The End of History: Submarines in the Post-Cold War World

What a difference a decade makes. Since the publication of the first edition of Submarine, there have been numerous changes to the submarine forces of the world's navies, especially that of the United States. Perhaps the most obvious of these are the introduction of the Seawolf-class (SSN-21) boats into service and the continuing work on a new submarine-the Virginia (SSN-774) class. There have been other dramatic changes as well, especially in the fields of engineering, sensors, and weapons. These advances have led to breathtaking improvements in the way we design and plan submarines of the future. At the same time, they will have a profound impact on the way the Navy's newest submarines will fight the potential battles of the twenty-first century.

Submarine Operations in the 1990s

The decade of the 1990s opened with American submarines supporting their first shooting war since 1945. Operation Desert Storm allowed the U.S. submarine force to participate in a major conflict, through the use of BGM-109 Tomahawk land attack cruise missiles. The American boats also provided other valuable services during the 1990–1991 war, such as intelligence gathering, maritime surveillance, and special operations support. This trend continued throughout the decade, despite the radical drawdown in the size of the submarine forces of all nations. In fact, the collapse of the Soviet Union and its navy in the 1990s actually freed up the U.S. submarine fleet to undertake a much broader and more significant set of roles in addition to such dangerous yet essential tasks as keeping track of enemy "boomers" and their escorting attack submarines.

Two artists' concepts for future Royal Navy nuclear submarine designs for the twenty-first century. U.K. MINISTRY OF DEFENCE

Submarines in the 1990s became significant strike platforms, launching Tomahawk attacks into Iraq, the Balkans, and even the retaliation strikes against the Osama bin Laden terrorist organization. So valuable was the capability of submarine-launched cruise missiles that the United Kingdom bought a supply of Tomahawks for their own boats, firing several dozen at Serbian targets during Operation Allied Force in 1999. This covert precision-strike capability has become so attractive that the Royal Navy has looked at equipping every British submarine, including strategic ballistic missile boats, with a supply of American cruise missiles. The U.S. Navy has also considered adding Tomahawks to strategic missile boats, proposing to convert the four oldest Ohio-class SSBNs into huge guided missile /special operations platforms.[11]

Another role that submarines have made their own has been in the arena of special warfare and operations. While the British have always used their fleet of boats to deliver and extract special-operations force (SOF) units like the Royal Marines and their Special Boat Squadrons, American nuclear boats spent most of the Cold War chasing Soviet subs and ships. The exception, of course, was the handful of so-called Special Projects boats, which were converted from existing SSNs.[12] However, the end of the East-West conflict and the emergence of the U.S. Special Operations Command as a result of the 1980s defense reorganization acts has changed all that. Today, SOF units from not only the Navy (the famous SEAL teams) but from the Army Special Forces (the "Green Berets") and Marines now regularly practice their trade from nuclear submarines.[13] Two older strategic ballistic missile boats have even been converted into transport submarines to support the SOF mission.[14]

Another "growth" mission for submarines in the 1990s has been intelligence gathering, though obviously with less of a focus on the former Soviet Union. The end of the USSR in 1991 freed up American and British boats to keep an eye on a number of other "hot" spots around the world and provide the intelligence services with even more tools and resources to keep an eye and ear on things. One recent example of this probably occurred following the in-flight collision of a U.S. Navy EP-3E Aries electronic surveillance aircraft and a Chinese J-8 interceptor over the South China Sea. Though there was a "gap" in the coverage for the U.S. from the air prior to the flights being resumed, rest assured that electronic and communications activity along the Chinese coast was probably being monitored by one or more U.S. submarines. Not only did this fulfill our minimum intelligence-collection requirements, but it also maintained a covert discretion that surface ships and aircraft cannot maintain.

Finally, there are the now-mundane but terribly vital jobs that nuclear boats did throughout the Cold War: watching and tracking the ships and submarines of potential enemies and hostile nations around the world. This has meant that in addition to watching the dwindling fleet of Russian ships and submarines, U.S. and British boats have been keeping an eye on those nations who were quietly developing their own fleets in the 1990s. This may sound surprising, given the worldwide drawdown of naval and submarine forces that followed the end of the Cold War. However, a number of countries began to build up their naval forces in the decade just past, and American and British submarines were out there, watching them every important step of the way.

Into the Twenty-first Century: Submarine Forces at the Millennium

There has been good news and bad news for the submarine forces of the United States and Great Britain. The good news is that due to the demise of the USSR, several regional economic downturns, and the general outbreak of peace, the size of the worldwide submarine force has shrunken to a fraction of its Cold War peak. Literally hundreds of submarines, from ancient diesel boats to state-of-the-art nuclear attack and missile submarines, were taken out of service. In the most radical cases, some of the units from the former Soviet fleet were just driven up onto shore and ditched like whales beaching themselves to die. It was a pitiful ending for the world's largest submarine force.

The bad news is that the submarines that remain in worldwide use are generally the pick of the litter: the best every nation still operating them can afford to maintain. This means that if a shooting war ever breaks out, the boats and captains facing U.S. and British submarine skippers will likely be very capable enemies indeed. Then there is the matter of those nations that have failed to notice the general outbreak of peace in the 1990s. Countries like China, Iran, and India have been building up their navies, and at the core of these efforts have been the expansion of their submarine forces. Many of these have been exported Russian Project 877/Kilo-class diesel/electric submarines (SSKs), armed with some of the best weapons ever offered for sale on the open market.

Similarly, the U.S. and many of our allies are producing the finest submarines, skippers, crews, and weapons that their treasuries can buy. However, these forces will be largely based on "legacy" designs like the 688Is and Trafalgars, with only limited numbers of new boats to replace the many units that were retired in the 1990s. This means that friendly forces will have to make do with what they have while the new designs mature and come into service. While there can be little doubt of the outcome of a one-on-one battle between a U.S. or British SSN and a submarine from some rogue nation, there is always the small chance that the "bad guys" will score a lucky "kill." The gods of war are a fickle lot, and the worst frequently happens when ordnance begins to fly. Given the public reaction to the loss of eighteen U.S. special operations soldiers in Somalia in 1993, one can only imagine what the national reaction might be to the loss of a billion-dollar-plus nuclear boat and over a hundred sailors. The accidental loss of the Russian Kursk (K-141) in the summer of 2000 gave everyone who operates submarines a shock, and something to think about as they headed into the new millennium.

So what does this all mean in terms of numbers of boats? Well, not as many as the leaders of the U.S. or British navies would like, of course. From a Cold War high of almost 100 and 20, respectively, the totals have dropped to around half that. Today, the Americans plan on maintaining a force of around fifty SSNs, while the British are hard-pressed to keep ten to twelve in service. This represents a very small number of platforms to accomplish a large range of missions. We are thankfully without an active naval conflict to fight, and this number will have to do.

The progressively lower noise levels emitted by various U.S., Soviet, and Russian submarine classes. As can be seen, the Soviet/Russian boats have gotten much closer to the stealth of U.S. boats over the years. OFFICAL U.S. NAVY GRAPHIC

The Seawolf (SSN-21) Class: The Ultimate Cold War Attack Boat

Without a doubt, the most advanced submarine ever to enter service did so at a grand commissioning ceremony on July 19, 1997 in Groton, Connecticut. The USS Seawolf (given the hull number SSN-21) was to be the touchstone of the U.S. Navy's submarine forces' transition into the twenty-first century.[15] Certainly Seawolf is an impressive foreshadowing of technological advances to come, though this is achieved at an almost unacceptable cost. Also, as impressive as Seawolf is, she is not without her share of disputes and detractors. In fact, Seawolf has often been referred to as the most controversial submarine in American history, and there is a lot of truth to this claim.

