2. МИР РАДИОЭЛЕКТРОНИКИ

2.1. Электроника виртуальная и реальная

Электроника с мышью

Азбука схем

Для радиолюбителя схема — это «печка», от которой он танцует. Язык схем — это профессиональный язык радиолюбителей и всех тех, кто занимается электроникой.

Схема — это емкое и наглядное описание устройства. Все самое главное, что заложено в устройство, заключено в его схеме.

Опытному радиолюбителю достаточно порой одного взгляда на схему и он, на уровне подсознания, уже все понял: что оно собой представляет и как работает или, напротив, почему «барахлит».

Язык схем интернационален, почти как музыка, и также красив. В то время как лингвисты не одно столетие бьются над созданием эсперанто (искусственный международный язык), «электрорадиосообщество» давно обо всем договорилось. Остается только приобщиться к этой части общей культуры. «Игра стоит свеч» — именно схема тот заветный ключ, который открывает дверь в страну «Радиоэлектроника».

Слово «схема» происходит от греческого schema, означающего образ, вид. В электронике используются схемы, под которыми подразумевают чертеж в виде условных графических изображений и буквенно-цифровых обозначений, показывающий составные части устройства (или системы) и взаимосвязь между ними.

Наиболее распространены схемы: структурные, принципиальные, монтажные и замещения.

Структурная схема определяет основные функциональные части устройства в виде укрупненных блоков, их назначение и взаимосвязи. Эту схему зачастую называют блок-схемой, а иногда, следуя анатомической аналогии — «скелетной».

Принципиальная электрическая схема, называемая также полной, определяет наиболее полный состав устройства и дает детальное представление о принципах его работы. Радиолюбители под термином «схема» подразумевают именно этот вид схем.

Монтажная схема или схема соединений показывает соединения составных частей устройства и определяет провода, жгуты, кабели и т. п. элементы, которыми осуществляются эти соединения, а также места этих присоединений и ввода (соединители, платы, зажимы и т. п.). Радиолюбители используют также объединенные «компоновочные» схемы, на которых, наряду с расположением компонентов и законченных функциональных блоков, показывают и монтажные элементы.

Схема замещения (или эквивалентная схема) — схема электрической цепи устройства (или его части), отображающая ее свойства при определенных условиях. По своей сути является расчетной моделью устройства.

При использовании компьютерного моделирования мы будем применять принципиальные схемы, имеющие атрибуты схем замещения. Это позволяет создавать виртуальные модели рассматриваемых электронных устройств.

Основу подобного моделирования составляет теория электрических цепей. Электрическая цепь представляет собой совокупность соединенных определенным образом элементов, устройств и объектов, образующих путь для прохождения электрического тока.

Электронные цепи, содержащие электронные компоненты (диоды, транзисторы и т. п.), являются частным случаем таких цепей. Любая электрическая цепь, лежащая в основе того или иного электронного устройства, может быть представлена в виде схемы.

Для составления схемы, прежде всего, необходимо представить в виде схемных моделирующих элементов каждый компонент цепи, а затем соединить их определенным образом.

Компоненты цепей и соответственно их схемные модели имеют определенные характеристики (параметры, свойства). В языке схем в качестве слов используются специальные, так называемые условные графические изображения и буквенно-цифровые обозначения; упрощая, и то и другое будем называть обозначениями (УГО). Соответствие основных компонентов и их УГО частично было показано выше.

Поскольку в качестве основного теоретического инструмента в познании электроники мы избрали метод компьютерного моделирования, то и графику схем рассмотрим далее с использованием компьютера.


Простейшие цепи

Не знаешь закон Ома — сиди один дома.

Поговорка


Вряд ли кто-нибудь сейчас с достоверностью скажет, откуда родился этот премудрый императив. Скорее всего, некий преподаватель физики в реальном училище или университете лет сто назад именно так в сердцах повелел незадачливому студиозу, не освоившему столь важный и простой закон.

Что ж, давайте мы сегодня воспользуемся этим советом по-своему: ведь сидя дома тоже можно постигать великие истины мироздания, сочетая «приятное с полезным». Устроимся по-рабочему. Под рукой надо иметь нехитрый инструмент, наборы электронных деталей Мастер КИТ и, конечно, обязательно — компьютер.

Начнем с простого.

Возьмем комплект Мастер КИТ NK 143 «Юный электротехник». Здесь пока еще не потребуется паяльник, так как используются простейшие разъемные клеммные соединения, но еще не вечер… Дополнительно желательно иметь простейший мультиметр (тестер). На компьютер необходимо установить схемотехническую программу Electronics Workbench («Электронная лаборатория»), лучше 5-й версии. Далее мы будем называть ее сокращенно программа EWB. При установке программы желательно выбрать европейский стандарт УГО схемотехнических обозначений в DIN, к которому ближе российские ГОСТы (рис. 38).



Рис. 38. Окно установки стандарта УГО (EWB)


Необходимые приготовления сделаны: реальный мир «железа» — наборы Мастер КИТ и «виртуальный» мир — программа EWB готовы к нашим услугам. Мы вольны свободно перемещаться во времени и пространстве.

Вернемся на некоторое время к достопочтенному господину Георгу Симону Ому, преподававшему математику и физику в г. Кельн в далеком XVIII веке. Ему пришлось преодолеть громадные экспериментальные трудности (несовершенные источники тока, отсутствие электроизмерительных приборов и т. п.). Составляя цепи из различных проводников, он устанавливает взаимосвязь между напряжением и током на участке электрической цепи, названную позже его именем. Конечно, у Ома были непосредственные предшественники, среди них которых в первую очередь надо отметить первого русского электротехника, профессора Петербургской медико-хирургической академии, академика В. В. Петрова.

Радиолюбители всегда вспоминают Ома, так как значения номиналов одного из самых распространенных компонентов электрических цепей резисторов измеряются именно в омах. Вот просто был когда-то всего лишь один Ом, а теперь, пожалуйста, пачками: и тысячи Ом (килоОм), и миллионы Ом (МегаОм) и еще больше, или, наоборот, много меньше.

Величину протекающего тока Ом оценивал по отклонению магнитной стрелки. Эти исторические опыты можно теперь с легкостью воспроизвести на вышеуказанном комплекте Мастер КИТ.


Физический эксперимент

Бросая в воду камешки, смотри на круги, ими образуемые; иначе таков бросание будет просто забавою.

Кузьма Прутков. Афоризм № 156


Наш комплект Мастер КИТ «Юный электротехник» имеет чуть меньший номер: NK 143, но глубина мысли, при работе с ним, должна соответствовать бессмертному афоризму.

Соберем простейшую электрическую цепь, показанную на рис. 39.



Рис. 39. Простая электрическая цепь Мастер КИТ NK143 «Юный электротехник»


Здесь миниатюрная лампочка накаливания присоединяется через клеммную колодку к батарее. В результате образуется замкнутая последовательная электрическая цепь — контур. Его можно мысленно обойти от положительного полюса батареи «+» через соединительный провод, нить накала, провода, идущие к отрицательному полюсу «-», и, пройдя «внутри батареи», вернуться к исходной точке «+».

Направление этого обхода принимается за положительное направление тока в данной цепи. Ом мыслил механическими понятиями и считал, что так течет некоторая «электрическая жидкость». Напряжение — ее напор, ток — ее поток. Источник тока также характеризуется в терминах механики — «электродвижущая сила» (ЭДС).

Введя некоторую величину, названную сопротивлением, Ом получил закон, который, нисколько не умаляя его заслуг, можно было бы назвать «законом водопроводчиков». Авторская формулировка была весьма витиевата: «Величина тока в гальванической цепи пропорциональна сумме всех напряжений и обратно пропорциональна сумме всех приведенных длин». Под «приведенными длинами» и скрывалось сопротивление. Теперь же, в простейшем случае, не мудрствуя лукаво, делят «вольты» на «амперы» и получают «омы» или составляют другие тождественные комбинации из названных ученых господ. Эти три господина всегда вместе, как три мушкетера: «Один за всех и все за одного». Недаром в «электрической азбуке», вместо «аз, буки, веди» значится: «ампер, вольт, ом». Это настолько ходовые величины, что есть даже комбинированный прибор: «ампер-вольт-омметр», название которого сокращают панибратски до «авометра».


Виртуальный эксперимент

Купите себе удобный стул. Вам наверняка придется много сидеть.

Люк Эхерн. «Создание компьютерных игр»


Проведем теперь компьютерный анализ процессов в рассмотренной выше цепи. Для этого составим ее модель из источника и лампочки, воспользовавшись набором элементов компьютерной программы EWB. Этот эксперимент, проводимый на компьютере, назовем виртуальным (воображаемым), он будет моделировать поведение реальной цепи. Опишем кратко последовательность виртуального эксперимента.

В программе EWB реализован стандартный многооконный интерфейс с ниспадающими и разворачивающимися меню. После установки программы возникает рабочее поле для сборки схем и пиктограммы с рабочими инструментами и компонентами схем (рис. 40).



Рис. 40. Основное окно программы EWB с дополнительными окнами выбора компонентов


Нажатием левой кнопки мыши (ЛКМ) здесь уже открыты отдельные схемные наборы (как бы ящики конструктора), из которых на рабочее поле помещены некоторые компоненты (батарея, лампа и мультиметр).

Составим принципиальную схемную модель эксперимента (рис. 41).



Рис. 41. Виртуальная модель простой электрической цепи

Для этого откроем на панели компонентов пиктограмму группы Source (источники) и выберем в нем Battery (батарея). Удерживая ЛКМ в нажатом состоянии, перетаскиваем изображение батареи в левую часть рабочей области экрана и отпускаем ЛКМ (эта процедура обычно называется буксировкой).

Затем, аналогично, переносим в центр экрана из раздела Basic (основные компоненты) Switch (переключатель) и из раздела Indicators (индикаторы) компонент Bulb (лампа накаливания), который помещаем в правую часть экрана. На этом первая часть «строительства» схемы закончена: «рабочие материалы доставлены на стройплощадку».

Упорядочим расположение выбранных компонентов на экране, если оно не соответствует воображаемой схеме. Для этого ЛКМ выделяем необходимый компонент и буксируем его в нужное положение. Возможно, на этом этапе потребуется изменить пространственную ориентацию компонентов. В данном конкретном случае удобнее повернуть лампу на 90° против часовой стрелки: выделим лампу (однократным нажатием ЛКМ), при этом она примет активный (красный по цвету) вид и нажмем на кнопку (пиктограмму) Rotate (вращение) горизонтального ряда инструментов. Эту же операцию можно провести с клавиатуры, выделив лампу и нажав Control+R (разумеется, находясь при английской раскладке клавиатуры — АРК) или, после выделения компонента, войдя в меню Circuit (схема) и воспользовавшись командой Rotate.

Далее выполняем соединения компонентов. Лучше всего, как и при сборке реальных цепей, начать с положительного полюса «+» батареи. Устанавливаем стрелку курсора в верхнюю часть вывода: там появляется жирная черная точка — символ неразъемного соединения. Нажимаем ЛКМ и кратчайшим путем ведем линию-резинку к крайнему левому выводу переключателя. После того как там возникнет символ соединения, отпускаем ЛКМ. На экране возникает изображение соединительного проводника в виде двух ортогональных отрезков. Аналогично соединяем любой правый вывод переключателя с верхним выводом лампы и ее нижний вывод с отрицательным полюсом «-» батареи.

Общий чертеж принципиальной схемы выполнен (см. рис. 41), и теперь надо отредактировать параметры (свойства) используемых компонентов.

Начинаем с батареи. Дважды щелкаем на ней ЛКМ. На экране появляется подменю (рис. 42) Battery Properties (свойства батареи).



Рис. 42. Окно редактирования свойств батареи


Выбираем в этом подменю Value (значение) и набираем в соответствующем окошке цифру 3, оставляя единицу измерения V, т. е. вольт. Затем выделяем Label (обозначения) и печатаем буквенный символ ЭДС — Е и подтверждаем сделанный выбор свойств нажатием на кнопку «ОК».

Переходим к лампе. Действуя аналогично предыдущему, выделяем лампу, вызывая диалоговое окно для редактирования ее параметров. Набираем в окошке Label «Lamp». Устанавливаем в позиции Value РМАХ (максимальная мощность) 0,91 W (ватт), что соответствует произведению номинального напряжения конкретной реальной лампочки 3.5 В на ее номинальный ток 0,26 А (эти параметры указаны на ее цоколе). Здесь же набираем 3.5 в окошке VMAX (максимальное напряжение). Обратите внимание на разделители целой и дробной части: в тексте программы это не запятая, а точка.

Выбор численного значения параметров читатель может сделать самостоятельно для другой конкретной или воображаемой батареи и лампочки. При необходимости можно, действуя аналогично, переименовать позиционное обозначение переключателя, перейдя соответственно к другой клавише, которая им управляет, например [X] вместо [Space], принимаемой по умолчанию.

Теперь проведем собственно эксперимент на собранной схеме. Устанавливаем в виртуальном выключателе Activate simulation (включение моделирования) , размещенном в верхней правой части панели инструментов (см. рис. 40) указатель на I (In — включено), и делаем щелчок ЛКМ. Клавиша этого выключателя переходит в положение «включено» (надписи можно трактовать и как «0»/«1»).

Прерывание моделирования производится нажатием на расположенную ниже кнопку «Pause» (пауза), повторное нажатие отменяет эту команду. Выключение моделирования производится нажатием на О (Out — выключено). Эти же процедуры можно осуществить и из меню Analysis: Activate, Pause, Stop или с клавиатуры: «Control+G», «F9», «Control+Т».

После запуска моделирования переводим выключатель [X] на схеме (рис. 41) в положение «включено» (нажав на клавишу буквы X при АРК) и наблюдаем, как лампочка окрашивается в черный цвет (имитация ее горения). Нажимая несколько раз на [X], как бы включаем и выключаем цепь. Этот файл можно сохранить для дальнейшей работы.

Возвратимся к реальной цепи (см. рис. 39). Измерим омметром сопротивление реальной лампы, а правильнее (так как сопротивление зависит от температуры) напряжение на ней и протекающий ток и, воспользовавшись законом Ома, найдем ее сопротивление.

