КТО КРЕПЧЕ И ПОЧЕМУ? ФАКТЫ И ГИПОТЕЗЫ

Знание действия зависит от знания причины и заключает в себе последнее.

Б. СПИНОЗА

Если подвергнуть общему облучению какое-нибудь животное или человека в сравнительно небольшой дозе, не вызывающей даже видимых изменений в его состоянии, например, в дозе 50—100 Р, то оказывается, что некоторые клетки, например лимфоциты (одни из клеток белой крови), при этом погибнут. В то же время в водной «рубашке» атомного реактора в Лос-Аламосе (США) обнаружены размножающиеся бактерии, хотя доза в воде составляла более 1 млн. Р/ч. Таков огромный диапазон чувствительности кионизирующим излучениям в природе — естественной радиочувствительности. В первом случае речь идет о крайне радиочувствительных, а во втором об исключительно радио-устойчивых, или, как иногда говорят, радиорезистентных, объектах. Кстати, упомянутые бактерии даже получили соответствующее название — micrococcus radiodurans — радио-устойчивый микрококк.

Перед нами возникло противоречие только что приобретенному небольшому запасу знаний. Речь идет о несоответствии правилу Бергонье и Трибондо, согласно которому следовало ожидать противоположных результатов: лимфоцит — клетка неделящаяся, зрелая и должна быть радиоустойчивой, а бактерии — интенсивно делящиеся клетки и, казалось бы, должны легко поражаться (?).

А в чем вообще причина смертельного эффекта ионизирующих излучений? Прежде чем попытаться ответить на эти сложные вопросы, совершим несколько параллельных прогулок.

За ясностью

Короткий маршрут в область терминологии избавит нас от бессмысленных блужданий, связанных с терминологической путаницей, существующей вокруг самого понятия радиочувствительности, которая, как читатель уже легко догадался, является основным предметом радиобиологических исследований. Здесь уместно вспомнить высказывание Декарта о том, что споров не существовало бы, если бы люди договорились об определениях.

При сравнении чувствительности к ионизирующим излучениям можно использовать самые различные реги- . стрируемые реакции вне зависимости от их значения для жизнеспособности облучаемых объектов, подвергающихся сравнительному изучению. Обязательно, однако, чтобы эти реакции в принципе проявлялись у сравниваемых объектов. Между тем вследствие высокой степени дифференцировки, присущей даже отдельным клеткам, а тем более тканям и системам, многие реакции являются высокоспецифичными. К примеру, нервной и мышечной тканям свойственна электрическая активность, строго специфическая для каждой из них и даже для их различных областей, что отчетливо регистрируется графически с помощью специальных приборов. Как показал Ю. Г. Григорьев, изменения биотоков головного мозга, отражающиеся на соответствующих кривых, можно зарегистрировать уже в процессе облучения при очень малых дозах — до 10 Р, что характеризует чрезвычайно высокую реактивность центральной нервной системы на воздействие ионизирующих излучений. Но из этого никак не следует вывод о ее высокой радиочувствительности, ибо никаких морфологических, да и жизненно важных функциональных изменений в нервной системе не наступает при облучении в дозах порядка сотен и даже тысяч рентген.

Вот почему в качестве количественного показателя радиочувствительности следует использовать отношение доз ионизирующих излучений, вызывающих равные специфические (одинаковые) эффекты в сравниваемых клетках или системах. Удобным критерием такого рода являются смертельные эффекты, учитываемые с помощью определения дозы, вызывающей одинаковую смертность. Наиболее часто говорят о величине ЛД50 — 50 %-ной летальной (смертельной) дозе; при облучении в этой дозе погибает примерно половина облученных объектов.

Для оценки сравнительной радиочувствительности клеток в радиобиологии используют дозовые кривые выживаемости, или, как их чаще называют, кривые доза — эффект. Из этого названия уже ясен принцип построения соответствующего графика, приведенного на рис. 5. Обычно такой график строят в полулогарифмическом масштабе. На оси абсцисс в линейном масштабе откладывают дозы, а на оси ординат в логарифмическом масштабе — выживаемость клеток. При этом тип кривой зависит от вида излучения, при воздействии редкоионизирующей радиации кривая имеет начальный пологий участок — плечо (рис. 5, Л), а при действии плотноионизирующих частиц плечо менее выражено или отсутствует (рис. 5, Б).

