Усилитель, как и колебательный контур, является обязательным устройством любого радиоприемника. В каждом радиоприемнике есть несколько усилителей, называемых также усилительными каскадами.
Все УЗЧ увеличивают мощность сигнала, но если при этом значительно повышается напряжение сигнала, то такие усилители называют усилителями напряжения. Мощность сигнала в усилителях повышается за счет энергии источника питания.
Усилители мощности при работе с полной отдачей потребляют ток в десятки и даже сотни миллиампер.
Основными параметрами усилительного каскада являются:
• Коэффициент усиления по напряжению:
КU = Uвых/Uвх
• Коэффициент усиления по току:
IU = Iвых/Iвх
и коэффициент усиления по мощности:
Kp = Pвых/Pвх = UвыхIвых/UвхIвх = KU∙KI
Обычно в усилительных каскадах все три коэффициента усиления значительно больше единицы. Однако в некоторых усилительных каскадах один из двух коэффициентов усиления может быть меньше единицы, т. е. KU < 1 или KI < 1. Но в любом случае коэффициент усиления по мощности Кр > 1, а чаще всего Кр >> 1.
В зависимости от того, какой параметр входного сигнала (напряжение, сила тока или мощность) требуется увеличить с помощью усилительного каскада, различают усилительные каскады напряжения, тока и мощности. Усилительный каскад напряжения имеет коэффициент усиления KU, как правило, равный нескольким десяткам. В инженерной практике очень часто необходимо получить значительно больший коэффициент усиления по напряжению, достигающий многих тысяч и даже миллионов. Для решения такой задачи используют многокаскадные усилители, в которых каждый последующий каскад подключен к выходу предыдущего.
Коэффициент усиления многокаскадного усилителя:
КU = Uвых. n/Uвх1 ~= К1∙К2∙…∙Кn
где n — номер каскада усиления.
• Выходная мощность — это мощность на выходе усилителя, при которой уровень искажений не превышает некоторого установленного значения. Для нормальной работы громкоговорителя требуется выходная мощность не менее 30 мВт; для озвучивания комнаты средних размеров — 100…200 мВт; для громкоговорящего воспроизведения звука на открытом воздухе — 0,6…0,8 Вт. Максимальной для УЗЧ с питанием от батареи элементов можно считать мощность 2…4 Вт.
• Сопротивление нагрузки усилителя — это сопротивление громкоговорителя, на которое рассчитан усилитель. Нагрузкой маломощных усилителей, применяемых в портативных приемниках, служат динамические головки прямого излучения с сопротивлением звуковой катушки 4…10 Ом, реже 16 Ом. В переносных приемниках находят применение головки с номинальной мощностью до 2 Вт и сопротивлением 4 Ом. Обычно УЗЧ хорошо работает с динамической головкой, сопротивление которой не ниже выходного сопротивления усилителя. При уменьшении сопротивления нагрузки увеличиваются искажения, при увеличении сопротивления — уменьшается выходная мощность усилителя обратно пропорционально сопротивлению нагрузки.
• Чувствительность — это напряжение сигнала на входе УЗЧ, требуемое для получения на его выходе номинальной выходной мощности. Простейшие УЗЧ имеют чувствительность 10…20 мВ.
• Степень нелинейных искажений сигнала, которую можно оценить через коэффициент гармоник.
Большое применение нашли УЗЧ на операционных усилителях (ОУ), которые характеризуются широким диапазоном рабочих частот, высокой стабильностью, малыми габаритными размерами и массой.
В любом приемнике, магнитофоне, телевизоре и в других бытовых радиоприборах имеются усилители мощности. Мощным каскадом принято считать каскад, в котором транзисторы отдают в нагрузку мощность, близкую к максимально возможной. Основными требованиями, предъявляемыми к мощным выходным каскадам, являются получение необходимой мощности в нагрузке и максимальный КПД при допустимых искажениях сигнала. Требование максимального КПД имеет наибольшее значение для усилителей с питанием от автономных источников. Максимальное усиление мощности — второстепенное требование, поскольку необходимое усиление может быть получено в других каскадах. Чем выше КПД каскада, тем менее мощный транзистор нужен для получения требуемой мощности. Максимальный КПД достигается при оптимальной нагрузке. Однако сопротивление нагрузки, как правило, бывает задано. Если оно значительно отличается от оптимального, то для получения высокого КПД нагрузку включают через согласующий трансформатор. Использование согласующего трансформатора на входе мощного выходного каскада позволяет получить максимальный коэффициент усиления мощности предвыходным каскадом и минимальный уровень искажений при заданной мощности в нагрузке усилителя. Применение согласующих трансформаторов в малогабаритных усилителях приводит к снижению КПД, поскольку малогабаритные недорогие трансформаторы имеют сравнительно малый КПД.
Усилители мощности (выходные каскады) бывают однотактные и двухтактные. Двухтактные усилители бывают трансформаторные и бестрансформаторные. Однотактные выходные каскады применяются иногда в усилителях с малой выходной мощностью, поскольку их КПД не превышает 40 %.
Трансформаторные двухтактные выходные каскады в основном используются в режиме класса АВ, при котором КПД превышает 50 %. Бестрансформаторные выходные каскады характеризуются более широким диапазоном рабочих частот, чем трансформаторные, меньшими габаритными размерами и массой. Они могут иметь непосредственную связь с предыдущим каскадом, что позволяет охватывать их цепями ООС по постоянному току, решая таким образом задачу стабилизации режима работы.
В двухкаскадных усилителях на биполярных транзисторах (БТ) используются различные комбинации включения транзисторов.
