил, что при энергиях, с которыми работала команда GE, излучение должно выходить за пределы радиочастотного диапазона, вплоть до видимых частот.

Синхротрон, построенный физиками из GE, начал работать в октябре 1946 года[166], но вовсе не так гладко, как все надеялись. Компоненты постоянно выходили из строя, их приходилось заменять, но ученые продолжали работу, и в апреле 1947 года все шло довольно хорошо, за исключением одной проблемы: в машине замечалось искрение. Техника Флойда Хабера послали понаблюдать за синхротроном во время его работы, чтобы понять, в чем проблема.

Стоять рядом с такой машиной, когда она работает, довольно опасно, поэтому Хабер установил большое зеркало размером 1,8 × 0,9 м, чтобы наблюдать за машиной, а сам при этом надежно прятался за углом толстой бетонной стены. Когда ученые разогнали машину до пределов ее возможностей, Хабер крикнул, что видит искрение, и велел им выключить ее. Обычно, если происходит искрение, уровень вакуума – давление в «пончике» – быстро меняется, но не в этом случае: уровень вакуума оставался стабильным. Один из физиков, Роберт Ленгмюр, тоже пришел взглянуть, и все вместе они наблюдали маленькое, очень яркое голубоватое пятно, исходящее от синхротрона.

Ленгмюр сразу понял, что он видит. Он попросил остановить ускорение луча – и свет исчез. Это, должно быть, и есть то самое «излучение Швингера». Пораженные тем, что их электронный луч испускает видимый свет, ученые решили проверить предположение о том, что цвет света связан с энергией частицы. Снизив энергию, они наблюдали – должно быть, со смесью удовлетворения и недоверия, – как пятно света меняло цвет с синего на желтый, а затем на красный, пока не исчезло полностью. Все это, как позже вспоминал один из членов команды, заняло около 30 минут[167]. По счастливой случайности, новая вакуумная камера была сделана из стекла, поэтому они могли видеть свет, исходящий от циркулирующих электронов. Этот же эффект ускользнул от них тремя годами ранее при работе с бетатроном, потому что металлическая камера блокировала свет. Это был один из тех редких моментов случайного открытия, которое впоследствии окажет большое влияние.

Свет, излучаемый таким образом, называется синхротронным излучением и обладает очень специфическими свойствами. Он может быть невероятно интенсивным, когерентным (больше похож на лазер, чем на лампочку) и охватывать весь электромагнитный спектр, от рентгеновских лучей через видимый свет до инфракрасного, в зависимости от магнитного поля и энергии электронов. Свет поляризован, то есть все колебания световых волн происходят в одном направлении. Свет может поляризоваться по-разному, в том числе когда он отражается от воды или капота автомобиля, которые поляризуют его в основном в горизонтальном направлении. Вот почему поляризованные линзы в солнцезащитных очках блокируют блики, пропуская только вертикальные световые волны[168]. Синхротронный свет поляризуется в направлении, связанном с изгибом электронов: в случае с лучом, циркулирующим в ускорителе, он поляризуется горизонтально. Его свойства настолько уникальны, что при должных изменениях вы сможете точно определить, когда он возникает: если вы измеряете свет с правильными свойствами, то можете сделать вывод, что он почти наверняка исходит от электронов, чьи траектории изгибаются в магнитных полях.

Это открытие стало ключевым в разгадке мучающего астрономов вопроса об источнике радиоизлучения в космосе. Млечный Путь, пульсары и многие другие объекты – не просто шары из газа и пыли: у них есть магнитные поля. Когда заряженные частицы искривляются в этих полях, они испускают синхротронное излучение точно так же, как в ускорителе, освещая Вселенную, обычно в спектре радиоволн. Астрономы могут проверить, поляризовано ли излучение, и таким образом определить магнитную структуру – расположение и силу магнитных полей – объектов в космосе.

