Нам электричество ночную тьму разбудит,
Нам электричество пахать и сеять будет,
Нам электричество заменит тяжкий труд,
Нажал на кнопку —
Чик! —
все будет тут, как тут.
Случай на даче
Футбольный чемпионат в самом разгаре. Смотрим по телевизору решающий матч. Переживаем за «Спартак». Явно голевой момент. И вдруг, в штрафной, исчезли все до одного спартаковцы. Что за чертовщина? Куда подевались эти красные? Кто бьет по воротам? Игра вроде продолжается, но ничего не разберешь. И тут до нас доходит: «сломался» наш старенький «Рубин». Так, значит, в изображении нет красного цвета. Конечно, причин может быть очень много, но, скорее всего, «полетел» выходной транзистор каскада видеоусилителя по этому каналу. Найти его не сложно. Вот он виновник: КТ940А. Надо бы проверить, но мы на даче… И, как всегда, на помощь приходит Мастер КИТ, а именно набор NS042.
Электронная логика
Вскрываем упаковку и знакомимся с ее содержимым. В этом наборе имеется все необходимое, для того чтобы стать обладателем очень простого и надежного тестера для проверки исправности транзисторов и определения их структуры (PNP, NPN). Это, конечно же, незаменимый помощник для начинающих радиолюбителей, который предотвратит использование заведомо неисправных транзисторов и некоторых типов диодов, а также позволит проверять и ремонтировать радиоэлектронную технику. Устройство питается постоянным напряжением 9В, максимальный ток потребления 90 мА. Размеры печатной платы: 35x43 мм.
Посмотрим принципиальную схему. Интересно: как же она работает? Поскольку собственно ремонт телевизора не самоцель, смоделируем работу этого тестера в программе EWB.
Соберем модель из логических элементов (Logic Gates) типа инверторы (NOT Gate), которых необходимо шесть штук. Буксируем их на рабочее поле и нумеруем U1-U6 (рис. 99, а).
В отличие от приложенного к набору описания мы используем условные графические обозначения в стандарте DIN, а не в ANSI (см. рис. 38, 40). Далее на рабочее поле выносим остальные компоненты: резисторы — R1, R2, R3, конденсатор — С1, батарею — Е1, светоизлучающие диоды (Light-Emitting Diode — LED) — VD1, VD2, NPN транзистор — VT1.
Рис. 99. Тестер для транзисторов Мастер КИТ NS042:
а — виртуальная модель прибора на инверторах в EWB; б — окно редактирования светодиода; в — задание неисправностей транзистора в модели; г — виртуальная модель прибора с использованием модели микросхемы; д — проверка транзистора
Редактируем номиналы компонентов согласно описанию и проводим сборку виртуальной модели.
В силу специфики моделирования в данной программе смешанных аналого-цифровых устройств нам пришлось изменить способ питания схемы, введя перемычку XY. Это приводит к тому, что в модели проверяются только транзисторы NPN типа. Ну да это не беда! Обойдемся пока этой усеченной моделью.
Для соответствия с прототипом введем нумерацию узлов входа и выхода логических элементов, она отражает номера на выводах использованной микросхемы, а также обозначения выводов транзистора.
Включаем моделирование: схема не работает. Проверяем все подряд. Вроде ошибок нет. Попробуем увеличить чувствительность светодиода. Для этого редактируем его свойства: LED Properties > Models > red LED > Edit. В появившемся окошке Turn-on current (ток включения) заменяем значение на 0.005 А (рис. 99, б).
Снова проводим моделирование и наблюдаем мигание светодиода VD2. Модель работает.
Искусственно введем неисправность, например, разорвав какое-либо соединение от одного из выводов транзистора, имитируя его перегорание. Включаем моделирование: мигание VD2 прекратилось — транзистор неисправен.
Можно также воспользоваться тем, что в программе EWB предусмотрен специальный инструментарий для имитации неисправностей компонентов. Войдя в редактирование свойств транзистора: NPN Transistors Properties (см. рис. 99, в), выбираем позицию Fault (дефект). В открывшемся окне можно задать различные типы дефектов между выводами 1-2-3: утечку (Leakage) в омах, короткое замыкание (Short) или обрыв (Open). По умолчанию здесь установлено отсутствие дефектов (None). При работе с этими случаями, возможно, придется подстроить математические параметры расчетов переходных процессов (Transient) в опции анализа (Analysis Options).
Тем, кто захочет глубже проанализировать работу схемы, можно посоветовать использование виртуального двухканального осциллоскопа (Oscilloscope). Подключая его входы к различным выводам схемы и сравнивая осциллограммы сигналов, можно сделать заключение о работе соответствующих цепей.
Следующим шагом моделирования является переход к сборке модели тестера на основе конкретной микросхемы. В данном наборе использована простейшая цифровая КМОП микросхема типа 4049. Ее выбираем в цифровых компонентах (DIGIT): цифровые микросхемы (Digital ICs), затем 4xxx Template и, наконец, 4049 (Hex INVERTER).
На рабочем поле появляется изображение корпуса IC 4049 (см. рис. 99, г). Маркировка выводов такова: VDD и VSS — соответственно «плюс» и «минус» (заземление) источника питания; I и О, снабженные номерами, соответственно входы и выходы шести инверторов; NC — отсутствие соединения (холостой вывод).
Дополнив эту микросхему компонентами и проведя необходимые соединения в соответствии с принципиальной схемой (рис. 99, а), получаем модель того же тестера в другом виде (см. рис. 99, г). Здесь, также как и в схеме на рис. 99, а, в цепи питания вводим дополнительную перемычку XY. С этой моделью проводим те же эксперименты, что и в первом случае, и убеждаемся в их идентичности.
Давненько не брал я паяльник в руки…
Поднаторев в теории, берем в руки паяльник и, в полном соответствии с приложенной к набору инструкцией и «Наукой паять», проводим сборку тестера (рис. 99, д). Подключаем батарейку и, используя зажимы «крокодил», соединяем его с выводами: транзистора, диода, резистора. Внимательно следим за соответствием выводов компонентов и прибора, а также возможными «закоротками» при из соединениях. Вначале лучше потренироваться на исправных компонентах. Все работает как часы. А вот и тот злосчастный транзистор из телевизора. Так и есть, он неисправен. Заменяем его на новый, предварительно «прозвонив» свежеиспеченным тестером.
Впаиваем транзистор в телевизионную плату блока цветности — все цвета на месте. Теперь можно нормально смотреть футбол, и не только, да и тестер в хозяйстве пригодится еще не раз.
«А все-таки она вертится!» — воскликнул Галилео Галилей в XVII в. на суде инквизиции. Это относилось к Земле. Почему она вертится, никто толком не знает до сей поры…
Наша же задача куда проще: вот электродрель — весьма полезный инструмент радиолюбителя. Вертится она или не вертится, зависит от нас. Почему она вертится, теперь знает всякий, прошедший соответствующие разделы курса физики. В основе электродрели электрический двигатель. Посмотрим на его модель.
В программе EWB в разделе Miscellaneus (смешанный — кнопка ) присутствует модель двигателя постоянного тока (DC Motor). Если собрать простейшую схему, моделирующую работу двигателя (рис. 100, а), то вольтметр V1 измеряет напряжение на двигателе, а вот вольтметр V2 подключен как бы к валу! Если это понимать буквально, то он измеряет напряжение между валом (OUT — выход) и землей.
Рис. 100. Регулятор скорости вращения мини-дрели Мастер КИТ NS042:
а — модель двигателя в EWB; б — схема-модель устройства в EWB; в — окно редактирования двигателя; г — общий вид регулятора
В реальном случае это могло бы быть напряжение, связанное с несовершенством изоляции обмоток двигателя. Здесь же это просто прием моделирования: вольтметр V2 является виртуальным тахометром, измеряющим частоту вращения вала. Одному Вольту на шкале V2 соответствует один оборот в минуту вала (RPM — Revolution Per Minute). В приведенном на рис. 100, а примере при напряжении V1 = 100,4 В, V2 = 1,879 кВ = 1879 В. Конечно, ни о каком таком электрическом напряжении на валу не может быть и речи. Зато вал, согласно модели, вращается, делая 1879 об/мин, что и показывает вольтметр-тахометр V2. Изменяя величину сопротивления реостата R, включенного последовательно с двигателем, нажатием на клавишу R или Shift+R, можно наблюдать регулирование напряжения на его зажимах и, соответственно, частоты вращения вала двигателя. Однако известно, что в зависимости от того, какой материал сверлится, надо выбирать различную частоту вращения вала. Для регулировки можно использовать специальный тиристорный преобразователь — регулятор скорости вращения мини-дрели. Такой регулятор можно собрать из набора Мастер Кит NK050.
Это устройство (рис. 100, б) позволяет регулировать частоту вращения вала двигателя постоянного тока за счет изменения напряжения от 12 до 24 В, при токе потребления до 3 А.
Схема (рис. 100, б) представляет собой регулируемый мостовой выпрямитель VD1-VD4, к выходу которого через тиристор VS1 подключен двигатель М. Резистивно-емкостная цепь с переменными сопротивлениями обеспечивает фазовое управление переключением тиристора, приводящее к регулированию выходного напряжения и, следовательно, частоты вращения якоря двигателя.
Для полного моделирования работы устройства необходимо сделать установки параметров модели конкретного двигателя. При отсутствии подробных паспортных данных это может быть и проблематичным и потребовать специальных измерений, прикидочных расчетов или их подбора. В программе EWB не ниже пятой версии есть специальный компонент DC Motor (двигатель постоянного тока), уже продемонстрированный ранее (см. рис. 100, а). Для вывода его на экран необходимо нажать на кнопку (Miscellaneous — смешанный), а затем на пиктограмму с изображением двигателя .
Далее, открыв окно DC Motors Properties (свойства двигателя постоянного тока) и нажав в нем на кнопку Edit (редактирование), откроем соответствующее окно для его редактирования (рис. 100, в).
Здесь имеется следующий набор параметров:
Sheet 1 (лист 1);
Armature resistance (RA): 1.15 Ohm (сопротивление якоря, Ом);
Armature inductance (LA): 1e-05 H (индуктивность якоря, Гн);
Field resistance (RF): 92 Ohm (сопротивление обмотки возбуждения, Гн);
Field inductance (LA): 1e-05 H (индуктивность обмотки возбуждения, Гн);
Shaft friction (BF): 0,000178 N*m*s/rad (коэффициент скоростного трения на валу, Н·м·с/рад);
Machine rotational inertia (J): 2e-05 N·m·s2 /rad (момент инерции, Н·м·с/рад);
Rated rotational speed (NN): 5200 RPM (номинальная частота, об/мин);
Rated armature voltage (VAN): 24 V (номинальное напряжение якоря);
Rated armature current (IAN): 2.4 А (номинальный ток якоря);
Rated field voltage (VFN): 24 V (ном. напряжение возбуждения);
Sheet 2 (лист 2);
Load torque (TL): 0 N·m (момент нагрузки).
Силовые параметры, установленные по умолчанию, были изменены на пересчитанные паспортные данные для двигателя постоянного тока с электромагнитным возбуждением и барабанным якорем типа СЛ-281.
Вольтметр, соединенный с валом, условно моделирует тахометр, измеряющий частоту вращения якоря в оборотах в минуту.
На рис. 100, б тахометр показывает 4,770 кОм, значит, якорь вращается, делая 4770 об/мин. Нажимая на клавиши [Р] и [Т], регулирующие величины соответствующих переменных сопротивлений, можно наблюдать за изменением показаний тахометра.
Внешний вид регулятора на основе набора Мастер КИТ NK050 приведен на рис. 100, г.
Теперь остается собрать подобное устройство, взять дрель, нажать выключатель и, следуя Галилею, радостно воскликнуть: «А все-таки она вертится!». Или, поскольку Галилей говорил по-итальянски: «EPPURE SI MUOVI!», что в русифицированной транскрипции читается как [эппу 'р си му 'ове]. Тогда друзья будут говорить о Вас: «Он знал довольно по-латыни, чтоб Галилея понимать». Увы, «латынь из моды вышла ныне», сегодня ее заменил английский, а во времена Галилея все научные трактаты в Европе писались на этом великом языке, и не было США и американской науки, не говоря уж о пресловутых долларах…
Предупредить о приходе долгожданных гостей, оградить от гостей непрошенных, дать сигналы тревоги при наводнении и пожаре, выполнить ряд других полезных по хозяйству функций помогут простейшие устройства сигнализации и автоматики.
В рассказе Антона Павловича Чехова с названием «Ах, зубы!» любитель сценических искусств Сергей Алексеич Дыбкин, доведенный до истерии замучившей его зубной болью, мчится на извозчике к врачу. Добравшись до места, «Дыбкин прыгает с извозчика и с воплем взбегает наверх по каменной лестнице. Давит он пуговку звонка с таким остервенением, что ломает свой изящный ноготь».
Да, звонок дело ответственное.
Это было в конце XIX в., но уже тогда звонки были электрические и самые разнообразные. Одноударные, с автоматическим прерыванием, «жужжалки» и «дребезжащие», с тирольским колокольчиком и т. д. и т. п. Подобные звонки еще можно увидеть в аналоговых телефонах. «Кнопки-пуговки» тоже сохранились до наших дней, а, нажимая на кнопку вызова старого лифта, можно и палец сломать. Сегодня о прибытии гостей нам сообщают соловьиные трели, оркестровые мелодии или призывный «динь-дон». Большинство звонкое теперь не электромеханические, а электронные.
Простейший электронный звонок можно сделать своими руками, а заодно и потренироваться в электронике. В наборах Мастер КИТ имеются разнообразные конструкции. Остановимся на устройстве NK038.
Схема звонка (рис. 101, а) представляет собой несимметричный мультивибратор на биполярных транзисторах PNP и NPN типов (VT1 — ВС557, VT2 — BD137-16). Схема отличается от ранее рассмотренного генератора сигналов азбуки Морзе (рис. 87, а) некоторыми деталями.
Рис. 101. Кнопочный дверной звонок Мастер КИТ NK038:
а — виртуальная модель в EWB; б — осциллограмма сигнала
Сборку виртуальной модели начнем с выбора транзисторов.
К сожалению, в библиотеке компонентов данной версии программы отсутствуют необходимые номиналы. В принципе можно было бы, найдя по справочным данным характеристики этих транзисторов, войти в режим редактирования их свойств и дополнить имеющиеся библиотеки. Однако типы параметров, приводимых в большинстве справочников и принятых в программе, отличаются, поэтому это требует дополнительной работы по расчетам и увязке. Вряд ли стоит этим заниматься с учетом назначения схемы.
Другой способ, который мы выбираем, заключается в использовании идеальных приборов. Это приведет к некоторым количественным отклонениям поведения моделей, но, по крайней мере, качественная (и даже полуколичественная) картина будет правильной. При желании (или при необходимости) от подобных идеализированных схем можно перейти и к более точным моделям.
Из особенностей принципиальной схемы (рис. 101, а), на которые необходимо обратить внимание при создании виртуальной модели в программе EWB и при монтаже реального устройства, отметим полярность электролитических конденсаторов и батареи питания. Нумерация узлов соответствует разметке печатной платы А503. В качестве выходного устройства ВА1 в модели использован схемный компонент Buzzer (зуммер, пищик). Он выбирается на панели Indicators, а затем редактируется по рабочей частоте, напряжению и току (см. рис. 101, б). Нажимаем на управляющую клавишу [Space]. Из динамика ПК раздаются отрывистые звуки. Не удивляйтесь тому, что при испытаниях модели они сильно отличаются от звуков реального звонка. Это связано с тем, что в модели Buzzer является узкополосным электроакустическим преобразователем, тогда как реальный динамик — широкополосный. Кроме того, как уже отмечалось ранее, этот схемный компонент имеет собственные частотные установки.
Характер выходного сигнала можно пронаблюдать на осциллоскопе. Для этого в схемах вводится дополнительно к прилагаемым инструкциям заземление и включается осциллоскоп. При установке соответствующим образом его настроек на осциллограмме видна типичная картина периодической последовательности импульсов (см. рис. 101, в). Варьируя параметры RC-цепей можно изменять как частоту следования импульсов, так и их форму, что отражается на спектральном составе звука громкоговорителя (Buzzer, конечно, эти детали не воспроизводит).
Рабочая частота мультивибратора определяется номиналами резисторов и конденсаторов (R1, R2, и С1). Резисторы R3, R4 и конденсатор С2 определяют тембр звучания, a Cd — скорость изменения тональности звонка (согласно инструкции резистор R2 «закорочен», а конденсатор С3 не включен и поэтому не введен в схему модели).
Я нажал звонок знакомый.
Он ответил мне, звеня…
С. Маршак
Чтобы собрать реальный звонок, воспользуемся комплектом Мастер КИТ NK038. Собрав звонок по инструкции и настроив его звук по тембру и громкости, можно поместить все устройство в подходящую коробочку.
Пронзительный звук дверного звонка хорошо слышен на большом расстоянии. После нажатия на кнопку SA1, громкость звука нарастает до максимального значения в течение 60 секунд, а затем плавно снижается (виртуальная модель, описанная выше, демонстрирует работу только в начальные моменты пуска). Небольшие размеры и достаточно большая громкость звучания позволяют использовать устройство в качестве сирены в охранных системах, при изготовлении моделей и модернизации игрушек, а также при создании различных звуковых эффектов во время игр.
В одно касание
Радиолюбители могут доработать данное устройство или собрать новое так, чтобы не требовалось проявлять особых усилий при нажатии на кнопку, заменив ее на сенсорную. Пример соответствующей схемы, аналогичной рассмотренной выше представлен на рис. 102.
Рис. 102. Виртуальная модель в EWB сенсорного дверного звонка
Можно также воспользоваться соответствующими наборами, или сенсорного переключателя Мастер КИТ NK126, или сенсорным выключателем Мастер КИТ NM4013.
Общий вид дверного звонка показан на рис. 103.
Рис. 103. Общий вид дверного звонка Мастер КИТ NK038
Теперь остается ждать дорогих гостей, а за их маникюр можно уже и не волноваться, так как вместо злосчастной чеховской пуговки ваш звонок предусмотрительно снабжен сенсорной кнопкой.
Особо привередливые меломаны, преуспевшие в электронике, могут далее обратиться к комплекту Мастер КИТ NM5032 и наслаждаться трелью из 7 мелодий.
Мой дом — моя крепость.
Крепость, безусловно, требует охраны, а в этом нет равных электронике. Но прежде чем рассмотреть электронного стража, познакомимся с одним необычным электронным устройством, на котором он основан.
В далекие предвоенные годы XX в. радиоинженеров, занимавшихся импульсной техникой, связанной с развитием радиолокации, и другими применениями электроники, мучила вечная проблема выделения полезного сигнала на фоне нерегулярных помех. Искомый импульс цели буквально выуживался из множества ложных импульсов. Соответствующая схема была описана в 1938 году О. Г. Шмиттом и получила название «Триггер Шмитта». В те времена основными компонентами устройств служили электровакуумные приборы (радиолампы). Триггер Шмитта (далее ТШ) был выполнен на двойном триоде, как двухкаскадный усилитель, охваченный внутренней положительной обратной связью. Связь была слабой и ее глубина подбиралась так, чтобы не возникала устойчивая автогенерация. В результате получилось устройство, которое при превышении входным напряжением некоторого порогового уровня (напряжения срабатывания) скачком переходило на другой устойчивый уровень (напряжение отпускания). Принятая здесь терминология заимствована из релейной техники. Передаточная характеристика ТШ по напряжению имеет вид петли гистерезиса, аналогичный магнитному гистерезису. Поэтому на условно-графических обозначениях ТШ проставляют характерную родовую метку в виде петли гистерезиса. Со сменой компонентной базы ТШ были выполнены на биполярных транзисторах, а затем и по интегральной технологии, они вошли в серии ТТЛ и КМОП микросхем.
Триггеры Шмитта, являясь несимметричными устройствами, значительно отличаются от большинства своих собратьев: таких распространенных триггеров, как RS, JK, D и Т, которые относятся к группе симметричных. Каскады в них не идентичны по своим параметрам и связям между ними, но главное отличие заключается в том, что выходной сигнал в отсутствие входного — однозначно определен. Поэтому подобные триггеры не обладают памятью и используются как спусковые устройства либо для формирования последовательности прямоугольных импульсов из сигналов произвольной формы, например синусоидальных. Вообще, данный тип триггеров ближе к импульсным, нежели к цифровым устройствам.
Рассмотрим в программе EWB работу классической схемы триггера Шмитта на двух транзисторах (VT1 и VT2) с эмиттерными связями (см. рис. 104, а).
Входной сигнал от функционального генератора FG подается на вход In (база VT1) и канал А осциллоскопа OSC, а выходной снимается с вывода Out (коллектор VT2) и подается на канал В. Для снятия передаточной характеристики триггера выставим режим генерирования сигналов треугольной формы с параметрами, показанными на рис. 104, б. Для того чтобы получить зависимость выходного напряжения от входного на осциллоскопе выберем режим развертки типа В/А (см. рис. 104, в). Поскольку далее для сравнения будет выполняться моделирование ТШ на типовых базовых логических элементах (DD1 и DD2), то схема предусматривает коммутацию приборов ключами [Space] и [С]. В данном же случае ключи [Space] должны находиться в верхнем положении, а ключ [С] — в любом. Включив моделирование получим на экране характерную петлю гистерезиса (см. рис. 104, в).