Если выходное сопротивление источника сигнала и сопротивление нагрузки усилителя примерно равны и составляют единицы или десятки килоом, следует применять каскады с ОЭ; при малых сопротивлениях (менее 100 Ом) — первый каскад с ОЭ или ОБ и второй каскад с ОК, а при больших сопротивлениях (более 100 кОм) — первый каскад с ОК и второй с ОЭ. Если сопротивление нагрузки усилителя значительно превышает сопротивление источника сигнала, следует использовать оба каскада с ОЭ. При сопротивлении нагрузки усилителя меньшем, чем выходное сопротивление источника сигнала, рекомендуется использовать оба каскада с ОЭ или первый каскад с ОЭ, а второй — с ОК. Для многокаскадных усилителей приведенные выше рекомендации относятся к первому и последнему каскадам. Промежуточные каскады выполняются с ОЭ. Гибридные усилители, содержащие полевые транзисторы (ПТ) и БТ, имеют существенные преимущества по сравнению с усилителями, в которых используются транзисторы какого-либо одного вида. Например, в усилителях, в которых чередуются каскады на ПТ и БТ, достигается значительно больший коэффициент усиления мощности, поскольку ПТ, включенные с ОИ или ОС, позволяют получить очень большой коэффициент усиления тока, а БТ — большое усиление напряжения (при нагрузке высоким входным сопротивлением ПТ). Входное сопротивление таких усилителей легко сделать высоким, а выходное — низким.
Правила монтажа усилителей мощности. Монтаж усилителя мощности должен быть тщательно продуман. При этом следует обращать внимание на взаимное расположение проводников, соединяющих усилитель мощности с источником сигнала и источником питания. Паразитная индуктивная связь между проводами питания и входными цепями может привести к наводке во входной цепи паразитной э.д.с., частотный спектр которой при работе выходного каскада в режиме класса АВ состоит из гармоник усиливаемого сигнала. Для устранения паразитной связи необходимо разнести провода питания и входной цепи. В питающие цепи усилителя мощности нужно включать развязывающие RC-фильтры, размещая их непосредственно на монтажной плате усилителя. Во избежание помех, проникающих на вход усилителя по общему проводу, нужно увеличивать сечение шин общего провода и соединять все идущие к ним провода в одной точке. Наиболее эффективным способом защиты является гальваническая развязка общего провода входного каскада от шины питания, что возможно в усилителе мощности с дифференциальным входным каскадом.
С общим проводом источника сигнала соединены лишь выводы резисторов, непосредственно подключенные к инвертирующему и неинвертирующему входам. Все остальные проводники, идущие к общему проводу, подключены к мощной шине источника питания. Обе «корпусные» шины соединяют резистором, его сопротивление должно быть не слишком малым, чтобы помехи от мощной шины не проникали на вход усилителя, но и не слишком большим, чтобы не было заметного влияния на глубину ООС. Обычно сопротивление резистора выбирают в пределах от единиц до десятков ом.
Обратите внимание, что обычно общая клемма источника питания соединяется с шасси (корпусом) прибора (устройства).
Рассмотрим работу двухтактного усилителя мощности на конкретном примере, на примере УЗЧ для радиоприемника, который будет изготовлен на практических занятиях в этой главе. Кроме того, работу двухтактного усилителя мощности можно рассмотреть по схеме УЗЧ к электронной сирене. На примере этих же схем рассмотрим действие ООС по постоянному и переменному току, а на примере двустороннего телефона, который предлагается для изготовления при изучении этой темы, рассмотрим действие ПОС.
УЗЧ для радиоприемника (рис. 6.1) содержит три каскада усиления: первый каскад — дифференциальный усилитель, второй — каскад усиления с общим эмиттером, третий — двухтактный усилитель мощности на комплиментарных транзисторах, который работает в режиме В.
Изучение этого усилителя лучше всего начать со второго каскада, который имеет некоторые особенности. Во-первых, хотя этот каскад выполнен по схеме с ОЭ, но нагрузка у него заземлена, и, во-вторых, в качестве нагрузки используется источник тока на ПТ. Транзисторный каскад на VT6 здесь работает как управляемый источник тока, который имеет малое сопротивление постоянному току, но большое дифференциальное сопротивление, т. е. сопротивление переменному току. Его внутреннее (дифференциальное) сопротивление можно определить по формуле:
Rвн = Rси∙(1 + S∙Rи)
Сопротивление Rси ПТ КП303Д можно определить по выходной характеристике, оно примерно равно 20…30 кОм.
Приведем здесь основные параметры КТ303Д:
Начальный ток стока Iс. нач, мА… 3…9
Крутизна характеристики S, мА/В… >= 2,6
Напряжение отсечки Uзи. отс., В… =< 8
Тогда Rзи = Rси(1 + S∙R10) = 20…30 (1 + 3∙1) = 80…120 кОм.
Выходной каскад работает в режиме В, поэтому схема имеет более высокий коэффициент полезного действия (78,5 %) по сравнению с обычным эмиттерным повторителем (класс А) — (6,25 %), что особенно важно для УЗЧ, работающих от батарей. Коэффициент усиления каскада по напряжению КU ~= 1, а по току КI = h21э. Максимальная мощность на выходе ограничивается лишь предельным током (Iн. макс= Еи. ст/2Rн) и максимальной мощностью рассеивания используемых транзисторов (РVT4 ~ РVТ5 ~ 0,2∙Рн. макс).
Следует заметить, что если на входе каскада имеются частоты, превышающие граничную частоту для данных типов транзисторов, то могут быть моменты времени, когда одновременно будут открыты оба транзистора, т. е. второй транзистор не успеет быстро закрыться, и через транзисторы потечет ток выше допустимого.
Кроме искажений типа «ступеньки», в УЗЧ могут возникать также искажения, связанные с неодинаковым усилением отрицательных и положительных полуволн. Они, как правило, возникают, когда к входу усилителя подключен высокоомный источник сигнала и транзисторы имеют различные коэффициенты передачи тока.
Из главы 4 известно, что выходное сопротивление каскада без эмиттерного резистора температурной стабилизации равно:
Rвых = (Rк∙Rкэ)/(Rк + Rкэ) = (Rвн∙Rкэ)/(Rвн + Rкэ)
а сопротивление участка коллектор-эмиттер транзистора при токе Iк ~= 1 мА равно: Rкэ = 100 кОм. Тогда Rвых = (80…120∙100)/(80…120 + 100) = 44…60 кОм, т. е. выход каскада усиления на транзисторе VT3 является высокоомным.
Для компенсации этих искажений, забегая вперед, можно сказать, в схеме УЗЧ для радиоприемника, так же, как и в УЗЧ к электронной сирене, применяют глубокую ООС. При отсутствии ООС надо тщательнее подбирать выходные транзисторы с как можно более близкими коэффициентами передачи тока.
Рассмотренная схема каскада имеет и еще один недостаток — она не обладает температурной стабильностью. Применение ООС между каскадами повышает также и температурную стабильность.
