Что бы там ни проповедовали практики, стрельба не есть точная наука, поскольку, попрощавшись со стволом, боеголовка уже больше не зависит от воли стрелка. Капризы погоды - ветер, давление воздуха и температура, - начальная скорость полета снаряда влияют на его полет, так что точка завершения траектории запросто может не совпасть с выбранной стрелком, и это при том даже, что последний точно вычислил дистанцию, правильно выставил прицел и осуществил наведение. При этом не стоит забывать, что все действия его происходят не в вакууме, а в условиях боя, особенно когда перед человеком такое агрессивное «животное», как танк - танк, стреляющий и идущий в его направлении.
Так стоит ли удивляться тому, что, исходя из всего вышеперечисленного, имея на вооружении ряд удачных реактивных снарядов и понимая, какие возможности может сулить способность стрелка контролировать полет боеголовки, немецкие ученые начали в 1944 г. подыскивать способ противопоставить танку ракету с реактивным двигателем.
Не станем слишком глубоко вдаваться в немецкую ракетостроительную программу, скажем лишь, что разработка управляемого по проводному каналу реактивного снаряда, или ракеты «воздух-воздух» Х-4 началась в КБ компании «Руршталь» уже в середине 1943 г., а ракеты-прототипы совершали успешные полеты с сентября 1944 г. В начале 1944 г. немецкая армия, отчаянно метавшаяся в поисках средства для противодействия растущей мощи советских танков, обращалась ко многим фирмам с призывами о помощи, вот и на «Руршталь» решили приспособить примененную в Х-4 технологию для сухопутного оружия. В результате появилась Х-7, также называемая «Роткеппхен» («красная шапочка»), обладавшая аэродинамическим корпусом и вмещавшая в себя 2,5-кг кумулятивный заряд боеголовка, несомая двухступенчатым реактивным двигателем. Напоминавший обрубок корпус имел два крыла, на конце каждого - стержни, к ним прикреплялись провода, которые стравливались в процессе полета. Другие концы проводов были подсоединены к наземному Пульту управления, который путем подачи электрического сигнала позволял корректировать траекторию полета ракеты за счет изменения положения рулей стабилизатора. Оружие имело дальность огня 1000 м и могло пробить 200-мм лист брони при угле встречи в 30°. Утверждалось, что как будто бы удалось построить «значительное количество» ракет Х-7, и в зиму 1944/45 г. направить их в действующие части на передовую для испытания в условиях реального боя. Однако никому и никогда не попадался ни один солдат, который бы устно или письменно рассказывал о том, как ему довелось воспользоваться этим оружием, а потому представляется сомнительным, что его вообще видели на фронте. Даже после войны, когда команды союзнических исследователей вывернули всю немецкую ракетную программу наизнанку, они не обнаружили нигде ни одного целого образца Х-7. Хотя записи об успешных испытаниях в конце 1944 г. существуют. Независимо от того, стреляли ли Х-7, по настоящему вражескому танку или нет, ее, несомненно, можно считать матерью всех противотанковых ракет, появившихся позднее.
Х-7 являлась наиболее удачной, но не единственной немецкой управляемой противотанковой ракетой, разрабатывавшейся на заключительном этапе войны. «Пфайфенкопф» («головка курительной трубки»), иначе известная как «Пинзель» («малярная кисть»), представляла собой ракету с телевизионным управлением. Разработанное фирмой BMW изделие имело в носу супериконоскоп (передающую телевизионную трубку, предназначенную для преобразования оптического изображения в электрический сигнал), который сканировал и отсылал очертание цели назад по проводам к оператору, получавшему возможность видеть объект на экране и наводить ракету. Она успешно прошла испытания ближе к концу 1944 г., однако, по всей видимости, дальше лабораторных моделей дело не пошло. «Штайнбок» («горный козел») представляла собой схожую ракету, однако с инфракрасной системой управления и наведения на цель. Сначала ракету «вели» с помощью обычного прицела и электропроводов, после чего инфракрасный детектор определял тепловую волну от танка и наводил ракету на источник тепла. Как и «Пфайфенкопф», на момент окончания войны «Штайнбок» не вышла за рамки лабораторных испытаний.
Как ни странно, несмотря на все это, никто из победителей-союзников не позаботился о том, чтобы использовать опыт побежденных после войны и приступить к разработке своей противотанковой ракеты. По всей вероятности, все опять упиралось в деньги. Пушки и реактивные снаряды были сравнительно дешевы в производстве, а после окончания войны, когда людям все больше хотелось думать о мире, казалось бессмысленным тратить большие суммы на довольно рискованные в своей новизне исследовательские проекты. Более того, в послевоенном преклонении перед ядерным оружием и большими стратегическими ракетами представлялось непростительным разбазаривать наличность на столь малое по своей значимости противотанковое оружие.
Французы, однако же, заинтересовались. Из их предвоенных арсеналов мало что осталось, а что осталось - теперь ничего не стоило, а посему им просто приходилось придумывать нечто новое, вот они и решили попробовать, на что способна ракета. Работы начались на «Арсеналь д'Аэронотик» в 1948 г. и, хотя и медленно, но неуклонно продолжались до 1954 г., когда завод вместе с другими стал частью «Норд-Авиасьон». К тому времени изделие уже почти совсем успели закончить, а в 1955 г. его предложили на продажу заинтересованным сторонам. Получился компактный реактивный снаряд с четырьмя крыльями крестом и с двухступенчатым реактивным двигателем, установленным в боеголовке позади мощного кумулятивного заряда. Управляемая по электропроводам, ракета запускалась с простейшей ПУ и, по сегодняшним стандартам, стоила до смешного дешево - около 350 долларов за ракету и чуть больше 1,700 за пульт управления. Известная как «Норд» SS10, ракета дебютировала в реальном бою в 1956 г. на службе у израильской армии, когда части, вооруженные SS10, эффективно уничтожали египетские танки во время первой арабо-израильской войны на Синае. Потом оружие начали оживленно покупать едва ли не все армии мира (хотя и в небольших количествах, в основном для пробы), некоторые из которых поставили его на вооружение. Изделие продолжало производиться до 1962 г., когда объем его выпуска достиг примерно 30 ООО единиц.
SS10 имела максимальную дальность огня 1600 м, а потому приговор французских военных и их коллег из других стран звучал так: «Замечательно! Но дистанция могла бы быть и побольше». Уже в 1953 г. «Норд-Авиасьон» приступила к работе над более мощной моделью, в которой дальность огня и скорость выросли вдвое, как и… масса изделия. Так появилась SS11, представлявшая собой, по сути дела, увеличенную версию SS10, но с боеголовкой, способной поразить 600-мм бронирование - характеристики по тем временам просто феноменальные. Сама по себе установка оказалась тяжеловата для пехоты, однако представлялось возможным монтировать ее на французских танках (совершенное новшество), на кораблях, а позднее и на вертолетах. Построили специально новый завод для выпуска данного вида продукции, и к концу семидесятых годов XX века объем производства ракет составил 180 ООО единиц, которые поступили в общей сложности в тридцать пять армий мира от Аргентины до Индии и от Перу до Норвегии.