Рис. 104. Исследование модели в EWB триггера Шмитта:
а — схемная модель; б — установки параметров функционального генератора;
в, г — передаточная характеристика и осциллограмма сигналов неинвертирующего ТШ;
д, е — передаточная характеристика и осциллограмма сигналов инвертирующего ТШ
Как уже отмечалось, в ТШ наблюдается характерный гистерезис — отставание величины выходного напряжения от входного. Если частоту следования импульсов уменьшить в десять раз (для этого надо воспользоваться установочными кнопками в окошке Frequency функционального генератора), то можно визуально пронаблюдать, как по мере роста напряжения вычерчивается вся кривая, проходя фигуру против часовой стрелки. Такой своеобразный вид передаточной функции триггера обусловлен его переключением под действием входного напряжения, регулируемого двумя обратными связями: положительной ОС со второго каскада на первый за счет общего резистора R4 и отрицательной ОС по току через этот же резистор, когда открыт транзистор VT1. Если теперь переключить генератор на режим синусоидальных колебаний, а осциллоскоп на развертку сигналов во времени (Y/T), то синусоидальные колебания на входе превращаются в синфазные (по основной гармонике) прямоугольные колебания на выходе триггера (см. рис. 104, г), поскольку в данном случае реализован неинвертирующий триггер Шмитта.
В комплекте базовых логических элементов программы EWB имеется инвертирующий триггер Шмитта (см. компонент DD1 на схеме рис. 104, а). Для снятия передаточной характеристики этого триггера надо перевести переключатель [Space] в нижнее, а ключ [С] — в левое положение. Установив режим развертки в положение В/А, а генератор на треугольную форму колебаний, получим характеристику, показанную на рис. 104, д. В ней обход петли гистерезиса наблюдается по часовой стрелке. Если подать теперь на вход ТШ DD1 синусоидальные колебания, на его выходе (в точке С) получатся противофазные (по основной гармонике) колебания прямоугольной формы (рис. 104, е). Эти колебания можно превратить в синфазные, снимая сигнал с инвертора DD2 (переведя ключ [С] в правое положение и проведя инверсию сигнала с помощью триггера DD2). В этом случае колебания будут аналогичны рис. 104, г.
Триггеры Шмитта позволяют эффективно отфильтровать шумы на пологих фронтах сигналов и являются незаменимыми для стыковки схем с медленно меняющимися сигналами (<1 Гц) с логическими устройствами типа счетчиков и регистров, на их основе можно построить генераторы и другие устройства.
На рис. 105 показано использование ТШ для отстройки от высокочастотной помехи, а на рис. 106 — простейший генератор прямоугольных импульсов.
Рис. 105.Отстройка от ВЧ-помехи на триггере Шмитта:
а — схема; б — осциллограммы сигналов
Рис. 106. Генератор прямоугольных импульсов на триггере Шмитта:
а — схема; б — осциллограммы сигналов
Обычно в состав микросхем входят инвертирующие триггеры Шмитта, например ТТЛ 7414 содержит шесть подобных триггеров, а микросхема КМОП 4093 (аналог К561ТЛ1) состоит из четырех ТШ, на входе каждого из которых стоит двухвходовой элемент И-НЕ.
Теперь перейдем от теории к практике.
К сожалению, жизнь так устроена, что далеко не все в ней увлеченно занимаются радио или иным созидательным делом. На помощь от тех, кто посягает на наше имущество, приходит электроника. Вот описание простейшего устройства, позволяющего подать сигнал тревоги, если Ваш автомобиль или мотоцикл лишь слегка изменит свое вертикальное положение например, чуть-чуть качнется. В основе этого электронного сторожа датчик положения, в виде вертикальной металлической трубки, в верхней части которой на шарнире вдоль ее оси свободно подвешен металлический стержень. Трубка заземляется на корпус охраняемого объекта, а внутренний стержень в области подвеса, напротив, изолируется от корпуса и снабжается выводом к электронному блоку. Этот датчик радиолюбители выполняют сами, в зависимости от целей охраны, так сказать на свой страх и риск, проявляя свою выдумку и умение.
Схема электронного блока, входящего в набор Мастер КИТ NS011, показана на рис. 107.
Рис. 107. Разнесенная виртуальная модель в EWB охранного устройства Мастер КИТ NS011
Здесь она выполнена средствами программы EWB и несколько отличается от оригинальной (входящей в комплект), но и назначение ее иное: это виртуальная модель, работу которой можно проверить на компьютере. В основе блока лежит микросхема CD 4093, содержащая триггеры Шмитта. На рис. 107 мы «разнесли» эту микросхему поэлементно, дополнив два первых триггера (DD1.2 и DD1.4) расширением входов по И (DD1.1 и DD1.3). Типы выходного транзистора VT1, электромагнитного реле — RL1 и зуммера — BUZZER взяты произвольно, но так, чтобы модель была работоспособной. Для подбора этих компонентов в схему дополнительно включен амперметр, регистрирующий выходной ток (в пренебрежении током базы). Остальные номиналы и нумерация выводов микросхемы соответствуют оригиналу. После вышеизложенного, не трудно видеть, что на элементах DD1.1-DD1.4 выполнен автогенератор, а ТШ DD1.5 является формирователем импульсов. Выходной каскад на VT1 представляет собой усилитель, нагрузкой которого служит электромагнитное реле RL1, к нормально разомкнутым контактам которого подключено устройство для звуковой сигнализации. После включения моделирования программа автоматически ведет расчет и выводит в онлайновом режиме результаты. Если замкнуть ключ [S] на землю, то у светоизлучающего диода (LED) «зачернятся» выходные стрелки (анимация), амперметр начнет показывать некоторый ток (который будет возрастать) и из штатного динамика ПК (если там таковой имеется) раздастся тональный сигнал тревоги.
Ту же схему повторим, используя графический интерфейс корпусов микросхем (см. рис. 108) и проведем на ней те же испытания.
Рис. 108. Модель в EWB охранного устройства Мастер КИТ NS011 на микросхеме 4093
Конечно, возможности моделирования гораздо шире, чем мы здесь описали, например, можно подключить осциллоскоп к разным точкам схемы и наблюдать в реальном режиме времени протекающие там процессы, можно заняться параметрической оптимизацией или схемными изменениями и т. д. и т. п.
Однако надо скорее собрать натуральное охранное устройство, иначе, возможно, уже и охранять-то будет нечего (не дай, Бог!).
Кроме того, надо обязательно проверить практикой теорию, так как в отрыве от практики она никому и не нужна.
Теперь, запасясь терпением, надо выполнить сборку устройства согласно приведенной монтажной схеме (рис. 109), наладить его, разместить на охраняемом объекте в укромном месте и можно спокойно спать, пока оно Вас не разбудит…
Рис. 109. Монтажная схема электронного охранного устройства Мастер КИТ NS011
«Дверь бесшумно отворилась, и голый [инженер Щукин] с радостным воем вбежал в затопленную квартиру. Шумели краны. Вода в столовой образовывала водоворот. В спальне она стояла спокойным прудом, по которому тихо, лебединым ходом, плыли ночные туфли. Сонной рыбьей стайкой сбились в угол окурки. Воробьяниновский стул стоял в столовой, где было наиболее сильное течение воды. Белые бурунчики образовались у всех его четырех ножек»…
Прервем на этом печально-комическом месте зрелище, представшее перед взором изумленного Великого комбинатора — Остапа Бендера, и задумаемся, а как в принципе можно предотвратить подобные наводнения. Кроме того, возможны ведь и прямо противоположные случаи: позарез нужна вода, а ее, как на грех, забыли накачать в бак или необходимо поливать цветы в Ваше отсутствие и т. д.
Итак, проблема заключается в регулировке количества воды.
Вполне понятно, что «Электроника» в умелых руках поможет элементарно решить эти и подобные им проблемы. Поскольку нас интересует автоматизированная (а в будущем и вовсе автоматическая) система, то независимо от ее конкретного назначения она должна состоять из датчика, различающего наличие воды в данном месте, и сигнального устройства либо еще и автомата, выполняющего заданную программу. Для начала проанализируем работу простейшего устройства для индикации уровня воды в баке.
Вода, как электролит, обладает удельным сопротивлением примерно 1 МОм·см-1, что позволяет сделать кондуктометрический преобразователь в виде двух «погружных» электродов. Для этого можно использовать две прямоугольные пластинки из одностороннего «фольгированного» стеклотекстолита размерами 10x50 мм и сложить их (фольгой внутрь) через промежуточные изолирующие втулки на расстоянии 3…5 мм. Припаяв к электродам изолированные проводники, получим простейший «датчик воды» (см. верхнюю часть рис. 110).
Рис. 110. Датчик уровня воды Мастер КИТ NM4012 (общий вид)
Минимальное сопротивление датчика будет, когда он полностью заполнится водой и составит примерно 100 кОм. В баке датчик надо располагать перпендикулярно зеркалу воды вблизи дна, если требуется сигнал о том, что бак пуст или команда на включение насоса, и, соответственно, вблизи верхнего допустимого уровня — для сигнализации или команды на отключение насоса. Два подобных датчика с соответствующей логикой в принципе могут обеспечить полную автоматизацию.
Подобный же датчик, размещенный на полу квартиры, можно использовать также для отключения воды при аварии в вашей квартире. Правда, в этом случае потребуются еще и электромагнитные клапаны, но их можно «добыть»» из старых «стиралок»». Этот же датчик может включить и тревожную сирену — Alarm, которая поднимет на ноги всех соседей, если вас заливают сверху! Чем не «Интеллектуальный дом»»?
Однако сам по себе датчик ничего не сделает. Сигнал с него еще надо получить и отработать. Как это делается, посмотрим на модели в программе EWB. Схемная модель показана на рис. 111.
Рис. 111. Виртуальная модель в EWB датчика уровня воды Мастер КИТ NM4012
Устройство представляет собой пороговый элемент на составном транзисторе (VT1, VT2) по схеме Дарлингтона, смонтированный на универсальной печатной плате А401, имеющей контактные площадки 1…8. С этой платой мы познакомились в самом начале нашего вхождения в электронику (см. рис. 57).
«Датчик воды» — Sensor — в виртуальной модели на рис. 111 представлен в виде переменного резистора R8, включенного к выводам 2 и 3. Сопротивление датчика регулируется управляющей клавишей [S]. При уменьшении сопротивления датчика ниже порогового транзисторы открываются и загорается светоизлучающий диод VD1. Резистор R2 и конденсатор С1 служат для снижения вероятности ложного срабатывания устройства. Переменный резистор R1 является «подстроечным». В модели его величина регулируется клавишей [R], а в процессе эксплуатации он может быть определен по величине и заменен постоянным.
Питание устройства осуществляется от источника постоянного напряжения 6…15 В. (Эти величины должны быть согласованы с параметрами светоизлучающего диода.) В модели использована батарея Е1 на 12 В.
Для наблюдения работы устройства в режиме сигнализатора включаем моделирование, затем переводим выключатель питания [Space] в нижнее положение и, последовательно нажимая клавишу [S], уменьшаем сопротивление датчика (как бы заливаем его водой).
В некотором положении [S] стрелки на светоизлучающем диоде «зачернятся» (это анимация его горения — см. рис. 110, а). Дополнительно можно параллельно поднимать чувствительность, нажимая клавиши Shift+[R]. Обратные процедуры приведут к погасанию индикатора.
Спецификация компонентов, использованных в конкретном устройстве, приведена в таблице.
Технические характеристики устройства
Номинальное напряжение питания… 6…15 В
Ток нагрузки… 75 мА
Размер печатной платы… 30x45 мм
Общий вид устройства показан на рис. 110.
Рассмотренные устройства могут быть снабжены дополнительными исполнительными органами и датчиками. Например, в модели на рис. 111 это электромагнитное реле (Rele) и двигатель (М), в качестве которых использованы электромагнитное реле и двигатели из библиотеки программы. Диод VD2 служит для защиты транзисторов и от повторных срабатываний реле, а резистор R9 для подбора совместного режима работы усилителя и реле. В реальном устройстве потребуется подобрать соответствующее по чувствительности реле с необходимой коммутируемой мощностью. Для решения ряда задач можно также рекомендовать специальные исполнительные элементы.
Этот блок, собирается по аналогичной схеме (рис. 112).
Рис. 112. Исполнительный элемент Мастер КИТ NK146
Технические характеристики исполнительного элемента
Номинальное напряжение питания… 6-15 В
Управляющее напряжение… 3-12 В при токе >5 мА
Коммутируемый ток нагрузки… 6 А при 220 В
Размер печатной платы… 32x25 мм
Внимание! При переходе от устройств с батарейным питанием к устройствам, которые питаются от электросети напряжением 220 В, строго соблюдайте правила электробезопасности при монтаже, наладке и эксплуатации.
Двигатель М в модели использован для демонстрации ее работоспособности: при срабатывании датчика перекидной контакт реле подключает двигатель к источнику Е2 и он начинает «работать». Вольтметр V играет роль тахометра (RPM — Revolution Per Minute — обороты в минуту). Условно 1 вольту соответствует 1 оборот вала в минуту (моделирование двигателя было описано ранее: см. рис. 100).
Сборка и наладка устройства не представляет особого труда и рекомендуется начинающим радиолюбителям. Нет сомнений, что Ваша работа увенчается успехом, и «Умная электроника» охранит Вас от негаданных потопов, перегревов или вовремя напоит страждущих.
Рассмотренная модель и конкретное изделие далее могут самостоятельно дорабатываться. Например, при автоматическом поливе цветов надо поэкспериментировать с датчиками, работающими во влажном грунте, и т. д. Вообще же, приведенная схема является базовой для целой группы полезных устройств бытовой автоматики. Все они собираются по однотипной схеме на плате А401 и отличаются лишь входным первичным преобразователем информации («датчиком» или «сенсором») и, соответственно, несколькими компонентами, служащими для согласования датчиков с усилителем сигнала. Поэтому ограничимся лишь их кратким описанием.
Технические характеристики устройств
Номинальное напряжение питания… 6-15 В
Ток нагрузки… 75 мА
Размер печатной платы… 30x45 мм
За более подробными сведениями необходимо обратиться к технической документации, которой сопровождается каждый комплект Мастер КИТ. Помимо уровня воды часто требуется контролировать или регулировать ее температуру. Для этих целей предназначено термореле.
Термореле (рис. 113, а) предназначено для управления различными исполнительными устройствами (электронагреватель, вентилятор и т. д.) для поддержания заданной температуры в некотором объеме.
Например, если поместить «термодатчик» в бак с водой, то «термореле» будет управлять включением/выключением электронагревательных приборов, тем самым, поддерживая определенную температуру воды. При токе нагрузки более 75 мА в качестве исполнительного устройства необходимо использовать электромагнитное реле (в комплект набора не входит), параметры которого должны соответствовать коммутируемому току нагрузки. Датчиком температуры служит «терморезистор» NTC73103/4,7 кОм. Температурный диапазон регулирования составляет: 20…120 °C.
Удобным дополнением к рассматриваемым системам домашней автоматики является минитаймер.
Рис. 113. Устройства домашней автоматики:
а — термореле Мастер КИТ NM4016; б — минитаймер NM4011
Этот миниатюрный таймер (рис. 113, б) предназначен для формирования сигналов задержки включения/выключения исполнительного устройства. Такой таймер можно использовать, например, для включения/выключения проекционной лампы при печати фотографий и т. д. Таймер имеет регулировку времени задержки и индикатор состояния исполнительного устройства, максимальный ток которого не должен превышать 75 мА. При токе нагрузки более 75 мА необходимо использовать промежуточное электромагнитное реле (в комплект набора не входит), параметры которого должны соответствовать коммутируемому току нагрузки.
Датчиком служит специальная тактовая кнопка, а регулировка времени выдержки выполняется «подстроенным» резистором. Для получения больших задержек емкость рабочего конденсатора увеличена и составляет 470 мкФ.
Миниатюрный сенсорный выключатель (рис. 114) предназначен для включения исполнительных устройств (электронных игрушек, настольных ламп, бытовой техники и т. д.) легким прикосновением к сенсорному датчику.
Рис. 114. Сенсорный выключатель Мастер КИТ NM4013
Выключатель имеет индикатор срабатывания. Небольшие габаритные размеры и надежность позволяют устанавливать датчик в любом удобном месте, удаленном от исполнительного устройства. При токе нагрузки более 75 мА в качестве исполнительного устройства необходимо использовать электромагнитное реле (в комплект набора не входит), параметры которого должны соответствовать коммутируемому току нагрузки.
Датчиком служат специально изготовленная из фольгированного стеклотекстолита пластинка размерами 10x10 мм, показанная в верхней части рис. 114. Пластинка имеет гребенчатую структуру прорезей в токопроводящем покрытии. Геометрию этого сенсора можно изменить и экспериментально подобрать соответствующую чувствительность устройства.
Миниатюрный фотодатчик (рис. 115) предназначен для управления различными устройствами в зависимости от освещенности.
Рис. 115. Фотоприемник Мастер КИТ NM4014
Например, с наступлением темноты, фотодатчик включит освещение на улице и в подъезде вашего дома, а на рассвете — выключит. Предусмотрена регулировка порога срабатывания, а также индикация включения исполнительного устройства, ток нагрузки которого не должен превышать 75 мА. При токе более 75 мА в качестве исполнительного устройства необходимо использовать электромагнитное реле (в комплект набора не входит), параметры которого должны соответствовать коммутируемому току нагрузки.
Небольшие размеры, наличие индикатора, простота подключения и надежность позволяют устанавливать датчик в любом удобном месте, удаленном от исполнительного устройства. В качестве первичного преобразователя в устройстве используется фоторезистор СФЗ-1 или MPY54C569.
Несколько более сложным по изготовлению и наладке является устройство, относящееся к противопожарным системам.
Этот прибор позволяет обнаружить дым в помещении и включить сигнал тревоги. Устройство (рис. 116) создано на базе инфракрасного барьера.
Рис. 116. Сигнализатор задымленности Мастер КИТ NK291
Барьер представляет собой область между излучающим светодиодом и фотоприемником. Инфракрасные лучи, проходя через область дыма, попавшего в барьер, подвергаются рассеянию и поглощению. В результате сигнал, принимаемый фотоприемником, уменьшается и срабатывает реле, включающее сигнал тревоги.
В качестве сигнала тревоги могут быть использованы различные звуковые сирены или световые эффекты.
Сигнализатор питается от стабилизированного источника с напряжением 12 В, минимальный ток потребления 150 мА. Размеры печатной платы: 59x45мм. Рекомендуемый корпус: G024.
Сигнализатор задымленности устанавливается под потолком помещения и предназначен для любительского применения: он не может заменить профессиональные противопожарные системы, проходящие необходимую сертификацию в соответствующих службах.
Ультразвуки
Человеческий орган слуха путем длительной эволюции приобрел вполне определенную АЧХ, зависящую от конкретного индивидуума, но в среднем имеющую вид полосно-пропускающего фильтра с нижней границей среза на 20 Гц и верхней — на 20 кГц.
Область пропускания уха относится к звуку, колебания ниже 20 Гц — к инфразвуку, а выше 20 кГц — к ультразвуку. Общеизвестно, что чем выше частота колебаний (в волнах любой природы) и, соответственно, ниже длина волны, тем больше возможность их локализации в пространстве в виде направленных пучков, меньше размеры излучателей и приемников. Однако с ростом частоты растет поглощение волн, а мощность излучателей и чувствительность приемников имеют естественные физиологические или физические ограничения, поэтому существует оптимальная область частот для передачи и приема информации. Природа и человечество изобрели немало способов выхода из этой коллизии в зависимости от конкретных проблем.
Поскольку ультразвук не слышен человеческим ухом, то с его помощью можно скрытно передавать информацию объекту, обладающему обратными свойствами. Этот факт впервые интуитивно открыли безвестные средневековые браконьеры. Охотясь в заповедных королевских лесах Британии, они подавали не слышимые людям звуки своим натасканным собакам. Натасканные псы послушно приносили хитроумным хозяевам, подстреленную с помощью бесшумного же оружия (лук и стрелы), заветную дичь.
«Браконьерский свисток» со временем прошел через техническую эволюцию: превратился в милицейский (с переходом в звуковую область, ввиду противоположной задачи). Он лег в основу и ряда технологических ультразвуковых устройств, интенсифицирующих сложные гидро- и аэромеханические процессы (растворения, фильтрации, коагуляции и т. п.).
Акустические сигналы в виде упругих волн с частотой более 20 кГц используются в пультах дистанционного управления, барьерах охранной сигнализации, гидролокации, линиях задержки, для неразрушающего контроля материалов и т. п.
Мощные ультразвуковые колебания (интенсивностью более 1 Вт/см2) используют в технологии: для пайки алюминия (существуют специальные ультразвуковые паяльники), обезжиривания деталей, размерной механической обработки твердых материалов и т. п.
Ультразвук применяется также в медицине, как для диагностики и терапии, так и в хирургии. Источниками или приемниками ультразвука служат в большинстве случаев электроакустические преобразователи на основе пьезокерамических или магнитострикционных материалов.