Для большей температурной стабилизации каскада в цепи эмиттеров можно включить резисторы сопротивлением несколько ом. И наконец, можно приступить к изучению каскада дифференциального усиления (рис. 6.1).
Рис. 6.1. Схема УЗЧ для радиоприемника
К достоинствам дифференциальных усилителей можно отнести большую полосу пропускания частот, высокую стабильность работы (с учетом этих качеств и применен дифференциальный усилитель в УЗЧ для радиоприемника). Если на вход такого усилителя поступают такие помехи, как пульсация напряжения источника питания, сигналы наводки, обусловленные влиянием паразитных связей, излучения и т. д., то для усилителя они являются синфазным сигналом. Коэффициент усиления синфазного сигнала для данной схемы дифференциального усилителя определяется из выражения:
Ксинф = Rк/(2Rэ + rэ) = R6/(2R7 + Rэ) = 2∙103/(2∙1,5∙103 + 60..80) ~= 0,65
где rэ = UT/IK (мА) ~= 25/0,3…0,4 = 83…62 Ом — сопротивление транзистора VT1 со стороны эмиттера. Определение Iк будет дано ниже.
Изменение напряжения база-эмиттер, происходящее под воздействием температуры, действует так же, как синфазный сигнал, и, следовательно, слабо влияет на работу схемы.
Коэффициент усиления дифференциального сигнала:
Кдиф = Uвых/(U1 — U2) = Rк/2rэ = 2∙103/2∙(80…60) = 12,5…16,6
Коэффициент ослабления синфазного сигнала:
КОСС ~= Rэ/rэ = 1,5∙103/80…60 = 19…25
Резистор R6 выбирают таким образом, чтобы падение напряжения на нем в режиме покоя было равно падению напряжения на участке база-эмиттер транзистора VT3, т. е. равно примерно 0,65 В. Благодаря этому поддерживается в открытом состоянии транзистор VT3. Это состояние постоянно поддерживается цепью обратной связи.
Зная падение напряжения на резисторе R6, можем вычислить ток Iк через транзистор VT1:
Iк = 0,65/2∙103 = 0,33 мА
Зададимся его значениями: Iк = 0,3…0,4 мА.
Резистор R7 выбран с таким расчетом, чтобы суммарный эмиттерный ток был равен удвоенному току эмиттера транзистора VT1. Выходное напряжение УЗЧ для радиоприемника поступает в цепь обратной связи, которая состоит из делителя напряжения, образованного резисторами R9, R8 и конденсатором С3, благодаря которой коэффициент усиления усилителя с ООС по постоянному току уменьшается до величины, близкой к единице, коллекторные токи транзисторов в режиме покоя все время равны между собой.
По переменному напряжению сигнал на второй вход дифференциального усилителя снимается с R8C3 делителя напряжения R9R8C3. Такой делитель является частнозависимым, на низкой частоте ООС более глубокая, чем на высокой частоте. За счет действия этой ООС уменьшаются переходные искажения типа «ступеньки», влияние температуры и других дестабилизирующих факторов на работу всего УЗЧ, увеличивается входное сопротивление, уменьшается выходное, хотя и уменьшается общий коэффициент усиления.
На примере двустороннего телефона показано, что применение положительной обратной связи приводит к самовозбуждению усилителя и превращению его в генератор.
После изучения схем УЗЧ задайте себе вопросы: Каково назначение УЗЧ? В каком диапазоне частот они работают? Какой порядок анализа работы схемы можно предложить? После этого попробуйте ответить еще на несколько вопросов: Сколько каскадов имеет данный усилитель и каково их назначение? От какого источника подается напряжение сигнала на вход усилителя? На какую нагрузку работает усилитель? Каковы способы включения транзисторов в схему усиления? Какие межкаскадные связи, схемы входа и выхода используются в данном усилителе? Покажите цепи питания транзисторов. Какие схемы температурной стабилизации режима их работы применяют? Каковы режимы работы транзисторов в каждом каскаде? Какие элементы входят в состав усилителя, каковы их данные и назначение?
Статистикой установлено, что на выявление наличия неисправностей в среднем затрачивается около 3 % от общего времени на ремонт, на выявление характера неисправности — 15 % и на проверку параметров после ремонта — 22 %.
В транзисторных усилительных каскадах прежде всего необходимо убедиться в исправности транзистора, выпаяв его из схемы для проверки омметром. Однако это требует значительных затрат времени. Существуют специальные приборы для проверки транзисторов без выпайки их из схемы. Кроме того, можно использовать следующий метод. Параллельно резистору R1 (рис. 6.2) подключить другой резистор Rш с сопротивлением того же порядка. Если при этом вольтметр, подключенный к коллектору относительно корпуса прибора, покажет уменьшение напряжения, то транзистор исправен. В противном случае транзистор следует заменить.
Рис. 6.2. Проверка исправности усилительного каскада
В практике встречаются следующие неисправности такого каскада:
• Напряжение на коллекторе равно нулю, что может произойти вследствие обрыва одного из выводов резистора R3.
• Напряжение на коллекторе больше номинального, что может произойти из-за увеличения сопротивления резистора R1 или в результате его обрыва.
• Увеличение напряжения на эмиттере может появиться в результате обрыва эмиттерного резистора R4.
• Напряжение на коллекторе меньше номинального может быть по причине пробоя эмиттерного конденсатора.
• Изменение усиления каскада и возникновение сильных нелинейных искажений выходного сигнала может произойти из-за обрыва цепи резистора R2.
В инструкциях по ремонту информацию о режимах работы по постоянному току транзисторов дают в виде таблиц (например, таблица 6.1) или приводят на принципиальных схемах. В таблице обычно приводят данные о напряжениях на выводах транзисторов, измеренные относительно общего провода (как правило, это шасси устройства). Кроме постоянных напряжений приводят значения сопротивлений относительно шасси, измеренные омметром в отключенном состоянии устройства.
Постоянные напряжения на выводах транзисторов проверяют авометром или вольтметром постоянного тока. Необходимо помнить, что входное сопротивление вольтметра должно быть в 5…10 раз больше сопротивления измеряемой цепи.
