Научная дефектология исходит из представления о сложной структуре дефекта в развитии ребенка, указывает на необходимость различения первичных и вторичных образований в этой структуре. Сложная картина аномального развития ребенка характеризуется разнообразием проявлений. Нередко при различных состояниях наблюдаются внешне сходные проявления. Так, при некоторых локальных поражениях центральной нервной системы у детей в младшем возрасте может возникнуть картина, по симптомам сходная с олигофренией.

Очевидно, что подобная ситуация требует глубокого комплексного исследования аномальных детей. В первую очередь важно найти причины, порождающие аномальное состояние, изучить зависимости одних проявлений от других, их взаимосвязи и взаимообусловленности. Важно также изучать аномальных детей в динамике, что требует длительного наблюдения за характером их развития [30].

Признание единства причинности и структурности может служить основанием адекватного применения системного подхода. В рамках этого единства структурный подход должен контролироваться и направляться причинно-субстанциальным подходом. Известны некоторые абстрактные модели структурного подхода. К их числу принадлежит концепция социальной стратификации и социальной мобильности в капиталистическом обществе. В этой концепции все движения индивидов и социальных групп по ярусам и отсекам структуры общества рассматриваются в качестве равноправных. Однако такая равноправность есть только видимость. Причинный подход к анализу этого общества, исследование его субстанциальных отношений, социально-экономической структуры убеждает, что в современном капиталистическом обществе действует направленный процесс классового расслоения населения.

Теперь рассмотрю еще один аспект категории «причинность», связанный с развитием системных исследований. Дело идет о введении в научный оборот понятия «системная причинность». Разработка указанного аспекта связана с тем, что существует обширный круг явлений, объяснение которых не может быть сведено к выявлению элементарных локальных связей, а требует учета взаимодействующих рядов, целостной сети взаимодействия явлений. Именно к исследованию таких ситуаций оправдано применение понятия «системная причинность». Сфера действия этого понятия охватывает информационные процессы, психические и социальные явления. Богатейший материал для его введения в область научного знания дает современная биология, экология, а также практическая деятельность по созданию больших систем.

Надо заметить, что о системной причинности, или о причине как системе, можно говорить в двух смыслах. Во-первых, — как об относительно устойчивой форме существования противоречий. Под таким углом зрения диалектическая логика изучает источники развития в любой области действительного мира.

Она определяет систему внутренних противоречий в качестве наиболее глубокой, коренной причины развития любых явлений и объектов. Во-вторых, в роли системной причинности выступает механизм регуляции, действующий в рамках функционально устойчивых целостных образований. Благодаря ему, целостная система способна формировать условия для непрерывной реализации своей главной функции — самосохранения в определенном диапазоне внешних воздействий. Одновременно она действует на свои элементы, осуществляя отбор их допустимых состояний.

В методологическом плане существенно, что понятие системной причинности охватывает диалектическое единство обратимых и необратимых, циклических и направленных процессов. В высокоразвитых сложных системах цикличность поддерживается с помощью обратной связи, механизм которой строится по принципу взаимного определения «входа» и «выхода» системы.

Эта связь включается в число общих условий, обеспечивающих целесообразное функционирование элементов сложной системы. В основе здесь лежит возможность ограничения степеней свободы во взаимодействиях элементов, а также принцип минимизации отклонений регулируемого параметра. В итоге складывается способ детерминации систем, в котором действие прямых причинных факторов опосредовано регуляцией, координацией, финальными связями и др. Такая детерминация включает производящее начало как составляющую функционирования системы в целом. Ее описание может строиться на применении концептуального аппарата и методов, которые непосредственно не выражают причинные отношения. Отмечу, например, сферу разработки функционального подхода в области проектирования технических автоматов. Здесь главное внимание уделяется передающему элементу системы, учитывается его представление в качестве оператора, который определяется через математические операции, позволяющие преобразовать функцию X (t) — вход в функцию У (t) — выход. Этот пример показывает, что методология системных исследований не укладывается в схемы традиционных представлений о детерминационных отношениях. В рамках системной проблематики не оправдывается представление об однозначном выведении наличных изменений систем из отдельных причинных факторов. Напротив, системный подход берет за основу широкий круг изменений целостной системы. Его методологический аппарат предполагает применение категорий причинности в ряду других категорий, отражающих взаимодействие и взаимосвязь явлений.

Очевидно, что системные методы не согласуются с некоторыми классическими способами причинного описания и объяснения. Однако они не противоречат общей идее причинности, поскольку базируются на изучении совокупных изменений системы как следствий преобразования ее организации в целом, фиксируют возможности экспериментального воздействия на системы и их элементы.


Раздел II. ОБЩЕНАУЧНЫЕ МЕТОДЫ В СИСТЕМНЫХ ИССЛЕДОВАНИЯХ


2.1. Вероятность и вероятностный подход


Проблема формирования вероятностного подхода занимает центральное место в осмыслении процесса рандомизации научного познания. В этом ключе она рассматривается в книге автора «Вероятность как форма научного мышления». СПб.: Литео, 2016. Результаты исследования, проведенного в названной книге, используются в предлагаемом параграфе.

Здесь учитываются особенности новой методологической ситуации, отличительной чертой которой является разработка методов и моделей, способных отражать неоднозначный характер поведения сложных систем. В этом контексте возникает задача рассмотрения теоретических требований системного подхода в свете диалектики определенности и неопределенности. Длительное время наука опиралась на представление об однозначной жесткой связи между явлениями и их свойствами. Руководствуясь концепцией однозначных связей, классическая наука отстаивала тезис об определенности научного знания, о применении таких рациональных форм познания, которые отражают строгую необходимость, исключают случайность. Этому подходу соответствовал взгляд, что каждое явление суть неизбежное следствие «великих законов природы». И лишь не зная уз, связывающих их с системой мира в целом, приписывают такие явления случаю, либо конечным причинам, в зависимости от того, следуют они друг за другом без видимого порядка или с известной правильностью [1].

Эта концепция получила название «лапласовский детерминизм». Для нее характерна абсолютизация принципа системности, который сводился к представлению о предопределенности поведения системы. Концепция жесткого однозначного детерминизма признает, что данное состояние материальной системы заключает в виде возможности все ее последующие изменения. В то же время возможность рассматривается как потенциальная необходимость, которая обязательно должна реализоваться.

Вместе с тем, в рамках классической концепции неоднозначность и неопределенность событий и процессов характеризовались как понятия, не имеющие объективного содержания. По существу утверждался тезис о предопределенности мира в целом, о действии в мире некой единой закономерности однозначного типа. Отсюда проистекало методологическое требование о возможности найти такой круг определяющих факторов для любой материальной системы, который однозначно обуславливал бы некоторую группу событий, принадлежащих данной системе.

Согласно классическим представлениям, объяснение изменений объекта сводилось к построению модели жесткой системы с однозначной связью между ее элементами и состояниями.

Общий тип такой модели — простой автомат, действующий по жесткой программе.

Модели этого типа широко использовались и продолжают использоваться в классической механике, термодинамике, электродинамике. Они играют также заметную роль в современной кибернетике, выступая инструментом построения строгой однозначной теории. С их помощью обеспечивается осуществление столь важного для кибернетики процесса формализации.

Однако область применения классических детерминированных моделей в современной науке существенно ограничена. Сегодня изучаются, например, большие группы объектов, для описания и объяснения поведения которых применяется образ системы, способной оптимально адаптироваться к условиям окружающей среды. В таких системах может осуществляться перестройка элементов и структур. Они характеризуются неоднозначными реакциями на внешние воздействия. Их поведение описывается нечеткими алгоритмами.

Общие принципы разработки моделей нового класса строятся на учете взаимосвязи объектов, на анализе внешних отклонений в их поведении. Соответствующий научный аппарат включает в описание систем элементы неопределенности. Такие модели основаны на представлении о системе не как о совершенной детерминированной машине, но допускающей различные сбои, отказы, случайные влияния. Например, в кибернетике важную роль играет теория ошибок, основное положение которой состоит в том, что ошибка — это член статистического приближения к норме. Исходя из этого положения, кибернетика разрабатывает методы синтеза систем, способных эффективно функционировать при любом уровне возмущений.

Новый тип описания системы предполагает выявление типичной картины ее поведения, которое обусловлено как внутренним разнообразием системы, так и внешним разнообразием воздействий среды. Общей формой такого описания служат много- многозначные отношения. Их математическое выражение связано с реализацией идеи функции множества.

К числу этих функций относится вероятность, трактуемая на языке математики как функция, которой ставится в соответствие мера, ограниченная значениями 0 и 1 [2]. Математическая форма понятия вероятности служит способом выражения определенности процессов и явлений, моментом которой выступает неопределенность. Действительно, здесь вероятность рассматривается в соотношении со случайной величиной, значения которой могут изменяться непредсказуемым образом. Вместе с тем математика вводит строгие ограничения, связанные с вероятностной характеристикой случайной величины. Примером может служить применение закона больших чисел, который выполняется, если математическое ожидание случайной величины равно 0, а дисперсия имеет конечное значение. Применение вероятных моделей для описания процессов изменения в сложных системах показывает, что отражение их определенности достигается не на уровне связи отдельных событий, но на уровне вероятностей этих событий. Тем самым преодолеваются установки классического однозначного детерминизма. Однако изучение вероятностей выводит познание на новый уровень детерминистских представлений.

Обобщение рассматриваемой ситуации связано с разработкой понятия «вероятностная система». Содержание этого понятия является предметом повышенного внимания в современной философской литературе [3].

Применение понятия «вероятностная система» связано с серьезной перестройкой методологического знания. Такая перестройка основана на признании того обстоятельства, что вероятностное описание и объяснение становятся своеобразной методологической нормой научного мышления. Для закрепление этой нормы важно выделить соответствующие эталоны и конструктивные средства вероятностного знания, свести их к абстрактно-общим моделям. Исходным пунктом такой работы является установление соотношения между формулами однозначного и неоднозначного детерминизма. Однозначное обусловливание выражает тезис, что состояние системы в определенный момент времени однозначно детерминировано ее состоянием в какой-либо другой предшествующий момент. Неоднозначное обусловливание предполагает определение состояния системы через вычисление распределения вероятностей.

На обширном научном материале показана качественная несводимости друг к другу моделей однозначного и неоднозначного описания явлений. Вместе с тем, обнаружена возможность перехода от одного способа описания к другому по принципу соответствия. Признание такого соответствия основано на том, что модель вероятностного описания является более общей, чем модель однозначного описания, которая рассматривается как предельный случай неоднозначной модели [4].

Высказанные в науке предположения, что вероятностное описание системы не является полным и общим, не находят достаточно убедительных оснований. Я имею в виду работы, посвященные реинтерпретации квантовой механики, связанные с идеей «скрытых параметров» (Де Бройль, Бом, Вижье). Вопреки названным предположениям современные методы квантовой механики остаются принципиально вероятностными.