По мере развития радиоастрономии в 1950–1960-х годах выяснилось, что магнитные поля встречаются гораздо чаще, чем предполагалось ранее. Один из впечатляющих примеров – Крабовидная туманность в созвездии Тельца, остатки разрушительной сверхновой, наблюдавшейся в 1054 году н. э., у которой, как оказалось, есть энергетическое облако электронов, вращающихся по силовым линиям магнитного поля и управляемых пульсаром в ее центре. Теперь мы знаем, что все звезды, галактики, нейтронные звезды и сверхновые имеют магнитные поля. Магнетизм может также объяснить поведение самых удивительных объектов в космосе, включая огромные струи (джеты) ионизированного вещества, выбрасываемые сверхмассивными черными дырами: считается, что они вызваны частицами, ускоренными в запутанных магнитных полях в центре этих плотных компактных объектов. Знание о синхротронном излучении помогло астрономам, регистрирующим радиоизлучение из космоса, получить представление о подобных объектах и лучше понять магнитные свойства нашей Вселенной.

В GE свет поначалу восприняли как диковинку и демонстрировали его всем посетителям. Затем ученые поняли, что могут использовать свет для настройки, оптимизации и управления синхротроном, что помогло им спроектировать новые машины для продажи. В течение следующих нескольких лет по всему миру были построены синхротроны с более высокой энергией, и вскоре стало очевидно, что синхротронное излучение обладает куда большим потенциалом, чем просто диагностика электронного пучка. Изобретатель бетатрона Дональд Керст отлично это подметил в своем высказывании: «Как было бы интересно, если бы эти красивые и сложные машины внесли свой наибольший вклад в науку в качестве электрических лампочек»[169]. Во многих отношениях ироничное замечание Керста оказалось пророческим. Как только синхротронное излучение было получено в лабораторных условиях, оно тут же стало непревзойденным инструментом научных исследований, применяющимся в различных областях – от химии и биологии до материаловедения и археологии.

Впервые ученые попытались использовать синхротронное излучение в Корнелле в 1956 году, а пять лет спустя – в Национальном бюро стандартов США, которое устанавливает стандарты работы в таких областях, как радио, автомобильная промышленность и электроника. Подтверждено, что синхротронное излучение намного превосходит любой стандартный источник света или рентгеновскую трубку. Другие быстро последовали примеру, адаптировав существующие синхротроны под нужды пользователей, чтобы те могли получить доступ к свету для экспериментов. Сначала этим сторонним пользователям приходилось бороться за время и пространство на объектах ядерной физики, но к 1970 году был построен первый пользовательский объект: Источник синхротронного излучения (SRS) в лаборатории Дарсбери, Великобритания. Правительства по всему миру начали строить ускорители частиц не для ядерной физики, а для удовлетворения потребностей широкого круга научных и коммерческих пользователей. К 1974 году в мире насчитывалось более 10 синхротронных установок, спроектированных и построенных специально для генерации синхротронного излучения.

Изображения могут быть получены с использованием синхротронного излучения путем помещения образцов в световое поле в вакуумной камере и записи результата, первоначально при помощи фотопластинок, как было в 1970-х годах, а в настоящее время – цифровых детекторов. Исследуемые образцы могут быть невероятно разнообразными: примеры включают в себя шоколад, сталь и даже кусочки морского огурца.

Область, которая, возможно, выиграла от синхротронного излучения куда больше, чем любая другая, – это структурная биология. Здесь огромную роль играют физические структуры в микроскопическом масштабе: то, как сворачиваются белки, возникают болезни и даже сама структура ДНК. Как объяснил оксфордский профессор биологии Дэвид Стюарт в интервью для медицинского факультета Наффилда, структурные биологи занимаются очень подробным изучением биологии, подобно тому как для знакомства с принципом работы автомобиля надо изучить каждую его деталь – как она взаимодействует с другими частями и как все вместе они составляют машину. Организмы, подобные нам, состоят из триллионов клеток, которые обладают поразительным разнообразием внутренних компонентов, действующих на наноуровне. Когда мы понимаем, как работает биология в таком масштабе, это дает нам возможность принимать меры, когда что-то идет не так.