Таблица сопротивлений позволяет выявить причины нарушения указанных значений сопротивлений участков схемы и быстрее отыскать неисправность. Если режимы работы по постоянному току и сопротивления цепей соответствуют таблице, а устройство по-прежнему не функционирует, необходимо перейти к проверке прохождения сигнала от каскада к каскаду. При этом следует использовать данные таблицы 6.1, где указаны переменные напряжения в отдельных точках схемы, а также осциллограммы.
Исправность УЗЧ можно также проверить, подавая на его вход прямоугольные импульсы определенной последовательности. Осциллограмма (рис. 6.3) показывает, как изменяется форма импульсов при прохождении их через УЗЧ с различной АЧХ: а) без искажений; б) подъем нижних частот; в) быстрый спад АЧХ; г) спад низких частот; д) возбуждение усилителя.
Рис. 6.3. Проверка исправности УЗЧ с помощью осциллограмм
В радиолюбительской практике часто приходится вычислять соотношения двух мощностей, токов или напряжений в логарифмических единицах — децибелах. Децибел — это специфическая единица, не схожая ни с одной из тех, с которыми приходится встречаться в повседневной практике. Децибел не физическая величина, а математическое понятие. В этом отношении у этих единиц есть некоторое сходство с процентами. Как и проценты, децибелы безразмерны и служат для сравнения двух одинаковых величин, в принципе самых различных, независимо от природы. Но если проценты выражают численно какую-то величину сравнительно с целым, принятым за единицу (100 %), то в основе децибела лежит более широкое понятие, характеризующее в общем случае отношение двух независимых, но, конечно, одноименных величин. Термин «децибел» всегда связывают только с энергетическими величинами, чаще всего с мощностью и, с некоторыми оговорками, с ее составляющими — напряжением и током.
Децибел (русское обозначение дБ, международное dB) составляет десятую часть другой более крупной единицы — бел (русское обозначение Б, международное В). Бел — это десятичный логарифм отношения двух мощностей:
NБ = lg(P2/P1)
Эта единица измерения названа в честь изобретателя телефона — А. Г. Белла.
Если отношение мощностей в децибелах вычисляется по формуле:
NP = 10∙lg(P2/P1)
то отношение токов и напряжений по другой формуле:
NI = 20∙lg(I2/I1); NU = 20∙lg(U2/U1);
Следует иметь ввиду, что сумма двух чисел в децибелах эквивалентна произведению тех величин, которым она соответствует, а разность в децибелах характеризует отношение этих величин.
Необходимо помнить, что децибелы могут отсчитываться только относительно условного, не равного нулю уровня, абсолютный нуль, например, нуль ватт, нуль вольт децибелами не выражаются.
Необходимо также предостеречь от ошибки, когда вышеуказанными формулами неправильно пользуются для определения децибел, пренебрегая различиями в величинах сопротивлений, на которых измеряются напряжения U1 и U2 (или токи I1 и I2).
Общая формула для вычисления коэффициента усиления в децибелах запишется так:
К0 = 20∙lg(U2/U1) + 10∙lg(R2/R1)
где R2 и R1 — соответственно выходное и входное сопротивлении усилителя.
Если R2 = R1, то 10∙lg(R2/R1) = 0 и К0 = 20∙lg(U2/U1). Если же R2 не равно R1,то необходимо их учитывать. Так, если выходное сопротивление усилителя неизвестно, но несколько больше входного сопротивления, то округлять коэффициент усиления усилителя в децибелах необходимо в сторону его увеличения. И, наконец, если R2 < R1, округлять надо в сторону уменьшения.
В децибелах можно выражать не только превышение одного напряжения (тока) над другим, но и ослабления напряжений (или токов).
Вычислять децибелы можно, пользуясь формулами логарифмирования и таблицами логарифмов. Но, учитывая, что изучение логарифмов начинается только с десятого класса, для практических расчетов предлагается номограмма (таблица 6.2).
Таблица 6.2. Таблица для вычисления децибелл
При пользовании номограммой на нее перпендикулярно шкалам накладывают обыкновенную чертежную линейку (желательно из органического стекла или другого прозрачного материала) и устанавливают ее на нужном делении соответствующей шкалы, а на другой шкале читают ответ.
При переводе арифметического отношения мощностей, напряжений или токов в децибелы необходимыми являются две крайние (равномерные) шкалы, обозначенные буквой N, а искомый результат читают на одной из восьми других вертикальных логарифмических шкал в зависимости от величины этого отношения N и от того, что оно собой представляет: отношение мощностей N = P2/P1 (первые слева четыре логарифмические шкалы) или напряжений N = U2/U1 и токов N = I2/I1 (крайние правые четыре логарифмические шкалы).
Так, например, если отношение двух мощностей N = 460, то горизонтальный край линейки устанавливают на отметке 4,6 левой и правой крайних шкал, а ответ 26,6 дБ читают на третьей слева вертикальной логарифмической шкале N∙100. Если же известно, что логарифмическое соотношение двух напряжений составляет, например КU = 55,4 дБ, то горизонтальный край линейки устанавливают на эту отметку (вторая справа логарифмическая шкала), а полученный по крайним левой и правой шкалам результат N = 5,75 умножают на 100, таким образом определяют отношение этих двух напряжений — 575.
Если заданное отношение мощностей, напряжений или токов меньше единицы, например, если:
Р2 < Р1 при N = P2/P1; U2 < U1 при N = U2/U1 или I2 < I1 при N = I2/I1
вычисление децибел по отношениям производят с помощью номограммы описанным выше способом, но для обратных величин
(P1/P2; U1/U2 или I1/I2), а перед полученным результатом ставят знак минус.
Например, выраженное в децибелах отношение мощностей
N = P2/P1 = 0,25 вычисляют по номограмме как 1/N = P1/P2 = 1/0,25 = 4, получая в результате Кр = -6 дБ.
В тех случаях, когда надо узнать отношение мощностей, напряжений или токов по известным отрицательным значениям децибел, вычисления производят без учета отрицательного знака методом, описанным выше, а за результат берут величину, обратную прочитанной на шкалах N (выраженное, например, в децибелах отношение напряжений КU = —35 дБ оказывается равным в отвлеченных числах:
N = U2/U1 = 1/56 = 0,0178 = 178∙10-5.
