Когда-то Земля оторвалась от Солнца в виде туманного кольца, окружающего такую же разреженную массу будущего Солнца.
Кольцо разорвалось, части его притянулись между собой и образовали газообразную, слабо вращающуюся сферу. Этот шар, лучеиспуская, сжимался, вращался от того быстрее и, под влиянием центробежной силы, сплющивался, пока не отделил от себя туманное кольцо – будущую Луну.
Разреженная газообразная масса Земли продолжала уплотняться. Под влиянием этого и химических процессов, происходящих в ней, она испускала все более и более яркий свет.
Некоторое время Земля сияла, как маленькое Солнце, но затем стала понемногу угасать. Температура ее начала понижаться, образовалась на ее поверхности, под слоем обширной атмосферы, твердая корка из тугоплавких веществ. Корка эта сначала блистала белым калением, но потом охладилась до краснокалильного жара; а после этого стала темнеть и погрузилась в мрак.
Соображения и вычисления В.Томсона относительно времени охлаждения Земли до теперешнего ее состояния дали на время этого процесса от 20 до 400 миллионов лет.
Значит, наша планета существует не менее 20 миллионов лет.
Д.Дарвин, сын знаменитого Ч.Дарвина, считая время от момента отделения Луны от Земли, дает для возраста последней 57 миллионов лет. Не менее времени должна существовать и Земля.
Тет и Ньюкомб, основываясь на силе лучеиспускания Солнца и скрытой энергии, выделяемой им при сжатии, вычисляют для жизни Земли от 10 до 20 миллионов лет. Вероятно, что сжатие разреженной массы будущего Солнца происходило вначале очень медленно и, потому, число Ньюкомба оказалось чересчур мало.
Уже твердая, но еще накаленная кора Земли, со своими громадными первобытными горами, трескалась и крошилась вследствие неравномерной температуры. Когда водяные пары сгустились в воду, и она осела на землю в виде океанов, то постоянные дожди еще более разрушали горячие горы и смывали продукты разрушения в долины и океаны.
при дальнейшем охлаждении планеты, замерзание воды в трещинах возвышенностей еще ускорило разрушение гор и усилило наносы песка, глины, гравия, камня и т. д. Наносы эти разных эпох называются формациями. Общая толщина наносов достигает 20 верст.
Понятно, что нужно громадное время для их образования. Геологи, сравнивая толщу всех наносов с толщиною векового современного наноса, вычислили время бытия Земли, начиная с момента растрескивания гор. Так Уолес насчитал 28 миллионов лет, тогда как другой геолог дает 84 миллиона.
Радиологи, основываясь на времени разложения радиоактивных тел – урана, тория, актиния и других – доводят возраст нашей планеты до миллиарда лет. Это уже в 2,5 раза больше самого большого из приведенных чисел.
Но Земля – ничтожная пылинка Вселенной. Если она просуществовала тысячу миллионов лет, то сколько же времени живет Солнце, которое в 1 300 000 раз больше Земли?
Сколько времени еще существуют звезды – эти удаленные от нас солнца, некоторые из которых во столько же раз больше нашего Солнца, во сколько оно само больше Земли?
Сколько, наконец, времени живет Вселенная, состоящая из бесчисленных солнц? Конечно, в иной форме, Вселенная существовала вечно, но мы имеем в виду существование ее в известных нам формах.
Приведем тут свои соображения о времени жизни одной уже угасающей звезды, почти прожившей свой век. Эта звезда есть Арктур. Не смотря на свою старость, она еще очень яркая. Она так громадна, гак могущественна, что и старость не могла ее сокрушить. И теперь она еще звезда первой величины, не взирая на ее удаленность от нас. Если вы продолжите хвост Большой Медведицы по слегка изогнутой прямой линии, то как раз встретите эту яркую звезду.
Звезды, или солнца зарождались в разные времена и потому имеют разный возраст: иные младенческий, другие – юный, третьи – возмужалый, четвертые – находятся на закате своих дней, как наш Арктур. Кроме того, относительный возраст или состояние звезды зависит от ее величины или могущества: большое солнце медленнее старится и дольше живет.
Локиер жизнь звезд разделяет на 10 стадий. Высшая из известных стадий, Аргосская, соответствует температуре на поверхности солнц от 12 до 13,5 тысяч градусов Цельсия. Возраст нашего Солнца средний и относится к Сирианской или, быть может, к Прокионской стадии, с температурой от 4,5 до 6 тысяч градусов. Десятая стадия относится к остывшим небесным телам, каковы остывшие солнца и планеты с погасшими поверхностями. Наш Арктур относится к 8-й стадии Альдебаран-Арктурской и потому имеет температуру от 1,5 до 3 тысяч градусов. Это уже старость. Он прожил самую лучшую пору своей жизни. Если мы определим век такой звезды, продолжительность цикла ее жизни, то мы найдем наименьшее время существования Вселенной в ее теперешнем виде.
Чтобы узнать истинную яркость какой-нибудь звезды, мы должны вообразить ее на таком же расстоянии, на каком находится наше Солнце. Такие соображения показали астрономам (Лебок), что Арктур в 8 000 раз ярче Солнца. Это на старости-то лет… при низкой температуре! Как же светил бы Арктур в полном расцвете своих сил!
Такое солнце, как Арктур, на таком же расстоянии, как Земля от нашего Солнца, заняло бы на небе половину расстояния от горизонта до зенита (высшая точка неба) и накалило бы любую планету до красна.
Но не в том дело! Расчет показывает, что диаметр этой звезды по крайней мере в 90 раз больше диаметра Солнца. Отсюда выходит, что запас потенциальной энергии этой звезды в 59 миллионов раз больше, чем Солнца. Дело в том, что большая часть энергии лучеиспускания солнц происходит от их сжигания вследствие громадного взаимного тяготения их частей. Математический анализ показывает, что этот запас пропорционален пятой степени поперечника звезды. Это значит, что если поперечник ее, при той же плотности, увеличится в 2 раза, то запас энергии возрастет в 64 раза. Следовательно, потенциальная или запасная энергия Арктура в 59 миллионов раз больше, чем таковая же нашего Солнца.
Но престарелый Арктур лучеиспускает в 8 000 раз сильнее Солнца; поэтому запаса его энергии хватает только на время в 700 000 раз больше, чем запас для лучеиспускания нашего Солнца. Значит, если наше центральное светило может сиять единицу времени, то Арктур – 700 000 таких единиц. Но Арктур уже прожил большую часть своей жизни. Следовательно, он прожил уже в 700 000 раз больше времени, чем может прожить наше Солнце. Оно же прожило или может прожить, во всяком случае, больше, чем Земля, возраст которой доходит до миллиарда лет. Значит, Арктур существует не меньше 700 ООО миллиардов лет.
Вот возраст одной из звезд (собственно одного из периодов ее существования)! Не меньше этого, конечно, живет Вселенная в ее заурядном виде.
Укажем, кстати еще на несколько громадных солнц. В Плеядах (народные названия: Наседка, Стожары, Утиное Гнездо) блестят едва заметные звездочки: Майя, Электра, Альциона. Их сила света больше силы света Солнца последовательно в 400, 480 и 1000 раз. Звезда Кокон в 2500 раз светлее Солнца, Сириус в 50 раз.
Другие астрономы, позднее, нашли для размера Арктура меньшую величину. Но неизвестно, кто определил этот размер точнее.
Есть звезды первой величины, которые, тем не менее так далеки от нас, что их расстояние не могло быть определено (параллакс не замерен). Они должны быть еще ярче и больше, чем Арктур.
Если верно (см. мою «Кинетическую теорию света»), что жизнь небесных тел периодична, то наше Солнце в течение одного периода жизни Арктура, успело 700 000 раз погаснуть и столько же раз возникнуть снова для обильного лучеиспускания. Весьма вероятно, что старцу – Арктуру, еще осталось так много жизни до периода погасания, что он за это время еще много раз увидит омертвление и воскресение нашего Солнца и других подобных малюток.
Мы видим, что не только жизнь Вселенной, но и жизнь любого солнца не имеет ни начала, ни конца, так как повторяется бесчисленное множество раз с некоторыми интересными вариациями.
1920 г., декабрь
Архив РАН ф. 555. оп. 1, д.241.
СОДЕРЖАНИЕ. Господство океана. Недостаток кислорода, поглощение углекислоты, Страничка прошедшего. Изменение атмосферы. Угроза полярных льдов. Землетрясения. Взрыв Земли. Угасание Солнца. Кометы. Болиды. Удаление Земли от Солнца. Встреча с иным солнцем.
Не мешает знать те мировые враждебные силы, которые могут погубить человечество, если оно не примет против них соответствующих мер спасения. Знание всех угрожающих сил космоса поможет развитию людей, так как грозящая гибель заставит их быть настороже, заставит напрячь все свои умственные и технические средства, чтобы победить природу. Посильные борьба и препятствия развивают силу…
Обнаженные высокие части Земли разрушаются от температурных изменений. Потоки дождя, течения вод и воздуха непрерывно смывают возвышенности и уменьшают наносами глубину вод и долин. В конце концов, если бы не вулканические силы, поднимающие дно морей и океанов, образующие новые материки, плоскогорья и горы, твердая часть земли всюду бы сравнялась, дно океанов повысилось, суша понизилась и вода залила бы твердую земную кору ровным слоем в 2–3 версты глубиною. Где же бы тогда поселился человек, не будучи водным животным?
Этот процесс уравнения поверхности Земли совершается и теперь, но так медленно, что будущему многочисленному и могущественному человечеству совсем не трудно будет ему противодействовать.
Даже в настоящее время люди отнимают сушу от моря, т. е. увеличивают ее поверхность. Примером могут служить осушение Гарлемского озера и укрепление и осушение дюн, или песчаных низких морских наносов и мелей, обнажаемых человеком. Кроме того, вулканические силы и сейчас поднимают кое-где земную кору.
Эта опасность гибели людей от всеобщего потопа почти не заслуживает внимания по своей малости и противодействию сил природы и человека. Мы бы о ней и не поминали, если бы об этой угрозе не говорили все описатели мировых катастроф.