Эти данные можно положить в основу моделирования цепи, заменив в виртуальной схеме лампу на резистор, номинал которого равен сопротивлению лампы. В программе EWB для этого есть виртуальные приборы: амперметр, вольтметр и даже мультиметр, а также другие приборы об этом будет рассказано дальше.

Сопоставляя результаты реальных и виртуальных экспериментов, видим, насколько прозорлив был господин Ом. В то же время обратим внимание и на расхождение в наших реальных опытах и виртуальном эксперименте: сопротивление реальной лампы, измеренное омметром, оказывается ниже чем то значение, которое получается делением «вольтов» на «амперы» у горящей лампы. Читателя, который все же посещал школу и открывал учебник физики, это вряд ли удивит, так как он знает, что сопротивление проводников растет с ростом температуры. И он уже давно обратил внимание на то, что лампы накаливания перегорают чаще всего в момент их включения. На досуге можно также провести и другие опыты с данным набором и подумать над тем, как составить их виртуальные модели.

Электроника с паяльником

Инструменты и приборы

Инструменты

Дитя любит ласку, а станок — смазку.

Из пословиц «О труде»


В зависимости от сложности конструкции и степени завершенности ее отдельных узлов, возможно, понадобится самый разнообразный радиомонтажный, слесарный и иной инструмент (рис. 43).



Рис. 43. Инструмент радиолюбителя (слева направо): пассатижи, отвертка шлицевая, отвертка крестообразная, скальпель, пинцет, бокорезы, паяльник.


На первых же порах достаточно иметь плоскогубцы и бокорезы (или одни пассатижи), а также несколько отверток крестовых и плоских (шлицевых). В хирургии внутренних органов устройств не помешает медицинский пинцет и скальпель (или, на худой конец, самодельный нож из обломка ножовочного полотна). Ну, и конечно же, особая статья паяльник и все, что к нему требуется (но об этом будет рассказано дальше). При самостоятельном изготовлении печатных плат этим хозяйством, конечно же, не обойтись. Вообще же, инструмент заводится постепенно и пополняется по мере необходимости.

Для наладки устройств могут понадобиться и разнообразные приборы.


Измерительные приборы

Одни лапти без меры плетутся, да на всякую ногу приходятся.

Пословица


Трудно переоценить значение измерений в радиолюбительской практике. Не иметь необходимых приборов и не уметь грамотно пользоваться ими — это все равно, что работать с устройством, завязав глаза.

Наиболее ходовыми приборами являются электроизмерительные приборы: вольтметры и амперметры. Как правило, их объединяют в один универсальный прибор, называемый по-разному: авометр, тестер или мультиметр. По принципу обработки сигнала прибор может быть аналоговым со стрелочным индикатором или цифровым с жидкокристаллическим (или иным) дисплеем.

Выбор измеряемой величины, установление необходимых пределов измерений и способа подключения прибора требуют известной доли аккуратности. При использовании приборов нужно обращать внимание на род тока (постоянный или переменный), и на постоянном токе стрелочные приборов надо подключать по правилу: «плюс к плюсу», амперметр в разрыв цепи, а вольтметр параллельно ее участку (например, компоненту).

В современных цифровых мультиметрах полярность и предел измерений устанавливаются автоматически, и имеется возможность измерять: напряжение, ток, сопротивление, индуктивность, емкость, частоту и ряд других функций (рис. 44, а).



Рис. 44. Измерительные приборы:

а — цифровой мультиметр; б — виртуальные приборы программы EWB. Некоторые нехитрые приборы можно сделать и самостоятельно (см. дальше).


Большие возможности открываются при использовании осциллографа или компьютера, который с помощью специальных плат и программ можно превратить в любой самый сложный прибор. Подобные приборы также называют виртуальными, так как обработка сигнала и имитация лицевой панели с органами управления и отсчетными устройствами выполняются на ПК. Для этого, в простейшем случае, в качестве АЦП (аналого-цифрового преобразователя) сигналов используется звуковая карта самого компьютера и в Интернете подбирается подходящая программа. Однако делать это рекомендуется, уже после приобретения некоторого опыта в электронике и компьютерах.

В программе EWB также имеются виртуальные приборы, некоторые из которых показаны на рис. 44, б но они не имеют физических входов и «обслуживают» только виртуальные схемы. Как работать с этими приборами будем знакомиться по мере необходимости.


Организация рабочего места

Самое дорогое у человека — это жизнь.

Она дается человеку один раз…

Н. Островский. «Как закалялась сталь»

При работе со схемами средней и большой мощности, в которых при возникновении неисправностей может произойти сильный взрыв, вам необходимо надевать защитные очки или обычные очки с безопасными линзами.

Также стоит держать под рукой огнетушитель.

Боб Пиз, главный ученый National Semiconductor Corp.


Закаленное житейскими невзгодами племя наших радиолюбителей этими американскими штучками (или шутками) не испугаешь: это племя пытливое и упорное, готовое на все. Хотя в разумных пределах технику безопасности, как и уголовный кодекс (вспомните О. Бендера), надо уважать.

Работа с «Электричеством» требует аккуратности и внимания: с ним надо обходиться уважительно, на Вы, тогда оно будет Вашим неразлучным помощником и другом. Панибратство и шапкозакидательство здесь неуместны.

Всегда надо иметь в виду три аспекта: собственную безопасность, безопасность окружающих, в том числе и тех, кто кроме Вас будет пользоваться Вашими поделками, и безопасность самой аппаратуры.

Все электроустановки с напряжением выше 42 В считаются опасными и их нетоковедущие части должны быть заземлены. Надо избегать касания оголенных токоведущих частей, находящихся под напряжением.

Безопасность при работе с силовым электрообрудованием, машинами и бытовыми приборами достигается применением специальных устройств защитного отключения (УЗО).

Крайне тщательно должны быть выполнены и эксплуатироваться устройства, содержащие бестрансформаторные источники питания. Надо помнить, что конденсаторы большой емкости могут длительное время после выключения аппаратуры сохранять электрический заряд. Без особой надобности «не ковыряйтесь» в установках, когда они включены в сеть. Следите за исправностью изоляции проводов и рабочих инструментов.

Не думайте, что любое «батарейное устройство» безопасно: оно может содержать умножители напряжения, вспомните «электрошокер»!

Не оставляйте не собранное устройство с «оголенным монтажом» включенным в одиночестве: мало ли кто проявит любопытство, например, ваш младший братишка.

Не заменяйте предохранители «жучками»: ремонт устройства будет дороже. Некоторые микросхемы не любят статического электричества, правда, современные компоненты во входных цепях защищены диодами, но «береженого Бог бережет». Пожалейте компоненты и свои деньги. Будьте внимательны к паспортным данным компонентов и эксплуатируйте их, не перегружая выше номинала.

Правильная организация рабочего места, включая хороший инструмент, — это уже полдела. Если сюда присовокупить терпенье, да уменье, знанье, да желанье, то все будет «Окау», как, наверняка, сказал бы тот же Боб. И тут он был бы прав. Впрочем, «не Боги горшки обжигают». Можно, конечно, работать и «на коленях», главное, чтобы не «тяп-ляп». Секреты ремесла частично раскрываются в приводимой ниже поучительной беседе общеизвестных национальных «героев»: начинающего радиолюбителя Ваньки Жукова (В.Ж.) и Заслуженного Паяльщика Республики Виктора Михайловича Полесова (В.М.П.).


«Наука паять»

Если у вас нет десятилетнего опыта работы с паяльником или документа об окончании школы электромонтажников, не будьте самонадеянны и не думайте, что вы все знаете о пайке.

Дж. Кар. «Проектирование и изготовление электронной аппаратуры»


В.Ж. «Уважаемый Виктор Михайлович! Нас, начинающих радиолюбителей, мучает один извечный вопрос: «Как паять?»

В.М.П. «Ну, что ж, «Наука паять» не «Наука побеждать», но начнем ее, как завещал Александр Васильевич: «Исправься! Бей сбор! Ученье будет!».

Знамо дело, пайка — депо тонкое, искусство можно сказать филигранное, и тут свои хитрости имеются. Да ты, чай, малец-то по всему видать шустрый и смышленый, стало быть, поймешь, что к чему. Слушай, коль охота, и примечай, что да как я делать буду и, главное, сам попрактикуйся».

В.Ж. «Хорошо, минуточку».

В.М.П. «Э, брат, нет: эту «цифровуху-то» ты в сторону отложи, а своими, значит, глазками, да ручками все впитай хорошенько, и что не поймешь, да не осилишь сразу, так я вот он рядом, а не в цифре законопачен».

В.Ж. «Да я, Виктор Михайлович, хотел для истории Вас запечатлеть и товарищам своим показать».

В.М.П. «Это все пустое, сам потом покажешь, когда научишься, или приводи своих орлов сюда, я только рад буду. Приступаем, значит.

«Перво дело», хорошие стол и стул: удобные, крепкие, а не колченогие. Шкафчики с инструментом, ящички с «радиодеталюхами» и прочим барахлишком не помешают.

Инструмент всякий наготове под руками, как в операционной: пассатижи, круглогубцы, бокорезы, отвертки на разный калибр, пинцет и нож с ножницами… Запомни: «Не бывает плохого инструмента, а бывает плохой работник». Хотя лучше, когда и то, и другое хорошее. Вообще же, мастер не тот, кто умеет пилить пилой и сверлить сверлом, а напротив, умеет пилой сверлить, а сверлом резать.

Освещение, конечно, должно соответствовать работе. Вот тебе стоечки для приборов, провода, ну и всякое такое, сам видишь: все, что в деле сгодится. Компьютер тоже рядом, под боком: без него, родного, теперь никуда. Знаешь, как говорят, «Одна голова хорошо, а две еще лучше». Так вот он, компьютер-то, это и есть вторая голова современного радиолюбителя. Ведь в нем со мной сам Бил, да не Клинтон, а Гейц работает помощником, а я вроде Емели на печи: знай ему желания загадываю. «Схемки» там всякие, «номинальчики» и прочее.

Далее, электричество: «розеточки», «источнички» и т. д. «заземленьеце» организуй, по всем правилам. «Микросхемками-то» баловаться собираешься?».

В.Ж. «Куда ж сейчас без них?».

В.М.П. «И то, правда. Так вот, тогда хорошо бы на столе иметь лист фольгированного «гетинаксеца» 30x40 см, фольгой вниз и соединить ее с землицей родимой. Остальное про это дело при случае дораскажу».

В.Ж. «Про статическое электричество, что ли? Я тут в Интернете наткнулся на картинку: металлический лист на столе, паяльник, отдельно заземлен, на руке браслет с заземлением — похоже, как кружка в милиции на цепи в каком-то старом фильме или электрический стул. А надпись была: монтаж ESD компонентов. Что это за звери такие?»

В.М.П. «Вот-вот. Да ты и впрямь шустрый, но всему свой черед. Поперек батьки в пекло-то не лезь. Давай-ка о паяльниках, и поговорим теперь. Ты ведь наверняка не только по сети лазил, но и на «радиорынках» побывал, и в Чип да Дип заглянул? Так ведь?»

В.Ж. «Конечно».

В.М.П. «Значит, с техникой-то ознакомился. Фантастика. Целые станции для пайки и распайки, отсос, припои, да флюсы. Как в Греции — все есть, а цены-то не про нашу, брат честь! Что твой Ролс-Ройс. Эх, ма, а мы когда-то… Вот я, как ты был. Паяльник — медяшка с железной ручкой, да на керогаз. И в придачу кусок нашатыря, да кислота паяльная: «вона», руки-то с тех времен, глянь.

Чего только не лудили: кастрюли, ведра…Это уж потом на «ящике» (имеется в виду принятые названия закрытых организаций — «номерной почтовый ящик» — п/я) техника-то объявилась. Ну, да чего это вспоминать. А с таким-то как сейчас «струментом» и дурак обернется. Да ведь нам не Чепенджер с Бураном клепать-то надо, пока-что… Так с малого и начнем.

«Разживись», для начала, одним обыкновенным «паяльничком» ватт, эдак, на 30 с медным жалом: китайским не доверяй.

В.Ж. «У меня, такой как раз есть».

В.М.П. «Вот и «чудненько», но ты его, поди, не холишь и не лелеешь, а за ним уход особый нужен. Паяльник — это можно сказать — главное орудие «радиопролетариата»! Гляди.

Особое внимание обрати, дружок, на жало. Загадай, кстати, приятелям своим загадку: не змея, а с жалом. Так, не всяк додумается. Конечно, сейчас чего только не «наизобретали»: многослойные, полые с внутренним прогревом, да автоматикой разной… Ну, да мы по-простому будем работать. Лучше заиметь сменные жала разных фасонов, но это не сразу, а насадки-то разные смастерить и самому можно.

Особо позаботься о защите жала паяльника от обгорания. Обмажь жало тонким слоем смеси силикатного клея и сухой минеральной краски (окиси железа, цинка, магния). Да не спеши включать, а поначалу просуши, как следует, иначе клей вспенится и покрытие «осыплется, как не было», и платы не отмоешь. Можно и проще, на худой конец, натри жало по всей длине мягким простым карандашом.

А самый, значит, рабочий конец жала, заточи под углом с одной стороны и легонечко откуй молоточком, тогда оно не выгорает значительно дольше. Выступать из паяльника жало должно миллиметров на 30. Если винтиков для крепления жала два, то один ставить не надо совсем, а другой возьми подлиннее, наверни на него гайку и тогда уже закрути, зажав жало. Затем подверни гайку, «подконтруй» стало быть, прижав втулку с жалом к корпусу паяльника. Вот теперь жало не ходит ходуном, а сидит крепенько.

Возьми за правило регулярно жало вытаскивать да чистить и подправлять. Знаешь, как хороший боец за винтовочкой-то на войне ухаживал. Тогда она его и не подводила. Так дед-то тебе об этом, наверное, не раз сказывал. Не гнушайся черной работы — результат белым будет! Самый-то кончик зачищай наждачной бумагой — «нулевкой», да протри, чтоб чистое было. Потом нагрей паяльник и нанеси на конец тонкий слой канифоли и припоя, а лишнее удали. Паяльник не перегревай, смастери какой-нибудь нехитрый переключатель, чтобы пока не паяешь, не греть на полную катушку, а как бы вполсилы.