Authorized to the defense budget in fiscal year 1989 (FY89), Seawolf was originally intended to be the lead unit of a class of almost thirty boats. This revolutionary sub was designed to succeed the Improved Los Angeles (688I) class attack submarines. As such, she falls into the same class of weapons as the F-22A Raptor fighter and B-2A Spirit bomber: unlimited Cold War designs put into production with little concern for cost at their time of conception. In this regard she is a success, as Seawolf is reported to be an improvement over the Los Angeles-class boats in nearly every aspect. The biggest pure attack submarine ever built, Seawolf also was the last SSN to bear the imprint of the father of America's nuclear navy, Admiral Hyman G. Rickover. In particular, the Seawolf's S6W reactor was the last whose development he supervised, the crowning achievement of his career in many ways. Perhaps the most important improvements over the 688Is were in the areas of machinery quieting, sensors and electronics, and weapons load-out and handling. All of this will be covered later, but first let's examine the post-Cold War environment to get a better idea of why the Seawolf became such a hotly debated design.

USS Seawolf (SSN-21) layout. RUBICON, INC., BY LAURA DENINNO

Seawolf (SSN-21) Design Concepts and History

Every weapons system has a core concept behind it, and Seawolf is no exception. Back in 1989, the Soviet Union was still considered a major threat to the United States, though much less of one than it had been during the previous decades. The last year of the 1980s was one of the most dramatic in world history and included the fall of the Berlin Wall and withdrawal of the last Soviet troops from Afghanistan. However, as President George H. W. Bush was entering the White House, the U.S. government was justifiably cautious and unsure of how permanent the changes inside the Soviet Union really were. The Department of Defense (DoD) even continued publishing a famous annual document assessing the Soviet military threat, though with a minor subtitle-Soviet Military Power: Prospects for Change-recognizing a possible thawing of the Cold War. The next few years, though, were a very confusing time for the military planners at DoD.

USS Seawolf (SSN-21) conducts her first at-sea trials on July 3, 1996. OFFICIAL U.S. NAVY PHOTO

Perhaps the biggest problem DoD faced in the changing global climate was that while the end of the Cold War finally appeared to be a possibility, the American military still needed to prepare for the worst. The Soviet Navy still outnumbered the United States Navy in many ship categories, including the all-important area of submarines. New classes of Soviet submarines seemed to be continually entering service in the 1980s, and the United States simply could not rest on the hope that the Los Angeles-class would forever remain the best boats in the world. It was this environment in which the USS Seawolf was conceived.

From a naval combat point of view, it was clearly understood (in fact it was official U.S. Navy policy) that antisubmarine warfare (ASW) was to be the U.S. Navy's top war-fighting priority. The Soviet Union and their Warsaw Pact allies could deploy more submarines than the Americans and NATO, and many of their attack and cruise missile submarines were designed with two dangerously important purposes in mind-antishipping and anticarrier operations. The first of these missions dealt with destroying European-bound shipping, along with escorting warships that provided the vital lifeline of the Atlantic-which the United States would have to cross to reinforce and supply its NATO allies in the event of World War III.

The second role of Soviet attack submarines was the so-called anticarrier role, designed to destroy American and NATO aircraft-carrier battle groups, the alliance's most powerful and mobile strike weapon at sea. The Soviets and the Americans both knew that while a carrier's aircraft and escorts might detect and intercept enemy bombers at great distances, the nature of the submarine threat meant that they would not be able to defend against Soviet boats with the same level of efficiency. The role of carrier-hunting submarines, like the missile-armed Project 670/Charlie I/II and Project 949/Oscar I/II SSGNs, was to sneak into range of an American battle group and attack the prey before they were ever detected. This was a very real threat during the Cold War, and it was for this reason that ASW was so vitally important.

One of the best ways to kill a submarine is with another submarine. Continued improvements to the Los Angeles class of submarines were extremely effective and significantly increased the 688I's ability to conduct many types of missions. However, as much as the budget cutters hate to admit it, there comes a time when even the most advanced weapons designs begin to reach their technological limits. In the early 1980s, just as the Navy was ordering the first 688Is, thinking began in earnest about the follow-on to the Los Angeles-class boats.

In the past, much of the silent East-West submarine battle had been fought in the deep ocean depths, far from view of the nearest land. This was to have been the Seawolf's true home. She would be faster, deeper diving, and quieter than any attack submarine the world had ever produced. With ASW already acknowledged as the U.S. Navy's top mission, Seawolf would become the tool for meeting this essential priority. As might be imagined, the project was going to cost some money-lots of money! Initial FY89 cost estimates for the submarine ran in the neighborhood of $39 billion for the full class of thirty boats, which made them the most expensive such vessels in American history. Initial plans called for building three subs per year, which would allow the U.S. Navy to maintain a sufficient force of boats to conduct the required operations in the event the Cold War ever turned hot. It was a good plan, except for the fact that the war it had been designed to fight disappeared within a little over two years.

That type of money-$39 billion-was hard enough to come by during the height of the Cold War and became impossible once it ended. As an uneasy friendship between the U.S. and the former Soviet Union began to grow, so did pressure to trim the American defense budget, which had been slowly declining since the end of the Reagan years. As U.S. politicians clamored for their share of the so-called Peace Dividend, the Defense Department and the Navy began to reexamine exactly what role Seawolf might play in twenty-first-century submarine-force structure. One of the primary lessons learned from the Persian Gulf War was that while submarines were designed to operate in the depths of the blue ocean, there was also an all too frequently ignored requirement for them to support operations on land. Quickly, the Navy began to see the writing on the wall concerning spending on this very expensive weapons program. Several months after the end of the 1991 Gulf War, the chief of naval operations (CNO) announced that Seawolf construction would be cut from the planned three subs a year to a more modest one per year. However, even this plan was modified once the realities of post-Cold War finances and technology began to make themselves known in the 1990s.

The first of the problems for the new class were technical, as might be imagined for such a state-of-the-art weapons system. High-strength HY-80 steel had been used in nearly all previous American nuclear submarine designs since the Skipjack (SSN-585) class of the 1950s. Nevertheless, for the deep-diving Seawolf, stronger metal would be needed. Initial plans looked at material as strong as HY-130 steel, but this was eventually shelved in favor of HY-100. The HY-130 was just too hard to work and weld, and production problems with it looked inevitable. Therefore, the Navy and Electric Boat thought HY- 100 would be a good compromise between ease of manufacture and greater diving depth. Unfortunately, even the HY-100 steel had its problems when Electric Boat got working. In midsummer 1991, the Navy announced that massive weld failures had been uncovered on Seawolf's hull as it underwent construction. These welding cracks, which might very well have been deadly had they not been discovered and repaired, meant that all welding done to date needed replacement. This caused production of Seawolf to be delayed an additional year and added more than $100 million to the already high price of the new boat.

Then further bad news arrived. In 1992, after concluding an agonizing analysis of the situation, the DoD (under then Secretary of Defense Dick Cheney) decided to cut funding for all of the planned SSN-21-class submarines except for the Seawolf herself, which was already under construction. As might have been predicted, with the 1992 presidential election looming, the Seawolf program would become a hotly contested political issue.

Running in a tight Democratic primary, a young governor from Arkansas named William Jefferson Clinton announced in 1992 that if elected president, he would save the Seawolf program and continue production past the first unit. Though criticized by some Democrats as supporting a weapons program even the Republicans wanted to cancel, Clinton's gambit paid off. When he won the White House in 1992, he took with him Connecticut's electoral votes, something that might have been impossible without the support of one of that state's biggest employers and its workers-General Dynamics Electric Boat Division-the Seawolf submarine's prime contractor. It is interesting to note that the second submarine of the class was appropriately named USS Connecticut (SSN-22).

