Беседа девятая НА ПЕРЕДАЮЩЕМ КОНЦЕ

Временно оставив в покое вопрос приема, Любознайкин и Незнайкин рассмотрят метод, при помощи которого в процессе передачи производится преобразование изображения в видеосигналы. Существует множество типов телевизионных камер, применяемых для этой цели. Вместо того чтобы хвастать своей эрудицией, перечисляя их все, Любознайкин рассмотрит только наиболее типичные современные камеры. Попутно он затронет следующие вопросы: время освещения фотоэлемента; методы непрерывного и прерывистого освещения; накопление зарядов; иконоскоп; светочувствительная мозаика; электронный коммутатор; вторичная эмиссия; супериконоскоп; суперортикон; электронный умножитель; передача при инфракрасном освещении.


В ЦАРСТВЕ МИКРОСЕКУНД

Незнайкин. — Могу я сделать тебе одно признание, Любознайкин?

Любознайкин. — Не стесняйся, дружище.

Н. — Знаешь, я сыт по горло и развертывающимися устройствами и всеми вопросами отклонения. Не считаешь ли ты возможным переменить тему беседы?

Л. — У меня тоже было такое намерение. Мы расчищали место, чтобы иметь возможность подойти вплотную к основным вопросам телевидения. Однако нужно было объяснить тебе, каким образом производится развертка изображений как при передаче, так и при приеме.

Н. — Я надеюсь все же, что мы сможем заняться теперь изучением приемников, ведь я тороплюсь смонтировать телевизор для собственного употребления. Я даже купил часть материалов — 10 м провода для монтажа.



Л. — Боюсь, как бы все остальное не стоило тебе гораздо дороже… Не лучше ли, прежде чем бросаться очертя голову на прием, кратко рассмотреть, что происходит со стороны передатчика?

Н. — Знаю, я уже читал об этом в одном журнале. Телевизионные студии освещаются такими мощными прожекторами, что актеры получают солнечные удары, а кожа у них шелушится.



Л. — Твой журнал устарел. Это было верно для телевизионных передач на начальной стадии телевидения. Современные телевизионные камеры так же чувствительны, как и человеческий глаз, и не нуждаются в столь интенсивном освещении студии.

Н. — Разве удалось настолько повысить чувствительность фотоэлементов?

Л. — По правде сказать, в этой области нельзя похвастать большими достижениями. Но научились лучше использовать существующие фотоэлементы. Вместо того чтобы освещать их только на мгновение…

Н. — Как это?

Л. — Разве ты не помнишь, что существует механический способ передачи? Я тебе о нем рассказывал во время нашей второй беседы. В этом случае фотоэлемент получает каждое мгновение только свет, идущий от одного элемента изображения, через отверстие диска, проходящее перед фотоэлементом. Таким образом, если бы можно было при помощи этого способа осуществить разложение на 625 строк, то световой поток от каждого элемента изображения использовался бы за каждый период кадровой развертки примерно лишь в течение 0,065 мксек.

Н. — Да, вот это поистине не так уж много. При 25 изображениях, развертываемых в секунду, это составляет только 1,6 мксек использования света от каждого элемента в течение 1 сек.

Л. — Значит, ты хорошо себе представляешь, что теоретически система, дающая возможность использовать свет непрерывно, должна быть во столько раз чувствительнее, сколько раз 1,6 мксек содержится в 1 сек.

Н. — Если ты надеешься заставить меня ошибиться, то ты просчитаешься. Если одну секунду, а это миллион микросекунд, разделить на 1,6, то получится 625 000 раз.

Л. — В действительности такого высокого выигрыша не получают. Однако увеличение чувствительности бывает порядка 100 000 раз.

Н. — В наше время и таким увеличением чувствительности нельзя пренебрегать. Но как же добиваются постоянного освещения фотоэлемента каждым элементом изображения?



