Беседа вторая ПУТЕШЕСТВИЕ В ПРОШЛОЕ

Чтобы понять действие аппаратуры современного телевидения, нет необходимости изучать всю историю этой области техники. Однако изучение способов разложения изображения значительно облегчится в результате предварительного изложения классической «механической» системы телевидения, предложенной Нипковым.

Незнайкин легко поймет метод, который впервые дал возможность передачи движущихся изображений на расстояние. В ходе этой беседы Любознайкин, следовательно, затронет следующие вопросы: диск Нипкова; разложение изображения; чересстрочная развертка; фотоэлемент; передатчик изображений; синхронизм; приемник с неоновой лампой; недостатки механических систем телевидения.


ГОЛОВОКРУЖИТЕЛЬНЫЕ ОПЫТЫ НЕЗНАЙКИНА


Любознайкин. — Боже мой! Что с тобой, Незнайкин, почему ты кружишься вокруг себя? Ты упражняешься в ремесле вертящегося дервиша?

Незнайкин. — Да вовсе нет! Я просто пробую читать так, чтобы, дойдя до конца строчки, не переводить взгляда обратно, налево, к началу следующей строчки.

Л. — А зачем это?

Н. — Потому, что я думаю о развертке изображения в телевидении, о котором мы говорили в последний раз. Ты мне объяснил, что последовательное разложение элементов производится, как чтение книги: строчка за строчкой. Принимая во внимание огромную скорость, с которой должно производиться это чтение, я хотел бы избежать потери времени, вызванной необходимостью возвращения к началу строк. Вот почему, пробежав, поворачиваясь, одну строку, я продолжаю быстрое вращательное движение вокруг самого себя, чтобы после каждого оборота мой взгляд снова попал на начало строк.

Л. — Не думаю, чтобы таким образом ты выгадал время. Самое большее — ты заработаешь на этом головокружение… Но этот способ развертки, который можно назвать «без обратного хода по строкам», характерен для большей части механических способов анализа.


НЕМНОГО ГЕОМЕТРИИ

Н. — Неплохо, если бы ты об этом поговорил. Потому что все, что ты до сих пор объяснял, довольно абстрактно. Очень мило сказать, что производят последовательную развертку элементов изображения. Но как это происходит в действительности?

Л. — Я предпочел бы не описывать тебе механические способы, потому что они уступили место электронным. Но, может быть, ты лучше поймешь электронные методы, если я тебе расскажу об одном из самых простых и самых старинных устройств — диске Нипкова.

Н. — Я смутно припоминаю, что об этом что-то говорили, но никакого точного представления об этом у меня нет.

Л. — Мы сейчас изготовим один диск. Вот лист чертежной бумаги. Я вычерчиваю на нем (рис. 8) с помощью циркули круг радиусом приблизительно 10 см и вырезаю диск. Затем черчу на нем 16 окружностей радиусом 60, 62, 64 и т. д. до 90 мм. делю внешнюю окружность на 16 равных частей…



Рис. 8. Расположение отверстий по спирали на диске Нипкова.


Н. — Решительно, после того как мы занимались арифметикой и алгеброй, мы теперь в разгаре геометрии. Затем мы перейдем к интегральному исчислению…

Л. — До этого мы еще не дошли. Закончим же рисунок.

Я провожу 16 радиусов, проходящих через равноотстоящие точки внешней окружности. Все эти вспомогательные линии мне нужны были для того, чтобы определить точки спирали. В самом деле, я обозначаю пересечение первого радиуса с внутренней окружностью, затем пересечение следующего радиуса (в направлении движения часовой стрелки) со следующей окружностью и т. д.

Н. — В самом деле, таким образом ты получаешь 16 точек, расположенных на спирали. Ну и что ты с ними будешь делать?



РАССМАТРИВАЯ ЧЕРЕЗ ОТВЕРСТИЯ ДИСКА


Л. — Я пробиваю в диске пробойником совершенно круглые отверстия диаметром немного более 2 мм. И вот диск Нипкова готов.

Н. — И ты серьезно намерен воспользоваться им для развертки изображения?