Ну, вот еще, оборудуй подставочку подходящую и припой заимей специальный. Вот как этот, в виде трубочки с канифолью внутри, очень удобен и легкоплавкий. ПОС-61 называется.

В.Ж. «А почему ПОСТ, да еще 61?».

В.М.П. «Да не пост, а ПОС — припой оловянно-свинцовый, а цифирь — это процент олова в нем. Советую также приготовить жидкий неактивный флюс. Возьми кусочек канифоли в махонькую баночку и примерно вдвое спирта подпей. Пробочка с кисточкой, видишь: спиртяга-то, сам знаешь, ох как удирать любит!

Так, это все прелюдия, а теперь саму паяльную симфонию давай разыграем. Инструмент у нас уже настроен.

Вот, какая, значит, партитура. При массивных деталях место соединения должно быть зачищено да прогрето так, чтобы припой на нем расплавлялся. Само собой выводы разных там микросхем да дорожки печатных плат — особая статья, там не грей место соединения более 2–3 секунд. Иначе работать ничего не будет, да и в магазин за деталями не набегаешься. Соединение должно быть неподвижным, пока припой на нем не затвердеет. Не дуй на него и не плюй — лучше не станет. Припоя должно быть не мало, но и не слишком много, а ровно, как в аптеке. Тут нужна практика. Когда к монтажу плат перейдешь, так я тебе покажу: какие там есть хитрости. Ну, еще одно, пожалуй, правило запомни сразу: «Начинай с малого, а кончай большим».

В.Ж. «Как это — с малого?».

В.М.П. «А так, значит, самые невысокие детали: перемычки, резисторы, конденсаторы обычные и т. д. — по ранжиру, как они на плате лежать или стоять будут, выстрой. Дальше «по-науке» идет «формовка», а потом «набивка» производятся. По-нашему, значит, отогни ровненько выводы деталей, так чтобы они легко по своим местам садились — это и есть «формовка». После берешь их по компаниям и на нужные места прилаживаешь. Это, стало быть, «набивка». Теперь, вот так, прижимаешь их к плате листом пенопласта и весь пирог переворачиваешь вверх их торчащими ногами. Так они лежат «спокойненько» и не дергаются. Тут можно еще чуть-чуть в стороны их выводы отогнуть. Здесь, что не мастер — то свои приемы… «Ювелирная мастерская вроде».

Теперь берешь «паяльничек» да слегка прихватываешь ножки к плате, как я тебе давеча говорил, до возникновения шипения канифоли и появления легкого дымка. Потом уж по-всякому можно: откусить лишки-то да аккурат пропаять. Здесь вид такой сотвори, как на ровной поляне, чтоб пеньки-то не торчали. Да поначалу по-многу «деталюх» не бери, не на конвейере, чай, вкалываешь — спешить-то некуда. Да гляди, чтоб дорожки да ножки не «позамыкались» где не надо.

Это, пожалуй, основное. Такова наша «Наука паять», что твоя суворовская «Наука побеждать». Помнишь, как Александр Васильевич сказывал: «Тяжело в учении — легко в бою». Вот и потренируйся, «нат-ко» тебе «проводишко», да тренируйся: нарежь на кусочки, зачисть, залуди да спаивай. А потом, вон из старой телевизионной или компьютерной платы все компоненты вначале распаяй, а потом назад по местам припаяй, пока все не получится прочно, а не «на соплях», да красиво, так, что сам залюбуешься. И еще, чуть не забыл. Коль обожжешься, не стесняйся средство народное, знамо какое применить. Народ-то он мудрый».

В.Ж. «Спасибо, Вам, Виктор Михайлович, за науку».

В.М.П. «Да, пожалуйста, успехов тебе, сынок».


Что такое КИТ и с чем его едят?

Если вам приходилось собирать что-нибудь из готовых наборов деталей, то считайте, что вам повезло, по крайней мере азы вами пройдены. Хорошая книга или руководство по сборке из готовых наборов помогают шаг за шагом проходить и легкие, и трудные места.

Дж. Кар. «Проектирование и изготовление электронной аппаратуры»


Слово «КИТ» происходит от английского — kit — набор или комплект деталей. В мировой радиолюбительской практике использование подобных «КИТов», распространяемых в виде почтовых посылок, является обычным делом. Как только появлялось какое-либо новое устройство, будь то лазер или персональный компьютер, так, буквально тут же, следовали предложения с соответствующими «КИТами». Далее рассматриваются избранные устройства из ассортимента известных и легко доступных у нас наборов Мастер КИТ, сопровождаемые ссылкой на номер комплекта в фирменном каталоге. В связи с постоянной модернизацией наборов, их внешний вид, типы используемых компонентов и номенклатура могут отличаться от приводимых в данной книге. За оперативной информацией следует обращаться на сайт http://www.masterkit.ru.

Каждый набор включает в себя качественную печатную плату с нанесенной маркировкой, необходимые компоненты и подробную инструкцию по сборке, включающую принципиальную схему, спецификацию используемых компонентов, вид монтажной платы и готового устройства. Все наборы разделены на несколько категорий сложности.

Простые — наборы для начинающих радиолюбителей, они характеризуются простотой сборки и настройки, невысокой плотностью монтажа элементов, низковольтными питающими напряжениями, использованием сравнительно простых компонентов. В настройке такие устройства, практически, не нуждаются и, при условии правильной установки компонентов, работают сразу.

Средние — наборы для радиолюбителей с некоторым стажем. Эта категория наборов характеризуется высокой плотностью монтажа, наличием SMD-компонентов (от английского Surface-Mounted Device — компоненты для поверхностного монтажа) и специальной методикой настройки электрических параметров устройства. Из отдельных модулей этих наборов можно собрать единое, конструктивно завершенное радиоэлектронное устройство.

Сложные — наборы для профессионалов, характеризуются очень высокой плотностью монтажа, наличием SMD-компонентов, наличием многовыводных интегральных схем, достаточно высокой сложностью настройки. Такие устройства можно применять в профессиональной аудио-, видео-, бытовой и автоэлектронике.

Модули — готовые устройства, не требующие сборки.


Как грамотно собрать набор Мастер КИТ?

Законы Клипштейна

Всякий провод, нарезанный на куски, окажется слишком коротким.

Если по схеме требуется «n» деталей, то на складе окажется «n -1».

После сборки на верстаке обязательно обнаружатся лишние детали.

Принцип запасных частей

Во время поиска небольших запасных частей, упавших с рабочего места, вероятность их обнаружения прямо пропорциональна размеру детали и обратно пропорциональна ее значению для завершения работы.

Из книги «Закон Морфи»


Общие требования к монтажу и сборке наборов являются стандартными. Начинающему мастеру следует руководствоваться простыми правилами сборщиков: лишних деталей не бывает, и все надо делать, не спеша, по порядку. В этом плане достаточно вспомнить классический рассказ Марка Твена о горе-часовщике.

Однако и голову терять не надо. Поэтому полезно будет также прочитать у современного писателя Михаила Веллера о том, как знаменитый радист полярной станции СП-1 — коротковолновик мира № 1 в неписанной табели о рангах тех лет — Эрнст Кренкель подшутил над Папаниным. Кренкель был беспартийным, и Папанин удалял его из палатки на время проведения политзанятий. Бедный Кренкель бегал вокруг палатки и надумал отомстить Папанину. Тот каждый вечер автоматически разбирал и собирал перед сном свой любимый маузер. Кренкель же подложил ему незаметно «лишнюю железку». После чего Папанин надолго лишился сна.

Полный цикл изготовления устройства рассмотрим на конкретном примере.

Предположим, нам приглянулся набор Мастер КИТ NM4015 «Инфракрасный детектор» (рис. 45).




Рис. 45. Вкладыш технического описания к набору Мастер КИТ NM4015


Выбор набора — дело, конечно, субъективное и зависит от поставленной цепи и возможностей. В данном конкретном случае критерии были таковы.

Набор должен быть интересным и простым (для начинающих радиолюбителей). При минимуме деталей в него должны входить разнообразные компоненты. Он должен быть достаточно типовым и полезным как для освоения, так и для применения. И, разумеется, доступен по цене.


Подготовка к сборке набора

Открываем упаковку и проводим ревизию деталей. Для этого руководствуемся спецификацией, содержащейся на вкладыше прилагаемого к набору технического описания (см. табл. 1 на рис. 45). Удостоверившись в правильности комплекта, составляем его сборочную кассу (рис. 46).



Рис. 46. Сборочная касса набора Мастер КИТ NM4015


Касса представляет собой лист бумаги, разграфленный в виде таблицы под данный набор, и скрепленный с тонкой пластинкой из пенопласта или поролона. Резисторы, конденсаторы и другие компоненты ножками аккуратно втыкаются (или слегка прикрепляются полоской скотча) по порядку на обозначенные места. Это могут быть и гнезда в виде наклеенных на картонку внутренних частей спичечных коробков. Рядом подписываются буквенно-цифровые обозначения компонентов на схеме, номинал и особенности монтажа (полярность и разметка выводов).

Крупногабаритные комплектующие, например печатную плату, корпус и т. п., следует держать отдельно, отметив их стиккером или по-иному. Касса напоминает азбуку-кассу первоклассника (но и у нас первые шаги) или кассу с литерами для ручного типографского набора текстов. Поэтому ее можно организовать и по-другому, например, приблизиться к «хай-тех», используя идеи CAD-CAM по изготовлению гибридных микросхем и микросборок. Распечатать (или начертить) на листе плотной бумаги схему или лицевую панель сборочной платы и расположить на ней (вколоть, закрепить скотчем) компоненты так, как они должны размещаться в изготавливаемом устройстве. В процессе сборки они отсюда легко извлекаются и устанавливаются на свои законные места на реальной плате. Проявите фантазию. Не спешите, рассыпав детали на стол, а заодно и под стол, побыстрее наляпать их на плату. Спешка нужна…

Тем же, кому эти советы покажутся излишними, рекомендуем еще раз прочитать начало данного раздела и вспомнить знаменитый закон имени товарища Паркинсона о неприятностях. Надеемся, что Радиолюбительство станет (или уже стало) вашим «хобби», т. е. в переводе с английского «увлечением, любимым занятием на досуге». А от любимого дела надо получать удовольствие и удовлетворение.

Далее следует внимательно изучить принципиальную схему устройства (см. рис. 45) и понять, как оно функционирует. Как уже указывалось, наиболее рационально это выполнять, собрав вначале виртуальную модель на компьютере. (Если есть доступ к Интернет, данный этап можно выполнить и перед покупкой набора, при его выборе взяв принципиальную схему и параметры компонентов на сайте masterkit.ru).


Сборка виртуальной модели «Инфракрасного детектора» NM4015

Открываем программу EWB (см. рис. 40) и на рабочем поле в соответствии с принципиальной схемой устройства (см. рис. 45) размещаем, соблюдая геометрию, контактные площадки (узлы 1…8). Для этого нажатием ЛКМ (левой кнопки мыши) на пиктограмму открываем панель компонентов Basic (основная); на ней нажимаем ЛКМ на пиктограмму с изображением неразъемного соединения (Connector) и, не отпуская кнопки, буксируем контакт на рабочее поле, а затем отпускаем ЛКМ. Панель Basic можно держать открытой в течение всего процесса построения модели, а можно закрывать и открывать при необходимости. Двойным щелчком ПКМ (правой кнопки мыши) по изображению узла вызываем окно редактирования свойств данного компонента (рис. 47).



Рис. 47. Окно редактирования свойств узла в EWB


В окошке Label (метка) этой панели печатаем номер узла 1 и подтверждаем выбор нажатием на кнопку «ОК». Аналогичную процедуру выполняем для остальных семи узлов. В результате на рабочем поле возникает восемь нумерованных узлов, соответствующих узлам электрической схемы и контактным площадкам печатной платы (рис. 48).



Рис. 48. Виртуальная модель EWB «Инфракрасного детектора» Мастер КИТ NM4015


На приведенном рисунке в целях экономии места показана уже вся виртуальная модель, но подробное описание ее построения в соответствии с принципиальной схемой продолжается.

Узлы 1 и 5 соединяем между собой горизонтальным проводником («плюсовая» шина питания). Для этого подводим острие курсора к правой части зачерненной точки 1, нажимаем ЛКМ: там должно возникнуть небольшое утолщение. Не отпуская кнопки, ведем мышь направо к узлу 5. Вслед за курсором на экране тянется проводник. Его надо подвести к левому краю узла 5, и когда из этого узла возникнет ответное утолщение (виртуальная капля олова), кнопку надо отпустить. Аналогично надо соединить узлы 4 и 8 (шина земли).

Далее перейдем к компонентам, начав с резистора R2. Из панели Basic нажатием ЛКМ на пиктограмму (Resistor) и буксировкой выводим на рабочее поле УГО резистора и отпускаем ЛКМ. Двойным щелчком ПКМ (правой кнопки мыши) по изображению резистора вызываем окно редактирования его свойств (рис. 49).



Рис. 49. Окно редактирования свойств резистора в EWB


Здесь в опции Value (значение) по умолчанию проставлено 1 кОм, для резистора R2 в соответствии со спецификацией (табл. 1 на рис. 45) надо напечатать 4.7 (разделитель дробной и целой частей — точка), оставив единицы кОм. Затем нажимаем ЛКМ на кнопку Label, присваиваем в соответствующем окне метку R2 и подтверждаем выбор нажатием на кнопку «ОК». Указанные однотипные процедуры выбора компонента и редактирования его свойств далее подробно не описываются.

Выбранный резистор располагается на поле горизонтально. Для придания ему вертикального положения его выделяют двойным щелчком ЛКМ и вращают с помощью соответствующих кнопок на панели инструментов либо нажав с клавиатуры Ctrl+R.

После этого подводят курсор к резистору (там возникнет изображение руки) и, нажав ЛКМ, перетаскивают его в необходимую позицию под проводом 1–5, оставив между верхним выводом резистора и проводника зазор около 1 см. Затем действуют аналогично тому, как при соединении узлов. Острие курсора располагают на верхнем конце резистора: там возникает временный узел, нажимают на ЛКМ и тянут провод наверх до образования ответного соединения, отпускают ЛКМ — образовался узел с тремя отходящими от него ортогональными проводниками (см. рис. 48). Вообще из такого узла могут выходить 4 ортогональных проводника, его можно размещать как в любом месте на рабочем листе (кроме области, занятой компонентом), так и на проводниках и выводах компонентов, что весьма облегчает проведение виртуального монтажа.