The year 1992 also marked the beginning of a changing strategy for U.S. Navy forces. It was during this year that the Navy and Marine Corps released their seminal document that was to serve as a guide for planning the Navy and Marine Corps of the twenty-first century. Entitled From the Sea: Preparing the Naval Service for the 21st Century, the document spelled out the biggest change in U.S. naval strategy and policy since the end of the Second World War. Declaring boldly that the Navy's current command of the seas allowed it to concentrate on areas of more likely future conflicts, namely the "littoral" or coastal zones of the earth, the Navy would dramatically alter the planned environment in which they were preparing to fight. In essence, From the Sea declared that the ability of the Navy and Marine Corps team to project power from the water and impact events on land would be of dramatically greater importance to future naval planning-more so even than the deep ocean operations of the Cold War. Gone were the days when the so-called blue-water navy took top priority while brown-water units (riverine, mine-hunting, and amphibious forces, among others) languished as a result of a lack of training, funding, and attention from the senior leadership. Impacting events on land was something the U.S. Marine Corps and SEALs community had done for decades, but it was something the majority of U.S. Navy officers and sailors had to learn quickly if the Navy was to have a seat at the table when new conflicts erupted.

While this confident new plan was essential to the Navy's future, it was not good news for the Seawolf program. Seawolf had been designed to fight in the ocean depths and to hunt Soviet submarines. To this end, it was the quietest, deepest-diving attack submarine America had ever planned. The problems facing warships in the shallow, murky "brown" water of the coastal regions were entirely different from those encountered in the open ocean. This was especially true for submarines, which relied on deep diving depths and sensitive passive sonars to maintain their stealth-both of which would be of limited use in the brown-water combat environment.

As if this was not bad enough, the new Seawolf-class boats were also extremely expensive. Practically every part of the Seawolf's design was controversial. While this was largely due to the high cost of incorporating advanced systems into a revolutionary design, there seemed to be problems all along the way, which some of the world's best experts were put to work solving. The result was a truly amazing piece of machinery, which has run taxpayers somewhere in the neighborhood of $2.8 billion per unit of the class. While this may sound like a lot, take into consideration that the Air Force paid $2 billion for each of twentyone B-2A Spirit stealth bombers.

Fortunately, plans for a new submarine that would incorporate the technology of the Seawolf into a boat the size and cost of the Los Angeles class were already in the works. Faced with these fiscal and strategic realities, the Navy put new emphasis on a submarine they were calling Centurion-today known as the Virginia (SSN-774) class. It thus came as no surprise when, in October 1993, Secretary of Defense Les Aspin released the results of the Bottom-up Review (BUR) in which it was explained that Seawolf production would end after only three boats, holdovers from Clinton's election '92 promise, had been constructed.

Seawolf (SSN-21): A Guided Tour

Once you get over the sticker-price shock (something Congress never seemed to do!), you can discover exactly how revolutionary Seawolf actually is, and it's something of which every American can be justly proud. Let's start out by discussing the design of this big, beautiful boat. Prior to Seawolf's design, every class of U.S. submarine since the Skipjack (SSN-585) class of the 1950s had been an "iterative" design. That is to say, the basic design of submarines was modified so that each new class was based on the solid design of an older ship, incorporating a mix of old and new technology.

Thus the classes between the Skipjack and Los Angeles were all modified designs of the same original boat. This all changed with the Seawolf design. Seawolf was the first submarine design in over thirty years to be planned totally new from top to bottom.

USS Seawolf (SSN-21) interior layout. RUBICON, INC., BY LAURA DENINNO

Everything about the Seawolf (SSN-21) and her sister boats, Connecticut (SSN-22) and the not-yet-in-service Jimmy Carter (SSN-23), is new and improved. She is big, displacing an impressive 9,137 tons submerged. Starting from the stern, we begin our look with what many people would mistakenly think is one of the simplest parts of a submarine: its screw. Known as a propeller to those outside the Navy, the screw is actually one of the most complicated parts of a submarine, and its construction is a closely guarded national secret. The construction of the Seawolf's screw has been essential to her requirement for quiet running at high speeds.

As mentioned earlier, the British built their Trafalgar-class SSNs with a shroud covering the propeller, which had the benefit of quieting excess noise generated by the sub's screw out into the water. A similar design is used in the U.S. Navy's Mk 48 torpedo, albeit on a smaller scale. Known as a "pumpjet propulsion system," the design works well. According to one report, running at 25 knots, Seawolf is quieter than a 688I that is just sitting at the pier! Other stories indicate that Seawolf is able to run quietly at twice the speed of any previous American attack submarine. Other sources are more direct and attribute to Seawolf a virtually "silent speed" of 20 knots. While numerous elements go into these quieting secrets, you can bet that the Seawolf's pumpjet propulsor plays a key role. Hidden inside the covering shroud of the propulsor is a single propeller shaft similar to those that have been used by U.S. attack submarines since the advent of nuclear propulsion.

If you were to look at a photograph of a Seawolf under construction or in dry dock, you would be able to see many of the sub's sensors as you glance at the sides of its hull. In particular, the boat is designed with a unique surface tail configuration and gives the impression of six thin, flat "fin stabilizers" jutting from the aft of the boat, which face out at varying angles from the shrouded prop. Fitted to the stabilizer at the four- and eight-o'clock positions are shrouds through which the sensitive TB-16D and TB-29 towed array sonars are streamed out from the boat. As you move around to the sides of the lower hull, you'll notice one of the biggest advances perfected between the construction of the last of the 688I boats and the new Seawolf. This is the addition of the BQG-5D Wide Aperture Array (WAA) system sensor fittings. Although invisible when the sub lies in the water, the WAA is one of the most distinctive features of this revolutionary warship design. An advanced passive sensor system fitted into three rectangular housings attached to each side of the lower hull, the WAA performs an essential mission when the boat is in the detection and tracking phases of an engagement, and Seawolf is the first full class of submarines fitted with the system. The WAA has been so successful in trials that plans currently call for fitting it into the future Virginia (SSN-774) class as well.

In the bow is a large, 24-foot/ 7.3-meter-diameter spherical sonar array, which is the heart of the BSY-2 combat system. Based on the earlier BSY-1 system we showed you aboard Miami, BSY-2 is, in terms of software, processing power, and integration, a generation ahead of the earlier system. By tying together all the various sonar and other sensors systems into the BSY-2, Seawolf has a capability for multitarget combat engagements and situational awareness matched only by the Aegis combat system on the Ticonderoga (CG-47) and Arleigh Burke (DDG-51) missile cruisers and destroyers.

As we continue along our journey on Seawolf, you'll notice many bulges and bumps along the hull, each of which serves a vital purpose. Walking along the long hull, which is 353 feet/107.6 meters long and 40 feet/12.2 meters wide, you'll see a long, thin faring that is raised several inches off the deck. This is where the towed array sonars are stored. Also, as during our visit to Miami and Triumph, you'll notice that the deck is made of a thick, spongy coating known as anechoic tiles. These black rubberlike tiles do much to seal sound inside the Seawolf as well as keep other sounds from bouncing off the boat and reflecting sonar "pings" back to prowling surface ships, sonobouys, or enemy submarines. Every now and then you might see a submarine, especially those of the former Soviet Union, missing a tile or two. These occasionally fall off and make for some interesting photo ops!

Navy and contractor personnel man the underway main control watch, aboard Seawolf. OFFICIAL U.S. NAVY PHOTO

Underneath the tiles is one of the hardest steel hulls ever constructed on an American ship. Once the welding work of Seawolf was fixed, the real benefits of HY-100 steel became apparent. With a significant (meaning classified) increase in diving depth over the 688I class, Seawolf is able to operate farther into the ocean depths than any attack submarine in American history. This has restored much of the tactical capability lost when the HY-80 hulls of the Los Angeles-class boats were thinned down to save weight and displacement. As the recent loss of the Russian submarine Kursk illustrates, the ocean depths can be anything but hospitable, and the deeper a submarine goes the more pressure is exerted on its hull. It was just these dangers that the submarine designers had in mind when they built in the next feature we run across as we tour Seawolf's deck-the submarine escape trunk and Deep Submergence Rescue Vehicle (DSRV) mating hatch.

This aft hatch, along with a second hatch farther forward, is where a rescue chamber or submarine like the DSRV would mate with Seawolf in the event she suffered a catastrophic accident and the crewmembers were still safe. This is, of course, a really big if. It is, however, a very real possibility that was demonstrated quite sadly by the loss of the Kursk and her crew in 2000. A number of the Kursk's crew survived the sinking of their boat and might have been saved had their government allowed U.S. or British DSRVs to be deployed earlier during the search-and-rescue operations.