Л. — Да, у меня твердое намерение. Вот небольшой очень простой рисунок размером около 3 см. Я его прикалываю к абажуру лампы, а диск очень быстро вращаю, используя в качестве оси вязальную спицу.

Н. — Ах, вот что!.. Я вяжу рисунок так, как если бы диск был прозрачным.

Л. — Теперь, чтобы лучше понять, что происходит, и вращаю диск очень медленно.

Н. — Я понял! Ведь это тот же кусок бумажки с круглым отверстием? Однако значительно усовершенствованный. Когда диск вращается, первое отверстие пробегает строку (она, правда, не совсем прямая — это дуга окружности, но это ничего не меняет). Как только оно закончит свою строку, следующее отверстие выступает на сцену, чтобы в свою очередь пройтись вдоль строки изображения. И таким образом одно за другим все отверстия, начиная с наружного и кончая самым близким к центру, пробегают все строки изображения.

Л. — А когда все изображение таким образом развернуто…

Н. — …все опять начинается сначала с новым поворотом диска.

Л. — Ты установил, что при условии достаточно быстрого вращения диска изображение видно целиком, тогда как на самом деле в каждый данный момент лишь один из его элементов появляется в одном из отверстий диска.

Н. — Я устанавливаю также, что диск читает на манер дервиша-вертуна, т. е. не возвращаясь к началу строк движением, обратным направлению чтения. Я вижу, однако, что надо вращаться очень быстро для получения ощущения одновременного видения всех элементов.



ДИКОВИННЫЙ СПОСОБ ЧТЕНИЯ


Л. — В самом деле, если я хоть слегка замедляю вращение, то изображение имеет такой вид, как будто через него попеременно пробегают черные и белые волны. Это происходит оттого, что световые ощущения длятся недолго.

Н. — С какой скоростью нужно, следовательно, развертывать изображение во избежание мерцания, наблюдаемого, когда диск вращается недостаточно быстро?

Л. — Чтобы добиться хороших результатов, нужно развертывать 30 изображений и секунду.

Н. — Это то, что делают американцы. Но в Европе, ты мне сказал, довольствуются 25 изображениями в секунду. Разве этого достаточно? Не лучше ли было бы увеличить частоту кадров?

Л. — Не забудь, что максимальная частота видеосигнала пропорциональна числу кадров в секунду. Не рекомендуется чем бы то ни было увеличивать эту и так уже слишком высокую частоту. Существует, к счастью, остроумный прием, позволяющий избегать мерцания без расширения полосы передаваемых частот. Это чересстрочная развертка.

Н. — Что ты под этим понимаешь?

Л. — Вместо того чтобы передавать последовательно все строки изображения от первой до последней передают сначала все нечетные, а затем все четные строки. Общее время развертки остается тем же, равным 1/25 сек. Но половина строк, покрывающих, однако, с некоторым интервалом всю поверхность изображения, передается в течение 1/50 сек, а вторая — в течение следующей 1/50 сек.

Н. — Если бы я таким образом читал книги, я бы там немного понял.

Л. — Вообще-то да. Но вот маленький текст, который нужно прочесть «чересстрочно». Взгляд пробегает, читая его, точно такой же путь, который должна пройти чересстрочная развертка в телевидении. Этот способ в настоящее время повсюду принят.



Чтобы правильно прочесть этот текст, нужно сначала совокупность («полурастр») нечетных прочесть сначала нечетные строки, затем четные строк, затем четных строк. Таким образом, строки. Чересстрочная развертка позволяет чтобы развернуть изображение 25 раз в секунду, читать изображение таким же образом, пробегая нужно развернуть 50 полурастров в секунду.


Н. — Это, действительно, довольно забавно. Я думаю, что типограф, который составил этот текст, был немного навеселе… Но как практически осуществить такой способ развертки? Думаю, что это должно быть чрезвычайно сложно.



Л. — Вовсе нет, дружище. Вот, например, диск Нипкова, который для этого вполне подходит (рис. 9).



Рис. 9. Двухспиральный диск Нипкова для чересстрочной развертки.