Произвести пуск ракеты SS11 было просто, чего не скажешь об управлении ее полетом. Стрелку приходилось, что называется, держать руку на пульсе, а точнее, на джойстике, с помощью которого он контролировал траекторию ракеты, потому что иначе малейшее отклонение могло привести к потере ею курса. Ракета подавала световой сигнал, и стрелок должен был выравнивать его по цели на каждом сантиметре пути. Операторов обучали с помощью специально разработанных игр, симулирующих полет снаряда, лишь только после этого им разрешалось произвести пробный выстрел дорогостоящей ракетой. Однако мастерство приходило не сразу.
На исходе пятидесятых годов другая французская компания, SAT, решила приложить усилия для облегчения задач стрелка. Конструкторы создали инфракрасный детектор, который встроили в прицел, подключенный к сканеру. Сложный вычислительный прибор «видел» инфракрасный датчик в хвосте ракеты и вычислял градус отклонения от осевой прицела. Компьютер затем поправлял траекторию снаряда. Теперь от стрелка требовалось только держать мишень в прицеле, а остальное делала инфракрасная система наведения.
Французы нарекли изделие «автоматическим телеуправляемым» ТСА (Tele-Commande Automatique), однако поставили на вооружение как SACLOS (Semi-Automatic Command to Line Of Sight), т.е. «полуавтомат коррекции по линии визирования», а сама по себе изначальная система получила наименование MCLOS (Manual Command to Line Of Sight), т.е. система «ручного выравнивания по линии визирования».
Одними из покупателей SS11 стали и США, которые на том этапе ничем подобным не располагали. Американские военные оказались в числе тех, кто приобрел SS10 для пробы, и приняли решение, что на смену SSM-A-22, как называлась у них SS11, придет американское изделие, разработка которого стартовала в начале пятидесятых годов XX века. Итогом стала SSM-A-231 «Дарт» - крупная ракета, запускаемая с ПУ, установленной в кузове грузовика. Тяжелое изделие имело четыре крыла и четыре хвостовых стабилизатора, двухступенчатый реактивный мотор и 14-кг кумулятивную боеголовку, способную уничтожить любой современный танк на дистанции 2745 м (3000 ярдов). В разработку «вбухали» огромные средства, но в итоге военные США поняли, что ракета длиной 1,5 м с размахом крыльев 1,2 м представляла собой далеко не идеальное оружие для стрельбы с земли по наземным мишеням, за исключением условий пустыни, и в 1958 г. программу прикрыли. После этого американской армии пришлось удовлетвориться 106-мм безоткатным орудием и SS11. Однако в 1959 г. Ракетное командование приступило к весьма смелому проекту - ни много ни мало к разработке ракеты, или реактивного снаряда, запускаемого из танковой пушки. Прошло несколько лет после изобретения транзистора, и уже появлялись микросхемы, но превратить пушку в ПУ для ракеты было, по меньшей мере, смелой идеей.
Скоро стало очевидным, что М13 (позднее MGM-51) «Шилайла» (ирл. «дубинка»), как назывался реактивный снаряд, станет капризным дитятей, и в начале шестидесятых годов компания «Хьюс» приступила к работам по созданию ракеты, которой бы могла оперировать пехота, т.е. начала готовить замену для 106-мм безоткатного орудия. Они решили, что в качестве пускового ложа послужит труба (отсюда Tube-launched -запускаемый из трубы), слежение будет производиться с помощью оптики (Optically), а наведение - посредством проводов (Wire), отсюда и аббревиатура «тоу» (TOW). Так появилась самая удачная управляемая противотанковая ракета из всех, что существовали до этого. Ракета «тоу» BGM-71 постоянно подвергалась модернизации, однако в основе своей оставалась прежней. Цилиндрический реактивный снаряд поступал в запечатанной трубе, которая позволяла без труда присоединить ее к пусковой установке. На треноге устанавливался прицел и полуавтоматика системы контроля полета (SACLOS). Ракета имела мощную кумулятивную боеголовку и в первой версии обладала дальностью огня 2750 м (3000 ярдов). В 1970 г. она поступила на вооружение и скоро «понюхала пороху» во время арабо-израильской войны 1973 г., где успешно применялась армией Израиля, после чего заняла достойное место в арсеналах всех западноевропейских и скандинавских стран, а также пришлась по душе военным на Ближнем и Дальнем Востоке.
Была создана версия для установки на вертолетах, а дальнейшие усовершенствования привели к тому, что боеголовка TOW-2A, например, несла составной (или тандемный) кумулятивный заряд из двух частей, способный поражать даже реактивную броню, тогда как TOW-2B предназначалась для ударов сверху в самое уязвимое место танков, а потому оснащалась специальными сенсорами и кумулятивными зарядами, которые выстреливались вниз, когда ракета оказывалась над целью.
Несмотря на все преимущества «тоу», даже самые горячие приверженцы данного вида оружия не могли не признать факта громоздкости установки и чрезвычайных сложностей, сопряженных с ее применением в бою силами одного солдата. Осознавая все эти факторы, в дополнение к «тоу» компания «Макдоннелл Дуглас» разработала довольно своеобразную систему «Дракон». Солдат нес крупную запечатанную трубу с прицельным блоком. Выйдя на огневую позицию, он расставлял сошки двуножного станка, устраивался рядом, водружал тыльную часть оружия себе на плечо так, чтобы основной вес приходился на станок. Затем стрелок прицеливался и производил безоткатный выстрел. После того как реактивный снаряд покидал пусковую установку, в нем одна за другой срабатывали тридцать пар миниатюрных обеспечивавших ускорение, вращение и коррекцию направления полета реактивных моторчиков, которые находились под определенными углами, при этом включение каждой пары контролировалось компьютером, и она срабатывала, находясь точно под центром осевой линии. Наведение было полуавтоматическим (SACLOS), так что от стрелка требовалось лишь не выпускать объект из прицела, предоставив всю остальную работу компьютеру, который принимал решение, какой из реактивных моторов должен сработать, чтобы скорректировать снаряд, а также поддержать процесс ускорения и вращения. Звучит невероятно, может даже показаться, что это противоречит законам гравитации, однако «Дракон» исправно функционировал и с 1973 г. находится или находился на вооружении многих армий помимо США и, как и «тоу», претерпел серию модернизаций и служит вполне эффективным средством вооружения даже против новых танков.
Ну, а что же Соединенное Королевство? Британцы, как часто бывало, пошли своим уникальным путем, начав с того, что предпочли полностью проигнорировать противотанковые ракеты. К 1955 г., когда в ряде других стран развернули такого рода программы, некоторые из частных компаний решили, что пора взяться за дело, не дожидаясь «телодвижений» со стороны правительства. Так, фирма-производитель радиоаппаратуры - приемников и LP проигрывателей - «Пай», лозунг которой «Hi-Fi By Руе», популярный в пятидесятые годы XX века, может быть, помнят читатели постарше, разработала систему «Питон»*. Получилось неплохое изделие, хотя и несколько тяжеловатое, но подходящее для установки на бронемашины. В 1957 г. оно было испытано, однако Военное министерство не проявило интереса, а потому разработчику пришлось положить идею под сукно.
Причина индифферентности Военного министерства по отношению к «Питону» объясняется ожиданием завершения процесса создания австралийского изделия, называвшегося «Малкара», работа над которым стартовала в 1951 г. и которое в 1955 г. представлялось довольно многообещающим. Единственным недостатком «Малкары» являлась масса и габариты - 2-м ракета весила 94 кг (206 фунт.), несла 26,1-кг заряд пластиковой взрывчатки и обладала способностью уничтожить любой из имевшихся в то время танков на максимальной дистанции 1830 м (2000 ярдов). Управляемое по проводам вручную (MCLOS), изделие требовало большого мастерства от оператора, габариты же диктовали приговор - оружие придется устанавливать на какую-то передвижную платформу.