Модель пьезокерамического излучателя
В пьезокерамическом излучателе пластинка пьезокристалла имеет металлизацию (обкладки, электроды) с двух сторон и специальный тип крепления. При переменном напряжении определенной частоты пластинка колеблется на этой частоте, излучая звуковые/ультразвуковые волны в окружающее пространство. Амплитуда этих вынужденных колебаний пьезоизлучателя зависит от амплитуды и частоты приложенного напряжения, геометрии, свойств материала пластинки и характера ее закрепления. Постепенно увеличивая частоту внешнего возбуждения, можно обнаружить, что АЧХ механических колебаний имеет резонансный характер, аналогичный кривой АЧХ последовательного электрического контура. Поэтому максимальная интенсивность излучения будет соответствовать возбуждению преобразователя на его резонансной частоте.
Поскольку пьезоизлучатель является колебательной электромеханической системой, то в его электрической модели механические элементы (эффективную колеблющуюся массу и эквивалентную упругость) можно заменить аналогичными электрическими: индуктивностью и емкостью. Потери на нагрев и излучение звука можно учесть резистивными элементами.
Модель пьезопреобразователя, как элемента электрической Цепи, можно представить в виде сложного R-L–C контура. Для этого обратимся к программе EWB.
Вышеизложенное позволяет выбрать в электрической схеме замещения (рис. 117, а) величины индуктивности Ls, моделирующей механическую инерцию (зависящую от массы колеблющейся пластинки, соединенных с ней элементов и «присоединенной массы» воздуха), колебательной емкости, моделирующей упругость пластинки при ее колебаниях Cs, и сопротивления Rs, связанного с внутренними потерями при циклических деформациях.
Здесь, как принято, индексом s отмечены параметры последовательного (serial) контура. Уточняя схему замещения, необходимо еще учесть собственную статическую емкость С0, образованную между обкладками пьезокварцевой пластинкой и проявляющуюся в отсутствие колебаний.
Рис. 117. Виртуальная модель в EWB пьезоизлучателя:
а — схема замещения; б — АЧХ; в — схема исследования модельного компонента; г — окно выбора модели; д — окно редактирования свойств
Поскольку нас в первую очередь интересует принцип действия устройства, то численные значения параметров выбраны несколько произвольно, но так, чтобы работа модели «полуколичественно» согласовывалась в дальнейшем со схемой возбуждающего генератора.
В данной схеме наблюдаются два резонанса (рис. 117, б) в последовательном контуре — резонанс напряжений (верхний пик) и в параллельном контуре резонанс токов (нижний пик), что хорошо видно на экране Боде-плоттера. Для параметров, указанных на схеме, резонансная частота последовательного контура примерно равна 22 кГц, а для параллельного — выше (67 кГц).
В разделе смесь программы EWB можно также открыть готовый схемный компонент Crystal (кристалл) и собрать аналогичную схему для его исследования (рис. 117, в).
Свойства пьезокварца выбираются в соответствующих последовательно открываемых окнах (рис. 117, г, д).
Параметры выбранного резонатора Р соответствуют использованным в предыдущей схеме замещения (см. рис. 117, а), поэтому АЧХ, получаемая на Боде-плоттере, будет идентична показанной на рис. 117, б, и здесь не приводится.
Для исследования поведения реального излучателя можно воспользоваться следующим устройством.
Миниатюрный излучатель Мастер КИТ АК076
Внешний вид этого излучателя был показан (см. рис. 19, а); его технические характеристики таковы: полоса частот 2,5…45 кГц, размеры 30x14 мм.
Проведя опыты и ознакомившись с пьезоизлучателем, на его основе можно создать полезное устройство для дома, для семьи.
Ультразвуковой свисток для собак Мастер КИТ NK028
…Монмаранси всякий раз усаживался рядом и сопровождал исполнение заунывным воем…
«Какого черта он так воет, когда я играю?» — возмущался Джордж, запуская в него башмаком.
«А какого черта ты так играешь, когда он воет?» — продолжал Гаррис, подхватывая башмак, — «оставь его в покое. Как ему не выть! У него музыкальный слух, а от твоей игры поневоле завоешь».
Джером К. Джером. «Трое в одной лодке, не считая собаки»
У английского писателя Джерома К. Джерома не было ультразвукового свистка, не было у него и собственной собаки, до тех пор, пока он не приехал в Россию, где ему и подарили точно такого же фокстерьера, как воспетый им Монмаранси…
Сохранить покой окружающих ранним утром или поздним вечером во время прогулки с собакой Вам поможет не слышный человеческому уху ультразвуковой свисток. Чуткое ухо Вашего любимца мгновенно уловит ультразвуковой сигнал даже на сравнительно больших расстояниях, и эти сигналы не будут повторять несносных звуков банджо, которые извлекал Джордж. При желании вы сможете натренировать Вашу собаку адекватно реагировать на привычные команды в ультразвуковом исполнении…
Это компактное устройство может работать от батарейки. Набор укомплектован пьезоизлучателем.
Принципиальная схема устройства показана на рис. 118, а, собранной в виде виртуальной модели в программе EWB.
В модели сохранены параметры и позиционные обозначения оригинала. Устройство представляет собой обычный мультивибратор на двух NPN-транзисторах VT1 и VT2 и усилительный каскад на PNP-транзисторе VT3. Регулировка частоты повторения импульсов осуществляется резистором R6. На выход усилителя подключен пьезоизлучатель Р, параметры которого мы выбрали, как и ранее, в соответствии с рис. 117, д. Дополнительно в модель подключен осциллоскоп и «датчик тока» в нагрузке Ri.
Сделав необходимые установки на осциллоскопе, включив моделирование и питание (ключ Е), наблюдаем картину колебаний на экране осциллоскопа (рис. 118, б).
Рис. 118. Ультразвуковой свисток для собак Мастер КИТ NK028:
а — виртуальная модель в EWB; б — осциллограмма колебаний; в — общий вид
Верхний луч (канал А) регистрирует ток в преобразователе, а нижний (канал В) — напряжение на нем. Звуки, а точнее ультразвуки, воспроизводимые реальным устройством, в общих чертах будут похожи на кривую тока.
От виртуальности переходим к реальности.
Устройство монтируется на плате А501 размером 27x55 мм в соответствие с приложенным описанием и заключается в корпус BOX-G027. К устройству подключается батарейка с кнопкой и пьезоизлучатель (рис. 118, в).
Уровень и высота тона (в пределах 8…22 кГц) регулируются подстроечным резистором R6. Теперь предстоят «полевые испытания».
Запасаемся колбасой и отправляемся натаскивать своего четвероногого друга на нужные нам команды. Здесь полезно предварительно прочитать, как промышлял собаками бравый солдат Швейк. Впрочем, даже «мягкая дрессура» — занятие посложнее электроники…
В природе не только (и даже, пожалуй, не столько) собаки, но и в еще большей мере летучие мыши, дельфины и киты используют ультразвук для коммуникаций, определения различных целей и ориентации в пространстве.
После гибели «Титаника», когда он оказался фактически «слепым» в водной среде, и позже, в связи с разбоем немецких подводных лодок в водах Атлантики в период Первой мировой войны, многие задумались над тем, а как же можно «прозреть» в морских глубинах. Сама задача стояла и раньше: первые гидроакустические приборы «гидрофоны» испытывались в Галерной гавани Петербурга еще в конце XIX в., но в них не применялась пьезо- или магнитострикция, и поэтому они были весьма примитивными (не «браконьерский свисток», но близко к нему).
Творцом первого гидролокатора является наш соотечественник, к сожалению, несправедливо забытый, эмигрировавший из России задолго до революции сначала во Францию, а затем в США, К. В. Шиловский. Металлокварцевый излучатель ультразвука, созданный Шиловским, лег в основу так называемого «пакета Ланжевена», а используемая система гидролокации содержала все необходимые современные атрибуты: генератор электрических колебаний, излучатель, приемник и индикатор. В англоязычной литературе это устройство называется сонаром (SONAR — SOund Navigation And Randing — звуковая навигация и определение дальности), а в русскоязычной — гидролокатором. По аналогии с сонаром устройство, использующее радиоволны для радиообнаружения и определения дальности, назвали радаром (RADAR — Radio Detection And Randing), или радиолокатором.
В системах охранной сигнализации, предназначенных для обнаружения несанкционированного проникновения на объект (детекторы движения, барьеры), используются два идентичных преобразователя, один из которых служит излучателем, а другой — прием ником ультразвука. Возможна работа и с одним приемоизлучающим устройством на отраженных сигналах, в режиме переключения передача/прием. При пересечении ультразвукового пучка, созданного излучателем (невидимого и неслышимого), в приемнике возникает импульсный сигнал, отрабатываемый в соответствующей системе.
Примером подобной системы служит описываемый ниже «Ультразвуковой радар» NS167 (здесь слово «радар» использовано в условно-собирательном смысле), правильнее его назвать «Ультразвуковым локатором» или, пользуясь терминологией, принятой в охранных системах, «Ультразвуковым барьером».
Ультразвуковой барьер Мастер КИТ NS167
Ультразвуковой барьер предназначен для использования в качестве акустического датчика в охранной сигнализации. Это простое и интересное устройство позволяет обнаружить движение любых физических объектов в закрытом помещении или автомобиле (детектор движения). Устройство имеет регулировку чувствительности детектора. Максимальный радиус действия 10 м. Принципиальная схема барьера показана на рис. 119, а.
Схема устройства состоит из трех блоков: усилителя на биполярном транзисторе TR3 (типа ВС 547) и двух ОУ IC1 и IC2 (типа 741); логического устройства на двух элементах NAND (N3, N4) и двух биполярных транзисторах TR1, TR2 (также типа ВС 547); автогенератора ультразвуковых электрических колебаний на основе двух элементов NAND (N1, N2) и пьезопреобразователя Т (TRANSMITTER — передатчик), включенного в цепь ОС (выводы 5, 6). Здесь и далее выводы на плате обозначаются в круглых скобках, а на микросхеме без них. Элементы N1-N4, показанные на принципиальной схеме (в стандарте ANSI) в разнесенном виде, входят в состав КМОП микросхемы 4093 (аналог — К561ТЛ1) и представляют собой триггеры Шмитта, на входе каждого из которых стоит двухвходовой элемент NAND, причем они, кроме N4, использованы как инверторы.
Рис. 119. Ультразвуковой барьер Мастер КИТ NS167:
а — принципиальная схема; б — печатная плата и подключение внешних устройств; в — модель генератора; г — выбор пьезокварца; д — осциллограмма сигналов; е — разнесенная модель логического блока; ж — модель логического блока на микросхеме
Устройство смонтировано на печатной плате размером 50x88 мм (рис. 119, б). На вход усилителя (выводы (3),(4)) включается пьезоприемник R (RECIEVER — приемник), между выводами (2) и (9), обозначенными на рис. 119, б, как «ВЫХОД», через токоограничивающий резистор R18 = 470 Ом включается светоизлучающий диод (Light Emitting Diode) — LED. Между выводами (7), (8) включается тумблер SPTP, служащий для сброса системы в исходное (сторожевое) состояние после приема сигнала. Потенциометр Р1 служит для регулировки коэффициента усиления принимаемого сигнала, а Р2 — для регулировки рабочей частоты. Питание устройства осуществляется от источника постоянного напряжения 9…12 В, подключаемого к выводам 1, 2 (1 — «плюс», 2 — «земля»).
Моделирование работы устройства
Поскольку работа приемника и усилителя сигналов тривиальна, то смоделируем в программе EWB работу двух других основных блоков: генератора и логического устройства.
Модель генератора, в соответствии с принципиальной схемой, соберем из базовых логических элементов NOT, содержащих триггеры Шмитта (рис. 119, в). На приведенной схеме (и далее) сохранены позиционные обозначения моделируемого устройства (см. рис. 119, а).
В качестве пьезопреобразователя Т использована библиотечная модель на частоту 32,768 кГц марки R38 (raltron), выбираемая последовательным нажатием ЛKM на пиктограммы и , с последующей буксировкой на рабочее поле и выбором в окне свойств кристалла (рис. 119, г).
Для наблюдения колебаний на выход генератора включен двухканальный осциллоскоп. Лучи разнесены по вертикали: канал А регистрирует постоянную составляющую, а В — переменную. Картина электрических колебаний показана на рис. 119, д для указанного на схеме (рис. 119, в) положения потенциометра Р2 50 %.
Уменьшая это значение нажатием на клавишу R или, напротив, увеличивая нажатием на Shift+R, можно регулировать частоту повторения импульсов в пределах примерно 10…100 кГц.
Реальный излучатель будет возбуждаться подобными импульсами и генерировать в окружающее пространство ультразвук в виде последовательности, состоящей из затухающих колебаний на его собственной частоте. Если частота возбуждения совпадет с собственной частотой, а затухание в системе (включая потери на излучение) будет невелико, то возникнет режим стационарных автоколебаний (наиболее выгодный для излучения).
Для моделирования работы логического блока соберем его модель (рис. 119, е).
Ультразвуковой пучок, попавший на приемник и далее усиленный, формирует высокий уровень на входе 2 элемента N3. В модели это представлено источником Е1, ключом с управляющей клавишей Space и резистором r = 100 кОм. На вход 1 этого же элемента через резистор R12 также подается высокий уровень, а выход с него (при двух высоких уровнях на входе — низкий уровень) через R14 поступает на транзисторную сборку типа Дарлингтона (TR1,TR2) и далее на светодиод LED. При низком уровне сигнала на выводе 3 светодиод не горит. Ключ К должен замыкать контакты (7) и (8), также поддерживая высокий потенциал точки (8) при низком на 3, 5, 6 и, соответственно, высоком на 4 и (7). Для моделирования прерывания ультразвукового пучка, размыкаем ключ Space: светодиод загорится (на схеме рис. 119, е две стрелки вблизи него, имевшие просвет в своих окончаниях, «зачернятся» ).
Не забудьте, разумеется, при проведении моделирования нажимать предварительно на виртуальный выключатель О/I, расположенный в верхнем правом углу окна. Однако после возврата ключа Space в этой модели в исходное состояние, светодиод опять гаснет, так как был использован элемент NAND без гистерезиса.
Поэтому соберем последнюю виртуальную модель, воспользовавшись библиотечным компонентом микросхемы 4093, и используем ее и для генератора, и для логического блока, как и предусмотрено в реальном устройстве. Эта модель показана на рис. 119, ж.
Перед проведением эксперимента в окне Analysis Options, для устойчивости счета, изменим две установки: примем в закладке Global RELTOL = 0.1 и в закладке Transient ITL4 = 100. Ключи Space и К — замкнуты, включаем моделирование. Светодиод не горит.
Нажимаем два раза Space (вход в луч и выход из него) — светодиод загорается и продолжает гореть. Система сработала — виртуальный нарушитель пойман, для приведения устройства в исходное состояние надо нажать ключ К и вернуть устройство в исходное состояние. Светодиод погас и система вновь готова к регистрации прерываний луча.
Для тех, кто «поднаторел» в электронике и хотел бы поработать с полной виртуальной моделью, приводим ее возможный вариант (рис. 120). Однако наладка подобных моделей — дело не простое, и лучше вначале отладить отдельные блоки, а затем, воспользовавшись техникой субблоков, собрать из них структурную схему-модель.
Теперь, разобравшись в сути, переходим к сборке и наладке в соответствии с прилагаемым описанием. Общий вид устройства показан на рис. 121. Его следует после настройки заключить в подходящий корпус, позаботившись и об источнике питания.
Рис. 120. Полная виртуальная модель в EWB ультразвукового барьера
Рис. 121. Общий вид ультразвукового барьера Мастер КИТ NS167
Располагаем излучатель и приемник вдоль охранной линии, закамуфлировав их под безобидные и малозаметные предметы, а на место светодиода включаем реле с проводами, идущими в пункт наблюдения (или организуем местный радиоканал). Ждем реальных «непрошенных» гостей…
Пусть лучше не приходят — электроника не подведет.
Ох, лето красное! Любил бы я тебя,
Когда б не зной, да пыль, да комары, да мухи…
A.C. Пушкин
Вряд ли найдется человек (сам Великий Пушкин страдал!), которого бы не донимали комары и другие, подобные им кровососы: их занудное жужжание, особенно по ночам, просто невыносимо, укусы долго чешутся и, вообще! Человек борется с ними, как только может. В дело идут все достижения научно-технического прогресса: химия, свет, электричество, пылесосы, телевизоры, компьютеры, а заодно и все, находящиеся под рукой, предметы обихода…В Интернете можно обнаружить такое число средств, что оно уже сравнивается, с учетом тиражирования, с самим вражеским поголовьем.
Рассмотрим один из вариантов, доступный и интересный для начинающих радиолюбителей: надо все-таки самим попробовать.
Начнем с истории. Видно крепко «достали» комарики и их «братки» американцев во времена боев в джунглях Вьетнама, если специальная группа ученых-энтомологов, вплотную занимаясь этой проблемой, придумала новое «антикомариное» оружие. Янки, истреблявшие вьетнамцев напалмом, решили охранять свой покой…ультразвуком.
Тщательно изучая комариные осыпи, американские ученые обнаружили, что из всех комаров кусаются только беременные самки. «Se la vie» — «Cherchez la femme», то бишь: «Такова жизнь» — «Ищите женщину» — сказали бы остряки-французы.
Дальнейшие, очевидно еще более скрупулезные исследования, показали, что в эти периоды самки не переносят звуков, издаваемых комарами-самцами. Остальное, как говорится, было делом техники. Выяснили, что якобы эти звуки лежат в ультразвуковом диапазоне частот, да и создали прибор, названный акустическим репеллентом (от лат. repeliense — отталкивающий, отгоняющий).
Отойдя от правил латинской грамматики в образовании имен существительных, а, напротив, на американский манер, его можно было бы назвать «репеллером», чтобы не путать с одноименными химическими средствами защиты, репеллентом (который уместнее было бы называть по-русски «антикомарином»). Этот самый «репеллер» (ассоциация с «пропеллером» не вредит пониманию сути дела и в чем-то даже полезна) представляет собой обыкновенный ультразвуковой генератор, снабженный соответствующим излучателем, который и посылает самкам, увы, не вовремя, столь ненавистные ими призывы любви…
Советские ученые тоже не спали, и в прямом и в переносном смысле, «комаров, да мошек» в тайге почище, чем во вьетнамских джунглях, ну а левшей-то у нас всегда было хоть отбавляй. Вот и подковали комариков: хвать их и на электрический стульчик (американцы, по обыкновению, на него людей сажают, а наши-то гуманисты — комаров). Те запищали, заголосили… Дальше, не подумайте, что стала вся «оборонка» особые «электростулья» выпускать, а просто записали все это аккуратненько на пленочку, и давай на тайгу вещать: «Здесь вашего брата убивают! Спасайся, кто может!». А чтобы понятнее было для этих меньших, но отнюдь не наших братьев, вещание велось на столь ненавистной ими ультразвуковой частоте, на которой они сами во время пыток орали… Вот, вам и «Кыш, комарик!», по-советски.
Создание на подобных же принципах акустических «репеллеров» для отпугивания птиц с сельхозугодий, аэродромов и т. п. объектов позже вошло в обычную мировую практику, хотя вопросы привыкания, индивидуализации и прочие остались и по сию пору.
Здесь, хочется еще сделать небольшое отступление-экскурс в область биоакустики (есть и такая наука). Согласно последней, гудение (жужжание) комаров связано с колебаниями воздуха при взмахах их крыльев.
Основная частота этого процесса составляет 500…550 Гц — до ультразвука-то, ой, как далеко! Возможно, это только несущая частота, а сам сигнал внутри закодирован, наука пока еще это не исследовала. Это гудение для «комарильи» (так я назову эскадрилью комаров, близкую по духу и фонемам к испанской «камарилье» — свите-клике около монарха) является боевым сигналом самцам к сбору. Ибо именно такова частота звуков, исходящих от крыльев их «боевых подруг», конечно же, самцы, в отличие от исследованных американцами самок, охотно летят на этот зов любви. То, что эти звуки столь привлекательны, косвенно подтверждается тем фактом, что высоковольтные трансформаторные подстанции обычно буквально забиты всякого рода мошкарой. Правда, гипотез насчет того, как они туда попали и по какой причине сдохли, можно выдвинуть великое множество, но предположим, что их привлекают звуки, издаваемые элементами конструкций трансформаторов, работающих на переменном токе. Ну, а как «гудят» трансформаторы, хорошо известно каждому. Наличие же высших (но отнюдь не ультразвуковых) гармоник в их звуке также легко понять, так как в кривой тока, из-за нелинейности намагничивания сердечника, они всегда присутствуют.
Далее, помимо колеблющихся крылышек, звуки могут порождаться еще и по принципу смычка и струны: так «стрекочут» кузнечики, сверчки, цикады и другие насекомые.
Наконец, пенье птиц и ультразвуки, издаваемые летучими мышами — это третий механизм возникновения звука, голосовой, за счет модуляции выдыхаемого воздуха. Как возникают ультразвуковые (!) колебания у комаров? Не очень понятно, но примем это за клинический факт, отталкиваясь от которого, начнем активно бороться с паразитами. Ниже представляются специальные разработки лаборатории Мастер КИТ для решения столь актуальной проблемы.
Электронный репеллент Мастер КИТ NM5017
Данный набор содержит основной компонент предлагаемого антикомариного оружия (отпугивателя насекомых-паразитов): генератор электрических высокочастотных колебаний. Схема генератора, выполненная в виде виртуальной модели в программе EWB, показана на рис. 122, а.