Рис. 5. Кривые выживаемости клеток китайского хомячка при гамма-облучении (Д) и при облучении нейтронами (Б)

На рис. 6 показана возможность сравнения радиочувствительности разных клеток по величине ЛД50. Существуют и другие специальные более сложные критерии радиочувствительности, характеризуемые параметрами кривой,— ее наклоном, величиной плеча и др. Рассмотрение их, однако, не входит в нашу задачу. Итак, радиочувствительность нужно рассматривать как синоним радиопоражаемости и альтернативу радиоустойчивости. Иными словами, чем чувствительнее тот или иной объект к действию ионизирующих излучений, тем меньшая доза их нужна для его поражения.

Рис. 6. Кривые выживаемости дрожжей (1) и клеток костного мозга мыши (2); ЛД50 составляют соответственно 45 кР и 330 Р

Велики ли эти дозы, если представить их в измерениях, привычных нам из повседневной жизни и общения с другими видами энергии?

Радиобиологический парадокс

Вашему вниманию предлагается таблица, дающая представление о диапазоне радиочувствительности в природе.

Как видно из табл. 1, радиочувствительность сильно различается не только между отдельными видами, она значительно варьирует в пределах одного вида; это так называемая внутривидовая, или индивидуальная, радиочувствительность. Более того, она имеет различия, характеризуемые возрастом и полом. Наконец, даже водном организме различные клетки и ткани очень сильно различаются по радиочувствительности, и наряду с чувствительными, например, кроветворной системой, тонким кишечником, половыми железами, имеются устойчивые, радиорезистентные органы и ткани: печень, мышцы, нервная система, кости.

Средние величины ЛД50 гамма-излучения для разных биологических видов

В чем же причина такого разнообразия? Иными словами, каковы механизмы, определяющие естественную радиочувствительность биологических объектов? Забегая далеко вперед, можно сказать, что однозначно ответить на этот важнейший вопрос радиобиологии пока еще не удалось, хотя очень многие его аспекты достаточно хорошо изучены. С рассмотрением некоторых из них мы неизбежно встретимся на перекрестках наших путешествий. Сейчас же обратим внимание лишь на то, что, как видно из таблицы, доза, приводящая к гибели более половины млекопитающих любого вида, не превышает 1000 Р.

Если выразить эту дозу по суммарной тепловой энергии, поглощенной в теле человека, то окажется, что организм в результате нагреется на 0,001°, т. е. меньше, чем от выпитого стакана горячего чая.

Зададимся другим вопросом: сколько атомов подвергается ионизации при облучении в той же смертельной дозе 1000 Р?

Представление об этом может быть получено из рассмотрения двух следующих примеров.

Согласно расчетам Д. Э. Ли, в одном кубическом микроне ткани при дозе 1000 Р возникает около 200 ионизаций; если учесть, что в этом объеме содержится 1011 атомов, то, следовательно, радиационному изменению подвергнется ничтожно малая доля молекул. Более того, если непрерывно облучать какое-либо вещество, по плотности соответствующее живым тканям, то половина его атомов превратится в ионы примерно через 1000 лет (!!!).

Итак, ничтожное количество суммарной энергии, поглощенной в организме, а тем более в клетке, при облучении приводит к необратимой катастрофе, заканчивающейся гибелью. Причины этого явления, метко названного Николаем Владимировичем Тимофеевым-Рессовским «радиобиологическим парадоксом», все еще полностью не изучены и по настоящее время остаются предметом фундаментальных радиобиологических исследований. Иллюстрацией этому может служить высказывание Фриц-Ниггли — крупнейшего радиационного генетика. «Вопрос о механизме радиобиологического эффекта остается еще совершенно открытым; различные гипотезы экспериментально не обоснованы настолько, чтобы не оставалось возможности для новых изумительных открытий». И тем не менее сведения, добытые в результате гигантского труда теоретиков и экспериментаторов, позволили сформулировать основные положения теории радиобиологического эффекта. Знакомству с ними будет содействовать предварительное путешествие внутрь клетки.

В клетку

Клетка является ареной, где развертываются основные драматические события, следующие за поглощением энергии в атомах и молекулах. Сюда и совершим мы наш нынешний экскурс, который облегчит понимание радиобиологического парадокса.

Современная цитология — наука о клетках, оснащенная самым совершенным оборудованием и методами исследования, такими, как электронная и сканирующая микроскопия, спектральный и рентгеноструктурный анализ, микроавторадиография и др., достигла огромного прогресса. В четвертом издании капитального труда по общей цитологии, написанного тремя маститыми учеными— Де Рббертисом (Буэнос-Айрес), Виктором Новинским (Техас) и Франциско Саэсом (Монтевидео, Уругвай), авторы справедливо замечают по этому поводу: «Хотя научный прогресс является непрерывным эволюционным процессом и его успехи неразрывно связаны с предшествующими достижениями, скорость этого процесса далеко не постоянна... Бурное развитие биологии в наше время объясняется двумя причинами: 1) высокой разрешающей способностью аппаратуры... и 2) содружеством с другими направлениями биологических исследований, главным образом с генетикой, физиологией и биохимией». Продолжая дальше эту мысль, добавим радиобиологию, взаимовлияние которой с цитологией стало особенно плодотворным в последние 10—15 лет2.