There have been some changes in the field of submarine rescue since the first edition of Submarine went to press, and this seems like a good place to cover them. The first is that the American DSRVs are rapidly coming to the end of their useful service lives and require replacement or upgrade. Also, the dedicated rescue ships that could operate the old McCann rescue chambers have been retired, meaning that the DSRVs delivered on the backs of submarines are now the only deep-water rescue system in the U.S. inventory. On the plus side, though, new rescue technologies are being designed and tested, and may be backfitted onto existing DSRVs.

The arrangement of periscopes, sensors, and communications masts on the conning tower/sail of USS Seawolf (SSN-21). RUBICON, INC., BY LAURA DENINNO

One of the most promising of these is a new kind of mating collar, composed of angular slip rings that allow docking even if the downed boat is resting at a severe angle. Whether this new system will be retrofitted to the existing DSRVs as part of a comprehensive overhaul or to a completely new vehicle remains to be seen. For now, though, submarine rescue still remains an "iffy" proposition at best.

Farther forward is the sail, which is, frankly, one of the slickest such structures ever built onto a U.S. submarine. Unlike traditional American nuclear subs, Seawolf has a curved faring blending the front of her sail into the hull to help reduce resistance and flow noise. It is just one of many little touches designed to keep the Seawolf-class boats the quietest ever to roam the world's oceans. As in previous American SSNs, the sail contains all of the sensor masts, as well as the control station for conning the boat on the surface. The mast-mounted sensors include:* Periscopes: As in previous U.S. submarine designs, the Seawolf is equipped with a pair of optical periscope masts. These include both Type 8 Mod 3 and Type 18 scopes, of the same variety as those described earlier on Miami.* Radar: To provide surface and some limited air search capabilities, a BPS-16 set is installed for operations in poor visibility and at night.* Radio Masts: A pair of AN/BRA-34 communications masts are provided to support the growing bandwidth requirements for littoral operations.* Electronic/Signals Collection Masts: To support intelligence collection and tactical situational awareness, Seawolf has an AN/BRD-7/BLD-1 mast with the collection heads for the WLQ-4 (V)1 and BLD-1D/F radar and signals receptions systems.* Trailing Antenna: To provide command cueing while submerged, the Seawolf has an OE-315 trailing wire antenna that can receive transmission from the Navy's Extremely Low Frequency (ELF) communications system.

All this, along with the improved processing and display technology of the BSY-2 combat system, makes Seawolf a truly revolutionary design-and just think, we've not even touched on the weapons load yet! That, too, is a major improvement over that of the older 688Is.

As we continue with our "hull walk," you'll probably notice a large hatch directly aft of the sail structure. This is the oddly shaped weapons shipping hatch and is used in the slow, monotonous process of loading torpedoes, weapons, and other stores inside the boat. One by one, each of the torpedoes (up to a maximum load of fifty) and other weapons must be brought down into the sub and laid in the torpedo room for storage in the event of combat. The weapons load of the Seawolf, twice that of the Flight I Los Angeles-class boats, was mandated by the desire to have enough warshots to sustain multiple engagements during prolonged wartime operations. To get these weapons off the boat quickly, Seawolf is equipped with eight 26.5-inch /673mm torpedo tubes, the biggest ever fitted to an American submarine. Utilizing a new air turbine pump system to expel the weapons more quietly than earlier water-ram methods, the new tubes are also capable of launching unmanned surveillance vehicles and even divers, should that be necessary. One thing the 688Is had that has been deleted from the Seawolf is the bank of Vertical Launch System (VLS) missile launchers in the bow. With her huge internal weapons stowage and eight torpedo tubes, the Seawolf was considered well enough armed to eliminate the VLS tubes.

As with every other element of submarine technology, ten years makes a big difference in weapons. Since the early 1990s, there have been significant changes and improvements to the weapons carried by the Seawolf-class boats. First off, all of the UGM-84 sub-Harpoon antiship missiles have now been withdrawn from service in the U.S. submarine fleet. This is mostly due to the fact that each Harpoon takes up space that might be used to hold a more frequently used torpedo or Tomahawk cruise missile, something that has made the sub-launched version of these formidable weapons go the way of the dodo bird.

While not completely making up for the mid-range surface ship attack capability afforded by the Harpoon, the Navy has been hard at work improving their supply of Mk 48 ADCAP torpedoes. These newest modifications to the already advanced torpedo are known as the ADCAP Mods 5 and 6. The Mod 5 changes include a guidance and control modification that improves the acoustic receiver, adds memory to the internal computer, and allows the torpedo to handle increased software demands. The second modification, known as Mod 6, includes the TPU or Torpedo Propulsion Unit upgrade and will provide the ADCAP with greater speed, range, and depth. These improvements to the Mk 48s will enable the weapon to better conduct operations in the coastal zones where the Seawolf-class boats will be lurking and working.

A sailor aboard the Seawolf operates the fire control tracking system, which uses the latest in rugged touch screen controls. OFFICIAL U.S. NAVY PHOTO

As mentioned earlier, one of the major missions of SSNs in the 1990s has been that of launching BGM-109 Tomahawk cruise missiles against enemy targets. The preferred version, known as Block III, has a GPS-based guidance system as well as a new warhead and satellite telemetry system. The problem is that many of the Tomahawks modified to the Block III standard were fired during the 1990s in places like the Balkans and Southwest Asia, and earlier variants lack the easy mission-planning capabilities of the newer missiles. Several plans were put forth to modify more of the early model missiles to a so-called Block IV configuration, but would have cost too much (over $700,000 per missile).

To provide both surface ships and submarines with enough of the precious Tomahawks into the twenty-first century, a brand-new version, known as Tactical Tomahawk (TACTOM), is being developed by Raytheon. TACTOM will incorporate a number of new features, including a new injection molded plastic airframe, satellite data link, and turbojet engine, to reduce costs. At around $500,000 a copy, the new missiles will be a bargain compared with reworking older air-frames. However, the Block IIIs will be the primary variant until the middle of the decade, when TACTOMs should begin to arrive in serious quantities out in the fleet.

If you duck down inside the hatch aft of the sail, at first you will feel just like you have stepped into any other advanced submarine. However, moving forward into the control room, you rapidly can see the differences between Seawolf and the Los Angeles-class boats. Where older boats still have a lot of conventional dials, gauges, and other readouts, most of the critical control positions on Seawolf have been equipped with red plasma computer displays with touch screens. These allow a much wider range of controls and graphics to be fed to operators in the control room and other parts of the boat, and stand up quite well to errant elbows and spilled coffee!

Otherwise, the basic layout of Seawolf is very similar to that of Miami, with perhaps a bit more elbow room than the older boat. Nevertheless, Seawolf still does not have all the creature comforts you might expect on a submarine with over 25 percent more internal volume than a 688I. The problem is that while there is more room inside of Seawolf, there also is more "stuff" inside her hull. The S6W reactor, while the same basic unit as the one on the 688Is, now feeds two steam turbines putting out an additional 10,000 horsepower. This provides a total of 40,000 shaft horsepower, giving Seawolf a top speed of around 35 knots, if you believe reports from the initial sea trials.

The dining area on the Seawolf during chow call. OFFICIAL U.S. NAVY PHOTO

These engines in turn have more quieting mounts and equipment than those on the Los Angeles-class boats, all of which take up lots of space. Virtually every other piece of machinery on Seawolf has similar quieting gear, which eats up a lot of volume. The result is that a number of the junior enlisted personnel still have to "hot bunk," due to a shortage of berthing space. This is a shortcoming, which will probably have a downside in the long run, in terms of habitability and personnel retention. However, it is the price that must be paid to make Seawolf the quietest, most deadly submarine in the world.