Аналогично описанному выбираются, редактируются и монтируются резисторы R5, R6, R7. Подстроенный резистор R1 имеет ряд особенностей. Выбирается он по-прежнему из панели Basic по его УГО .

Затем в панели редактирования свойств (рис. 50) в окошке Key (клавиша) опции Value устанавливаем управляющую букву R на клавиатуре и в окошке Resistor печатаем необходимый номинал 220; далее в меню Label присваиваем в соответствующем окне метку R1.



Рис. 50. Окно редактирования свойств потенциометра в EWB


После этого придаем потенциометру R1 необходимую пространственную ориентацию и соединяем, как было показано на рис. 48.

В графических изображениях принципиальных схем и виртуальных моделях есть ряд особенностей, на некоторые из них укажем сейчас.

На принципиальной схеме (рис. 45) показана общая рамка, окаймляющая печатную плату, и по недоразумению ее можно принять за соединительные проводники, но это не так. Например узлы 1-2-3-4 вовсе не имеют непосредственных соединений, равно как и узлы 5-6-7-в (сравните с виртуальной моделью на рис. 48). На первый взгляд это может показаться неправильным, но так принято. Например, на УГО лампы не показывают, как в разрезе на машиностроительном чертеже, что проводник проходит через изолятор и внешний круг, отображающий баллон (даже если он металлический), замыкающий все ее электроды (см. рис. 9, б), или аналогично для микросхем (см. рис. 16).

Включение потенциометра R1, показанное на принципиальной схеме (см. рис. 45), соответствует реальному соединению при его монтаже: вывод от движка (средний) и нижний вывод соединены на землю, и в случае нарушения контакта у движка в цепи будет не обрыв, а останется полное сопротивление. Виртуальная модель просто не допускает соединения на землю сразу двух выводов, а регулировочные свойства оттого, что нижний вывод не заземлен, не меняются.

Продолжим построение модели. Конденсатор С1 полярный электролитический выбирается по его УГО с той же панели Basic. Он имеет емкость 1 мкФ или с использованием международных обозначений 1 μF и именно это значение стоит по умолчанию в окне редактирования свойств (рис. 51).



Рис. 51. Окно редактирования свойств конденсатора в EWB


Однако после этого выбора на рабочем поле будет напечатано: 1 uF — не удивляйтесь, так принято в «сапровских» электронных программах для удобства (чтобы не печатать греческую букву «мю» печатают латинскую «и»).

Теперь можно провести частичные соединения выбранных компонентов или выбрать все остальные, а затем проводить сборку. Поступим именно так.

Во-первых, нажав ЛКМ в ряду компонентов на пиктограмму с изображением диода , откроем панель Diodes (диоды).

На этой панели из предлагаемого меню выберем сначала светодиод, затем светодиод, нажав на соответствующие пиктограммы и . Далее в каждом из окон редактирования свойств (рис. 52 и 53) проводим необходимые установки в соответствии со спецификацией на компоненты VD1 и VD2.



Рис. 52. Окно редактирования свойств светодиода в EWB


Светоизлучающий диод VD1 в англоязычной литературе называется LED (Light-Emitting Diode — светоизлучающий диод).

В окне его свойств (рис. 52) выбираем в ряду Model (модель) red_LED (красный светодиод). Затем присваиваем ему метку VD1, поворачиваем анодом вверх и размещаем на нужном месте.

Диод VD2 является обычным выпрямительным, и его модель имеется в позиции «Nanional» библиотеки (Library) компонентов (рис. 53).



Рис. 53. Окно редактирования свойств диода в EWB


Далее здесь в ряду Model надо отметить строку 1 N4001, присвоить метку VD2, повернуть анодом вниз (катодом наверх) и установить в модель схемную модель устройства (см. рис. 48). Противоположная ориентация диодов VD1 и VD2 по отношению к источнику питания («+» находится на шине 1–5) объясняется их функцией в работе устройства.

Диод VD1 будет загораться, когда на его аноде возникнет положительный потенциал относительно катода, и протекающий ток в этом прямом направлении (от p-области к n-области по стрелке УГО, «от плюса к минусу») примет значение достаточное для его свечения (электролюминесценции). При обратном его включении этот прибор будет пробит и испорчен, что надо учесть при пайке реального устройства и подводе к нему питания.

Диод VD2 в данном устройстве практически не работает, если не считать возможности частичной защиты приборов от «переполюсовки» питания. Данный набор имеет некоторую универсальность и возможные расширения функций. В частности, к нему в точках 1 и 7 может быть подключено исполнительное электромагнитное реле для управления силовыми устройствами (двигатель, нагреватель и т. п.), и это будет использовано далее. Вот при включении и выключении реле возникают броски напряжения со сменой полярности на коллекторе транзисторов. Обратно включенный диод VD2 защищает транзисторы от пробоя: при смене полярности в точке 7 он «закорачивает» на себя обмотку реле, спасая транзисторы от пробоя.

Транзисторы VT1 и VT2 являются биполярными транзисторами n-р-n типа. Они выбираются из панели Transistors, вызываемой нажатием ЛKM на пиктограмму , а затем — на . Далее вызывается окно свойств (рис. 54) и в нем выбираются опции zetex и ВС547ВР.



Рис. 54. Окно редактирования свойств транзистора в EWB


Здесь прибавка к имени транзистора букв ВР означает, что это биполярный транзистор (Bipolar junction Transistor). В меню свойств компонентов можно входить не только двойным щелчком по ним ЛКМ, но и однократным нажатием ПКМ, которое вызовет дополнительное меню (рис. 55).



Рис. 55. Вызов предметной помощи в EWB


В этом меню можно вызвать окно свойств компонента (Component Properties), а также воспользоваться другими стандартными опциями графического редактирования системы Windows для выделенного объекта. Нажмем ЛКМ на позицию Help (помощь) и вызовем предметную справку (рис. 56).



Рис. 56. Окно справки по транзистору в EWB


Здесь (на английском языке) дана короткая справка о типе прибора. УГО, помещенное в левом углу, показывает назначение его выводов: СCollector (коллектор), ВBase (база), ЕEmitter (эмиттер). Иногда справки содержат и более подробную информацию, например, о микросхемах и использовании устройств в моделях, так что к ним не грех и обращаться за помощью.

Выбор транзисторов, как и любого другого компонента, заканчиваем раздачей именных позиционных меток (в данном случае VT1 и VT2) и необходимым включением в схемную модель (см. рис. 48).

После проведенных подготовительных процедур окончательно проводим соединения всех компонентов как бы внутри печатной платы (проводники здесь моделируют ее дорожки). Всякий компонент в схеме может быть выделен и без отрыва перемещен на другое место стандартной буксировкой ЛКМ или курсорными стрелками с клавиатуры. Эта операция может понадобиться для графического редактирования схемы, а также для проверки ложных соединений или, напротив, отсутствия необходимого соединения.

Замену какого-либо соединения можно выполнить несколькими способами. Например, курсор подводится к монтажному узлу со стороны того проводника, который надо «пересоединить», нажимается ЛКМ (это как бы включается паяльник), возникает дополнительное утолщение («олово расплавилось»), не отпуская кончик проводника, его перемещают к месту необходимого соединения, и вызвав на нем появление утолщения с нужной стороны («появилась капелька олова»), производят соединение. Если проводник после его «отпайки» отпустить, то он исчезнет.

Удалить проводник, монтажный узел или любой компонент можно и стандартным удалением графического редактирования системы Windows для выделенного объекта, например из окна по рис. 56 или из опций Edit. Правда, при этом могут произойти непредвиденные «пересоединения» в схеме и ее надо будет после этого перепроверить.

После окончательного редактирования схемной модели и проверки ее соответствия принципиальной схеме по соединениям компонентов и их номиналам, можно подключить «внешние устройства». В данном случае их два: источник питания и источник сигнала.

Согласно описанию, устройство имеет батарейное питание. Поэтому выбираем батарею, как было описано ранее (см. рис. 41, 42), и принимаем ее ЭДС Е1 = 12 В.

Увеличение ЭДС с 9 В до 12 В связано с использованием готовых моделей компонентов в программе EWB, особенно светодиода и его чувствительности к сигналам, а также их виду. При более скрупулезном моделировании можно этого избежать. Эти же проблемы возникают и при попытке включить на вход модели фотодиод VD3: обратившись к компонентной базе программы, мы вообще не найдем там подобных устройств. Не надо отчаиваться. Подумаем над тем, какую функцию выполняет фотодиод в реальном устройстве. Фотодиод VD3 включен на обратное напряжение: катод к «+» источника питания через резистор R2 (см. принципиальную схему на рис. 45), а анод к «-» через резистор R1. Если освещение отсутствует или оно «слабое», не сосредоточено на приемной линзе фотодиода, то через него протекает крайне малый обратный (так называемый «темновой») ток, составляющий 1…10 мкА.

В данной схеме можно считать, что неосвещенный фотодиод просто разрывает цепь смещения базы входного транзистора VT1, и потенциал в точке 3 равен 0, а транзистор заперт. Увеличение освещенности приводит к росту числа носителей и величины обратного тока через фотодиод и изменению напряжения на сопротивлении R1. Ток, возникающий в базовой цепи, открывает транзисторы VT1 и VT2, включенные по схеме «пара Дарлингтона». Усиленный этой парой сигнал приводит к загоранию светодиода, включенного в их коллекторную цепь. Поэтому при полуколичественном моделировании заменим неосвещенный фотодиод его «темновым» сопротивлением, приняв последнее R8 = 100 МОм (см. рис. 48), а при освещении равным 0, для чего параллельно входу поставим переключатель, управляемый клавишей S.

Последнее. Подключаем заземление к шине 4–8. Для наблюдения за работой виртуальной модели переводим переключатель 0/1 во включенное состояние .

Если все собрано и работает правильно, то после нажатия на клавишу S (при английской раскладке клавиатуры) стрелки с просветом около VD1 должны «зачерниться» (анимация горящего светодиода), а после повторного нажатия придти в исходное состояние .

После многократных нажатий на S (имитация посылки команд на ПДУ) наблюдаем последовательные смены состояний светодиода.

Теперь файл с моделью надо сохранить. Для дальнейшей работы с ним присвоим ему имя номера набора с соответствующим расширением данной программы NM4015.EWB, предварительно подготовив в файловой структуре программы специальную папку для накопления результатов собственного творчества.

Заодно отметим, что внутри этой структуры уже имеются готовые библиотечные файлы ряда устройств, которые полезно посмотреть в работе.

К полученной модели можно обратиться в дальнейшем для более детального моделирования или ее усовершенствований и переделок, в процессе наладки реального устройства и для других целей. Пока же отложим в сторону «мышь», приготовим паяльник, инструмент и сборочную кассу компонентов (см. рис. 46). Они придут на смену курсору и виртуальным компонентам ПК.


Сборка «Инфракрасного детектора» Мастер КИТ NM4015

Сборка устройства начинается с соотнесения принципиальной схемы (см. рис. 45) и прилагаемой для монтажа печатной платы А401 (рис. 57).



Рис. 57. Печатная плата А401:

а — лицевая сторона; б — обратная сторона


Для удобства монтажа на лицевой стороне платы (рис. 57, а) показано расположение всех устанавливаемых элементов. В соответствии с разметкой, на печатной плате по порядку устанавливаются требуемые компоненты.

Обычно, как уже говорилось выше, начинают с более мелких компонентов, например резисторов, затем переходят к конденсаторам, а далее к диодам, транзисторам и микросхемам. От этих операций зависит не только работоспособность изделия, но и насколько профессионально и красиво оно выглядит. Перефразируя Чехова, можно сказать: «В Электронике все должно быть красиво».

Обратите внимание на то, что вид платы со стороны дорожек является зеркальным по отношению к лицевому слою (рис. 57, б). Со всем тщанием, вспоминая «Науку паять», применяем ее на практике, аккуратно пропаивая контактные площадки с выводами (рис. 58).



Рис. 58. Пайка резистора R7


Позже (после наладки устройства) место пайки покрывается лаком или вся плата покрывается спиртоканефолевым раствором (тогда ее будет легко опять распаять и перепаять заново). Полезно проводимый монтаж отмечать цветным карандашом на заранее заготовленном дубликате принципиальной схемы.

Аналогично впаиваем остальные постоянные резисторы: R5, R6, R7 (рис. 59).



Рис. 59. Печатная плата А401 после впайки резисторов R2, R5, R6, R7


Затем впаиваем диод VD2. Здесь надо обратить внимание на его полярность: серебряный ободок на корпусе диода соответствует катоду, а так как он включается на обратное напряжение, то этот вывод подходит к контактной площадке, располагаемой вверху на «плюсовой шине» 1–5. Для анода диода на плате ниже стоит знак «+». После впайки диода VD2 (рис. 60) он закрывает свою надпись на плате и рядом видна надпись VD1, но она отмечает положение другого компонента (светодиода).



Рис. 60. Печатная плата А401 после впайки резисторов R2, R5, R6, R7 и диода VD2


Далее припаиваем конденсатор С1, совмещая метки «+» на корпусе и плате (рис. 61).



Рис. 61. Печатная плата А401 после впайки резисторов R2, R5, R6, R7, диода VD2 и конденсатора С1


Переходим к пайке транзисторов VT1 и VT2. Они однотипные и идентификация выводов (С, В, Е) легко определяется по отсеченной части цилиндрического корпуса и рисунка его проекции на плате (рис. 62).



Рис. 62. Печатная плата А401 после впайки резисторов R2, R5, R6, R7,диода VD2, конденсатора С1 и транзисторов VT1, VT2


При монтаже оптоэлектронных приборов VD2 и VD3 также надо строго соблюдать полярность включения. Посадочные отверстия светодиода VD2 помечены на круге ниже, где имеется специальная метка «+» для анода этого прибора. Светодиод включается на прямое напряжение по правилу: «плюс к плюсу». У светодиода данного типа вывод анода выполнен более длинным, и это позволяет правильно смонтировать его. Вывод катода фотодиода VD3 помечен точкой на его корпусе, а так как он включается на обратное напряжение, то этот вывод следует соединить с контактом 2 на плате. Плата после монтажа оптоэлектронных приборов показана на рис. 63.