«Малкара» поступила на вооружение австралийской и британской армий на закате пятидесятых годов XX века. ПУ устанавливались попарно на бронемашины разведки. Получилось грозное оружие, однако бывшее в буквальном смысле не по плечу пехоте.
Видя все это, компания «Виккерс-Армстронг» в качестве частной инициативы приступила к разработкам ракеты, подходившей бы для одного солдата. Усилия конструкторов привели к появлению системы «Виджилент» (бдительный), сконструированной в 1956 г., впервые испытанной на полигоне в 1958 г., а впоследствии принятой на вооружение в Соединенном Королевстве и в ряде ближневосточных стран. «Виджилент» представлял собой довольно продвинутое для своего времени изделие. По причине применения легких сплавов ракета весила всего 14 кг и несла 6-кг боеголовку, позволявшую поразить свыше 220 мм брони. Управлялась ракета вручную (MCLOS), однако благодаря необычной системе корректировки автоматически избирала параллельный курс, как только оператор начинал поправлять траекторию полета, что сглаживало все ее неровности, типичные при традиционной MCLOS, и позволяло контролировать «Виджилент» увереннее, чем любую другую современную и аналогичную ему систему.
Успех частной инициативы разработчиков, похоже, подхлестнул Военное министерство, заставив его наконец «что-нибудь сделать», после чего оно выдало технические требования и заключило контракт с «Фэри-Эвиэйшн» на строительство ракеты под кодовым названием «Оранжевый Уильям». (Тогда была мода на цветистые и, в частности, на «цветные» имена вроде «Синей Воды» или «Красной Планеты» и т.п. и т.д. - все это ракетные проекты, большинство из которых в итоге спустили в канализацию.). Инженеры «Фэри» изрядно помучились над изделием, пока в 1959 г. на нем не поставили крест, после чего перчатку поднял «Виккерс», который на сей раз решил разработать нечто покрупнее, чем «Виджилент», но в то же время и более практичное, чем «Малкара». Приняв в зачет многие из результатов экспериментов «Фэри», конструкторы «Виккерса» создали еще одну необычную ракету, «Суингфайр».
«Суингфайр» предназначалась для целевого применения на движущейся технике -например, на танках или бронемашинах, - хотя разрабатывались и пехотные версии. Запуск производился из запечатанного ящика, который можно было в случае тактической необходимости установить на некотором отдалении от оператора. Последний мог разместить свою машину на замаскированной позиции, а сам, прихватив прицельное устройство, выбрать себе место для наблюдения, затем «скормить» пусковому компьютеру данные о дистанции между ПУ и объектом, задать направление огня и ввести прочую необходимую информацию. Выбрав цель, стрелок производил пуск, «Суингфайр» вылетала из ПУ и скоро оказывалась в объективе прицела. После чего оператор «брал на себя» управление полетом ракеты. Внутри «Суингфайр» находились два гироскопа, позволявшие ему поддерживать стабильное положение. Для коррекции траектории стрелку надо было только передвинуть ручку-джойстик в нужном направлении, и чем дальше он перемещал рукоятку, тем быстрее откликалась ракета. Как только человек отпускал джойстик, ракета возвращалась к прежнему направлению путем бокового сдвижения, а не выбора нового курса. От оператора требовалось только не спускать взгляда с ракеты и объекта до их столкновения. При попадании в цель 7-кг боеголовка «Суингфайр» позволяла уничтожить любой из существовавших тогда танков на максимальной дистанции 3660 м (4000 ярдов), значительно превышающей дальность огня других ракет-современниц.
«Суингфайр» поступила на вооружение британских войск в 1969 г., поначалу в части Королевского бронетанкового корпуса, но ближе к концу семидесятых, в ходе реорганизации, оружие передали в Королевскую артиллерию, где его установили на бронемашины разведки «Страйкер». Весьма эффективное средство противотанковой защиты впоследствии поставили на вооружение в Бельгии и в нескольких государствах Среднего Востока и Африки. Прицел и средства управления полетом ракеты затем еще претерпевали усовершенствования - в частности, появилась полуавтоматика (SACLOS), позволявшая вести одновременно четыре ракеты, которая, правда, по-видимому, так и не была окончательно внедрена.
К 1960 г. стало очевидным, что размеры затрачиваемых на разработку ракет средств начинают постепенно превышать возможности отдельных компаний, тогда как получить деньги от правительства вперед оказывается подчас очень нелегким, если не сказать болезненным, занятием. Единственный способ поддерживать процесс создания ракет заключался в международной кооперации. Так, в 1961 г. французская «Норд-Авиасьон» и немецкая «Бёлько» нашли общий язык и создали новую компанию под названием «Евроракета» с тем, чтобы разрабатывать разного рода ракеты и реактивные снаряды. Первым шагом «Евроракеты» стала разработка противотанкового оружия, способного заменить первое поколение управлявшихся вручную (MCLOS) SS10 и SS11.K 1963 г. «подошла» базовая конструкция, которую французская и немецкая армии приняли на вооружение в 1972 г. как MILAN (Missile, Infanterie, Legere, Anti-char, или легкая пехотная противотанковая ракета). К консорциуму позднее присоединилась и «Бритиш Эйроспейс», британская армия приняла на вооружение MILAN, и производственные усилия были разделены между тремя странами. Продукция нашла спрос в большинстве государств -членов НАТО, в Южной Африке, в Индии, а также во многих странах Ближнего Востока и Африки.
MILAN состоит из пусковой установки и ракеты, предварительно запакованной в запечатанную трубу, которую крепят к поддерживающему желобу на ПУ, после чего подсоединение происходит автоматически. Стрелок прицеливается и производит запуск. Под действием пускового заряда ракета вылетает из трубы, вступает в действие реактивный двигатель, который несет ракету к цели. Прицел засекает световой сигнал в хвосте ракеты и производит измерения ее отклонения по отношению к осевой, после чего корректирующий сигнал автоматически поступает по проводам к ракете. От стрелка требовалось только держать объект «на мушке».
С момента первого появления MILAN претерпела некоторые модернизации, и применяемая в девяностые версия называется уже MILAN 3. Ракета оснащается боеголовкой MILAN 2Т тандемного (составного) типа, состоящей из двух отдельных кумулятивных зарядов. «Предварительный» заряд находится впереди главной боеголовки, при столкновении с преградой он детонирует и уничтожает реактивное бронирование или иное «экранирование», которое может находиться перед основным бронированием цели. Через микросекунды детонирует главный кумулятивный заряд, путь которому к броне уже расчищен. Перед таким ударом не устоит броневой лист стали метровой толщины.
Пусковая установка MILAN 3 подверглась значительным улучшениям. Кроме обычного дневного, она имеет ночной термальный прицел, который в светлое время суток может применяться для «разглядывания» излучающих тепло объектов, даже если они надежно замаскированы. «Пиротехнический датчик» в основании ракеты сменила мигающая ксеноновая лампочка. Одним из недостатков инфракрасных прицелов всегда были «отвлекающие излучатели», скажем, если ракета пролетает мимо горящего танка на поле боя, существует риск, что прицел «забудет» о «световом датчике» в хвосте ракеты и отвлечется на более сильный источник тепла. В результате стрелок потеряет управление ракетой, и она улетит в неизвестном направлении.