Отмечу, что обоснование вхождения идеи вероятности в контекст современной науки осуществляется по двум основным направлениям. Одно из них связано с обновлением современной научной картины мира. В рамках этого направления учитывается, что вероятностные процессы обнаруживают свое действие на всех уровнях движения материи. Они изучаются на уровне молекулярно-тепловых явлений. Хорошо изучена их фундаментальная роль в области квантовомеханического движения, в сфере передачи наследственных признаков. С вероятностной точки зрения рассматриваются закономерности эволюции видов и популяций, проявления экономических и социологических законов в общественной жизни.

Это направление реализуется вместе с разработкой представлений о структурной организации материи, о структурных переходах от одних уровней системы к другим, об относительно автономных уровнях детерминации, связь между характеристиками которых является неоднозначной, предполагает перекодирование информации.

Добавлю, что важным элементом современной научной картины мира является понимание вероятностных свойств объектов, как особой структурной характеристики систем, отличительной чертой которых является единство иррегулярности и регулярности, автономности и взаимозависимости, упорядоченности и неупорядоченности отношений между их элементами.

Общим итогом применения вероятностной концепции к исследованию различных форм движения материи является представление о сложном, диалектическом характере организации материальных систем, о гибких, подвижных связях между явлениями объективного мира, о единстве упорядоченности, определенности и неопределенности во взаимодействиях между ними.

Другое направление философского обобщения концепции вероятности связано с разработкой диалектико-логической проблематики, с анализом категориального аппарата материалистической диалектики. Здесь учитывается, что такой аппарат исторически формировался для отражения сложных типов взаимодействия в природе, обществе и в познании. В рамках этого направления сложилась сеть категорий, которая способна отражать многообразие аспектов соотношения определенности и неопределенности. Под этим углом зрения здесь разрабатывается содержание категорий необходимость и случайность, общее и единичное, сущность и явление и др. В итоге создается понятийный аппарат, способный отражать качественное разнообразие связей определения и опосредования.

Немаловажным фактом является то, что диалектика характеризует определенность как развивающееся понятие. И только на этой основе она устанавливает адекватную форму его соотношения с понятием неопределенность, вырабатывает новую, более содержательную трактовку принципа детерминизма, способную обобщить ход и результаты современного научного познания.

Методологическое истолкование вероятности требует разработки новых категориальных форм, среди которых особое место занимает определение категориальных характеристик самого понятия «вероятность». Методологический смысл и значение понятия «вероятность» раскрываются с помощью категорий возможность, необходимость, случайность. Их применение позволяет определить содержательные аспекты тех формальных средств научного исследования, которые опираются на математическое понятие «вероятность».

Остановлюсь на попытках выявления категориальной связи между вероятностью и возможностью. Известно, что сфера возможного или круг возможностей некоторого явления определяется двояким образом. Прежде всего, набор возможностей обусловливается внутренним содержанием, существенными свойствами явления. Кроме того, сфера возможного определяется сопутствующими условиями. Скажем, имея некоторый выбор элементов, правомерно связывать с ним множество возможных систем, «построенных» из этого набора. При учете только свойств самих элементов круг возможностей зависит лишь от данного типа связей между ними. Однако на реализацию того или иного типа связей в общем случае, существенное влияние оказывают также свойства внешней среды, внешние условия. Здесь можно привести простой пример, когда из множества возможных электрических схем, способных нормально работать на заданных элементах, выбраковывается значительная группа из-за несоответствия, например, температурному режиму среды (недостаточная стойкость к высокой температуре некоторых элементов может привести к разрушению схемы).

Все это говорит о том, что возможность имеет как природу необходимости, так и случайности. Необходимое предполагает полноту всех моментов своего содержания, т. е. все богатство сторон действительности. В силу этого справедливо утверждение, высказанное Гегелем, что необходимое опосредуется самим собою, т. е. необходимым же. Между тем возможность представляет в некотором роде лишь частичную необходимость, обусловленную неполнотой, незавершенностью, неразвитостью ее собственного содержания.

Категория «возможность» позволяет отразить необходимость как весьма сложную форму детерминации. С ее помощью удается выделить разнообразные градации, плоскости и уровни реальной необходимости, связь последней со случайностью.

Исследование необходимости с этих позиций предполагает разработку особых средств для учета реального неравенства между возможностями, для оценки их вклада в действие общей необходимости. Именно в этой ситуации вводится понятие «вероятность».

Особенность этого понятия состоит в том, что оно является формой саморефлексии возможности, т. е. выражает возможное в возможном. Однородность, однопорядковость вероятности и возможности служит основанием для введения этого понятия в качестве меры самой возможности, а тем самым и перехода к конечности в данной области. Здесь складывается точно такая же ситуация, как и в случае выявления количественной стороны в любой иной сфере действительности. Скажем, в области пространственно-временных отношений мерой выступает известным образом упорядоченная пространственно-временная структура. Например, вводится представление о метрике пространства, отражаемого некоторым набором свойств.

Количественное упорядочение возможностной структуры опирается на ряд специфических идеализацию Например, принимается посылка, что мера возможностей зависит от их числа в определении той или другой необходимости. Меньшая вероятность соответствует большему числу возможностей. В то же время признается, что рост величины вероятности характеризует уменьшение неопределенности для данной возможности. На таком понимании основано введение численных значений вероятности в интервале от 0 до 1.

Здесь следует обратить внимание на нетождественность формального и содержательного аспектов вероятности. Остановлюсь в данной связи на распространенном в литературе утверждении, что метрическое значение вероятности, равное единице, свидетельствует о переходе возможности в необходимость.

Уточняя смысл этого утверждения, отмечу, что формальный аппарат исчисления вероятностей имеет дело с абстрактной возможностью. Если же говорить об отражении перехода от абстрактно-возможного к необходимому, то оно предполагает учет всего реального многообразия условий. Использовать формальный признак в качестве ориентира реализации этого перехода было бы допустимо, если бы совокупность условий действительно можно было формализовать полностью. Однако такое допущение невыполнимо. Соответственно, рассматриваемое утверждение не может считаться достаточно строгим.

В ряде случаев применяемые в современной науке формализмы для исчисления вероятностей не способны рационально выразить специфику изучаемой сферы возможностей. Так обстоит дело, например, при описании некоторых физических явлений, обладающих очень малой вероятностью. Отсюда возникают своеобразные парадоксы.

Скажем, с точки зрения статистической физики, вероятным является замерзание воды в сосуде, который поставлен в раскаленную печь. Вместе с тем, вероятность этого результата столь мала, событие является столь редким, что его реализация в макроскопическом виде требует невообразимого масштаба времени, несовместимого с временными масштабами протекания большинства известных макрофизических процессов. Следствием этого и является тезис о невозможности.

Вопрос о дальнейшем развитии способов возможностного описания ставится в современной науке весьма остро. Его решение предполагает отказ от ряда исходных идеализаций определения вероятностей. В частности, тех, которые связаны с представлением элементов системы с помощью абстрактно-случайных характеристик. Новые подходы конкретизируют средства описания возможностей применительно к задачам исследования сложных систем. Они трактуют связи между элементами с позиций «разумной» целостности, информационной согласованности. Отсюда проистекают, например, попытки определить вероятность через понятие информации [5].

Учет сложных ситуаций, выделение сложных систем требуют поиска новых форм фиксации определенности (с учетом случайности, возможности, субординации уровней организации и т. д.). В этом плане следует рассматривать обращение к вероятностно-статистическим формам зависимости как к важной разновидности детерминации, выходящей за рамки однозначной причинной детерминации.

Трудности методологического обоснования вероятности во многом связаны с тем, что вероятностные зависимости выводятся из предположения об автономности случайных событий, об отсутствии между ними причинной связи. Вместе с тем в ряде областей научного познания известны факты взаимозаменяемости между строго причинным и вероятностно-статистическим описанием. Такого рода факты свидетельствуют о сложном отношении между вероятностными и традиционными причинными методами научного исследования. В эмпирических исследованиях встречаются, например, попытки представить разброс количественных параметров, охватываемых вероятностной зависимостью, как результат некоторой конкретной причины. Однако простого перехода к определению этой причины, как правило, не существует.

С формальной точки зрения правомерно говорить об идентичности причин, которые порождают массовые случайные явления. Тем не менее, точнее было бы определить такую идентичность, как интегральное действие детерминирующих факторов.

Характеризуя однозначную причинность, приходится учитывать, что ее выделение возможно лишь в достаточно простых случаях, с применением целого ряда идеализации, упрощений, абстракций.

Понятие «однозначная причинность» применимо для широкого круга явлений. Но оно имеет смысл в решении познавательных задач определенного типа, образцы которых демонстрируют классическая физика, классическая механика, термодинамика и т. д. Здесь предмет исследования фиксируется с помощью ряда специфических допущений, таких как учет всех существенных причин, неограниченная точность описания условий и др. Совокупность идеализации такого рода формирует абстракцию «абсолютно изолированной системы», описание которой поддается однозначному истолкованию.

Однозначная причинно-следственная зависимость не всегда выступает в качестве основного звена детерминации. Для многих ситуаций характер причинной связи существенно усложняется. Так, в исследовании сложных вероятностных систем важное значение приобретает учет факторов, обусловливающих иррегулярность процессов. К ним относятся: 1) изменяющиеся и неподдающиеся полному контролю внешние условия, в которых существует данная группа явлений; 2) воздействия на такие явления со стороны независимых причинных рядов; 3) спонтанные внутренние возмущения и противоречия между явлениями. Для отражения совокупного действия такого рода детерминант имеет смысл применять понятие «вероятностная причинность».

Следует отметить, что включение понятия «вероятностная причинность» в научную методологию ставит вопрос о разработке синтетической категории причинности, которая способна учитывать сложную диалектику реального причинения, выступать адекватным средством отражения динамики сложных систем, служить надежным ориентиром обобщения процесса познания сложных явлений.


2.2. Природа стохастических процессов


Понятие о стохастических процессах и законах их реализации характеризует особый аспект вероятностной концепции детерминизма. Анализ этого аспекта имеет специфическое значение для обоснования методологии системных исследований.

Традиционно для выражения статистических закономерностей используется язык функций множеств. Аппарат исследования таких функций дает теория вероятностей и математическая статистика. Общая форма этих функций характеризуется как вероятностное распределение.

На математическом языке статистическая закономерность описывает зависимость одних распределений от других и их изменение во времени. В рамках распределения устанавливается особый способ интеграции элементов статистической совокупности — случайных событий, для каждого из которых фиксируется устойчивая частота признаков, соотносимая с численной мерой вероятности. Вместе с тем, распределение фиксирует дифференцированность элементов по группам, типам, состояниям.

Средства вероятностно-статистического описания представляют особый вид абстракции. Они связаны с отвлечением от непосредственных причин изменений отдельных статистических единиц. Здесь используется идеализация несистематического действия побочных явлений, что находит отражение в специальном способе их оценки — с позиций равновозможности. Соединение принципа несистематичности с принципом массовости позволяет переходить в процессе статистического исследования к устойчивым характеристикам массового случайного явления.

Абстрактная природа средств статистического исследования позволяет иметь дело с чрезвычайно широкой сферой приложения статистических методов. Так что их объект может быть выделен из различных целостностей и разнообразной среды, и в принципе объекты статистической совокупности могут принадлежать различным в качественном отношении уровням и областям действительности.