Рассказ о клетке — этой элементарной и в то же время бесконечно сложной, удивительно устроенной природой единице жизни — уведет очень далеко от основной цели наших странствий. Этой увлекательной теме посвящены специальные книги самого различного уровня и объема. Здесь же обратим внимание на отличие клетки от отдельных, хотя и очень важных, сложных звеньев жизни, таких, как молекулы белков, нуклеиновых кислот, ферментов и др. Это — элементы живого, но до живого им еще далеко, даже в случае, если речь идет об их синтезе в пробирке, ибо «...жизнь начинается там, где возникает совершенно особым образом организованная автономная, саморегулирующая и самовоспро-изводящая система, как бы автоматически координирующая все звенья химических, в частности, синтетических процессов». Это слова академика Глеба Михайловича Франка, посвятившего много лет жизни изучению биофизики клетки. Наряду с гигантскими клетками, например амёбами, существуют клетки-пигмеи, размер которых в 1000 раз меньше и составляет 0,12—0,25 мк (0,0001—0,00025 мм),— это микоплазмы, возбудители плевропневмонии у скота, обнаруженные еще великим Пастером (их диаметр лишь в 1000 раз превышает диаметр атома водорода). Большинство клеток млекопитающих имеют диаметр от 10 до 30 мк. Таким образом, по диаметру клетки варьируют в тысячу раз, а по объему — в миллиард раз. Независимо от этого в каждой из них работают много сотен ферментов, управляющих громадным числом химических соединений. Все эти вещества поддерживаются в динамическом равновесии благодаря постоянно идущим в клетке великолепно устроенным и слаженным процессам синтеза и химических превращений, меняющих свое направление, удельный вес и скорость в зависимости от обстоятельств и нужд клетки.

Чему же обязана клетка наличием свойств, кажущихся при рассмотрении ее функции «чудесными»? Свойства эти заложены уже в биологических молекулах — их своеобразной пространственной конфигурации и в значительной степени связанной с ней строгой функционально-структурной упорядоченности многочисленных клеточных органелл. Предельно упрощая ситуацию, назовем лишь основные из них. Это клеточное ядро (хранитель генетической информации и главный управляющий) и цитоплазматический аппарат, состоящий из многочисленных митохондрий (энергостанций), рибосом (фабрик белка) и эндоплазматической сети (транспортных путей). Особое значение имеют внешние и внутренние поверхности клетки и ее органелл — мембраны, одновременно разделяющие и связывающие деятельность всей клетки в целом и ее отдельных частей (рис. 7).

Рис. 7. Общая схема ультраструктуры «идеальной» животной клетки. В центре — ядро клетки с ядрышком и хромосомами; в цитоплазме множественные органеллы. 1 — агранулярная эндоплазматическая сеть; 2 — базальная мембрана; 3 — центриоль; 4 — хромосома; 5 — ресничка; 6 — корешок реснички; 7 — десмосома; 8 — комплекс Гольджи; 9 — гранулярная эндоплазматическая сеть; 10 — лизосомы; 11 — выпячивание мембраны; 12 — митохондрии; 13 —микроворсинки; 14 — ядрышко; 15 — пора; 16 — плазматическая мембрана; 17 - пиноцитозный пузырек; 18 — рибосомы; 19 — секреторные пузырьки

Вся эта удивительная, сверхсложная, подвижная система реагирует на различные внешние воздействия, не теряя жизнеспособности, проявления своих специфических функций и самого поразительного свойства — способности к бесконечному размножению, в ходе которого дочерние клетки наследуют все признаки и функции их «предков». Увлекательнейший рассказ о наследственности и механизмах ее передачи читатель найдет в книге видного радиационного генетика Николая Викторовича Лучника «Почему я похож на папу», а также в книге Валерия Николаевича Сойфера «Арифметика наследственности».

Пластичность клетки, выработанная и закрепленная ею в эволюции по отношению к самым разнообразным агентам внешней сферы, пасует, однако, перед агрессией ионизирующих излучений, уже в самых ничтожных дозах лишающих жизнеспособности определенную долю клеток, парализуя самую удивительную их функцию — способность к неограниченному размножению.

Что же в клетке столь уязвимо?