The rest of Seawolf is much like that of Miami, though put together very differently. Electric Boat, the prime Seawolf contractor, designed her to be built with a modular construction technique, much like that of Newport News in Virginia and Litton-Ingalls in Mississippi.[16] This means that more of the boat can be "stuffed" and finished before the hull is welded and floated into the water. It would have been interesting to see what this would have done to production costs if even a second flight of three SSN-21s had been ordered by Congress, instead of proceeding to the Virginia (SSN-774) class boats directly. As it is, the sailors assigned to the Seawolf and Connecticut consider themselves very lucky sailors indeed. Both are in the water and assigned to the Atlantic fleet, starting to make patrols and being tested in exercises.



A comparison of the USS Seawolf (SSN-21) (top) and the USS Jimmy Carter (SSN-23) (bottom). The roughly 100 foot/30.5 meter greater length of the Jimmy Carter will accommodate a "plug" to conduct "Special Projects" and "Research" missions. RUBICON, INC., BY LAURA DENINNO

The Jimmy Carter-the third and final Seawolf-will, however, be something very different: a true "Special Projects" boat from the keel up. The basic Seawolf hull is having an approximately 100-foot/30.5-meter "plug" added aft of her sail, with all kinds of room for berthing of extra personnel, stowage of special equipment and sensors, as well as a large lock-out chamber. This will be big enough to allow the launching of the new generation of Unmanned Underwater Vehicles (UUVs) being developed for use by the fleet. The plan is to have her in the water by 2004, when she will join Parche (herself scheduled for retirement in 2006) at the Trident-missile submarine base in Bangor, Washington. Jimmy Carter will be the ultimate expression of American submarine intelligence gathering, though just what that will mean in the twenty-first century is still unknown. However, given what the Navy's small force of special projects boats did during the Cold War, the Jimmy Carter will be doing things that will someday be a subject for novelists.

The Virginia (SSN-774) Class Boats: The New Generation

In the mid-1990s, when only the three Seawolf-class boats were authorized for construction, the Navy realized it clearly had a problem on its hands. How was the submarine service to meet its quantitative requirements for keeping approximately fifty submarines in the fleet? At the end of the Cold War, the U.S. Navy had a goal of 100 SSNs (excluding the strategic missile boat force) as part of a 600-ship Navy. While neither of these goals was ever reached, by the late 1980s the submarine force was very, very close to achieving its force structure goals. In 1987, for example, the U.S. Navy attack submarine force consisted of ninety-nine nuclear attack boats.

All this changed in 1993 when DoD released the results of the Bottom-up Review (BUR), which, attempting to alter the military to a post-Cold War force, cut a little too close to the bone for the comfort of those in the submarine community. Calling for new submarine-force levels as low as forty-five submarines, the BUR drastically changed the goal of the Navy's submarine force away from acquisition and force enhancement toward drastic cuts and getting rid of old boats. The resulting dearth of submarine construction in the mid-1990s meant that only a handful of new boats were finished. However, 2004 promises to be the best year in a long while for the U.S. submarine force. That will be the year the first Virginia-class SSNs enter the Navy and the year the Jimmy Carter is commissioned. However, it has taken a very rough dozen years even to see the promise of 2004 for the submarine community.

The curtailing of Seawolf production to just three units meant that the Navy would inevitably have to develop a smaller, more cost-effective design that would better fit the roles and missions set out in From the Sea. Fortunately, a series of design studies was already underway at the time, the most promising known as Centurion. From the beginning, Centurion, whose name was changed several times before she was officially named the Virginia (SSN-774) class, was an easier sell than was the Seawolf. The concept behind the Virginia was to build a submarine as good as the Seawolf in the blue-water environment, yet able to conduct operations in the littoral regions of the world. Additionally, Virginia needed to counter the biggest drawbacks of Seawolf-its costliness to produce and the fact that it was built by a single yard. The monopoly on construction of the Seawolf class by Electric Boat rankled the folks at Newport News Shipbuilding, and also their powerful congressional delegation.

The interior and exterior layouts of the USS Virginia (SSN-774) RUBICON, INC. BY LAURA DENINNO

Costs drove Virginia's design to a far greater degree than any submarine designed for the U.S. Navy. While it possessed roughly the same capabilities and quieting as Seawolf in a more affordable and multimission configuration, initial plans called for the class to be built at an optimistic rate of two or three per year. Original cost projections aimed for a boat displacing roughly 6,000 tons, costing around one-half that of Seawolf.

The hope was-and still is-that this design will do for submarines what the relatively moderately priced, multirole F/A-18 Hornets did for naval aviation. Current plans call for the Virginia class to consist of thirty units, which will be constructed at varying rates for staggered delivery. The first of the class, Virginia (SSN-774), will enter service around 2004; the second, named USS Texas (SSN-775), will follow a year later. After a one-year break, the current schedule calls for USS Hawaii (SSN-776) to join the fleet in 2007, followed by USS North Carolina (SSN-777) in 2008. While plans inevitably fall by the wayside and are continuously altered, this seems to be a great start.

At first, the idea was that the Navy would buy the Virginias to complement rather than succeed the Seawolfs. The resulting budget cuts and cost overruns on the SSN-21 program turned out to be so severe, however, that the Navy saw no choice but to move ahead with Virginia after Seawolf production ended. The DoD directed in 1992 that the Navy should hold the costs of the new submarine design to a maximum of $1 billion per boat. The DoD also charged the Navy with examining alternatives to this entirely new class of warship. These started off with a baseline (for comparison purposes) of continued SSN-21 production at a rate of one per year. The alternatives included:* A lower cost variant of the Seawolf.* Further improved versions of the Los Angeles (688I) class.* The possible procurement of non-nuclear (i.e., conventional) submarines into the fleet.

Hyman Rickover must have been turning over in his grave at such thoughts, but then he never lived to see the post-Cold War world of the 1990s! In the end, the Navy stayed committed to the Centurion design, though not without a lot of pressure from critics and Congress.

In 1993, the name Centurion was officially changed to "New Attack Submarine" and given the abbreviation NAS, which was later changed to NSSN (for New SSN). The following year, the Navy began to provide the first real cost estimates on the class. These indicated that the lead submarine, which would be authorized in the FY98 budget, would cost $3.4 billion, including nonrecurring research and design costs. This was as much as Seawolf herself, and some people wondered if the Navy should have built more of the SSN-21s instead. However, the Navy study indicated that additional NSSN-class boats, starting with number five, would cost around $1.54 billion in FY98 dollars. While this was still slightly higher than the projected goal, it was far below the $2.8 billion for a production Seawolf, had such a thing ever been built. With the planned production costs now under control, it appeared as if NSSN might actually become a reality.

As with any multibillion-dollar decision, the construction issues of the Virginia class were now beginning to point away from the operational side and toward the financial and political ones. Shipbuilding, especially submarine manufacturing (and particularly that of nuclear submarines), is a field that is especially difficult for a nation to master. Several generations of American shipbuilders have been toiling on nuclear submarines since work began on the program under the leadership of Admiral Hyman Rickover. If production were to suddenly end or shrink to less than one boat per year, one of the two American submarine manufacturers, Electric Boat or Newport News Shipbuilding, would inevitably be forced to leave the business. With their powerful political supporters, both contractors began a spirited competition for the right to produce the NSSN boats.

Long ago, Congress had determined that it was in our nation's interest to maintain a minimum of two shipyards capable of building nuclear submarines. This industrial-base-preservation argument was an important key to keeping Seawolf alive for three boats and became equally important to the idea of a "teaming" arrangement between the two American submarine manufacturers. As a result of the 1993 BUR, DoD concluded that it would be ill-advised to consolidate all submarine construction at just one shipyard. This was probably a good decision for the Navy because it preserved at least a semblance of competition between Electric Boat and NNS. Additionally, because nuclear submarine design and production is so complicated, it is extremely manpower-intensive. Therefore, any loss of production or a strike at a yard meant inevitable layoffs of highly skilled workers at subcontractors. A shipyard might even be forced to close its doors forever if production levels continued to drop. This has happened dozens of times to some of the biggest shipyards in the nation. One only need remember the demise of great names like Todd and Kaiser on the West Coast to realize that American shipbuilding hangs by a slender thread these days.