Если заданное в отвлеченных числах отношение мощностей, напряжений или токов превышает 105, то в ней отделяют запятой справа такое количество знаков (разрядов), чтобы стало возможно вычислить уровень нового отношения в децибелах по данной номограмме, а затем к полученному результату добавляют по 10 децибел на каждый знак (разряд), ранее отделенный запятой, при вычислении отношений мощностей и по 20 дБ — при вычислении отношений напряжений или токов. Так, если нужно определить в децибелах отношения напряжений N = U2/U1 = 56000, вычисления производят для отношения N' = 5600, а к прочитанному по соответствующей шкале результату 75 дБ добавляют 20 дБ, получая в итоге 95 дБ.
6.4.1. Мощный УЗЧ
Он состоит из трех каскадов (рис. 6.4). На транзисторе VT1 собран предварительный усилитель, на входе которого имеется сигнал 0,5 В. С коллектора этого транзистора сигнал подается на базу транзистора VT2, который обеспечивает дополнительное усиление и стабилизацию рабочей точки выходных каскадов VT4—VT7 по постоянному току посредством эквивалента стабилитрона на транзисторе VT3. С помощью потенциометра R10 добиваются уменьшения порога открывания транзисторов выходного каскада.
Рис. 6.4. Схема мощного УЗЧ
Усилитель имеет полосу частот от 20 Гц до 20 кГц при неравномерности АЧХ не более 0,2 дБ. Усилитель может работать на различную выходную мощность, при этом он имеет параметры, приведенные в таблице 6.3.
6.4.2. Простой усилитель мощности
Он имеет очень простую структуру (рис. 6.5). На входе стоит дифференциальный каскад на транзисторах VT1 и VT2, которые питаются от генератора тока VT3. Каскад на транзисторах VT4 и VT6 выполняет функции согласователей уровней. Транзистор VT5 совместно с резистором R6 образует эквивалент стабилитрона с регулируемым опорным напряжением для устранения порога открывания транзисторов выходного каскада VT7—VT10. Усиление устройства определяется резисторами R10 и R11. Усилитель имеет равномерную полосу частот от 40 Гц до 20 кГц при максимальной выходной мощности 20 Вт.
Рис. 6.5. Схема простого усилителя мощности
6.4.3. УЗЧ с отрицательной обратной связью
Усилитель (рис. 6.6) имеет входное сопротивление 5 МОм при полосе пропускания от 2 Гц до 100 кГц. Коэффициент усиления не менее 103. Максимальная амплитуда неискаженного выходного сигнала 5 В. Усилитель устойчиво работает в диапазоне температур от —20 до +60 °C. Стабильность параметров усилителя достигнута полной ООС до постоянному току. Полоса пропускания может быть уменьшена изменением параметров цепочки R6, С2. Транзисторы VT1 и VT2 могут быть заменены на интегральную микросхему К504НТ4, в которой транзисторы незначительно отличаются между собой по параметрам. Это позволит значительно улучшить параметры усилителя. Кроме того, транзисторы VT3—VT5 можно заменить микросхемой К198НТ4. При замене транзисторов микросхемой необходимо уменьшить напряжение питания.
Рис. 6.6. Схема усилителя мощности с ООС
6.4.4. Двухсторонний телефон
Такой телефон можно использовать для местной связи в летнем оздоровительном лагере, школе и т. д. Принципиальная схема телефона приведена на рисунке 6.7, а.
Рис. 6.7. а) Двухсторонний телефон
Оба телефонных аппарата соединены между собой двухпроводной линией связи (на схеме обозначена штриховыми линиями), длина которой может достигать 40…50 м, через разъемы X1, Х2 и X1', Х2'. Разъем X1 — первого аппарата должен соединяться с разъемом Х2' второго, а разъем Х2 — с разъемом X1'. Телефонные аппараты идентичны, поэтому рассмотрим работу лишь одного из них, например первого. Он включает в себя двухкаскадный УЗЧ на кремниевых транзисторах структуры n-р-n. Оба транзистора включены по схеме с ОЭ. Усилитель питается от батареи GB1 с э.д.с. 4, 5 В (батарея 3336Л или составленная из трех элементов — 332 или 343). Разомкнутое положение контактов выключателя питания SA соответствует дежурному режиму работы аппарата. Нагрузкой усилителя первого аппарата служит телефон BF1' второго аппарата, который преобразует в звук низкочастотный сигнал, усиленный УЗЧ первого аппарата. Рассмотрим прохождение сигнала по схеме. При включении питания выключателем SA1 положительное напряжение источника питания GB1 подается на коллектор транзистора VT2 через линейный провод, соединяющий разъемы Х1', Х2', телефон BF1', открытый (включенный в прямом направлении) диод VD1' и далее — через второй линейный провод, соединяющий разъемы X1, Х2. Диод VDI' остается открытым все время, пока контакты выключателя SA1 замкнуты. Конденсатор С3', шунтирующий диод VD1, обеспечивает прохождение сигнала без затухания. Без конденсатора С3' сигнал будет очень сильно искажен.
Диод VDI первого аппарата в это время закрыт положительным напряжением источника питания, и через него, а значит, и через телефон BF1 коллекторный ток транзистора VT2 не протекает. Конденсатор C1 шунтирует вход УЗЧ по наиболее высоким частотам звукового диапазона и тем самым предотвращает его самовозбуждение на этих частотах. Одновременно конденсатор обеспечивает завал АЧХ УЗЧ на этих частотах.
Точно так же работает и второй телефонный аппарат, но его нагрузкой является цепь, состоящая из телефона BF1, диода VD1 и конденсатора С3. Чтобы пригласить абонента для телефонного разговора, подают ему сигнал. Для этого включают питание усилителя и нажимают на кнопку SB1 «Вызов». При этом выход усилителя через конденсатор С4 соединяется со входом, образуя положительную обратную связь, которая приведет УЗЧ к возбуждению, т. е. УЗЧ превращается в генератор прямоугольных сигналов звуковой частоты. Это так называемый несимметричный мультивибратор. При этом телефон BF1' второго аппарата издаст достаточно громкий звук средней тональности, приглашающий абонента к телефону. Услышав этот сигнал, абонент должен включить питание своего аппарата и нажать кнопку SB1' — в телефоне первого аппарата появится ответный сигнал, после чего можно начинать разговор.