Нынешнее понимание структурной биологии во многом обязано рентгеновской кристаллографии – жемчужине в короне методов визуализации. Этот метод использовался задолго до того, как появились источники синхротронного излучения, и на его основе было присуждено не менее 28 Нобелевских премий.

Все началось с того, что Уильям и Лоуренс Брэгги из Университета Аделаиды, британо-австралийские физики, отец и сын, в 1913 году взяли источник рентгеновского излучения и направили его на кристалл соли. Появившаяся дифракционная картина, как они поняли, могла рассказать им о структуре самого кристалла, вплоть до уровня атомов[170]. Вслед за ними ученые усовершенствовали эту технику, чтобы разгадать структуру практически каждой важной молекулы и материала. Кэтлин Лонсдейл (коллега Уильяма Брэгга) в 1929 году с помощью рентгеновской кристаллографии выяснила, что бензольное кольцо является плоским, в то время как Дороти Ходжкин определила структуру пенициллина (1949), витамина В12 (1955) – достижение, за которое она получила Нобелевскую премию в 1964 году, – и инсулина (1969), последняя задача заняла у нее 34 года. В 1952 году Розалинд Франклин, как известно, использовала рентгеновскую кристаллографию для получения так называемой фотографии 51, показывающей двуспиральную структуру ДНК. Таким образом были определены структуры графита, графена, гемоглобина, миоглобина и бесчисленного множества других веществ, и все это было сделано с помощью обычных рентгеновских трубок. Но с появлением источников синхротронного излучения кристаллография стала значительно более мощной и остается таковой по сей день.

Благодаря синхротронам были совершены огромные прорывы в фундаментальной науке. Используя кристаллографию, сэр Джон Уокер и другие раскрыли структуру аденозинтрифосфата (АТФ) – молекулы, которая транспортирует и накапливает энергию во всех растительных и животных организмах, включая человека. Роджер Корнберг выяснил, как гены копируют сами себя с помощью мРНК, а Венкатраман Рамакришнан и его коллеги исследовали структуру рибосомы. Все это открытия, удостоенные Нобелевской премии. Обратите внимание, что эти прорывы не связаны с ядерной физикой или физикой элементарных частиц – областями, которые в первую очередь привели к случайному открытию синхротронного излучения.

Поначалу все это вкупе с научной мощью может показаться далеким от повседневной жизни, но стоит понимать, что наше знание основ биологии вирусов тоже зависит от рентгеновской кристаллографии. Это внезапно приобрело неотложное значение, когда COVID-19 впервые появился в Ухане, Китай, в конце 2019 года. Вирус SARS-CoV-2 содержит 28 белков. Эти белки представляют собой цепочки молекул, свернутые строго определенным образом, – представьте себе намеренно спутанный клубок шерсти. После сворачивания остаются так называемые активные центры, на которые можно воздействовать химическими соединениями. Структурные биологи могут копировать эти белки для изучения, используя их генетическую структуру для клонирования. Но сначала кто-то должен секвенировать геном вируса.

После того как вирус был впервые обнаружен в Китае 29 декабря, всего через 12 дней стали доступны шесть вирусных последовательностей. К 5 февраля 2020 команда Цзыхе Рао и Хайтао Яна из университета ШанхайТех внесла структуру главной протеазы (протеаза расщепляет белки, но также необходима для репликации вирусов, а потому это привлекательная цель при разработке лекарств) в Банк данных белков (англ. Protein Data Bank) – онлайн-ресурс, который ученые по всему миру используют в качестве главного хранилища своих данных. Они определили эту структуру в Шанхайском центре синхротронного излучения. К тому времени команда уже активно поделилась информацией с более чем 300 исследовательскими группами по всему миру.