Однако произвольная совокупность явлений или фактов, выбранная, скажем, лишь по признаку пространственной смежности, не может служить основанием для применения статистических методов. Объединение случайных событий базируется на учете весьма общих, своего рода фундаментальных для данного случайного распределения признаков или параметров. Зачастую выбор таких признаков оказывается не простым делом и требует применения иных, нестатистических средств анализа с целью нахождения общей основы статистической совокупности (ею может быть структура объекта, общие условия, влияние природы некоторого объемлющего целого — например, типа общественной формации и т. д.).

С методологической точки зрения существенно, что применение распределений к описанию сложных многозначных процессов обеспечивает получение новых видов обобщенного знания. Методы статистического обобщения разрабатываются в рамках теорий оценки и теории испытания статистических гипотез.

Теория оценки позволяет определить показатели генеральной совокупности, к которой вероятно принадлежат параметры изучаемой совокупности, рассматриваемой как частичная выборка. Причем либо устанавливают конкретное значение параметра, что называется оценкой точки, либо оценивают интервал, в котором, как мы полагаем, заключены параметры совокупности. Это называется оценкой интервала. В настоящее время разработаны различные критерии статистических оценок [6].

Испытание гипотез связано с исследованием вопроса: принадлежит ли данная выборка некой совокупности, параметры которой определяются гипотезой. Здесь устанавливается, случайны ли отклонения между показателем выборки и параметром генеральной совокупности. Методы проверки статистических гипотез включают средства определения устойчивости массового явления. Существенно, что устойчивость выявляется здесь не в непосредственном исследовании значений некоторого признака, а на основе принципа фальсифицируемости случайной величины, характеризующей этот признак.

Поскольку интересующий исследователя признак берется в форме случайной величины, постольку в эмпирической проверке допустимы случайные колебания в его значениях. Статистический подход позволяет определить достоверность случайного характера этих колебаний. Косвенным средством подтверждения устойчивости исходной формы случайной величины служит нефальсифицируемость соответствующей гипотезы.

Статистическая гипотеза имеет черты, свойственные любой научной гипотезе. Она возникает в итоге наблюдения за фактами. Однако способ ее выражения имеет характер теоретического допущения. В этом качестве гипотеза способна выводить знания за пределы конечных эмпирических фактов.

Смысл ее выдвижения заключается в том, чтобы доказать применимость обобщенной модели для описания наблюдаемого статистического материала. Эта модель может изучаться дедуктивными математическими приемами. Такие приемы выработаны математической статистикой на основе теории стохастических процессов и законов, управляющих случаем.

Уточняя логические возможности средств статистического обобщения, надо признать, что они основаны на идентификации подмножеств различной конфигурации по их функциональным характеристикам. Это обстоятельство обеспечивает применение статистического аппарата для выражения структурно-функциональных признаков сложных систем в ситуациях, когда иные методы для этой цели оказываются малопригодными.

Структурно-функциональные основания статистических методов обобщения дают возможность углублять с их помощью различные аспекты качественного и количественного анализа сложных явлений. Показательно в этом' плане, что усредненные массовые количественные характеристики статистических систем оказываются качественными, фиксируют разные уровни организации материальных систем.

Наглядным подтверждением тому является становление молекулярно-кинетической теории теплоты, в рамках которой природа термодинамических систем получила статистическое истолкование. Развитие физической теории в этом направлении показало, что некоторые интегральные характеристики термодинамических систем (температура, теплоемкость, энтропия и др.), выводимы из характеристик более глубокого уровня посредством статистического приема обобщения. Наиболее развитый аппарат такого вывода или перехода был предложен теорией так называемых «статистических ансамблей» Гиббса.

Переход к статистическим закономерностям указывает на общую методологическую тенденцию, связанную с преодолением абстрактного понимания детерминизма. Такое преодоление осуществляется в двух планах. С одной стороны, признается уровневый характер описания изучаемых процессов и явлений. С другой — детерминизм перестает трактоваться в духе строгой однозначности, строгой необходимости, освобожденной от влияния случайности. Последняя учитывается средствами статистических теорий как существенный фактор детерминации.

Применение статистических форм описания явлений связано с отказом от исследования элементарных причинных рядов. В этом нетрудно убедиться, обратившись к постановке задач статистической физики. Здесь используется ряд важных допущений: выполнимость эргодической гипотезы, конечность времени релаксации и монотонность возрастания термодинамической вероятности (осуществимость второго начала термодинамики). Принятие этих условий делает излишним прослеживание всех распределений микросостояний статистической системы. Здесь с позиций термодинамического равновесия (максимального значения энтропии) существенное значение приобретает лишь некоторое общее для каждого из этих распределений отношение к равновесному состоянию, определяемое вероятностной мерой.

Детерминистский смысл статистических методов связан с использованием категорий, фиксирующих соотношение начальных условий и результатов изменения системы. Статистическое описание характеризует начальные условия как класс недифференцированных условий. В соответствии с этим, результаты микропроцессов отражаются при статистическом подходе в рамках некоторой общей обусловленности, что оправдывает его характеристику как способа отражения сложной детерминации интегрального типа.

В каком же отношении находится этот тип детерминации с причинностью? Ряд методологов склонялись к признанию непосредственно причинного содержания статистических закономерностей (Л. Б. Баженов, В. С. Готт и др.). Для обоснования такой позиции использовалось представление о сложном характере реального причинения, включая и снятие противоречия между определенностью и неопределенностью. При этом высказывалось также утверждение о важности учета в общей категории причинности сложного взаимодействия необходимости и случайности.

Противоположная точка зрения отрицает причинный смысл статистических закономерностей. В качестве основания для такого отрицания служил тезис об ориентированности последних на описание случайности, неопределенности. Между тем, как полагали представители этой позиции, причинная зависимость является отражением однозначной необходимости и не выражается в вероятностно-статистической форме (Н. А. Князев, А. С. Кравец и др.).

На мой взгляд, во многих литературных источниках, посвященных анализу причинного содержания статистических закономерностей, недостаточно учитывается, что диалектическое истолкование причинности обязывает признавать не только процессуальный ее характер, но и опосредованность, результативность действия причинности.

Указание на данное обстоятельство может служить дополнительным аргументом в пользу тезиса о возможности существования сложных сетей причинной определенности явлений. Вместе с тем оно дает основания для утверждения, что статистическая форма выражения закономерности, ориентированная на воспроизведение результативного момента, не порывает полностью с собственно причинным описанием. В известном смысле первое есть абстракция от абстракции, если иметь в виду, что обращение к статистическим закономерностям связано с отказом от учета процессуального момента непосредственным образом. Однако косвенным образом данный момент все же присутствует, когда используют статистическую форму описания. Дело здесь заключается в ее способности выражать неопределенность, выступающую существенной стороной любого реального процесса изменения.

Добавлю, что идея об определенном совпадении причинного и статистического способов описания имеет важное значение для критики тезиса о чисто функциональной природе статистических закономерностей, об их ориентации на фиксацию отношений лишь между состояниями объектов совокупностей.

Если полностью игнорировать причинное содержание статистических законов, то трудно отмежеваться от тезиса об их чисто эмпирической природе. Понимая под статистическим законом количественное отношение между классами наблюдаемых значений параметров совокупности объектов, легко усмотреть в них простые классификации, описывающие, например, сосуществующие классы. Но в этом случае их существенное отличие от динамических законов проводится по линии индивидуального (отдельного) и коллективного (многого). Я не ставлю задачу специального обсуждения вопроса о правомерности использования такого основания. Замечу лишь, что количественные критерии различения статистических и динамических законов не выявляют их методологической специфики.

В силу дискретности материальных образований любой индивидуальный объект может быть представлен как некоторая совокупность (как многое) и при известных дополнительных условиях исследоваться статистически. Вместе с тем динамическая закономерность, если ее понимать как тенденцию, также имеет сферой своего действия многое.

По-видимому, опора на идею классов в статистических законах имеет иной смысл, нежели чисто количественное упорядочивание совокупности объектов. Достаточно очевидной является большая информационная емкость статистической формы описания поведения некоторой материальной системы в сравнении с соответствующей динамической формой. С гносеологической точки зрения именно в этом плане следует истолковывать, например, переход к статистическим методам в теории теплоты. В ее рамках эмпирически наблюдаемые тепловые параметры получили объяснение как возникающие на более глубоком уровне беспорядочного в известном смысле молекулярного движения. Тем самым была показана субстанциальная природа тепловых явлений, трактуемых в классической теории в феноменальном плане.

Этот же пример свидетельствует, что статистические законы могут служить средством теоретического овладения различными сферами природы и общества, поскольку они используются для построения гипотетических конструкций и вывода из них эмпирически проверяемых следствий. Так, обращение к классической статистике Максвелла-Больцмана позволяет вычислить универсальную газовую постоянную, теплоемкость газов и т. д.

Сложность обсуждаемого вопроса заключается в том, что обращение к статистическим зависимостям не дает непосредственного выражения взаимодействия причинного фактора и его результата. Эти зависимости не включают в свое содержание конкретные вещи или свойства как взаимодействующие компоненты, но берут во внимание совокупность отношений, оцениваемых метрическим значением вероятности. Можно согласиться здесь с мнением А. С. Кравца, что лишь в исключительных случаях вероятностным функциям (как формальным выражениям статистического закона) может быть придан непосредственно субстанциальный смысл. Например, при умножении вероятностных функций на некоторые нормировочные множители они получают смысл потока энергии, интенсивности действия и т. д.

Однако в свете высказанных выше соображений, мне не представляется убедительным утверждение данного автора, что вероятностная зависимость в большинстве случаев имеет чисто функциональную природу. В естественнонаучной области отношение причинного и статистического описания друг к другу является более сложным, чем простое взаимоисключение либо полное совпадение. Скорее всего, следует вести речь о косвенном выражении с помощью статистических законов сложного причинения. Здесь как будто налицо тот случай, когда абстрагирование, отвлечение от ряда характеристик причинной связи является таким отступлением, которое помогает полнее охватывать соответствующий аспект действительности. Соглашаясь с А. С. Кравцом в том, что в вероятностном законе учитываются не непосредственно причинные отношения между явлениями (событиями), но структурные, хотелось бы подчеркнуть, что структурно-функциональный подход, осуществляемый в рамках статистического описания, в определенном смысле совпадает с причинным подходом. Факт такого относительного совпадения обнаруживается во взаимозаменяемости этих двух форм описания, на что А. С. Кравец также указывал неоднократно.

Правда, А. С. Кравец не ставил вопроса о степени эквивалентности данных форм описания и границах их взаимозаменяемости. Более того, он по существу склонялся к точке зрения дополнительности причинного и вероятностного описания. При этом имеется в виду, что, находясь в рамках одного, мы вынуждены отойти от другого. Задавая, скажем, вопрос о причине отдельного явления (события), надо перестать мыслить в вероятностных категориях, поскольку в каких-то других рамках можно указать строго однозначную материальную связь, ведущую именно к этому отдельному событию.