Рис. 63. Печатная плата А401 после впайки резисторов R2, R5, R6, R7, диода VD2, конденсатора С1, транзисторов VT1 и VT2, светодиода VD1 фотодиода VD3


Остается вставить в соответствующие посадочные гнезда выводы «подстроечного» резистора R1 и подпаять их с обратной стороны платы (рис. 64).



Рис. 64. Печатная плата А401 после впайки резисторов R2, R5, R6, R7, диода VD2, конденсатора С1, транзисторов VT1 и VT2, светодиода VD1 и фотодиода VD3, резистора R1


Питание к устройству подводится через специальную колодку-разъем, имеющий два контактных гнезда под 9-вольтовую батарею (рис. 65).



Рис. 65. Окончательный вид «Инфракрасного детектора» Мастер КИТ NM4015


При отсутствии комплекта колодки с проводами его можно изготовить самостоятельно. Для этого надо извлечь из старой аналогичной батареи колодку и далее принять во внимание следующее.

На батарее разрезному пружинному контакту соответствует «минус», а цельному цилиндру — «плюс». Поскольку ответная колодка на приборе имеет такую же пару контактов, то их полярность противоположна описанной, так как сплошной контакт одной колодки должен входить в разрезной контакт на другой. Поэтому один конец красного («плюсового») многожильного провода подпаиваем к выводу 5 на печатной плате, а другой его конец к разрезному контакту на колодке. Соответственно один конец черного («земляного») многожильного провода подпаиваем к выводу 8 на печатной плате, а другой его конец к сплошному контакту на колодке. Теперь если подключить батарею, то можно опробовать устройство в работе, но вначале не мешает еще раз проверить: все ли находится на своих местах, и не произошло ли где-нибудь «непропая» или, наоборот, замыкания между дорожками или выводами.

После включения батареи проверяем работу с помощью настольной лампы, а затем ПДУ. Чувствительность детектора можно подрегулировать, вращая шлицом отвертки винт в резисторе R1 (не переусердствуйте при этом — ход винта ограничен).

Данное устройство впоследствии можно доукомплектовать исполнительным реле для выполнения других функций и в зависимости от назначения разместить в определенном пластмассовом корпусе.

На этом заканчивается подготовительная часть, более подробные сведения по всем затронутым вопросам можно почерпнуть из литературы, список которой приведен в конце книги. Дальше следует описание различных самоделок: интересных, поучительных и полезных, на многие случаи жизни. Так что не сходим с дистанции — до финиша еще ой, как далеко! Все еще только начинается…

2.2. С чего начинается радио

От маятника к контуру

Вначале были колебания…


В «Исторических повествованиях о жизни синьора Галилея, члена Академии деи Линчеи, благородного флорентийца», написанных его учеником, рассказывается о том, как Галилей изучал колебания, наблюдая за раскачиванием тяжелой лампады на подвесе в Пизанском соборе. Временные интервалы Галилей измерял по биению собственного пульса. На этой основе он изобрел хронометр, но сделать его не успел. Эти работы продолжил Христиан Гюйгенс, который провел подробные математические исследования и вывел формулу маятника, вошедшую во все учебники физики. Подобные колебания совершает и масса на упругом подвесе — так называемый «пружинный маятник». В нем кинетическая энергия движущейся массы и потенциальная энергия упругой пружины обмениваются между собой по колебательному закону. Есть много других, похожих случаев, но все это механические колебания.

Колебания в электрических цепях были исследованы позже. В цепях постоянного тока, которыми занимался Г. Ом (см. выше), колебания возникнуть не могли.

Поэтому перенесемся на берега туманного Альбиона в иную лабораторию: к Майклу Фарадею. Здесь весной 1837 г. Чарльз Уитстон — изобретатель «мостовой схемы» — пытался получить искру от термопары. Один спай термопары находился в раскаленной до красна печке, а другой — внутри куска льда. Уитстон безуспешно соединял и разъединял два отходящих провода — искры не было.

Тогда Майкл Фарадей, заявив, что Уитстон все делает не так, провел эксперименты по-своему. Но и ему не повезло — искры по-прежнему не было. И тогда-то третий ученый — американец, приехавший в Англию, взялся довести эксперимент до победного конца. Он быстро намотал провод плотной спиралью на палец, снял спираль с пальца и внутрь ее вставил железный стержень. Благо этого добра в лаборатории Фарадея было предостаточно. Затем он соединил эту спираль с одним из проводов, отходящих от термопары, и заявил, что как только уважаемым коллегам будет угодно, он получит желанную искру. И действительно, все отчетливо увидели искру. Фарадей восхищенно зааплодировал и воскликнул: «Ура, эксперименту янки! Но что же вы такое сделали?»». И Джозефу Генри, а это был именно он, пришлось объяснять самоиндукцию ученому, который всему миру уже был известен как человек, который открыл электромагнитную индукцию.

Катушка индуктивности может сосредотачивать в себе магнитную энергию, а конденсатор — электрическую. Если их соединить между собой, то они могут обмениваться энергией благодаря ее взаимным превращениям, и возможны электромагнитные колебания, аналогичные механическим. Теперь-то до электромагнитных колебаний всего один шаг. Сделаем еще один экскурс в историю.

Уильям Томсон, более известный как знаменитый лорд Кельвин, по введенной им абсолютной шкале температур, в 1853 г. опубликовал работу «О преходящих электрических токах». В этой работе математически исследовалась зависимость разряда заряженного металлического шарика через тонкую проволочку на землю. Томсон рассматривает апериодические (т. е. непериодические) колебания в этой цепи в зависимости от ее параметров: емкости С, индуктивности L и активного сопротивления R. Идеальный случай (когда активное сопротивление R = 0) он не рассматривает, но именно этот случай дает знаменитую формулу для периода свободных колебаний, названную позже формулой Томсона:


«Томсоновским» назвали, также простейший LC-контур, хотя на самом-то деле у него он был всего лишь шариком с проволочкой.

Частота электромагнитных колебаний f и колебаний, распространяющихся в пространстве — электромагнитных волн обратно пропорциональна их периоду


Если принять скорость распространения радиоволн в свободном пространстве равной скорости света с = 3·108 м/с, то не трудно пересчитать частоту f в длину волны λ = c/f, или наоборот,


При проведении этих расчетов надо внимательно следить за применяемыми единицами измерений. Помимо «обычной» частоты, измеряемой в герцах (Гц, Hz), используется также и круговая или циклическая частота


Попробуем дать примерные оценки того, на какую частоту был настроен колебательный контур Томсона в его исторических опытах. Для этого примем, что шар-конденсатор имел диаметр 10 см, а провод имел длину 1 м (сопротивлением пренебрежем). Так вот, в XIX веке единицам измерений еще не давали имен ученых, и в области электростатики была система единиц, по которой емкость измерялась в сантиметрах. Соответственно, в области магнетизма была система единиц, по которой индуктивность также измерялась в сантиметрах. Поэтому в отсутствие диэлектриков и намагничивающихся тел оценки этих параметров можно проводить непосредственно по их геометрическим размерам.

При пересчете на современные единицы 1 сантиметр емкости примерно равен 1 пикофараде, а 1 сантиметр индуктивности 1 наногенри. Таким образом, в приводимом примере L ~= 100 см = 100 нГн = 10-7 Гн; С ~= 10 см = 10 пФ = 10-11 Ф. Отсюда, по формуле Томсона, период ~= 2·10 -8 с и частота, как обратная величина, составит 5·10-7 Гц = 50 МГц. Значит, если бы во времена Томсона-Кельвина существовало бы радиовещание, то Лорд, став радиолюбителем и используя свой контур в соответствующем радиоприемнике, мог бы наслаждаться приемом станций УКВ диапазона.


Моделирование колебательных контуров

В компьютерной программе EWB открываем панель Basic (основные компоненты) и выводим на рабочее поле элементы: индуктивный L1 и емкостной С1. Соединив эти элементы последовательно, образуем последовательный колебательный контур. Возбуждение колебаний в контуре будем проводить от генератора синусоидальных колебаний.

Открыв в программе EWB группу Source (источники) , выберем в ней по пиктограмме AC Voltage Source (источник переменного напряжения). Для этого источника можно провести необходимую установку параметров (амплитуды, частоты и начальной фазы). Здесь (рис. 66) для источника Е1 выбрана амплитуда 1 В, частота 50 Гц и начальная фаза 0°.



Рис. 66. Окно установки параметров генератора в EWB


Основными характеристиками контура являются амплитудно-частотная характеристика (АЧХ) и фазочастотная характеристика (ФЧХ). Для получения этих характеристик в программе EWB предусмотрен специальный виртуальный прибор: Боде-плоттер.

Соберем схему согласно рис. 67. Исследуемый контур L1C1 подключен к генератору Е1.



Рис. 67. Модель последовательного колебательного контура в EWB


Боде-плоттер выбирается в группе Instruments (инструменты) по пиктограмме . Вход плоттера IN на условном графическом изображении прибора надо соединить со входом контура, а его выход OUT с источником выходного сигнала (подсобного измерительного резистора R1, вносящего небольшие потери). Для получения частотных характеристик после сборки схемы необходимо вызвать изображение лицевой панели, дважды щелкнув ЛКМ по условному графическому изображению прибора.

По умолчанию, в появившемся полном изображении лицевой панели прибора (см. рис. 68), кнопки (амплитуда) и (логарифмический масштаб) находятся в «утопленном» положении. Для наблюдения АЧХ надо лишь в вертикальной и горизонтальной развертках произвести установки диапазонов моделирования по амплитуде и частоте F (от First — начальное значение) и I (от In — конечное значение), а затем нажать на кнопку, включающую моделирование.



Рис. 68. АЧХ последовательного колебательного контура в EWB


При проведении моделирования частота входного возбуждающего колебания генератора «свиппируется» (последовательно изменяется) в выбранном диапазоне программным путем автоматически.

Далее для наблюдения ФЧХ надо «утопить» кнопку (фаза) и аналогично предыдущему установить начальное F и конечное I значение фазы, а затем включить моделирование. В результате на экране виртуального схемного прибора получаем вначале АЧХ, а затем ФЧХ (рис. 69).



Рис. 69. ФЧХ последовательного колебательного контура в EWB


Для проведения количественных измерений на этих графиках можно воспользоваться вертикальной визирной линией, перемещаемой из левой части экрана курсором или кнопками с изображением стрелок , находящимися на лицевой панели виртуального схемного Боде-плоттера. Соответствующие отсчеты в цифровой форме для точки пересечения визира с линией графика возникают в нижних окошках лицевой панели прибора (рис. 68, 69).

Программа EWB позволяет получить частотные характеристики, сведенными на один экран. Для этого, после установки диапазонов и проведения моделирования, надо нажать на пиктограмму Display Graphs (график на дисплее). В результате получатся графики резонансной АЧХ (рис. 70), где Gain — коэффициент усиления, выраженный в децибелах, и ФЧХ (рис. 70), где Phase — фазовый угол, выраженный в градусах (Degrees).



Рис. 70. АЧХ и ФЧХ последовательного колебательного контура в EWB


В верхней части панели Analysis Graphs имеется набор инструментов для редактирования полученных графиков.

«Пересоединив» катушку и конденсатор, получим параллельный контур (рис. 71).



Рис. 71. Модель параллельного колебательного контура в EWB


Дадим команды на моделирование, аналогично предыдущему случаю, и получим АЧХ и ФЧХ (рис. 72), обратные предыдущим.



Рис. 72. АЧХ и ФЧХ параллельного колебательного контура в EWB


По АЧХ не трудно определить собственную (резонансную) частоту и добротность контура; изменяя параметры элементов контура, можно проследить за изменениями этих характеристик.


Моделирование контура радиоприемника Мастер КИТ NK105

Радиоприемник работает в диапазонах длинных, средних или коротких волн с хорошим качеством звучания и выходной мощностью до 1 Вт. Напряжение питания устройства 9 В. Размеры печатной платы: 38x32 мм. Внешний вид радиоприемника показан на рис. 73. Принципиальная электрическая схема радиоприемника показана на рис. 74.



Рис. 73. Внешний вид радиоприемника Мастер КИТ NK105



Рис. 74. Принципиальная схема радиоприемника Мастер КИТ NK105


Это детекторный радиоприемник прямого усиления сигналов с AM. Нас в нем интересует сейчас входной контур, образованный катушкой на ферритовом стержне с индуктивностью L и конденсатором С2 = 120 pF.

Конденсатор С1 = 1.5 nF служит для емкостной связи с внешней антенной.

Антенна (см. рис. 73) представляет собой ферритовый стержень (диаметром 10x60 мм), на котором размещается подвижная бумажная гильза с контурной катушкой. В зависимости от выбранного диапазона катушка имеет следующее число витков: 10 для КВ, 64 — СВ и 110 — ДВ. Приемник в простейшем варианте является однодиапазонным и однопрограммным.

Настройка на конкретную станцию осуществляется по максимальной громкости приема поворотами антенны в горизонтальной плоскости и перемещениями катушки вдоль стержня. После получения приемлемого результата катушка фиксируется скотчем. Впоследствии приемник может быть доработан введением регулировочного конденсатора и переключателя диапазонов.

Виртуальная модель исследования входного контура в программе EWB показана на рис. 75, а.



Рис. 75. Модель исследования входного контура радиоприемника Мастер КИТ NK105 в программе EWB:

а — схема; б — АЧХ


В схеме, прилагаемой к набору, параметр L не известен. Для его определения есть несколько вариантов. Можно рассчитать индуктивность предварительно зная число витков, геометрические размеры и магнитную проницаемость стержня или по формуле Томсона, задавшись частотой и зная емкость С2. Экспериментально можно определить индуктивность следующим образом. Параллельно ей включается предварительно отградуированный конденсатор переменной емкости C = var. Берется другой радиоприемник, работающий на внешнюю антенну, и точно настраивается на определенную радиостанцию. После этого между антенной и работающим радиоприемником включается контур LC. Варьируя емкость С этого контура, добиваются минимального звучания принимаемой радиостанции. Поскольку АЧХ исследуемого контура будет аналогична ранее приведенной на рис. 72, т. е. он будет работать как фильтр-пробка, то дальнейшим расчетом нетрудно определить искомую индуктивность.