Здесь сохранены в основном позиционные обозначения компонентов, включая монтажную печатную плату А501, и добавлен ряд элементов из программы EWB, обеспечивающих возможность демонстрации работы этого устройства. К сожалению, программа пока не позволяет дать полномасштабную мультимедийную картину: полет комаров, их писк и отражение «басурман» с помощью «репеллера». Возможно, что кто-либо из читателей, создаст подобную «игрушку» — «Комариные Войны». Для этого, правда, потребуются дополнительные сведения о диаграммах направленности излучателей, затухании ультразвука в воздухе и, главное, «сенсорике» комаров.
Рис. 122. Электронный репеллент от комаров Мастер КИТ NS167:
а — виртуальная модель в EWB; б — осциллограмма сигнала; в — общий вид
Генератор выполнен по схеме симметричного мультивибратора на транзисторах VT1, VT2.
Мультивибраторы генерируют периодические колебания несинусоидальной формы. Термин «мультивибратор» происходит от двух латинских слов: multum — много и vibrare — колебать. Импульсы, создаваемые мультивибратором при периодическом заряде и разряде конденсаторов, представляют одновременное множество колебаний разных частот, что и объясняет приведенное название. В автоколебательных мультивибраторах условия баланса амплитуд и фаз выполняются не для одной, а сразу для многих частот, из которых и складываются результирующие колебания.
Простейший мультивибратор представляет собой двухкаскадный усилитель, в котором выходы и входы каскадов соединены перекрестными RC-цепями положительной обратной связи. В схеме на рис. 122, а реализованы коллекторно-базовые связи посредством конденсаторов С2 и С5. Заряд и разряд этих конденсаторов через соответствующие резисторы носит характер релаксационных колебаний. Поэтому генераторы данного типа называют также релаксационными, или релаксаторами (от лат. relaxatio — уменьшение напряжения, расслабление).
Период повторения (следования) колебаний зависит от суммы постоянных времени (RC) зарядно-разрядных цепей. Частота следования импульсов (величина обратно пропорциональная периоду) регулируется резистором R6. К выходу генератора (выводы 2, 3) включен излучатель (Speaker), моделируемый резистором R13.
Здесь мы приняли сопротивление пьезоизлучателя чисто активным, полагая, что это высокодобротная колебательная система, находящаяся в режиме резонанса на основной гармонике. Строго говоря, проблема используемого излучателя и его согласования с генератором требует отдельного обсуждения и является немаловажной, а, возможно, даже критической, при практической реализации устройства. При неправильном его подборе, поговорить с комарами не удастся: они Вас не поймут! Наличие регулятора R6 позволяет будущим Дарвинам и Павловым, рассортировав комаров по видам, а также полу и состоянию желудков, провести более детальные исследования. Может, и откроете что-нибудь новенькое, если очень постараетесь, да и повезет. Излучатель для этого надо взять более широкополосный, например, электродинамический, да усилитель добавить. Не помешает также микрофон и осциллоскоп для регистрации формы кривой и уровней звука, по ним и спектральный состав можно найти… «Мелкоскопчик» и т. д. Одним словом, «Паяльник в руки!». Ну, а пока что, мы тихонько модель погоняем.
Для исследования работы мультивибратора в схему дополнительно включен также осциллоскоп, фиксирующий форму выходных колебаний напряжения. Осциллограммы можно снимать при различных значениях R6. Для этого надо «открыть» лицевую панель виртуального осциллоскопа и выполнить необходимые установки (см. рис. 122, б). Затем включить моделирование и последовательно нажимать клавишу [R] для регулировки «вниз» и [R] + Shift, соответственно, для регулировки «вверх». При этом надо иметь в виду некоторые особенности работы программы. Во-первых, для регулировок надо щелкнуть предварительно ЛКМ, поместив курсор в любую точку рабочего поля, кроме панели осциллоскопа. Во-вторых, регистр шрифта должен стоять в позиции «Еп», а не «Ru», так как программа канадская. В-третьих, желательно начинать исследования с 50 % (при очень малых значениях R6 генератор не самовозбуждается). Наконец, для получения реалистичной картины колебаний относительная ошибка анализа RELTOL должна быть не более 0,0001.
Картина колебаний на нижней границе регулировки (R6 = 0 %), что соответствует верхней границе по частоте показана на рис. 122, б. Нетрудно видеть, что это типичные экспоненциальные кривые заряда и разряда конденсатора через резистор с периодом около 50 мкс, что дает частоту следования 20 кГц. Вообще говоря, эту частоту желательно поднять выше, иначе люди, особенно молодые, с музыкальным слухом будут слышать этот звук. А вот на сколько его надо поднять: хорошо бы полюбопытствовать у самих комариков. Возможно, для них надо писать специальные фуги или современный «крутяк». Ряд подобных компьютерных программ уже существует, но отзывы на них комаров нам не известны. Кроме того, повторю еще раз: важно какова излучающая система и как она согласована с генератором (а заодно уж и с воздухом).
Спецификация компонентов, используемых в устройстве, приведена в таблице.
Технические характеристики устройства
Номинальное напряжение питания… 9 В
Номинальное сопротивление нагрузки… 32 Ом
Диапазон частот… 8…35 кГц
Размер печатной платы… 40x50 мм
Общий вид устройства показан на рис. 122, в.
Вот, наконец, генератор собран, подключаем к нему подходящий источник питания и излучатель, например АК076.
Регулируя построечный резистор R6 вверх по частоте, наблюдаем, как комары на оконном стекле забеспокоились. Ставим «репеллер» рядом с ночником. «Кыш, кыш, кыш комарики!» — кричит он им десятки тысяч раз в секунду. Будем надеяться, что они улетят не солоно хлебавши (кровь-то — соленая!), а мы выспимся спокойно.
Итак, мы благополучно разделались с комарами, а может быть заодно и с мухами. Эх, как был бы рад этому незабвенный Александр Сергеевич. Да, будь в те времена подобные устройства, не появилось бы столь горьких строчек о лете, но, зато в его творчестве, наряду с «Болдинской осенью», засверкало бы искрометно-поэтическое «Болдинское лето». А так его Пегас, видно, прятался летом от комаров да мух. Ну что ж, может быть повезет его потомкам.
Перейдем к обзору всего наличного арсенала, направленного на войну до победного конца в садах, на огородах и дачах не только против комаров, но и других, досаждающих нам тварей: грызунов, ползающих и летающих паразитов, прожорливых птиц, непокорных кошек и собак. Нет, упаси Боже, мы не будем их истреблять, а только отгонять. Все приводимые далее устройства по принципу действия аналогичны, описанному выше, и отличаются лишь рядом параметров. Поэтому дадим только их сжатые описания и технические характеристики, позволяющие в зависимости от конкретной задачи осуществить подбор необходимого.
Универсальный ультразвуковой отпугиватель насекомых и грызунов Мастер КИТ МК075
Устройство предназначено для владельцев садово-огородных участков. Предлагаемый модуль (рис. 123, а) позволяет защитить добытый с трудом урожай от грызунов, птиц, домашних животных, насекомых, ползающих и летающих паразитов.
Рис. 123. Ультразвуковой отпугиватель насекомых и грызунов:
а — электронный модуль Мастер КИТ МК75; б — дополнительные излучатели
Устройство излучает ультразвуковые сигналы, чрезвычайно неприятные для грызунов и насекомых-паразитов. На корпусе устройства находится регулятор, позволяющий настроить прибор на конкретный вид отпугиваемых вредителей. Устройство имеет встроенный динамик, но для увеличения площади отпугивания к данному модулю можно подсоединить до четырех внешних динамиков типа АК157 (рис. 123, б). Напряжение питания устройства 9…14 В, при токе потребления 40 мА. Диапазон частот излучаемых волн: 12…38 кГц. Размеры модуля: 72x55x28 мм. Модуль не требует сборки.
Электронный репеллент подземных грызунов Мастер КИТ МК080
Герметичный модуль, излучающий агрессивные, сейсмические колебания в высокочастотной области, отпугивает подземных грызунов. На рис. 124 показаны два варианта исполнения модулей.
Модуль располагают возле нор грызунов, подавая постоянное напряжение 9 В. Одним модулем можно защитить участок площадью до 1000 м2. Устройство потребляет ток 150 мА. Размеры модуля: 72x50x35 мм.
Рис. 124. Электронные модули Мастер КИТ МК080
Стационарный ультразвуковой отпугиватель насекомых и грызунов Мастер КИТ МК107
Данное устройство (рис. 125) также ориентировано на заядлых огородников и предлагается вместо ядохимикатов и огородного пугала для защиты от различных вредителей.
Универсальный ультразвуковой генератор требует напряжения питания 12…24 В; диапазон частот воспроизводимых волн: 10…40 кГц.
Для увеличения площади воздействия к модулю можно подсоединять до пяти динамиков. Модуль не требует сборки. При настройке вышеперечисленных устройств можно ориентировочно руководствоваться нижеприведенными данными по воздействию излучения разных частот на насекомых и животных.
Рис. 125. Электронные модули Мастер КИТ МК107
Миниатюрный пьезоизлучатель Мастер КИТ АК076
Общий вид этого излучателя был показан ранее (см. рис. 19, а). Излучатель можно использовать в качестве дополнительного источника звука в электронных ультразвуковых репеллентах от грызунов и насекомых, а также в различной звуковой технике. Пьезоизлучатель имеет алюминиевую полусферу, за счет чего достигается высокая мощность излучения при минимальных искажениях.
Технические характеристики излучателя таковы: полоса частот — 2500…45 000 Гц, размеры: диаметр — 30 мм, высота — 14 мм.
Пьезоизлучатель можно использовать совместно с универсальным ультразвуковым отпугивателем насекомых и грызунов (NM5017).
Ультразвуковой динамик Мастер КИТ АК157
Этот ультразвуковой настенный динамик (рис. 126), в комплект которого включены две скобы для закрепления на стене, может служить дополнительным репродуктором для универсального ультразвукового отпугивателя насекомых и грызунов (МК075). Светодиод, установленный в динамике, служит индикатором работы, загораясь только при излучении ультразвука. Устройство получает рабочее напряжение из сигнала ультразвуковой частоты, подаваемого базовым устройством (МК075).
Динамик можно устанавливать вне помещения благодаря защитному корпусу. Размеры динамика: 75x75x24 мм.
Рис. 126. Ультразвуковой динамик Мастер КИТ АК157
Все тайное, при старании, становится явным.
На протяжении всей истории человечества одни люди упорно стараются что-нибудь скрыть от других, хотя иногда это за них делает природа и время. Секреты ремесла и сокровища, знания и сведения о происшедших событиях, правдивая информация и подлинность предметов — этот список тайн, покрытых мраком бесконечен. Другие люди не менее упорно стараются вскрыть истину, охранить правду. Разведчики и шпионы, криминалисты и нарушители законов, археологи и черные кладоискатели — «несть им числа». И здесь электроника приходит на помощь правому делу.
Чужая душа потемки
Шипа в мешке не утаишь
Пословицы
Людей всегда интересовало, насколько правдива та информация, которую они получают от других. Проблема выявления лжи или обнаружение неискренности в поведении человека стара как сам мир. Давно уже было подмечено, что состояние и поведение человека напрямую связано с его душевными переживаниями. Этим неоспоримым фактом стали пользоваться при допросах подозреваемых лиц и для разоблачения преднамеренных обманов.
В древней Индии допрашиваемых просили одновременно с ответом на поставленный вопрос ударять в гонг. Если вопрос вызывал затруднение и внутреннее замешательство у подозреваемого, то он не мог ответить на него легко и непринужденно. Тогда ему требовалось время и определенные усилия над собой, а это приводило к сбоям при ударах в гонг.
В древнем Китае подозреваемым давали сухую рисовую муку и просили ее прожевать в разговоре с ними. Если человек был не в состоянии это сделать, поскольку при дополнительных переживаниях во рту пересыхало и еда буквально не «лезла в горло», то его осуждали, считая, что он пытается скрыть правду.
С развитием наук о человеке, таких как физиология, химия, психология и др., появились методы количественной инструментальной оценки изменений в организме человека, испытывающего психологический стресс. При стрессе повышается содержание адреналина в крови, увеличивается потребность организма в кислороде, что в свою очередь проявляется в отклонении ряда физиологических показателей от нормы: учащается или снижается частота пульса и ритм дыхания, повышается кровяное давление, изменяется электрическая проводимость кожи и температура тела, наконец, изменяется характер биотоков мозга. Когда источник стресса исчезает, организм вырабатывает норадреналин, нейтрализующий действие избыточного адреналина. Таким образом, появилась возможность фиксации реакции человека на эмоциональное возбуждение, обусловленное «внутренней борьбой» за выживание путем передачи ложных сведений. Характерно, что показатели эмоций проявляются непроизвольно, против воли и желания человека. Специальная тренировка отчасти может изменить уровень отдельных реакций, но полный комплекс показателей свести на нет, практически, невозможно, особенно при использовании современных электронных систем получения и обработки информации.
В 1927 году американский криминалист Леонард Киллер сконструировал и запатентовал специальное электронное устройство, одновременно регистрирующее три параметра (дыхание, относительное давление крови и электрическую активность кожи). Киллер окрестил эти устройства «Детекторами лжи». Позже их стали по научному именовать «Полиграфами» (от гр. polugraphia — многописание). Наибольшее распространение они нашли в США, начиная с 1980-х годов.
Современный полиграф — компьютерный прибор, использующий множество различных датчиков и фиксирующий одновременно ряд физиологических показателей человека. Эти приборы используются в самых различных сферах: от традиционного криминалистического дознания, до приема на работу. Необходимо отметить, что для получения объективной информации важно не только совершенство прибора, но и сама методика его применения: окружающая обстановка, характер и способ преподнесения вопросов и т. п. Правильное использование приборов (искусство оператора) дает достоверность, доходящую до 95 %. В настоящее время получили распространение различные упрощенные приборы и методики. К получаемым на них результатам надо относиться с крайней осмотрительностью.
Самой простой эмоциональной физиологической реакцией является так называемая кожно-гальваническая реакция — изменение поверхностного сопротивления кожи человека, вызванного целенаправленными вопросами, задаваемым по специальным методикам. Различают реакцию физическую и тоническую.
При физической реакции происходит резкое изменение электрического потенциала кожи на эмоциональный раздражитель. Тоническая реакция приводит к медленному изменению электрического сопротивления кожи (приспосабливаемость) в ответ на эмоциональный раздражитель. Величина кожного сопротивления датчика может изменяться от 600 кОм до 100 Ом.
Здесь уместно вернуться к спорам Гальвани и Вольта о природе биоэлектричества, о которых было кратко рассказано в начале книги.
Прибор, использующий одну кожно-гальваническую реакцию, конечно, еще не полиграф в полном объеме, поскольку нет учета «множественности» показателей, а лишь некоторый его компонент.
Изготовив самостоятельно такой прибор на основе набора «Детектор лжи» Мастер КИТ NK314, можно разобраться в принципе действия подобных систем и немного поиграть в криминалистику, не доводя дело до абсурда, т. е. не выходя за рамки безобидной игры.
Виртуальная модель «Детектора лжи» Мастер КИТ NK314
Принципиальная схема устройства, набранная в программе EWB, т. е. представляющая его виртуальную модель, показана на рис. 127, а.
Рис. 127. Детектор лжи Мастер КИТ NK314:
а — виртуальная модель в EWB; б — схема подключений; в — общий вид
Здесь на трех транзисторах PNP-типа собрано пороговое устройство (усилитель постоянного тока с большим коэффициентом усиления). К точкам «К-К» (вход) в реальном устройстве подключаются рабочие электроды, накладываемые на ладонь испытуемого, а в виртуальной модели этот имитатор датчика состояния поверхности кожи — резистор [R], с регулируемой величиной сопротивления.
Выходом служит сигнал светоизлучающего диода LED (Light-Emitting Diode). Питание устройства осуществляется от батареи Е1 с напряжением 9 В. Потенциометр [Р] служит для начальной установки режима. Интегрирующая цепь R1C1 предохраняет устройство от ошибочных электрических сигналов.
Вначале оба потенциометра [R] и [Р] устанавливаются на 100 %, если при этом дать команду на моделирования, то индикатор LED загорится (его стрелки на схеме в анимационном режиме «зачернятся»). Нажимая последовательно на клавишу Р (при английской раскладке клавиатуры), надо уменьшать величину сопротивления одноименного потенциометра, пока индикатор не погаснет: его стрелки из зачерненных превратятся в стрелки с просветом. На этом надо остановиться: предварительная настройка схемной модели проведена.
Далее последовательно нажимаем на клавишу R, уменьшая величину сопротивления имитирующего поведение датчика сопротивления поверхности кожи. При достижении величины 90 % от 0,5 МОм (уменьшение на 50 кОм), LED загорится, что моделирует появление сигнала об уменьшении кожного сопротивления.
Именно этот этап моделирования зафиксирован на рис. 127, а, где сопротивление Р равно 5 % от 2,2 МОм, т. е. 110 кОм. (Для увеличения сопротивления переменных резисторов надо нажимать на соответствующие клавиши при одновременно нажатой клавише Shift.) Приведенные числовые данные условны и зависят в реальной системе от вида используемого светодиода, применяемой электродной системы, характеристик кожи и особенностей реакции конкретного испытуемого.
Сборка Детектора лжи Мастер КИТ NK314
Детектор лжи монтируется на прилагаемой печатной плате (рис. 127, б, в) по приведенной выше принципиальной схеме из компонентов, указанных в таблице.
Устройство питается от батареи с напряжением 9 В и поэтому абсолютно безопасно для жизни; потребляемый ток составляет 10 мА. При монтаже необходимо обратить особое внимание на полярность подключения батареи и светодиода.
Выводы к датчику от контактов «К-К» на плате выполняются многожильными монтажными проводами, на конце которых закрепляются два небольших плоских электрода (например, две монетки). Все устройство следует заключить в «фирменный» корпус, который можно подобрать по каталогу Мастер КИТ.
Допрос без пристрастия
Перед началом эксперимента испытуемый свободно усаживается на стул, и на тыльной стороне его ладони пластырем фиксируются электроды датчика (рис. 127, б). Медленно вращая движок «подстроечного» сопротивления Р, добиваются погасания светодиода и фиксируют это положение. На этом электронная часть проблемы как бы прерывается и начинается собственно игра в криминалистику. Теперь надо задать такие непростые вопросы, при которых бы испытуемый стал врать и переживать за произносимое, и тогда (опять включается электроника) светодиод должен загореться.
Здесь Вам придется пофантазировать и поэкспериментировать, определив правила игры (оскорбительные и интимные вопросы должны быть исключены в принципе, а результаты оставаться конфиденциальными по договоренности, не следует также использовать игру в корыстных целях). Если Вы играете с товарищем, то желательно чередовать роли следователя и допрашиваемого, для соблюдения равноправия и чтобы почувствовать себя в «чужой шкуре»».
В качестве начальной методики составления вопросов можно порекомендовать так называемый нейтрально-целевой метод, который был разработан классиком полиграфии Макстаном еще в 1917 году. Он долгое время являлся стандартным при подобных проверках. Существо нейтрально-целевого метода заключается в следующем.
Имеется три типа вопросов: значимые и целевые вопросы, нейтральные для создания фона и контрольные. Для того чтобы отличить реакции на нейтральные и целевые вопросы, избирается определенная техника постановки вопросов.
Берется группа вопросов: нейтральные, не имеющие отношения к существу дела (например: «Как ваша фамилия?»» или про погоду); значимые, по которым проводится расследование и определяется отношение человека к тому или иному делу. В разных вариантах эти вопросы могут идти вперемежку, например, один значимый, потом нейтральный; или могут идти зонами, например, 5 нейтральных, потом группа 5 критических, потом опять 5 нейтральных, потом опять 5 критических. Все заданные вопросы и ответы записываются на бумагу и на магнитофон. После окончания процедуры анализируется, как человек реагировал на группу нейтральных вопросов, затем на критическую группу — есть ли различие или нет.
Далее проводится полное сравнение ответов испытуемого на те или иные вопросы. Если вопросы шли вперемежку, то по отдельности соответственно смотрят, как он реагировал на те или иные вопросы изолированно. Эта аналитическая часть может оказаться гораздо сложнее электронной, так как не формализована и близка к искусству.
Главное, не забывайте, что приборы не совершенны, и это всего лишь игра. Не заиграйтесь, будьте на высоте морально-этических норм, следуйте клятве Гиппократа: «Не навреди!».
Сия карта показывает места богатейших кладов, зарытых и потерянных Госпариллой («Черным Цезарем») и другими знаменитыми пиратами…оцениваемых ныне приблизительно в 165 000 000 долларов Соединенных Штатов
…Стоимость карты — один доллар
Кладоискательство — исконная страсть человечества. Веками одни — старательно прячут или случайно теряют сокровища, а другие — фанатично пытаются их найти. Пиратские клады и древние захоронения, затонувшие галионы и загадочные пещеры, чердаки и подвалы — куда только не приводят тропы романтиков и алчных, диггеров и «черных следопытов», людей ученых и простаков…
«Каждый выбирает для себя», и мы отнюдь не агитируем за этот вид «умопомешательства», или, напротив, стараемся кого-то отговорить от подобных затей, а хотим лишь слегка приоткрыть занавес в малой части, связанной с радиоэлектроникой. Поэтому речь пойдет о простейшем металлоискателе, а уж для чего его применить — дело хозяйское.