Над этим вопросом радиобиологи задумывались очень давно и уже в начале века получили первые данные о высокой радиочувствительности ядра клетки. Однако наиболее убедительные доказательства справедливости данной точки зрения были получены в серии великолепных экспериментов генетиком Борисом Львовичем Аста-уровым, использовавшим для этой цели феномен андрогенеза — возможности развития организма из мужской зародышевой клетки без процесса оплодотворения. Опыты эти настолько изящны, что читателю, будет интересно познакомиться с ними подробнее. Борисом Львовичем было продемонстрировано получение потомства тутового шелкопряда, состоящего только из самцов, по всем признакам, повторяющих отца, путем предварительного облучения готовой к оплодотворению и кладке яиц самки бабочки в дозе 50 000 рад. Эта доза смертельна для нее и для ядерного аппарата еще не отложенных яиц, но гибель такой обреченной бабочки происходит не сразу и она может копулировать с необлученным самцом. Если затем отложенные после копуляции яйца нагреть для побуждения андрогенетического развития, то из них выходят гусеницы, маркированные только признаками отца, а после окукливания вылупляются бабочки — только самцы, которые также повторяют признаки своего отца (рис. 8).

Рис. 8. Схема экспериментов Б. Л. Астаурова, демонстрирующих роль ядра в механизме радиационной гибели клетки (объяснение в тексте)

Причина получения такого андрогенетнческого потомства состоит в следующем: у тутового шелкопряда в каждую яйцеклетку проникает несколько спермиев, но с женским пронуклеусом сливается ядро лишь одного из них. Так как женский пронуклеус в яйце был разрушен в результате облучения, то его место заняло ядро одного из проникших в такое облученное ядро спермиев, а ядро другого сперматозоида приняло на себя роль второго ядерного оплодотворяющего комплекса, что привело к образованию нормального диплоидного ядра, у которого, однако, оба набора хромосом получены от отца. Для нас наиболее важно, что огромный по сравнению с ядром объем материнской плазмы, подвергшийся тому же облучению, никак не сказался на жизнеспособности потомства.

Позднее прямые доказательства большей радиочувствительности ядра по сравнению с цитоплазмой были получены другими исследователями в опытах с прицельным облучением микропучками протонов и α-частиц ядра в клетках, где оно строго фиксировано. Оказалось, например, что попадание лишь одной α-частицы в ядро оплодотворенного яйца наездника вызывает гибель зародыша, которая в случае облучения цитоплазмы яйца регистрируется после прохождения 15 млн. частиц.

Однако приведенные примеры не отвергают роли цитоплазмы в повреждении ядерного аппарата и всей клетки в целом. Сейчас имеются данные о зависимости ядерных повреждений от степени облучения цитоплазмы. Кроме того, для разных объектов удельный вес прямого поражения ядра и опосредованных влияний может сильно различаться, отражая сложность ядерно-цитоплазма-тических отношений и особенности жизнедеятельности различных клеток.

Однако нам пора покинуть клетку. Мы заглянули в нее для того, чтобы помочь разгадать радиобиологический парадокс.

Мудрые мысли

Прежде всего заметим, что в отличие от эффектов, возникающих в результате воздействия любыми видами энергии, биологические реакции на ионизирующие излучения определяются не общим количеством поглощенной энергии, а формой передачи — в виде узколокальных процессов ее размена в микрогеометрических участках клетки. Отсюда при попытке объяснения радиобиологического парадокса были сформулированы два основных положения количественной радиобиологии.

Первое из них лежит в основе принципа попаданий, оно отмечает особенность действующего агента — дискретность поглощения энергии, а второе учитывает особенность облучаемого объекта — высокую функциональную гетерогенность клетки, предопределяющую различие в ответе на одно и то же попадание в зависимости от пораженной мишени. Иными словами, принцип попаданий исходит из наличия в клетке более или менее существенных для жизни структур, и так как распределение ионизаций носит случайный характер, то исход поражения клетки — чисто вероятностная реакция, зависящая от попадания в наиболее ответственный для жизни микрообъем.

Эти представления впервые были сформулированы Дессауэром еще в 20-х годах, а затем развиты в трудах Н. В. Тимофеева-Рессовского, К. Г. Циммера и Э. Д. Ли.

Легко заметить, что изложенные теоретические принципы носят чисто формальный характер; они и получили название классического формализма. Эпитет «классический» говорит о многом. Действительно, всем своим развитием количественная радиобиология в значительной степени обязана концепциям попадания и мишени. Вспоминая Шиллера — «И в настоящем дне грядущий день уже свой путь свершает»,— можно сказать, что и сегодня простые, но мудрые положения классицизма сохраняют свое значение, несмотря на появление большого числа фактов и явлений, требующих дополнительных объяснений и не укладывающихся в прокрустово ложе формальных представлений, ибо сам принцип позволяет хотя бы осмыслить радиобиологический парадокс.