How then, was the Navy to keep both submarine yards alive with so few submarines to build? Not surprisingly, the Navy didn't have to look too far for help. It came directly from the two shipbuilders themselves-Electric Boat and Newport News. These two companies knew that it was in the nation's interests-and their own-to solve this dilemma. Which is exactly what they did in December of 1996 when Electric Boat and Newport News Shipbuilding offered the Navy a deal. How would the government like it if the two companies "teamed up" and produced the Virginia class together?

It was a remarkable offer and one that the Navy could not refuse. Both shipbuilders would take advantage of the Digital Design Database Electric Boat had used in constructing the Seawolf class, to help keep down costs and keep quality up. Additionally, each yard would build specific parts or sections of the boats, while each company would build and "stuff" their own reactor plant modules. The bow, stern, and sail sections of all the new subs would be built by NNS, along with the habitability and machinery spaces and the torpedo room. Electric Boat, as the prime contractor, would, in turn, construct nearly all remaining portions, including the engine room and control spaces. Finally, Electric Boat would assemble the first and third boats while NNS would handle the second and fourth.

The current plan calls for teaming on only the first four boats. The Navy, Congress, and the two remaining submarine builders will eventually have to examine where they go from there. Such construction decisions are momentous indeed. Especially when you look at how large a role the Virginias will play in the American submarine force of the twenty-first century.

USS Virginia (SSN-774): A Virtual Tour

Now that you have seen the future production plans for this new class of SSN, let's take a look at what new things they will be capable of accomplishing. We have to do this in a virtual fashion, as the Virginias are still mostly "paper" submarines. The official "keel laying" of Virginia (SSN-774) only occurred on September 2, 1999, and she will not be delivered to the fleet until 2004. Officially, though, the Pentagon has provided us with a great starting point in its new public campaign of openness about submarine operations and weapons. Gone forever are the days when the "Silent Service" was truly mute to the world outside of their pressure hulls.

As one might have guessed for a multimission boat, the Navy has bestowed upon the Virginias nearly every possible submarine mission under the sun, which speaks volumes about their versatility. These missions, according to the Pentagon, include taking the enemy by complete surprise while conducting:* Covert Strike Warfare: Hitting inland targets with Tactical Tomahawks and possibly future battlefield support missiles.* Antisubmarine Warfare (ASW): Destroying enemy submarines while conducting area underwater surveillance.* Covert Intelligence Gathering and Surveillance: Keeping American eyes on potential hot spots and enemy operations.* Antisurface Warfare (ASUW): Clearing the sea-lanes of enemy surface ships.* Covert Mine Warfare: Laying, detecting, and possibly clearing friendly and enemy naval minefields.* Battle Group/Amphibious Group Support: Protection and support for Carrier Battle Groups and Amphibious Ready Groups.* Special Warfare Support: A whole variety of clandestine missions, including direct action raids, reconnaissance, combat search and rescue, directing air strikes, and tactical intelligence gathering.

While this is just a brief list of missions Virginia can "officially" carry out, imagine the potential for a class such as this. There are even discussions about making the Virginia design the basis for a new class of SSBNs to replace the Ohio-class boats, should this be required.

The general layout of the Virginia-class boats will not be unfamiliar to those who have been aboard previous nuclear attack submarines. In many ways, she is a Los Angeles-sized hull packed with systems pioneered by the Seawolf-class boats. The biggest difference with Virginia is that flexibility is the key in her design. In addition, the use of Commercial Off-The-Shelf (COTS) technology has been maximized in order to reduce overall production costs and allow for rapid integration of new systems and software. Another key element to reducing production costs has been the use of Computer Aided Design (CAD) for this class of submarine. In fact, the Virginia will be the first American warship designed solely by computer. In her own way, she is as much of a revolution in construction and systems as Seawolf was, with controlled cost management thrown in to tighten everyone's belt a bit!

We'll start our brief look around the Virginia at the heart of the boat's power. The new S9G pressurized water reactor produces sufficient shaft horsepower for a top speed only slightly less than that of Seawolf. This is one of the few areas where decreased cost has been allowed to reduce Virginia's capability. The reactor runs two steam turbines geared to a single shaft. In turn, this shaft will connect to a very quiet pumpjet propulsor, similar to those found in the British Trafalgars and the Seawolfs.

Equally importantly from a maintenance point of view, Virginia's reactor will have a "life of the ship" reactor core, meaning there should never be a need to replace the reactor core! The new reactor design has been simplified and, amazingly, it should match SSN-21's impressive quieting levels within a 25 percent smaller volume. Because the overall design has been simplified, fewer components are required and the Virginia has fewer pumps and valves than any of her predecessors. This smaller size is one of many improvements that allow her overall submerged displacement to remain below 8,000 tons-a 1,000-plus ton reduction from that of the Seawolfs.

The hull of the Virginia is made from similar-strength steel as Seawolf, although because of Virginia's littoral-operations emphasis, the steel does need to be as thick as Seawolf's-providing additional cost and weight savings. The sub's maneuvering performance will also be unprecedented for a boat her size. The Virginia's control surfaces will be part of a digital "fly-by-wire" ship control capability similar to those used so effectively on fighters such as the F-16 Fighting Falcon and F/A-18 Hornet. This eliminates much of the heavy cabling and hydraulic piping that runs throughout older classes of SSN.

Though Virginia is not faster than Seawolf and does not dive deeper or even carry as many weapons (only thirty-eight versus fifty for the SSN-21 boats), these facts can be misleading. The real difference between the two subs lies in their ability to conduct operations and fight in the Navy's new home of the littorals. While still able to fight with much of Seawolf's prowess in the open oceans, Virginia has incorporated special weapons, sensors, and other new equipment particularly well suited to her coastal missions.

The sonar suite on board the Virginia will include special high-frequency acoustic sensors designed to hunt and classify both diesel-electric boats and those with advanced air independent propulsion (AIP) systems. As with other SSNs, Virginia will carry a spherical active/passive sonar array along with the TB-29 Thin-Line Towed Array and the TB-16 Fat-Line Towed Array. Virginia will also carry a new lightweight WAA system, specifically optimized to locate super-quiet diesel-electric and AIP submarines. In the littoral regions, special attention will need to be devoted to naval mines, so Virginia will have a high-frequency sonar suite to detect the deadly "weapons that wait." The sensors will include sail- and chin- (beneath the sonar sphere) mounted arrays to provide the new boats with their best-ever mine-detection and — avoidance capability. Along with her sonar suite, Virginia will also have an array of sail-mounted sensors, almost identical to that of the Seawolf-class boats.

If there is one piece of equipment many submariners thought would never change, it was the old-fashioned periscope. Well, the Navy has got news for us periscope lovers-even this instrument is in for a drastic overall in the Virginia class. For the first time an entire class of U.S. submarines is being fitted without all the prisms, mirrors, and lenses found in the old optical periscopes. In their place will be two non-hull-penetrating "photonics masts," which will consist of a number of high-resolution visual sensors that transmit visual images back to large display screens fitted within the boat. In addition to a color television pickup, there is also an advanced thermal and low-light imaging system. The photonics system will also contain a laser range finder, something that will come in handy while working in the close-in coastal regions. Best of all, as their name indicates, these masts do not penetrate the main pressure hull, making one less weak spot for water to leak through in the event of battle damage or a packing failure.