Металлические предметы реагируют на внешние электромагнитные поля. Характер этой реакции зависит от их электрофизических свойств и параметров поля.
Переменное электромагнитное поле наводит в сплошных металлических массах вихревые токи. Подобные токи называют также токами Фуко, по фамилии французского физика, исследовавшего их в XIX в. и предложившего разделять предметы на тонкие пластины для их уменьшения. Этот прием используется для уменьшения потерь на нагрев в трансформаторах и машинах переменного тока.
Вихревые токи создают собственное электромагнитное поле в окружающем пространстве. Если тела являются ферромагнитными, то имеется дополнительная реакция на внешние электромагнитные поля, связанная с намагничиванием вещества. На этом основана магнитная запись и считывание информации.
Таким образом, по реакции на внешнее переменное магнитное поле в принципе можно судить о наличии металлических предметов в некоторой области пространства, приближенно оценивать их размеры, а при утонченном анализе — сигналов и роде металла.
Для создания зондирующего поля используются разнообразные плоские катушки и рамки. С помощью специальной геометрии их расположения и включения в электронные устройства добиваются определенных характеристик направленности, чувствительности и избирательности.
Например, металлоискатели, используемые в охранных системах для обнаружения оружия или специальных закладок в продаваемых товарах (книгах), которые можно встретить теперь буквально на каждом шагу на входах залов, офисов, магазинов и т. п., имеют три рамки.
Рамки располагают в плоскостях параллельно друг другу: две крайних симметрично относительно средней (центральной). Средняя рамка служит «передатчиком», а симметрично расположенные крайние — «приемниками». На среднюю рамку подается зондирующий сигнал, а с крайних, включенных в противофазе, снимается сигнал реакции системы на свойства среды внутри нее. В дежурном режиме отклик системы равен нулю. Появление проводящих предметов между одной из крайних рамок и центральной приводит к «разбалансу» сигналов, принимаемых крайними рамками, и формирует результирующий сигнал тревоги.
Система, реагирующая на хищение товаров, настраивается на избирательное обнаружение специальных закладок в виде малогабаритных планарных ВЧ-контуров, проволоках Виганда с особыми магнитными свойствами и т. п. Эти закладки «прожигают» или размагничивают при покупке товара в кассах.
В работе подобных систем подчас встречаются печально-курьезные сбои, связанные с их реакцией на внутренние металлические протезы.
Рассмотренная система проходных катушек помимо использования в охранных устройствах используется также в «вихретоковых» методах так называемого «неразрушающего контроля» на различных производствах.
Например, для обнаружения случайного попадания посторонних металлов в продукты питания их транспортируют вдоль оси системы перпендикулярно плоскостям катушек (подобную конфигурацию типа широкого дверного проема используют и в охранных системах).
Однако часто контролируемая среда имеет доступ только с одной стороны. В подобных случаях используют компланарные, т. е. располагаемыми в одной плоскости, катушки (типа «блина» в миноискателе) или специальные накладные датчики типа магнитофонных головок, рабочее поле которых проникает в контролируемый объект.
Здесь надо иметь в виду, что напряженность поля очень быстро уменьшается с расстоянием, и это является основным фактором, ограничивающим чувствительность систем обнаружения.
В рассматриваемом ниже простейшем металлоискателе используются две катушки, расположенные на плоском ферритовом стержне.
Металлоискатель Мастер КИТ NK293
Принципиальная схема устройства показана на рис. 128, а.
В виртуальной модели металлоискателя, представленной на рис. 128, б, ограничимся той частью, которая формирует полезный сигнал. Позиционные обозначения компонентов исходной схемы и их параметры в этой модели в основном сохранены.
В отличие от полной принципиальной схемы реального устройства здесь вместо катушек L1 и L2 введен трансформатор L1/L2 с выводом от средней точки вторичной обмотки, которая заземляется. Исходное изображение схемного компонента повернуто вокруг вертикальной оси, так что первичной обмоткой служит та, которая на рис. 128, а обозначена как L2.
Рис. 128. Металлоискатель Мастер КИТ NK293:
а — принципиальная схема; б — виртуальная модель в EWB; в — установки трансформатора; г — осциллограммы сигналов; д — общий вид
Принятые параметры трансформатора показаны на рис. 128, в. Кроме этого добавлен переменный резистор [X] и осциллоскоп.
Конденсатор С2 и обмотка L2 образуют колебательный контур автогенератора, выполненного на транзисторе VT3. Положительная обратная связь, обуславливающая самовозбуждение колебаний, образуется обмоткой L1 и конденсатором С1. Выход генератора связан с системой индикации в точке А. В исходной схеме (рис. 128, а) это база транзистора Т1.
В отсутствие колебаний напряжение в точке А равно нулю.
Уменьшая величину [R] в модели (или соответственно TR в исходной схеме), можно при прочих равных условиях добиться возникновения автоколебаний в системе. Появление проводящего тела в переменном магнитном поле этой системы приводит к возникновению в нем вихревых токов, что можно представить в модели третьей катушкой, имеющей магнитную связь между двумя первыми. Таким образом, в модели верхняя половина L1 играет роль исходной катушки, а нижняя — наведенной за счет электромагнитной индукции в металлическом теле. Регулировка «наличия металла» в модели производится резистором [XJ. Фазировка всех катушек выбрана так, что при «отсутствии металла» — [Х] = 0 и напряжение в точке А также равно нулю.
Устанавливая определенные значения резисторами [R] и [X], наблюдаем картину колебаний на осциллоскопе (см. рис. 128, г).
В реальном устройстве сигналу в точке А соответствует горение светодиода LED (см. рис. 128, а), причем он светится тем ярче, чем сильнее сигнал.
Ознакомившись с работой виртуальной модели, переходят к сборке устройства (рис. 128, д). После его сборки на плате согласно схеме, приступают к изготовлению индуктивного датчика металлоискателя. Для изготовления датчика наматывают катушки индуктивности L1 и L2, содержащие 60 и 100 витков соответственно, и располагают их на общем ферритовом сердечнике. Намотка выполняется в одном направлении, аккуратно, виток к витку. Расстояние между обмотками должно быть не менее 8 мм. Желательно, катушки L1 и L2 выполнить на бумажных гильзах, чтобы иметь возможность для перемещения их относительно друг друга. Надежно закрепив выводы обмоток с помощью ниток, ленты или клея, концы их выводов зачищают, «облуживают» и «подпаиваивают» к плате, соблюдая определенную «фазировку». Затем устройство подключают к источнику питания, соблюдая полярность.
Настройку устройства необходимо начать с установки переменного резистора Р в среднее положение. С помощью «подстроечного» резистора необходимо установить порог срабатывания устройства, при котором светодиод LED начинает неустойчиво светиться. Расположив металлический предмет на расстоянии 3…6 см от индуктивного датчика, добиваются стабильного включения светодиода. При удалении металлического предмета более чем на 10 см светодиод должен выключаться. В случае если не удается добиться работы устройства, необходимо поменять местами выводы катушки L1.
Теперь все устройство можно заключить в корпус (ни в коем случае не из металла), при этом для работы с максимальной чувствительностью датчик надо удалить на 10…15 см (возможно, расположив его в отдельной головке) от платы и батарейки. В противном случае он будет «находить» их, а не то, что вы хотели бы найти.
Вряд ли с помощью этого устройства удастся найти клад: вернитесь к эпиграфу — серьезные металлоискатели имеют цены, сравнимые с автомобилями. Хотя, чем черт не шутит…
Однако это вполне удобное устройство для самых разных случаев жизни. Например, во время проведения ремонтных работ часто возникает необходимость определить наличие металлической арматуры, труб и электропроводки, расположенной в стенах, полах, потолках. С помощью предлагаемого металлоискателя можно обнаружить подобные металлические элементы конструкции и проводки на глубине закладки до 60 мм. Металлоискатель имеет регулировку чувствительности, что позволяет с достаточной точностью установить месторасположение металлических предметов.
Если спрятать 10-копеечную монету под 300-страничную книгу, то с помощью данного металлоискателя ее можно найти, а заодно и выявить его диаграмму направленности, вращая датчик по азимуту на некотором расстоянии от эпицентра расположения монеты. Так что затерявшийся в траве предмет тоже можно найти, и мало ли чего еще, даже шоколадки или пачки сигарет в карманах при шуточном досмотре, благодаря их оберткам из фольги.
Чувствительность этого прибора можно увеличить, если заменить прилагаемый ферритовый стержень на больший, например, от старых транзисторных радиоприемников.
Желающим же всерьез заняться кладоискательством посоветуем, потренировавшись с этим образцом, изготовить более сложное устройство, например микропроцессорный металлоискатель Мастер КИТ NM8041.
«Кто ищет, тот всегда найдет!». И Вы уже нашли: Знания, а это и есть самый большой клад в жизни, только не останавливайтесь на достигнутом: копайте дальше!
После Бога деньги первое
От дверей, звонков и прочих интересных электронных устройств постепенно перемещаемся в самое обитаемое и любимое помещение в квартире — на кухню. Пока это будет лишь случайный мимолетный визит, а вот уж потом…
Для экспериментов потребуются: магнит, американская купюра и спички.
Магнит можно взять любой, например, от старого динамика, скажем 1ГД10, естественно без диффузора и его крепежа. В нем имеется тороидальный феррит-бариевый магнит, дающий в зазоре магнитную индукцию примерно 0,75 Вб/м2. А вообще-то, чем «сильнее» магнит, тем заметнее будет эффект.
Американская купюра, подлежащая эксперименту, если есть и не жалко (сжигать и варить ее не будем, впрочем, дело Ваше), лучше пусть будет с личиком Бенджамина Франклина: как никак нашего рода, почти радиолюбитель — изобретатель молниеотвода и много чего другого из электричества.
Спички — любые, из тех, что раньше именовались «шведскими», так как изобрел их один бедолага студент-химик, в шведской тюрьме, кстати, пребывая. Но нужны именно спички, а не зажигалки.
Эксперимент № 1
Начнем со спичек, чтобы войти в курс дела и для тренировки. Берем одну целую спичку, кладем ее на стол (не железный) и подносим к ней магнит, дотрагиваясь областью зазора до спички и, особенно, до ее головки. Результат — ноль: спичка лежит, как ни в чем не бывало. Далее спичку чиркаем по коробке и после того как обгорит головка, гасим ее и опять кладем на стол (соблюдая меры пожарной безопасности). Повторно подносим магнит, но теперь к обгорелой головке: «Вот те на! Спичка-то, словно иголка: поднимается и висит на магните». Что-то там в ее головке с бертолетовой солью, серой и прочими химикалиями приключилось. Без хроматографа или масс-спектрометра и не разберешься. Да нам сейчас это и не так важно, хотя и любопытно: какие там такие изменения происходят в этом домашнем пиротехническом заряде? Зафиксируем факт: обгорелая спичка, в которой железом и не пахнет, притягивается к магниту.
Эксперимент № 2
Берем одной рукой купюру за угол и даем ей свободно повиснуть. Спички убираем от греха подальше. В другую руку берем магнит и аккуратно подносим к разным ее местам, слегка дотрагиваемся и легонько отодвигаем магнит. Купюра притягивается и «едет» вместе с магнитом. Значит она настоящая, а не фальшивая, вот и Франклин улыбается одобрительно. Доллар-то оказывается еще и магнитным, вот почему он так притягивает людей, а с нашими «деревянными» этот фокус не проходит, остается только поджечь.
Значит, в краску янки заложили некую соль с магнитными свойствами, а это можно использовать для детектирования валюты, но не с магнитом же от синхрофазотрона по обменникам ходить. Радиолюбитель легко может сделать магнитный детектор валюты.
Виртуальная модель
Принципиальная схема устройства, набранная в программе EWB, т. е. представляющая его виртуальную модель, показана на рис. 129, а.
Детектор состоит из двухкаскадного усилителя на основе микросхемы TL082, представляющей собой два быстродействующих операционных усилителя (аналог серии К576) в одном 8-выводном корпусе.
Рис. 129. Детектор валюты Мастер КИТ NS311:
а — виртуальная модель в EWB; б — общий вид
В библиотеке программы имеются только модели подобных одиночных ОУ, причем без выводов для питания (которое решено программно). Поэтому в нашей модели (см. рис. 129, а) мы использовали два таких «операционника» А1 и А2, пронумеровав выводы в соответствии с нумерацией в сборке: от (1) до (8). При монтаже модели обратите внимание на разметку инверсных и прямых входов ОУ и после установки их на рабочее поле «покрутите» как надо.
Датчиком магнитных свойств купюры в реальном устройстве служит обычная магнитная головка (моно), например, воспроизведения или универсальная, подключаемая к точкам «L1-L1». Сигнал возникает в головке, если при включенном питании (SW1) провести головкой вдоль купюры. Если она не поддельная, то изменения магнитного потока в головке приводят к генерации импульсной ЭДС в ней и сигнал через формирующие RC-цепи поступает на вход А1, а затем на А2. После усиления импульса, отпирается транзистор VT1 и загорается красный светоизлучающий диод red_LED VD1.
Думается, что естественнее было бы для данной валюты использовать зеленый светодиод (green_LED), правда, радиолюбители после изготовления первого прибора и успешных испытаний, могут его и самостоятельно доработать, поставив два светодиода: фальшивка — горит красный, настоящий — загорается зеленый.
Величина сопротивления гасящего резистора R10 в виртуальной модели уменьшена до 200 Ом, против 680 Ом, используемой в оригинале, чтобы не редактировать параметры светодиода, и он работал с заданными по умолчанию величинами.
В виртуальной модели этот «валютный сигнал» заменяется включением батареи Е2 с напряжением 1 мкВ ключом [Z].
Питание модели осуществляется от батареи Е1 с напряжением 9 В. Потенциометр Р1, с управляющей клавишей [R], служит для начальной настройки чувствительности, так как головки могут быть разными, ну а доллары-то и подавно.
Итак, включаем питание [X] и моделирование. Затем нажимаем и отпускаем [Z], светодиод (после необходимой подстройки [R]) загорается и гаснет.
Реальное устройство
Детектор валюты монтируется на прилагаемой печатной плате (рис. 129, б) по приведенной выше принципиальной схеме из компонентов, указанных в таблице с их спецификацией.
При монтаже необходимо обратить особое внимание на полярность подключения батареи и электролитических конденсаторов, а также выводов микросхемы, светодиода, диодов и транзистора. Магнитную головку можно смонтировать непосредственно на плате.
Все устройство следует заключить в «фирменный» корпус. Для приемной щели магнитной головки следует оставить окошко или выполнить специальный пропил в этом корпусе так, чтобы можно было приводить купюру и щель головки в соприкосновение.
Включаем устройство и настраиваем его, например, пользуясь старой магнитной карточкой, а уж затем переходим к «зелени». Для формирования импульса купюру надо быстро перемещать вблизи приемной щели головки детектора. В случае не фальшивой купюры должен вспыхнуть светодиод: «Океу!».
Помните, созданный Вами прибор не сертифицирован, так что его можно использовать только в личных целях, не перекладывая ни на кого ответственность и не предъявляя никому юридически не защищенных претензий.
Ни мороз нам не страшен, ни жара…
Микроклимат в доме, с позиций экологии (от греч. oikos — дом + logos — учение), во многом определяет наше «житие», а заодно и «бытие». Сухая наука сводит человека к сложной биохимической машине. Не вдаваясь в философскую дискуссию с теми, кто с этим не согласен, предложим им мысленно прожить без воздуха (кислорода) минутку-другую. Дискутировать далее будет не с кем…
Поднаторев в электронике, можно с ее помощью заняться проблемами улучшения здоровья и комфорта среды обитания. Здесь есть громадное поле для деятельности: от электроакупунктуры до искусственных электронных органов, но, памятуя о первой заповеди Гиппократа: «Не навреди!», остановимся только на простейших устройствах, позволяющих обеспечить необходимый состав воздуха и его температуру, проконтролировать «электромагнитные загрязнения».
«Кислород воздуха + электроны = здоровье».
Воздушная стихия с древнейших времен считалась основой жизни. Шумеры поклонялись воздуху, почитая в нем отца Богов, царя Неба и Земли, владыку всех стран. Древнегреческий философ Анаксимен Милетский (VI в. до н. э.) считал воздух тем первоначалом, из которого все возникает и в которое все возвращается. Один из основоположников античной медицины Гиппократ (ок. 460–370 г. до н. э.) называл воздух «пастбищем жизни» и весьма активно практиковал аэротерапию. Легенды и научные изыскания свойств «хорошего» и «живого» воздуха: лесного, степного, горного и морского, приходят к нам через произведения писателей (Гете), художников (Микельанджело) и ученых (Гамильтон).
Научную разгадку секрета «живого» воздуха дал замечательный советский ученый с мировым именем Александр Леонидович Чижевский (1897–1964).
В меморандуме Международного конгресса по биологической физике и биологической космологии, который проходил в 1939 году в Нью-Йорке, отмечалось, что открытия Чижевского имеют для человечества первостепенное практическое значение и развертывают новые горизонты в науках о жизни: «Проф. Чижевский смело перебрасывает мосты между явлениями природы и вскрывает закономерности, мимо которых проходили тысячи естествоиспытателей»… Он «является также выдающимся художником и утонченным поэтом-философом. олицетворяя для нас, живущих в XX веке, монументальную личность да Винчи». Конгресс избрал Чижевского одним из своих почетных председателей и выдвинул его кандидатуру на соискание Нобелевской премии. Однако на конгресс проф. Чижевского не пустили. Вскоре началась война, и Нобелевский комитет надолго прервал свои заседания.
Вся жизнь Чижевского — это жизнь «мученика Науки».
Вершиной творчества Чижевского можно назвать открытие им влияния солнечной активности на динамику исторического процесса. Другое его открытие связано с тем, что наличие электрических зарядов в воздухе — одно из необходимых условий нормального развития высокоорганизованной жизни.
На большом статистическом материале А. Л. Чижевский убедительно показал, что основу «живого» воздуха составляют отрицательно заряженные ионы кислорода, названные им, для различения с заряженными частицами аэрозолей, «легкими аэроионами». В наше время их окрестили «воздушными витаминами».
Чижевским была сконструирована простейшая установка для генерирования подобных ионов, разновидности которой сегодня известны во всем мире как «Люстра Чижевского», а у нас ласково по-свойски ее называют «Чижевкой».
Основу источника ионов составляет электрический генератор высокого напряжения. Положительный полюс выхода этого генератора, согласно Чижевскому, заземляется, а отрицательный — подводится к ряду игольчатых электродов.
При напряженности электрического поля вблизи острий примерно 15 кВ/см в воздухе при нормальных условиях происходит так называемый «темный» разряд, характеризующийся очень малыми силами токов и почти полным отсутствием свечения газа. В процессе газового разряда вблизи острий, имеющих отрицательный потенциал относительно земли, к нейтральным молекулам кислорода присоединяются электроны, образуя отрицательные ионы кислорода («легкие аэроионы Чижевского»). Эти ионы отталкиваются от отрицательно заряженных острий и перемещаются в направлении положительного электрода (элементы заземления), попадая в окружающий воздух. Особенностью правильного режима работы «Люстры Чижевского» является создание необходимой концентрации именно отрицательных аэроинов кислорода, отсутствие образования в электрическом разряде озона и оксидов азота и продуктов «электроэрозии» электродов, а также экранировка от сопутствующих электрических полей в зоне расположения людей.
В качестве генератора высокого напряжения Чижевский, при проведении начальных опытов, использовал импульсный повышающий трансформатор с электрохимическим прерывателем (катушка Румкорфа с сернокислотным прерывателем Венельта). Пузырьки газа при электролизе резко прерывали ток в первичной обмотке, создавая в ней ЭДС самоиндукции, которая увеличивалась во вторичной обмотке, достигая 50…100 кВ. (Подобный принцип создания импульсов высокого напряжения, но только за счет прерывания тока механическими или полупроводниковыми устройствами, используется в системах зажигания автомобилей.) В промышленных установках Чижевский использовал высоковольтные рентгеновские трансформаторы с кенотронными выпрямителями.
Развитие электроники привело к созданию эффективных источников высокого напряжения, которые позволяют использовать открытие Чижевского в быту. Одним из возможных вариантов, на котором удобно изучить их работу, является описываемое ниже устройство.
Принципиальная электрическая схема ионизатора показана на рис. 130, а: он состоит из блокинг-генератора и умножителя напряжения.
Рис. 130. Принципиальная электрическая схема ионизатора воздуха Мастер КИТ NS311
Блокинг-генератор выполнен на транзисторе Т и высоковольтном трансформаторе TR. Умножитель напряжения состоит из элементов схемы D1, D2 и С4, С5. Сопротивление R2 служит для ограничения до 200 мкА тока короткого замыкания.
Рассмотрим работу устройства на модели в программе EWB. Наличие в схеме трехобмоточного высоковольтного импульсного трансформатора создает определенные трудности в создании виртуальной модели. Поэтому смоделируем работу устройства поблочно: вначале создадим модель блокинг-генератора, а затем умножителя напряжения.
Модель блокинг-генератора
Модель блокинг-генератора в программе EWB показана на рис. 131,а.
В качестве трансформатора TR в этой части модели будем использовать идеальный трансформатор Ideal Transformer из раздела Basic. Свойства трансформатора выберем в соответствии с рекомендациями, которые были даны ранее при описании модели преобразователя постоянного напряжения Мастер КИТ NK131 (см. рис. 96). Соответствующие изменения видны на рис. 131, б, где показано окно выбора параметров трансформатора. Остальные Элементы выбираем в соответствии с описанием набора, за исключением транзистора, поскольку в библиотеке программы отсутствует модель типа BD135.