В MILAN 3 ксеноновая лампочка пульсирует, «выстукивая» определенный код (или ключ), причем у каждой ракеты он свой. При присоединении ракеты к ПУ и включении ракета «раскрывает тайну» своего кода установке. В полете ПУ распознает только определенным способом закодированный сигнал. Таким образом, ни горящие танки, ни вспышки выстрелов, ни какие бы то ни было иные источники света или инфракрасного излучения не могут «сбить с толку» ракету. Еще одно нововведение - компьютер ПУ производит «снимок» цели и подходов к ней на момент производства стрелком выстрела, и изображение на «снимке» постоянно сравнивается с тем, которое компьютер «видит» в настоящий момент. Если вражеский танк выпустит пиротехническую ракету с целью дезориентировать стрелка или систему наведения ракеты, компьютер, сличив изображения, отнесет постороннюю вспышку в разряд несуществующих.
MILAN представляет собой пехотную ракету. Нести ее под силу двум людям, которым хватит секунд, чтобы развернуть и свернуть установку.
По мере того как близились к концу работы над вводом в серию MILAN, консорциум «Евроракета» приступил к созданию более тяжелого оружия, предназначенного для установки на передвижном станке. Первые шаги были предприняты уже в 1964 г., а в 1977 г. развернулся массовый выпуск изделия, известного как НОТ (Haut-subsonique Optiquement Teleguide Tire d?un Tube - оптически управляемая, запускаемая из трубы ракета, передвигающаяся с высокой дозвуковой скоростью), которое виделось европейским эквивалентом американской TOW и действительно получило почти такое же распространение в мире, как и последняя.
В общем и целом НОТ представляет собой увеличенный MILAN. Принципиальная разница в том, что, поскольку установка монтируется на бронетехнике, ракете не требуется сообщать отдельного усилия для выброса ее из ПУ до включения реактивного двигателя (чтобы предохранить стрелка от воздействия струи горящего газа), а потому НОТ производит воспламенение двигателя ракеты прямо в трубе и при полной мощности. Больший размер позволяет применить более сильный маршевый ракетный двигатель, который обладает способностью работать дольше, что, в свою очередь, позволяет добиться максимальной дальности огня в 4000 м. Боеголовка тоже стала крупнее, достигла массы 6 кг, что давало ей возможность пробивать 250-мм бронирование под углом встречи 60°. Как и в случае с MILAN, в конструкцию периодически вносились улучшения, а в одной из последних версий была внедрена система коррекции с ксеноновой лампой, позаимствованная у MILAN 3.
То, о чем мы говорили выше, можно назвать мэйнстримом противотанкового ракетостроения - изделия, о которых у нас до сих пор шла речь, пережили соперников и оставили за бортом конкурентов. Однако немалые усилия предпринимались и вне русла этого «основного потока». Так, скажем, в 1957 г. Германия выпустила изделие «Кобра» -ручное оружие первого поколения (MCLOS), принятое на вооружение ни много ни мало восемнадцатью странами мира. За ним последовала «Мамба» - усовершенствованная версия с лучшим ракетным двигателем. Однако к моменту, когда разработки завершились, уже был на подходе MILAN, который в итоге вытеснил «Мамбу» со сцены действия.
На исходе пятидесятых годов XX века итальянский филиал швейцарского «Контрава» создал «Москито» - легкое пехотное оружие с ручным управлением (MCLOS), обладавшее хорошими характеристиками, но применявшееся при этом только лишь итальянской армией. В середине семидесятых на смену ему пришла MILAN. Шведский «Бофорс» выпускал в конце пятидесятых особо легкую (о чем говорит и название) ракету «Бантам» (или бентам [bantam] - нечто маленькое, малыш) со складывавшимися пластиковыми крыльями, что позволяло транспортировать изделие в небольших контейнерах. Управлявшееся вручную (MCLOS) по проводам изделие имело дальность огня 2000 м. Принятое на вооружение Швецией и Швейцарией в 1963 г., оно «ушло на покой» в обеих странах на заре восьмидесятых, когда швейцарцы сделали выбор в пользу американского «Дракона», а шведы - совершенно нового изделия «Бофорс», Rbs 56 BILL.
BILL (Bofors, Infantry, Light and Lethal - легкое смертоносное оружие пехоты фирмы «Бофорс») можно считать результатом освоения новых «месторождений». К середине семидесятых годов XX века стало очевидным, что танкостроители догоняют разработчиков ракет. Композитное и реактивное бронирование, а также иные достижения в области повышения живучести машин (занижение силуэтов, затрудняющее прицеливание и попадание в более приземистый танк наряду с возрастанием подвижности техники) сделали некоторые виды бронетехники «крепкими орешками». Конструкторы «Бофорс» посмотрели на проблему буквально под другим углом: вспомнили, что самое уязвимое место в танке -верх, или крыша. Поскольку наиболее сильной опасности при атаке с земли обычно подвергались лоб и борта танковой башни, эти участки получали традиционно наиболее сильную защиту. Угроза нападения с воздуха долгое время считалась вторичной и сравнительно невысокой, а потому крыша моторного отсека танка и башня с ее люками отличались куда более тонкой броней. Словом, специалисты с «Бофорса» решили создать ракету, способную нанести эффективный удар как раз в эти слабые места.
Можно было бы выпустить ракету под большим углом в небо, а потом направить ее вниз, чтобы она обрушилась на машину сверху и кумулятивный заряд пробил крышу, но тогда потребовалась бы высокая точность определения дистанции и особые аэродинамические качества. Посему на «Бофорс» нашли иной выход и оснастили ракету боеголовкой, способной действовать по косой вниз, снабдили ее неконтактным взрывателем и запрограммировали изделие так, чтобы оно летело на 75 см выше точки нацеливания.
Стрелок целился в место соединения башни и корпуса, обычный заряд выбрасывал ракету из ПУ, затем срабатывало зажигание ракетного двигателя и ракета летела к цели. Стрелок следил за ней, прицел фокусировался на датчике ракеты, а компьютер отдавал команды по проводам, удерживая снаряд на таком курсе, который бы проходил по заданной траектории, пролегавшей выше точки нацеливания. Когда ракета приближалась к танку, дистанционный взрыватель опознавал цель, анализировал ее, решал, на какой дистанции будет достигнут максимальный эффект применения кумулятивного заряда, после чего происходила детонация. Направленным взрывом наносился удар через наиболее тонкое бронирование, вследствие чего внутри машины производились максимально возможные разрушения. В последней вариации стандартной боеголовки появился тандемный заряд, первая часть которого предназначалась для устранения помехи в виде реактивного защитного слоя, а вторая - для поражения основного бронирования. Есть также и версия самоориентирующейся боеголовки, которая запрограммирована атаковать башню обычным способом (спереди) или, если окажется, что впереди на внешней поверхности слишком много дополнительного бронирования или же имеется реактивная броня, перелететь дальше, после чего выстрелить кумулятивным зарядом в кормовую часть башни или же в крышу моторного отсека танка.