The arrangement of sensor and communications masts on the conning tower/sail of USS Virginia (SSN-774). RUBICON, INC., BY LAURA DENINNO

In addition, when the Virginia first enters service in 2004, she will likely be fitted with the new AN/BLQ-11A Long-term Mine Reconnaissance System (LMRS). The LMRS system is basically a team of UUVs (Unmanned Underwater Vehicles), with 21-inch/553mm diameter (so they fit in the torpedo tubes), that swim out and hunt freely for mines. These UUVs will not be connected to Virginia by a fiber-optic cable, as were earlier models. Instead, they will use a two-way acoustic data link. The UUVs can be launched and recovered (via a robotic arm in one of the torpedo tubes) from Virginia's torpedo tubes and will detect and classify mines primarily of the bottom and moored variety. As the LMRS program continues to mature, additional improvements, such as underwater mapping and beach reconnaissance, will probably be added to this revolutionary UUV system.

Overall, the Virginias will have a weapons-storage capacity remarkably similar to that of the Seawolf-class boats. While Virginia lacks the Seawolf's ability to carry fifty weapons internally (Virginia will only have four 21-inch/533mm torpedo tubes), she makes up for it by having twelve VLS tubes like those on the 688Is. This means that Virginia will have the ability to carry a total of thirty-eight weapons (twenty-six internally), including Tomahawk cruise missiles, Mk 48 ADCAP torpedoes, UUVs, and mines, to name just a few possibilities.

One other key element of the Virginia's war-fighting suite is going to be her ability to operate in the special operations role. Similar to many of the newer submarines coming out of the yards in the next several years (most notably the Jimmy Carter [SSN-23]) the Virginias will be capable of carrying a Dry Dock Shelter and the new Advanced SEAL Delivery System (ASDS). The ASDS is a small mini-submarine 65 feet/21.7 meters long and 9 feet/2.75 meters wide. This tiny sub is fitted with a forward-looking and side-looking sonar to detect natural and man-made objects and conduct mine-detection and bottom-mapping operations. In addition, the ASDS has two masts-one a periscope and the other for communications and GPS navigation. To make life easier for the SEALs and other special operations units that might be carried, the torpedo room on board the Virginias will be easy to reconfigure. If need be, the center weapons-stowage structures can be removed in order to make room for special mission personnel, whether they be technicians, SEALs, or troops. These personnel will have access to an unusual nine-man lock-in/lockout chamber in addition to the use of the ASDS and/or dry-dock shelter.

With all these extra bodies on board, one begins to ask the next question: has submarine habitability improved in the past ten years? Unfortunately, advances in technology notwithstanding, the answer is likely to be no. Submarines have always been so crammed with equipment that it appears at times as if the designers forgot to include the sailors! Fortunately, numerous space-saving features have been included in the Virginia class. The current manning figures appear to be in the same neighborhood as the Los Angeles and Seawolf classes-around 120 enlisted and chiefs, along with 14 officers. With the significantly smaller size of the Virginias, this large complement could pose a problem. However, the manning numbers may end up dropping significantly as a result of the use of the Navy's new "Smart-Ship" technology.[17]

Already the Navy is planning on using this manpower-saving technology to reduce fifteen crew watchstanders from the control room of Virginia. This technology will allow the boat's advanced control system to be operated by a pilot, copilot, and relief pilot, thereby replacing the diving officer, chief of the watch, helmsman, planesman, and messenger of previous submarine classes. It is technologies such as these that will inevitably bring down the number of sailors to a more "comfortable" level. Alas, as any submariner knows, as soon as they get more room in a sub, designers will add more gadgets, not more racks!

Well, now that we've taken a look at the Virginia, it's pretty apparent that a boat like this can be used for virtually any mission the Navy might require. Whether it's CVBG support in the Aegean, monitoring an embargo or communications in the Persian Gulf, delivering SOF units in Africa, or hunting enemy submarines and ships anywhere else, Virginia is one class of submarine that should be able to do it all! Now America just needs to build them, which may be the biggest challenge of all.

The British A-Class (Astute) Boats

While the United States Navy was going through its post-Cold War "shrinking pains," what was happening to the Royal Navy (RN) of our closest military ally, the United Kingdom? Well, you can rest assured that the RN submarine force was going through some equally painful experiences of its own! Like the United States, the British were in the middle of planning for the future of the Cold War when the Soviet Union threw in the towel at the end of 1991. You would have thought that when the Berlin Wall fell, it landed right on top of the Admiralty in London. As late as 1987, the British had been discussing a new class of attack boat to begin replacing the Swiftsure-class (S-126) SSNs. In 1987, Vickers Shipbuilding and Engineering (VSEL), LTD, won a contract to begin designing a new "W" class, also known as SSN-20, and was to start construction in the mid-1990s. This new submarine was similar in design and concept to the American Seawolf, large and optimized for blue-water/open-ocean operations.

The 1990s were to have been one of the busiest and most aggressive decades for British submarine development. However, while design work on the Swiftsure's replacement continued at VSEL, the RN was also in the midst of replacing its Resolution-class (S-22) ballistic missile submarines with a vaunted new group of SSBNs known as the Vanguard (S-28) class. While these truly awesome boats were in production, readying for their commissioning, the Upholder-class (S- 40) SSKs were also scheduled to come into service during what would turn out to be one of the worst possible times imaginable. This class, consisting of Upholder (S-40), Unseen (S-41), Ursula (S-42), and Unicorn (S-43), were commissioned into service between 1990 and 1993, but by 1992 the decision was made to decommission all four of the brand-new SSKs as a cost-cutting measure.

The Upholder boats were eventually leased to Canada, but 1992 was a particularly dark time for the Royal submarine fleet. Also in that year, the entire SSN-20/W-class project to replace the Swiftsure was canceled with VSEL. Within months, however, a seed of hope was planted when the RN and Ministry of Defense (MoD) realized (as did their counterparts in the United States) that cost and not advanced blue-water operational capabilities was going to be the driving factor for getting a new class of SSNs ordered. Once this fact became apparent, priority switched from a new class of submarines to an improved version of the already proven Trafalgar (S-107) class SSNs.

British submarine designers were asked to submit a plan for a less expensive generation of submarines than had originally been envisioned. This new submarine was to vary only minimally from the previous Trafalgar-class SSNs. The boats, which soon took on the name Batch 2 Trafalgar class or B2TC, began to look like a reality when a request for bids was issued to both VSEL and competitor GEC-MARCONI in July of 1994. GEC ended up winning this contract, which called for construction of three boats with the option for more as deemed necessary and affordable by the MoD.

Initial progress was not exactly rapid, as complex defense consolidation issues stalled efforts to finalize the contract. The first actual orders for the B2TC boats were placed in March of 1997. The PS2 billion contract called for three new boats, HMS Astute, Ambush, and Artful. Finally, the B2TCs had a real name-the "A" or Astute class of nuclear-powered attack submarines. The current outlook for the Astute class is excellent, based on both the needs of the Royal Navy and the design expertise of the manufacturer. The keel of the Astute herself was officially laid down in January 2001. Thankfully, MoD support has continued unabated for Astute. In fact, it was announced in July 1998 that the Royal Navy would get two more Astutes, for a class total of five boats. Though these two most recent boats have yet to be named, you can bet that their futures will be full of adventure.

While the busy process of finding a suitable replacement for the Swiftsures was under way, an equally complex dance of consolidation was going on within the British defense and shipbuilding industries. In 1994, GEC-Marconi made an offer to buy VSEL, which had been working on the original W-class/Swiftsure replacement designs. The following year, British Aerospace also made an offer for VSEL, but in the end VSEL accepted the GEC-Marconi offer-though only after they had successfully raised the asking price several hundred million pounds! As you might imagine, this caused considerable consternation, as VSEL had been in direct competition against GEC-Marconi to build the new Astutes. These issues were finally resolved, however, and all was quiet on the submarine industrial front for several more years. This lasted until 1999, when it was announced that British Aerospace was merging with GEC-Marconi. This meant that British Aerospace now took over construction of the new Astutes. In doing so, and as a result of its merger with GEC-Marconi, British Aerospace officially changed its name to BAE Systems and continued with Astute's construction. Because of this, HMS Astute's prime contractor has been referred to as VSEL, GEC-Marconi, British Aerospace, and BAE Systems. The free market of the "New World Order"-what a crazy world we live in!