ОДИН СРЕДИ МИЛЛИОНОВ


Л. — Но ведь используется вовсе не один фотоэлемент, Незнайкин, а миллионы! И каждый из элементов изображения освещает целую группу фотоэлементов.

Н. — Ты что, издеваешься надо мной?

Л. — Нисколько. Ты сейчас увидишь, что я ничуть не преувеличиваю и что миллионы фотоэлементов не занимают много места. Но прежде чем взять такое количество, возьмем лишь один (рис. 64) и рассмотрим принцип его работы. Его светочувствительный катод освещается непрерывно. В соответствии с освещенностью катод излучает более или менее значительное количество электронов, которые притягиваются анодом, имеющим положительный потенциал Поэтому верхняя обкладка конденсатора С оказывается заряженной…

Н. —..более или менее положительно, раз катод потерял; электроны, заряженные отрицательно.




Рис. 64. Схема, иллюстрирующая метод передачи изменения яркости одного из элементов изображения.


Л. — Переключатель К, вращающийся 25 раз в секунду, на очень короткий промежуток времени подключает катод к отрицательному полюсу высокого напряжения. Что при этом произойдет?

Н. — Я догадываюсь, что источник высокого напряжения U1 даст тогда ток для пополнения верхней обкладки конденсатора С электронами, которых ей не хватает.

Л. — Верно. Вследствие этого появится электронный ток, который, направляясь от отрицательного полюса источника напряжения через переключатель К, достигнет конденсатора С, нейтрализует положительный заряд его верхней обкладки и, таким образом, удалит из нижней обкладки лишние электроны, притянутые туда положительным зарядом другой обкладки. Эти электроны пройдут через резистор R к положительному полюсу источника высокого напряжения.

Н. — Я прекрасно представляю себе дальнейший ход твоих рассуждений. Величина тока зависит соответственно от освещенности фотоэлемента. Ток создает падение напряжения на резисторе R; присоединяя его конец М к сетке усилительной лампы, мы можем усилить напряжения, пропорциональные освещенности. Но разве эта сетка не имеет высокого положительного потенциала?

Л. — Имеет по отношению к источнику U1 использованному для фотоэлемента. Но не имеет относительно источника U2, который как раз и служит для питания усилителя. Катод и сетка лампы присоединены к отрицательному полюсу этого источника, что является нормальной схемой включения.

Н. — Согласен. По мне не ясно, как удается передавать изображения такими фотоэлементами.


МИЛЛИОНЫ ФОТОЭЛЕМЕНТОВ? ЭТО НЕВОЗМОЖНО!


Л. — Вообрази какую-то поверхность, целиком заполненную фотоэлементами, подобными тому, который мы с тобой рассмотрели. Предположим, что все их катоды присоединены к неподвижным контактам, через которые 25 раз в секунду проходит последовательно переключатель К. Предположим, кроме того, что каждый из катодов присоединен к одному из конденсаторов С, все противоположные обкладки которых подключены к точке М к одному-единственному резистору R и к сетке входной лампы усилителя. Если мы спроецируем изображение на совокупность этих фотоэлементов…

Н. — …то наша система будет великолепно работать. Действительно, в каждый данный момент на точке М окажется напряжение, величина которого будет пропорциональна освещенности фотоэлемента, включаемого в этот момент в цепь переключателя К.

Л. — Вижу, что ты понял. А отдаешь ты себе отчет в том, что свет действует на все фотоэлементы все время, так что полученные напряжения являются результатом накопления зарядов в промежутке между двумя разрядами? Именно это-то действие накопления определяет высокую чувствительность прибора.

Н. — Но это неосуществимо! Нельзя же серьезно предусматривать включение на источник питания не менее 500 000 фотоэлементов, так как по меньшей мере таким должно быть их количество для развертки 625 строк. Еще менее реально представить себе переключатель, который за 1/25 сек обошел бы 500 000 контактов. Все это, как ты и сам прекрасно понимаешь, совершенно невозможно.