В то время как на Западе эти процессы протекали до известной степени открыто, за «железным занавесом» тоже шла работа в том же направлении, правда, невидимая «невооруженным глазом». Точная дата начала процесса создания противотанковой ракеты Советами не ясна, однако первым из известных стал комплекс «Шмель», окрещенный разведкой НАТО «Снэппером» и примененный арабскими армиями в 1967 г. во время третьей арабо-израильской (иначе Шестидневной) войны. После того как некоторое количество данного вида изделий досталось израильтянам, стало очевидным, что оно представляет собой более или менее точную копию французской ракеты SS10. Управляемая вручную (MCLOS) по оптическим приборам и ведомая по электропроводам, она устанавливалась на передвижной платформе (скажем, на грузовике).
Следующей после «Снэппер» стала - опять-таки по терминологии НАТО - «Суэттер», представлявшая собой куда более продвинутую разработку. Изделие начало свою жизнь как управляемое вручную (MCLOS) по оптическим приборам, но ведомое уже по радиосигналу, а не по привычным в таких случаях проводам. Затем конструкторы внедрили полуавтоматику (SACLOS), а итоговая версия позволяла использовать обе системы, причем оператор мог переключаться с одной на другую даже тогда, когда ракета уже находилась в полете. Подобное может показаться излишеством, однако, если автоматику сбивала вспышка или другой сильный источник тепла и света и контроль за ракетой утрачивался, стрелок имел возможность перейти к ручному управлению. Правда, при максимальной дальности огня 2500 м в его распоряжении имелось всего-то 15 секунд, а потому в случае сбоя оставалось не так много времени существенным образом подкорректировать полет и достигнуть поражения цели.
Третьим явлением среди советских противотанковых ракет стал «Сэггер», вызвавший более всего озабоченности. Впервые он показался общественности на бронетранспортерах во время ежегодного парада на Красной площади в 1965 г., однако во время войны Судного дня (Иом-кипур) в октябре 1973 г. изделие применялось уже и в портативной форме. Арабские солдаты с чемоданчиками (как казалось с первого взгляда) рассыпались на поле боя и запускали маленькие, но очень мощные ракеты, поражавшие израильские танки. В своей первозданной форме оружие управлялось вручную (MCLOS) и корректировалось по проводам, однако на исходе шестидесятых годов его усовершенствовали и снабдили полуавтоматикой (SACLOS) и в результате, как и «Суэттер», стали оснащать обеими системами. При массе всего 11 кг на старте 120-мм боеголовка с кумулятивным зарядом обладала значительной разрушительной силой, тогда как дальность огня «Сэггер» составляла 3000 м. Прицел представлял собой на вид обычный, примитивный, смонтированный на крышке транспортировочного кофра перископ, который просто втыкали в землю рядом с ПУ. Подсоедини пару проводов - и вся установка готова к бою, маленькая и легко поддающаяся маскировке на местности.
После этого представления «Сэггера» СССР долго хранил молчание. Ходили слухи о внедрении полной автоматики, однако лишь только в 1980 г. какая-то более или менее достоверная информация стала появляться в публикациях военной прессы стран Варшавского договора. Новое оружие нарекли «Спигот», при ближайшем рассмотрении оно оказалось очень похожим на MILAN. (Настолько похожим, что специалисты в Индии, армия которой обзавелась советскими системами, смогли адаптировать оружие и приспособить его под запуск ракет MILAN.) ПУ «Спигот» (терминология опять же натовская, как выше и ниже) устанавливалась на станок с тремя сошками, могла послать ракету на максимальную дистанцию 2500 м и гарантировала поражение 600-мм брони, что представляется вполне правдоподобным для 120-мм боеголовки с кумулятивным зарядом. Такая же ракета применялась и с другими ПУ, приспособленными для монтажа на бронетехнике (в этой версии она называлась «Спэндрел»).
Наиболее близкое по времени и широко известное советское изобретение «Сэксхорн» представляет собой портативное оружие ближнего боя, весьма сходное по задачам с американским «Драконом». Ракета предназначается для применения одним человеком, в случае необходимости ее можно запустить с плеча. Корректируемый по проводам и наводящийся полуавтоматически (SACLOS) за счет использования светового датчика в хвосте ракеты «Сэксхорн», как можно считать, поступил на вооружение СССР в начале восьмидесятых годов XX столетия.
Есть еще всего одна ракета, которую можно применять с плеча (исключая примитивные реактивные гранатометы), это - французская «Эри». Разработанная в середине восьмидесятых и поставленная на вооружение французской армии в 1991 г., «Эри» представляет собой корректируемую по электропроводам ракету с максимальной дистанцией огня 600 м, которую она покрывает за 4,2 секунды. Данное обстоятельство определенно не оставляет стрелку времени на ручную корректировку полета, а потому весь процесс автоматизирован. Оператор прицеливается, и ракета покидает установку на малой скорости (поэтому ее можно применять внутри здания, не опасаясь возвратного действия реактивной струи), а затем разгоняется. Управляется она по проводам компьютером, который ориентируется по сигналу ксеноновой лампочки - такая же система, как та, что, как мы уже отмечали, применяется в MILAN 3. Прицел считывает сигнал лампочки, игнорируя иные источники тепла и света, и выводит ракету на объект. Все, что требуется от стрелка, не упускать цель с мушки, и успех ему гарантирован. 160-мм боеголовка с кумулятивным зарядом гарантирует поражение метрового слоя брони.
И что же дальше? Что касается НАТО, то на подходе ракета «Трайгэт», названная так потому, что является плодом сотрудничества трех стран - Соединенного Королевства, Франции и Германии. «Трайгэт» (или «Тригат», тройственная) разрабатывается в двух вариантах - среднего и дальнего радиуса действия. Первая управляется лазером. После запуска ПУ создает «пулевой туннель» (или коридор), по которому и будет путешествовать ракета. Вмонтированный в ее хвост возвратный лазерный датчик автоматически обеспечивает поддержание ракеты внутри туннеля, исправляя любые отклонения от заданного курса. До тех пор, пока стрелок держит цель «на мушке», «Трайгэт» будет лететь навстречу цели. По форме и размерам «Трайгэт» среднего радиуса действия похожа на MILAN и имеет максимальную дальность огня 2000 м.
«Трайгэт» дальнего радиуса действия создается как совершенно иное оружие, предназначенное для установки на вертолетах или бронетехнике, и будет оснащаться системой наведения третьего поколения. Ручная (MCLOS) была разработкой первой генерации, когда стрелок как бы физически (нажимая кнопки и рычажки) воздействовал на ракету, направляя ее к цели. Полуавтоматическая (SACLOS) стала вторым поколением -стрелок держал объект в перекрестие прицела, а ракета автоматически корректировалась по линии прицеливания. Третье поколение образно называется «выстрелил и забудь». Ракета «знает» еще до запуска, куда она полетит, а после него движется к цели самостоятельно без необходимости каких-либо дальнейших действий со стороны оператора, который может перемещаться, куда ему вздумается - прятаться или искать новый объект. Конечно же, для этого требуется четко работающая программа, которая дала бы гарантию того, что ракета «сосредоточится» на цели и не будет «обращать внимание» ни на какие отвлекающие факторы.
На момент написания этой книги (1995 г.) еще нет уверенности в том, какая именно система наведения будет применена в новом изделии. Испытываются два варианта -инфракрасный и радар миллиметровых волн, - а потому пройдет еще какое-то время, прежде чем будет возможным сделать выбор. Есть надежда, что «Трайгэт» среднего радиуса действия поступит на вооружение к 2000 г., «Трайгэт» же дальнего радиуса действия - к 2005 г.