Другая опасность – всасывание кислорода земной поверхностью, окисление горных пород (что сопровождается поглощением кислорода из воздуха), поглощение кислорода горением ископаемого (каменного) угля, тлением и гниением, что тоже сопровождается превращением кислорода в углекислый газ, не способный поддерживать животную жизнь. Хотя несомненно, что кислород и поглощается таким способом, но в то же время он и выделяется. Он вырабатывается растениями из углекислого газа. Последний еще выделяется во многих местах земной коры. Люди выкапывают в год 500 (теперь втрое больше) миллионов тонн каменного угля, сжигают его и прибавляют тем угольного газа в воздух; растения разлагают его и дают чистый кислород. Количество кислорода может быть даже увеличивается, хотя это не замечено пока.
Если бы и оказался в нем недостаток, то могущественное будущее человечество могло бы получить этот живительный газ, в любом количестве, химическим разложением горных пород. Земная кора содержит чуть не в половине своего веса кислород.
Человек, добывая металлы из их окислов или руд, поневоле освобождает соединенный с ними кислород и обогащает так атмосферу. Хотя получается сначала углекислый газ, но он приростом растений переводится в кислород.
Со временем, для строительства, потребуется огромное количество металлов. Тогда освободится много кислорода.
Большая масса углекислых металлов в земной коре, одним сильным нагреванием, позволяет выделить из них углекислый газ. Последний, с помощью растений, дает нам запасы углерода и много кислорода.
Запас углерода может храниться в дровах, угле и разных углеродных соединениях. Но главная его масса будет находиться в растениях, количество которых, как и доходность, соответственно возрастает. Кроме того, увеличение углекислоты в воздухе очень выгодно, потому что возвысит температуру Земли и прирост древесины, трав и плодов.
Мы теперь видим, что опасность от недостатка кислорода в воздухе не велика, если человек не пойдет вспять, не сделается животным, но напротив, размножившись и изменившись к лучшему, усилит свои технические средства. Без науки же, без ума и при малочисленном (как теперь) населении, и эта угроза осуществима и гибельна. Действительно, окислена до насыщения только очень тонкая поверхностная масса земной коры. Когда последняя поостынет и растрескается, то окисление будет усиленно продолжаться и может похитить у нас весь живительный кислород. Тектоническая и вулканическая деятельность поднимает то ту, то другую часть земной коры. Она крошится и смывается. Количество наносов непрерывно растет, а вместе с тем и окисление Земли.
Гораздо, по-видимому, страннее исчезание в атмосфере углекислого газа. Его и сейчас в воздухе самая малость: по объему около одной трехтысячной доли всей атмосферы (0,03 %).
Если бы весь углекислый газ собрался вместе и занял нижнюю часть воздушного океана, то поверхность Земли покрылась бы им в виде слоя не более 3 метров высоты (4 аршина). Выделенный из этого газа углерод покрыл бы сушу и воду ровным слоем каменного угля в 1 мм (пол-линии) толщины.
Если бы это жалкое количество углекислоты исчезло, то погибли бы все хлорофильные (с зеленью) растения, а за ними конечно и животные.
Довольно самого незначительного увеличения количества растений, сравнительно с теперешним, чтобы наступила наша гибель. Так если бы слой картофеля покрыл всю поверхность Земли на толщину 12 мм (толщина пальца), то весь углерод был бы уже извлечен из атмосферы. Но тут, к счастью, устанавливается равновесие прежде исчезновения углекислоты.
Действительно, чем больше растений, тем меньше углекислого газа в воздухе. А чем его меньше, тем усвоение этого разреженного газа растениями слабее. Тогда понадобится громадный листовый покров, которого у растений нет. Поэтому, при достаточной разреженности углекислоты, ее усвоение растениями замедляется и, наконец, устанавливается равновесие, т. е. растений окажется так мало, что разложение ими углекислоты сравняется с приходом ее из недр Земли, и от тления умерших растений. Если углекислоты чересчур много, то зеленый покров Земли увеличивается и углекислота убывает. Если углекислоты очень мало, то растения гибнут, истлевают и дают углекислоту.
Обилие углекислоты повело бы к увеличению количества растений. С другой стороны, настоящая скудость этого газа дала растениям их прекрасный лиственный покров.
Все же, вероятно, есть где-нибудь обильный источник углекислого газа, иначе было бы непонятно процентное постоянство этого газа в атмосфере. В самом деле, мы еще упустили влияние водных существ на содержание углекислоты в воздухе. Море поглощает ее безвозвратно в невообразимом количестве. Множество морских животных, большею частью микроскопической величины, образует свои раковины и скелеты из углекислой извести и поглощает, таким образом, растворенную в водах известь и углекислоту. Отмирая, они падают на дно морей, образуя мел, известняки и мрамор. Когда дно океана поднимается, то известковые и меловые наслоения выходят наружу, и мы тогда пользуемся то мелом, то известняками и мрамором для строительства и скульптуры.
Известняки образуют наслоение в среднем более 100 метров толщиною и содержат около половины по весу углекислоты. Если бы принять его только во 100 метров и вдвое плотнее воды, то выделился бы слой углекислого газа, сгущенного до плотности воды, толщиною в 89 метров. Это количество газа в девять раз тяжелее атмосферы. Количество углекислоты увеличилось бы тогда в 27000 раз против теперешнего. Вот бы тогда развился растительный мир!
Так как процентное или относительное количество углекислоты (0,03 %) в атмосфере как будто постоянно, то очевидно, что в настоящее время приход этого газа равен расходу его на образование раковин и избытка растений. Приход этот от сгорания ископаемого угля чересчур ничтожен и потому никак не может вознаградить потерю газа в обширном океане.
В самом деле, люди добывают в год около 500 миллионов тонн угля. На 1 кв. метр поверхности Земли, следовательно, приходится одна миллионная тонны или слой угля плотности воды и в тысячную долю миллиметра. Это составит менее тысячной доли всего ничтожного количества углекислоты в воздухе. Так что надо не менее тысячи лет, чтобы количество углекислоты в воздухе удвоилось. Морскими раковинами должно поглощаться безмерно больше, так как в год должен образоваться в океанах осадок мела гораздо более одной тысячной доли мм. Неужели в тысячу лет образуется осадок мелу в 1 мм?
Сточные воды растворяют хоть немного углекислую известь, которая насыщает океаны, и не только скрепляет тем морской ил, песчаные и другие наносы, но может служить и для животных. Но не один известняк растворяется. Еще более растворима окись кальция, которая и поглощает углекислоту из воздуха и воды.
Выделение углекислоты земной корой можно объяснить так. Слой микроскопических раковин (мел) прикрывается все более и более толстым слоем таких же раковин. От этого он нагревается все сильнее и сильнее. Этому нагреванию может способствовать и опускание дна некоторых частей океана. Нагревание известняков и мела может служить причиною разложения его и образования углекислоты. Мел еще заносится другими формациями, что тоже способствует его нагреванию. А так как общая толща формации доходит до 20 верст, то нагревание мела может достигать 600°С выше нуля. Если к этому еще прибавить опускание почвы, то получим температуру, достаточную для разложения мела. Угольный газ выделяется и вулканами. Некоторые минералы, при охлаждении выделяют газы; а так как Земля охлаждается, то это служит непрерывным и обильным источником насыщения атмосферы газами.
Но что если этот приход газа, необходимого для жизни зеленых растений (хлорофильных существ вообще – будь то растения или животные), сократится или уничтожится? Что если Земля перестанет выделять из себя углекислоту? Тогда банкротство и гибель неразумных существ неизбежны. Раковины поглотят весь углекислый газ и образуют слой мела. Растения, сгнивая, дадут углекислоту, но и она всосется океаном и поглотится раковинами.
Тогда погибнут все растения и за ними и животные. Правда и тут может установиться равновесие, так как количество растений и раковин будет постепенно убывать. Наконец, наступит момент, когда и ничтожный приход углекислого газа от Земной коры будет удовлетворять скудному растительному и животному миру суши и воды. Но для этого все же нужен хоть какой-нибудь приход газа. А если его нет!
Мы уже видели, что земная кора в виде углекислых металлов, каковы известняки, углебаристые, углемедные и множество других – содержат в себе обильные запасы углекислоты. Разумное и могущественное существо, потомок человека, без сомнения, сумеет устранить эту опасность выделением газа из его соединений. В результате он и получит строительный материал (известь, бетон и другие искусственные и очень прочные камни), столь необходимый для разного рода построек, – или же чистые металлы и их сплавы, не менее необходимые.
Но горе несознательным и слабым существам, горе малочисленному потомству без науки и техники! Если и останется немного углекислого газа в атмосфере, то растительный мир все же так оскудеет, что и положение животных станет плачевным.
Потоп и холод, как будто, могут произойти от срывания накопленных в течение тысячелетий полярных льдов.
Гренландия и другие полярные страны юга и севера покрыты слоем льда до 2 километров высоты. Впрочем, это только с краев, у морского обрыва. Дальше от него, в глубине страны, толщина льда не измерена. Она не может не возрастать к центру ледяной массы.
Часть льда сползает в океан, отрывается и плывет на юг, составляя грозу мореплавания. Но другая часть остается на месте (или сползает медленнее прироста от падающих снегов), увеличивая с каждым годом толщу полярных ледников. Может быть, наклон некоторых полярных местностей так мал, что ледяного течения нет или оно очень слабо. Тут должен быть сильный прирост льда от ежегодных осадков.
Но должно же наступить время, когда эта толща льда достигнет такой массивности и высоты, что сорвется с насиженного местечка и сползет неожиданно в море.
Тогда может произойти внезапное понижение температуры океана и воздуха, повышение уровня воды в открытых водяных бассейнах, страшный толчок, громадная океаническая волна, которая может смыть все живое с суши. Получится ледяной период и потоп. Конечно, он не уничтожит человечество, но может сильно его сократить.
Нам могут возразить на это, что ледяные массы не в состоянии сорваться со своих, мест, как бешеные, что максимальная их высота давно достигнута и под влиянием давления они мирно и постепенно сползают в море, ничему серьезно не угрожая.
Это, разумеется, вполне возможно. Но оно относится только к достаточно покатым местам суши. Есть места горизонтальные или котловинные: предел толщины ледяных полей, их покрывающих, может быть и до сих пор не достигнут.
Потом возможно равновесие неустойчивое, явление периодическое, как перемежающиеся источники, фонтаны и т. п.