НЕТ НИЧЕГО НЕВОЗМОЖНОГО


Л. — Между тем все это было великолепнейшим образом осуществлено Зворыкиным в его иконоскопе. Сердцем этого замечательного прибора является светочувствительная мозаика, или мишень. Мозаика нанесена на тонкую пластинку из слюды и изготавливается следующим образом. На пластинку наносят тонкий слой серебра. Затем подогревают пластинку, слой разрывается и серебро распределяется отдельными капельками, изолированными одна от другой. На этих капельках создают светочувствительные поверхности, осаждая на них пары цезия.

Н. — Мне приходилось встречать лак, который подвергали растрескиванию в печи, он очень эффектен на футлярах для измерительных приборов. Но растрескавшееся серебро — это для меня что-то совсем новое. Вот, значит, каким путем получают миллионы фотоэлементов.

Л. — Ну, да. По крайней мере таким образом получают катоды — наиболее существенную их часть. Электроны, испускаемые под действием света, притягиваются обычным анодом.



Н. — А индивидуальные конденсаторы наших фотоэлементов?

Л. — Этот вопрос был решен очень остроумно. Оказалось достаточным покрыть металлической пленкой другую сторону слюды, для того чтобы каждый катод образовал вместе с этой общей пластиной индивидуальный конденсатор для каждого фотоэлемента. Можно, впрочем, заметить, что абсолютная однородность катодов необязательна, потому что на каждый элемент изображения приходится по нескольку капелек.

Н. — Это поистине чудесно! Я уже догадываюсь, что переключатель, проходящий через миллионы контактов, не что иное, как электронный пучок электронно-лучевой трубки.

Л. — В твоей догадке нет особой заслуги, ты ведь видел, как я чертил схему иконоскопа (рис. 65).



Рис. 65. Иконоскоп.

а — схема включения; б — разрез мишени; в — распределение светочувствительных элементов мозаики (в действительности размеры пятна гораздо больше по сравнению с капельками мозаики);

1 — объектив; 2— мозаика; 3 — слюдяная пластина; 4 — металлическое покрытие, являющееся сигнальной пластиной; 5 — катушки кадрового отклонения; 6 — катушки строчного отклонения; 7 — электронное пятно.


Н. — Его колба имеет довольно странную форму.



Л. — Такая форма необходима потому, что светочувствительная мозаика должна одновременно подвергаться действию света и электронного пучка. Чтобы объектив мог спроецировать изображение передаваемой сцены на мозаику, одна из стенок трубки должна быть совершенно плоской. С другой стороны, электронная пушка, т. е. совокупность электродов, служащая для формирования электронного пучка, помещается в трубке, образующей с плоскостью мозаики угол порядка 45°.

Обрати внимание на то, что вторым анодом (А2) является металлический слой, покрывающий часть внутренней поверхности колбы.

Н. — Я вижу, что фокусировка пятна электростатическая, в то время как отклонение электромагнитное.

Л. — Можно было бы поступить и наоборот. Не в этом заключаются существенные особенности иконоскопа. Особенно важно то, что все элементарные фотоэлементы мозаики непрерывно подвергаются освещению соответствующими точками изображения. А это значит, что заряды образуются непрерывно благодаря излучению электронов под действием света.

Н. — А что делается с этими электронами?

Л. — Они притягиваются анодом А2. Что же касается положительных зарядов, накапливающихся на мозаике, то они образуют настоящее электронное изображение. Электронный пучок нейтрализует заряд каждого элемента (включающего в себя целую группу фотоэлементов) один раз при развертке каждого изображения, т. е. через каждые 1/25 сек. Эти разряды порождают ток, который проходит через резистор R и создает на его зажимах напряжение…

Н. — …которое зависит от освещенности развертываемого элемента изображения. Я прекрасно понял принцип действия иконоскопа, который по сути дела очень прост.