В США разрабатывается другое оружие третьего поколения, «Джэйвлин» (метательное копье, или дротик), представляющее собой совместный проект компаний «Тэксис Инструмент» и «Мартин Мариэтта», которые работают над «средней системой противотанкового оружия» (AAWS/M - Anti-Armor Weapon System/Medium) по техническим требованиям, заданным им армией США. В «Джэйвлин» применен инфракрасный поисковик, или головка самонаведения, который «запирается на цель» до запуска. После него ракета сама «ведет» себя к объекту, чтобы нанести удар по нему сверху. Это все, что известно о «Джэйвлин», плюс масса 16 кг и дальность 2000 м.
Поскольку рассказ о ракетах у нас достиг своего апогея, закончившись на сегодняшнем и даже завтрашнем дне, мы можем еще раз посмотреть в прошлое и вернуться в 1959 г., чтобы вспомнить историю ручной американской ракеты «Шилайла». Началось все с проекта нового вооружения для поддающегося транспортировке по воздуху танка М551 «Шеридан». В целях экономии массы нашли интересное решение в том, что касается его вооружения, разработчикам пришла в голову идея создать 152-мм пушку способную не только стрелять обычными боеприпасами, но и осуществлять запуск ракет или реактивных снарядов. По тогдашним меркам довольно смелый шаг, надо сказать. Весь снаряд приходилось упаковывать в цилиндр малого диаметра, который должен был быть еще достаточно коротким, чтобы заряжать его в установленное в танковой башне орудие. Снаряду предстояло выдержать несколько тысяч «g» при выстреле из пушки, а потом еще «прийти в себя», чтобы оператор мог тем или иным способом вести его к цели. (Нужно заметить к тому же, что пятидесятые годы XX века были таким временем, когда инженеры нередко «откусывали больший кусок, чем были в состоянии прожевать». Период с 1955 по 1965 г. можно назвать десятилетием футуристических проектов, рухнувших под собственной тяжестью.)
Если уж быть объективным, то надо признать, что «Шилайла» оказалась тем проектом, который все же не закончился фиаско, однако, прежде чем ракету удалось заставить работать, потребовалось куда больше усилий и затрат, чем конструкторы предполагали вначале. Можно считать достойным уважения то, что в 1964 г. американцам удалось запустить изделие в ограниченное производство. Испытания и усовершенствования заняли еще три года, после чего в 1967 г. снаряд поступил на вооружение (затем выпустили еще около 13000 единиц данного вида продукции стоимостью примерно $14 ООО каждая).
«Шилайла» представляла собой удивительное оружие. Она заряжалась в орудие как обычный снаряд, выстрел производился с помощью обычного метательного заряда, что позволяло достигнуть начальной скорости 396 м в секунду, после чего срабатывал запал ракеты и она набирала скорость 4185 км/ч. Стрелок держал объект в перекрестии прицела, а ракета автоматически шла к цели по генерируемому ПУ инфракрасному лучу, служившему средством обмена сигналами между ракетой и пусковой установкой. Такая ракета, или реактивный снаряд, имела максимальную дистанцию огня 5200 м. Боеголовка несла 7-кг кумулятивный заряд, который при попадании позволял достигнуть весьма удовлетворительных результатов.
Проблема заключалась в том, чтобы боеголовка попала в объект. Когда изделие поступило в части, стало очевидным, что разработчиков по большей части волновало лишь то, как бы заставить свое детище работать, а вот о том, насколько надежным оно будет, они как-то не подумали. Сам по себе «Шеридан» страдал от целого букета механических недостатков, а ракета оказалась куда менее надежной в жизни, чем это было во время лабораторных испытаний. Всю систему пришлось снимать с вооружения и отправлять на доводку, интенсивный процесс которой завершился лишь в начале семидесятых годов, когда изделие наконец признали более или менее пригодным к применению в условиях реального боя. Но даже и тогда пушечная ракета не оправдала возложенных на нее надежд, а потому на заре восьмидесятых от нее просто отказались, оставив «Шеридану» обыкновенный кумулятивный снаряд. Вскоре после этого, правда, сняли с вооружения и саму машину, которая оставалась лишь как средство огневой поддержки 82-й воздушно-десантной дивизии армии США потому только, что на тот момент ей не нашлось никакой замены.
Таким образом, пушечная ракета, или реактивный снаряд, оказалась дорогостоящей ошибкой - хорошей, но невыполнимой идеей. Между тем тогда, когда американцы махнули рукой на этот свой проект, Советы разворачивали собственную такого рода программу и к концу семидесятых годов XX века поставили на вооружение пушечную ракету (или реактивный снаряд) «Кобра», более известную на Западе под обозначением, присвоенным ей американскими военными, АТ-8 «Кобра». Изделие применялось со 125-мм пушкой Т-64, ствол которой покидало на малой скорости, после чего срабатывал запал ракетного двигателя, который и нес снаряд к объекту. Стрелок держал цель на мушке, а компьютер ПУ обсчитывал положение ракеты и корректировал ее полет с помощью подачи радиосигналов. 7-кг боеголовка «Кобры» с кумулятивным зарядом имела максимальную дальность огня 4000 м.
После нескольких экспериментов, проведенных с этим изделием, конструкторы разработали новое - 9М119. В нем они применили лазерный луч, проецируемый танковым прицелом, который управлял ракетой с помощью кодированных лазерных сигналов. Наиболее важной особенностью этой версии было отсутствие ракетного двигателя, фактически оружие представляло собой управляемый артиллерийский снаряд. После запуска в носу раскрывались четыре «плавника» стабилизатора, с помощью которых прицел и контролировал полет снаряда по лазерному лучу. Отсутствие ракетного двигателя обуславливало возможность закладки большего по массе кумулятивного заряда, и при максимальной дальности огня в 4000 м снаряд 9М119 поражал свыше 700 мм реактивного бронирования.
Аналогичные ракеты, или реактивные снаряды, но с ракетными ускорителями изготавливались и для 100-мм и 115-мм танковых пушек Советской (а теперь Российской) армии. Все имели дальность огня 4000 м и кумулятивные боеголовки. Единственно, что не ясно в отношении этих ракет (или снарядов), это то, обладают ли они той точностью огня, как утверждают производители. Данное орудие не подлежало вывозу из СССР, а потом никогда не поставлялось ни арабским, ни каким-либо иным странам, а потому никто не мог оценить их эффективность в условиях реального боя.
Совершенно очевидно, что все ракеты, о которых у нас шла речь выше, имеют одно общее для всех свойство - это есть вооружение, применяемое в условиях прямой видимости. Общее условие - пусковая установка должна «видеть» цель. Небольшие исключения, когда ракета позволяет осуществлять запуск из укрытия в стороне от ПУ, ничего не меняют, потому что сам оператор должен все равно находиться в положении, из которого он видит цель, к тому же ПУ от него отделяют всего какие-нибудь несколько метров.