Мы не утверждаем, а только считаем это возможным. Положим, что десятая доля поверхности земного шара (до 65° северной и южной широты) покроется льдом, в среднем, до 5 километров высоты. Повышение температуры во льду на километр не более 2°С (см. мое «ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ»). Значит и при средней температуре поверхности полярных областей в 20°С, температура нижних слоев льда достигнет нуля только при толщине льда в 10 верст.
Тем не менее, в общем, это почти невозможно. Но мы примем такие угрожающие условия и посмотрим, что из этого может выйти.
Объем ледников будет 0,2 × 109 куб. километров. Поверхность океана 0,38 × 109 км2. Значит, повышение уровня воды составит около 520 метров. Этого довольно, чтобы залить значительную часть суши. Останутся не залитыми только горные хребты и плоскогорья выше 520 метров. Волна же хлестнет еще гораздо выше.
Лед будет плавать на поверхности океана и потому холод более всего перейдет в воздух. Если принять температуру льда в минус 20° Цельсия, то лед отнимет 2 × 109 килоградусов (нагревание куб. километра воды на градус). Температура океана понизится на 2°. Ясно, что лед долго останется нерастопленным. Если же принять во внимание низкую температуру океанских глубин (2–3 0 С), то теоретическое понижение будет еще значительнее, что на деле скажется почти полным сохранением хлынувшей массы льда. Теплая поверхность океана может только нагревать его, но не растопить.
Сколько же времени может продолжаться этот холод от плавающих всюду льдин и холодной воды? Во сколько времени тепло, даруемое Солнцем Земле, справиться с этим холодом или растопит этот лед? Как известно, солнечная теплота (если не считать поглощения солнечной энергии атмосферой) может растопить в год слой льда толщиною 50 метров, т. е. объем равный 25 × 106 км3. У нас же имеется 0,2 × 109 км3. Следовательно, нужно 8 лет. Итак, в течение очень небольшого времени будет пониженная температура, а потом исчезнут все следы нахлынувшего холода. Значит ледниковые эпохи, продолжающиеся тысячи лет, не могут быть объяснены этим путем.
Однако и то, что произойдет, не маловажно. Много существ погибнут от холода, но еще более от потопа и громадной первоначальной волны. Все же полного уничтожения животных и человека этот потоп не произведет.
Не забудем, что холод сократит обработку растений, если даже не сделает ее на несколько лет невозможной. К тому же и суши останется мало. Человечество принуждено будет, истребив животных для питания, пожирать самого себя. В течение многих лет низкой температуры не много останется уцелевших. Вследствие общего понижения температуры Земли, выпадет много снегов. Они покроют блестящим одеялом сушу и ледяные поля. Увеличится рассеяние (отражение, или альбедо) солнечных лучей в небесное пространство. Земля будет усваивать солнечные лучи гораздо слабее, отчего температура ее еще понизится.
Если умерить принятые нами условия в 10 раз, т. е. допустить, что только сотая доля поверхности Земли покрыта ледниками, то и тогда останутся годы холода, повышение уровня вод на 50 метров и изрядные потопы.
Но едва ли осуществимы и эти условия. Вероятнее всего, что толщина полярных ледников остается постоянной, так как лед постепенно сползает в океан, а более высокие центральные части ледников, под влиянием давления, хотя и опускаются, но вновь восстанавливаются падающими твердыми осадками. Одним словом, от давления и высокой температуры нижних слоев, лед сплющивается, как свинец, и вытаскивается так на береговые окраины, где и отрывается от массы. По расчетам, температура в массе льда не может повышаться больше, чем на 4° на километр углубления. А на деле, ввиду теплопроводности льда, не более как на 2–3° С. Если допустить 3° С на километр и температуру верхних слоев полярных льдов в 20° холода, то увидим, что уже на глубине 7 километров лед должен нагреться выше нуля, а потому дойти до состояния плавления помимо усиленного давления. Итак, высота ледников в 5 километров, есть высота предельная.
Землетрясения повторяются по несколько раз в столетие, разрушают большие города, множество малых селений, производят пожары, провалы, засыпают пеплом обширные пространства, заливают их лавой и все попадающее на пути сжигают. Порождают иногда океаническую волну, которая смывает население низко расположенных островов и берегов, губит сотни тысяч людей.
Но все эти бедствия ничто в сравнении с целым населением земного шара и его богатствами. Известные нам землетрясения не могут, как будто, угрожать всему населению Земли.
Но будет ли так вечно? Жидкие и полужидкие массы, заключенные между твердой земной корой и твердой центральной частью Земли, невидимо для нас перемещаются, охлаждаются, нагреваются, физически и химически взаимодействуют. Не может ли в результате этого взаимодействия получиться какой-либо мировой катастрофы? Нет ли и там внутри Земли какого-либо грандиозного неустойчивого равновесия, которому суждено рано или поздно нарушиться и произвести всеобщее повышение температуры, повсеместные губительные колебания почвы, рождающие гигантские волны и потопы?
Об этом можно не только гадать, но ожидать чего-нибудь подобного всегда возможно. Вопрос лишь в числе тысяч лет необходимых для такого нарушения устойчивости. А если эти тысячи приближаются к концу, если для окончания их осталось несколько дней!
Ведь появилось же три десятка лет тому назад накаленное докрасна пятно на Юпитере, величиною чуть не с земной шар. Оно появилось, исчезло и теперь опять появилось. Но нагревание атмосферы, произведенное им, должно быть роковым для всего живого на Юпитере.
Не может ли появиться и у нас такое пятно, не может ли выдвинуться из внутренних, накаленных частей Земли подобная же накаленная масса! Правда, что Юпитер, хотя и старее Земли по отдаленности своей от Солнца, но он и молод по своей громадной величине, так как не успел еще остыть, подобно Земле.
Но и температура земной внутренности чрезвычайно велика. Она близка к температуре Солнца. Кора же земная чрезвычайно тонка.
Если считать ее твердой до температуры белого каления, т. е. до 1200° С, то толщина ее будет лишь 40 верст или одна трехсотая часть земного диаметра. Это то же, что тонкая картонная оболочка шара величиною с большой арбуз.
Под этой оболочкой Земли как бы – Солнце, т. е. накаленное пылающее море огня.
Если же считать надежность коры только до температуры красного каления (400° С), то она изобразится оболочкой пустого бумажного шарика величиною с апельсин.
Как же ничтожна наша опора, притом еще и накаленная в нижних своих слоях! Смеем ли мы считать ее надежною в отношении безопасности!.. Химические процессы Земли, несколько усилившись, легко могут ее прорвать, перевернуть или накалить. Пусть этого не будет, но оно все-таки возможно.
Постепенное понижение или повышение материков и островов, как будто не может служить причиною резких и гибельных катастроф. Гак, думают, исчезла в недрах океана гипотетическая Атлантида (страна), так, думают, появились и теперешние материки, взамен погрузившихся.
Понижение суши сейчас же обнаруживается барометром, термометром и другими приборами и явлениями. Когда же будет угрожать гибель, население всегда найдет возможность уплыть или улететь в другие страны.
Но действительно ли всегда погружение суши бывает постепенным? Землетрясения нередко внезапны и губительны. Есть понижения медленные, есть более быстрые, но могут быть и катастрофические, как потопы. Что, если Европа или Америка в 2 дня провалятся и зальются водами океанов! Известно, что в течение нескольких часов из морей поднимались острова и снова погружались в воду. Не может ли то же произойти и с континентом!
Но и тогда еще не наступит конец жизни. Не могут утонуть сразу все материки и острова. Большинство останется, а стало быть не погаснет и жизнь.
Мы видим, как внезапно взрываются почти угасшие солнца и превращаются в туманности. Вот предел всех катастроф! Земля полна радиоактивными веществами, которых тем больше, чем глубже земные слои (так как, чем глубже, тем плотнее и сложнее материя, а чем сложнее, тем и радиоактивнее).
Есть основание думать, что внутри планет, солнц и всех небесных тел, состоящих из обыкновенной, т. е. очень сложной материи, происходит непрерывный процесс разложения вещества и превращения его в более простое, с меньшим атомным весом и большею упругостью.
Наоборот, в эфирной среде, в туманностях и в очень молодых солнцах совершается обратный процесс: образование сложной материи из простой – вроде гелия, водорода, электронов, эфира и уменьшения ее упругости.
Количество простой и очень упругой материи, путем ее разложения, должно все более и более накопляться в земном шаре. Давление газов, протогазов, электронов в его центре должно непрерывно возрастать. Должен настать день, в который эта упругость, рвущейся наружу упругой материи, будет больше силы тяготения частей планеты между собою. Тогда должен произойти внезапный ужасный взрыв. Земля разорвется, как начиненная динамитом бомба. Части ее разлетятся в разные стороны и образуют многочисленную систему малых, очень эксцентричных и угловатых планет. Если это происходит ежегодно с громадными потухшими солнцами, то как же будет пощажена наша крохотная Земля!
Возможно, как думал Ольберс, что такая катастрофа уже когда-то произошла в нашей солнечной системе с неведомой небольшой планетой (меньше Луны), вращающейся между орбитами Марса и Юпитера. Тут теперь имеем тысячи малых планет, называемых астероидами.
То же может произойти и со всякой, достаточно пожившей планетой. Но чем планета, или другое тело меньше, тем это случится скорее. Если астероиды не разрываются, то только потому, что они уже освободились от своей упругой материи взрывом планеты, из которой они образовались.
Сколько осталось еще жить Земле, конечно, неизвестно. Вероятно, очень долго, так как радиоактивных веществ в Земле еще чрезвычайно мало. Возможно, что наша планета переживет и славу Солнца, его блеск и его живительную силу, но вернее, что она, по своей малости, разорвется раньше Солнца, образовав систему вроде планетоидов.
Будем готовы ко всему! Сумеем преодолеть и такую угрозу. Обезопасим себя от всего: от всех возможных катастроф, самых страшных, самых невероятных, самых фантастических.
Возможнее гибель Земли от угасания нашего центрального светила. Я подразумеваю гибель живого и несознательного. Гибель же прогрессирующего населения, по моему твердому убеждению, всегда может быть устранима. Мы даже беремся указать средства.
Часть солнечного лучеиспускания обязана сжатию Солнца, его уплотнению, падению его слоев и превращению этой механической работы в теплоту, свет и электричество. Как удары молота и трение дают теплоту, накаливание и свет, как сжатие газа в воздушном огниве зажигает трут, так и сближение частиц Солнца и их уплотнение дает нам его сияние.