Прежде чем большинство правительств предприняли какие-либо действия, структурные биологи уже усердно работали с источниками синхротронного излучения по всему миру, создавая и изучая физические структуры белков, входящих в состав SARS-CoV-2. Все потому, что они знали: для того чтобы лекарство или вакцина были эффективными против вируса, человеческий организм должен вырабатывать молекулы, которые физически распознают, прикрепляются, а затем нейтрализуют и уничтожают нежелательный патоген. У любого варианта лечения или вакцинации одна и та же отправная точка: понимание того, как работает вирус. Ключ к этим знаниям лежит в структуре и функциях вируса. Как только мы поймем химическую основу для распознавания организмом вируса, мы можем попытаться разработать лекарство, снижающее его действие, или вакцину, которая заставит человеческий организм вырабатывать антитела. Главные сражения с пандемией COVID велись не в больницах, а в кольцеобразных зданиях размером с футбольное поле, в которых находились машины из области физики элементарных частиц.

На Австралийском синхротроне, в получасе езды от Мельбурна, доктор Элеонора Кэмпбелл работает в качестве специалиста по физике ускорителей, эксперта, который проводит эксперименты с синхротронным излучением и помогает другим ученым делать то же самое. Пока все остальные были отправлены домой на удаленную работу из-за разразившейся пандемии, Кэмпбелл была одной из немногих ученых, чья работа на этом объекте шла полным ходом. Она следила за экспериментальной станцией источника синхротронного излучения под названием MX2, используемой для макромолекулярной кристаллографии, которая позволяет ученым определять расположение и формы биологических молекул вплоть до атомов. В обычное время она работает в области химии, физики конденсированного состояния, инженерии, наук о Земле и материаловедения. Но в начале 2020 года вся работа была полностью посвящена исследованиям, связанным с COVID.

Экспериментальная станция получает синхротронное излучение из самого сердца объекта, непосредственно синхротрона, скрытого за большими бетонными защитными стенами. Основное кольцо выполнено из повторяющегося набора электромагнитов – железных блоков высотой по плечо, питаемых толстыми медными кабелями, – на которые с помощью меньшего ускорителя подаются высокоэнергетические (3 ГэВ) электроны. Специализированная оперативная группа посменно поддерживает круглосуточную работу. Электроны внутри синхротрона могут циркулировать и излучать свет в течение нескольких дней или недель, испуская излучение при непрерывном пополнении энергии. Когда один пучок электронов удаляется из машины, его место быстро занимает другой, так что пользователи едва могут заметить изменение в уровне излучения[171].

Ряд экспериментальных станций расположен по касательной к окружности кольца. Их расположение определяется «вставными устройствами», размещенными вокруг кольца для генерации синхротронного излучения. В настоящее время, вместо того чтобы просто использовать излучение, получаемое естественным образом в изгибающихся магнитах, «вставные устройства», называемые вигглерами и ондуляторами, буквально перемещают пучок, создавая луч, который можно настроить на определенную длину волны. Затем свет проходит через окно или порт, который выходит на экспериментальную установку, где ученые, готовые к сбору данных, проводят свои эксперименты, помещая образцы белков в держатель.

Первым шагом станет успешное превращение белка в кристалл, одна из самых сложных частей работы. Биологические молекулы большие и пластичные – иными словами, мягкие, – в то время как то, что мы обычно считаем кристаллами, к примеру соль, традиционно твердое. Работа Кэмпбелл заключается в том, чтобы убедить «массу биологической материи сформировать упорядоченный, твердый кристалл». Это процесс проб и ошибок, требующих тестирования многих реагентов – начиная с химикатов, которые работали в прошлом, – в точных количествах, пока не будет достигнут желаемый эффект. Если ученому повезет настолько, что из белков образуются кристаллы, ему все равно придется вылавливать крошечные кристаллы микрометрового размера с помощью миниатюрных нейлоновых петель. Эта ювелирная работа требует предельного терпения. Как только кристаллы готовы к изучению, исследовательские группы обычно берут с собой всю свою команду: они работают круглосуточно, чтобы максимально использовать отведенное им время. Однако во время пандемии многие исследовательские группы были вынуждены работать удаленно, в то время как Кэмпбелл и ее коллеги управляли установкой на месте.