Еще одно общее качество - все вышеназванные системы могут применяться на дистанции максимум 4000 м. Для того есть технические причины: сигнальная система (или система связи), какой бы она ни была - проводная, радио или лазерная, - редко оказывается в состоянии эффективно работать на больших расстояниях. Однако вспомним и о практических причинах - о том простом факте, что вообще не так часто представляется возможным видеть цель на удалении свыше 4000 м. Исключением могут служить арктические широты или пустыни, однако в большинстве уголков планеты всегда найдутся какие-нибудь объекты вроде деревьев, пригорков или зданий, которые будут загораживать цель.
Тем не менее обычно всегда предпочтительно держать врага на как можно большем удалении - так сказать, «на расстоянии вытянутой руки», - не позволяя ему первым применить свое оружие. И вот размышления в данном направлении приводят нас к логическому завершению темы - к последней группе «умного» оружия, или «умных» боеприпасов.
По всей видимости, своим происхождением «усовершенствованные обычные боеприпасы» (Improved Conventional Munition - ICM) обязаны разработке кассетных бомб для авиации. Такие бомбы представляли собой не более чем контейнеры с «мини-бомбами». Контейнеры сбрасываются с самолета, и реле времени или сенсор высоты активируют взрыватель, открывающий контейнер и высвобождающий мини-бомбы. Мини-бомбы насыщают собой участок местности и либо взрываются сразу, производя разрушения, либо лежат, ожидая, когда кто-нибудь заденет их, вследствие чего произойдет детонация. По этой причине их часто называют «зональным нейтрализующим оружием», поскольку выброска таких бомб на взлетном поле или на аналогичном участке нейтрализует его, не позволяя людям перемещаться там самим или перевозить какие-то грузы до того, как местность будет тщательно очищена от мини-бомб.
В течение многих и многих лет артиллерия стреляла боеприпасами, которые в общем и целом можно назвать несущими снарядами. Они всегда что-нибудь содержали - дымовые шашки, ракеты или ракеты на парашютах, пусть даже листовки. Содержимое выбрасывалось из такого снаряда по срабатывании взрывателя в определенной точке траектории. Вот американским инженерам-оружейникам и пришло в голову начинить мини-бомбами артиллерийский снаряд.
Первые ICM содержали противопехотные мини-бомбы, которые ударялись о землю и детонировали, разбрасывая вокруг множество осколков. Потом пришел черед кумулятивных мини-бомб, которые также могли поражать сразу несколько целей вроде машин или танков, а также людей за счет все тех же образующихся при взрывах осколков. Затем появились малые противопехотные мины, которые рассыпались по участку местности, лежали там и ждали, когда на них наступят неосторожные пехотинцы. За ними - что логично предположить - пошли в ход и более крупные противотанковые мины, которые точно так же поджидали свою жертву - танк, бронетранспортер или машину.
Военные понаблюдали за действием всех вышеизложенных версий, подумали и пришли к выводу, что инженерам следует изобрести такое ICM, которое бы помогало поражать прежде всего бронетехнику, чтобы иметь возможность вывести из строя вражескую бронетанковую колонну, когда та находилась бы еще на удалении в 25 или хотя бы в 15 км. Если удастся проредить ряды танков противника еще на марше, то потом останется меньше работы для оружия, ведущего огонь прямой наводкой.
Сами по себе мини-бомбы могли представлять угрозу только для тонкой брони -большинство мини-бомб пробивали около 60 мм при удачном попадании, - чего было недостаточно для выведения из строя основных боевых танков. Решением виделись более крупные мини-бомбы, но в меньшем количестве. По сравнению с ракетами, ICM стоили дешевле, что позволяло произвести несколько выстрелов за стоимость запуска одной ракеты. Иными словами, даже если каждый снаряд будет содержать в себе всего три или четыре мини-бомбы, все равно такое оружие будет оправдывать себя в плане затрат.
Не вызывало сомнения, что подобные боеголовки нецелесообразны при малых калибрах, а потому на начальном этапе американцы остановили выбор на 8-дюйм. (203-мм) гаубице. Ближе к концу семидесятых годов XX века концепция доказала свою жизнеспособность, однако потом решили, что чаще применяемая 155-мм гаубица станет более эффективной. В итоге «восторжествовал» 155-мм снаряд ХМ698 «найти и уничтожить танк» (SADARM -Seek And Destroy ARMor), который должен пойти в валовое производство в 1996-1997 гг.
SADARM содержит два снаряда, каждый из которых оснащен парашютом. Часовой механизм детонирует запал в основании снаряда над целью и освобождает два «малых снаряда», которые начинают спускаться, медленно вращаясь. Когда раскрывается парашют, сенсорный блок (два радара миллиметровых волн и один инфракрасный) принимаются сканировать участок местности внизу Вращение снарядов протекает медленно, и сенсоры сканируют постоянно уменьшающийся круг. Они запрограммированы на опознавание танка и, как только засекут объект, будут «вести» его до тех пор, пока он не окажется в достаточной близости, чтобы заряд сработал с максимальным эффектом. В днище боеприпаса находится тяжелая металлическая пластина, под воздействием силы взрыва превращающаяся в металлический снаряд, который с большой скоростью устремляется к верхней поверхности танка. «Образовываемый взрывом пробойник» (Explosively Formed Penetrator), как называется такая боеголовка, обладает достаточной мощностью, чтобы поразить верхнее бронирование любого танка.
Если вспомнить о том, что стреляет такими снарядами 155-мм гаубица, максимальная дальность огня которой 20 км, становится очевидным, что танки рискуют оказаться в опасности на дистанции, на которой сами они не могут нанести противнику никакого вреда. Аналогичный снаряд, называющийся «Смарт» 155 («умный» или «умник»), производится в Германии. Чтобы показать, какие технологии воплощены в этом боеприпасе, зачитаем спецификацию производителя:
«Система сенсорного взрывателя включает в себя способные гарантированно выдержать воздействие возникающей при орудийном выстреле силы тяжести многоканальные инфракрасные и миллиметровые сенсоры, процессор обработки цифровых сигналов и блок питания. Система сенсоров получает сигналы, излучаемые или отражаемые целью и участком местности вокруг нее. Сигналы обрабатываются по алгоритму, который обеспечивает распознавание бронетехники даже в условиях плохой погоды и сложной местности с высоким уровнем выбраковки ложных целей. Блок питания включается только после того, как уровень вращения и торможение снизятся до определенного предела, тогда как инфракрасные сенсоры вступают в действие только после того, как начинается стадия снижения с вращением.
Механизм уничтожения состоит из формируемого под действием взрыва пенетратора (пробойника), предохранителя и заряда. Пенетратор обладает высоким уровнем бронепробиваемости и способностью вызывать значительные разрушения внутри танка или иной бронетехники».
Вот такое устройство - вернее, два устройства - содержится в 155-мм снаряде. Аналогичные снаряды производят во Франции фирма «Томсон-Брандт» и в Швеции компания «Бофорс», оба изделия находятся на пробных испытаниях у французских военных.
Конечно же, Советы все время рядом - опережают или дышат в затылок. 152-мм (6-дюйм.) ICM с 42 двухцелевыми мини-бомбами появился в восьмидесятые годы. Изделие скопировали Чехословакия, Румыния и Югославия. В 1993 г. появились сведения о скором представлении 152-мм (6-дюйм.) снаряда типа SAD ARM, о котором неизвестно ничего, кроме того, что он будет содержать два малых снаряда и действовать за счет применения сенсоров миллиметровых волн.