Разложение материи (радий) также служит причиною свечения Солнца. Но о разложении материи на Солнце мы ничего не знаем и потому можем брать пока в расчет только силу тяготения и уплотнение Солнца.
Хотя мы не замечаем ни уменьшения объема нашего светила, ни уплотнения его, но это только потому, что оно совершается, по точным расчетам, очень медленно. В течение веков оно не может быть замечено нашими несовершенными приборами. Так вычисления показывают, что уменьшение диаметра Солнца на одну тысячную часть его дает ему сияние в течение 130 лет.
Радиация или глубокое разложение вещества Солнца, подобное разложению радия, время сияния увеличивает в 39 раз.
Итак, если примем в расчет одно тяготение, то при уплотнении Солнца в 8 раз или уменьшение его поперечника вдвое, оно, не меняя энергии лучеиспускания, должно просиять еще 13 миллионов лет. Тогда плотность Солнца будет вдвое более плотности Земли и окажется близка к удельному весу свинца.
Если бы допустить большее уплотнение ввиду громадного давления в центре светила, то число лет его сияния должно еще увеличиться.
Солнце из радия просияло бы в 39 раз дольше, т. е. не менее половины миллиарда лет. Может быть и более глубокое разрушение атомов и тогда запас сияния нужно еще увеличить. (Мои исследования относительно образования солнечной системы в 1925 г. показали, что Солнце просияет еще биллионы лет. Это подтверждается в последнее время и энергиею разложения атомов).
Но рано или поздно оно погаснет. Сила его лучеиспускания может быть некоторое время даже будет возрастать. Затем, достигнув максимума, начнет слабеть. Вернее, однако, что этот максимум уже был достигнут и перейден.
Земля тогда будет получать меньше теплоты и средняя температура планеты понизится. Есть средства, несмотря на это, возвысить или восстановить среднюю температуру Земли, но мы не намерены в этой статье указывать на способы устранения катастроф.
Значит, вообще, Земля будет стынуть. Прежде чем погаснет светило, средняя температура нашей планеты настолько уменьшится, что жизнь станет невозможной. Так, если лучеиспускание Солнца ослабеет вдвое, то по точным расчетам средняя температура Земли будет не больше 21° холода по Цельсию, т. е. теперешняя температура в 15° тепла понизится на 36°.
Едва ли высшая жизнь справится с этим обстоятельством. Тогда на полюсах должны накопиться огромные массы льда, океаны замерзнут, даже воздух полярных стран, в течение зимнего времени, начнет сжижаться и, вероятно, замерзнет. Земля лишится своей воздушной оболочки, отчего произойдет сугубое охлаждение полюсов, так как перенос теплоты с экватора почти уничтожится.
Возможно, что это будет и при более низкой температуре Земли, т. е. при большем ослаблении Солнца, но, во всяком случае, это должно быть.
Тогда Солнце, еще страшно яркое, даже более яркое, чем теперь, так как воздух не будет поглощать его лучи, – станет лить свой царственный свет на голую холодную Землю, покрытую льдами и трупами. Как прекрасна будет Земля без атмосферы, без жидких вод, без движения, с черным небом, с бесчисленным множеством разноцветных не мерцающих звезд! Не будет уже туч и туманов. Дали будут прекрасно видны, насколько позволяет выпуклость планеты и возвышенность места, Солнце не будет скрываться за облаками и туманами, восход его будет блестящ, как в полдень, в течение всего дня синеватое или уже покрасневшее от старости светило не будет сходить со сцены ни на один момент (в течение дня).
Из Земли получится некоторое подобие Луны. Не будет только такого контраста температур между днем и ночью, как на Луне.
Жаль только, что некому будет любоваться всей этой дикой и оригинальной красотой. Если бы мы могли попасть на Луну, то увидели бы нечто похожее.
Если будем считать только одну энергию тяготения, то и тогда Солнце проживет еще не менее 5 миллионов лет (половинная энергия). Но еще гораздо раньше охлаждение Земли уже сделает жизнь на ней, при обыкновенных условиях, невозможной. Может быть довольно 2–3 миллионов лет для гибели несознательного и слабого населения, благо ему, если оно во время увеличится в числе, усовершенствуется в личном и общественном отношении, достигнет технического могущества. Тогда она найдет десяток средств избежать смерти.
Этот срок не очень значителен, но он доволен для самого высшего прогресса человечества и устранения при таких условиях всех бед.
Даже миллиона лет достаточно, чтобы небо изменило свой вид до неузнаваемости. Созвездия будут совсем другие. Полярная звезда сделает 40 больших оборотов, 4 раза ось Земли перейдет от наибольшего наклонения к наименьшему. Несколько раз изменится эксцентриситет Земли и перигелий сделает не один оборот кругом Солнца. Много упадет болидов, много пройдет устрашающих комет и не мало случится второстепенных катастроф.
Кометы, или волосатые звезды, вероятнее всего, составляют выброски солнц. Это результат особенно энергичных солнечных, или звездных извержений.
Извержения нашего Солнца достигают высоты десяти диаметров Земли. Скорость их порою достигает и даже превышает ту, которая необходима, чтобы брошенное с поверхности Солнца тело навеки удалилось от него.
Что же мудреного в том, если наиболее удачные брызги солнечных извержений удаляются от светила навсегда и бродят в пространстве Млечного Пути (от солнца к солнцу) в виде комет.
Понятно, почему они имеют раздробленный вид, содержат газы, имеют огромный объем и сравнительно небольшую массу. Она так мала, что не производит заметного влияния (т. е. притяжения) на другие небесные тела солнечной системы.
Но это не значит, что масса кометы так мала, что может уместиться в чемодан (В. Гершель). И астероиды (малые планеты нашей системы) не производят заметного влияния друг на друга и на планету, однако, несомненно – по своему положению, блеску и званию планет, – они имеют массу довольно значительную. Так Веста, Церера, Паллада и другие имеют более 300 километров в диаметре. Следовательно, масса каждого из них лишь в 64000 раз меньше массы Земли (предполагая одну плотность вещества). Эта масса содержит около 13.000.000 куб. километров материи.
Выброски солнц, особенно громадных, могут иметь порядочную массу. Если, например, выбрасывается газообразная масса плотности в одну тысячную воды и величиной в земной шар, то эта масса будет лишь в 5000 раз меньше массы Земли. Они будет составлять одну двухмиллиардную долю Солнца. Все же эта масса большая. Она в 13 раз больше массы самого большого из астероидов. Она триллионная (1012) часть Солнца уже составит порядочную планетку – верст 30 в поперечнике. Если бы в столетие Солнце выбрасывало одну такую массу, что и в тысячу лет масса Солнца уменьшилась бы только на одну стобиллионную долю (1011). Но, впрочем, эта потеря восстановляется поглощением Солнца сторонних комет.
Извержения на солнцах (звездах) грандиозны и непрерывны. Звезды постоянно источают из себя эти отбросы, эти брызги, разлетающиеся по всему Млечному Пути в виде комет. Вот почему последних такое множество.
Разумеется, большинство извержений не удаляется далеко от Солнца и падает обратно. Только немногие удаляются за Землю и составляют периодические кометы, благодаря влиянию больших планет. Наконец, наиболее энергичные брызги образуют кометы, независимые от солнечной системы и составляют сюрприз для других миров. Такие кометы никогда не возвращаются и только изредка удерживаются планетами иных солнц. Таково может быть происхождение и всех периодических комет. Это задержанные бродяги. Действительно, нужны сложные условия, чтобы выбросок Солнца сделался периодической кометой. Однако и это вполне возможно, действием своих или чужих планет.
Ежегодно телескопы открывают, в среднем, по 5 комет. Видимых простым глазом, конечно, меньше.
Под влиянием мирового межзвездного холода, комета с ее газами сжимается в крохотный комочек и только по близости горячего светила распускается пышным цветом. Тогда она становится видима в телескоп или так, смотря по ее могуществу.
Если в таком ничтожном пространстве, как окружающее по близости Солнце, не далее Юпитера, замечается столько планет в течение одного года, то сколько же их во всем Млечном Пути?
В.Гершель говорил, что их больше, чем рыб в океане. Мы думаем, что их еще гораздо больше.
Встреча кометы с Землей или Солнцем есть очень вероятная вещь. Действительно, размеры комет иногда достигают расстояния между Землей и Солнцем. Встреча такой громады Землей вполне понятна. Правда, комета представляет разреженную газообразную массу, с сильно удаленными друг от друга камнями и металлами. Эта туча минералов и газов, проходя через Землю, дает звездный дождь и прибавляет к атмосфере Земли небольшое количество газов: углеводородов и других. Но как должны быть разреженны эти газы, как удалены друг от друга, составляющие комету болиды. Если масса комет так мала, а объем так громаден!
Вообразим комету величиною только с Солнце и массою в солидный астероид, имеющий 100 километров в поперечнике, при плотности Земли. Плотность кометы тогда окажется в 2700 миллиардов раз меньше плотности Земли, или в 500 миллиардов раз меньше плотности воды, или в 50 миллионов раз меньше плотности водорода. Будет ли заметна эта масса при прохождении ее через атмосферу? Очень сомнительно! Какая часть кометы будет впитана и поглощена Землей? Это соответствует, по массе, астероиду в 4 километра.
Такой болид может, как показывают расчеты, произвести всеобщую губительную катастрофу на Земле. Но если вспомним, что мы наглядно выражаем только сумму болидов, камней, пыли и газов, падающих на Землю на половину ее поверхности, а не действительное падение громадного болида, то эта пыль, камни и газы, рассеянные по всей Земле, для нее не так опасны.
Притом более вероятия встретить разреженный хвост кометы, который даст Земле еще меньше вещества и будет еще незаметнее. Думают, что Земля уже проходила через хвост некоторых комет (Бьела), но это ничем разительным не ознаменовалось, кроме роя падающих звезд. Однако указанная масса может нагреть сильно атмосферу.
Если вся эта влившаяся в атмосферу масса состоит из чистой окиси углерода, газа весьма убийственного, то и тогда она составит лишь 150 миллиардов тонн. Атмосфера же весит 5 000 миллиардов тонн (5 × 1015). Значит окись углерода, выпавшая из кометы, составит одну 33000 долю всего воздуха. Это не может отразиться вредно ни на каком существе. Примесь окиси углерода смертельна только при содержании ее в воздухе в количестве одного процента (1 %).