Ты видишь, что у него также 16 отверстий для разложения изображения на 16 строк. Но отверстия расположены не на одной, а на двух спиралях, занимающих каждая половину круга. На одной находятся отверстия, развертывающие строки 1, 3, 5, 7, 9, 11, 13 и 15, тогда как на другой расположены отверстия, соответствующие строкам 2, 4, 6, 8, 10, 12, 14 и 16.



Н. — Поистине, это очень просто. Нужно же было до этого додуматься! Но можешь ты мне объяснить, как при помощи диска Нипкова передавали изображения?


НЕМНОГО ХИМИИ

Л. — Знаешь ли ты, что называется фотоэлементом?

Н. — Конечно. Для моего фотоаппарата мне предложили фотоэкспонометр с фотоэлементом. Это приспособление, дающее возможность измерять интенсивность освещения предметов, которые нужно сфотографировать. Свет падает на фотоэлемент, который превращает свет в электрический ток, измеряемый при помощи очень чувствительного гальванометра.

Л. — Фотоэлемент является, следовательно, преобразователем световой энергии в электрическую. Ток, который через него проходит, пропорционален падающему на него потоку света. Фотоэлементы, используемые в телевидении, фотоэмиссионного типа (рис. 10). Вначале фотоэлемент такого типа представлял собой стеклянную колбу, из которой выкачан воздух. Одна из внутренних стенок колбы была покрыта тонким слоем фотоэмиссионного материала.



Рис. 10. Батарея Б задает на аноде фотоэлемента положительный относительно катода потенциал. Фотоэлектронный ток через резистор R определяет напряжение U, которое подается на усилитель.

1 — световой поток; 2 — анод; 3 — светочувствительный слой (катод).


Н. — Так называют материал, излучающий свет?

Л. — Этимология слова вводит тебя в заблуждение. Речь идет о веществах, которые при попадании на них светового потока излучают электроны.

Н. — А какие же это вещества?

Л. — Все так называемые «щелочные» металлы, т. е. цезий, натрий, кадий, рубидий и литий, так же как и реже используемые щелочноземельные.

Н. — У меня есть идея! Раз существуют материалы, излучающие электроны под действием света, можно было бы заменить ими катоды радиоламп. Таким образом, отпала бы необходимость в токе накала. Днем можно было бы выставлять приемник под лучи солнца, а вечером его помещали бы около осветительной лампы.


Л. — Твоя идея не абсурдна. Но количество излучаемых при этом электронов может обеспечить только очень слабый ток. Чтобы получить ток в фотоэлементе, еще кое-чего не хватает. Фотоэмиссионная поверхность составляет катод…

Н. — Понял! Не хватает анода. Очевидно, нужно поместить в колбу анод с положительным по отношению к катоду потенциалом, чтобы притягивать электроны, которые он излучает.

Л. — Да, но сплошной анод задерживал бы световые лучи. Поэтому его заменяют кольцом или редкой сеткой.



ИЗОБРАЖЕНИЕ РАЗВЕРНУТО

Н. — Мне думается, что я могу рассказать теперь, как я представляю себе телевизионный передатчик. Я беру свой фотоаппарат, но на место матового стекла помещаю ту часть диска Нипкова, которой производится разложение изображения (рис. 11). Ведь именно здесь объектив моего аппарата образует изображение, которое нужно передать. А сзади диска я помещу фотоэлемент. Так это?



Рис. 11. Передатчик с диском Нипкова.

1 — объектив; 2 — проекция изображения; 3 — фотоэлемент; 4 — усилитель; 5 — передатчик.


Л. — Абсолютно верно! Ты на пути к повторному изобретению телевидения. В каждый момент времени фотоэлемент в твоем устройстве будет получать свет от развертываемого элемента изображения и будет преобразовывать его в ток, пропорциональный интенсивности света. Следовательно, на выходе фотоэлемента возникает сигнал видеочастоты, который нужно будет соответственно усилить, перед тем как промодулировать несущую высокую частоту, используемую для передачи видеосигнала на расстояние.



ИЗОБРАЖЕНИЕ ВОСПРОИЗВЕДЕНО

Н. — А приемник?