Возможная конструкция микротелефонной трубки и плата усилителя аппарата показаны на рисунке 6.7, б, в.
Рис. 6.7. б, в) Двухсторонний телефон
В качестве микрофонов и телефонов можно использовать капсюли высокоомных телефонов ТОН-1. ТОН-2. Транзисторы, кроме КТ315, могут быть серий МП35—МП38, МП111—МП113 со статическим коэффициентом передачи тока не менее 50 или маломощные высокочастотные серий КТ301, ГТ311. Диоды — любые из серий Д9 или Д2. Резисторы типа МЛТ-0,25 или MJIT-0,5. Конденсаторы могут быть любого типа — БМ, КБМ, КПС. Монтаж может быть печатным или навесным. Корпус трубки склеивают клеем БФ-2 из нескольких слоев плотной бумаги или тонкого картона шириной 140…145 мм на деревянной болванке Ж40 мм. После того как корпус хорошо просохнет и станет жестким, зачищают его мелкой шкуркой, а затем пропитывают каким-либо лаком или расплавленным парафином, делающим его водонепроницаемым. От той же болванки отпиливают два кружка толщиной по 20…25 мм и с помощью отрезков толстой проволоки укрепляют на них микрофонный ВМ1 и телефонный BFI капсюли. Кружки должны плотно входить в трубку и надежно удерживаться в ней.
Плату усилителя (и батарею питания GB1) обертывают полоской поролона или пористой резины и вставляют в трубку. Батарею размещают в небольшой пластмассовой коробке и укрепляют на ее стенках выключатель питания SA1, а также гнездовую и штырьковую части разъемов для подключения линии связи. Прежде чем поместить плату в трубку, усилитель проверяют и налаживают.
Для этого выводы диода VD1 временно замыкают проволочной перемычкой, включают питание и слегка постукивают пальцем по микрофонному капсюлю — в телефоне должны прослушиваться звуки, напоминающие щелчки по барабану. Затем подбором сопротивления резистора R3 устанавливают на коллекторе транзистора VT2 напряжение около 2 В, а резистора R1 — напряжение на коллекторе транзистора VT1, равное примерно 3 В.
При нажатии кнопки «Вызов» в телефоне будет слышен звук средней тональности (частотой около 1000 Гц), свидетельствующий о возбуждении усилителя. Тональность звучания можно установить подбором емкости конденсатора С4. С увеличением емкости этого конденсатора тон звука будет понижаться, и наоборот.
Каскады УЗЧ не содержат элементов температурной стабилизации, поэтому налаживание их требует тщательного подбора резисторов R1, R3. Лучше всего в этом случае использовать осциллограф и генератор звуковой частоты (либо вызывной сигнал второго аппарата). Так же проверяют и налаживают УЗЧ второго аппарата. После этого удаляют перемычки, замыкающие диоды, вставляют платы усилителей в трубки и, соединив телефонные аппараты между собой, проверяют их при совместной работе.
6.4.5. УЗЧ для радиоприемника
Этот усилитель (рис. 6.1, а) может быть использован в переносном транзисторном приемнике. Параметры УЗЧ:
1. Выходная мощность — 100 мВт на нагрузке сопротивлением 8…10 Ом.
2. Полоса пропускания — 100… 1000 Гц.
3. Коэффициент гармоник — не более 5 %.
На входе усилителя стоит дифференциальный каскад (несимметричный) на транзисторах VT1, VT2. Напряжение смещения на базе транзистора VT1 обеспечивается делителем напряжения R3R4 через фильтр нижних частот R5C2, предотвращающий самовозбуждение усилителя (отфильтровывает переменное напряжение на входе первого каскада УЗЧ, попадающее через источник питания).
С резистора нагрузки R6 сигнал поступает на усилитель напряжения, собранный на транзисторе VT3. В коллекторной цепи транзистора включен источник тока на полевом транзисторе VT6 (нагрузка транзистора VT3). Следующий каскад — выходной двухтактный усилитель мощности: он выполнен на транзисторах разной структуры. Динамическая головка ВА1 подключена к выходному каскаду через конденсатор С4. Между выходным и дифференциальным каскадами усилителя введены две цепи отрицательной обратной связи — по постоянному напряжению (через резистор R9) и по переменному напряжению (через резисторы R9, R8 и конденсатор С3). Эти обратные связи стабилизируют режим работы усилителя и его коэффициент усиления. В качестве VT1, VT2 могут быть использованы любые транзисторы серии КТ315 или транзисторная сборка К159НТ1, VT3 — KT203, КТ361, УТ4 — МП35-МП37, VT5 — МП39-МП41, УТ6 — КПЗОЗ с любым буквенным индексом. Транзисторы VT4, VT5 желательно использовать с коэффициентом передачи тока не менее 50. Постоянные резисторы МЛТ-0,125, переменные — любого типа, конденсаторы К50-6, динамическая головка типа 0,25ГД-10, 0,5ГД-30, 0,5ГД-31 или аналогичная.
Детали усилителя смонтированы на плате (рис. 6.1, б, в) из одностороннего фольгированного стеклотекстолита. Резисторы устанавливают вертикально. Налаживание усилителя сводится к подбору сопротивления резистора R10 — оно должно быть таким, чтобы сила тока покоя усилителя составляла 3…4 мА. При необходимости снизить коэффициент гармоник достаточно удалить перемычку между базами транзисторов VT4, VT5 и включить вместо нее любой диод серии Д9 анодом к базе транзистора VT4. Более точно можно настроить УЗЧ, используя осциллограф и генератор звуковых частот.
6.5.1. Фильтры громкоговорителей
Для частотной коррекции излучения динамической головкой громкоговорителя применяют различные фильтры (рис. 6.8).
Рис. 6.8. Схемы фильтров для частотной коррекции излучения динамической головки
В таблице 6.4 указаны основные выражения, по которым можно рассчитать частотную характеристику этих фильтров (R — сопротивление динамической головки, Ом; f0 — граничная частота, Гц).
6.5.2. Выходной фильтр
Он позволяет разделить звуковой сигнал на две составляющие. Для разделения полос используются фильтры нижних и верхних частот (рис. 6.9, а). Частота среза фильтров равна 600 Гц. В фильтре используются низкочастотные динамические головки с внутренним сопротивлением 4 Ом (две параллельных 6ГД-2) и высокочастотные (две параллельных 1ГД-36). Частотная характеристика фильтра определяется по уровню 0,8 максимальной мощности динамиков (рис. 6.9, б).