ИСКУССТВО ИСПОЛЬЗОВАНИЯ НЕДОСТАТКОВ

Л. — По правде сказать, в действительности он дьявольски сложен. Явление вторичной эмиссии в значительной степени портит кажущуюся простоту, которую ты только что восхвалял.

Н. — Я припоминаю, что мы говорили о вторичной эмиссии, изучая тетроды. Мы установили тогда, что электроны, доходя со значительной скоростью до анода, выбивают из него много других электронов, некоторое количество которых притягивается экранирующей сеткой. Вот это-то фонтанирование многих электронов под действием удара первоначального электрона и называют вторичной эмиссией.

Л. — Вот уж, право, ты не лишен памяти! Ну так вот, в иконоскопе мозаика подвергается бомбардировке электронами, летящими с большой скоростью и выбивающими множество вторичных электронов. Часть этих электронов притягивается вторым анодом. Другие возвращаются дождем на мозаику, сообщая ей слегка отрицательный заряд. Так что практически все явления в иконоскопе много сложнее, чем это могло показаться в первом приближении.

Н. — Ты мне говорил, что в жизни высшее искусство состоит в превращении пороков в добродетели, что относилось и к людям и к вещам. Мне пришла в голову мысль, что вторичная эмиссия могла бы найти очень интересного применения. Ведь если один электрон может выбить множество, то можно как будто использовать ото явление для получения усиления.

Л. — Ах, мой бедный Незнайкин, поистине ты слишком поздно появился в этой юдоли слез! Будь это век назад, ты предвосхитил бы славу Эдисона.



Н. — Ныне же, увы, когда у меня случайно появляются блестящие идеи, оказывается, что другие их у меня уже похитили много лет назад! Значит, вторичная эмиссия действительно используется для усиления?

Л. — Ну, конечно, Незнайкин. И уже давненько. Таким образом, например, усовершенствовали иконоскоп, разделив функции фотоэмиссии и вторичной эмиссии.

Н. — Каким же образом?

Л. — В так называемом супериконоскопе (рис. 66). Изображение проецируется на сплошную светочувствительную поверхность, образуемую очень тонким, а потому полупрозрачным слоем серебра, нанесенным на лист слюды и очувствленным в свету пленкой из цезия.




Рис. 66. Устройство супериконоскопа.

1 — объектив; 2 — фотокатод; 3 — фокусирующая катушка; 4 — мозаика; 5 — сигнальная пластина


Н. — Значит, никакого растрескивания уже не нужно для образования мозаики?

Л. — Нет, не нужно. Фотокатод супериконоскопа отличается от мозаики иконоскопа как раз тем, что он не нуждается в таком характерном для нее нарушении непрерывности. Поэтому используют всю освещенную поверхность и получают более высокую чувствительность.

Н. — На твоем рисунке однако, я вижу справа в трубке, напротив фотокатода, мишень, которая в точности похожа на мозаику иконоскопа.

Л. — И все же это сходство обманчиво, ведь мишень чувствительна не к свету, а к электронным лучам, или же, выражаясь иначе, она может давать сильную вторичную эмиссию под действием удара электронов.

Н. — Уж не хочешь ли ты скачать, что бомбардировать мишень будут электроны излученные фотокатодом?

Л. — Вот именно ты видишь, что вторым анодом (А2) здесь также является металлическое покрытие некоторой части внутренней поверхности колбы. Электроны, которые под действием световых лучен испускаются фотокатодом, притягиваются вторым анодом. Но фокусирующая катушка, образующая настоящую магнитную линзу, препятствует им броситься в объятия этого анода. Таким образом, положительное напряжение на нем служит только для ускорения движения электронов которые надлежащим образом направляются магнитным полем и устремляются в полном порядке на мишень.



Н. — Что ты называешь в полном порядке?