Но если принимать идею дополнительности в такой форме, то затруднительно найти какие-то рациональные основания отмеченной выше взаимозаменяемости причинного и вероятностного описания. Заметим также, что А. С. Кравец рассматривал вероятностное описание в качестве структурного, тогда как причинное описание он соотносил с индивидуальными событиями. Он исходил, по существу, из предположения о возможности выделения индивидуальных причинных рядов. Однако для сложного случая причинения как раз такое выделение и становится если не невозможным, то, по крайней мере, весьма затруднительным.

Уже из самого характера сложной причинности следует, что противопоставлять индивидуальную причинную цепь структуре массового явления — это значит вырывать индивидуальное событие из целостной системы взаимоопределяющих факторов и включать его в другую жестко детерминированную систему. Оставаясь же в рамках статистической системы, необходимо признать, что вероятностное описание касается индивидуальных событий, а структуру вероятностных отношений следует рассматривать в ряду детерминирующих факторов для этого события. Именно в этом и состоит основной смысл вероятностного описания как приема работы со сложными системами — найти специфическую для них форму выражения детерминации.

Исследование природы статистических закономерностей сталкивается с вопросом о правомерности приписывания закону двух атрибутов одновременно: необходимости и случайности. Проблема заключается в том, что традиционная характеристика закономерности предполагает связь последней со строгой определенностью, однозначной необходимостью. Напротив, статистическое описание состояний системы включает неопределенность, случайность.

Традиционная трактовка закона соответствует теоретическим средствам классической науки и основана на признании равнозначности параметров системы в отношении необходимости. На базе такого представления сложилась исследовательская ориентация, приводящая к тому, что в теорию включали лишь строго необходимые параметры и исключали случайные. Одновременно принимался во внимание лишь строго однозначный переход от одного параметра к другому, обосновывался тезис, что адекватной формой выражения закона может служить строгая функциональная зависимость. Таким образом, в качестве «истинной» закономерности рассматривались лишь законы предельного типа, т. е. такие, для которых при сколь угодно большом ограничении в разбросе значений переменных наблюдается сколь угодно большое ограничение колебаний в поведении системы.

Законы этого класса описываются дифференциальными уравнениями континуального характера. С их помощью отражается непрерывность изучаемых процессов, непрерывность переноса материи и движения.

Однако содержание статистических законов вряд ли можно вписать в рамки такого истолкования, поскольку им свойственна принципиально вероятностная природа. Они фиксируют необходимость как гибкую связь, которая может обладать разной степенью значимости в процессах функционирования и надежного управления системой. Здесь необходимость описывается с помощью ограничений разного уровня, в рамках которых сохраняется устойчивость сложной системы. Одновременно фиксируется распределение необходимости среди групп явлений в соответствии с их реальным значением в целокупной связи, в определении поведения сложной системы.

Тот структурный код, который базируется на понятии «вероятностное распределение», и который служит способом математического выражения статистического закона, дает возможность учитывать единство необходимости и случайности. Ранее отмечалось, что вероятностные распределения позволяют отразить абстрактно-общую природу элементов, и данное обстоятельство свидетельствует в пользу наличия в такой связи момента необходимости. Одновременно, в силу самого определения вероятности, с данным понятием всегда связан момент случайности, иррегулярности, так что применимость вероятности к уровню массовости свидетельствует о соотносимости присущих ему характеристик со случайностью. Более того, даже значение вероятности, близкое к единице или равное единице, не выводит данный класс явлений за рамки влияния случайности, что и выражается, например, в принципе флуктуации, используемой в статистической физике.

Применяя категории «необходимость» и «случайность» для определения природы статистических закономерностей, следует считаться с тем фактом, что указанные законы соотносятся с системами, поведение которых обусловлено как внутренней динамикой, так и внешними влияниями. Эти системы имеют множество степеней свободы и весьма чувствительны к малым возмущениям. Для них существенное значение приобретает начальное распределение значений параметров.

Такие системы принципиально не изолированы от внешних условий. Вместе с тем особую роль в определении характера их изменений играют и внутренние условия, которые включают «бесконечную» сумму малых взаимных влияний элементов. В отношении этих систем неприменимы приемы разложения на изолированные составляющие, их нельзя сводить к механической сумме элементов.

Применение системных понятий для отражения статистических закономерностей позволяет конкретизировать диалектическую взаимосвязь необходимости и случайности, выразить эту диалектику в сети специфических абстракций, учитывающих единство определенности и неопределенности.

В современной науке статистические модели и соответствующие им концептуальные средства характеризуют диффузные, нечеткие организации и системы. Они применяются к таким группам объектов, которые в классической науке не являлись объектами строгого научного знания. Их использование показывает, что наличие слабых, нечетко выраженных связей между многими элементами не является препятствием для выводов и обобщений о характере их совместного поведения, о детерминации их состояний.

В методологическом плане важно отметить, что моделирование стохастических процессов связано с упрощением неопределенностной ситуации, поскольку здесь обычно используется прием расчленения неопределенности на регулярную и случайную компоненты. Однако в ходе статистического исследования такое разделение провести до конца не удается, прежде всего, потому, что случайность рассматривается как условие равновероятности событий. Но равновероятность — это уже регулярность, абстрактное выражение закономерности. В то же время, выход за рамки «случайного» процесса оценивается со статистических позиций как свидетельство влияния побочной причины. А такая причина характеризуется законом систематической погрешности.

Известно также, что статистическое описание строится на предположении о возможности случайных результатов в длинных рядах испытаний. Однако генерирование случайности не представляется здесь как основная функция статистической системы. Для обеспечения такой функции требуется самостоятельная структура. Но если она будет реализована, тогда данный процесс не может служить источником необходимого разнообразия системы, будет полностью определяемым, т. е. не случайным.

Вместе с тем статистический подход показывает, что неопределенность может быть выражена в параметрах самой системы. Статистические модели строятся таким образом, что язык описания регулярных процессов системы и неопределенного процесса по существу совпадают, но описание последнего не расшифровывается полностью на языке основных параметров системы.

Рассмотренный материал позволяет сделать вывод, что разработка идей и методов статистического описания осуществляется в русле методологической концепции, в которой закономерность и системность берутся в гибкой форме, тесно связаны с категориями взаимодействия и становления. Здесь преодолевается трактовка детерминизма как «принуждения извне», как системы жестких запретов и ограничений. Существенная сторона нового понимания детерминизма — признание фундаментального значения стохастических закономерностей в современном научном познании.


2.3. Парадигмы структурно-функционального подхода


Понятие «структура» и структурный подход занимают одно из центральных мест в отражении особенностей системной методологии. Тем не менее, требуется дополнительное обсуждение в отношении правомерности применения понятия «структура» и основанных на нем методов для решения системных задач.

Я намерен показать, что есть веские основания для употребление термина «системно-структурное исследование», который соединяет в себе как возможности системного, так и структурного подходов.

Новая методологическая ситуация в науке связана с применением понятия «структура» для отражения атрибута сложности, выявляемого в строении и поведении систем самой различной природы. Однако задача структурного исследования в классической науке сводилась главным образом к изучению элементного состава сложного объекта. Теперь же его место и роль определяются направленностью на изучение совокупности отношений между элементами системы. Моя позиция сводится к тому, что если известна система, то структура предстает как некоторый аспект системы, а именно как единство ее инвариантных свойств.

Понятие структуры определяется различными способами, по-разному оценивается его соотношение с другими философскими и общенаучными понятиями. Не углубляясь в дискуссии по поводу формулировок этого понятия, отмечу лишь, что большинству из них можно поставить в соответствие некоторый аспект системно-структурного подхода, реализующегося в практике научного исследования, и тем самым доказать их правомерность. Однако постановка фундаментальных задач современных системных исследований убеждает в том, что в них на первый план выдвигаются проблемы, связанные с характеристикой переходов от внешнего уровня системы к внутреннему и, наоборот, от внутреннего к внешнему. Эта сторона дела подчеркивается во многих специальных системных разработках. В частности, этот аспект выделяется в формулировке основных задач теории конечных автоматов — анализа и синтеза [7].

Направленность системных исследований на решение аналитических и синтетических задач в их единстве оправдывает, на мой взгляд, понимание структуры в качестве механизма синтеза характеристик элементов, интегральным эффектом которого являются свойства и характеристики целостной системы.

Подобная трактовка структуры нашла широкую поддержку в философско-методологической литературе. Я имею в виду точку зрения, согласно которой структура и элементы суть отношения и вещи, конкретизированные применительно к отдельному объекту, который рассматривается как целое, состоящее из частей, или иначе как система, состоящая из элементов, находящихся в определенной связи. В рамках этой позиции в известную цепочку категорий «целое — часть» теперь вводится опосредствующее звено: строение целого из его частей.

Можно согласиться с тем, что определение структуры должно опираться на выявление совокупности отношений в системе. Однако следует вместе с тем отметить, что такое определение является слишком общим и абстрактным, чтобы отражать специфику данной категории — в сравнении с другими. Одна из возможностей конкретизации данного понятия обеспечивается, если учитывается его единство с категориями «целое» и «элемент» (часть). Это означает, что понятие «структура» определяет не всякое отношение, а лишь то, сторонами которого являются части и целое.

Конкретизация структурного аспекта системного исследования связана также с характеристикой структуры как упорядоченности объектов в их целостности. По существу, упорядоченность, устойчивая упорядоченность — принадлежат к главным признакам структуры. В таком истолковании структурность характеризуется как особая сторона системной детерминации объектов. Переход на структурную точку зрения означает, что объекты берутся не в качестве механически соотносящихся частей, а как организация того или иного рода. Структурность предполагает отсутствие произвола в комбинациях частей. Части рассматриваются как включенные в структуру, т. е. не безразличные друг к другу, а как дифференцированные и обусловливающие существование друг друга. В современных системных исследованиях это понимание структуры находит широкое признание.

Рассматривая структурность как внутреннюю упорядоченность системы, многие исследователи приходят к выводу, что изучение структуры имеет первостепенное значение для характеристики качественной определенности системы. При этом имеется в виду, что свойства компонентов и структура целиком определяют свойства объектов как системы. Подобное понимание структуры фиксируется в «Философском энциклопедическом словаре». В соответствующей статье о структуре говорится как о совокупности устойчивых связей объекта, которые обеспечивают его целостность и тождественность самому себе, сохранение основных свойств при различных внешних и внутренних изменениях [8].

Конкретизацией представленной точки зрения является утверждение, что для определения качественных проявлений объекта требуется обращение к изучению элементов, структуры и функционирования этих элементов.

Плодотворность изучения вклада структуры в формирование целостных качественных характеристик объектов не вызывает сомнений. В науке, например, существует традиционная постановка задачи качественного исследования, которая сводится, в конечном счете, к выявлению внутренних оснований качества, к изучению детерминации качества со стороны внутренних факторов системы, прежде всего — со стороны ее структуры.

Что касается современного системного подхода, то нельзя забывать, что он учитывает взаимосвязь и отношения объектов со стороны их микро- и макроструктур. Применительно к определению системного качества это означает необходимость отражения внешних детерминант объекта в ряду существенных отношений. Такая постановка задачи широко практикуется в современной биологии, медицине, психологии, технике и других областях знания. Здесь исходят из того, что свойства объекта детерминируются влиянием широкой системы, в рамках которой изучаемый объект занимает положение элемента. Например, в развитии психики детей огромное внимание уделяется условиям воспитания, а также всей совокупности социальных факторов, в которых формируется психика и личность ребенка. Известно даже, что благоприятные условия во многом способны компенсировать аномалии психики ребенка. Тогда как неблагоприятные условия усиливают эти аномалии. Если правильно организована воспитательно коррекционная работа с ребенком, первичный дефект может не оказать фатального действия.