В кометах мы должны приятно разочароваться: от них гибели трудно ожидать. Но ведь кометы содержат болиды иногда огромной величины. Мало вероятия встретиться с такими болидами, но уже тут дело другого сорта.
Из массы кометы, равной планете с поперечником во 100 километров (верст), может выйти миллион болидов с поперечником каждый в 1 версту, или 1000 небольших планеток с диаметром каждая в 10 километров. Мы тут не считаем массу газа. Если она и составляет половину всей кометы, то приведенная численность болидов уменьшится только вдвое.
Падение болида с поперечником в несколько верст уже произведет совсем иной эффект. Нельзя считать это очень маловероятным.
Неизвестно, откуда иногда появляются в атмосфере Земли громадные болиды. Составляют ли они свиту кометы, или входят в братство маленьких планеток, окружающих Солнце, приходят ли они одиноко из бездн Млечного Пути или откуда-нибудь еще дальше – совершенно неведомо. Но что они появляются и появление их в атмосфере Земли не особенно редко, то это несомненно.
Так болид Галея, по расчету был около 2,5 версты в поперечнике. Болид 1837 года, пролетая 5-го января атмосферу, был до 4 километров в диаметре.
Несколько лет тому назад, вечером, осенью я вздумал проехаться на велосипеде в бор. Луна еще не восходила и было довольно темно. Когда я был уже за городом, на шоссе, я вдруг заметил, что все поле кругом меня осветилось, как бы Луной или яркой ракетой. Тогда, обернувшись, я увидел в небесах угловатое светящееся тело, которое при своем поступательном движении, медленно повертывалось. Я успел остановиться и соскочить с велосипеда, прежде чем оно исчезло, т. е. перестало светиться.
Я так был поражен этим грандиозным явлением, что сейчас же вернулся домой.
Расчеты мне показали, что этот болид имел не менее 100–200 метров в поперечнике. Если бы такая масса упала на Землю, то переполох бы вышел не малый.
Вероятность пролета болидов через атмосферу почти равна вероятности столкновения их с поверхностью суши или воды. Раз они довольно часто пролетают через атмосферу, то также часто могут и встречать океаны и сушу.
Какое же действие такие болиды могут произвести, столкнувшись с нижними слоями воздуха, с водой или материком?
Главное бедствие от падающего на Землю болида величиною с версту и более – это механическое его действие. Прежде всего произойдет от влияния быстро движущегося болида сгущение атмосферы и сильнейшее от этого ее накаливание. Эта сгущенная и накаленная масса газа, расширяясь, произведет ужасную воздушную волну, которая распространится по всему земному шару и сорвет своей силой, в форме неслыханного вихря, все дома, деревья и погубит множество людей, не скрывшихся в погреба, подземелья, пещеры, ущелья, – вообще, в места, не загражденные какими-либо естественными и могучими препятствиями от этого космического урагана.
Поблизости от места падения болида и сгущения воздуха, вихрь, конечно, будет ужаснее: он сорвет и естественные препятствия, рушит юры, завалит ущелья и т. д. Но и до крайних пределов Земли его действие будет еще сильно. Вы только подумайте о той скорости, с которой несется эта небесная бомба! Она в 100 раз больше скорости пушечного ядра, а энергия удара будет больше в 10 000 раз (при той же массе). Маленькая масса, попадая в атмосферу с такой скоростью, быстро теряет ее, и удар становится не очень опасным. Но болид, в несколько верст диаметром, двигается несокрушимо, неодолимо и почти не теряет своей скорости до самого падения в океан или на сушу.
Падение в океан произведет новые усложнения. Это еще губительнее, чем падение на сушу. Океан подвижен. Родится убийственная волна, которая распространится от места удара во все стороны, затопит острова, берега и не очень высокие прибрежные страны. Но от водяной волны бедствие не так повсеместно, как от воздушной, которая не оставит без опустошения ни одной страны. Вода будет остановлена возвышенностями и горами. Она будет ими, на некотором расстоянии от катастрофы, задержана и побеждена.
Бедствия от удара на сушу еще ограниченнее. Землетрясение будет страшное, гибель невообразима, но она распространится не так далеко, как от более подвижных воды и воздуха.
Менее предстоит опасности от неизбежного нагревания воздуха, воды и Земли. Нагревание всего опаснее в воздухе, менее – в воде и еще менее на твердом грунте.
Если предположить, что кубическая масса железа плотности 7,5 с ребром в 30 километров падает центрально на сушу с такими же свойствами, как и астероид и нагревает во все стороны равномерно материк, то на 300 верст (километров) кругом он нагревается на 1200° С (белое каление), на 600 верст – температура будет уже 150° С, на 900 верст – 44°, на 1200 – 19°. Следовательно, на расстоянии девяти градусов кругом от места падения температура почвы уже не окажется опасной.
То же почти будет, если примем вместо железа с плотностью 7,5 и теплоемкостью в 1/9, каменную породу с плотностью 2,5 и теплоемкостью в 1/4. Действительно, на единицу объема получим тепла для железа 0,83, а для камня – 0,625, т. е. почти то же. Но от почвы и болида может сильно нагреться и воздух, что гораздо опаснее, потому что распространится дальше.
Если планетка имеет только один километр в поперечнике, то ее опасное действие, в отношении нагревания будет в 30 раз короче, или ближе. Надо еще помнить, что температура не равномерна: по окраинам, дальше от удара она несравненно меньше, чем мы считали.
Возможно, что только менее половины всей образующейся теплоты передастся внутренности Земли; большая же часть ее обратит астероид в парообразное состояние, которое и распространится кругом, заливая огненным газом поверхность почвы и воды.
Нагревание моря также не может распространиться очень далеко при падении небольших планет. Нагревание воздуха будет гораздо сильнее. Каково же оно и не сожжет ли нагретый воздух все живое?
При секундной скорости болида в 50 километров и диаметра в 4 километра, атмосфера нагреется, если все тепло передастся ей, на 750°
Цельсия. Это, очевидно, представляет громадную опасность для жизни. Но дело в том, что огромная часть тепла передастся лучеиспусканием небесному пространству, суше и воде, – прежде чем распространится на отдаленные уголки Земли. Потом, температура будет неравномерна. В центре падения болида она будет очень высока, и будет много терять лучеиспусканием и теплопроводностью. Но с удалением от места катастрофы, она будет сильно падать.
Так что и при такой массе болида и при такой его скорости может быть не все живое еще погибнет.
При относительной скорости планетки в 30 километров, нагревание воздуха будет в три раза меньше и окажется губительным только по близости падения. Если еще и диаметр болида, допустим, вдвое меньше (2 версты), то и нагревание атмосферы окажется в 8 раз меньше, а всего в 24 раза. Оно достигнет тогда в среднем лишь 31° Цельсия. Низшая степень нагревания, конечно, окажется совсем ничтожна.
Нагревание океана слабее, так как масса его в 250 раз больше массы воздуха, а способность вбирать теплоту в 4 раза больше. В общем, океан может воспринять теплоту в 1000 раз больше, чем атмосфера. Таким образом, среднее нагревание воды будет в тысячу раз меньше, чем воздуха и потому будет заметно и даже не мало только по близости катастрофы.
Если бы нагрелся один болид, то температура его, при всякой величине, была бы более миллиона градусов. Понятно после этого его нагревательное действие в окружности падения.
Известно, как мы говорили, что в небольшой, сравнительно, промежуток времени пролетело через атмосферу два ужасающих болида, один с поперечником в 2 версты, а другой – в 4. Сколько же их пролетело и падало в течение миллионного периода развития органической жизни нашей планеты! Однако она не только не уничтожилась, но даже, по-видимому, и не прерывала своего плавного течения. Отсюда видно, что и впредь подобные катастрофы не грозят полной гибелью живому. Но бедствия, производимые ими, все же могут быть неисчислимы, особенно при будущей густоте населения Земного шара.
Доисторические данные ничего о прошедшем сказать не могут. Исторические же содержат много преданий о потопах и других катастрофах. Но видно они никогда не уничтожали всех животных. Геологические, очень древние данные, тоже неопровержимо кричат о периодах оскудения органической жизни, хотя эти оскудения могли иметь другую причину.
При размерах астероидов в несколько верст, механическое действие атмосферы на них внизу сильнее, чем сверху, так как плотность воздуха внизу больше. Поэтому болиды, пролетающие атмосферу, должны получать вращение и отклоняться ею от столкновения с сушей или водой. Произойдет как бы отражение, уклонение болида в сторону от Земли. Это возможно только при наклонном полете. Насколько значительно это отклоняющее действие воздуха судить сейчас мы не намерены.
Земля имеет угловую скорость большую, чем угловое же движение Луны вокруг нашей планеты. Действительно, первая делает оборот в сутки, тогда как ее спутник оборот вокруг Земли совершает в 28 суток с лишним. Поэтому Земля механически увлекает Луну в сторону своего вращения и от этого постепенно удаляет себя от спутника, тогда как скорость его уменьшается. Дело в том, что Луна производит приливы на Земле и напряжение в ее массе, отчего скорость ее вращения замедляется, сумма вращательных моментов количества движения Луны должна увеличиться. Это может произойти только при удалении Луны и уменьшении скорости ее кругового движения вокруг Земли.
Когда-то Луна была ближе к Земле. Всего ближе она была в момент отделения ее от земной массы, в момент ее рождения, или самостоятельного существования. Затем расстояние непрерывно увеличивалось, скорость же вращения Земли уменьшилась (от сжатия Земли ее скорость увеличивалась не так быстро, как замедлялась от приливного действия).
Выходит, что Земля должна замедлять свое вращение и в будущем. В конце концов, время оборота и вращения спутников и их матерей, или планет должно сравняться. Тогда Земля будет делать оборот вокруг оси в течение многих суток или во столько же времени, как и Луна. В продолжение длинного дня на Земле будет невыносимо жарко, а в течение длинной ночи чересчур холодно. Трудно тогда будет бороться человеку, животным и растениям с необычной разностью температур дня и ночи.