Проведение этих «увлекательных» процедур оставим пытливым читателям. Мы же выберем для моделирования настройку на радиостанцию «Маяк» в СВ-диапазоне, соответственно 546,4 м или 549 кГц. По этой частоте и емкости С2 прикидываем, что величина индуктивности составит порядка 0,7 мГн. Поэтому в виртуальной модели выбираем регулируемую индуктивность с запасом — 1 мГн. Дополнительный резистор R1 позволяет в этой схеме включения выявить резонансную частоту контура. Полученный результат показан на рис. 75, б.

Два Робинзона

…Нам, советским читателям, многое чуждо в Робинзоне. Был он купцом, и, как все купцы, заботился о собственной выгоде.

К. Чуковский. Предисловие к книге: Д. Дефо. «Робинзон Крузо»


Радиоприем на «картофелину»

Первый Робинзон — отчаянный радиолюбитель, а не купец — попал на необитаемый остров и у него случайно (как рояль в кустах) оказались головные телефоны от плеера, какой-то диод да моток провода. Пошарив вокруг, Робинзон наткнулся на крупную картофелину. Из кармана он извлек перочинный нож и пачку сигарет (запрет Минздрава на острове не действовал). Картофелину можно бы съесть, но жить без радио, не зная прогноза погоды, последних известий и результатов чемпионата… Робинзон вспомнил, что в книге С. А. Шабалина видел простейший радиоприемник из картофелины (рис. 76).



Рис. 76. Радиоприемник из картофелины


Он разрезал картофелину пополам, оторвал от сигарет целлофановую пленку Ц и вставил ее между половинками. Затем шнурком Ш от ботинок связал картофелину. Воткнул в нее диод Д из проволоки сделал антенну А, затем заземление 3. Приспособил телефоны Тлф, и вот, что-то зашипело и заговорило. Забросил антенну повыше, заземление воткнул в песок, омываемый водой, так как радиатора парового отопления рядом не оказалось. Попытался поменять положения контактов, удовлетворил свое любопытство и заснул, а когда проснулся, картофелины не нашел.

Попробуем смоделировать этот «картофельный радиоприемник». В программе EWB соберем схему из двухполюсных элементов с сосредоточенными постоянными. Прямо скажем, что это задача не из легких и, очевидно, не имеет однозначного решения.

Потому сделаем некоторую простейшую прикидку, глядя на рис. 76 и заменяя показанные там элементы реальной цепи их простейшими моделями.

Радиостанцию (Radio Transmitter), которую собирается «поймать» Робинзон, смоделируем специальным амплитудномодулированным источником AM Source со следующими характеристиками: частота несущей взята условно — 200 кГц; частота модуляции — 500 Гц; глубина модуляции — 100 %; напряжение, развиваемое на антенне, — 100 мВ (все цифры взяты условно для удобства моделирования). Задавшись примерными параметрами устройства, получим схему, представленную на рис. 77.



Рис. 77. Модель радиоприемника из картофелины в EWB


Для наблюдения результата используем двухканальный виртуальный осциллоскоп (вот бы его, да Робинзону!). Выполнив соответствующие установки режимов развертки, получаем картину (см. рис. 78) амплитудно-модулированных колебаний (канал — А) и частично «отдетектированного» сигнала (канал — В).



Рис. 78. Осциллограммы сигналов в модели радиоприемника из картофелины в EWB


Возможно, кто-либо придумает более удачную модель, тем более что картофелину можно заменить другим овощем или, если не жалко — заморским фруктом, например, бананом. Пожелаем успехов уважаемым «Радио-Робинзонам».


Радиоприемник Мастер КИТ NK105

Второй Робинзон был ближе к купцу, а точнее, — к современным деловым людям. Прежде чем оказаться на том самом необитаемом острове, он оплатил по электронной почте отправление туда электронных наборов Мастер КИТ и необходимого инструмента. Так что когда с ним приключилось кораблекрушение, он оказался во всеоружии. Как только обсох, распаковал набор Мастер КИТ NK105 и принялся собирать радиоприемник согласно приложенной инструкции.

Схема радиоприемника, выполненная в программе EWB с некоторыми изменениями относительно первоисточника из-за специфики моделирования, показана на рис. 79.



Рис. 79. Модель радиоприемника Мастер КИТ NK105 в программе EWB


Здесь элементы, позиционные обозначения которых даны заглавными буквами, соответствуют исходному набору. Микросхема (IC) в виртуальной модели выбрана в виде идеального ОУ, поэтому на виртуальной схеме отсутствует источник питания.

Это, конечно, не «супер» (в смысле не «супергетеродин»), а детекторный радиоприемник прямого усиления, но и не картофелина! Воображаемая радиостанция — та же. Результат показан в виде осциллограмм на рис. 80.



Рис. 80. Осциллограммы сигналов в модели радиоприемника Мастер КИТ NK105 в программе EWB


С этим радиоприемником Робинзон не расставался, пока не сделал из другого набора Мастер КИТ радиопередатчик, по которому сообщил своим друзьям-радиолюбителям, где он находится.

Разумеется — Happy End — его спасли, но в мире были и другие страдающие…

SOS SOS SOS

Спасите наши души!

Спешите к нам!

Услышьте нас на суше -

Наш SOS все глуше, глуше…

В. Высоцкий


Морские просторы бывают не только такими прекрасными и романтичными, как они выглядят на отдыхе или в путешествиях, но и трагически жестокими. История человечества — это во многом и история его борьбы с морской стихией: число ее жертв, из-за рокового стечения обстоятельств или халатности в море, слишком велико. Человеческое сообщество по мере своего развития старается уменьшить гибель людей и судов с грузами. В первую очередь совершенствуются конструкции судов и их эксплуатация. Кроме того, развиваются системы оказания своевременной помощи. Здесь на первом месте стоят способы и устройства сигнализации.

Сигналы бедствия означают, что судно и люди на нем подвергаются опасности гибели и нуждаются в помощи. Для призыва на помощь издавна использовали все доступные средства: пушечные выстрелы и взрывы с интервалом в 1 мин, зажигаемые смоляные бочки, сигнальные ракеты, звуковые сигналы и т. п. Конечно же, как только появилось радио, люди сразу же прибегли к его применению. Безусловно, радиосвязь оказалась наиболее быстро- и дальнодействующим сигнальным средством: немало жизней было спасено незамысловатым и тревожно прорвавшимся сквозь трески в эфире радио сигналом бедствия: SOS, SOS, SOS…

Обычно считают, что этот сигнал является аббревиатурой от английской фразы: «Save Our Souls», что в переводе означает «Спасите наши души». Однако это не так, — указывает известный знаток морского дела Л. Скрягин.

В начале прошлого века многие радиограммы, извещавшие о бедствии, не были унифицированы. Пользовались различными сигналами, но на большом числе судов стояли радиостанции фирмы Маркони, а для них был принят сигнал CQD. Прежде этот сигнал использовался на железных дорогах и в береговой службе Америки; он был образован от сигнала общего вызова всех станций СО добавлением к нему D (от Danger — опасность). Получившуюся аббревиатуру расшифровывали как «Come Quick Danger» — «Идите быстрее, опасность».

На Первой международной радиотелеграфной конференции, состоявшейся в Берлине в 1903 г., было предложено для судов, терпящих бедствие, установить специальный радиотелеграфный сигнал SSSDDD, передаваемый кодом Морзе. Решение принято не было, и в 1906 г. там же состоялась вторая конференция. На ней подвергся критике сигнал CQD, так как его часто путали с сигналом общего вызова всех станций СО. Поступило предложение принять в качестве международного сигнала бедствия сигнал SOE, которым пользовались суда, оснащенные радиотелеграфами немецкой фирмы «Слаби-Арко». Однако этот сигнал имел существенный недостаток: последняя его буква «Е», передаваемая одной точкой, при перегруженном эфире и помехах могла бы просто пропасть. Решили букву «Е» заменить буквой «S». Так родилось спасительное «SOS».

После опубликования этих решений моряки различных стран придумали несколько вариантов его мнемонической формы: «Save Our Souls» («Спасите наши души»); «Save Our Ship» («Спасите наше судно»); «Send Our Succour» («Пошлите нам помощь») и др.

В русском языке к произносимому «СОС» придумали фразу: «Спасите От Смерти».

Ввиду распространенности аппаратуры Маркони и привычек телеграфистов, в ходу оказались два сигнала бедствия. В трагическую ночь 15 апреля 1912 г. в 0 ч 45 мин старший радист гибнувшего «Титаника» Филипс вначале передал по радио сигнал бедствия и позывные судна в виде: «CQD CQD CQD MGY». Однако его помощник Брайд посоветовал: «Передай теперь SOS, это новый сигнал, и, может быть, тебе больше никогда не придется его посыпать». Сегодня нам известно двоякое поведение радистов «Титаника» при катастрофе: халатность до нее и самоотверженность во время трагедии. Теперь все это стало достоянием истории.

Широкий общественный резонанс, пестрящие заголовки газет всего мира со словами «Титаник» и «SOS» привели к тому, что они стали почти синонимами. Сигнал CQD ушел в небытие. Трагедия «Титаника» подтолкнула человечество к дальнейшему развитию радио и гидролокации.

Суда стали оборудовать аварийными автоматическими передатчиками и приемниками, работающими на единой «аварийной волне» 600 м и так называемой международной «частоте бедствия» 500 кГц. Три буквы «SOS» вошли в общий сигнал бедствия как основа, наряду с указанием позывных судна, его координат и служебных посылок, приводящих в действие аварийные системы.

Для радиолюбительской связи также выделены специальные частотные диапазоны. Ниже указаны некоторые любительские диапазоны:

160-метровый (1,8…2,0 МГц),

80-метровый (3,5…3,8 МГц),

40-метровый (7…7,1 МГц),

30-метровый (только телеграф 10,1…10,15 МГц),

20-метровый (14…14,35 МГц),

16-метровый (18,068…18,318 МГц),

15-метровый (21…21,4…5 МГц),

12-метровый (24,89…25,14 МГц),

10-метровый (28…29,7 МГц).

Основная масса радиолюбителей мира работает телеграфом, используя амплитудную манипуляцию незатухающих радиосигналов телеграфным кодом CW (азбукой Морзе), либо телефоном с однополосной модуляцией SSB. По мере развития компьютеров растет использование цифровых видов связи: радиолюбительский телетайп RTTY, модернизированный телетайп AMTOR, пакетная связь и т. п.

Надо сказать, что амплитудная модуляция (AM) на всех диапазонах встречается относительно редко: ее вытеснила более совершенная однополосная. Телеграф «дальнобойнее», так как слабые телеграфные сигналы легче принимать в условиях помех. Кроме того, «телеграфисту» не обязательно знать иностранный язык. Однако, чтобы работать телеграфом, надо уметь принимать на слух и передавать ключом знаки азбуки Морзе.

Рассмотрим принцип осуществления радиотелеграфии, составив условную модель передающей и приемной систем в программе EWB.


Моделирование радиотелеграфа

Для формирования модели примем, что используется код Морзе, когда знаки кодируются набором коротких (точки) и длинных (тире) посылок, разделенных паузами. В телеграфном коде длительность посылки для точки меньше, чем для тире в три раза.

Пауза между посылками (точками и тире) в букве равна длительности одной точки, между буквами — трем точкам, а между словами — семи точкам. Обычно при ручной телеграфии передается до 20 стандартных слов в минуту. Стандартным словом согласно международным договоренностям является «Париж». Это пятибуквенное слово, при написании в латинице «Paris», содержит в телеграфном коде 48 элементарных посылок. Отсюда длительность посылок составляет примерно 0,05 с.

На время передачи сигналов замыкают и размыкают телеграфный ключ передатчика и с помощью манипулятора получают импульсы постоянного напряжения, длительность которых и их передача во времени соответствуют принятой кодировке. Эти импульсы служат управляющим сигналом при модуляции колебаний несущей частоты, полученной в задающем радиочастотном генераторе. На выходе усилителя мощности ВЧ, т. е. в передающей антенне, радиосигнал принимает форму радиоимпульсов. Они представляют собой колебания ВЧ, имеющие огибающую в виде управляющих импульсов.

Для наглядного представления работы модели выберем для передачи какой-либо простой сигнал. Есть много интересных сигналов. Например англичане на ВВС (Би-Би-Си), во время Второй мировой войны начинали некоторые передачи не звуками Биг-Бена, а вступлением к знаменитой Пятой симфонии Бетховена: «ТА-ТА-ТА, ТА-А-АМММ». Эти — «три точки, тире», в переводе с кода Морзе, означают латинскую букву «V», символ победы «Victory». Композитор и не подозревал, что его «симфония Судьбы», начинающаяся, по словам Гете, как бы энергичным стуком Судьбы в дверь, получит такое прочтение в музыке морзянки.

Применительно к радиолюбительству уместнее начать с общего вызова «СQ CQ CQ». Это призыв к радиообмену: «Всем Всем Всем», принятый радиолюбителями, работающими на CW (телеграф на радиолюбительском жаргоне).

Примем в качестве частоты «несущей» 135,75 кГц, лежащую в длинноволновом диапазоне 135,7…136,8 кГц, разрешенном к использованию радиолюбителями. (Моделирование в КВ-диапазонах приводит к трудностям работы программы, и даже с принятой частотой результаты будут наблюдаться не в «реальном времени», а с большим замедлением.)

Во-первых, соберем простейший радиочастотный генератор, на транзисторе VT1 (рис. 81).