Л. — Как ты понимаешь, в нем будет диск Нипкова, подобный диску передатчика, приводимый в совершенно идентичное вращательное движение (рис. 12).



Рис. 12. Приемник с диском Нипкова и неоновой лампой.

1 — приемник; 2 — неоновая лампа; 3 — изображение.


Н. — Это то, что называют «синхронизмом», не так ли?

Л. — Я с удовольствием отмечай, насколько богаче стал твой технический словарь.

Н. — Но какое устройство будет служить преобразователем изменений тока в изменения яркости?

Л. — Попросту неоновая лампа, состоящая из колбы, содержащей неон под небольшим давлением.

Н. — Я прекрасно знаю эти неоновые лампы, которые применяют в световых рекламах. Я даже разбил одну в кафе напротив нашего дома, потому что она излучала больше помех, чем света.



Л. — Я и не подозревал, что у тебя такие агрессивные наклонности. Но неоновые лампы, которые использовались в телевидении, содержали один электрод в виде пластинки такой же поверхности, как и воспроизводимое изображение, и другой электрод, который в виде рамки охватывал первый электрод. Когда между этими двумя электродами приложено некоторое постоянное напряжение, вся поверхность пластинки светится. Если, кроме того, в цепь попадает переменное напряжение видеосигнала, то яркость изменяется в соответствии с мгновенными значениями сигнала.

Н. — Да, но как сделать, чтобы каждая точка этой пластинки имела яркость, соответствующую яркости той же точки передаваемого изображения?

Л. — А этого и не нужно. Ведь неоновая лампа помещена за диском Нипкова и ты ее видишь через отверстия диска.

Н. — Теперь я понял! В каждое мгновение мы увидим только один элемент светящейся поверхности лампы, и в это мгновение лампа правильно воспроизводит яркость соответствующей точки развертываемого изображения. Например, в момент, когда передают первый элемент первой строки, вся неоновая лампа имеет такую же яркость. Но через отверстие диска мы видим только место изображения, соответствующее этому элементу. Когда отверстие переходит к следующему элементу, неоновая лампа воспроизводит яркость этого второго элемента и т. д. Следовательно, все элементы видны на своих местах с соответствующей яркостью, что дает восстановленное изображение.

Л. — Ты прекрасно понял принцип этой системы телевидения, выдвинутой еще в конце XIX в


МЕХАНИКА УМЕРЛА, ДА ЗДРАВСТВУЕТ ЭЛЕКТРОНИКА!


Н. — Эта система мне кажется очень простой и практичной. Надеюсь, что она продолжает существовать.

Л. — Она давным-давно заброшена, так как пригодна для разложения изображений с ограниченным количеством строк, не превышающим 180.

Н. — А разве не могли делать достаточно большие диски, чтобы разместить на них большое количество отверстий?

Л. — Нет, потому что при скорости, с которой они вращаются, центробежные силы могли бы их разорвать

Н. — Можно было бы уменьшить диаметр отверстий.

Л. — Не ниже некоторой величины. Световые лучи, проходящие через слишком малые отверстия, подвергаются неприятному явлению дифракции.



Н. — Положительно мои идеи сегодня не очень то удачны.

Л. — Если бы они и были удачны, ты все равно не мог бы спасти механические системы. Они страдают другими серьезными недостатками. Так, например, в процессе передачи фотоэлемент получает свет от каждого элемента изображения только в течение очень короткого интервала времени. Чтобы получить ощутимый электрический ток, требуется очень интенсивное освещение объекта. При приеме имеет место такое же расточительство, так как каждое мгновение мы видим только один элемент всей освещенной поверхности неоновой лампы, свет которой, следовательно, очень мало используется. И, наконец, разве мы не живем в век электроники?

Н. — Зачем же ты мне тогда подробно объяснял действие системы, которая должна встретиться в музее с самолетом братьев Райт и когерером Бранли.

Л. — Потому что, шевеля мозгами, чтобы ее понять, ты лучше подготовишься к усвоению более сложных явлений в электронных системах.

Н. — Я чувствую, что это будет дьявольски сложно.



Загрузка...