Но и это едва ли принесет гибель человечеству, тем более что сжатие Земли будет ускорять ее суточное вращение и это ускорение может быть будет со временем превышать замедление, так что, в общем, суточное вращение не только не угрожает своей остановкой, но даже ускорением. Более же быстрая смена дня и ночи лишь облегчит жизнь, так как сравняет температуру дня и ночи. (В своих трудах я вычислял, насколько должна удалиться Луна, чтобы Земля своим вращением сравнялась с Луной – если пренебречь сжатием Земли).
Земля и Солнце находятся в таком же отношении друг к другу, как наша планета к ее спутнику. Солнце тоже не только должно замедлять вращение Земли (хотя и слабее Луны), но и удалять ее от Солнца, так как угловое движение Солнца в 32 раза значительнее углового годового движения Земли вокруг светила. Удаление нас от Луны не имеет большого значения, удаление же от Солнца будет сопровождаться непрерывным понижением средней температуры Земли, независимо от остывания Солнца.
Но, во-первых, это удаление крайне слабо и даже пока незаметно, а, во-вторых, оно так постепенно, что человек к нему понемногу может приспособиться, как может быть, и к длинному дню.
При увеличении расстояния от Солнца вдвое, средняя температура Земли, при тех же атмосферных условиях, дойдет до 69° холода по Цельсию. Но если состав атмосферы изменится, масса ее увеличится, альбедо (способность отражать лучистую теплоту или свет) уменьшится, то и температура может оказаться еще сносной.
Да и не будет ли предел удаления Земли от источника ее жизни!? Это удаление, по мере отвердевания Земли, все более и более замедляется. Наконец, оно даже теперь, вероятно так мало, что жизнь десять раз успеет иссякнуть от других причин, прежде чем замрет от лишения света и тепла (вследствие удаления Земли от Солнца).
Вероятность столкновения двух солнц (двух звезд) чрезвычайно мала. Возможность эта выражается 30 триллионами (30 × 1018) лет. Как велико это время можно видеть из следующего. Если бы наша солнечная система просуществовала 30 тысяч миллиардов лет, то и тогда приведенное время оказалось в миллион раз больше (этого периода жизни планет). Наша планетная система может пробежать в 30 триллионов лет весь Млечный Путь, взад и вперед 30 миллиардов раз.
Более вероятна возможность прохождения нашего Солнца по близости другого. Но и на это требуются невообразимые времена. Так вероятное время прохождения двух солнц на расстоянии 100 солнечных радиусов – 3000 биллиона лет (3 × 1015). Заметим, что 100 солнечных радиусов составляют, приблизительно, половину расстояния Земли от Солнца. Это время (3 × 1015) более 30 тысяч миллиардов лет в 100 раз. Млечный Путь может быть пронизан планетной системой в этот промежуток 30 миллионов раз.
Сколько приключений дали бы подобные времена Солнечной системе с ее членами. Шутка ли качнуться, подобно маятнику 30 миллионов раз из конца в конец по всему Млечному Пути! Такие времена не только для человека, но и для человечества имеют, как будто, очень мало интереса.
Неизвестно, какими явлениями будет сопровождаться даже центральное столкновение светил. (Мы же говорили про радиальное.) Возможно, что они не сольются в одно целое, а снова разойдутся и будут продолжать свой путь. Но возможно, что, потеряв часть своего поступательного движения, они будут многократно падать друг на друга, пока не сольются в одно целое, в одну звезду. Во всяком случае выделиться громадное количество тепла и гигантских брызг, которые сожгут все живое на планетах окружающих столкнувшиеся солнца.
Изменятся также траектории или пути планет, что тоже может быть для них гибельно (в виду изменения температурных условий и климатов).
Гораздо вероятнее, чем взаимная встреча солнц, прохождение по близости Земли другого подобного же тела, идущего из недр бесконечности. Мы видели, что прохождение через Землю планеток в 3–4 версты диаметром вполне возможно и даже осуществлялось в короткий промежуток времени.
Конечно, чем больше проходящее небесное тело, тем вероятность этого прохождения меньше. Если на прохождение болида в 4 кило надо 1000 лет, то на прохождение массы вроде земной, т. е. в 27 миллиардов раз большей, может быть, и времени понадобиться во столько же раз больше, т. е. 27000 миллиардов лет.
Что же бы тогда могло произойти? Появятся огромные приливные волны в воде, атмосфере и даже во всей массе Земли. Твердая кора взломается, как тонкий ледок, откроются внутренние огненные массы и сожгут живое, помимо гибели от наводнений, землетрясений и ураганов.
Кроме того, путь планеты изменится. Раз произошла гибель всего живого, то судьба мертвой Земли уже не так будет интересна. Но на ней снова может возникнуть жизнь и потому и это не совсем безразлично.
Тут могут быть 4 главных случая:
1) Скорость Земли несколько увеличится. Тогда она будет периодически удаляться от Солнца и подвергаться ежегодно холодам. Удаление может быть не велико и терпимо, а при большей эксцентричности может быть так значительно и так продолжительно, что происходящие от этого холода окажутся смертельными для новых организмов.
2) Скорость Земли увеличится настолько, что она совсем уйдет от своего светила. Тогда довольно нескольких месяцев, чтобы все вновь возникшие зачатки животных и растений сгинули от холода.
Картина этой катастрофы такова. Солнце начинает удаляться все более и более. Вот оно кажется меньше, чем с Марса и температура становится невыносимо низкой. Вот оно кажется, как с Юпитера. Вот уже виднеется в виде блестящей звезды, ярко все освещающей, но не греющей. Вот уже свет ослабляется до света Луны, потом до света Венеры, до света звезды. Тогда наступает вечный мрак, скрашенный лишь звездным небом. Понятно, что гораздо раньше этого, все живое погибнет.
Но не встретит ли эта изгнанная из родной семьи планета нового солнца? Вероятное время встречи нового солнца на расстоянии таком же, на каком находится наше, не менее нескольких тысяч биллионов (К)15) лет. Но и от такой встречи толку мало. Земля пролетит мимо нового светила, приласкается его ярким светом, но уже через несколько сотен дней уйдет от него на новые тысячи биллионов лет.
Чтобы Земля задержалась звездой (солнцем) и сделалась ее спутником, нужно одновременное сближение трех тел, время вероятия которого так велико, что не имеет для большинства людей никакого смысла.
3) Рассмотрим третий случай, когда скорость Земли уменьшается. Тут путь Земли становится эксцентричным, как в первом случае, причем планета периодически будет приближаться к светилу. Если это приближение незначительно, то спасение еще возможно, но при уменьшении расстояния вдвое, втрое, вчетверо – первое же годичное приближение к Солнцу должно умертвить все живое. Температура поднимется выше 100 ° С. Только высшая техника может сохранить тогда человека.
4-й случай получится, как предел этого: когда планета потеряет всю скорость своего движения относительно Солнца. Тогда она начнет падать на него все быстрее и быстрее. Месяца через два земной шар будет поглощен огненным морем светила и обратится в газообразное состояние.
Разумеется, жизнь исчезнет много раньше. Картина для бессмертного такова. Угловая величина Солнца растет сначала очень медленно и температура приятно повышается. В особенности будет хорошо жителям полярных стран. Затем этот рост светила совершается все быстрее и быстрее, жар увеличивается и становится невыносимым, убийственным. Солнце занимает 10,20, 50 % всего неба. Наконец Земля сливается с огненным беспредельным полем.
1921 г.
Архив РАН, ф. 555, оп. I д. 247
Бесконечность пространства, равные расстояния между материальными, равными и вначале неподвижными точками, их взаимное притяжение – вот начальная картина Вселенной, или, вернее сказать, простейшая картина Вселенной. Если она и была такой, то этот момент отдален от нас бесконечностью.
Точки по диаметру малы в сравнении с теперешними атомами и даже электронами. Момент первобытного и простейшего состояния космоса бесконечно удален от нашего времени. Начало материи, т. е. причина ее появления неизвестна. Называем ее условно первопричиной. Потом уже, из развития мира узнаем о ее свойствах.
Эта гипотеза о первоначальном состоянии Вселенной достаточна для объяснения постепенного развития космоса, объяснения настоящего его состояния и предвидения будущего.
Прибавим еще, что наши материальные точки потенциально живы, т. е. при развитии и усложнении материи они проявляют известные биологические явления. Бесчисленное число раз они могут проявлять высокую или низкую степень жизненности и вновь возвращаться к первобытному состоянию.
Результатом взаимного притяжения первобытных атомов будет их движение, соединение, образование все более и более сложных видов материи вплоть до вещества органического, проявляющего жизнь. Сами атомы или элементы материи в своих свойствах не меняются. Они вечны, неизменяемы, неуничтожимы, не самозарождаемы, потенциально живы, пока Первопричина не проявит свое Veto, т. е. свою непостижимую для человека волю. Однако до сих пор наука не видит, чтобы эта воля проявилась и изменяла в корне творение.
Вследствие притяжения между точками, получается падение их друг на друга, и их колебательное движение. Но закон притяжения может быть разный. Один дает такие результаты, другой иные. Это разбирает аналитическая механика. Если взять известный закон притяжения Ньютона, который относится и прилагается к планетам, солнцам и другим небесным телам, то при столкновении атомов произойдет как бы отражение их друг от друга. Слияние и замкнутое движение при взаимодействии только двух точек невозможно, будут движения параболические и гиперболические, более или менее растянутые, даже до прямой линии. Столкновение атомов также немыслимо, так как они представляют математические точки и потому вероятности для этого никакой нет.
Я говорю о влиянии и движении двух атомов. Но атомов множество, одновременно влияющих друг на друга. Может быть их взаимное влияние, в результате чего образуются замкнутые или круговые комбинации из двух атомов. Но для этого нужно участие, по крайней мере, 3-х атомов.
Прежде всего, потому что всего проще, вероятнее образуются тесные круговые соединения по два атома.
Будут образовываться одновременно соединения по 3,4, 5 и т. д. атомов. Но чем больше атомов вступает в соединения, тем меньше вероятия для образования такой сложной группы. Поэтому, прежде всего, образуется множество парных соединений. Потом получатся тройки, далее – четверки…
В данный промежуток времени появится больше всего парочек, гораздо меньше троек, еще меньше четверок и т. д. Это явление можно назвать развитием или эволюцией материи.
Но не только будет происходить процесс соединения, в то же время будет и разложение образовавшихся сложных групп на более простые и даже на элементы.
Но так как сначала простой материи будет больше, чем сложной, то образование соединений будет превосходить образование разложений. Равновесие наступит приблизительно тогда, когда количество сложной материи сделается равным количеству простой.