Аналогичным образом формулируется исследовательская задача в экологии. Ее основной подход состоит в рассмотрении взаимодействия особей некоторой популяции не только друг с другом, но и в системе более широких связей, таких как хищничество, конкуренция, а также во взаимодействии с метеорологическими, гидрологическими и другими природными факторами. Здесь структурой называют множество связей элементов системы между собой, а также элементов системы с внешней средой. Выделение подобной структуры означает переход к исследованию качественно нового уровня целостностей и законов их изменения.

С методологической точки зрения этот переход обеспечивается установлением единства между структурными и функциональными методами исследования. Предметную сферу новых методов составляет поведение систем. Средства описания поведения отражают как внешние воздействия на систему, так и ее реакции, изменения ее свойств, состояний, перестройку элементов. Отражается также последовательность действий данной системы.

Принципы функционального описания использовал П. К. Анохин в модели функциональной системы. Эта модель дает специфическое объяснение способности организма к экстренной самоорганизации, динамическому и адекватному приспособлению к изменению внешней обстановки.

П. К. Анохин подчеркивал, что системой являются не любая совокупность компонентов, но только избирательно вовлеченные в комплекс компоненты, которые обеспечивают получение фиксированного полезного результата [9].

В органической природе сложились такие механизмы, когда содержание результата (его параметры) формируются, системой раньше, чем появится сам результат. Достигая первого результата, организм переходит к формированию другой функциональной системы с другим полезным результатом, который надо рассматривать как этап в универсальном континууме результатов. При недостаточном результате стимулируется активизирующий механизм, идет активный подбор новых компонентов, меняется степень свободы синоптических организаций и после ряда проб находится полезный результат.

Применение функциональных методов опирается на выделение определенных элементов. Но способ их выделения существенно иной, нежели рассмотрение элементов системы в классическом естествознании. Отвергается, например, принцип рядоположенности элементов и возможность их простого аналитического описания. По-новому характеризуется также проблема сложности системы, поскольку преодолевается представление о ее бесконечной делимости и бесконечном числе связей внутри системы.

Функциональный подход широко используется в дисциплинах кибернетического цикла. Здесь активно разрабатывается формальный аппарат, учитывающий структурно-функциональные свойства систем, с его помощью изучаются вопросы адаптации, устойчивости, обучаемости, самовоспроизведения сложных динамических систем и др.

Известно, что функциональный аппарат кибернетики использует для описания поведения сложных систем принцип «черного ящика». Этот принцип позволяет изучать закономерности поведения, исходя из анализа внешних взаимодействий, отвлекаясь от внутренней структуры объекта. Однако учитывается структура самого поведения. Так, выделяется фиксированный результат, который служит отражением инварианта системы. Вводятся также представления о «входе», «обратной связи» и др. «Черный ящик» рассматривается в окружении этих элементов и характеризуется как преобразователь внешних воздействий, который способен сохранять качественный уровень организации при изменении внешних условий в определенных пределах.

Такой подход учитывает, следовательно, самодетерминацию системы, ее активную природу. Однако самодетерминация рассматривается здесь в узких границах, в плане воспроизводства системы.

Модели с обратной связью учитывают также способность систем использовать разнообразную информацию для перестройки внутренних связей. Применение принципа преобразователя, для описания поведения систем, связано с введением в современную науку представления о динамическом аспекте качества. Этот принцип позволяет исследовать системы со стороны процессуальных характеристик, с точки зрения реализации определенных действий, реакций на внешние воздействия.

Именно такие характеристики важны для описания биологических, социальных и сложных технических систем. Их динамическое качество проявляется в особых свойствах-функциях, благодаря которым система способна выполнять ту или иную роль и обеспечивать целесообразное поведение во внешних взаимодействиях.

Конкретное исследование целесообразного поведения системы не ограничивается применением принципа «черного ящика», т. е. макроподходом. Как дополнение к макроподходу рассматривается микроподход, который ориентирован на исследование внутренней структуры функционирующей системы, на изучение качественной определенности соответствующих подсистем. Однако общая направленность функционального описания систем здесь сохраняется, поскольку подсистемы берутся не как вещественные структуры, но как «функциональные элементы». От деталей их вещественной структуры в данном описании отвлекаются. Например, конструктора или проектировщика инженерной системы может не интересовать, на каком субстрате и посредством каких внутренних связей реализованы заданные свойства блоков, необходимых для функционирования всей конструкции. Тем самым обеспечивается существенное упрощение потоков информации, с которыми имеет дело конструктор при выборе соответствующих блоков.

Функционирование систем правомерно рассматривать с позиций эффективности, которая имеет специфическую меру. Для определения этой меры вводится понятие оптимума. С помощью данного понятия решается задача конкретизации динамического аспекта качества системы. Здесь используются два принципа. Первый касается выделения особого параметра функционирования, характеризующего максимальную эффективность поведения системы в целом. Второй учитывает зависимость основного параметра от значений функций подсистем.

Методы определения оптимума активно разрабатываются рядом математических дисциплин. Они широко применяются в области регулирования и управления сложными системами.

Поиск оптимума предполагает, прежде всего, задание целевой функции или критерия оптимизации. Таковая характеризует степень достижения системой некоторой цели функционирования. Например, для производственных систем это может быть увеличение объема производства, сокращение затрат и т. д.

Решение задач на отыскание оптимума включает всестороннее изучение и сопоставление всех альтернатив, способных вести к решению поставленной задачи, анализ недостатков и преимуществ, связанных с выбором той или иной из них (т. е. с установлением «веса» каждой альтернативы). Для сложной многофакторной и многовариантной задачи актуальным является вопрос об ограничении выбора альтернатив, о методах аппроксимации системы.

Аппроксимирование осуществляется на математических моделях, которые допускают формальные преобразования по специальным логическим или вычислительным алгоритмам. Предполагается, что эти преобразования соответствуют изменениям исходного состояния системы и ее модели. Оптимальным называется такое соотношение значений переменных системы, при котором целевая функция достигает предельной величины (по максимуму или минимуму). Математическая теория оптимизации утверждает существование только одного оптимума для заданного набора переменных и выбранной целевой функции. А это означает, что методы оптимизации дают определенные критерии для отыскания структур, обеспечивающие эффективное поведение системы. Они позволяют выбрать достоверную гипотезу о соотнесении данной функции с той или иной структурой.

В целом развитие системной методологии ведет к изменению гносеологического статуса функциональных методов. Их нельзя трактовать как простое средство обработки эмпирического материала, хотя применение функциональных моделей способно решать задачи классификации и упрощения эмпирических данных и, тем самым, служить этапом на пути качественного исследования объектов. Такого рода задачи являются побочными, второстепенными для современных методов функционального анализа. Основу этих методов составляют познавательные средства, которые позволяют не только фиксировать общие формы качественной определенности динамических систем, но и дают объяснение этой динамики, исходя из единства структурного и функционального аспектов системной детерминации явлений.

В этой области познание совершает как бы возвратно-поступательное движение: от известного поведения системы к структурно-функциональным моделям, а затем к проверке этих моделей на известных образцах поведения системы. Путь к познанию необходимой линии изменений системы становится многоступенчатым. Движение в этом направлении предполагает исследование спектра возможных изменений данной системы — на основании известных структурных связей между ее элементами. На этом же материале устанавливается область невозможного для данной системы. Первичное разделение возможного и невозможного создает условия для более целенаправленного исследования закономерного, необходимого функционирования сложной системы.

Четкое осознание указанного обстоятельства позволяет лучше понять ту особенность современного научного познания, которая определяется единством системных и вероятностно-статистических методов исследования. Обе эти группы методов ориентируют современное научное познание на учет неопределенности в поведении сложно организованных систем.


2.4. Принцип организации в системологии


Утверждение системного подхода в современной науке во многом связано с разработкой проблем организации, с применением организационной точки зрения на изменения и преобразования, как естественных объектов, так и объектов практической деятельности.

Подчас высказывается мнение, что системный подход не ограничивается изучением объектов, для которых организация является существенным атрибутом. Как же тогда определяются задачи системного исследования? Типичным для этого случая является характеристика предмета познания на уровне абстракций большой общности, которые предполагают, что для системного определения объекта достаточно иметь набор некоторых элементов и те или иные соотношения между ними (Л. А. Малиновский).

Я полагаю, что методологическая характеристика системных исследований должна учитывать главные тенденции развития современного системного знания. Но эти тенденции связаны с постановкой организационных задач. Показательно в данном отношении развитие научных дисциплин кибернетического цикла, для которых исследование принципов и законов организации и самоорганизации является магистральным направлением. Аналогичным образом формулируются центральные проблемы в области теоретической биологии, в социально-экономических науках, в области фундаментальных проблем физики. Тема организации действительно приобрела общенаучный статус. Поэтому ее общая постановка правомерна и в области теоретико-системных разработок.

Сегодня с полным основанием можно говорить, что понятие «организация» является системным понятием. Оно непосредственно связано с понятиями системы, структуры, с понятием уровней. Указывая на такую связь, можно вслед за М. Ф. Веденовым и В. И. Кремянским отметить, что организация системы проявляется в существовании, по крайней мере, двух уровней: элементного и целостного.

Анализ развития системного подхода позволяет сделать вывод, что многие современные отрасли науки ориентированы на йзучение характера и уровня организации систем, на выявление места организации в ряду детерминирующих факторов, от которых зависят изменения и преобразования системных объектов. С этих позиций системный подход правомерно определить как организационный по своему существу. В этом пункте я соглашаюсь с М. И. Сетровым. Он писал в свое время, что принцип системности в его конкретизации есть метод исследования объекта со стороны того, как он организован, как соотносятся части этого объекта, как они взаимодействуют, образуя свойства объекта как целого [10].

Понятие организации в единстве с понятием системы выступает как общая и плодотворная идея современного научного познания. Абстрактные образы этой идеи становятся основой моделирования самых различных явлений и процессов.

Методологическое значение моделей организации может быть правильно понято на основе категориального аппарата диалектической концепции детерминизма, направленной на преодоление механицизма, идеализма и телеологизма. Эти вопросы обсуждались в предыдущих разделах предлагаемой монографии. Однако многие аспекты организационного подхода, формирующегося на материале современных системных исследований, требуют дополнительного освещения и разработки.

Можно начать с уточнения концептуального аппарата организационного подхода, а также с выявления специфических условий применения принципа детерминизма к описанию явлений организации и самоорганизации.

Характеризуя методологическую роль понятия организации в современной науке, следует подчеркнуть, что его содержание несет на себе печать динамического способа мышления. Применение данного понятия служит одним из выражений принципа движения, взаимодействия. В самом общем плане понятие «организация» означает способность материи порождать бесконечное разнообразие связей и отношений между объектами, оформлять и упорядочивать их изменения. Это значение вошло в состав теоретических и методологических форм системного знания и является одним из оснований для интерпретации системного мышления в качестве важной ветви постижения организационных аспектов развивающейся природы и общества.