6.5.3. Измерение входного сопротивления транзисторного УЗЧ
Данные о входном и выходном сопротивлении УЗЧ имеют большое значение при налаживании и испытании усилителей, поэтому многие радиолюбители интересуются способами измерения этих величин.
Наиболее простым и доступным из них является способ, основанный на сравнении измеряемой величины (Rвх) с известным активным сопротивлением (R).
Чтобы измерить входное сопротивление, прежде всего собирают схему, изображенную на рис 6.10, а. Затем включают звуковой генератор и устанавливают частоту, на которой желательно измерить входное сопротивление усилителя и напряжение на выходе генератора. Последнее выбирают в пределах 0,12 В.
Так как измерительная цепь, т. е. микроамперметр и диод, обладают относительно малым сопротивлением, то перевод ползунка переключателя из одного положения в другое изменяет напряжение не только на том элементе схемы, к которому присоединена в данный момент измерительная цепь (например, на резисторе R), но и на другом последовательно включенном элементе, т. е. на входном сопротивлении усилителя. Это обстоятельство усложняет процесс измерения. Однако, если воспользоваться описанным ниже приемом, то определение входного сопротивления не представит труда. Уяснить рекомендуемый способ легче всего на примере.
Предположим, что в положении ползунка переключателя 1–2 стрелка микроамперметра отклоняется до отметки «38» шкалы, а при переводе ползунка в положение 1–3 — до отметки «98». Разность показаний составит 60 (98–38). Разделив ее на два, сравниваем полученное число 30 с первым показанием прибора, т. е. с 38. После этого снова переводим ползунок переключателя в положение 1–2 и медленно увеличиваем сопротивление R до тех пор, пока стрелка прибора не совместится с отметкой 68 шкалы (68 = 30 + 38).
Если после увеличения сопротивления R показания микроамперметра в обоих положениях ползунка переключателя станут одинаковыми, то процесс уравнивания сопротивлений R и Rвх заканчивают. Если же отклонение стрелки микроамперметра в положении ползунка 1–3 окажется несколько меньше или больше первого отклонения (до отметки «68»), то сопротивление R снова изменяют. Следя за постоянством выходного напряжения генератора, выбирают такое значение сопротивления R, при котором стрелка микроамперметра отклонится на один и тот же угол в обоих положениях ползунка переключателя. После этого измеряют сопротивление R. Последнее и будет равно входному сопротивлению усилителя.
При наличии звукового генератора и вольтметра переменного тока можно воспользоваться еще одним способом измерения полного входного сопротивления усилителя.
Выполняют это так.
Собирают схему, приведенную на рис. 6.10, б.
Рис. 6.10. Схема для измерения входного сопротивления УЗЧ
После этого включают звуковой генератор и устанавливают на его выходе напряжение 13 В. Затем переводят ползунок переключателя SA в положение 1–2 и замечают первое показание (U1) милливольтметра и величину Uвых выходного напряжения генератора. Следя за постоянством Uвых, переводят ползунок переключателя в положение 1–3 и замечают второе показание (U2) миливольтметра. В заключение вычисляют полное входное сопротивление ступени усилителя на частоте генератора по формуле:
Zвх = (U2/U1)∙R
Пример.
• К выходу звукового генератора подключены последовательно резистор сопротивлением 3,9 кОм и вход усилительной ступени. В положениях ползунка переключателя 1–2 и 1–3 стрелка милливольтметра отклоняется соответственно до отметок 250 и 600 мВ шкалы. Чему равно входное сопротивление ступени УЗЧ?
Решение. В соответствии с приведенной формулой искомая величина равна:
Zвх = (600/250)∙3,9 ~= 9,4 кОм
6.5.4. Измерение выходного сопротивления транзисторного УЗЧ
Измерение проводят по схеме (рис. 6.11). Необходимо иметь звуковой генератор и электронный вольтметр.
Устанавливают частоту звукового генератора, равную 1000 Гц, а напряжение на выходе звукового генератора такое, чтобы не было перегрузки УЗЧ. Замеряют напряжение на выходе звукового генератора и УЗЧ, затем замыкают перемычку XS1—XS2, подрегулировывают, если необходимо, напряжение на выходе звукового генератора (оно не должно меняться) и перемещают ползунок переменного резистора R до тех пор, пока электронный вольтметр не покажет напряжение УЗЧ, равное половине первоначального значения.
Подобранное таким образом сопротивление резистора R (которое замеряется омметром) и считается равным выходному сопротивлению УЗЧ на частоте 1000 Гц. Резистор R выбирают сопротивлением, примерно равным ожидаемому выходному сопротивлению УЗЧ.
Формулы для расчета выходного сопротивления усилителя можно найти в главе 4.
Рис. 6.11. Схема для измерения выходного сопротивления УЗЧ
6.5.5. Измерение сопротивления катушки электродинамического громкоговорителя
Полное сопротивление катушки на заданной звуковой частоте чаще всего определяют с помощью звукового генератора (ЗГ) и электронного вольтметра (V). Измерительные приборы присоединяют к громкоговорителю так, как показано на рис. 6.12.
Рис. 6.12. Схема для измерения сопротивления катушки электродинамического громкоговорителя
Сопротивление резистора R, выбираемое в пределах 10–20 Ом, должно быть известно. Определение полного сопротивления катушки (Zк) заключается в измерении двух напряжений.
Сначала измеряют падение напряжения на катушке Uк. Затем переносят верхний (по схеме рис. 6.12) проводник вольтметра и точки В в точку А, измеряя таким образом падение напряжения Uвых на последовательно соединенных резисторе R и звуковой катушке.
Так как падения напряжений на последовательно соединенных элементах пропорциональны их сопротивлениям, то можно написать:
Uвых/Uк = (R + Zк)/Zк
откуда полное сопротивление катушки:
Zк = R/[(Uвых/Uк) - 1]
Пример.
• Определите сопротивление катушки громкоговорителя, если при включении последовательно с ней резистора сопротивлением 15 Ом стрелка вольтметра отклонилась в первый раз до отметки шкалы «0,85», а во второй раз, то есть при измерении напряжения на выходе генератора, — до отметки шкалы «3».