Итак, вся материя разделится на простую и сложную, состоящую преимущественно из парочек. Число в ней троек, четверок и т. д. будет сравнительно совершенно ничтожно.
Первая сложная материя бесконечно проста в сравнении с существующей.
Сближение атомов попарно, падение их друг на друга не только придало им вращательное движение, но ускорило движение окружающих простых атомов – одиноких. Потенциальная энергия простых атомов уменьшилась при переходе их в сложные; избыток же этот перешел в кинетическую энергию окружающих атомов, еще не вступивших в соединение.
Сложные частицы, как имеющие меньшую поступательную скорость движения центров, обладали и меньшей упругостью, т. е. представляли большую плотность. Такие атомы собирались под влиянием притяжения и меньшей упругости в небольшие кучки. Это было подобно ожижению паров жидкости. Вся Вселенная разделилась на такие кучки, с промежуточной простотой и более упругой материей. Упругость, конечно, образовалась от движения атомов, а движение от падения друг на друга и образования сложной материи.
Потенциальная энергия уменьшилась, кинетическая на столько же увеличилась.
Кучки этой первой сложной материи взаимно сближались и образовали группы больших размеров. Между ними некоторые кучки остались не соединенными. Итак, получилось бесчисленное множество более значительных групп материй с промежутками из простых материй и менее значительных групп сложной.
Далее, все более и более соединялись группы сложного вещества, пока не составили громадных туманностей с промежутками из пропой материи, содержащей туманности всех меньших размеров.
Так продолжалось очень долгое время. Всю бесконечность Вселенной мы постигнуть не можем. Думаю, что какие-нибудь второстепенные, промежуточные и сравнительно ничтожные туманности дали начало млечным путям, один из них есть наш млечный путь с его сотнями миллионов ослепительных солнц.
Разумеется, так как протекли не миллионы, не дециллионы, а еще дольше времени, то получилась очень сложная материя. Кажется самая простейшая частица, как электрон, или даже частица эфира содержит множество элементарных атомов. Их громадную сложность мы даже представить себе не можем.
Млечный путь был сначала огромной, медленно вращающейся туманностью, т. е. чрезвычайно разреженной и упругой материей. Вращение ее было неизбежно по теории вероятности. Напротив, отсутствие вращения было бы таким чудом, как если бы кто написал совершенно точно середину какого-нибудь тела (было бы почти невероятно, если бы она имела одно строго параллельное поступательное движение).
По мере сжатия туманности, от силы тяготения, от образования все более и более сложных и менее упругих комбинаций атомов, от лучеиспускания – скорость вращения ее все увеличивалась, и она отделила от себя по краям туманности частицы, давшие потом начало первым наиболее удаленным от центра звездам. Дальнейшие уплотнение и ускорение опять отделяют кольца, разорвавшиеся на отдельные туманности и так далее.
Одним словом, основная туманность делится на множество второстепенных.
Одна из них сделалась родоначальницей нашей Солнечной системы, другие послужили основанием для образования других солнечных систем нашего Млечного пути.
Обратимся к туманности, из которой образовалось наше Солнце с его планетной системой.
С этой второстепенной туманностью происходило совершенно то же, что с туманностью материи. Также получались все более и более сложные молекулы, упругость вещества от этого уменьшалась, туманность лучеиспускала, сжималась, вращалась быстрее, отделяла туманные кольца, которые сливались силою тяготения в туманные шары. Эти шары и образовали потом планеты с их спутниками.
Средняя масса дала одно или несколько солнц, периферические части планеты.
Обратимся к одному из средних туманных шаров, из которого образовался, положим, земной шар.
Эта туманность, как и все другие, проделывает то же. В ней совершались химические соединения, образовывались более сложные и менее упругие тела, она лучеиспускала, т. е. выделяла избыточную химическую энергию, сжималась, вращалась быстрее и благодаря непрерывно возрастающей центробежной силе, перевешивающей тяготение, отделяла по окружности кольца или массы этой формы. Первая же масса, собравшись в туманный шар, дала материал для нашей Луны.
У одной из планет Солнечной системы, Сатурна, обстоятельства не благоприятствовали и кольцевые формы остались до сего времени. Долго ли они еще продержатся в равновесии – неизвестно. Весьма возможно, что через несколько тысяч лет и они обратятся в шар, т. е. спутник Сатурна.
У Юпитера было 8 колец и теперь столько же спутников или Лун, у Сатурна – 10, не считая колец, у Марса – два и т. д.
Но туманные шары не остались таковыми. Материя в них все усложнялась, упругость уменьшилась, они сжимались, светились, как Солнце, охлаждались, покрывались твердой и холодной корой и обзаводились жизнью.
Что же ожидает нас дальше? Не замерзнет ли Земля, не погаснет ли Солнце и не исчезнет ли возродившаяся жизнь, как сон, как призрак?
Пока Солнце ярко светит и греет, Земля не замерзнет и жизнь на ней не прекратится. Но несомненно, что Солнце ожидает печальная участь охлаждения и покрытия твердой корой. Случилось это с Землей, с громадным Юпитером, который по объему в тысячу раз больше Земли. Почему же не случится того же с Солнцем, которое тоже в тысячу раз больше Юпитера? А если так, то не миновать печального конца и Земле: без лучей Солнца ее жизнь будет невозможна. Однако человек, а тем более его совершенный потомок найдет выход из этого положения. Он переселится к другому, еще свежему солнцу и будет пить этот источник до его истощения. Погаснет второе солнце, он переселится к третьему и т. д.
Но что же будет с Землей, Солнцем и его планетами? Неужели вечная смерть, тишина, тьма, холод и звездное небо кругом? Если их удел исчезнуть, исчезнет энергия Солнца, то не исчезнет ли также и энергия его братьев, не скроется ли тогда и звездное небо? Не погаснет ли и вся Вселенная, не обратится ли в вечную и бесконечную пустыню? Что тогда будет с жизнью без ее источника – лучистой энергии. Так бы должно случиться согласно новейшим течениям науки о непрерывном возрастании энтропии, или рассеяния энергии, всеобщего уравнения температуры и всеобщей смерти.
Уже это потому невозможно, что протекли бесконечные времена, но дециллионы дециллионов лет, а буквально бесконечность дециллионов. Однако мир цветет, цветет и жизнь на бесчисленных планетах.
Взгляните на небо, и вы увидите, что это правда. Как же объяснить такую вещь с точки зрения современной науки, опровергнуть учение об энергии? Хватит ли у науки для этого данных? Как будто – да!
Мы видели, что одновременно происходит всегда два процесса: соединение молекул и разложение их. Равновесие наступает, когда, приблизительно, количество разложенных элементов равно количеству сложенных.
На свободе, в эфирном пространстве, вероятно, более благоприятные условия соединения, чем в громадных материальных скоплениях, каковы Солнца и планеты. Может быть удобство открытого лучеиспускания в свободном эфире этому способствует может быть еще что-нибудь.
Напротив, в гуще материи больше происходит разложений, чем соединений. Должно быть крупные молекулы продолжают соединяться, а электроны и более мелкие отделяться от материи и увеличивать ее упругость и внутреннее напряжение остальных небесных тел. Почему это?
Пока сложная материя не в гуще, а окружена первобытной материей, будет происходить больше соединений (по теории вероятности). Напротив, когда сложная материя окружена такою же сложной, – как в центрах небесных тел, то там число разложений будет превосходить число соединений.
Все это происходит крайне медленно. Медленно происходило образование сложной материи в эфире. Собралась материя в гущи небесных тел и попала в западню. Убийственно медленно происходит разложение материи в среде солнц и планет. Также медленно, как и синтез химического соединения, потому что для этого нужна известная комбинация положений и скоростей, которые случаются не часто. Вспомните разложение радия, тория урана и т. д.
Но оно все же происходит, увеличивается напряжение внутри звезд, планет и спутников, растет в них количество электронов и других еще более упругих элементов. Проходят сотни миллионов лет. Наконец наступает момент, когда это давление становится более крепости толщи коры небесного тела и ее тяжести.
Тогда кора неожиданно разрывается, преодолевается сопротивление и вес, и куски планеты с невообразимой скоростью разлетаются в разные стороны. Вырвется так много энергии, что все расплавится, обратится в пар и даже, отчасти, в первобытную туманную материю. Не трудно понять, почему именно происходит взрыв, а не постепенное расплавление, вспучивание коры и т. д. Во-первых, раз кора разорвана, внутреннее давление сразу становится больше сопротивления от тяжести. Далее, когда от этого вспучивания кора и сила тяготения се частей уменьшится, т. е. внутреннее давление еще больше превзойдет внешнее сопротивление, так как скорость электронов или другой еще более простой материи нисколько по своей громадности не уменьшится, значит и упругость этой материи уменьшится на незначительную величину и поэтому может считаться постоянной. По мере увеличения объема планеты, превосходство внутренних сил будет все возрастать, и потому результаты разрыва у разных масс будут различны. Самые громадные массы обращаются в первобытную материю, вроде эфира. Большие массы, каковы солнца, превращаются в гуманности и первобытную материю, меньшие, каковы планеты, разрываются на меньшие планеты, каковы планетоиды. С образованием газов, еще меньшие, разрываясь, образуют рой мелких твердых и, частью газообразных тел, составляя кометы и рои аэролитов. Эти последние, мельчая от разрывов все более и более, от сопротивления эфира двигаются по спиральным путям и падают на центральные массы.
Сначала катастрофы постигают маленькие небесные тела, заставляя их падать на солнце, затем более крупные, т. е. астероиды и планеты, потом разрывается и солнце, все собою обволакивая и испаряя. Если астероиды и спутники Марса не разорвались, то только потому, что они еще очень молоды, или, иными словами, – недавно образовались от разрыва более крупных тел, великолепный кинетический эффект.
Так вот что неизбежно ожидать погашение Солнца и планет, совершенно неожиданный взрыв и превращение в первобытное состояние туманности. А там опять сгущение, образование солнц, планет и жизни на них. Все повторится, и вечно будет повторяться, пока не воспретит Первопричина. Вот почему жизнь и сейчас цветет в космосе.
Теперь вы скажете: если это так, то мы должны видеть очень часто в нашем Млечном пути возгорающиеся звезды: ничего как будто нет особенного в каком-нибудь месте неба, и вдруг там возжигается звезда. Это происходит взрыв в потухших солнцах или планетах.