Кэмпбелл знает, каково это – проводить эксперимент на таком объекте удаленно. Свои эксперименты для докторской в Кембриджском университете она проводила, сидя за компьютером в своей лаборатории, в то время как ее тщательно подготовленные образцы кристаллов удаленно помещались в луч кем-то другим из британского источника синхротронного излучения Diamond. Она нажимала кнопку «Обновить», и на ее экране появлялась новая форма белковой структуры. Пока Кэмпбелл получала представление о белках, фактическая геометрия всего эксперимента оставалась скрытой. Теперь она была по другую сторону: помогала удаленным пользователям проводить эксперименты, чтобы узнать как можно больше о коронавирусе.

Биологов, с которыми работала Кэмпбелл, не пугали ни удаленная настройка, ни работа допоздна. Без синхротрона им пришлось бы проводить дни напролет, используя лабораторный источник рентгеновского излучения: чтобы получить изображение с разных углов, уходит около 40 минут (кристаллография включает в себя получение изображений под углом 180 градусов, дифракционных картин и восстановление трехмерной структуры с помощью математики). На экспериментальной установке MX2 получение изображения под углом 180 градусов занимает всего 18 секунд. Так что если кто-то пытается протестировать ряд образцов, например с небольшими вариациями белка, то это займет всего несколько часов работы, хотя раньше это могло бы стать предметом целой кандидатской диссертации. Уникальные свойства синхротронного излучения позволяют проводить эксперименты, которые раньше были просто невозможны. Без синхротронов биологам потребовались бы годы, чтобы понять структуру SARS-CoV-2.

По всему миру на подобных объектах ученые объединили усилия ради одной цели: составить карты в атомном масштабе как можно большего числа белков, составляющих SARS-CoV-2. В более спокойные времена исследователи использовали подобные устройства для создания изображений и расшифровки структур многих ключевых биологических молекул, что привело к новым методам лечения СПИДа, рака кожи, диабета 2-го типа, лейкемии и сезонного гриппа, а также к прорывам в борьбе с вирусами Эбола, Зика и атипичной пневмонии. Вот почему около 50 источников синхротронного излучения по всему миру можно считать нашей передовой защитой от возникающих вирусных заболеваний.

К закрытию первого из этих специализированных синхротронов, Источника синхротронного излучения Дарсбери (SRS), в 2008 году на его базе было проведено около 11 000 научных исследований. Он помог с тысячами открытий, которые прямо или косвенно повлияли на нашу жизнь. Новые материалы для одежды и электроники, новые фармацевтические препараты и моющие средства – вот лишь некоторые из продуктов, появившихся в результате исследований на этом предприятии. Трудно представить, насколько далеко простирается использование такого объекта, однако точно известно, что его применяли 11 из топ-25 британских компаний, ранжированных по уровню расходов на НИОКР.

SRS использовали для определения структуры ящура, что привело к созданию новых вакцин, и для понимания такого явления, как «гигантское магнетосопротивление», или ГМС, – хитрость, стоящая за огромной емкостью памяти в наших электронных устройствах, таких как iPhone. Исследования SRS способствовали созданию более чистого топлива и ряда новых лекарств. Он даже внес свой вклад в культурное наследие, изучив образцы с военного корабля Тюдоров «Мэри Роуз», чтобы узнать, как лучше сохранить останки. В исследовании, проведенном компанией Cadbury – производителями шоколада, – изучалось образование кристаллов в шоколаде, чтобы сделать его вкус еще более насыщенным. Аналогичный метод был использован для изучения образования кристаллов в металлах с целью повышения безопасности полетов.