Теперь расширились вероятностные аспекты этого принципа, что отражается даже в названии новых гипотез. Такова стохастическая (вероятностная) гипотеза О. Хуга и А. Келлерера, учитывающая не только поражение, но и открытую в последнее время возможность восстановления жизнеспособности облученной клетки. Кстати, честь открытия феномена восстановления принадлежит отечественному радиобиологу — Владимиру Ивановичу Корогодину, много лет проработавшему в тесном сотрудничестве с Н. В. Тимофеевым-Рессовским.

Стохастическая гипотеза рассматривает клетку как лабильную динамическую систему, постоянно находящуюся в стадии перехода из одного состояния в другое. Вследствие крайней сложности системы любой такой переход связан с множеством сопряженных реакций отдельных клеточных органелл и макромолекул. В процессе жизнедеятельности благодаря влиянию самых разнообразных, не подлежащих учету факторов и малейших неопределенностей исходного состояния возникает вероятность «отказов» в элементарных звеньях, а вследствие этого и (или) независимо от них — «крушения» всей системы. На биологическую стохастичность (вероятность) первого порядка при облучении клетки накладывается стохастика второго порядка вследствие случайного взаимодействие излучения с веществом. Это увеличивает вероятность крушений системы, происходящих со значительно меньшей частотой и в необлученном контроле.

Таким образом, как справедливо замечает В. И. Корогодин, стохастическая гипотеза, отражая дух времени, пытается рассмотреть различные возмущения биологической системы, возникающие как в процессе жизнедеятельности, так и под влиянием облучения, с позиций теории вероятностей, стремясь описать их моделями, максимально соответствующими представлениям динамической биохимии и молекулярной радиобиологии. Нельзя не заметить, что остались незыблемыми оба определяющих фактора классического принципа попаданий — дискретность радиационного агента и функциональная негомогенность биологического объекта. Существенно отличным является лишь толкование второго фактора: если с формальных позиций он определяется наличием фиксированных мишеней, то в системе новых представлений показана несостоятельность такой точки зрения, взамен которой развита идея определяющей ролл стохастической природы физиологических процессов и их радиационных нарушений.

Стохастическая гипотеза, учитывающая современные данные о микрораспределении энергии излучения, вариабельность радиочувствительности, роль процессов восстановления и временную кинетику биологических процессов, несомненно более биологична, чем классический формализм. Но и она не в состоянии удовлетворительно объяснить все многообразие экспериментальных фактов.

В последние 2—3 года была предпринята новая попытка теоретического анализа. На сей раз Юрий Капульцевич (представитель школы Н. В. Тимофеева-Рессовского и В. И. Корогодина) предложил так называемую вероятностную модель радиационного поражения клетки. Согласно этой модели разные клетки, подвергнутые облучению в одной и той же дозе, поражаются в разной степени в соответствии с принципом попадания. Однако в рамках предлагаемой модели радиационные повреждения проявляются с вероятностью меньше единицы и в зависимости от условий жизнедеятельности клеток, увеличиваясь при ухудшении этих условий.

Таким образом, вероятностная модель, являясь как бы синтезом принципа попадания и стохастической концепции, использует сохранившие значения основные положения первого и дополняет последнюю, расширяя диапазон явлений, которые могут быть интерпретированы с позиций биологической стохастики. Однако уже сегодня сам автор модели указывает на ряд ее ограничений, свидетельствующих о необходимости дальнейшего совершенствования наших теоретических представлений.

Существует еще один теоретический подход к объяснению радиобиологического эффекта; он постулирует различные биофизические и биохимические механизмы усиления первичных элементарных процессов размена энергии излучения. Роль таких усилителей поражения приписывается высокореакционным продуктам, образующимся в облучаемом биосубстрате, получившим название радиотоксинов. По мнению академика Николая Марковича Эмануэля, профессора Бориса Николаевича Тарусова и профессора Юрия Борисовича Кудряшова, в качестве таковых выступают различные ненасыщенные жирные кислоты и перекиси липидной природы, инициирующие цепные окислительные реакции радикального типа. Наиболее широкие исследования в этом направлении на протяжении двух десятков лет осуществляются членом-корреспондентом АН СССР Александром Михайловичем Кузиным. В настоящее время развиваемая им концепция известна под названием структурно-метаболической гипотезы. В рамках этой гипотезы наряду с липидными токсинами большое значение придается хинонам и ортохинонам. Усиленное образование их в клетке под влиянием облучения нарушает ее строго упорядоченную структурную организацию, что приводит к нарушению мембран, сопряжению важных метаболических процессов, активации ферментов, расстройству управляющих систем и другим тяжелым последствиям вплоть до гибели. Таким образом, структурно-метаболическая гипотеза решающую роль отводит фактору функциональной гетерогенности клетки и опосредованным (через образование радиотоксинов) эффектам ионизирующих излучений.