Рис. 81. Радиочастотный генератор


Генератор собран по одной из популярных схем «трехточки» Колпитца (Colpitts Oscilator), являющейся автогенератором с емкостной обратной связью. Колебательный контур L1-C2-C здесь соединен с усилительным элементом транзистором в трех точках: отсюда — название, аналогично соединяют контур и с генераторной лампой. Для расчета резонанса в этом параллельном контуре надо в формуле Томсона (см. выше) подставлять емкость в виде СхС2/(С+С2). Конденсатор С2 формирует на базе сигнал обратной связи и от его выбора по отношению к С зависит выполнение условий самовозбуждения в системе. Сделав предварительные прикидки, дальнейший подбор можно провести, экспериментируя с моделью. Для этого в верхней части схемы на рис. 81 собрана цепь с источником переменного напряжения Е2, подключаемого через ключ [В] ко входу контура и зажиму IN Боде-плоттера. Выходной сигнал с контура через конденсатор связи С3 подается на зажим OUT плоттера и вход А осциллоскопа. Держа ключ питания генератора [Space] разомкнутым, а ключ (В) замкнутым, получаем АЧХ контура (рис. 82).



Рис. 82. АЧХ генератора


Варьируя емкость [С], добиваемся совмещения резонансного пика с требуемой частотой.

После этого выключаем ключ [В] и переходим к наблюдению работы генератора на осциллоскопе (рис. 83, а), включив ключ [Space).



Рис. 83. Осциллограммы сигналов радиочастотного генератора:

а — непрерывная генерация; б — телеграфная модуляция


Увеличив длительность развертки с 2 мкс/дел до 0,2 мс/дел, и включая и отключая питание генератора ключом [Space], получим аналог телеграфного манипулирования ключом в виде радиоимпульсов определенной длительности и промежутком между ними (рис. 83, б). Нарастание и спад колебаний (переходные процессы в автогенераторе) определяются добротностью контура и в модели, чтобы их уменьшить, контур «загрублен» резистором R2.

Дополнительно следует отметить «не задокументированные» эффекты в работе программы: включение двух источников Е1 и Е2 в зависимости от величины R2 и характера Е2 приводит к изменению условий самовозбуждения, срывам генерации, увеличению или уменьшению показаний амплитуды резонансного пика на Боде-плоттере и т. п.

Являются ли эффекты, наблюдаемые при моделировании самовозбуждения, компьютерными артефактами («искусственно сделанный») или проявляются и в реальных автогенераторах, не проверялось. Да и схемы реальных модуляторов гораздо сложнее, например, в биполярных транзисторах модулируют ток базы или цепь коллектора с помощью специального модулирующего трансформатора. Вообще же, полученная картина показывает лишь принцип: работать с клавишей вместо телеграфного ключа — это все равно, что использовать для этих целей звонковую кнопку. Поэтому в дальнейших моделях придумаем что-нибудь поостроумнее.

Поскольку мы работаем на ПК, то создадим виртуальный сильно упрощенный вариант «эхо-репитера» (комплекс аппаратов, позволяющий записывать и передавать информацию в эфир), иллюстрирующий идею амплитудной телеграфии.

Для исследования репитера соберем схему (рис. 84, а), в которой в качестве электронного ключа будем использовать генератор цифровых слов WG (Word Generator). Этот прибор выбирается в панели Instruments по его пиктограмме






Рис. 84. Генерирование телеграфного радиосигнала:

а — схема виртуального передатчика; б — программирование генератора слов; в — окно редактирования перемножителя сигналов; г — осциллограммы сигналов


После двойного щелчка ЛКМ по схемному изображению генератора WG (рис. 84, а) откроется его лицевая панель с установочными и управляющими кнопками (рис. 84, б). На выходах генератора можно получить коды шестнадцатиразрядных двоичных слов, выбираемых на пользовательской панели.

Для набора слова надо щелкнуть ЛКМ в соответствующем разряде экранного буфера (заполненного нулями) и набрать с клавиатуры соответствующую цифру 0 или 1, стоящую в данном разряде. Дальше, как при печати таблиц, лучше пользоваться клавиатурой. Все комбинации задаются в шестнадцатеричном коде. Номер редактируемой ячейки показывается в окошке Edit блока Address, при этом верхняя ячейка всегда считается нулевой.

Следующее окошко Current показывает номер текущей ячейки, кодовая комбинация с которой в данный момент поступает на выход генератора. В окошках Initial и Final указываются соответственно номер начальной и конечной ячеек, в которые заносится информация. В схемном компоненте WG (рис. 84, а) этим показаниям соответствуют уровни напряжения на 16 нижних выводах. С этих выводов поразрядные сигналы по подключенным к ним проводам (шине) подаются на соответствующие цифровые узлы.

Для записи нашего сообщения достаточно кодировать единицами и нулями лишь младшие разряды и выходной сигнал также снимать только с самого младшего разряда. Генератор может работать с заданной тактовой частотой при нажатии на кнопку Cycle. Частота следования тактов задается на лицевой панели в окошке Frequency (с учетом единиц измерения Hz, kHz, MHz).

Одно слово вызова CQ, если принять за элементарную посылку один бит (0 или 1) с учетом принятой кодировки букв и интервалов, запишется по ячейкам в младших разрядах следующим образом:


Первый 0 к сообщению не относится, оно начинается с трех единиц подряд, соответствующих тире. Финальной ячейкой является 32, что показано цифрой 20 в шестнадцатеричном коде. Частота посылок выбрана 20 Hz (случайное совпадение цифровой записи, не имеющее какого-либо смысла) как обратная величина оговоренной ранее минимальной длительности точки, равной 0,05 с.

В качестве генератора несущей G1 (рис. 84, а) будем использовать источник синусоидального напряжения, сделав в окне его редактирования необходимые установки: амплитуда 0.1 V и частота 135.75 kHz.

Для модуляции несущей телеграфными посылками перемножим оба сигнала. Один подадим на вход X, а другой на вход Y схемного блока Multiplier (умножитель). Последний выбираем по его иконке в группе функциональных блоков управления — Controls . На выходе этого «перемножителя» формируется сигнал, пропорциональный произведению сомножителей и коэффициентов, которые поставлены по умолчанию в окне редактирования на рис. 84, в. Включив моделирование и настроив осциллоскоп, получим на его экране графики: луч А — модулирующий сигнал при посылке кода латинской буквы «С»; луч В — радиоимпульсы, соответствующие этой букве. Поскольку период несущих колебаний значительно меньше длительности посылок, то заполнение прямоугольников выглядит сплошным. Если увеличить скорость развертки луча, то можно увидеть синусоидальное заполнение, но тогда потеряется картина модуляции, поскольку эти сигналы «живут» в разных временах.

Теперь займемся приемником, схема которого показана на рис. 85, а.

Сигнал с приемной антенны WA2 через конденсатор С1 поступает в селективный LC-контур, настроенный на частоту несущей, и далее на детектор VD1-R1 и фильтр низких частот LPF (Low-Pass Filter). Структура фильтра, представленного в виде субблока, показана на рис. 85, б. Аналогично, в виде субблоков можно представить и приемный контур LC, и детектор Det (рис. 85, в, г). Тогда структурная схема-модель приемника примет вид, показанный на рис. 85, д. Соединив антенные выводы модели передатчика WA1 и приемника WA2 (сам радиоканал здесь не моделируется и принят идеальным), подключив осциллоскоп и включив моделирование, получим картину (рис. 85, е) принимаемых (луч А) и демодулированных колебаний (луч В).

Полученный на выходе приемного устройства сигнал повторяет сигнал телеграфного модулятора. Однако полученный сигнал можно напечатать в виде точек и тире на подвижной ленте, но не прослушать, так как в головных телефонах будет услышан просто треск. Для слухового приема телеграфных сигналов они должны быть «промодулированы» еще и звуковым тоном в передатчике (тональный телеграф), но можно это сделать и в приемнике.






Рис. 85. Прием телеграфного радиосигнала:

а — схема виртуального приемника; б-г — субблоки ФНЧ, контура и детектора; д — структурная схема приемника; е — осциллограммы сигналов


Добавим в приемный контур ВЧ-сигнал от дополнительного местного генератора (своеобразного гетеродина). Частоту генератора G2 выберем на 500 Гц выше частоты G1 несущей у передатчика, т. е. равной 136,25 кГц, и подключим этот генератор в приемный контур. Полная схема передатчика и приемника показана на рис. 86, а.

Сложение колебаний двух близких частот в приемнике приводит к низкочастотным биениям на разностной частоте, выделяемой детектором и ФНЧ. Это хорошо видно на осциллограмме, показывающей демодуляцию начала передачи «тире» (луч В рис. 86, б).

Отсчет по курсорам дает для десяти периодов 20 мс, что соответствует звуковой частоте 500 Гц. Если теперь к выходу приемника подключить наушники, то в них раздастся настоящее пение морзянки.




Рис. 86. Модель передачи и приема телеграфного радиосигнала:

а — структурная схема; б — осциллограммы сигналов


Однако созданный нами приемник является виртуальным, а в моделирующей программе практически отсутствует возможность связи с реальными входами и выходами (ключами и аудиоустройствами). О неприемлемости механической манипуляции с клавиатуры мы уже говорили, а единственное звуковое сопровождение 200 Hz в виде компонента Buzzer (зуммер, пищик) включается в включается виртуальной модели при подаче на него сигналов в виде постоянного напряжения. В принципе его можно подключить в схеме по рис. 85, д, так как звуковая модуляция в нем предусмотрена программно, и ее частота может быть изменена по желанию другой, и тогда в компьютерном динамике раздадутся соответствующие звуки. Однако, замедление процесса моделирования не позволяет насладиться музыкой морзянки и при таком устройстве системы. Не будем об этом особо сожалеть: принцип действия радиотелеграфа показан, а для его реализации есть множество других вариантов. О принципах построения и конструкциях реальной связной аппаратуры см. работы В. Т. Полякова.

Для изучения азбуки Морзе используем набор Мастер КИТ NM5036, предназначенный для начинающих радиолюбителей.


Генератор Морзе из набора Мастер КИТ NM5036

Если вы страшный радиолюбитель или бойскаут, стремящийся получить награду на конкурсах по телеграфированию или радиосвязи, — вам пригодится эта схема, которую легко собрать. Схема не дорогая.

Ньютон С. Брага. «Проекты и эксперименты с КМОП микросхемами»


Виртуальная модель генератора Морзе, выполненная в программе EWB в соответствии с прилагаемым к набору описанием, показана на рис. 87, а.



В основе генератора — универсальная схема несимметричного мультивибратора на биполярных транзисторах VT1 и VT2. Нумерация узлов 1–5 в модели соответствует нумерации выводов на печатной плате А503, предназначенной для монтажа реального устройства. Рабочая частота мультивибратора определяется номиналами резисторов R1, R2, R3, R4 и конденсатором С1. Регулируя величину сопротивления «подстроечного» резистора R3 (в модели с помощью управляющей клавиши R), можно изменять частоту тонального заполнения сигналов, получаемых манипуляцией телеграфного ключа SA1. Выходным устройством служат головные телефоны. Питание устройства осуществляется от источника постоянного напряжения 3…9 В.

Для работы с генератором рекомендуется использовать телеграфный манипулятор «Эклипс» Мастер КИТ МК328 (см. рис. 29, б).



Образцы воспроизведения сигналов азбуки Морзе можно прослушать и записать в Интернет на сайте http://www.masterkit.ru

Освоение практической работы на телеграфе удобно проводить со своими товарищами или в специальных кружках. Дальнейшие шаги заключаются в прослушивании радиоэфира. К сожалению, даже самые хорошие радиовещательные приемники, имеющие коротковолновые диапазоны, нельзя использовать для успешного наблюдения за работой любительских КВ и УКВ радиостанций по многим причинам. Это, прежде всего, различие диапазонов, видов модуляции, чувствительности и избирательности. Простейший выход из этой ситуации, на первых порах, представляется в построении конвертора, представляющего собой преобразователь частотного спектра принимаемых радиосигналов, переносящий их диапазон в диапазон частот, имеющийся в радиоприемниках.




Рис. 87. Генератор Морзе Мастер КИТ NM5036:

а — виртуальная модель; б — осциллограмма телеграфного сигнала; в, г — печатная плата А503 (внешний вид и токоведущие проводники); д — собранное устройство


Конвертор 100…200 МГц Мастер КИТ NK139

Это устройство позволяет с помощью обычного радиоприемника, имеющего диапазон 64…108 МГц принимать радиостанции любительского диапазона 144…146 МГц и звуковое сопровождение ряда телевизионных каналов. Конвертор подключается непосредственно между специальной антенной (см. ниже) и антенным входом радиоприемника.

Принципиальная схема устройства показана на рис. 88, а. Монтажная схема расположения компонентов и общий вид конвертора показаны на рис. 88, б, в.

Технические характеристики конвертора

Напряжение питания устройства… 9 В

Частотный диапазон… 100–200 МГц

Чувствительность… 0,8 мкВ

Соотношение: сигнал/шум… 10 дБ

Размеры печатной платы… 100x110 мм





Рис. 88. Конвертор 100…200 МГц Мастер КИТ NK139:

а — принципиальная электрическая схема; б — монтажная схема; в — общий вид


Монтажная схема расположения компонентов и общий вид конвертора показаны на рис. 88, б, в.




Порядок сборки и настройки конвертора:

• проверьте комплектность набора согласно приведенной спецификации;

• отформуйте выводы компонентов и установите их в соответствии с монтажной схемой (рис. 88, б), сверяясь с принципиальной схемой (рис. 88, а);

• подключите потенциометры Р1 и Р2 к плате, как показано на рис. 88, б;

• подключите провода от источника питания, соблюдая полярность, в соответствии со схемой на рис. 88, б;

• подключите приемную антенну к контактам 1 и 2;

• к контактам 3 и 4 подключается антенный вход радиоприемника, при этом выводы 2 и 3 необходимо заземлить;

• проверьте правильность монтажа;

• включите питание;

• настройте радиоприемник на свободную частоту диапазона 98…104 Мгц;

• «подстроечным» конденсатором С10 и переменным резистором Р2 настройте конвертор на принимаемую станцию (грубая настройка);

• произведите точную настройку переменным резистором Р1;

• чувствительность конвертора регулируется «подстроечным» конденсатором С2, а конденсатором С10 устанавливается диапазон в пределах регулировки Р2.


Примечания.

1. Параметры, регулируемые с помощью С2, С10 и Р2 — взаимосвязаны, поэтому при неудовлетворительной работе конвертора описанную выше процедуру настройки необходимо повторить.