Now let's walk down the gangplank and take a virtual look inside this new warship. The A-class boats will be based on a design concept similar to that of the Virginia class. That is to say, the Astutes will need to maintain the capability to fight in nearly every underwater environment, from the open ocean of the Atlantic to the littoral zones off the Persian Gulf, all while keeping costs down and weapons loads and capabilities up. From protection of the British homeland to far-off TLAM attacks, the missions of Astute require that she contain only the best electronics and weapons available.

One of the biggest differences between Trafalgar and Astute is the size of the boats' hulls. Astute will displace around 7,000 tons submerged and 6,390 tons surfaced compared with 5,208 tons and 4,740 tons for the Trafalgar-class SSNs. Much of this tonnage, along with Astute's longer length (318 feet/97 meters compared with 279 feet/85 meters of the T-class boats-an increase of more than 36 feet/10 meters!), can be attributed to the newer boat's larger weapons load-out. Where the Trafalgar-class boats carried a total of twenty-five weapons, the new warships will be able to hold thirty-six (at least that's the number officially being claimed). They will be fired by six torpedo tubes versus the five in the earlier class. Some consideration was given to providing the Astute-class SSNs with a VLS system, but in light of cost constraints, the new boats' warload was deemed sufficient.

Another key update included in Astute has been her reactor plant. Astute's power plant was originally developed for the Vanguard-class SSBN. Designated PWR 2, it will be built by Rolls-Royce and is rated at 15,000 shaft horsepower. However, the Astute version is significantly more advanced than the earlier variants, and some press reports speculate that the new power plant is capable of circling the globe literally scores of times without a single refueling. Reportedly there is a lifetime reactor core design (known as an "H" core) that will give it twenty-five- to thirty-year service life. According to the Royal Navy submarine fleet's current plan, by the time refueling is needed, the first Astute will hopefully be resting her keel on the front porch of a submarine retirement community!

Last but certainly not least, Astute's propulsion systems would not be complete without the two turbines with a single shaft connected to the now standard (and very quiet) pumpjet propulsor. Of course, quieting is the most important characteristic for submarine survival in a hostile environment these days, and Astute's improved reactor will be significantly quieter than Trafalgar's. As a whole, Astute will be capable of operating not just in littoral and blue-water regions, but also in such varied climates as those that are found under the arctic ice or in the warm waters of the tropics.

In the control room of submarines everywhere, processing and computer power has also been increasing at an astounding rate for decades now. Thus any new class of boats, even improved models such as Astute, will have its share of both updated legacy systems along with new gadgets and sensors. Radar and sonar systems for the Astutes will be essentially the same units as were found in the Trafalgars, albeit with some improvements. It now appears that the Astutes will be fitted with the same Type 2076 sonar system, which has already been successfully integrated into the most recent Trafalgar-class boats. It is also all but certain that the Astute will be fitted with towed array sonar, as have her predecessors, although the specific variant and configuration have yet to be announced. Finally, current plans call for the Astute class to contain her own non-hull-penetrating "optronics" masts with all-electronic displays, minus the lenses, mirrors, and prisms of traditional periscopes. These are similar to those that will be carried on Virginia and will likely provide some brand-new capabilities and challenges for the Perisher-trained skippers of the RN.

What is a submarine without its weapons? RN attack submarines have now been fitted with Block III Tomahawk cruise missiles, and as the world learned during NATO's Operation Allied Force in 1999, Royal Navy submarines can shoot a lot of them, too! HMS Splendid launched more than two dozen against heavily defended Serbian targets, a sizable portion of the limited supply purchased from the U.S. When Astute enters service in June 2005, she will be equipped with a sizable complement of TLAMs, and the Royal Navy is also looking at development of a tube-launched version of the TACTOM missile currently under development for the U.S. Navy. Land attack missiles aside, Astute also has the requirement to engage surface ships and other submarines. For this mission, Astute's six torpedo tubes will be compatible with both the RN version of the sea-skimming UGM-84 Block 1C Harpoon missile (for attacks against surface vessels) and the fast, albeit expensive, wire-guided Spearfish torpedo (for use against both submarines and surface ships). Mines can also be carried and may have a particular use in the littoral regions.

Habitability and sustainability are always key issues on a nuclear submarine. When judging a submarine with the capability of spending extended periods of time away from port and beneath the surface, habitability must always be taken into consideration. Current plans call for a crew of twelve officers and ninety-seven enlisted sailors aboard Astute. While increased size has led to the improvement of some accommodations compared with the Trafalgars, some Astute sailors will still probably have to hot bunk with their shipmates. This practice will be required for only the most junior of her sailors, since current estimates call for the sharing of around eighteen of the crew bunks.

All of the improvements and modernizations built into the Astutes will become a reality when the first of the class is commissioned into service in 2006, followed by Ambush in 2007 and Artful in 2008. As mentioned earlier, it now appears that at least two additional A-class boats will be built, and possibly even more, though these have yet to be named or officially ordered.

What comes next for the Royal Navy's submarine force? Work has already begun on a submarine to replace the initial seven Trafalgar boats. The boats are so far unnamed, but what is known is that they will be nuclear powered and have a submerged displacement of between 5,000 and 8,000 tons. They will also be fitted with a "life of the boat" nuclear reactor, similar to those found in the Astutes and Virginias. In addition, VLS tubes may be fitted to this next class to allow for an increased load-out of Tomahawk Block III or TACTOM land attack missiles. As with the Virginias, any new attack submarine the Royal Navy builds will likely have provisions for UUVs. There is even talk that the Astutes will be the last manned submarine to enter service with the Royal Navy, something that requires more than a minor leap of faith and vision in the future of technology. In the end, though, the real strength of the RN SSN force will be what it always has been-superbly trained crews and Perisher-qualified skippers, able to outguess and outgun their enemies.

Conclusions: Toward the Unknown

Yes, a decade really does make a difference. Ten years ago we asked what the next decade of submarine development would be like. Well, after reading this last chapter, you can see that question has clearly been answered. Fortunately, the world has also learned some lessons about the nature of naval warfare along the way. Most importantly, we've learned that if there's one thing we can't predict, it's the future! No one could have accurately predicted the end of the Cold War, and likewise no one will ever be able to accurately predict exactly what the next generation of submarine operations and missions will be like.

We do know that the past ten years of submarine operations have consisted of the unexpected. From Operation Desert Storm to our Navy's involvement in the recent NATO actions in the Balkans, the one theme that has remained the same throughout the 1990s has been doing more with less. The submarine communities of the U.S. and Royal navies, along with those of our other allies, have had their budgets cut, their submarines retired from service, and their crews downsized, all while being asked to conduct more activities and operations than at any time in recent memory. All this has been happening while highly capable submarines such as the Project 877/Kilo-class boats have been entering the navies of "rogue" nations at a far greater pace than new classes such as Seawolf, Virginia, and Astute will be entering ours.

What's the solution to this problem? In today's high-threat environment, where we don't have the benefit of looking in a specific direction to watch for flying bullets, we must be prepared for every contingency. And we are. A quick look at America's modern submarine force shows that. They're out there on patrol for the nation, in the backyards of our enemies and competitors-literally on their doorstep day in and day out-already prepared for any contingency. Whether it's a TLAM strike against a future enemy nation or a special operations rescue mission launched from the depths of a submarine dry-dock shelter, the sailors of today's submarine fleet are doing their best to stay prepared for any emergency. And for that we owe them our respect.

Getting back to our first question, what exactly does the future hold for the submarine force? The truth is, we don't know. Maybe the Virginias and the Astutes will be the last manned submarines the U.S. and Britain will ever build, eventually to be replaced by advanced unmanned submersibles. Or perhaps our fleets will become more and more sub-surface-centric as the surface ship becomes increasingly vulnerable to antiship missiles and other weapons. We just don't know yet what the future holds. However, whatever it may be, our nation's submariners (hopefully along with those of our allies) will be on patrol, ready to defend our national interest in times of trouble and threat. Can we ask for anything more?

Загрузка...