Для наблюдения процесса генерации, схема дополнена двухканальным осциллоскопом. Развернув лицевую панель осциллоскопа и выполнив на ней необходимые предустановки, после включения моделирования, получим характерную картину генерации импульсов (рис. 131, в). Здесь верхний луч (канал А) регистрирует импульсы на базе транзистора, а нижний (канал В) — на его коллекторе. Собственно вот этот характерный вид импульсов и заложен в название генератора: блокинг-генератор — это такой однокаскадный релаксационный генератор, в котором положительная обратная связь входной и выходной цепей обеспечивается импульсным трансформатором. Импульсный трансформатор имеет ненасыщающийся магнитопровод («сердечник»). В катушке Румкорфа и автомобильной бобине — это разомкнутый магнитопровод из магнито-мягкой стальной проволоки, в генераторах строчной и кадровой разверток телевизионных приемников — специальные типы ВЧ-ферритов.
Автоколебательный процесс заряда и разряда конденсаторов в цепи базы транзистора сопровождается периодическим отпиранием транзистора и его переводом в активный режим, что приводит в свою очередь к приращению коллекторного тока до его насыщения. Этот ток за счет трансформаторной связи (при определенной «фазировке» обмоток) в свою очередь приводит к приращению базового тока.
Процесс переключения транзистора развивается лавинообразно и формирует фронт импульса и его вершину (прямой блокинг-процесс). Затем начинает формироваться срез импульса (обратный блокинг-процесс). Транзистор лавинообразно запирается, и начинается сравнительно длительное восстановление начальных условий.
Рис. 131. Виртуальная модель блокинг-генератора:
а — схема; б — параметры трансформатора; в — осциллограммы напряжений
Изменяя в виртуальной схеме (рис. 131, а) параметры RC-цепей (R1, [R], R2, С2 и С3), можно пронаблюдать изменение характеристик генерируемых импульсов на осциллоскопе. Здесь, правда, необходимо отметить, что схемы автогенераторов при моделировании на ПК ведут себя неустойчиво, что связано с линеаризацией исходных нелинейных систем, и зачастую требуют кропотливой настройки как параметров схем, так и режимов моделирования.
Модель удвоителя напряжения
Обратившись теперь к исходной схеме на рис. 130, мы видим, что в ней с обмоткой, включенной в коллекторную цепь, связана еще одна третья (выходная) обмотка. Далее следует диодно-емкостная цепь (D1-C5-D2-C4), играющая роль выпрямителя с удвоением напряжения. Смоделируем эту цепь при произвольных значениях параметров для демонстрации самого принципа удвоения напряжения.
Напряжение на выходной обмотке представим генератором переменного синусоидального напряжения Е2 с действующим значением напряжения 100 В и частотой 50 Гц (см. рис. 132).
Рис. 132. Виртуальная модель удвоителя напряжения
Собрав удвоитель напряжения на элементах D1-C5-D2-C4, подсоединим, соблюдая полярность (жирная черта в рамке вольтметра — минус), дополнительно в цепи три контрольных вольтметра V1-V3.
Включив моделирование, произведем отсчет показаний вольтметров (округляя до целых значений): V1 = -140 В, V2 = -280 В, V3 = -280 В. Эти значения получаются следующим образом. В полупериод, когда потенциал в точке А в схеме на рис. 133 отрицательный, конденсатор С5 заряжается через диод D1 до амплитудного значения напряжения на источнике Е2, которое больше действующего в √2 раз, т. е. V1 = -100·√2 ~= -140 В. В следующем полупериоде, когда потенциал точки А станет положительным откроется диод D2 и аналогично будет заряжаться конденсатор С4, но напряжение на нем, как не трудно видеть равно сумме напряжений на источнике и конденсаторе С5, т. е. V2 = -280 В. В точке В на выходе напряжение, таким образом, составит: V3 = -280 В. В принципе, дополняя эту схему далее еще каскадами с диодами и конденсаторами можно получить дополнительное умножение напряжения.
При практической реализации подобных устройств необходимо обратить внимание на электрическую прочность используемых компонентов (диодов и конденсаторов): их рабочие напряжения должны соответствовать тому, которое получается в соответствующем каскаде умножения. Кроме того, с ростом напряжения и мощности устройств, немаловажными становятся и вопросы электробезопасности. В частности, в отсутствии дополнительных резисторов конденсаторы в умножителях напряжения могут удерживать на себе заряд весьма длительное время после отключения питания.
Внимание! При включенном устройстве напряжение на отдельных его частях превышает 1000 В, поэтому надо строго соблюдать правила электробезопасности, проводить операции по наладке можно только предварительно выключив питание и убедившись, что высоковольтные конденсаторы разряжены.
В рассматриваемом ионизаторе воздуха на основе комплекта Мастер КИТ NK292 (рис. 133), при напряжении питания 9…12 В, потребляемый ток составляет 80…150 мА, а выходное напряжение на ионизирующем электроде — (3…7) кВ.
В результате данный ионизатор вырабатывает отрицательно заряженные ионы, которые уничтожают бактерии, находящиеся в воздухе, и способствует ряду физиологических функций организма.
Рис. 133. Общий вид ионизатора воздуха Мастер КИТ NK292
В соответствии с исследованиями проф. Чижевского, воздух, обогащенный отрицательными ионами кислорода, снимает бессонницу, головную боль, уменьшает чувствительность организма к изменению погоды, улучшает концентрацию внимания.
При длительной эксплуатации ионизатора рекомендуется применять сетевой источник питания. Ионизатор рекомендуется поместить в корпус: G027. Можно также воспользоваться другим готовым устройством.
Это полезное устройство (рис. 134) предназначено для комнаты объемом около 60 м3.
Рис. 134. Генератор ионов Мастер КИТ МК290
В случае больших размеров комнаты, рекомендуется соответственно увеличить число приборов, размещаемых в комнате. Возможно также использование ионизаторов совместно с вентилятором, обеспечивающим хорошее распределение отрицательных ионов кислорода по объему помещения. Прибор смонтирован в ударопрочном пластмассовом корпусе и не требует сборки. Устройство предназначено для длительной работы в течение рабочего дня. Размеры модуля: 110x87x47 мм.
Конечно, описанные источники надо рассматривать как первые шаги в освоении подобной техники, реализующей «Формулу здоровья» проф. Чижевского:
«Кислород воздуха + электроны = здоровье».
Зато последующие шаги будут более осмысленными.
Среди различных диапазонов радиоволн, освоенных человеком, есть и весьма экзотические по их применению и проявлению.
Как отмечается в заграничных хрониках, в 1946 году пятидесятидвухлетний американец Перси Л. Спенсер, работник одной из компаний, производящих электронные лампы, проводил ординарные опыты с новой генераторной лампой — магнетроном.
Однажды, в перерыве между опытами, он полез в карман спецовки, чтобы достать плитку шоколада. Однако вместо твердой плитки в его руках оказалось какое-то липкое месиво. Спенсер очень удивился: «Почему это шоколад растаял, хотя он сам не почувствовал никакого постороннего тепла?».
Интуитивно он заподозрил, что в этом виноват магнетрон. Тогда Спенсер, решив проверить свою догадку, рассыпал около магнетрона кукурузные зерна и включил аппарат. Через мгновенье вся лаборатория была усеяна разлетевшимся во все стороны попкорном. Из оставшихся съестных припасов у него оставалось одно яйцо. Возбужденный всем увиденным, Спенсер положил его в пластмассовую корзинку для бумаг и поставил ее перед магнетроном. Взрыв яйца был финальным салютом этой серии опытов.
Хотя Спенсер почти не учился в школе, так как воспитывался без родителей, он с детства слыл сметливым парнем. Благодаря природному уму и трудолюбию он выбился в люди, и еще в 1925 году стал контролером завода этой компании.
Размышляя над произошедшим, Спенсер пришел к выводу, что причиной увиденных явлений служит нагрев продуктов за счет поглощения волн, излучаемых магнетроном. Теперь-то любая домохозяйка знает, что перед тем как варить яйца в СВЧ-печке, их надо проколоть, а еще лучше сразу приготовить оригинальную яичницу — в стеклянном стакане или вазочке.
В нашем дорогом отечестве в эти времена также проводились самые разнообразные эксперименты в области применения электромагнитных волн СВЧ-диапазона. В основном, как и до войны, так и после нее, они были связаны с разработкой радиолокационной техники (занимались этим, конечно, и американцы, и англичане). Правда, физики занимались и другими проблемами: мазерами (а потом и лазерами), радиоастрономией и т. п. Академик П. Л. Капица (позже ставший лауреатом Нобелевской премии), отстраненный тогда от руководства созданного им института «Физпроблем» вследствие отказа заниматься атомным проектом, курируемого Берией, организовал научную лабораторию в избушке, рядом со своей дачей. Физики тут же окрестили ее «Избой Физпроблем». Одна из проблем, которой Петр Леонидович начал заниматься еще перед войной, касалась физики шаровых молний. Другой наш академик — Я. И. Френкель выдвинул «химическую» теорию шаровой молнии, но П. Л. Капица подверг ее критике, так как в этой теории не сходился энергетический баланс.
Гипотеза Капицы заключалась в том, что во время свечения к шаровой молнии непрерывно подводится извне энергия радиоизлучений в метровом и дециметровом диапазонах, производимых обычными (линейными) молниями. Сгусток плазмы возникает, по его гипотезе, в месте сложения этих волн и ведет себя как сложный открытый объемный резонатор.
Эти исследования привели его к созданию нового научного направления: «Электроника больших мощностей». П. Л. Капица полагал, что именно на этом пути лежит решение задач электроэнергетики по канализации и передаче электроэнергии на большие расстояния. В частности, был создан специальный генератор, названный «ниготроном», позволявший излучать до 8 кВт в дециметровом диапазоне спектра электромагнитных волн. В первых опытах излучение направлялось в открытое окно. Затем, по словам Петра Леонидовича, «мы поставили на пути излучения яйцо, которое мгновенно сварилось вкрутую, а присутствующий при этом академик Фок моментально съел его». Для следующего опыта был взят тонкостенный кварцевый шар диаметром 10 см, наполненный гелием при давлении 10 см ртутного столба. При облучении яркая вспышка внутри шара продолжалась несколько секунд, после чего кварцевая оболочка, несмотря на высокую температуру плавления, расплавилась…
Цыпленок жареный,
Цыпленок пареный…
Песня
Изобретение Спенсера привело к тому, что в США появились опытные партии печей, использующих СВЧ электромагнитные колебания или микроволны (отсюда обиходное название «микроволновка») и поскольку, они родились из устройства военного назначения, то вначале их стали использовать маркитанты для быстрого разогрева солдатских пайков в многочисленной армии, рассеянной после Второй мировой войны по всему свету. Массовое производство бытовых микроволновок было налажено в Японии в 1962 году.
Основу СВЧ-печи составляет преобразователь электрической энергии, получаемой от электросети промышленной частоты (50/60 Гц) в энергию электромагнитного поля СВЧ-диапазона (например, 2,45 ГГц), локализуемую внутри специального закрытого объемного резонатора (камеры). На радиотехническом языке это устройство, в зависимости от выбранного классификационного признака, можно отнести к генератору, преобразователю частоты или активному согласующему устройству. Обычно его просто считают генератором.
Действительно, как следует из уравнений Максвелла, электромагнитная энергия, в которую на электростанциях преобразуют другие виды энергии, распространяется в виде поля на частоте 50/60 Гц в среде, окружающей провода, возбуждая ток в этих проводах, играющих роль направляющей системы. Часть энергии проникает в глубь проводников и приводит к потерям на нагрев (дополнительные потери возникают также в промежуточных преобразователях: трансформаторах и т. п.).
Задача нагрева некоторого объема вещества связана с поглощением (желательно равномерным) электромагнитной энергии и, соответственно, выделением тепла в этом объеме. Существуют три физических механизма теплопередачи: кондуктивный — теплопроводностью, конвективный — потоками вещества (например, теплого воздуха или радиоактивных частиц) и излучением (инфракрасным, СВЧ и т. п.).
Для большинства продуктов конвекцию можно отбросить или ее придется организовывать специальным образом. Теплопроводность — процесс весьма длительный, зависящий от свойств вещества и градиента температуры. Увеличить этот градиент при прочих равных условиях можно только в очень ограниченных пределах, да и то за счет специальных мер (вспомните искусство поджаривания блинов или приготовления шашлыка). В этом смысле для объемного разогрева электромагнитное поле находится вне конкуренции. Однако величина поглощения поля веществами сильно зависит от частоты и напряженности поля. Последняя имеет верхнее ограничение, связанное с электрическим пробоем воздуха. Продукты или блюда, подлежащие нагреванию, содержат в большом количестве воду и поэтому ее электрофизические свойства являются определяющими при выборе характера воздействия. Конечно, если необходимо нагреть некий сплошной объем воды, то задача решается просто кондуктивно-конвективным нагревом ТЭНами или прямым (контактным) джоуль-ленцовским нагревом за счет токов через погруженные в нее электроды. Правда, при использовании прямой проводимости появляется еще электролиз, да и вопросы электробезопасности обостряются. Но все же курицу этими способами, увы, не приготовишь, а все контактные методы по многим параметрам уступают бесконтактным в принципе за счет явлений на границах раздела.
Ограничимся рассмотрением нагрева диэлектриков. Тогда, при создании бесконтактных (волновых) нагревательных устройств исходят из следующего общего соотношения, которое связывает величину плотности потока энергии электромагнитных волн Р (Вт/м3), поглощаемых в единице объема вещества с его свойствами и характеристиками поля
где Е — напряженность электрического поля. В/м; f — частота, Гц; εо= 8.85·10-12 Ф/м — диэлектрическая постоянная вакуума; ε — относительная диэлектрическая проницаемость вещества; δ — угол диэлектрических потерь.
Из приведенной формулы видно, что при прочих равных условиях выгоднее всего использовать поля с большой частотой в диапазоне, где диэлектрические потери максимальны. При этом следует иметь в виду, что с ростом этих величин происходит также уменьшение глубины проникновения поля в материал.
Характеристики интересующих нас материалов таковы, что если бы мы сделали подходящие соленоид или конденсатор, работающие на промышленной частоте, и с помощью их поля попытались бы с утра приготовить блюдо, то вряд ли нам удалось бы вовремя не только позавтракать, но и поужинать. Дело в том, что электромагнитные потери на частоте 50 Гц в воде ничтожно малы.
Вот если нам не очень к спеху, то ввиду простоты реализации эти способы годятся и их применяли в промышленности для сушки лесоматериалов, а также при производстве железобетонных изделий.
Учитывая частотную зависимость фактора поглощения, инженеры пошли по частоте вверх — к ВЧ, благо этот диапазон в радиотехнике был уже давно освоен, но в быту подобные установки не применялись за исключением физиотерапии, так как некий барьер эффективности преодолен не был. Случай со Спенсером привлек внимание инженеров и ученых к более детальному анализу СВЧ-нагрева. Из этого анализа следовало, что максимальное количество энергии поля будет поглощаться на той частоте, на которой находится максимум отклика молекул воды.
Отдельные молекулы воды, например в ее парах, представляют собой диполи, с двумя ионами водорода Н+ и одним дважды ионизированным атомом кислорода О2-, образующие равнобедренный треугольник с ионом кислорода при вершине с углом 105° и боковыми сторонами, равными 0,96 А°. В твердой фазе молекулы воды образуют кристаллическую решетку, ячейки которой напоминают тетраэдры для упаковки молока.
В жидкости, благодаря тепловому движению молекул, их коллективы случайным образом занимают изменяющиеся разнообразные промежуточные состояния. По образному выражению акад. Я. И. Френкеля, молекулы жидкости ведут себя подобно кочевникам: оседлый образ жизни в узлах временной местной кристаллической решетки (где они совершают колебательные движения) сопровождается их периодическими перескоками в другие положения.
Время, за которые молекулы возвращаются к равновесию, носит название времени релаксации. Оценка этого времени для полярных диэлектриков была дана голландским физиком П. Дебаем.
Согласно его теории применительно к молекулам воды, находящейся в жидкой фазе, их ориентационная поляризация и деполяризация аналогичны вращению твердой сферы в вязкой жидкости, приводящему к потерям. В зависимости от соотношения между частотой внешнего поля и величиной, обратной периоду релаксации, величина этих потерь может быть выражена через фактор потерь (tg δ) экспериментально и теоретически.
Наиболее просто воспользоваться для полуколичественных оценок интерпретацией этой зависимости с помощью приближения RC-цепей.
На рис. 135, а показана простейшая цепь (по Хиппелю), моделирующая релаксационные потери в воде в зависимости от частоты.
Поведение молекул воды в электромагнитном поле здесь представлено конденсатором С1, учитывающим собственно ориентационную поляризацию вещества, резистором R1 — потери при этом, а также резистором R2, учитывающим потери независимо от частоты. Источник Е1 дает возможность вместе с Боде плоттером исследовать АЧХ цепи.
Элемент, через который исследуемая цепь подключена к зажиму плоттера, является зависимым источником напряжения Е2, которое пропорционально току в измерительном резисторе (принятом за 1 мОм). То есть, попросту, это датчик тока с коэффициентом деления на 1000.
Рис. 135 Моделирование поглощения электромагнитной энергии водой в СВЧ-диапазоне:
а — модель в EWB; б — АЧХ тока в модели; в — график частотной зависимости фактора потерь
АЧХ тока в этой цепи показана на рис. 135, б, причем положение визирной линии на экране соответствует частоте примерно 2,4 ГГц. Частотная зависимость tgδ для этой же модели, в двойном логарифмическом масштабе, полученная вычислением в программе Mathcad показана на рис. 135, в.
В более точных (и, соответственно, сложных) моделях и эксперименте наблюдается максимум tgδ в области частот >1010 ГГц, но и при частоте 2,45 ГГц значение весьма велико. Это и привело к тому, что на ней работает сейчас большинство СВЧ-печей.
Выбор этих частот связан также с тем, что в отличие от электромагнитных волн инфракрасного диапазона (λ ~= 1·10-6 м и f ~= 3·1014 Гц), также невидимых человеческим глазом, и также активно поглощаемых водой и многими другими веществами (за счет колебаний отдельных атомов в сложных молекулах относительно друг друга), волны СВЧ-диапазона проникают значительно дальне в глубь тел, обеспечивая быстрый объемный, а не поверхностный, нагрев. Поэтому, если требуется не только сварить, но и поджарить, образуя корочку, СВЧ-нагрев дополняют инфракрасным (гриль).
Кроме выше перечисленных причин, существует еще и жесткий регламент на использование той или иной части спектра электромагнитных волн, и определенная коллизия заключается в том, что «гигагерцевые» частоты были отведены для спутниковой радиосвязи. В то же время, помимо, СВЧ-нагрева, на их использование уже все больше начинают претендовать и компьютеры.
Модель бытовой СВЧ-печи
В простейшей бытовой СВЧ-печи в качестве генератора используется магнетрон (см. рис. 10). Питание магнетрона осуществляется от высоковольтного (4 кВ) выпрямителя, построенного по схеме удвоения напряжения. Упрощенная схема-модель силовой части СВЧ-печи показана на рис. 136, а.
Эта модель является условной во многих отношениях, так как в программе EWB отсутствует такой схемный компонент, как магнетрон и вместо него использованы следующие компоненты: М — Triode Vacuum Tube (электровакуумный триод), работающий в режиме диода, с заземленным анодом, на который подается положительное напряжение выпрямителя относительно катода (катод в магнетронах прямой и в печах имеется отдельная цепь накала); генератор переменного напряжения Е2, модельная частота которого выбрана равной 2,45 кГц, т. е. с коэффициентом масштабирования по частоте 10-6 для удобства наблюдения процессов во времени; перемножитель сигналов X и Y. Высоковольтный трансформатор Т1 является повышающим и имеет коэффициент трансформации 0,075. В печах этот трансформатор работает в режиме, близком к магнитному насыщению, выполняя еще и функции феррорезонансного стабилизатора напряжения. Конденсатор С1, обеспечивающий удвоение напряжения в реальных устройствах, также высоковольтный на рабочее напряжение 2,1…2,5 кВ. В печах этот конденсатор обычно шунтируют резистором 1…10 МОм для разрядки после выключения, а также специальным защитным диодом предохранителем (Fuse Diode) — эти компоненты в модель не введены. Диод VD1 в модели идеальный, а в реальных устройствах высоковольтный диод или выпрямительный столб, с обратными напряжениями 12…15 кВ. Модельный резистор R1 носит подсобный характер и отчасти моделирует нагрузку.
В результате моделирования на экране осциллоскопа можно наблюдать следующую картину (рис. 136, б). Луч А (верхний на рис. 136, б) регистрирует отрицательные полуволны напряжения, а луч В — пачки высокочастотных радиоимпульсов. Примерно так же (только с частотой 2,45 ГГц) выглядит изменение напряженности электрического поля на выводе магнетрона.
Рис. 136. Модель СВЧ-печи в EWB:
а — схема; б — осциллограммы сигналов
Электромагнитные волны, излучаемые антенным выводом магнетрона (см. рис. 10, а), через отрезок согласующего прямоугольного волновода направляются в камеру-резонатор. При этом выходное отверстие закрывают тонкой защитной пластинкой из радиопрозрачного материала (фторопласт и т. п.).