Л. — Я тебе недавно говорил об электронном изображении, образованном совокупностью электронов, вырванных из светочувствительной поверхности распределение которых соответствует освещенности отдельных элементов. Именно такое электронное изображение проецируется на мозаику, так же как в камере фотоаппарата изображение проецируется на матовое стекло.

Н. — Решительно, телевизионные специалисты не знают преград. Я же догадываюсь что происходит дальше. Каждый электрод фотокатода попадая на элементы мишени, выбивает оттуда много вторичных электронов, которые летят на второй анод. Развертывающий пучок электронной пушки должен нейтрализовать положительные заряды, более значительные, чем в случае простого иконоскопа так как здесь вторичная эмиссия осуществляет чудесное умножение.

Л. — Ты прекрасно уловил, Незнайкин, существенные черты работы этого великолепного прибора, гораздо более чувствительного, чем простой иконоскоп.



ТРУБКА ПРОСТОЙ ФОРМЫ…

Н. — По видимому, со свойственным тебе злорадством ты мне сейчас заявишь, что им больше не пользуются.

Л. — По правде говоря, существует прибор, которому стоит уделить больше внимания. Это ортикон с переносом изображения, или суперортикон, наиболее распространенный благодаря высокой чувствительности.



Н. — Я вижу (рис. 67), что колба этой трубки имеет не столь оригинальную форму, как у различных иконоскопов.



Рис. 67. Продольный разрез ортикона с переносом изображения (в кружках указаны напряжения на различные электродах).

1 — объектив; 2 — мишень; 3 — фокусирующая катушка; 4 — кадровые и строчные отклоняющие катушки; 5 — электронный умножитель; 6 — катод; 7 — выход; 8 и 9 — аноды; 10 — замедляющий электрод; 11 — экран; 12 — фотокатод.


Л. — В этом заключается одно из преимуществ трубки, потому что развертка производится электронным пучком, перпендикулярным развертываемой поверхности, что рациональнее косого пучка.

Н. — Я констатирую что здесь также на внутренней поверхности трубки имеется фотокатод, подобный фотокатоду супериконоскопа.

Л. — Правильно. Его отрицательный потенциал составляет 600 в относительно мишени. Мишень состоит из очень тонкой стеклянной пластинки.

Н. — Как папиросная бумага?

Л. — Гораздо тоньше, так как толщина 2 000 пластинок из такого стекла, сложенных вместе, равна только 1 см.

Н. — Зачем же нужно брать такое тонкое стекло?



…НО СЛОЖНАЯ ПО СУЩЕСТВУ


Л. — Чтобы образующиеся на его поверхности заряды успевали проходя через стекло, нейтрализоваться за время, равное интервалу между двумя последовательными развертками, т. е. за 1/25 сек.

Н. — А как возникают эти заряды?

Л. — Благодаря тому, что потенциал мишени на 600 в выше, чем потенциал фотокатода, мишень притягивает электроны, испускаемые фотокатодом под действием света. Электронное изображение переносится на мишень, так как взаимное расположение электронов поддерживается полем фокусирующей катушки. Попадая на мишень, электроны выбивают из нее много вторичных электронов, которые притягиваются экраном, помещенным на расстоянии 1/20 мм от мишени и имеющим относительно нее потенциал + 1 в. В то же время экран, состоящий из сетки с мелкими ячейками, не задерживает быстрых электронов, устремляющихся от фотокатода на мишень.



Н. — И, если я тебя правильно понял, на левой стороне мишени образуются положительные заряды, пропорциональные освещенностям соответствующих точек.

Л. — Правильно. Эти заряды медленно проходят через стекло и нейтрализуются отрицательными зарядами, создаваемыми на другой стороне электронным пучком в процессе развертки. Однако в этом случае мы имеем дело с трубкой с медленными электронами. Обрати внимание на то, что электроны, эмитируемые катодом, имеют очень небольшое ускорение благодаря незначительному потенциалу первого анода, равному + 220 в. Второй анод с меньшим потенциалом, чем первый, и кольцевой электрод с нулевым потенциалом относительно катода, расположенный по соседству с мишенью, только задерживают электронный поток. Таким образом, электроны доходят до мишени со скоростью, почти равной нулю.