Внутри научного знания важным источником для разработки представлений о динамической организации стала организменная биология. Накопленный в этой области научный материал показал, что организация суть динамическое качество, идущий процесс, функционирование. Для обеспечения этого процесса необходима определенная внутренняя среда, система жизнеобеспечения, которая реализует ту или иную норму функционирования организма. Внутренняя среда живых тел обнаруживает самостоятельную силу реагирования.

Современные системные исследования, развивая концепцию динамической организации, учитывают, что ее содержание составляют функциональные отношения. Они характеризуют внутреннюю стабилизацию и динамическую устойчивость системы и формируются для разрешения противоречий с факторами, которые воздействуют на систему со стороны внешней среды.

Системный подход предполагает два основных типа организации, определяемые условно как пассивные и активные. Первый тип охватывает организации, которые обеспечивают адаптацию системы к внешним условиям, сохраняя в допустимых границах существенные переменные функционирования ее подсистем.

Второй тип организации характеризуется возможностью для системы перестраивать иерархию структур, изменять линию поведения при изменениях внешней среды. В этом случае исследование системы включает представление о ее самоорганизации. Подобное понимание организации является базовым для кибернетики. Оно находит также широкое междисциплинарное применение.

С методологической точки зрения существенно, что кибернетика ставит разработку проблемы самоорганизации систем на конкретно-научную почву. Ее методы позволяют дать количественное описание процессов самоорганизации. Предпринимаются, например, попытки выявить количественную меру эффективности самоорганизации в отношении какой-либо функции.

Вместе с тем кибернетический подход подсказывает новые пути обобщения понятий «организация» и «самоорганизация». Известные сегодня средства такого обобщения основаны на предпосылке, что активность системы включает, как необходимое условие взаимосвязь со средой и обусловлена, как внутренне, так и внешне. Так, весьма общее значение для изучения организованности и активности материальных объектов приобретает принцип открытой системы, который отражает способность системы к обмену со средой веществом, энергией, информацией.

В общем плане организацию системы правомерно рассматривать в неразрывной связи со способностью последней к переходам, смене состояний. Современные методы исследования организации учитывают, что организация упорядочивает разнообразие состояний системы и обеспечивает выбор некоторой допустимой области таких состояний, исходя из условия самосохранения системы при внешних возмущениях.

Конкретизация указанного подхода ведет к различению простой и сложной организации. Первая характеризуется однозначной сменой состояний системы, вторая — вероятностной. Современные обобщения кибернетической трактовки организации учитывают те аналоги приспособления системы к среде, которые вырабатываются современной экологией. В связи с этим исследуются, например, такие проявления организации, как специализация функций системы. Среда может рассматриваться как организация более высокого порядка, способная оказывать действие на изучаемую систему посредством отношений, аналогичных конкуренции, сотрудничеству и симбиозу, доминантным и подчиненным отношениям и т. п. Подобные аналогии использовал, например, Ст. Бир, разрабатывая модель кибернетического предприятия [11].

В общемировоззренческом плане следует подчеркнуть, что системная трактовка организации и самоорганизации обеспечивает дополнительные аргументы в пользу диалектического принципа материального единства мира. С организацией как формой активности, динамизма материальных систем мы сталкиваемся не только в области социальной и живой материи, но также в объектах неживой природы, в технических системах. В данном отношении мне представляется совершенно справедливым суждение М. Ф. Веденова и В. И. Кремянского, которые указывали, что вопреки довольно распространенным взглядам явления самоорганизации отнюдь не составляют исключительное достояние лишь «очень сложных» или, точнее, «сложно организованных» систем. Не только организация, но и самоорганизация, в тех или иных своих проявлениях, встречается у всех образований в природе и обществе, существенно влияя на характер всяких изменений, как самых незначительных, так и фундаментальных [12].

Выявление динамической направленности организационного подхода оправдывает вывод, что исследование организации предполагает отказ от ряда допущений традиционного детерминизма. Прежде всего, преодолевается односторонняя ориентация научного познания на принцип однозначной причинности в описании и объяснении связей между объектами. Исходным пунктом для такого преодоления является соединение в рамках организационного подхода принципов экзогенной и эндогенной детерминации. Однозначное причинное отношение не может служить эталоном научного познания объектов, если их определение включает зависимость от внешней среды, предполагает действие как непосредственных, так и опосредованных факторов.

Организационный подход требует также изучения самоизменений, самодетерминации систем. Этим преодолевается методологическая установка классического естествознания, согласно которой сложные взаимодействия объектов сводились к простой схеме «стимул-реакция». Существенно, что организационный подход предполагает многообразие связей между объектами: прямых и обратных, непосредственных и опосредованных, линейных и циклических и т. д. Это обстоятельство служит основанием для определения органического детерминизма как специфической формы диалектической концепции детерминизма, как общенаучной составляющей диалектического способа мышления.

Важной предпосылкой организационного подхода является положение о единстве организации и сложности. Это положение широко учитывается в современных системных исследованиях. Как известно, главный предмет изучения определяется здесь в качестве сложной динамической системы. Его характеризуют также как сложную организованную систему. Обычная трактовка понятия «сложность» связана с характеристикой элементной базы системы. Она фиксирует их число, разнообразие и группировки. Нередко говорят также о числе связей между элементами как о самостоятельном факторе сложности. В этих случаях сложность рассматривается как количественный аспект организации.

Однако чисто количественная трактовка сложности имеет весьма ограниченное значение для современных системных исследований. Основные направления применения этого понятия свидетельствуют о том, что оно берется в единстве с качественными характеристиками системы, в связи с изучением целостных, интегративных свойств и эффектов системы. Показательно в этом плане взаимное определение между разнообразием системы и ее динамической приспособленностью к среде. Чтобы такая адаптация имела место, система должна обладать необходимым разнообразием. Последнее является своеобразным исходным условием системной детерминации объектов.

Применение понятия организации оправдывается в ситуации, когда на первый план выдвигается аспект нерасчленимости, неразрывности частей, подсистем, переменных, характеризующих систему в целом. В этом обнаруживается особая сторона ее сложности.

Мы не можем, однако, познавать явление, не остановив его движения, не огрубив, не упростив его (В. И. Ленин). В этой связи возникают два принципиальных вопроса, вокруг которых формируются специфические методы системного исследования. Первый из них предполагает поиск ответов на то, как делить сложную систему, как упрощать ее характеристики. Второй — требует указания рациональных пределов, границ, уровня упрощения, делимости системы.

Методологическое содержание указанных вопросов сводится к поиску средств упрощения сложной исследовательской ситуации без потери существенной информации об организационном аспекте движения изучаемого объекта. Следовательно, получаемая информация должна отражать взаимозависимость элементов системы, связь различных уровней, взаимодействие системы и среды и т. д.

Традиционные методы науки плохо приспособлены к решению такой задачи. Чтобы познать явление, его обычно «вырывают» из совокупности связей. Так поступают в классической физике, механике. Методы этих наук построены на том, что число связей и переменных системы сводится до некоторого минимума, с помощью которого стремятся отразить однозначные изменения ее состояний. В других случаях переход на более простой уровень исследования достигается посредством разложения сложного явления на слабо связанные друг с другом аспекты изучения. Например, биологические организмы рассматриваются порознь в плане химических обменных реакций, физиологических отправлений, рефлекторной деятельности и т. д.

Напротив, организационный подход ориентирован на разностороннюю зависимость между элементами, аспектами и уровнями изучаемой системы. Он предполагает их кооперированное, комбинированное, групповое действие. Вместе с тем он основан на учете многих цепей взаимодействий, которые могут пересекаться друг с другом, вызывать своеобразный резонанс, корреляции и т. п.

Организационные представления не отвергают возможность разделения системы на составляющие, однако указывают на несводимость организации к каким-либо однородным и предельно простым частям. Основой упрощающего расчленения организации может служить разделение элементов на функционально различающиеся группы. В современном системном подходе, если он ориентируется на кибернетику, в качестве простых элементов организации берутся вход, выход и преобразователь входных воздействий.

Системно-организационные методы связаны с применением уровневого подхода, который предполагает рассмотрение сложной организации в качестве взаимодействующих уровней, объединяемых совокупностью «горизонтальных» и «вертикальных» связей.

Традиционные методы классической науки допускали прямой переход от свойств отдельных элементов к характеристикам их совокупности. Например, от отдельных векторов-сил, действующих на элементы механической системы, с помощью простых геометрических преобразований можно было перейти к равнодействующей как механической характеристике всей системы. Такой подход строился на предположении, что между свойствами всей системы и свойствами ее элементов существует простая функциональная связь. Напротив, системные методы, включающие организационный подход, основаны на представлении, что свойства отдельных элементов не характеризуют непосредственно свойств всей совокупности элементов.

Переход от одного уровня к другому должен учитывать структурные характеристики системы.

В современной науке широко применяются математические формы, в которых реализуется данный подход. В качестве одной из таких форм выступает, как уже говорилось выше, понятие «распределение вероятностей». В нем объединяются два уровня описания. С одной стороны, учитываются случайные вариации некоторой количественной характеристики, а с другой — выражаются группировки значений случайной величины.

Ю. В. Сачков по этому поводу указывал, что применение вероятностных методов оправдано тогда, когда реальный смысл получает идея структурных уровней организации объекта, когда возникает необходимость оперирования параметрами двух степеней общности [13]. В его трактовке вероятностные методы воплощают идею субординации понятий в рамках одной теории.

Эта точка зрения интересна тем, что указывает на специфический тип кодирования информации о системе. В нем сочетаются целостное описание и элементный анализ явлений. Его интерпретация предполагает как действие необходимости, так и случайности. Здесь учитывается взаимозависимость элементов и их автономия и т. д.

На мой взгляд, реализация организационного подхода обеспечивается отказом от абстрактного понятия «делимость» системы в пользу более конкретного понятия «дифференцированность». Таковая включает представление о качественном своеобразии элементов системы, о специфике их места в общей связи, о различии их «веса» и «вклада» в детерминацию целого. Одновременно учитывается, что дифференциация может быть реализована только на основе интегративных процессов.

Часто различают органические системы и организованные системы. И в том, и в другом случае подчеркивается сложная природа системного целого. Однако усложнение здесь осуществляется различным способом. Для той сложности, которая характеризуется как органическая система, существенно, что интеграция подсистем представляет собой генетически, причинно-обусловленный процесс разрешения противоречий между дифференциацией и организацией. По-другому обстоит дело, когда речь идет об организованной системе. Здесь усложнение объясняется интегративным процессом, основу которого составляет разрешение противоречий внешнего порядка по отношению к естественному генезису элементов и структуры системы. В таких системах основной детерминантой являются формальные связи, т. е. связи, ответственные за сохранение формы, в которой представлено некоторое единство элементов.