Ошеломительные прорывы – «хлеб с маслом» для таких предприятий. Они творят науку со скоростью, за которой трудно угнаться. История синхротронного излучения еще раз дает понять, как сильно инструменты физики могут трансформировать другие области науки. Она напоминает нам о том, что различные области знаний неразделимы, от самых маленьких до самых больших объектов в природе и всего, что находится между ними. По словам Кэмпбелл, она чувствует себя маленькой, просто входя в это большое сооружение каждый день. Иногда ее поражает, насколько сложны синхротроны. Команда физиков, работающих с ускорителями, наверняка сказала бы то же самое о ее работе. Вот почему многие современные научные прорывы обязательно носят междисциплинарный характер: ни один человек не может сам полностью понять весь процесс. Тем не менее, используя этот продукт физических исследований, ученые, подобные Кэмпбелл и ее предшественникам, могут создать знания, которые имеют гораздо более широкий охват, чем могли когда-либо предсказать физики из General Electric, Лоуренс, Керст или Олифант. Как мы видим, это знание выходит за рамки биологии и даже за пределы нашей планеты. Понимание фундаментальной науки, лежащей в основе синхротронного излучения, помогло открыть отличный инструмент для астрономии. Астрономы смогли увидеть объекты в космосе в совершенно новом свете, раскрыв внутреннюю работу всего, от галактик до квазаров и черных дыр, поскольку все они испускают синхротронное излучение в форме радиоволн. Сегодня радиоастрономы изучают сложное поведение магнитных полей, генерируемых в малоизученных областях Вселенной, – например, вспомните недавние наблюдения так называемых быстрых радиовсплесков: чрезвычайно мощные импульсы радиоволн длительностью в миллисекунду, указывающие на новые высокоэнергетические процессы, которые мы еще не до конца понимаем. Космологи тем временем рассматривают существование магнетизма в отдаленных областях космоса как объяснение быстрого расширения ранней Вселенной. Наличие источников синхротронного излучения дает физикам инструмент, который объединяет их в стремлении понять физику очень большого и очень малого.

Это все возможно, потому что принципы физики применимы не только к Земле, но, насколько нам известно, ко всему. Та же самая физика, благодаря которой мы можем раскрывать тайны внешних пределов Вселенной, позволяет разгадывать внутреннюю работу нашей биологии и предпринимать меры, когда что-то идет не так. Нет никакой особой причины, по которой Вселенная должна работать именно таким образом, но она так работает, и это завораживает.

В конце концов, синхротронное излучение, которое оказалось таким невероятным инструментом для астрономов и других ученых, стало огромным препятствием для физиков элементарных частиц. Они хотели ускорять частицы до все более высоких энергий, чтобы разбивать атомы, но столкнулись с тем фактом, что частицы излучают энергию, когда их разгоняют быстрее. Ученым пришлось бы еще больше увеличить количество энергии, чтобы преодолеть ее потерю. Вскоре они достигнут практического предела того, сколько энергии могут придать частицам – по крайней мере, некоторым из них.

Формула излучения предсказывала, что ускорение частиц с малой массой, таких как электроны, до высоких энергий будет проблемой, но что мощность испускаемого излучения будет намного ниже для более тяжелых частиц. Протон почти в 2000 раз тяжелее электрона, но излучает в 1013 раз меньше излучения, чем электроны[172]. Оборотной стороной является проблема, связанная с искривлением траектории высокоэнергетических протонов в циклическом ускорителе, для чего требовались либо очень сильные магниты, либо гораздо большее кольцо, чем у ускорителей электронов. Поскольку физики были полны решимости разогнать протоны до более высоких энергий, следующее стало неизбежным: ускорители частиц, построенные во второй половине ХХ века, будут расти и расти.

Физикам пришлось объединить усилия и собрать специализированные команды инженеров, аналитиков данных, менеджеров и других специалистов, чтобы создавать огромные машины и управлять ими. Они стали одними из первых, кто внедрил вычислительную технологию, и им пришлось создавать новые способы регистрации частиц – все это требовало выхода за границы возможного. Со временем их поиски выявили гораздо больше частиц, чем кто-либо предполагал. Сотни исследователей пытались ответить на вопрос: существует ли в природе глубинный порядок? Можем ли мы предсказать и классифицировать множество различных частиц или наша реальность – просто управляемый вид хаоса?

Загрузка...