К сожалению, и эта гипотеза не позволяет объяснить многие факты, в частности, такие важные, как разную эффективность электромагнитных излучений и тяжелых ядерных частиц, отличающихся, как упоминалось, лишь пространственным распределением энергии.

Подводя итог современному состоянию вопроса о первичных механизмах радиобиологического эффекта, следует исходить из того, что классические представления принципа попаданий претерпели серьезную модификацию. Очевидно, наиболее правильное решение рас- сматриваемой проблемы лежит на пути признания решающей роли совокупности повреждений, возникающих в отдельных звеньях многокомпонентной, чрезвычайно сложной, строго упорядоченной в структурном и функциональном отношении системы, каковой является живая клетка.

К сожалению, ни одна из гипотез пока не может быть названа общепризнанной (помните слова Фриц-Ниггли?), так как появляются все новые факты и открытия. И в этом нет ничего удивительного. Такова героико-драматическая судьба любой гипотезы, живущей лишь вместе с кругом явлений, которые она может объяснить, и отмирающей с рождением новых противоречащих или несоответствующих ей фактов.

Тем не менее существующие теоретические представления позволяют непротиворечиво объяснить многие экспериментальные факты и прежде всего осмыслить феноменологию радиационной гибели клетки.

Невосполнимая утрата

Попытаемся теперь ответить на вопросы, поставленные в начале этой главы.

Какова же непосредственная причина гибели клетки?

Ответ — прежде всего, повреждение содержащегося

в клеточном ядре наследственного вещества — дезоксирибонуклеиновой кислоты —ДНК. Гигантские молекулы ДНК, из которых состоят находящиеся в ядре хромосомы, уникальны по своему составу, строению и функциям. С них, как с матриц, считывается информация, печатаются, собираются блоки жизненно необходимых для клетки белков. Этот сложнейший процесс великолепно автоматизирован и выполняется отдельными участками макромолекул ДНК. Поэтому, несмотря на возникшие повреждения ДНК, ее разрывы, до тех пор пока клетка не делится, она и не подозревает о происшедшей катастрофе — «котел варит в полном объеме» (или с ничтожными нехватками). Но вот в момент очередного деления клетки оторванные куски содержащих ДНК хромосом неравномерно распределяются по двум дочерним клеткам — из-за неправильного соединения или вследствие потери — и возникает, как говорят цитогенетики, генный дисбаланс. Новообразованная клетка, лишенная части ДНК, необратимо утрачивая способность синтеза специфических материалов и управляющих функций, свойственных потерянному участку молекулы, обречена на гибель. В микроскопе такие обреченные клетки легко различить по наличию в них отдельно лежащих фрагментов хромосом.

Отсюда становится ясным, почему делящиеся клетки намного более радиочувствительны, чем находящиеся в стационарном, покоящемся состоянии. Продемонстрируем это на весьма наглядном примере. Два молодых аспиранта Геннадий Палыга и Ольга Ольшевская подвергли локальному облучению печень крысы. Печень относят к весьма радиорезистентным органам, и это понятно. Клетки ее в норме не делятся. И действительно, животные перенесли облучение без последствий. При микроскопическом исследовании ткани печени также не было обнаружено никаких изменений, не была нарушена существенно и функция органа. Через полгода у животных часть печени удалили, а оставшаяся начала регенерировать — надо же восполнить утраченную долю органа. И когда подвергли микроскопии кусочки регенерата, то оказалось, что многие из делящихся клеток содержат хромосомные аберрации, т. е. эти клетки или их потомки были обречены на гибель. Таким образом, лучевое повреждение клеток в стационарном состоянии не сказалось ни на их функции, ни на жизнеспособности. Более того, они как бы законсервировали это поражение, которое легко проявилось, однако, при искусственном побуждении клеток к делению. Такая форма гибели, характерная для большинства клеток, известна под названием репродуктивной, т. е. связанной с процессом репродукции (самовоспроизведения, деления).

Из рис. 9, на котором схематически изображены наиболее важные локализации лучевого поражения клетки, видно, что кроме непосредственных молекул ДНК важная роль отводится структурной целостности ядерных и цитоплазматических мембран и в первую очередь ДНК-мембранного комплекса, которому отводят регулирующую роль в воспроизведении ДНК и в разделении ее нитей в процессе деления. Приведенная схема иллюстрирует современные представления о роли совокупности повреждений структурно-функциональных звеньев строго упорядоченной системы, каковой является клетка, подчеркивая при этом особо важную роль ядерного аппарата в исходе ее поражения.