Убедившись в том, что артиллерия вполне оправдывает себя как средство нанесения удара по танку на значительном удалении, конструкторы вспомнили о «личной пушке» пехотинца
- о миномете. Данное оружие имеет меньший калибр, чем стволы тяжелой артиллерии, к тому же его приходится заряжать с дула, а потому масса и размеры становятся весьма важным фактором. Минометная мина калибра 120 мм с «миниминами» внутри нее была разработана в Испании и в Греции, однако диаметр таких малых мин - 30 мм - и соответственно их вес - 285 г - позволяют выводит из строя лишь наиболее легкие бронированные боевые машины или бронетранспортеры; едва ли можно всерьез рассчитывать уничтожить с помощью такого оружия основной боевой танк противника.
Чтобы сделать миномет эффективным средством поражения бронетехники, требовалось нечто более специализированное. Самый простой ответ - поместить кумулятивный заряд в мину, однако точность боя миномета не сравнима с точностью огня артиллерийского орудия, а потому попытки вывести из строя с дистанции танк обычной минометной миной были бы неоправданной, если не сказать напрасной тратой времени и сил. Ситуация подразумевала некую изощренность в таком простом изделии, как мина.
Первыми «углубиться в тему» отважились немецкие военные, которые в 1975 г. потребовали от ученых создания управляемой минометной мины. Вначале появился «Буссард» («сарыч») калибра 120 мм (4,72 дюйм.). При заряжании и выстреле мина его ничем не отличалась от всех других минометных мин, однако после оставления ею ствола вела себя совершенно иначе. Когда траектория снаряда достигала апогея и он затем начинал снижаться, происходило следующее: выдвигались четыре стабилизировавшие полет плоскости оперения, запускался газогенератор, обеспечивавший источник энергии, и включалась расположенная в носу бомбы лазерная система распознавания цели. Наблюдатель на земле должен был высветить выбранную цель лазерной «указкой». Частично лазерный луч отражался вверх. Излучение это улавливала головка самонаведения в носу «Буссарда». Сигнал обрабатывался, и система управления корректировала направление падения мины, наводя ее на цель.
Ученые создали и вариации - в частности, систему, работающую на частоте миллиметровых волн или опознающую тепловое излучение. Ни то ни другое изделие не нуждалось в «указке» наблюдателя и превращалось в оружие типа «выстрелил и забыл». В настоящее время изделие находится на пробных испытаниях у немецких военных. Несомненно, прослышав об изобретении немцев, их коллеги-оружейники в Швеции и в Соединенном Королевстве приступили к развертыванию аналогичных программ. Компания «Бофорс» разработала 120-мм минометную мину «Стрикс» (одна из разновидностей совы), тогда как «Бритиш Эйроспейс» изготовила 81-мм «Мерлин». Шведский проект стартовал в 1984 г. еще на фирме FFV при помощи «Сааб Миссайлс», но в 1990 г. разработка от FFV перешла к компании «Бофорс». «Стрикс», если можно так выразиться, полностью «самодостаточна», она не требует лазерной «подцветки» объекта, выстреливается как самая обычная минометная мина, если не считать того, что в конструкции ее применен специальный хвостовой блок с обычным движущим зарядом, который отделяется от мины после оставления последней дула. Затем она путешествует по обычной баллистической траектории, за счет бустера в виде ракетного двигателя (если требуется увеличить дальность полета), а уже на завершающей стадии снижения снаряда в действие вступает инфракрасная головка самонаведения (или поисковик), которая выбирает подходящую мишень и приводит мину к ней так, чтобы удар пришелся в верхнюю поверхность машины. Тыльная секция мины заполнена кумулятивным зарядом, тогда как остальная ее часть служит для разгона реактивной струи, что позволяет последней развить максимальную скорость перед встречей с танковой броней.
Мина «Мерлин», со своей стороны, конечно, значительно меньше, поскольку штатный калибр миномета в британской армии - 81 мм. Тем не менее в ней нашлось место миллиметровому радару и системе наведения вместе с кумулятивной боеголовкой. Выстрел производится обычным способом. После выхода из ствола раскрываются шесть плоскостей расположенного в тыльной части стабилизатора, которые придают изделию аэродинамическую устойчивость, а в носу выходят четыре «утиных плавника» для контроля за направлением полета. Поисковое устройство включается после достижения миной высшей точки траектории, после чего головка наведения принимается искать движущуюся цель, а если не находит таковой - ищет неподвижную. Головка «обшаривает» участок в 300 кв. м, после того как засекает цель, посылает необходимую информацию системе наведения, для того, чтобы та могла произвести корректировку полета. Эффективность мины «Мерлин» всесторонне доказана и, по-видимому, только трудности финансового порядка мешают поступлению ее на вооружение британской армии.
На исходе восьмидесятых годов XX столетия компания «Боинг» в США вела многообещающую программу по созданию управляемой мины для штатного американского 107-мм миномета. Подход «Боинга» можно назвать радикальным. Мина оснащалась телевизионной камерой в носовой части и оптико-волоконным кабелем, благодаря которому оператор имел возможность в буквальном смысле видеть, что с ней происходит. По кабелю поступал и сигнал с пульта управления, что позволяло расчету выбирать цель, по которой он желает нанести удар. Все, казалось бы, шло как по маслу, когда командование армии США решило, что 107-мм миномет свое отжил, а посему на смену ему должен прийти 120-мм миномет, в результате «Боингу» пришлось начинать сначала. Компания провела ряд испытаний, стремясь доказать действенность идеи, и даже расширила горизонты, обратив внимание и на 81-мм пехотный миномет. Работы над 120-мм «оптико-волоконным минометным снарядом» (FOMP - Fiber-optic Mortar Projectile) и 81-мм «пехотным оружием нанесения точного удара» (IPAW - Infantry Precision Attack Weapon) еще не закончены, но есть все основания предполагать, что они завершатся созданием эффективных противотанковых снарядов, которые будут обходиться дешевле, чем дорогостоящие мины типа «выстрелил и забудь».
Так или иначе, оценка подлинной действенности «умного» оружия - вещь далеко не простая, поскольку лишь немногим конструкциям и разработкам выпадает шанс пройти испытания в условиях реального боя. Израильская армия решительно доказала, что ракеты «тоу» способны остановить советской постройки танки Т-72, тогда как и опыт арабов тоже не оставляет сомнения в том, что советские ракеты могут уничтожать израильскую бронетехнику. Однако и те и другие испытатели знают не понаслышке, что хорошая пулеметная очередь над головой оператора ракеты (если, конечно, удастся засечь его позицию) может отвлечь его от боевой работы достаточно надолго для того, чтобы он утратил контроль над ракетой и она улетела неведомо куда, не причинив никому вреда. Британская армия на Фолклендских островах применяла MILAN в качестве средства подавления пулеметных гнезд - довольно дорогостоящий способ уничтожать пулеметы, -однако не имела возможности испробовать данное оружие в качестве противотанкового. Как можно судить, случаев применения противотанковых ракет по их прямому назначению в ходе войны в Персидском заливе (в 1991 г.) почти не отмечалось (если они вообще были), хотя SADARM сделали несколько залпов в качестве эксперимента, ну и, конечно, мини-снаряды в оболочке 155-мм контейнера показали себя отличным противопехотным средством, честно отслужив данное им прозвище «Железный дождь».
Вот, собственно, и все реальные испытания. Остальное - учебные стрельбы, демонстрации и рекламные проспекты производителей.