Системные методы, представленные современными теоретико-системными разработками, ориентированы в основном на изучение организации второго типа. Ее природа обусловливает широкое применение формально-математических и логических средств познания, понятий и моделей, которые допускают квантификацию и последующие математические преобразования. Здесь вырабатываются специфические приемы упрощения, обеспечивающие учет структурно-функционального аспекта организации. В соответствии с этим фиксируются два главных показателя: устойчивое функционирование системы и набор функционально необходимых элементов. И в том, и в другом случае, методологической базой исследования организации является принцип детерминизма, отражение на его основе законов структуры и функционирования системы.

Выше говорилось, что системный подход предполагает разработку методов упрощения без потери существенной информации об организационном аспекте изучаемого объекта. Решение этой задачи обеспечивается применением схем описания и объяснения, построенных на принципе детерминизма.

Один из путей такого описания мы уже рассматривали. Он связан с применением моделей, которые организуют знания об объекте с помощью понятий одной степени общности, допускают непосредственный обмен информацией между двумя и более уровнями отражения. Другой путь связан с использованием средств многофакторного описания. С их помощью осуществляется учет разнообразных взаимодействий изучаемого объекта как целого со своим окружением. Модели такого описания характеризуют зависимость результатов изменения системы от побочных действий, случайных факторов. Они имеют принципиально открытый характер, их применение позволяет существенно усложнять условия изучения динамики систем.

Специфика этих моделей заключается в том, что они предполагают выделение особого типа определенности и устойчивости системы, относимого к более богатому уровню сложности, нежели тот, с которым имела дело классическая наука. Для овладения этим уровнем недостаточно простых законов однозначного детерминизма, лежащих в основе дифференциальных уравнений движения классической механики, электродинамики и т. д. Для отражения новой ситуации научное мышление использует такие формы, которые существенным образом включают представления о неопределенности и случайности. Вместе с тем многофакторные модели реализуют требование определенности поведения системы. А это служит обобщенным выражением ее функциональной упорядоченности, устойчивости и организованности. В качестве руководящей идеи для их построения служит понятие вероятности.

Методологическая трактовка понятия «организация» в современных теориях систем основана также на отражении единства сложности и упорядоченности, рассматриваемых в качестве существенных характеристик системного бытия объектов.

Следует отметить, что современное определение упорядоченности исходит из представления о «структурной негэнтропии», противостоящей случайному распределению элементов. Она обнаруживается как процесс, соответствующий различным стадиям существования организованной системы.

Обращение к понятию «упорядоченность» послужило основанием для введения количественных оценок меры организованности систем. С этим связано плодотворное направление математизации системного знания.

Наиболее широко для такой цели применяются аппарат и методы теории информации, базирующейся на концепции разнообразия. По Шеннону, количественная мера упорядоченности системы определяется по отклонению ее энтропии от энтропии термодинамического равновесия системы молекул, которая берется за эталон «максимально неупорядоченного состояния» [14].

В этом случае повышение организованности системы рассматривается как процесс накопления негэнтропии. Существенным условием его реализации является перенос вещества и энергии по различным каналам связи данной системы с другими системами. Так, биологические объекты организуются, включаясь в эндо- и экзотермические реакции, которые обеспечивают для них приток и вывод энергии. Применение информационной точки зрения к исследованию упорядоченности выводит процесс познания на уровень абстракций весьма высокого порядка.

Важность и плодотворность применения теоретико-информационных критериев организации доказана развитием целого ряда отраслей современной науки. Однако их роль не следует преувеличивать, поскольку реальная организация характеризуется единством качественной и количественной сторон; для ее оценки требуются не только формальные, но и содержательные показатели. Для системных исследований имеет, например, существенное значение качественное различие между двумя способами упорядоченности объектов: горизонтальным и вертикальным. В первом случае упорядоченность обеспечивается координацией действий, во втором — субординацией, использованием механизма надстраивания, разделения функций в иерархическом ряду.

Анализ многостороннего содержания понятия организации убеждает в том, что оно характеризует такие аспекты связи, взаимодействия, детерминации объектов, которые оставались вне поля зрения классической науки. Речь идет об изучении факторов эффективности, выбора и надстраивания и др. Их общее значение сводится к характеристике различных сторон детерминации активности.

Уточняя методологическую функцию понятия «организация», важно оценить попытки его применения в области планирующей и прогностической деятельности, охватывающей способы решения социально-экономических проблем, а также проблемы взаимодействия общества и природы.

Исследование сложных организаций такого класса связано с разработкой группы методов, которые объединяются принципами системной динамики, глобального моделирования, программно-целевого планирования и др. По существу, такие принципы закладывают основы нового раздела системоведения. Здесь совершается поворот научного познания и практики к сверхсложным организациям, справедливо связывал с ним становление специфической стадии развития науки вообще и научно- технического прогресса в целом [15].

Указанное направление исследований включает попытки комплексного описания демографических процессов, мирового производства и сокращения природных ресурсов. В их основе лежат методы оценки возможных вариантов развития глобальной системы, а также оценки пределов допустимого потребления.

В современной литературе отмечается несовершенство методов системной динамики и глобального моделирования. Во многих случаях результаты расчетов по этим моделям нельзя считать обоснованными. Однако они дают возможность проследить экстраполяции некоторых современных тенденций развития глобальной системы и могут быть использованы для кратковременных решений.

Одна из трудных задач в этой области исследований — разработка моделей саморегуляции биосферы, учитывающих возрастающую активность антропогенного фактора. Такие модели призваны раскрыть механизм организации гомеостатического типа, который обеспечивает взаимную адаптацию эволюции человечества и биосферы, контролирует их оптимальное совместное развитие.

Сегодня такой механизм изучен недостаточно. Не уточнен перечень и допустимые значения переменных, от которых в первую очередь зависит существование биосферы и адаптационная фаза ее эволюции. Слабо исследованы каналы обратной связи, формирование которых должно содействовать гомеостатической устойчивости глобальной системы.

Трудности, связанные с применением новых методов, во многом проистекают из-за недостаточной разработанности соответствующей методологической базы, из нечеткости представлений о характере детерминации в сверхсложных глобальных системах. Средства описания таких систем не могут опираться только на принцип взаимодействия. Они должны также учитывать принцип развития, поскольку предметом описания является эволюция биосферы. Здесь необходимо также учитывать специфические аспекты развития, проявляющиеся в смене ритмов изменения, возникновении и новых точек роста, созревании критических состояний и т. д. Исходя из этого, предпринимаются попытки построения сценариев развития. Такой прием преодолевает односторонность классической методологии, которая проблему коррекции развития решает на основе изучения однозначных тенденций, например, на тенденциях скорости изменения некоторого параметра системы. Напротив, метод сценариев учитывает нелинейность развития, прохождение системой ключевых точек, открывающих новые пути и формы развития [16].

В этом пункте современная наука сталкивается с вопросом, касающимся соединения организационной точки зрения и принципа развития. Примером тому являются попытки ввести в сферу специального научного исследования эволюционные критерии бытия систем, и на данной основе применять принципы долгосрочного управления системами.

Методологический анализ данного вопроса убеждает в недостаточности той позиции, которая характеризует организацию и степень организации посредством механизмов внутренней регуляции системы, обеспечивающих ее качественную устойчивость. Более точными являются выводы о том, что организация отражает изменение и развитие системы во времени. Уточняя эту характеристику, важно соотносить организацию и самоорганизацию с процессами преобразования системы, которые обеспечивают возникновение нового структурного уровня.

Итак, материал современной науки выдвигает новые методологические задачи, связанные с дальнейшим расширением представлений о законах организации, о способах детерминации, обусловливающих смену форм организации, повышение ее эффективности и т. д. Новые подходы используются в решении проблемы прогнозирования и управления глобальными ситуациями, в разработке социально-экономической стратегии они предполагают изучение процессов формообразования в условиях взаимного влияния многих развивающихся систем.

Традиционная постановка вопроса ограничивается исследованием закономерностей развития отдельной системы. Оценка ее новых состояний основывается на изучении внутренних преобразований ее структуры. Учитываются и внешние влияния, но обычно лишь в качестве фактора случайности. По-другому решается этот вопрос в современной сфере глобальных исследований. Здесь первостепенное внимание уделяется анализу взаимосвязи данной системы с другими системами, с ее окружением. Причем особое значение придается рассмотрению возможного развития окружающей среды, на которую оказывает воздействие изучаемая система. Примером может служить также современная постановка задач в области социально-экономического прогнозирования. Основные критерии такого прогнозирования учитывают реальные возможности изменения общественных целей в определенный временной период. Поэтому прогнозирование строится на соотнесении темпов экономического и социального развития. И с этих позиций рассматривается спектр путей экономического развития, значимость и вес таких путей для социального прогресса.


2.5. Телеономность и системность


Одно из плодотворных направлений разработки системного подхода связано с изучением целесообразных форм поведения сложных объектов. Методологический базис развития этой ветви системного подхода образуют представления о целесообразной (телеономной) детерминации явлений. Вопрос о соотношении системной и телеономной детерминации имеет важное значение для разработки методологии системных исследований, и этим определяется повышенный интерес к его обсуждению.

Существует традиционное определение целесообразности, которое увязывает это понятие с деятельностью человека, с постановкой и реализацией целей разумного человечества. В данном случае целесообразность рассматривается в качестве особой формы связи объектов, представленных в соотношении с субъектом. Некоторая связь, структура объектов характеризуется как целесообразная, если она соответствует решению данной задачи, отвечает заранее поставленной цели субъекта. В такой ситуации понятие целесообразности имеет оценочный характер.

Наряду с этим целесообразность может выступать в форме целеустремленности, особой организации деятельности по достижению цели. В рамках организации осуществляется циклическое взаимодействие цели, средств по ее достижению и результатов деятельности.

Оба указанных аспекта категории «целесообразность» имеют важное значение для современной науки и практики и активно разрабатываются в теории деятельности. Вместе с тем они не исчерпывают универсальный смысл этой категории, не выражают в полном объеме ее диалектическую сущность. Диалектическая трактовка понятия «целесообразность» предполагает, что это понятие не только характеризует форму человеческой субъективности, но и способно служить важным методологическим средством реализации принципа объективности [17].

Здесь важно подчеркнуть, что выделение целесообразности как особого объективного отношения требует определенной методологической осторожности. Такая осторожность связана с преодолением крайностей идеалистической телеологии и механистического, метафизического объяснения функционального поведения сложных систем.

Известно, что классическая телеология ставит организацию, форму над содержанием. Она рассматривает форму как некий нематериальный принцип, влияние которого устойчивым и необходимым образом сказывается на процессах взаимодействия между вещами. Истоком телеологической концепции является учение о предсуществующих идеях Платона, понятие энтелехии Аристотеля. Принципы телеологии использовал Гегель. Для Гегеля характерна абсолютизация целесообразности мира.

Он объявил форму некой тотальностью, которая носит в самой себе принцип материи, является свободной и бесконечной.

Природу этой формы он характеризовал как абсолютное понятие. Немецкий философ ведет речь о том, что способностью умозаключать, опираясь на понятия, обладает та скрытая от непосредственного взора человека объективная реальность, которую он именует абсолютной идеей. В природе он обнаруживает слабые, детские задатки к такого рода деятельности. Понятие, умозаключение как принцип движения мира воплощается у него в универсальном законе, в котором необходимость становится средством для целесообразности.