Рис. 9. Схема наиболее важных локализации лучевого поражения клетки. 1—2 —одиночные и двойные разрывы ДНК; 3 — нарушение связи ДНК с белком; 4 — нарушение структуры ДНК-мембранного комплекса; 5, 6 — нарушение ядерной и митохондриальной мембран

Некоторые клетки (их значительно меньше) гибнут и без деления, как говорят радиобиологи, под лучом или в первые минуты и часы после облучения. Это молодые, еще малодифференцированные клетки, не закончившие своего формирования в зрелые элементы. Типичным примером служат клетки эмбриона, находящегося на разных стадиях развития. Причины этой формы гибели клеток, называемой интерфазной (между делениями) точно не установлены. Известна лишь их чисто феноменологическая связь с процессами дифференцировки, в которых очень большая роль принадлежит также клеточному ядру. Наглядной иллюстрацией этому могут служить эксперименты Ю. В. Корогодиной, которая обнаружила, что при облучении крысят в первую неделю их жизни небольшими дозами наблюдается типичная интерфазная гибель большинства нервных клеток коры мозжечка, еще не завершивших свою дифференцировку.

Не исключено, что с этим связана и высокая радиочувствительность лимфоцитов, которые, будучи зрелыми клетками, обладают удивительным свойством полипо-тентности — превращения в другие клетки, т. е. сохраняют потенциальную способность к дифференцировке. Это дает основание предполагать о наличии в лимфоците некоей системы, которая, как следует из наблюдений за малодифференцированными клетками, чрезвычайно радиочувствительна. В этом случае высокая радиочувствительность зрелых лимфоцитов не противоречит правилу Бергонье и Трибондо (см. начало главы). Еще менее обоснована точка зрения о противоречии этому правилу высокой радиорезистентности постоянно делящихся бактерий, ибо сам акт деления, как было показано, является не причиной высокой радиочувствительности, а лишь способом выявления клеточного повреждения.

Мы взяли «под защиту» «доброе» правило Бергонье и Трибондо в связи с частыми нападками на него без достаточных оснований, при обнаружении чисто умозрительных противоречий. Между тем можно только удивляться и быть благодарными великолепным исследователям начала века, сформулировавшим это феноменологическое правило только на основании тщательных наблюдений. Сейчас, когда клеточная радиобиология продвинулась так далеко, общие закономерности, описанные Бергонье и Трибондо более 70 лет назад, остаются в силе и потверждаются в огромном числе исследований в самых разнообразных условиях эксперимента. Это не умаляет важности обнаружения отдельных исключений, но без тщательного их анализа нет оснований для опровержения «правила», которое следует лишь осмысливать с позиций сегодняшнего дня.

Не все потеряно

До недавнего времени казалось, что возникающие в клетке радиационные изменения необратимы. Основанием для такой точки зрения служили представления о невозможности «ремонта» повреждений уникальной структуры ДНК. Однако многолетние наблюдения В. И. Корогодина над судьбой облученных дрожжевых клеток уже к концу 50-х годов опровергли эти представления. Оказалось, что выживаемость облученных клеток сильно зависит от условий их последующего содержания. Автору в многочисленных опытах удалось показать, что если дрожжи после облучения выдержать некоторое время в обычной воде, а затем посеять в питательную среду, то их выживаемость резко повышается по сравнению с клетками, посеянными в среду сразу после облучения. Так было впервые обнаружено явление пострадиационного восстановления. Честь этого открытия была официально признана за В. И. Корогодиным Государственным комитетом по открытиям и изобретениям Совета Министров СССР.

В последующем сам по себе феномен пострадиационного восстановления, а также зависимость реализации повреждений от условий содержания клеток после облучения наблюдались многими исследователями. В настоящее время различают два основных типа клеточного восстановления, или, как его обычно называют, репарации — восстановление от сублетальных и от потенциально летальных повреждений.

Сублетальные повреждения, как следует из их названия, сами по себе еще не ведут к гибели клетки, но облегчают ее инактивацию при последующем облучении. Типичными повреждениями такого типа являются одиночные разрывы ДНК. Сами по себе они не детальны, однако с увеличением дозы излучения повышается вероятность образования новых одиночных разрывов вблизи «старых», существующих во второй нити ДНК, что приводит к появлению двойных разрывов (обеих нитей), как правило, летальных для клетки.