Н. — Как те шальные пули, которые на излете только слегка царапают бойцов и которые могут быть остановлены простой курткой?



Л. — Таким путем удается полностью избежать образования вторичной эмиссии на правой поверхности мишени. Пучок доставляет количество электронов, необходимое лишь для нейтрализации положительных зарядов.

Н. — А что делается с остальными?

Л. — Они печально возвращаются обратно, как провалившиеся на экзаменах ученики. Возрастающие напряжения анодов сообщают им ускоряющее движение, в результате чего эти электроны ударяют по первой мишени электронного умножителя с большой скоростью.

Н. — Что такое электронный умножитель?



ОДИН ДЕНЬ НА БЕГАХ

Л. — Это прибор, который и ты мог бы без труда изобрести, но который, к несчастью, был осуществлен другими еще до твоего появления на свет.

Н. — Всегда одно и то же… Но раньше чем говорить об этом умножителе, я хотел бы для себя подвести итоги всему услышанному от тебя об ортиконе с переносом изображения. Он напоминает мне в некотором отношении супериконоскоп.

Как и там, в ортиконе имеется сплошной фотокатод, электронное изображение с которого переносится на мишень, где вторичная эмиссия значительно увеличивает заряды. Эти заряды нейтрализуются развертывающимся пучком, который доставляет необходимое для этого количество электронов. Те электроны, которые остаются, возвращаются и попадают на электронный умножитель. Что это за прибор?

Л. — Надеюсь, ты никогда не играл на скачках?

Н. — Нет… но я не вижу связи…

Л. — Предположим, что ты явился на бега с десятью франками в кармане и что ты поставил на лошадь, которая выиграла первый забег, на чем ты выиграл 50 франков. Вместо того чтобы послушаться голоса разума и бежать из этого гибельного места, ты будешь упорствовать в своих заблуждениях и поставишь все 50 франков на лошадь, которая опять-таки придет первой во втором забеге и принесет тебе 250 франков.

Тут уж никакая сила в мире не сможет удержать тебя рискнуть своим выигрышем на лошадь, которая в третьем забеге выиграет для тебя 1 250 франков. И вот во время пятого забега, не прислушавшись к голосу совести и поправ основные принципы морали, ты покинешь бега с суммой в 31 250 франков…



Н. — Ты что же думаешь, что я не знаю геометрической прогрессии?

Л. — Не обижайся, Незнайкин. Я рассказал тебе эту неправдоподобную историю только для того, чтобы ты лучше понял принцип работы электронного умножителя. Он состоит из нескольких мишеней, имеющих постепенно возрастающие потенциалы (рис. 68). Электрон, падающий ни первую мишень, выбивает из нее, например, 5 вторичных электронов. Притягиваемые и ускоряемые более высоким потенциалом следующей мишени, они выбивают из нее уже 5·5 = 25 вторичных электронов. То же происходит на каждой следующей мишени. Таким образом, очень слабому электронному току на входе соответствует значительный ток на выходе электронного умножителя.



Рис. 68. Схема электронного умножителя, содержащего пять анодов с последовательно возрастающими потенциалами.


Н. — И такое устройство помещают у катода ортикона?

Л. — Да. В нем бывает обычно пять каскадов. Потенциал последней мишени доводится приблизительно до + 1500 в. Промежуточные напряжения получают при помощи делителя напряжений из сопротивлений, смонтированных внутри трубки.

Н. — Эта передающая трубка должна обладать чрезвычайно высокой чувствительностью.

Л. — Это так и есть. Для ортикона с переносом изображения можно ограничиться для освещения одной свечой. При более ярком освещении можно диафрагмировать объектив, чтобы увеличить глубину поля резкости.

Загрузка...