В камере устанавливается сложная пространственная структура электромагнитных волн, сильно зависящая от находящегося в ней материала. Основная трудность в нагреве с помощью микроволн внутри замкнутого в электромагнитном отношении объема заключается в создании и поддержании однородности нагрева внутри пространственно неоднородного по своим свойствам материала. Больше того, эти неоднородности сильно изменяются во времени. Поэтому в реальных печах вращают материал относительно поля или вращают поле относительно материла, а также, помимо основного ввода волн, выполняют специальные дополнительные апертуры (действующие отверстия) наподобие фазоинверторов в акустических системах и т. д.
Эти вопросы работы и согласования генератора со столь сложной нагрузкой, находящейся практически почти в «ближнем поле», как и проблемы физики нагрева, с которыми они взаимосвязаны, не имеют пока однозначного решения.
Другой важнейшей и в то же время деликатной проблемой СВЧ-нагрева в быту является вопрос экранировки от утечек поля в окружающее пространство. Вопрос этот весьма серьезный: достаточно лишь представить себе, что внутри печи локализована электромагнитная мощность, сравнимая с мощностью отдельных передатчиков, размещенных на Останкинской башне.
Существует несколько возможных каналов для утечек, но мы остановимся на наиболее опасном источнике: щели между дверцей печи и камерой. Согласно электродинамике Максвелла, излучение из щели в проводящем экране будет происходить в том случае, если эта щель прерывает поверхностные токи, наведенные в нем электромагнитными волнами.
В старых конструкциях пытались здесь организовать хороший непрерывный контакт, и поскольку после некоторой эксплуатации он в отдельных местах неминуемо нарушался, то на прилегающих поверхностях появлялись следы электрической эрозии. Значит эти области «искрили», но в отличие от искрящих контактов в реле или на коллекторах электрических машин, излучение от разрядов, а также от токов смещения в неплотном зазоре СВЧ-печи лежит не в низкочастотной области, где их влияние на людей мало, а там, где оно может быть и велико. Поэтому при дальнейшем конструировании печей пошли по пути уменьшения этих токов, создаваемых по обе стороны щели. Для этого по всему периметру металлической дверцы на расстоянии четверти длины волны (λ/4) от выходного сечения внутренней части камеры выполняют профилированный прямоугольный «карман», приходящийся на удлинненную торцевую поверхность камеры печи, к которой примыкает дверца; глубина кармана также составляет λ/4. В результате по всему периметру образуется своеобразная резонансная ловушка (λ/2) для электромагнитных волн, короткозамкнутая на своих концевых (поперечных) поверхностях, где поверхностные токи достигают максимума, тогда как в области щели они оказываются близкими к нулю.
Такое устройство называют в СВЧ-технике четвертьволновым дросселем, возможно, по аналогии с дроссельной заслонкой в автомобиле, а не дроссельной катушкой, хотя, если перейти от распределенных систем к цепям с сосредоточенными параметрами, то это типичный фильтр-пробка, настроенный на рабочую частоту печи. Внутренняя поверхность дверцы закрывается пластмассовой накладкой, так что о наличии дросселя можно судить лишь по толщине кромки дверцы. Поскольку рабочая частота составляет 2,45 ГГц, то, разделив на нее скорость света в воздухе, получим длину волны λ = 12,2 см и (λ/4) ~= 3 см. Со стороны печи металлическая поверхность изолируется слоем эмали.
Таким образом, зазор в дросселе составляет примерно 0,1 мм и так как он теоретически находится в минимуме электромагнитных колебаний, то не должен излучать энергию во внешнее пространство. Надо лишь аккуратно обращаться с дверцей, следить за плотностью ее закрытия по всему периметру, чистотой, отсутствием царапин и сколов краски.
Теория теорией, а практика — практикой. Доверяй ей (теории), но всегда проверяй ее (практикой). «Береженого, Бог бережет», поэтому надо все же контролировать уровень возможных утечек электромагнитного поля.
Для начала борьбы с воображаемым противником надо дать оценки его характера и способностей. То, что мы живем и существуем благодаря электромагнитным полям и их взаимодействиям с живой и не живой природой, давно стало аксиомой мироздания. Поэтому остановимся лишь на некоторых моментах, оттеняющих рассматриваемую проблему.
Начнем издалека. В 1964 году американские астрофизики А. Пензиас и Р. Вильсон, проводя работы по исследованию внеземных радиоисточников, направили рупорную антенну на объект, с относительно сильным (по радиоастрономическим меркам) радиоизлучением, называемый «Кассиопея А». Поскольку радиоастрономические сигналы в принципе очень малы, то исследователи работали на максимально возможном уровне их усиления, при этом, как всегда, основной проблемой явилась борьба с разного рода шумами, на фоне которых надо было выделить полезный сигнал. В тот раз ученые предприняли все мыслимые попытки избавиться от сильного фона, сопровождавшего сигнал: закрыли все клепаные соединения и даже тщательно очистили антенну (пардон!) от птичьего помета… Какой-то посторонний фон оставался сильным. Тогда ученые стали исследовать именно это фоновое излучение. Оказалось, что оно соответствует температуре 3 К, т. е. чуть-чуть превышающей абсолютный нуль. Это подтверждало гипотезу, выдвинутую еще в 1948 году американским ученым-физиком русского происхождения Г. Гамовым, о том, что Вселенная после «Большого Взрыва» расширяется, охлаждаясь уже 18 млрд. лет.
Космический фон в виде радиоизлучения, соответствующий температуре 3 К, лежит в коротковолновой области СВЧ-диапазона: это миллиметровые волны или КВЧ (Крайне Высокие Частоты). Возможно, что Жизнь на Земле зародилась не только благодаря видимой (оптической) части электромагнитного спектра — свету Солнца, но и этому естественному фону, названному «реликтовым излучением».
По иронии судьбы, в 1978 году, А. Пензиас и Р. Вильсон разделили половину Нобелевской премии по физике «за открытие космического микроволнового фонового излучения». Однако, они разделили ее не между собой, а с П. Л. Капицей, которого наградили за его ранние «фундаментальные изобретения и открытия в области низких температур», а отнюдь не в области электроники СВЧ, которой он занимался в последние десятилетия, предшествовавшие вручению премии.
Космическое радиоизлучение, принимаемое на поверхности Земли, вообще говоря, заполняет весь диапазон радиоволн от 1 мм (в горах до 0,5 мм) до десятков метров.
Более длинноволновая часть его отражается от ионосферы. Напротив, более коротковолновая часть поглощается в атмосфере, за исключением оптического окна, как бы специально предназначенного природой для реакций фотосинтеза, происходящих в клетках растений: максимум излучения Солнца приходится именно на длину волны 0,5 мкм (зеленый цвет), соответствующую максимуму в спектре поглощения молекулами хлорофилла.
Здесь уместно отметить, что все остальные жизненные процессы сопровождаются расходованием химической энергии и ее рассеянием в виде тепла. Жизнь на Земле остановилась бы, если бы прекратился фотосинтез. Другая особенность фотосинтеза — это образование кислорода, а его роль в нашей жизни вряд ли кто оспорит. Вот так природа согласовала излучение и прием электромагнитных волн, а человек этому еще только начал учиться.
Максимальная интенсивность солнечного излучения, падающего отвесно на 1 м2 земной поверхности, на широте экватора в полдень составляет примерно 1 кВт. О том, что приносит нам Вселенная в радиодиапазоне, можно судить по используемым в радиоастрономии единицам измерений. Принятой здесь единицей является «1 Янский», равный 10-26 Вт/(м Гц), и чтобы собрать излучение такого уровня, строят антенны площадью в тысячи квадратных метров и применяют весьма специфические методы обработки радиосигналов. Правда, бывают и исключения.
Собственно, вообще наличие радиошумов внеземного происхождения было обнаружено еще в 1931 г. инженером американской компании Белл-телефон Карлом Янским (Karl Jansky) при изучении помех дальней радиосвязи. В 1932 году, так же, как позже по всему миру повторяли радиосигналы первого искусственного спутника, запущенного в СССР, открытые К. Янским «звуки Галактики» транслировались по всем Соединенным Штатам. Так было ознаменовано зарождение радиоастрономии. В честь К. Янского, впервые принявшего космическое радиоизлучение, и была названа единица его уровня. В отечественной научно-технической литературе встречается также фонетическое написание его фамилии: Джанский.
Иногда радиоизлучение Солнца бывает столь мощным, что вызывает сильные магнитные бури, приводящие, в том числе, и к сбоям работы радиосистем, что и послужило причиной их случайного открытия. С 1941 г. в Великобритании уже действовала сеть радиолокационных станций (система ПВО, основанная на отечественных радиолокационных станциях РУС-2, защищала с начала войны Москву). Фашистская авиация регулярно делала налеты на Лондон, и раннее обнаружение самолетов было для англичан вопросом жизни и смерти. Система ПВО работала исправно, но в феврале 1942 г. ряд радиолокаторов был буквально «ослеплен» мощными сигналами неведомой радиостанции, и Лондон подвергся жестокой бомбардировке. Разразился скандал, и стали искать эту вражескую станцию, но ни в Германии, ни в других странах Европы ее не обнаружили: этой таинственной станцией оказалось Солнце…
В отличие от радиоастрономии наш источник расположен не в необъятных просторах Вселенной, а непосредственно под боком, и его загадки на кухонном уровне нам хорошо известны, но хотелось бы избежать неприятных сюрпризов.
С позиций современной науки искусственно созданное электромагнитное поле относится к «энергетическому неаккумулирующемуся антропогенному загрязнению» окружающей среды. Человек «наизобретал» таких «загрязнителей» очень много и уже, буквально, жить без них не может, как растения без света. Однако «все хорошо в меру», много «грязи» допускать нельзя: чистая, и даже очень жизнеутверждающая в морально-психологическом отношении, музыкальная симфония, воспринятая высокоорганизованным существом в ближнем поле передающей радиоантенны отнюдь не как звуки рояля, увы, по своим физиологическим последствиям может оказаться и роковой…
Не переходя к дискуссии по поводу возможных специфических (не тепловых) действий ЭМП, особенно актуализированной населением в последние годы в связи с «революцией мобильников» (кстати, работающих в СВЧ-диапазоне), пойдем по формальному пути.
Сейчас существуют, по крайней мере, два стандарта на безопасный санитарно-гигиенический (или экологический) уровень плотности излучения ЭМП. Американский стандарт ANSI предлагает считать безопасным излучение с плотностью мощности в 10 мВт/см2, а применительно к микроволновым печам 1 мВт/см2 на расстоянии 5 см от печи. Европейский же (в том числе и российский) стандарт регламентирует уровень в 10 мкВт/см2 = 0,01 мВт/см2, но на расстоянии 0,5 м от источника излучения. Однако если предположить, что уровень излучения в воздухе убывает по закону обратных квадратов, то эти стандарты близки друг к другу.
В практике ремонта СВЧ-печей для этих целей рекомендованы специальные измерители плотности потока электромагнитной энергии ПЭ-9Р или ПЗ-9Г, а при их отсутствии следующее нехитрое устройство, грубая модель которого показана на рис. 137.
Рис. 137. Модель детектора «утечек» из СВЧ-печи в EWB
Устройство представляет собой проволочную петлю с площадью в несколько квадратных сантиметров и простейший детектор, состоящий из специального СВЧ-диода VD1 и конденсатора С1. Сигнал с этого приемного устройства регистрируется мультиметром.
Приведенные выше цифры уровней мощности позволяют дать грубые оценки чувствительности детектора-сигнализатора, обнаруживающего превышение этих нормированных уровней и задать его характеристики в модели. Сигнал «утечки» задан здесь генератором Е1, работающим на прежней модельной частоте. К сожалению, какая-либо простая калибровка этого датчика не представляется возможной, но уж если он обнаруживает вблизи печи подобные сигналы, то следует принять необходимые меры. Особое внимание в конкретном устройстве надо обратить на диод: это должен быть именно СВЧ-диод (например, диод Шоттки), желательно с квадратичной ВАХ, чтобы показания были пропорциональны мощности.
Изложенный принцип измерения, но с дополнением в виде усилителя сигнала и заменой мультиметра на светоизлучающий диод, является следующий прибор, выпускаемый в собранном виде.
Индикатор микроволновых излучений Мастер КИТ МК153
Индикатор (рис. 137) по сути представляет детекторный приемник прямого усиления, содержащий СВЧ-диод VD1, конденсатор С1, операционный усилитель DA1 (в модели 741), светоизлучающий диод VD2 красного цвета. Устройство питается от батареи Е2.
Рис. 138. Индикатор микроволновых излучений Мастер КИТ МК153:
а — модель индикатора в EWB; б — общий вид индикатора
Чувствительность данного устройства зависит от используемого усилителя, и оно способно регистрировать очень незначительные утечки, непосредственно вблизи щели закрытой и работающей на полную мощность полкиловаттной СВЧ-печи. Индикатор оформлен в виде небольшого законченного модуля, показанного на рис. 138, б и он может помочь в разумном преодолении радиофобии (боязни использования радиоволн в СВЧ-печах и мобильных телефонах). Если светит индикатор, то «светит» вовне и сама печь, если же он не светит (хотя и исправен), то печь исправно греет пищу.
Для обнаружения устройств, излучающих электромагнитные волны в диапазоне частот 5…300 МГц, предназначено следующее устройство.
Индикатор микроволновых излучений Мастер КИТ NS178
Общий вид индикатора показан на рис. 139.
Рис. 139. Индикатор высокочастотного излучения Мастер КИТ NS178
Устройство содержит усилитель и детектор ВЧ, компаратор, перестраиваемый генератор прямоугольных импульсов и ключевой усилитель звуковой частоты. Прослушивание сигналов выполняется на головных телефонах. Индикатор позволяет обнаружить источники ВЧ излучения мощностью 10 мВт на расстоянии 20…25 см.
При поиске несанкционированных «жучков» все прочие источники излучения в данном помещении должны быть отключены. В принципе индикатор работоспособен в СВЧ-диапазоне (можно также доработать его входные цепи), но как сборка, так и наладка устройства, требуют определенного опыта работы.
В начале 1920-х годов в США была подана заявка на изобретение аппарата из области иллюзионной техники. Аппарат представлял собой ВЧ-генератор, декорированный под сервировочный столик. Автор аттракциона, иллюзионист Харлан Тарбел, выкатывал на сцену столик, брал фарфоровую тарелку, разбивал в нее несколько яиц, солил их, и, подняв тарелку над столиком, готовил на глазах изумленной публики яичницу. Тарелка с яичницей отдавалась зрителям: они убеждались, что это обычная тарелка, а не секретная сковорода, но она оставалась почти холодной, а яичница делалась готовой. Выступления Тарбела проходили с громадным успехом, так как он сопровождал их познавательной лекцией, рассказывая о работах Фарадея, Герца и Тесла, аппарате Д'Арсонваля для физиотерапии с помощью токов ВЧ, который, возможно, и послужил прототипом его изобретения. Иллюзионист занимался своей профессией и даже не подумал, что можно его «чудо-печку» использовать на кухне. Это сделал один из его зрителей: некто МакЛежен…
Дальнейшая судьба ТВЧ-печки в быту нам не известна. Фокус же повторяли многие. В ревю «Чудеса без чудес» его с непременным успехом показывал на цирковой арене популярный в свое время советский артист Сокол. Теперь «этот номер не проходит», так как с появлением СВЧ-печей секрет исчез. Так что наши «фокусы» будут не из области кулинарии.
Зададимся вопросом: «Как поведет себя «мобильник» или трубка радиотелефона, помещенные внутрь камеры СВЧ-печи при закрытой дверце?». Конечно, печь не должна работать: иначе ответ в виде несъедобной яичницы очевиден. Включить же надо не печь, а вызов конкретного телефона: «Так вот, откликнется он или нет?».
Вариантов ответа на этот вопрос два: «Телефон внутри печи зазвонит» или «Телефон не зазвонит». Поэтому, не попробовав с конкретными печами и с конкретными телефонами, пари на тот или иной ответ не заключайте.
Приемник телефона, находясь в экранированной камере, в идеальном случае не будет принимать внешних сигналов, однако, если щель между дверцей и печью настроена как фильтр-пробка (см. выше) на частоту 2,45 ГГц, то при рабочей частоте телефонов, лежащей ниже этой величины, и достаточной величине сигнала и чувствительности — телефон зазвонит. В некоторых печах в щели размещают дополнительные поглотители электромагнитных волн (проводящая резина), и телефон может не зазвонить. В ряде старых печей дверцы при закрытии своей внутренней металлической поверхностью просто плотно прижимались к ответной металлической поверхности камеры. Для таких устройств, при идеальном контакте и если толщина стенок больше глубины проникновения поля (скин-слоя), ответ также прост: будет «глухо, как в танке». При отклонении от идеальности — надо пробовать.
Последующие «фокусы» проводились по большей части на кондовых отечественных печах типа «Электроника», поэтому приводятся как описание экспериментального факта. Рекомендовать их к воспроизведению в современных ажурных печечках мы не можем: вдруг сгорят, хотя в них выполнена разнообразная защита и в среднем они стали работать надежнее. Однако эти опыты можно проводить только в присутствии взрослых и с их безусловного согласия.
Во-первых, внутрь СВЧ-печи всегда помещается холостая нагрузка (стакан воды — 200 г), чтобы избежать отражения поля внутрь магнетрона. Далее помещается лист полимерной металлизированной пленки на плоской тарелке. Печка включается буквально на мгновенье, и после того как по пленке «полыхнет» разряд, выключается быстрым открытием дверцы. Тут надо иметь в виду, что в магнетронах использован катод в виде прямого накала, и если бы высокое напряжение включалось одновременно с накалом, то это приводило бы к быстрому разрушению катода. Поэтому в печах выполняют блоки задержки подачи высокого напряжения по отношению к накальному. Открываем печь и достаем пленку: на ней виден красивый узор поверхностных разрядов. С геометрической точки зрения — это знаменитые «фракталы», так что, если не жаль печи, то можно заняться вполне научным исследованием и прочитать это послание, адресованное нашему разуму. Можно поэкспериментировать, устанавливая таймер на минимальное время: 1 с, 2 с, 3 с и т. д., а также уменьшать количество воды.
Аналогичный эксперимент заключается в «жарке» лазерного диска. Старым («не читаемым») лазерным диском накрываем стакан воды в печи. Включаем на небольшое время печь и после нескольких разрядов выключаем ее, достаем диск и изучаем полученную картину. Повторяем процедуру раза три, пока не выявится характерная картина. Не переусердствуйте: диск может и загореться! На диске, в отличие от просто фольги, следы более упорядочены: видны круговые и радиальные треки, так как его поверхность и до СВЧ была обработана лазерным лучом при записи информации.
В житейском плане из этих опытов очевидно, во что может превратиться золотая или серебряная каемка на предметах из сервиза, если в них приготовлять пищу в СВЧ-печи.
Кроме того, категорически нельзя допускать, касания металлических предметов (вилок, ложек, ножей и т. п.) корпуса печи изнутри. СВЧ-разряд в месте касания приведет к прогоранию корпуса и, скорее всего, к выходу из строя магнетрона и других дорогостоящих компонентов: с печью придется распрощаться. СВЧ-кухня диктует «Правило котлет: котлеты отдельно, металл — отдельно».
Эти эксперименты проясняют также ряд мероприятий, принимаемых по грозозащите радиоустройств.
Следующий фокус заключается в зажигании лампочки от карманного фонарика без всякой батарейки. Берем миниатюрную лампочку, например такую, как была описана на рис. 42.
Положив ее на поддон или блюдце так, чтобы цоколь не касался корпуса печки («правило котлет») и как всегда не забывая поставить стакан воды («холостая нагрузка» обязательна!), включаем печь. Если лампа находится на вращающемся подносе, то она по мере попадания в разные участки поля будет загораться и погасать, а может и совсем не гореть или, напротив, вспыхнув, перегореть. Лампочки эти не дорогие, можно поэкспериментировать с разными типами.
В развитие предыдущего, можно припаять к выводам цоколя два любых проводника (голых или изолированных), диаметр (в разумных пределах) также не играет роли — главное их длина. Проводники разводятся перпендикулярно оси лампочки наподобие полуволновой антенны (см. рис. 27, а), в которой максимум тока («пучность») приходится на середину (в отличие от зазора в описанной выше волновой системе защиты дверцы, где максимумы располагаются по краям).
Для максимального приема длина каждого из этих «усов» должна теоретически составить по четверти длины волны. В воздухе это примерно по 3 см. Практически же, сделав «усы» с запасом, их помаленьку можно «подстригать», пока лампочка не перегорит.
Можно также поместить как отдельно лампочку, так и с «усами» в глубокую тарелку с водой. Об изоляции проводников не заботься, не надо (вспомните схему на рис. 135). Длину усов вначале оставляют прежней, а затем еще подстригают, так как длина электромагнитных волн в воде меньше в √ε раз. Диэлектрическая проницаемость е воды на кухонной частоте близка к своему статическому значению (дальше она начинает падать), значит, теоретически длина волны будет в «9 раз короче». А, вообще, здесь также надо иметь в виду влияние проводящих выводов и поглощение волн водой.