Решение. В соответствии с формулой полное сопротивление звуковой катушки:
Zк = 15/[(3/0,85) — 1] ~= 5.9 Ом
6.5.6. Измерение выходной мощности УЗЧ
Под выходной мощностью УЗЧ понимают наибольшую мощность, отдаваемую усилителем нагрузке при линейных искажениях, не превышающих заданной для данного усилителя величины.
В любительских условиях выходную мощность определяют косвенным путем.
Сначала измеряют сопротивление нагрузки и переменное напряжение на ней, а затем вычисляют мощность по формуле:
Pвых = U2н/Rн Вт
где Uн — действующее напряжение на нагрузке, В; Rн — сопротивление нагрузки, Ом;
Напряжение Uн определяют с помощью высокоомного вольтметра. С этой целью устанавливают ручку регулятора громкости усилителя в положение, соответствующее максимальному усилению, и присоединяют к нагрузке вольтметр. Затем подают на вход каскад звуковой частоты от звукового генератора напряжение такой величины, при которой громкоговоритель не перегружается и громко, без искажений, воспроизводит звук, соответствующий установленной частоте генератора. При достижении максимального неискаженного звучания записывают показания вольтметра, которое и принимают равным максимально допустимому напряжению (Uн) на нагрузке.
Пример.
• При измерении Rн и Uн оказалось, что:
1) сопротивление нагрузки равно Rн = 5,1 Ом;
2) Действующее значение напряжения на нагрузке Uн = 2,3 В;
3) Просматриваемая на экране осциллографа синусоидальная кривая выходного напряжения начинает искажаться при Uн = 2,35 В.
Чему равна выходная мощность усилителя?
Решение. Полагая, что при напряжении на нагрузке Uн = 2,35 В нелинейные искажения будут отсутствовать и пользуясь приведенной выше формулой, находим, что выходная мощность
P = 2,352/5,1 ~= 1 Вт
6.5.7. Практические советы
1. Тепловой режим маломощных транзисторов можно облегчить, надев на металлический корпус транзистора тор («баранку») из спирали, выполненной из медной, латунной или бронзовой проволоки диаметром 0,5… 1,0 мм.
2. Радиатор для транзисторов серий КТ315, КТ361 можно изготовить из полоски меди, алюминия или жести шириной на 2…3 мм большей ширины корпуса транзистора (широкой его части). Транзистор вклеивают между изогнутыми краями пластины эпоксидным или другим клеем с хорошей теплопроводностью.
Для лучшего теплового контакта корпуса транзистора с радиатором необходимо сошлифовать с корпуса лакокрасочное покрытие в местах контакта, а установку в радиатор и склеивание производить с возможным минимальным зазором. Устанавливают транзистор с радиатором на плату, как и обычно, при этом нижние концы радиатора (концы буквы «П») должны упираться в плату. Если ширина полоски 7 мм, а высота радиатора (высота буквы «П»), изготовленного из луженой жести, толщиной 0,35…2,2 мм, то при мощности рассеивания 500 мВт температура радиатора в месте приклеивания транзистора не превышает 55 °C.
3. Ровность контактной площадки проверяют, смазав ее каким-либо красителем и приложив основание транзистора, который будут крепить. Выступающие участки площадки окрасят донышко корпуса транзистора.
4. Зажимы для выводов батареи 3336Л позволяют быстро и надежно подключать ее к схеме. Контактную пластину вырезают из латунной ленты толщиной 0,1…0,2 мм, сгибают пополам, к месту сгиба припаивают проводник и надевают отрезок полихлорвиниловой трубки подходящего диаметра. Выступающие концы пластины отгибают в разные стороны (на хлорвиниловую трубку). Если диаметр трубки подобран правильно, зажим обеспечивает надежный контакт с выводом батареи достаточно прочно удерживается на нем.
1. Определить коэффициент усиления усилителя по току и по мощности в децибелах, если оба коэффициента усиления равны 100.
2. Определить коэффициент усиления по напряжению двухкаскадного усилителя, если выходное напряжение первого и второго каскадов соответственно равны 0,2 и 4 В, а напряжение источника входного сигнала — 0,01 В.
3. Объяснить назначение элементов двухкаскадного усилителя (рис. 6.13). Какие элементы можно использовать для регулировки коэффициентов усиления первого и второго каскадов, коэффициента частотных искажений, коэффициента обратной связи?
Рис. 6.13. Схема двухкаскадного УЗЧ
4. В полосе пропускания допустимые изменения коэффициента усиления Кдб не должны превышать 13 дБ. Каким процентным изменениям коэффициента усиления К соответствуют эти изменения?
5. В схеме каскада (рис 6.14) произошел обрыв шунтирующего конденсатора Сэ. Останутся ли при этом неизменными коэффициент усиления по напряжению и входное сопротивление?
Рис. 6.14. Схема однокаскадного УЗЧ
6. На вход усилителя мощности (рис 6.15), работающего на нагрузку Rн = 9,2 Ом, поступает гармонический сигнал Uвх = 10 В. Определить мощность, отдаваемую усилителем в нагрузку, приняв максимальное напряжение на эмиттерном переходе открытого транзистора UБЭ mах = 0,8 В.
Рис. 6.15. Схема двухтактного усилителя мощности
7. Какой операционный усилитель (ОУ) называется идеальным? Почему в схеме ОУ предусматривают два источника питания: с положительным (+Еп) и отрицательным (-Еп) постоянными напряжениями относительно нулевой общей точки схемы, которая заземляется? (рис. 6.16).
Рис. 6.16. Схема УЗЧ на операционном усилителе
8. На рис. 6.17 показано подключение к УЗЧ с выходным сопротивлением = 8 Ом восьми четырехомных динамических головок. Правильно ли соединены между собой динамические головки?
Рис. 6.17. Правильно ли соединены между собой динамические головки?
9. При частоте подводимого напряжения f = 1000 Гц мембрана головного телефона колеблется также с частотой 1000 Гц (рис. 6.18). С какой частотой будет колебаться мембрана при той же частоте подводимого напряжения, если вместо постоянного магнита поставить сердечник из мягкого железа?
Рис. 6.18. Схема капсуля головного телефона