Вращение движков С2 и С10 надо производить «неметаллической отверткой» (ее можно изготовить самостоятельно, закрепив крошечный металлический шлиц на длинном цилиндрическом стержне, например корпусе шариковой ручки).

2. Простейшую антенну типа симметричного полуволнового вибратора (см. рис. 27, а) можно изготовить из двух металлических трубок (старые лыжные палки) общей длиной 96…94 см (при диаметре трубок 15…20 мм). Соединение вибраторов с конвертором осуществляется коаксиальным кабелем с волновым сопротивлением 75 Ом. Антенна имеет диаграмму направленности в виде петель восьмерки, поэтому для лучшего приема определенных станций ее придется ориентировать на них, поворачивая конструкцию в горизонтальной плоскости. Для согласования антенны с фидером, на мачте перед соединением кабеля с вибраторами, он пропускается коаксиально через отрезок тонкостенной металлической трубки, диаметром 3…4 внешнего диаметра кабеля и длиной около 0,5 м. Более подробные сведения об антеннах любительской радиосвязи см. в статье Ю. Жомова (UA3FG) или на радиолюбительских сайтах в Интернет.

При отсутствии УКВ ЧМ радиоприемника на диапазон 64…108 МГц или в дополнение к изложенному материалу, можно рекомендовать сборку одного из радиоприемников Мастер КИТ NS065, NK096 или NK116.

Си-Би радиосвязь

Каждый человек имеет право на свободу убеждений и на свободное выражение их; это право включает свободу беспрепятственно…искать, получать и распространять информацию и идеи любыми средствами и независимо от государственных границ.

Всеобщая декларация прав человека. Статья 19

Радиолюбительская связь является одним из средств укрепления дружбы между народами и борьбы за мир во всем мире.

С. Бунимович, Л.Яйленко. «Техника любительской однополосной радиосвязи»


Развитие различных средств беспроводной связи (пейджинговой, сотовой и т. п.) не сняло потребности в средствах общения в виде традиционной личной радиосвязи.

В США, начиная с 1958 г… для гражданской радиосвязи был открыт диапазон 27 МГц, названный по-английски СВ (Си-Би) от Citezen Band (гражданский поддиапазон). В России соответствующее решение опоздало примерно на 30 лет. Теперь и наши граждане тоже могут свободно приобретать трансиверы (приемопередатчики) Си-Би и пользоваться ими, ну а радиолюбители (как всегда) заняться их совершенствованием, конструированием и изготовлением.

В отличие от этих реальных устройств, на виртуальные, в принципе, не было, да и не может быть никаких ограничений! (За исключением интеллектуального права.) Правда, по виртуальному устройству нельзя даже послать сообщение своему реальному другу, если не сделать «шлюз» в Интернет, но тогда оно «материализуется». Зато можно детально разобраться с его устройством систем и принципом их действия. Потом можно сделать самому радиостанцию — и как бы пройти путь первооткрывателей Радио. Приемник на первых порах можно использовать и стандартный.

Вначале посмотрим на эту диковинку изнутри.


Модель передатчика 27 МГц

В наборах для радиолюбителей радиопередатчики Си-Би встречаются весьма часто. Схема одного из вариантов (КИТ NK127) в виде виртуальной модели в программе EWB показана на рис. 89.



Рис. 89. Модель передатчика Мастер КИТ NK127 в программе EWB


Передатчик состоит из двух каскадов, собранных на биполярных транзисторах. Реальный источник входного сигнала (микрофон) в схемной модели заменен генератором прямоугольных импульсов Е1. Установки этого генератора показаны на рис. 90.



Рис. 90. Установки генератора Е1 модели передатчика Мастер КИТ NK127 в программе EWB


Первый каскад, выполненный на транзисторе VT1, является предварительным усилителем модулирующего сигнала генератора Е1. Второй — на транзисторе VT2 — является LC-генератором колебаний высокой (несущей) частоты, равной 27 МГц.

Картину колебаний на несущей частоте в программе EWB можно получить в режиме Transient (рис. 91), снимая сигнал с антенного выхода ANT (в расчетной части программы в данном случае он имеет номер 10).



Рис. 91. Окно установки режима анализа переходных процессов в программе EWB


Из полученного графика (рис. 92) видно, что период колебаний составляет 40 ns. Следовательно, частота равна 25 МГц.



Рис. 92. График сигнала несущей частоты модели передатчика в программе EWB


Для точной настройки частоты служит конденсатор [С]. В программе это выполняется последовательными нажатиями на управляющую клавишу С — емкость будет уменьшаться и частота расти, или на Shift+C — емкость будет увеличиваться и частота падать. Картина модулирующих прямоугольных импульсов и результирующие колебания на антенном выводе даны на экране осциллоскопа (рис. 93).



Рис. 93. Осциллограммы сигналов модели передатчика в программе EWB


Передатчик 27 МГц Мастер КИТ NK127

Передатчик собирается на печатной плате размером 50x50 мм. показанной на рис. 94, а. Общий вид монтажа устройства показан на рис. 94, б.



Рис. 94. Передатчик Мастер КИТ NK127:

а — печатная плата; б — монтаж


Если собрать такой реальный передатчик согласно приложенным инструкциям, то он будет иметь выходную мощность до 0,2 Вт. Это может при излучающем антенном диполе в четверть длины волны и чувствительности УКВ-приемника 10 мкВ обеспечить дальность устойчивой связи около 100 м (для начала — неплохо).



В каталоге Мастер КИТ можно выбрать подходящий стабилизированный источник питания для стационарного использования: за батарейками-то и даже аккумуляторами, как известно, не набегаешься. Можно и самостоятельно изготовить источник питания. Об этом будет рассказано дальше. Кроме того, передатчик желательно поместить в корпус, например, BOX-GOI В.

Правильное питание — залог успеха

Животное насыщается, чеповек ест, умный человек умеет питаться.

Брилья-Саварен, французский ученый-физиолог


Не в коня корм

Термин-метафора «питание» применительно к обеспечению радиоэлектронной аппаратуры электроэнергией для ее нормального функционирования имеет глубокий физический смысл. Достаточно вспомнить то, как был установлен закон сохранения и превращения энергии графом Румфордом еще в 1778 г. Граф в мастерских Мюнхенского цейхгауза наблюдал за сверлением жерл пушек с помощью конной тяги, вращающей гигантские сверла, которые при этом сильно нагревались, и их охлаждали, поливая водой.

Делая нехитрые фуражные расчеты, граф обнаружил соответствие между выделяемым при этом количеством теплоты и теплотой, получаемой при сгорании овса, равного по количеству тому, которым кормили лошадей за время работы. Для этого он просто один раз развел из овса костерок под жерлом, заполненным водой, и нашел, что одно и то же количество воды испаряется при одной и той же норме овса, выделяемой лошадям («сгораемой» внутри организма; животное — это тепловая машина!). Не случайно поэтому, люди следят «за своими калориями», кроме того, наш организм нуждается не просто в питании, а в питании сбалансированном, содержащем белки, витамины и соли.

Так и различная радиоэлектронная аппаратура требует для своего питания источники с различными характеристиками. Если их не удовлетворить, то последствия могут быть самыми различными; от не качественной работы, до выхода из строя. Так сказать, «не в коня корм». (Правда, последнее говорится иносказательно, как правило, о пище духовной.) Развитие переносной аппаратуры (ноутбуков, радиостанций Си-Би диапазона, аудиотехники, мобильников, цифровых камер) требует автономных источников, обеспечивающих их длительную работу при потребляемом токе 1…3 А и напряжении 12…30 В. При возможности питания от бортовой автомобильной электросети подобные устройства, снабженные стандартными сетевыми адаптерами AC/DC («переменное/постоянное»), можно было бы питать от дополнительных преобразователей-инвертеров DC/AC («постоянное/переменное»). Однако такое «лобовое» решение проблемы вряд ли оправдано.

Альтернативным является использование одного DC/DC («постоянное/постоянное») преобразователя или так называемого «электронного трансформатора постоянного тока».

Подобные устройства можно собрать из наборов Мастер КИТ. Например, к таковым относится набор NK131. Для ознакомления с ним смоделируем его работу в виртуальном виде в программе EWB.


Моделирование преобразователя постоянного напряжения

Схема преобразователя (рис. 95) представляет собой автогенератор на биполярном транзисторе VT1, усилительный каскад на транзисторах VT2 и VT3 по схеме Дарлингтона, выпрямитель на диодах VD1 и VD2, а также стабилизирующую обратную связь на стабилитронах VD3 и VD4.



Рис. 95. Виртуальная модель в EWB преобразователя Мастер КИТ NK131


Сборку этой виртуальной модели начинаем с выбора транзисторов. Как и прежде, приходится констатировать, что в библиотеке компонентов данной версии программы отсутствуют необходимые номиналы. В силу этого выбраны другие типы. С диодами такой проблемы не возникло и, войдя в библиотеке диодов в строку Моtorol 1, выбираем Model D1N5402. Аналогично в качестве стабилитронов выбираем Zener Diod и далее, general Model GLL4743 и GLL4748, соответственно с напряжениями стабилизации 13 и 22 В.

Наибольшие проблемы, однако, возникают при выборе модели трансформатора. Дело в том, что какие-нибудь его характеристики нам неизвестны. В программе EWB предусмотрена возможность двух разновидностей трансформаторов: линейного и нелинейного. Для последнего требуется указать около 40 неизвестных параметров, что заведомо не реально (или требует специального исследования, которое оставляем для «любителей трансформаторов»). Поэтому выбираем линейный трансформатор, в модели которого надо указать только 5 величин (см. рис. 96).



Рис. 96. Окно редактирования свойств трансформатора


Первой из них является коэффициент трансформации, равный отношению чисел витков первичной и вторичной обмоток — Primary-to-secondary turns ratio (N). Оценку этой величины можно провести из следующих соображений. В так называемых Т-образных схемах замещения трансформаторов принимается, что приведенное активное сопротивление вторичной обмотки трансформатора R2 равно активному сопротивлению его первичной обмотки R1, т. е. R2 = R1. Кроме того, приведенное активное сопротивление вторичной обмотки трансформатора R2 связано с коэффициентом трансформации N и не приведенным активным сопротивлением вторичной обмотки простым соотношением: R1 = N2·R2.

Откуда следует, что N = (R1/R2)1/2. Таким образом, необходимо знать лишь активные сопротивления обмоток, а их нетрудно измерить омметром. Наши измерения для приложенного в комплект трансформатора КЕМО Switching Transformer NR.TR.B.065 приближенно составили: R1 = 0.45 Ом, R2 = 0.15 Ом и, следовательно, N ~= 1.7.

Далее необходимо оценить индуктивность рассеяния — Leakage inductance (LE) и индуктивность магнитопровода — Magnetizing inductance (LM), которые примем равными: 0.00001 Генри и 0.0001 Генри, соответственно. Последние две позиции в параметрах модели трансформатора (см. рис. 96) — это активные сопротивления его обмоток: активное сопротивление первичной обмотки — Primary winding resistance (RP) и активное сопротивление вторичной обмотки — Secondary winding resistance (RS). Эти сопротивления мы уже нашли ранее, что и позволяет полностью охарактеризовать применяемый трансформатор (см. рис. 96).

При сборке модели, как и реального устройства, обратите внимание на правильную «фазировку» соединения выводов трансформатора: в модели «генераторные выводы» А и F отмечены условным знаком + (в русскоязычной документации их обычно обозначают жирными точками или звездочками).

Таким образом, виртуальная модель может быть составлена по приложенной схеме, но в силу сделанных приближений ее возможности ограничены. Дополним виртуальную схему-модель измерительными приборами на входе (V1 и А1) и выходе (V2 и А2). В качестве нагрузки включим на выходе переменный резистор R4 = 30 0 м, регулируемый клавишей R. Аккумуляторную батарею представим идеальным источником напряжения с ЭДС Е1 = 12В. Кроме того, предусмотрим возможность осциллографирования сигналов (см. рис. 95).

Теперь запускаем моделирование и наблюдаем за показаниями вольтметров и амперметров при различных значениях нагрузки R4 (а при желании и за видом осциллограмм). При этом надо иметь в виду, что программа рассчитывает переходные процессы, поэтому отсчеты по приборам надо делать, выждав некоторое время.


Преобразователь Мастер КИТ NK131

Устройство представляет собой «электронный трансформатор постоянного тока», позволяющий питать приборы, требующие повышенного напряжения 12…30 В (мощные усилители, радиоприемники, акустические системы) от источника 6…12 В, например, от автомобильного аккумулятора.

Внешний вид печатной платы преобразователя представлен на рис. 97, а его общий вид — на рис. 98.


Рис. 97. Внешний вид печатной платы преобразователя



Рис. 98. Общий вид преобразователя Мастер КИТ NK131


Технические характеристики преобразователя

Входное напряжение, В… 6-12

Выходное напряжение, В… 12-30

Ток нагрузки, А… 1–1,5

Размеры печатной платы, мм… 5x55

Собрав преобразователь по прилагаемой инструкции, включаем его при различных нагрузках, измеряя напряжения и токи. Помимо описанных в инструкции отказов может случиться, что преобразователь выдает на выходе практически то же напряжение, что и на входе. Это, при правильной сборке и исправных деталях, означает, что отсутствует генерация. Поскольку использована индуктивная связь, то, чтобы добиться генерации, надо поменять местами (перепаять при выключенном питании) два вывода трансформатора (проще А и В, так как они тоньше). Эту неисправность легко имитировать и на виртуальной модели (рис. 95), где не случайно знаками «+» показаны генераторные выводы обмоток. Если выходное напряжение преобразователя не будет соответствовать требуемому, то на модели можно, изменяя параметры, установить необходимые регулировки или замены компонентов. Не забудьте укомплектовать радиатором выходной транзистор VT3 (закон (^охранения и превращения энергии и работоспособности систем применим не только к лошадям!).

Заключите преобразователь в подходящий корпус и укомплектуйте его необходимыми проводами и разъемами, например, как для «прикуривателя» автомобиля. Теперь можно подключать к нему имеющиеся устройства, не забывая о полярности. В случае, если потребуется преобразователь большей мощности, можно предварительно просмотреть на виртуальной модели вариант параллельной работы двух и более рассмотренных преобразователей на общую нагрузку.

Загрузка...