В заключение, опишем еще своеобразный СВЧ-фейерверк. Рецепт повторяется: печь, стакан воды, тарелка, но вместо пленки берется столовая ложка любого гранулированного электропроводного материала (с размером зерен около 1 мм). Например, стружка или опилки алюминия, полученные с помощью рашпиля, измельченные троллейбусные контактные угольные щетки и т. д. Их надо горкой насыпать на тарелку или дно прозрачного стакана. После включения печи в ней будут видны взлетающие искорки.
Можно дополнительно поэкспериментировать: взять больше материала, перемешать разные материалы и т. п. Однако ни в коем случае нельзя помещать в печь пиротехнические смеси и изделия!
Здесь мы уповаем на разум.
Вопросов от всех этих опытов, возможно, возникнет больше, чем ответов. Дерзайте!
Натешившись вволю импровизированными молниями, да фейерверкам, полюбуемся в заключение другими вариантами электронных световых эффектов.
6 сентября 1997 года вечернее небо над Москвой прорезало звено «Витязей» и оно озарилось небывалыми красками. Московский университет, словно повинуясь воле неведомого волшебника, вдруг превратился в Собор Христа Спасителя, а затем с ним стали происходить и иные, не менее удивительные метаморфозы. Воробьевы горы зазвучали, как невиданный орган. Это было шоу под открытым небом под названием «Москва: дорога в XXI век», посвященное 850-летию города. В празднике участвовало около трети жителей столицы (более 3,5 млн. человек).
Шоу было организовано знаменитым французским музыкантом и композитором Жан-Мишель Жаром. Жан с детских лет жил в мире музыки, ведь его дед — изобретатель одного из первых звукоснимателей для проигрывателей виниловых дисков, так что он как бы генетически был предрасположен к электронно-музыкальному новаторству.
Несмотря на всю грандиозность и эффектность описанного действа основную его «изюминку», несомненно, составляло исполнение Жаром собственной музыки на специальном светомузыкальном инструменте — Harpe laser — «Лазерной арфе».
Этот сказочный и даже поэтический инструмент являлся вполне конкретным техническим воплощением современной электроники. Пучок света от мощного аргонового лазера оптоволоконным кабелем подводился к середине основания треугольника, составляющего как бы каркас арфы. Отсюда (внутри плоскости треугольника) пучок разделялся на 12 своеобразных лучей-струн, направленных на фотоэлектрические приемники, расположенные на боковых сторонах. Сигнал с фотоприемников поступал на микроконтроллер и далее подвергался стандартной обработке по генерации звуков и их огибающих, принятой в те годы в электронных синтезаторах известной французской фирмы «RSF».
Восемь первых лучей использовались для воспроизведения нот, как в обычной арфе, а остальные четыре — для ряда вспомогательных функций. Так что, когда маэстро, сияя, как ангел в облаках, правда, в берете и черных очках, делал руками, одетыми в белые перчатки, свои пассы среди лучей-струн, модулируя световые потоки, умная электроника оглашала горы музыкой, о которой не мечтал и Орфей.
Конечно, было бы интересно создать что-либо подобное, хотя и не в таких грандиозных масштабах. Пусть первые шаги будут более скромными, но все-таки можно что-то попробовать и, как говориться, войти в курс дела… А там, «чем черт не шутит» ведь творчество границ не имеет. Для начала познакомимся с автоматом световых эффектов, основу которого составляют перемещаемые в пространстве лучи лазера.
Лазерный эффект Мастер КИТ NK300
Устройство (рис. 140, а) монтируется на печатной плате размером 100x74 мм. Здесь располагаются два микроэлектродвигателя (М), лазер и электронный блок управления.
На валах двигателей закреплены небольшие зеркальца. Плоскость зеркал составляет небольшой угол с плоскостью перпендикулярной осям двигателей. Луч лазера попадает на первое зеркальце под определенным углом к оси двигателя, на некотором расстоянии от центра вращения, и, отражаясь от него, аналогично попадает на второе зеркальце. При вращении двигателей выходящий из устройства луч регулярно описывает в пространстве достаточно причудливую траекторию. Вид узоров, возникающих на стенах, потолке и в окружающем воздухе (при наличии в нем рассеивателей, например, пыли или дыма), зависит от настройки системы (рис. 140, б).
Рис. 140. Лазерный эффект Мастер КИТ NK300:
а — схематический вид устройства; б — лазерные узоры
Еще в прошлом веке в самых разнообразных устройствах широко использовалось перемещение луча света зеркалами. Достаточно вспомнить зеркальный гальванометр, шлейфовые осциллографы и самописцы, первые системы «механического» телевидения. Сейчас все это выглядит анахронизмом, хотя и в современных видеопроекторах используется специальная матрица из микрозеркал.
Но как же все-таки образуется конкретный световой узор и как им управлять? Для того чтобы разобраться в этом, можно начертить на листе бумаги, как ведет себя луч света, отраженный вначале только от первого вращающегося как бы с угловым биением, зеркальца. Достаточно лишь вспомнить элементарные законы геометрической оптики: «угол падения равен углу отражения, и лучи, падающий и отраженный, а также перпендикуляр, восстановленный из точки падения, лежат в одной плоскости». Вот только в нашем случае эта плоскость будет вращаться с угловым биением по отношению к плоскости, перпендикулярной оси двигателя.
Можно провести и нехитрый эксперимент, если сохранился старый электропроигрыватель. На его диске под небольшим углом следует закрепить (скотчем или пластилином) зеркальце, которое надо осветить (не обязательно лазером). Приведя диск во вращение, увидим на потолке световой «зайчик», бегающий по кругу. Теория, использующая геометрическую оптику, даст тот же результат.
Теперь необходимо сделать второй шаг: эту светящуюся окружность надо направить под некоторым углом на второе, вращающееся также с биением зеркальце. Не знаю, удастся ли вам сделать соответствующие пространственные построения или провести натурный опыт, добавив еще один (перевернутый вверх тормашками) проигрыватель или вентилятор. Значительно целесообразнее смоделировать работу этого устройства на компьютере.
Задача, по сути, делится на две части: 1) моделирование работы системы управления в виде виртуальной схемы; 2) моделирование картины развертки луча.
Первая часть стандартно, как и ранее, решается средствами EWB. На рис. 141 показана полная модель, содержащая компоненты, используемые в наборе Мастер КИТ NK300, с максимальным сохранением их позиционных обозначений и номиналов; изменения и добавленные элементы будут откомментированы ниже.
Рис. 141. Виртуальная модель в EWB лазерного эффекта Мастер КИТ NK300
Для управления частотой вращения двигателей в схеме использована транзисторная сборка (VT1-VT4), помещенная в стандартный DIP-корпус. Выводы в этой сборке на рис. 141 имеют, соответственно, номера узлов 1-14. На транзисторах VT1, VT2, включенных по схеме с общим эмиттером, собрана балансная схема, к которой подключен двигатель М2, аналогично — на транзисторах VT3, VT4 — двигатель М1. В комплекте используются двигатели постоянного тока с возбуждением от постоянных магнитов. В модели мы применили подобные двигатели, но цепи их возбуждения «запитали» от отдельных источников ЕМ1 и ЕМ2, которых, конечно, на самом деле нет в реальном устройстве.
Выбор параметров двигателей (рис. 142) выполнен в соответствии с примером для электродрели (см. рис. 100, в), но, естественно, величины отличаются.
Рис. 142. Выбор параметров двигателей виртуальной модели в EWB лазерного эффекта Мастер КИТ NK300
Вольтметры, условно подключенные к валу, как и прежде в модели дрели, играют роль тахометров: одному вольту на их шкале соответствует один оборот вала в минуту. Потенциометры Р1 и Р2, управляемые соответственно клавишами X и Y, изменяют в балансных схемах напряжение на якоре двигателей, что позволяет регулировать частоту их вращения независимо друг от друга. Это легко пронаблюдать на вольтметрах-тахометрах, включив моделирование и нажимая на клавиатуре X и Y, для уменьшения скорости или совместно с клавишей Shift — для ее увеличения.
Решение второй части задачи может быть проведено аналитически с использованием законов геометрической оптики и кинематики, а картина в виде графиков выведена на дисплей в любом математическом пакете. Возможно, кого-то это и заинтересует, но мы поступим по-иному.
Используем то обстоятельство, что проекция на вертикальный экран светящейся точки, вращающейся по окружности в другой плоскости, перпендикулярной первой, совершает колебания по отрезку прямой. При равномерном вращении с некоторой угловой скоростью это будут гармонические колебания с такой же угловой частотой и амплитудой, равной радиусу (при плоскопараллельном проектировании). Если плоскость колебаний вертикальна, то и светящаяся линия на экране — вертикальна. Если же плоскость колебаний горизонтальна, то и линия на экране — горизонтальна. Наконец, если точка будет участвовать одновременно в этих двух движениях, то колебания на экране будут при равных частотах иметь вид окружности, эллипса или прямой линии с разными наклонами, зависящими от начальных фаз.
Этот случай сложения взаимно перпендикулярных колебаний обычно используется в радиолюбительской практике для определения разности фаз электрических колебаний, подаваемых на вертикальные и горизонтальные отклоняющие пластины осциллографа. Если частоты складываемых колебаний не равны, но кратны друг другу, то получаются известные фигуры Лиссажу. В рассматриваемом лазерном устройстве происходит именно подобное сложение колебаний, хотя за счет дополнительной пространственно-угловой модуляции общий вид несколько отличается от классических фигур Лиссажу.
Поскольку нас интересует качественная картина, то модель (см. рис. 141), дополнена двумя преобразователями частоты F1 и F2. Входы преобразователей подключены к тахометрам, а выходы, соответственно, к входам А и В двухканального осциллоскопа, чем и завершается построение модели. Преобразователи частоты находятся в основной группе компонентов Basic и по-английски называются Voltage-Controlled Sine Wave Oscillator, т. е. управляемый напряжением генератор синусоидальных колебаний. В качестве параметров этих приборов примем те, которые стоят в меню их свойств по умолчанию. Необходимые установки осциллоскопа и получающаяся картина показаны на рис. 143, а.
Эта картина соответствует развертке двух независимо колеблющихся точек. Для сложения колебаний перейдем от временной развертки Y/T к развертке одного луча относительно другого, например, В/А. Это и будут искомые колебания (рис. 143, б).
Изменяя значения частоты вращения двигателей потенциометрами Р1 и Р2, можно наблюдать различные картины колебаний (рис. 143, в, г), которые показаны на экране осциллоскопа, переключенного в режим Expand.
Рис. 143. Картины на осциллоскопе в модели лазерного эффекта Мастер КИТ NK300
Самостоятельно можно изменить настройки преобразователей частоты, что отражает изменение настройки оптико-механической развертки луча, и наблюдать гораздо более замысловатые картины.
Здесь необходимо также заметить, что картина на экране осциллоскопа в модели накапливается за много проходов луча, тогда как в реальном устройстве этого не происходит, если только частота развертки не будет слишком большой.
После ознакомления с принципом действия устройства переходим к его монтажу.
Порядок сборки устройства
Проверьте комплектность набора согласно прилагаемому перечню элементов:
• отформуйте выводы пассивных компонентов и установите их в соответствии с монтажной схемой;
• установите панель под микросхему на соответствующее место;
• установите микросхему в панельку;
• подключите электродвигатели в соответствии с монтажной схемой;
• приклейте зеркала на соответствующие площадки втулок и установите втулки на валы двигателей;
• подключите потенциометры в соответствии с рис. 140;
• включите питание, добейтесь необходимой траектории луча (для визуализации луча при юстировке системы можно применить легкое задымление воздуха внутри устройства, не забывая при этом о предупреждениях Госпожнадзора и Минздрава);
• зафиксируйте на клей положение излучателя и электродвигателей;
• потенциометры Р1, Р2 управляют скоростью и направлением вращения двигателей, поэтому вращайте их медленно! Двигателю необходимо время для отработки команды управления от потенциометра, около 3 секунд.
Напряжение питания устройства 6 В. Возможно использование как батареи, так и стабилизированного источника питания с током не менее 300 мА. Рекомендуется поместить устройство в корпус ВОХ-G010. Общий вид устройства после сборки показан на рис. 144.
Рис. 144. Общий вид лазерного эффекта Мастер КИТ NK300
Лазерный излучатель в данный комплект не входит, поэтому в качестве него надо использовать специальный лазерный модуль Мастер КИТ МК301 (рис. 145).
Рис. 145. Лазерный модуль Мастер КИТ NK301
В этом модуле предусмотрена возможность фокусировки луча.
Модуль питается от батареи 3 В или от отдельного источника постоянного напряжения.
Технические характеристики модуля
Напряжение питания… 3 В
Потребляемая мощность… 3,5 мВт
Длина волны… 670 нм (0,67 мкм), цвет красный
Класс… 3 А
Внимание! Превышение питания свыше 3 В или изменение полярности питания, выводит из строя модуль.
Соблюдайте правила безопасности. Лазерный луч опасен для зрения! Не допускайте попадания прямого или отраженного луча в глаза! Это опасно!
Напомним, что Жан-Мишель Жар, с которого мы начали наш рассказ, был в темных очках и белых перчатках. В отличие от его сверхэлегантного костюма это были не элементы «прикида» парижского модника, а необходимые детали прозодежды: очки защищали глаза от лучей лазера, а перчатки — руки. Вам это не потребуется, так как применяемый модуль имеет значительно меньшую мощность, но аккуратность и элементарная предосторожность по отношению к себе и окружающим всегда необходимы.
«Что сделаю я для людей!?» — сильнее грома крикнул Данко.
И вдруг разорвал руками себе грудь и вырвал из нее свое сердце и высоко поднял его над головой.
Оно пылало так ярко, как солнце, и ярче солнца…
Среди наборов Мастер КИТ рассмотрим теперьNS094 «Живое сердце». Не пугайтесь заранее — это «живое электронное сердце», или е-сердце (от electronics — электроника).
В основе е-сердца лежит интегральная микросхема таймера, с заветными цифрами 555. Поскольку «гемоглобинами» в е-сердце являются электроны, то операция по его сборке и разборке будет абсолютно бескровной.
Итак, наша виртуальная операционная — компьютер с программой EWB, операционный стол — рабочее окно этой программы.
Находим вначале микросхему 555 среди микросхем смешанного типа (Mixed Ics) и помещаем ее на рабочее поле (рис. 146, а).
Проведем ее внешний осмотр. Перед нами 8-выводная микросхема, выводы которой имеют следующий смысл:
1 — Ground (заземление);
2 — Trigger (триггер — вход запуска);
3 — Out (выход);
4 — Reset (сброс);
5 — Control (управление);
6 — Threshold (порог);
7 — Discharge (разряд);
8 — Vcc (напряжение питания).
Вскроем е-сердце и посмотрим, что находится внутри него (рис. 146, б). Мы обнаружим два операционных (здесь термин «операция» имеет не хирургический, а математический смысл) усилителя (DA1 и DA2), RS-триггер (DD1), биполярные транзисторы (VT1-VT3) и резисторы R3-R6, образующие некоторую схему. Дополним микросхему «навесными» элементами: времязадающей RC-цепью и источником питания Е1 (рис. 146, в). Наблюдение пульсаций работающего е-сердца видно на кардиографе-осциллографе.
Рис. 146. Виртуальная модель в EWB электронного сердца:
а, б — соответствие разводки выводов компонента модели таймера 555; в — развернутая виртуальная модель; г — осциллограммы колебаний; д — субблок e-HEART; е — горящее сердце
Основу схемы составляет триггер DD1 с входами установки (S) и сброса (R), которые управляются компараторами напряжения на операционных усилителях (DA1 и DA2). Инверсный выход триггера Q' в режиме покоя имеет высокий уровень, поэтому времязадающий конденсатор С1 замкнут открытым транзистором VT2. Выход Out (3) имеет низкий уровень, так как включен через инвертирующий усилитель на транзисторе VT3. На входе запуска (2) делителем R3-R4-R5 задается высокий уровень напряжения, спад которого до величины Vcc/3 приводит к изменению состояния компаратора DA2 и переключению триггера DD1 в состояние с высоким уровнем (логическая 1), что приводит к низкому уровню на Q' и, соответственно, к высокому на выходе Out. Транзистор VT2 при этом запирается и начинается зарядка конденсатора С1 через резисторы R1-R2. Как только напряжение на выводе 7 станет равным 2Vcc/3, компаратор DA1 сбросит триггер, открывая тем самым транзистор VT2, разряжая конденсатор С1 через резистор R2. Далее схема переходит в режим заряда и разряда конденсатора с периодом Т = 0,693·(R1 + 2 R2)·C1, где R измеряется в омах, С — в фарадах, а Т — в секундах.
Описанный процесс хорошо виден на осциллоскопе (рис. 146, в). Луч канала А регистрирует характерные кривые заряда-разряда конденсатора, луч В — прямоугольные колебания на выходе, определяющие работу таймера. Наше сердце «Бьется, как часы (таймер), так как Доктор прописал на компьютере!». Здесь можно даже усмотреть некоторую аналогию между напряжением на конденсаторе и характером электрокардиограмм или тонограмм биений человеческого сердца, но данная модель для этого не предназначалась.
На таймере 555 выполним виртуальную модель с периодическими световыми вспышками, подключив к выходу светоизлучающий диод — LED (рис. 146, г). В программе EWB мы используем для этой цели логический пробник (Probe), находящийся в разделе Indicators. Далее, представив все устройство в виде субблока e-HEART (рис. 146, б), оформим его в виде «горящего сердца» (рис. 146, е).
Мигание светодиодов красного цвета, задаваемые таймером, дают на экране компьютера красивую картину.
Познакомившись с устройством и работой интегрального таймера 555, соберем на нем виртуальную модель из набора NS094.
Основу составляет печатная плата, посадочные отверстия в которой под светоизлучающие диоды дают условный рисунок сердца (рис. 147, а, б), а разводка дорожек соответствует приведенной выше схеме.
Рис. 147. Монтаж набора Мастер КИТ NS094:
а, б — лицевая и обратная стороны печатной платы А514; в, г — набивка и пайка компонентов; д — «Живое сердце» в сборе
Монтаж сердца начинаем с формовки и набивки компонентов (рис. 147, в). Проверяем правильность монтажа отдельных компонентов и в целом, а затем используем, усвоенную «Науку паять» (рис. 147, г). Наконец, к готовому сердцу подключаем свежую батарейку (рис. 147, б) и наблюдаем его ритмичную работу — «вспышки» красных светодиодов. Если просмотреть осциллограммы реальным осциллографом, то они будут такими же, как и выше (см. рис. 146, г).
Пульс этого сердца легко управляется сменой номиналов резисторов R1, R2 и конденсатора С1.
Собрав из набора NS094 реальное устройство (рис. 147, д) мы увидим, что оно еще более красиво, бьется ритмично и его приятно подарить своим любимым на день Святого Валентина, 8 Марта или другой подходящий праздник.
Новый год — самый любимый общий семейный праздник. Кругом горят огни елок. Заранее начинают готовиться и думать, что же подарить своим родным и друзьям. И здесь важна не цена подарка, а забота, внимание и выдумка. На помощь радиолюбителям приходит Мастер КИТ и предлагает оригинальный и интересный набор NS180 «Новогодняя елка».
Сначала посмотрим елочку на компьютере: в программе EWB соберем ее развернутую виртуальную модель (рис. 148).
Рис. 148. Развернутая виртуальная модель электронной елочки в EWB
Для этого потребуется войти в раздел цифровых интегральных микросхем Digit и подобрать там КМОП микросхему 4069 и ТТЛ микросхему 74164. Разместив их в центре экрана, собираем слева источник питания: батарея Е1 = 9 В и стабилизатор напряжения на NPN транзисторе VT1 и стабилитроне (Zener Diode) VD1 (конкретные их типы для этой модели не принципиальны). Набрав далее необходимые резисторы и конденсаторы, собираем устройство управления елочной гирляндой. Собираем генератор, задающий тактовые импульсы, на инверторах микросхемы 4069 и подключаем его к 8-ми разрядному последовательному сдвиговому регистру на микросхеме 74164. На выходы регистра «навешиваем» гирлянду светоизлучающих диодов. В программе EWB мы используем для этой цели логический пробник (Probe), находящийся в разделе Indicators. Собрав все необходимые цепи, даем команду на моделирование. На компьютере возникает мигающая огнями елка.
Используя технику субблоков, выделим в модели блок электронного коммутатора е_соm (рис. 149) и, используя его, придадим модели иной вид (рис. 150, а).
Рис. 149. Субблок e_com в виртуальной модели электронной елочки
Новогодняя елка от Мастера КИТ NS180
Теперь берем собственно набор и наряжаем реальную электронную елку.
Общий вид «Новогодней елки» показан на рис. 150, б.
Технические характеристики устройства
Напряжение питания… 9 В
Максимальный ток потребления… 100 мА
Размеры печатной платы… 90x133 мм
Остается поставить ее на праздничный стол и достойно, демонстрируя свои достижения в радиоэлектронике, встретить Новый год: «Гори, гори ясно!».
Рис. 150. Новогодняя елка:
а — виртуальная модель в EWB; б — набор Мастер КИТ NS180
* * *
Вот мы и побывали в этой удивительной стране:
«РАДИОЭЛЕКТРОНИКА».
Многое увидели, познали и сделали. Настала пора прощаться.
Жаль только, что некуда бросить заветную монетку…
Попрощаемся на радиоязыке:
73!