Такие звезды, вновь появляющиеся, мы видим довольно часто – несколько в одно столетие. Положим, мы видим только одну такую возгорающуюся звезду в каждое столетие. Из этого можно было бы узнать, во сколько времени совершается цикл жизни солнца. Действительно, в Млечном Пути насчитывают около 200 миллионов солнц. Будем считать одни солнца, пренебрегая планетами и темными солнцами.
Тогда на 200 миллионов небесных тел возгорается одно в 100 лет. Следовательно, цикл Солнца будет, в среднем, равен 20 миллиардам лет. Если принять в расчет, что звезды возгораются чаще, то число это еще уменьшится, но и оно не представляет ничего невероятного.
Несколько миллиардов лет туманного состояния, несколько миллиардов сгущения, несколько пылания, охлаждения, образование внутри взрывчатого материала вот и выйдут все 20 миллиардов.
Звезды других млечных путей мы не можем видеть в отдельности, а потому, появившаяся вновь звезда должна быть очень яркой, чтобы быть замеченной, ну положим, 3-го порядка. Со временем, когда на звездное небо будут постоянно направлены десятки тысяч сторожевых телескопов, когда будет высоко организовано непрерывное наблюдение неба, тогда конечно не укроются новые звезды и 15 порядка. Теперь же дело совсем иное.
В первое время взрыва даже невидимая раньше звезда очень мелкая, какого-нибудь 10-го порядка, становится яркой и видимой даже для любителей. Какие же звезды считать доступными для наблюдения немногими астрономами и любителями? Положим, что видимы становятся только темные звезды, которые при своей видимости, или во цвете лет были звездами 11 порядка. Таких звезд около миллиона.
Значит в столетие возникает одна звезда на миллион их. Звездный цикл окажется сто миллионов лет. Это число более вероятное для возрождения между ними новых солнц. И весь то чужой млечный путь (т. е. иного мира) представляется нам через телескоп в виде трудно заметного туманного пятнышка. Едва-едва мы можем наблюдать его спектр и догадываться по нему, что это солнечные скопища, а не действительно туманность.
100 миллиардов лет для возобновления жизни звезды, для солнечного цикла в самом деле много.
Не скажите ли вы, что самое возгорание наших звезд имеет в источнике не внутреннее взрывание, а, например, столкновение небесных тел? Конечно возможно и столкновение, но оно так маловероятно в виду беспредельного простора небесных пространств, что его можно не принимать во внимание.
Действительно, примем среднее расстояние между ближайшими звездами в 5 световых лет, а величину их как наше солнце, тогда вероятность встречи двух звезд будет составлять около 1016 × 3 × 104 = 3 × 1020 лет. Вероятность встречи для 200 миллионов звезд млечного пути будет 3 × 1020 / 2 × 108 = 1,5 × 1012, т. е. 1,5 триллиона лет. А между тем, мы видим 3 новых звезды в столетие, или одну в 30 лет. Это крупные, т. е. близкие звезды. Мелких, удаленных звезд возгорается, наверное, больше – по несколько в год, а не в триллионы лет. Итак, столкновение ни в коем случае не может быть источником новых звезд. Если даже темных считать в 100 раз больше, чем светлых, то и тогда вероятность столкновения окажется еще очень малой. Скорее можно объяснить это возгорание слиянием какого-либо солнца с его спутником. Бывают спутники громадные, как солнца.
Мы знаем такие системы из светящихся солнц, так называемые двойные, тройные и т. д.? звезды. Но, во-первых, мы не видим, чтобы такие звезды обнаруживали сближение между собой. Сопротивление эфира так ничтожно, а массы солнц так велики, что его сопротивление едва ли можно принимать в расчет при беге небесных тел. (Даже массы меньше горчичного зерна носятся вокруг солнца и нисколько, как будто, не терпят от сопротивления эфира.)
И планеты в несколько сотых долей миллиметра свободно мчатся вокруг солнца. Такие малые небесные тела, вероятно, испытывают сопротивление эфира, приближаются к солнцам и падают на них. Может быть, то же делается и с телами размером в несколько метров. Но даже целый поток малых тел не может произвести таких грандиозных эффектов, как мы видим при самовозгорании новых солнц.
Таким образом, и эту причину возгорания солнц мы должны отвергнуть.
Остается извержение, но не слабое, вроде вулканических или солнечных факелов, такие не были бы заметны, а только грандиозные, с разлетом солнца во все стороны и образованием туманности.
Сначала, конечно темные солнца накаляются, плавятся, светятся, потом слабеют и иногда становятся невидимыми, обращаясь в пар.
(1918 г.)
Архив РАН, ф. 555, on. 1, д. 234
Вселенная едина, но условно можно разделить ее на три области. Одна громадна и, как будто, бессознательна. Это область солнц, вечно погасающих и снова возникающих. Вторая – мир сравнительно малых и потому остывших тел. Это – планеты, луны, астероиды и еще более многочисленная мелочь. Третья – область сознательных животных, т. е. зрелых существ. На первую область не влияют разумные существа. Эта область хоть и бессознательна, но целесообразна и как бы служит основою жизни: дает энергию для биологической жизни. Целесообразность ее видна из следующего.
1. На месте остывших или рассеянных, распавшихся солнц возникают новые.
2. Тяготение родит движение, а движение сильно препятствует столкновению небесных тел и гибели живого.
3. Огромное взаимное расстояние небесных тел делает почти невозможным их встречу и гибель существ.
4. Время, пространство и материя бесконечны, что производит невообразимое разнообразие мира.
5. Вечность материи и энергии обеспечивают и вечность Вселенной.
6. Внутреннее количество запасной энергии во всякой, даже ограниченной, массе материи, по мере развития науки, все более и более обнаруживается. Нужно думать, что оно бесконечно, как бесконечно время, создавшее известную нам сложную материю.
7. Хотя сумма количеств движения (или кинетической энергии) и запасной (потенциальной) энергии постоянно в космосе, но она имеет способность сосредотачиваться и рассеиваться бесконечное число раз, что видно из постоянного возникновения новых солнц.
Эта периодическая их деятельность хотя и прекрасна, но заметно влиять на нее самые могущественные сознательные существа не могут. Да и к чему изменять эту механику, раз она и без того целесообразна и как бы назначена для служения разумному миру.
Большее влияние он может оказать на планеты и еще меньшие тела. Сейчас люди слабы, но и то преобразовывают поверхность Земли. Через миллионы лет это могущество их усилится до того, что они изменят поверхность Земли, ее океаны, атмосферу, растения и самих себя. Будут управлять климатом и будут распоряжаться в пределах солнечной системы, как и на самой Земле. Будут путешествовать и за пределами планетной системы, достигнут иных солнц и воспользуются их свежей энергией взамен своего угасающего светила. Они воспользуются даже материалом планет, лун и астероидов, чтобы не только строить свои сооружения, но и создать новые живые существа.
Но целесообразность Вселенной (космоса) была бы неполной, если бы весь он не представлял одну живую массу. В математическом смысле это так, ибо нет материи, которая бы не могла принять образ животного, человека или даже высшего существа. И еще потому, что нет качественной разницы между органическим и неорганическим: границы между тем и другим условны и неопределенны. В самом деле, одни и те же силы и законы проявляются как в живом, так и в «мертвом». Мы усиленные механические, физические и химические явления в животном условно называем бытием, а слабые проявления тех же сил – небытием или смертью.
Итак, космос, в математическом смысле живая масса. Малая часть его всегда обладает условным бытием. Но эта часть переходит в условное небытие, чтобы уступить жизнь другой части материи. Так поочередно все части космоса принимают сложный образ и условное бытие. Время небытия проходит незаметно, как в обмороке. Его как бы нет. Времена же жизни сливаются для любой определенной массы материи в одно бытие. Итак, целесообразность мира еще состоит в том, что нет в нем ни одной его части, которая не жила бы бесчисленное число раз органической жизнью. Действительно, непрерывное перемешивание материи в периоды разрушения и создания небесных тел, ни одну часть вещества не избавляет от участия в животной жизни. Даже центры солнц, планет и туманностей не могут ее избежать.
Вот зачем не нравящееся нам разрушение солнц и планет: это обеспечивает жизнь самым скрытым, самым укромным уголкам материи. Никто не обижен, ни один атом. Он всегда будет иметь бесконечно повторяющуюся животную жизнь.
Какова же она? Неужели это есть жизнь жестоких волков, несчастных зайцев, безумных взаимно истребляющих людей, калек, уродов, глупцов, больных, несознательных, не знающих, слабых, не ведающих что творят?
Раз я сознательный, раз я знаю и понимаю, что тут изложено, то рассуждаю так. Если во Вселенной будет зло, т. е. в нем будут несчастные существа, причиняющие горе себе и другим, если это слабые бессильные животные, не умеющие устраивать своего счастья, то и я, оживая бесконечное число раз, буду испытывать все эти муки, потому что оживу в этих несчастных и злых или слабых существах. Отсюда вывод совершенного разума: в природе ничего не должно быть, кроме счастья, радости, силы, здоровья, знания, ума и могущества.
Ясно, что всякий разум должен в космосе устранять зло и не допускать ни малейших мучений.
Но как это сделать? Неужели убивать злых животных, несознательных существ, калек, больных, слабых, глупцов и невежд?
Ни в коем случае, ибо это будет новое недопустимое зло и я рано или поздно подвергнусь ему.
Между тем надо как-нибудь все же устранять несчастных существ. Нельзя ли это сделать без страданий для них? Конечно можно, если ограничить или совсем остановить их размножение. Это же можно сделать без всяких страданий множеством известных способов. Пусть несовершенные живут, брачуются, и любят чужих детей или их родственников, но пусть сами не производят несчастного или дурного потомства. О них, калеках, даже больше забот, чем о здоровых и разумных, им больше любви и внимания, но размножение их есть гибель мира и недопустимое преступление. Всякий истинный разум это понимает и достигает. Давно это совершилось на зрелых небесах, и нигде нет несовершенных, и мы ими не будем. Устраним же их на нашей планете. Еще отметим целесообразность космоса, состоящую в его вечно и всюду возникающем разуме, устраняющем всякие страдания.
29 июня 1933 г.
Архив РАН ф. 555 оп. 1, д. 500