В отличие от сублетальных потенциально летальные поражения уже сами по себе вызывают гибель клетки, но в определенных условиях могут быть репарированы (восстановлены). Именно восстановление этого типа повреждений, выявляемое изменением выживаемости в разных условиях культивирования, было открыто В. И. Корогодиным. Например, вполне вероятно, что часть двойных разрывов ДНК, образовавшихся при облучении в предсинтетический период, может быть вое-становлена на время, оставшееся до репликации (удвоения) ДНК и летальными станут лишь только те из них, которые клетка не успела «залечить» до момента синтеза ДНК. Отсюда, если искусственно задержать деление клеток и тем самым удлинить предсинтетический период (например, содержанием в непитательной среде), то увеличивается вероятность «заживления» двойных разрывов, а следовательно, и доля выживших клеток.

Вопрос о репарации клеток от потенциально летальных повреждений имеет очень большое значение для оценки истинной радиочувствительности. А. А. Вайнсон в нашей лаборатории показал, что выживаемость опухолевых клеток, высеянных через 2 часа после облучения в дозе 1000 Р, возрастает вдвое по сравнению о наблюдаемой при посеве сразу после облучения. Эффект восстановления определяется здесь тем, что в первые часы после облучения клетки находятся в контакте друг с другом. И. И. Пелевина обнаружила, что репарация от потенциально летальных поражений идет только в стационарных культурах, и не наблюдается в экспоненциально растущих; следовательно, в делящихся клетках, по-видимому, такого типа восстановление не происходит. Вполне возможно, что покоящиеся клетки, находящиеся в тесном контакте, выработали особое защитное свойство — репарацию от тех повреждений, которые обычно не восстанавливаются. Это подтверждается данными Г. С. Календо, которая наблюдала снижение выживаемости клеток при разобщении межклеточных контактов.

Возможность восстановления от сублетальных повреждений была продемонстрирована в I960 году Элкин-дом в опытах с дроблением дозы на две отдельные фракции с интервалом в несколько часов. Оказывается, что выживаемость большинства клеток млекопитающих при 2—4-часовом интервале между фракциями увеличивается в 2—3 раза. Это свидетельствует о происходящем восстановлении части сублетальных повреждений, возникших при первой фракции облучения.

Механизмы пострадиационной репарации сейчас являются предметом углубленных молекулярно-биологических исследований, успешно проводящихся в ряде ведущих научных центров нашей страны В. Д. Жестянниковым, С. Е. Бреслером, К. П. Хансоном, Н. И. Рябченко, А. И. Газиевым, В. Е. Комаром, Л. А. Носкиным, А. С. Саенко и другими. В результате уже сегодня добыты интереснейшие сведения. Открыты, например, два типа ферментов репарации, одни из них выщепляют отрезки ДНК с возникшими в них повреждениями, а другие «ремонтируют» образовавшиеся бреши, восстанавливая их исходную структуру. Обнаружены разные типы репарации на молекулярном уровне и условия, способствующие их проявлению.

Все эти сведения используются для управления радиочувствительностью клетки, ибо понятно, что, увеличивая объем репарации, можно ослабить последствия облучения. Как мы увидим дальше, не менее важным оказывается и альтернативная возможность — усилить лучевое поражение клетки, что также может быть достигнуто воздействием на механизмы и системы репарации, теперь, однако, в противоположном направлении,— ингибируя (подавляя) их отдельные стороны.

Есть все основания предположить, что и огромный диапазон межвидовых различий в радиочувствительности также в значительной мере связан с совершенством репарационных систем. Достаточно допустить особенности их организации у отдельных видов, чтобы ожидать любые различия в величинах доз, при которых реализуется одна и та же доля первичных повреждений.

Теперь мы видим, что исход поражения клетки зависит не только от первичного поражения, но и от возможности восстановления ее жизнеспособности. Отдавая должное истории, нельзя не вспомнить, что еще в 1925 году Р. Vencel и Р. Vinembergen, а в 1952 году В. Я. Александров чисто умозрительно, но удивительно дальновидно отметили, что исход лучевого поражения складывается из трех компонентов: первичной повреждаемости, возможности проявления поражения и восстановления. Следует лишь иметь в виду, что под восстановлением тогда понималась не репарация повреждения, а восстановление целостности поврежденной ткани и организма за счет размножения сохранивших жизнеспособность клеток. Однако это нисколько не умаляет значения упомянутого постулата, так же как и правила Бергонье и Трибондо, высказанные на самых ранних этапах развития радиобиологии.

Путешествие за ясностью, кто крепче и почему, закончено, однако сам по себе вопрос остался далеко не разрешенным. Это и понятно, ибо в его решении кроется познание одной из многих, сложнейших и пока еще не раскрытых тайн природы. Хочется надеяться, что кому-то из вас повезет, а если так, то и пожелать, чтобы это свершилось как можно скорее.

Загрузка...