Материалистическая философия и естествознание отрицают абсолютную целесообразность мира, однако они сохраняют возможности целесообразного подхода ж объективному миру, к изменениям и развитию материальных систем.

Понятие целесообразности разрабатывается в теории материалистической диалектики на основе последовательного проведения принципа детерминизма. При этом надо иметь в виду, что диалектическая концепция детерминизма не сводится к признанию действия в природе и обществе слепых, случайных, стихийных сил, факторов и явлений. Она учитывает существование в природе устойчивых цепей действий, упорядоченных причинных рядов. Например, упорядоченность физиологических механизмов живых организмов, в которой проявляется единство структурного и функционального аспектов существования живого, дает особую форму детерминации, воплощающуюся в новых типах законов, характеризующих организованную сложность.

Существенно, что телеономные способы описания и объяснения объективных явлений и процессов предполагают исходным пунктом для определения целесообразного поведения систем указание на способность последних сохранять свою устойчивость.

В качестве условия, обеспечивающего такую устойчивость, выделяется согласованность частей системы, взаимодействие между элементами, которое служит укреплению данной системы как целого. Руководствуясь этим, М. И. Сетров подчеркивал, например, что не являются целесообразными взаимодействия, ведущие к распаду системы [18]. В то же время он считал возможным применение понятия «целесообразность» не только к живым организациям, но и к процессам круговорота в неживой природе, к устойчивым формам неживых объектов, сохраняющих эту форму благодаря высокой упорядоченности элементов (кристалл и др.).

На мой взгляд, опора на категории «устойчивость», «сохранение», «целостность» является необходимой предпосылкой определения целесообразности. Но содержание этих категорий само по себе не дает оснований для выявления специфических характеристик целесообразности как объективного свойства систем. Например, под признак устойчивости, взаимного согласования элементов можно подвести как их целенаправленное единство, так и соответствие друг другу на основе избирательного взаимодействия, что не одно и то же.

Не всякие устойчивые процессы и изменения, даже когда они закрепляются на определенное время, следует характеризовать как целесообразные. Попытки определить целесообразность как свойство, тождественное любой упорядоченности и устойчивости, приводят к схематизации и натяжкам, малооправданным существом дела. Они не являются эффективными в отношении областей знания, которые традиционно ставят и обсуждают проблему целесообразности. Вместе с тем они ведут зачастую к удвоению терминов-понятий там, где достаточно использовать для описания систем обычные понятия причинного мышления.

Вопрос о специфическом различии между содержанием понятия «целесообразность» и родственными с ним понятиями «организация», «целостность», «единство», «устойчивость» нередко связывают с выявлением узкого значения целесообразности, которая рассматривается в этом случае как существенное свойство биологических и кибернетических систем, определяемое через широкий набор конкретных признаков. Так, в современной биологии целесообразность признается в особом строении организмов, в соответствии органов и их функций. Хорошо известна целесообразность онтогенетического развития организмов, согласованность процессов морфогенеза и регенерации.

В физиологии целесообразность рассматривается в связи со способностью функциональной системы к упорядочению, которая определяется результатом ее деятельности. Только он может через обратную связь (афферентацию) воздействовать на систему, перебирая все степени свободы и оставляя только те, которые содействуют получению данного результата. Опираясь на это понимание функциональной системы, П. К. Анохин подчеркивал, что целое есть нечто, запрограммированное в конкретных афферентных параметрах будущего результата [19].

Здесь целесообразность характеризуется как особая сторона опережающего отражения действительности — активное поддержание цели в форме закодированного в ведущих параметрах системы результата.

Сложные формы целесообразности раскрывает эволюционная биология, которая изучает устойчивые приспособления живых организмов к среде, возникающие в результате естественного отбора.

На уровне генетики и молекулярной биологии целесообразность рассматривается как отношение индивидуального развития организмов к их генетической программе, которая трактуется в качестве материальной цели, кодирующей некоторое конечное состояние организма.

В более общем плане целесообразность пытаются характеризовать как один из основных атрибутов жизни (Э. Бауэр и др.). Здесь обосновывается суждение , что понятия «целесообразность», «целенаправленность», «цель» имеют не только отношение к самой биологической структуре, но являются адекватной феноменологической характеристикой органической жизни вообще, а также выражают основной способ связи между главными субстанциональными (структурными) особенностями жизни и ее основными атрибутами.

Если рассматривать условия непрерывности жизни, охватываемые биосферой Земли как целостной системой, то выявляется циклическая природа жизни. Она поддерживается последовательной реализацией таких свойств, как размножение, адаптация и эволюция, благодаря которым и сохраняется постоянство жизни на Земле. Каждый из атрибутов жизни правомерно рассматривать как функцию по поддержанию универсального круговорота жизни. Здесь есть объективная целесообразность, телеономность.

Итак, отношения целесообразности включаются в биологическую детерминацию, и потому биология учитывает их при разработке основных подходов к познанию жизни.

В дополнение к сказанному отмечу, что современная биология использует категориальный аппарат, который дает рациональное истолкование сложным явлениям адаптации, отбора устойчивых состояний живых систем, предетерминация их активного поведения, основанного на опережающем отражении внешних условий. Применительно к таким явлениям вводится термин «органическая целесообразность». Он характеризует комплекс процессов жизнедеятельности, фиксирует диалектическое единство устойчивости и изменчивости, отражает механизм, поддерживающий целостность материальной системы в данных условиях. Соответствующий механизм полностью укладывается в рамки тех связей, которые описываются понятиями диалектико-материалистической концепции детерминизма. Однако сеть этих понятий существенно обогащается в сравнении с той, которая используется для механического, физического или химического описания процессов и явлений. Органический детерминизм учитывает активное преломление внешних воздействий внутренними факторами, цикличность обратных причинных связей, приспособительную направленность (предетерминированность результатов действия). По поводу последней говорят как об условной и относительной целесообразности.

Разработка принципа телеономной организации систем получила новый импульс в свете достижений кибернетики. Метод изучения целесообразных отношений, развиваемый в кибернетике, весьма общий. Он строится на предположении, что существуют внутренние причины направленного поведения функциональных систем, которые определяют достижение некоторого конкретного результата.

Важной стороной телеономной детерминации сложных функциональных систем является наличие программы и кода целей, конечных результатов их функционирования. Они включают также механизмы сопоставления достигнутого состояния с программируемым и средства корректировки функционирования системы в направлении, определяемом исходной программой.

Функционирование телеономных кибернетических систем свидетельствует о том, что целесообразные отношения формируются на причинной материальной основе. Они складываются не в любых случаях регуляции явлений, не тождественны простой упорядоченности и законосообразности процессов.

С кибернетической точки зрения целеосуществление возникает в рамках системы, которая разделена на управляющую и управляемую подсистемы. Причем их взаимодействие может быть целесообразным, если управляющая система обладает достаточным разнообразием для переработки информации об управляемой системе. В сложных случаях возникает также необходимость в решении задач самопрограммирования, самонастройки управляющих систем. Здесь требуется учитывать существование механизмов перестройки алгоритмов и программ, которые определяют основные особенности поведения управляемой системы.

Научный аппарат кибернетики обеспечивает разработку формальных математических моделей описания телеономного поведения сложных систем. Этим достигается переход современной науки к количественным методам изучения целесообразности, благодаря чему расширяются практические приложения принципа телеономности. Он становится достоянием инженерно- технической и социально-инженерной деятельности.

Кибернетика содействует укреплению детерминистских оснований телеономного способа мышления, обогащая категориальный аппарат, расширяя предметную и методологическую сферу исследования проблемы целесообразности. Она отражает существование класса систем, обладающих активностью особого рода, для которых характерны процессы самоорганизации и самосохранения, а также процессы выбора собственного поведения в результате переработки разнообразной информации.

Обобщая результаты исследования проблемы целесообразности в биологии и кибернетике, следует отметить соотнесенность целесообразности со способностью функциональных систем обеспечивать решение стоящих перед ними задач. Одна из существенных задач связана с сохранением устойчивости по отношению к отклонениям и возмущениям, порождаемым внутренней и внешней средой ее существования. С этой точки зрения целесообразность организации совпадает с реализацией приспособительного, адаптивного поведения системы.

Адаптация предполагает установление определенного равновесия данной системы со своими условиями. Вместе с тем она включает реакции на те или иные влияния, а также воспроизводство в известных пределах основных качественных характеристик системы.

В рамках адаптационного процесса способность к целесообразному поведению выступает особой стороной отражения. Следует подчеркнуть, что неправомерно говорить о целесообразности всей отражающей материи, но для раскрытия адаптивных форм существования материальных объектов категория «целесообразность» имеет важное значение.

Адаптация на любом уровне предполагает самоактивность, наличие внутренней регуляции системы. Даже неживые системы, сохраняющие ту или иную внешнюю функцию и обеспечивающие тем самым свое единство со средой, активно поддерживают неравновесное состояние относительно внешнего окружения за счет сложных сетей преобразования внутренней энергии, согласования внутренних реакций различных частей и т. д. Эта их способность сознательно используется при строительстве различных сооружений, при разработке конструкций машин, приборов и т. д..

Активность адаптивного поведения существенно усложняется, когда единство со средой обеспечивается деятельностью биологических систем, например в процессе жизнедеятельности организма. В общем случае можно сказать, что более глубокая и разносторонняя адаптация организма обеспечивается более глубокой дифференциацией его организации, поддержанием высокого уровня негэнтропии по сравнению с окружающей средой. Например, приспособительное поведение высших животных основано на сложной дифференциации нервной системы, закреплении приобретенного опыта, выработке опережающих моделей будущего и т. д.

По существу, адаптация имеет противоречивую природу, обнаруживая колебания вокруг некоторого устойчивого состояния системы: выход за пределы этого состояния и повторяющийся возврат к нему. Принцип телеономности применим к изучению именно этого аспекта функционирования систем. Его применение связано с выделением такой структуры, которая совпадает с циклическим механизмом действия.

Подобный механизм не всегда реализуется через обратную связь, опосредованную переработкой информации, как это имеет место в кибернетических устройствах. В природе встречаются более общие механизмы циклической регуляции процессов и более общие формы адаптивного поведения систем, нежели те, которые изучает кибернетика. В этих случаях телеономная регуляция не может быть подведена под условие телеономного управления кибернетического типа. В неживой природе, например, можно обнаружить своеобразные «задатки» телеономности. Эту способность удается выделить из организации неживых материальных систем только логическим путем, поскольку она «закодирована» в структуре взаимодействия. Показательно в этом плане движение электрона по равновесной орбите, реализуемое в бетатронах, синхротронах. Здесь поддержание равновесия обеспечивается взаимодействием центростремительной силы и силы Лоренца. Если частица отклоняется к центру, то сила Лоренца будет меньше, чем необходимая центростремительная сила, и частица получит ускорение по радиусу от центра, вследствие чего она вернется на стационарную орбиту. При отклонении от центра сила Лоренца уменьшается медленнее, чем центростремительная сила, и, следовательно, сообщает частице некоторое радиальное ускорение, возвращая ее на орбиту. Здесь нет специального механизма управления, однако существует автоматический процесс сохранения устойчивой орбиты, имеющей форму затухающих колебаний (бетатронные колебания).

Загрузка...